1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memfd.h>
9 #include <linux/memremap.h>
10 #include <linux/pagemap.h>
11 #include <linux/rmap.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/secretmem.h>
15 
16 #include <linux/sched/signal.h>
17 #include <linux/rwsem.h>
18 #include <linux/hugetlb.h>
19 #include <linux/migrate.h>
20 #include <linux/mm_inline.h>
21 #include <linux/pagevec.h>
22 #include <linux/sched/mm.h>
23 #include <linux/shmem_fs.h>
24 
25 #include <asm/mmu_context.h>
26 #include <asm/tlbflush.h>
27 
28 #include "internal.h"
29 #include "swap.h"
30 
31 struct follow_page_context {
32 	struct dev_pagemap *pgmap;
33 	unsigned int page_mask;
34 };
35 
36 static inline void sanity_check_pinned_pages(struct page **pages,
37 					     unsigned long npages)
38 {
39 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
40 		return;
41 
42 	/*
43 	 * We only pin anonymous pages if they are exclusive. Once pinned, we
44 	 * can no longer turn them possibly shared and PageAnonExclusive() will
45 	 * stick around until the page is freed.
46 	 *
47 	 * We'd like to verify that our pinned anonymous pages are still mapped
48 	 * exclusively. The issue with anon THP is that we don't know how
49 	 * they are/were mapped when pinning them. However, for anon
50 	 * THP we can assume that either the given page (PTE-mapped THP) or
51 	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
52 	 * neither is the case, there is certainly something wrong.
53 	 */
54 	for (; npages; npages--, pages++) {
55 		struct page *page = *pages;
56 		struct folio *folio;
57 
58 		if (!page)
59 			continue;
60 
61 		folio = page_folio(page);
62 
63 		if (is_zero_page(page) ||
64 		    !folio_test_anon(folio))
65 			continue;
66 		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
67 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
68 		else
69 			/* Either a PTE-mapped or a PMD-mapped THP. */
70 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
71 				       !PageAnonExclusive(page), page);
72 	}
73 }
74 
75 /*
76  * Return the folio with ref appropriately incremented,
77  * or NULL if that failed.
78  */
79 static inline struct folio *try_get_folio(struct page *page, int refs)
80 {
81 	struct folio *folio;
82 
83 retry:
84 	folio = page_folio(page);
85 	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
86 		return NULL;
87 	if (unlikely(!folio_ref_try_add(folio, refs)))
88 		return NULL;
89 
90 	/*
91 	 * At this point we have a stable reference to the folio; but it
92 	 * could be that between calling page_folio() and the refcount
93 	 * increment, the folio was split, in which case we'd end up
94 	 * holding a reference on a folio that has nothing to do with the page
95 	 * we were given anymore.
96 	 * So now that the folio is stable, recheck that the page still
97 	 * belongs to this folio.
98 	 */
99 	if (unlikely(page_folio(page) != folio)) {
100 		folio_put_refs(folio, refs);
101 		goto retry;
102 	}
103 
104 	return folio;
105 }
106 
107 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
108 {
109 	if (flags & FOLL_PIN) {
110 		if (is_zero_folio(folio))
111 			return;
112 		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
113 		if (folio_has_pincount(folio))
114 			atomic_sub(refs, &folio->_pincount);
115 		else
116 			refs *= GUP_PIN_COUNTING_BIAS;
117 	}
118 
119 	folio_put_refs(folio, refs);
120 }
121 
122 /**
123  * try_grab_folio() - add a folio's refcount by a flag-dependent amount
124  * @folio:    pointer to folio to be grabbed
125  * @refs:     the value to (effectively) add to the folio's refcount
126  * @flags:    gup flags: these are the FOLL_* flag values
127  *
128  * This might not do anything at all, depending on the flags argument.
129  *
130  * "grab" names in this file mean, "look at flags to decide whether to use
131  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
132  *
133  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
134  * time.
135  *
136  * Return: 0 for success, or if no action was required (if neither FOLL_PIN
137  * nor FOLL_GET was set, nothing is done). A negative error code for failure:
138  *
139  *   -ENOMEM		FOLL_GET or FOLL_PIN was set, but the folio could not
140  *			be grabbed.
141  *
142  * It is called when we have a stable reference for the folio, typically in
143  * GUP slow path.
144  */
145 int __must_check try_grab_folio(struct folio *folio, int refs,
146 				unsigned int flags)
147 {
148 	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
149 		return -ENOMEM;
150 
151 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(&folio->page)))
152 		return -EREMOTEIO;
153 
154 	if (flags & FOLL_GET)
155 		folio_ref_add(folio, refs);
156 	else if (flags & FOLL_PIN) {
157 		/*
158 		 * Don't take a pin on the zero page - it's not going anywhere
159 		 * and it is used in a *lot* of places.
160 		 */
161 		if (is_zero_folio(folio))
162 			return 0;
163 
164 		/*
165 		 * Increment the normal page refcount field at least once,
166 		 * so that the page really is pinned.
167 		 */
168 		if (folio_has_pincount(folio)) {
169 			folio_ref_add(folio, refs);
170 			atomic_add(refs, &folio->_pincount);
171 		} else {
172 			folio_ref_add(folio, refs * GUP_PIN_COUNTING_BIAS);
173 		}
174 
175 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
176 	}
177 
178 	return 0;
179 }
180 
181 /**
182  * unpin_user_page() - release a dma-pinned page
183  * @page:            pointer to page to be released
184  *
185  * Pages that were pinned via pin_user_pages*() must be released via either
186  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
187  * that such pages can be separately tracked and uniquely handled. In
188  * particular, interactions with RDMA and filesystems need special handling.
189  */
190 void unpin_user_page(struct page *page)
191 {
192 	sanity_check_pinned_pages(&page, 1);
193 	gup_put_folio(page_folio(page), 1, FOLL_PIN);
194 }
195 EXPORT_SYMBOL(unpin_user_page);
196 
197 /**
198  * unpin_folio() - release a dma-pinned folio
199  * @folio:         pointer to folio to be released
200  *
201  * Folios that were pinned via memfd_pin_folios() or other similar routines
202  * must be released either using unpin_folio() or unpin_folios().
203  */
204 void unpin_folio(struct folio *folio)
205 {
206 	gup_put_folio(folio, 1, FOLL_PIN);
207 }
208 EXPORT_SYMBOL_GPL(unpin_folio);
209 
210 /**
211  * folio_add_pin - Try to get an additional pin on a pinned folio
212  * @folio: The folio to be pinned
213  *
214  * Get an additional pin on a folio we already have a pin on.  Makes no change
215  * if the folio is a zero_page.
216  */
217 void folio_add_pin(struct folio *folio)
218 {
219 	if (is_zero_folio(folio))
220 		return;
221 
222 	/*
223 	 * Similar to try_grab_folio(): be sure to *also* increment the normal
224 	 * page refcount field at least once, so that the page really is
225 	 * pinned.
226 	 */
227 	if (folio_has_pincount(folio)) {
228 		WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
229 		folio_ref_inc(folio);
230 		atomic_inc(&folio->_pincount);
231 	} else {
232 		WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
233 		folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
234 	}
235 }
236 
237 static inline struct folio *gup_folio_range_next(struct page *start,
238 		unsigned long npages, unsigned long i, unsigned int *ntails)
239 {
240 	struct page *next = nth_page(start, i);
241 	struct folio *folio = page_folio(next);
242 	unsigned int nr = 1;
243 
244 	if (folio_test_large(folio))
245 		nr = min_t(unsigned int, npages - i,
246 			   folio_nr_pages(folio) - folio_page_idx(folio, next));
247 
248 	*ntails = nr;
249 	return folio;
250 }
251 
252 static inline struct folio *gup_folio_next(struct page **list,
253 		unsigned long npages, unsigned long i, unsigned int *ntails)
254 {
255 	struct folio *folio = page_folio(list[i]);
256 	unsigned int nr;
257 
258 	for (nr = i + 1; nr < npages; nr++) {
259 		if (page_folio(list[nr]) != folio)
260 			break;
261 	}
262 
263 	*ntails = nr - i;
264 	return folio;
265 }
266 
267 /**
268  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
269  * @pages:  array of pages to be maybe marked dirty, and definitely released.
270  * @npages: number of pages in the @pages array.
271  * @make_dirty: whether to mark the pages dirty
272  *
273  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
274  * variants called on that page.
275  *
276  * For each page in the @pages array, make that page (or its head page, if a
277  * compound page) dirty, if @make_dirty is true, and if the page was previously
278  * listed as clean. In any case, releases all pages using unpin_user_page(),
279  * possibly via unpin_user_pages(), for the non-dirty case.
280  *
281  * Please see the unpin_user_page() documentation for details.
282  *
283  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
284  * required, then the caller should a) verify that this is really correct,
285  * because _lock() is usually required, and b) hand code it:
286  * set_page_dirty_lock(), unpin_user_page().
287  *
288  */
289 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
290 				 bool make_dirty)
291 {
292 	unsigned long i;
293 	struct folio *folio;
294 	unsigned int nr;
295 
296 	if (!make_dirty) {
297 		unpin_user_pages(pages, npages);
298 		return;
299 	}
300 
301 	sanity_check_pinned_pages(pages, npages);
302 	for (i = 0; i < npages; i += nr) {
303 		folio = gup_folio_next(pages, npages, i, &nr);
304 		/*
305 		 * Checking PageDirty at this point may race with
306 		 * clear_page_dirty_for_io(), but that's OK. Two key
307 		 * cases:
308 		 *
309 		 * 1) This code sees the page as already dirty, so it
310 		 * skips the call to set_page_dirty(). That could happen
311 		 * because clear_page_dirty_for_io() called
312 		 * folio_mkclean(), followed by set_page_dirty().
313 		 * However, now the page is going to get written back,
314 		 * which meets the original intention of setting it
315 		 * dirty, so all is well: clear_page_dirty_for_io() goes
316 		 * on to call TestClearPageDirty(), and write the page
317 		 * back.
318 		 *
319 		 * 2) This code sees the page as clean, so it calls
320 		 * set_page_dirty(). The page stays dirty, despite being
321 		 * written back, so it gets written back again in the
322 		 * next writeback cycle. This is harmless.
323 		 */
324 		if (!folio_test_dirty(folio)) {
325 			folio_lock(folio);
326 			folio_mark_dirty(folio);
327 			folio_unlock(folio);
328 		}
329 		gup_put_folio(folio, nr, FOLL_PIN);
330 	}
331 }
332 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
333 
334 /**
335  * unpin_user_page_range_dirty_lock() - release and optionally dirty
336  * gup-pinned page range
337  *
338  * @page:  the starting page of a range maybe marked dirty, and definitely released.
339  * @npages: number of consecutive pages to release.
340  * @make_dirty: whether to mark the pages dirty
341  *
342  * "gup-pinned page range" refers to a range of pages that has had one of the
343  * pin_user_pages() variants called on that page.
344  *
345  * For the page ranges defined by [page .. page+npages], make that range (or
346  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
347  * page range was previously listed as clean.
348  *
349  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
350  * required, then the caller should a) verify that this is really correct,
351  * because _lock() is usually required, and b) hand code it:
352  * set_page_dirty_lock(), unpin_user_page().
353  *
354  */
355 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
356 				      bool make_dirty)
357 {
358 	unsigned long i;
359 	struct folio *folio;
360 	unsigned int nr;
361 
362 	for (i = 0; i < npages; i += nr) {
363 		folio = gup_folio_range_next(page, npages, i, &nr);
364 		if (make_dirty && !folio_test_dirty(folio)) {
365 			folio_lock(folio);
366 			folio_mark_dirty(folio);
367 			folio_unlock(folio);
368 		}
369 		gup_put_folio(folio, nr, FOLL_PIN);
370 	}
371 }
372 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
373 
374 static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages)
375 {
376 	unsigned long i;
377 	struct folio *folio;
378 	unsigned int nr;
379 
380 	/*
381 	 * Don't perform any sanity checks because we might have raced with
382 	 * fork() and some anonymous pages might now actually be shared --
383 	 * which is why we're unpinning after all.
384 	 */
385 	for (i = 0; i < npages; i += nr) {
386 		folio = gup_folio_next(pages, npages, i, &nr);
387 		gup_put_folio(folio, nr, FOLL_PIN);
388 	}
389 }
390 
391 /**
392  * unpin_user_pages() - release an array of gup-pinned pages.
393  * @pages:  array of pages to be marked dirty and released.
394  * @npages: number of pages in the @pages array.
395  *
396  * For each page in the @pages array, release the page using unpin_user_page().
397  *
398  * Please see the unpin_user_page() documentation for details.
399  */
400 void unpin_user_pages(struct page **pages, unsigned long npages)
401 {
402 	unsigned long i;
403 	struct folio *folio;
404 	unsigned int nr;
405 
406 	/*
407 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
408 	 * leaving them pinned), but probably not. More likely, gup/pup returned
409 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
410 	 */
411 	if (WARN_ON(IS_ERR_VALUE(npages)))
412 		return;
413 
414 	sanity_check_pinned_pages(pages, npages);
415 	for (i = 0; i < npages; i += nr) {
416 		if (!pages[i]) {
417 			nr = 1;
418 			continue;
419 		}
420 		folio = gup_folio_next(pages, npages, i, &nr);
421 		gup_put_folio(folio, nr, FOLL_PIN);
422 	}
423 }
424 EXPORT_SYMBOL(unpin_user_pages);
425 
426 /**
427  * unpin_user_folio() - release pages of a folio
428  * @folio:  pointer to folio to be released
429  * @npages: number of pages of same folio
430  *
431  * Release npages of the folio
432  */
433 void unpin_user_folio(struct folio *folio, unsigned long npages)
434 {
435 	gup_put_folio(folio, npages, FOLL_PIN);
436 }
437 EXPORT_SYMBOL(unpin_user_folio);
438 
439 /**
440  * unpin_folios() - release an array of gup-pinned folios.
441  * @folios:  array of folios to be marked dirty and released.
442  * @nfolios: number of folios in the @folios array.
443  *
444  * For each folio in the @folios array, release the folio using gup_put_folio.
445  *
446  * Please see the unpin_folio() documentation for details.
447  */
448 void unpin_folios(struct folio **folios, unsigned long nfolios)
449 {
450 	unsigned long i = 0, j;
451 
452 	/*
453 	 * If this WARN_ON() fires, then the system *might* be leaking folios
454 	 * (by leaving them pinned), but probably not. More likely, gup/pup
455 	 * returned a hard -ERRNO error to the caller, who erroneously passed
456 	 * it here.
457 	 */
458 	if (WARN_ON(IS_ERR_VALUE(nfolios)))
459 		return;
460 
461 	while (i < nfolios) {
462 		for (j = i + 1; j < nfolios; j++)
463 			if (folios[i] != folios[j])
464 				break;
465 
466 		if (folios[i])
467 			gup_put_folio(folios[i], j - i, FOLL_PIN);
468 		i = j;
469 	}
470 }
471 EXPORT_SYMBOL_GPL(unpin_folios);
472 
473 /*
474  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
475  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
476  * cache bouncing on large SMP machines for concurrent pinned gups.
477  */
478 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
479 {
480 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
481 		set_bit(MMF_HAS_PINNED, mm_flags);
482 }
483 
484 #ifdef CONFIG_MMU
485 
486 #ifdef CONFIG_HAVE_GUP_FAST
487 static int record_subpages(struct page *page, unsigned long sz,
488 			   unsigned long addr, unsigned long end,
489 			   struct page **pages)
490 {
491 	struct page *start_page;
492 	int nr;
493 
494 	start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT);
495 	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
496 		pages[nr] = nth_page(start_page, nr);
497 
498 	return nr;
499 }
500 
501 /**
502  * try_grab_folio_fast() - Attempt to get or pin a folio in fast path.
503  * @page:  pointer to page to be grabbed
504  * @refs:  the value to (effectively) add to the folio's refcount
505  * @flags: gup flags: these are the FOLL_* flag values.
506  *
507  * "grab" names in this file mean, "look at flags to decide whether to use
508  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
509  *
510  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
511  * same time. (That's true throughout the get_user_pages*() and
512  * pin_user_pages*() APIs.) Cases:
513  *
514  *    FOLL_GET: folio's refcount will be incremented by @refs.
515  *
516  *    FOLL_PIN on large folios: folio's refcount will be incremented by
517  *    @refs, and its pincount will be incremented by @refs.
518  *
519  *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
520  *    @refs * GUP_PIN_COUNTING_BIAS.
521  *
522  * Return: The folio containing @page (with refcount appropriately
523  * incremented) for success, or NULL upon failure. If neither FOLL_GET
524  * nor FOLL_PIN was set, that's considered failure, and furthermore,
525  * a likely bug in the caller, so a warning is also emitted.
526  *
527  * It uses add ref unless zero to elevate the folio refcount and must be called
528  * in fast path only.
529  */
530 static struct folio *try_grab_folio_fast(struct page *page, int refs,
531 					 unsigned int flags)
532 {
533 	struct folio *folio;
534 
535 	/* Raise warn if it is not called in fast GUP */
536 	VM_WARN_ON_ONCE(!irqs_disabled());
537 
538 	if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
539 		return NULL;
540 
541 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
542 		return NULL;
543 
544 	if (flags & FOLL_GET)
545 		return try_get_folio(page, refs);
546 
547 	/* FOLL_PIN is set */
548 
549 	/*
550 	 * Don't take a pin on the zero page - it's not going anywhere
551 	 * and it is used in a *lot* of places.
552 	 */
553 	if (is_zero_page(page))
554 		return page_folio(page);
555 
556 	folio = try_get_folio(page, refs);
557 	if (!folio)
558 		return NULL;
559 
560 	/*
561 	 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
562 	 * right zone, so fail and let the caller fall back to the slow
563 	 * path.
564 	 */
565 	if (unlikely((flags & FOLL_LONGTERM) &&
566 		     !folio_is_longterm_pinnable(folio))) {
567 		folio_put_refs(folio, refs);
568 		return NULL;
569 	}
570 
571 	/*
572 	 * When pinning a large folio, use an exact count to track it.
573 	 *
574 	 * However, be sure to *also* increment the normal folio
575 	 * refcount field at least once, so that the folio really
576 	 * is pinned.  That's why the refcount from the earlier
577 	 * try_get_folio() is left intact.
578 	 */
579 	if (folio_has_pincount(folio))
580 		atomic_add(refs, &folio->_pincount);
581 	else
582 		folio_ref_add(folio,
583 				refs * (GUP_PIN_COUNTING_BIAS - 1));
584 	/*
585 	 * Adjust the pincount before re-checking the PTE for changes.
586 	 * This is essentially a smp_mb() and is paired with a memory
587 	 * barrier in folio_try_share_anon_rmap_*().
588 	 */
589 	smp_mb__after_atomic();
590 
591 	node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
592 
593 	return folio;
594 }
595 #endif	/* CONFIG_HAVE_GUP_FAST */
596 
597 /* Common code for can_follow_write_* */
598 static inline bool can_follow_write_common(struct page *page,
599 		struct vm_area_struct *vma, unsigned int flags)
600 {
601 	/* Maybe FOLL_FORCE is set to override it? */
602 	if (!(flags & FOLL_FORCE))
603 		return false;
604 
605 	/* But FOLL_FORCE has no effect on shared mappings */
606 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
607 		return false;
608 
609 	/* ... or read-only private ones */
610 	if (!(vma->vm_flags & VM_MAYWRITE))
611 		return false;
612 
613 	/* ... or already writable ones that just need to take a write fault */
614 	if (vma->vm_flags & VM_WRITE)
615 		return false;
616 
617 	/*
618 	 * See can_change_pte_writable(): we broke COW and could map the page
619 	 * writable if we have an exclusive anonymous page ...
620 	 */
621 	return page && PageAnon(page) && PageAnonExclusive(page);
622 }
623 
624 static struct page *no_page_table(struct vm_area_struct *vma,
625 				  unsigned int flags, unsigned long address)
626 {
627 	if (!(flags & FOLL_DUMP))
628 		return NULL;
629 
630 	/*
631 	 * When core dumping, we don't want to allocate unnecessary pages or
632 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
633 	 * then get_dump_page() will return NULL to leave a hole in the dump.
634 	 * But we can only make this optimization where a hole would surely
635 	 * be zero-filled if handle_mm_fault() actually did handle it.
636 	 */
637 	if (is_vm_hugetlb_page(vma)) {
638 		struct hstate *h = hstate_vma(vma);
639 
640 		if (!hugetlbfs_pagecache_present(h, vma, address))
641 			return ERR_PTR(-EFAULT);
642 	} else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) {
643 		return ERR_PTR(-EFAULT);
644 	}
645 
646 	return NULL;
647 }
648 
649 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
650 /* FOLL_FORCE can write to even unwritable PUDs in COW mappings. */
651 static inline bool can_follow_write_pud(pud_t pud, struct page *page,
652 					struct vm_area_struct *vma,
653 					unsigned int flags)
654 {
655 	/* If the pud is writable, we can write to the page. */
656 	if (pud_write(pud))
657 		return true;
658 
659 	return can_follow_write_common(page, vma, flags);
660 }
661 
662 static struct page *follow_huge_pud(struct vm_area_struct *vma,
663 				    unsigned long addr, pud_t *pudp,
664 				    int flags, struct follow_page_context *ctx)
665 {
666 	struct mm_struct *mm = vma->vm_mm;
667 	struct page *page;
668 	pud_t pud = *pudp;
669 	unsigned long pfn = pud_pfn(pud);
670 	int ret;
671 
672 	assert_spin_locked(pud_lockptr(mm, pudp));
673 
674 	if (!pud_present(pud))
675 		return NULL;
676 
677 	if ((flags & FOLL_WRITE) &&
678 	    !can_follow_write_pud(pud, pfn_to_page(pfn), vma, flags))
679 		return NULL;
680 
681 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
682 
683 	if (IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) &&
684 	    pud_devmap(pud)) {
685 		/*
686 		 * device mapped pages can only be returned if the caller
687 		 * will manage the page reference count.
688 		 *
689 		 * At least one of FOLL_GET | FOLL_PIN must be set, so
690 		 * assert that here:
691 		 */
692 		if (!(flags & (FOLL_GET | FOLL_PIN)))
693 			return ERR_PTR(-EEXIST);
694 
695 		if (flags & FOLL_TOUCH)
696 			touch_pud(vma, addr, pudp, flags & FOLL_WRITE);
697 
698 		ctx->pgmap = get_dev_pagemap(pfn, ctx->pgmap);
699 		if (!ctx->pgmap)
700 			return ERR_PTR(-EFAULT);
701 	}
702 
703 	page = pfn_to_page(pfn);
704 
705 	if (!pud_devmap(pud) && !pud_write(pud) &&
706 	    gup_must_unshare(vma, flags, page))
707 		return ERR_PTR(-EMLINK);
708 
709 	ret = try_grab_folio(page_folio(page), 1, flags);
710 	if (ret)
711 		page = ERR_PTR(ret);
712 	else
713 		ctx->page_mask = HPAGE_PUD_NR - 1;
714 
715 	return page;
716 }
717 
718 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
719 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
720 					struct vm_area_struct *vma,
721 					unsigned int flags)
722 {
723 	/* If the pmd is writable, we can write to the page. */
724 	if (pmd_write(pmd))
725 		return true;
726 
727 	if (!can_follow_write_common(page, vma, flags))
728 		return false;
729 
730 	/* ... and a write-fault isn't required for other reasons. */
731 	if (pmd_needs_soft_dirty_wp(vma, pmd))
732 		return false;
733 	return !userfaultfd_huge_pmd_wp(vma, pmd);
734 }
735 
736 static struct page *follow_huge_pmd(struct vm_area_struct *vma,
737 				    unsigned long addr, pmd_t *pmd,
738 				    unsigned int flags,
739 				    struct follow_page_context *ctx)
740 {
741 	struct mm_struct *mm = vma->vm_mm;
742 	pmd_t pmdval = *pmd;
743 	struct page *page;
744 	int ret;
745 
746 	assert_spin_locked(pmd_lockptr(mm, pmd));
747 
748 	page = pmd_page(pmdval);
749 	if ((flags & FOLL_WRITE) &&
750 	    !can_follow_write_pmd(pmdval, page, vma, flags))
751 		return NULL;
752 
753 	/* Avoid dumping huge zero page */
754 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval))
755 		return ERR_PTR(-EFAULT);
756 
757 	if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
758 		return NULL;
759 
760 	if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page))
761 		return ERR_PTR(-EMLINK);
762 
763 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
764 			!PageAnonExclusive(page), page);
765 
766 	ret = try_grab_folio(page_folio(page), 1, flags);
767 	if (ret)
768 		return ERR_PTR(ret);
769 
770 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
771 	if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH))
772 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
773 #endif	/* CONFIG_TRANSPARENT_HUGEPAGE */
774 
775 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
776 	ctx->page_mask = HPAGE_PMD_NR - 1;
777 
778 	return page;
779 }
780 
781 #else  /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
782 static struct page *follow_huge_pud(struct vm_area_struct *vma,
783 				    unsigned long addr, pud_t *pudp,
784 				    int flags, struct follow_page_context *ctx)
785 {
786 	return NULL;
787 }
788 
789 static struct page *follow_huge_pmd(struct vm_area_struct *vma,
790 				    unsigned long addr, pmd_t *pmd,
791 				    unsigned int flags,
792 				    struct follow_page_context *ctx)
793 {
794 	return NULL;
795 }
796 #endif	/* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
797 
798 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
799 		pte_t *pte, unsigned int flags)
800 {
801 	if (flags & FOLL_TOUCH) {
802 		pte_t orig_entry = ptep_get(pte);
803 		pte_t entry = orig_entry;
804 
805 		if (flags & FOLL_WRITE)
806 			entry = pte_mkdirty(entry);
807 		entry = pte_mkyoung(entry);
808 
809 		if (!pte_same(orig_entry, entry)) {
810 			set_pte_at(vma->vm_mm, address, pte, entry);
811 			update_mmu_cache(vma, address, pte);
812 		}
813 	}
814 
815 	/* Proper page table entry exists, but no corresponding struct page */
816 	return -EEXIST;
817 }
818 
819 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
820 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
821 					struct vm_area_struct *vma,
822 					unsigned int flags)
823 {
824 	/* If the pte is writable, we can write to the page. */
825 	if (pte_write(pte))
826 		return true;
827 
828 	if (!can_follow_write_common(page, vma, flags))
829 		return false;
830 
831 	/* ... and a write-fault isn't required for other reasons. */
832 	if (pte_needs_soft_dirty_wp(vma, pte))
833 		return false;
834 	return !userfaultfd_pte_wp(vma, pte);
835 }
836 
837 static struct page *follow_page_pte(struct vm_area_struct *vma,
838 		unsigned long address, pmd_t *pmd, unsigned int flags,
839 		struct dev_pagemap **pgmap)
840 {
841 	struct mm_struct *mm = vma->vm_mm;
842 	struct folio *folio;
843 	struct page *page;
844 	spinlock_t *ptl;
845 	pte_t *ptep, pte;
846 	int ret;
847 
848 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
849 	if (!ptep)
850 		return no_page_table(vma, flags, address);
851 	pte = ptep_get(ptep);
852 	if (!pte_present(pte))
853 		goto no_page;
854 	if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags))
855 		goto no_page;
856 
857 	page = vm_normal_page(vma, address, pte);
858 
859 	/*
860 	 * We only care about anon pages in can_follow_write_pte() and don't
861 	 * have to worry about pte_devmap() because they are never anon.
862 	 */
863 	if ((flags & FOLL_WRITE) &&
864 	    !can_follow_write_pte(pte, page, vma, flags)) {
865 		page = NULL;
866 		goto out;
867 	}
868 
869 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
870 		/*
871 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
872 		 * case since they are only valid while holding the pgmap
873 		 * reference.
874 		 */
875 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
876 		if (*pgmap)
877 			page = pte_page(pte);
878 		else
879 			goto no_page;
880 	} else if (unlikely(!page)) {
881 		if (flags & FOLL_DUMP) {
882 			/* Avoid special (like zero) pages in core dumps */
883 			page = ERR_PTR(-EFAULT);
884 			goto out;
885 		}
886 
887 		if (is_zero_pfn(pte_pfn(pte))) {
888 			page = pte_page(pte);
889 		} else {
890 			ret = follow_pfn_pte(vma, address, ptep, flags);
891 			page = ERR_PTR(ret);
892 			goto out;
893 		}
894 	}
895 	folio = page_folio(page);
896 
897 	if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
898 		page = ERR_PTR(-EMLINK);
899 		goto out;
900 	}
901 
902 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
903 		       !PageAnonExclusive(page), page);
904 
905 	/* try_grab_folio() does nothing unless FOLL_GET or FOLL_PIN is set. */
906 	ret = try_grab_folio(folio, 1, flags);
907 	if (unlikely(ret)) {
908 		page = ERR_PTR(ret);
909 		goto out;
910 	}
911 
912 	/*
913 	 * We need to make the page accessible if and only if we are going
914 	 * to access its content (the FOLL_PIN case).  Please see
915 	 * Documentation/core-api/pin_user_pages.rst for details.
916 	 */
917 	if (flags & FOLL_PIN) {
918 		ret = arch_make_folio_accessible(folio);
919 		if (ret) {
920 			unpin_user_page(page);
921 			page = ERR_PTR(ret);
922 			goto out;
923 		}
924 	}
925 	if (flags & FOLL_TOUCH) {
926 		if ((flags & FOLL_WRITE) &&
927 		    !pte_dirty(pte) && !folio_test_dirty(folio))
928 			folio_mark_dirty(folio);
929 		/*
930 		 * pte_mkyoung() would be more correct here, but atomic care
931 		 * is needed to avoid losing the dirty bit: it is easier to use
932 		 * folio_mark_accessed().
933 		 */
934 		folio_mark_accessed(folio);
935 	}
936 out:
937 	pte_unmap_unlock(ptep, ptl);
938 	return page;
939 no_page:
940 	pte_unmap_unlock(ptep, ptl);
941 	if (!pte_none(pte))
942 		return NULL;
943 	return no_page_table(vma, flags, address);
944 }
945 
946 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
947 				    unsigned long address, pud_t *pudp,
948 				    unsigned int flags,
949 				    struct follow_page_context *ctx)
950 {
951 	pmd_t *pmd, pmdval;
952 	spinlock_t *ptl;
953 	struct page *page;
954 	struct mm_struct *mm = vma->vm_mm;
955 
956 	pmd = pmd_offset(pudp, address);
957 	pmdval = pmdp_get_lockless(pmd);
958 	if (pmd_none(pmdval))
959 		return no_page_table(vma, flags, address);
960 	if (!pmd_present(pmdval))
961 		return no_page_table(vma, flags, address);
962 	if (pmd_devmap(pmdval)) {
963 		ptl = pmd_lock(mm, pmd);
964 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
965 		spin_unlock(ptl);
966 		if (page)
967 			return page;
968 		return no_page_table(vma, flags, address);
969 	}
970 	if (likely(!pmd_leaf(pmdval)))
971 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
972 
973 	if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags))
974 		return no_page_table(vma, flags, address);
975 
976 	ptl = pmd_lock(mm, pmd);
977 	pmdval = *pmd;
978 	if (unlikely(!pmd_present(pmdval))) {
979 		spin_unlock(ptl);
980 		return no_page_table(vma, flags, address);
981 	}
982 	if (unlikely(!pmd_leaf(pmdval))) {
983 		spin_unlock(ptl);
984 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
985 	}
986 	if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) {
987 		spin_unlock(ptl);
988 		split_huge_pmd(vma, pmd, address);
989 		/* If pmd was left empty, stuff a page table in there quickly */
990 		return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
991 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
992 	}
993 	page = follow_huge_pmd(vma, address, pmd, flags, ctx);
994 	spin_unlock(ptl);
995 	return page;
996 }
997 
998 static struct page *follow_pud_mask(struct vm_area_struct *vma,
999 				    unsigned long address, p4d_t *p4dp,
1000 				    unsigned int flags,
1001 				    struct follow_page_context *ctx)
1002 {
1003 	pud_t *pudp, pud;
1004 	spinlock_t *ptl;
1005 	struct page *page;
1006 	struct mm_struct *mm = vma->vm_mm;
1007 
1008 	pudp = pud_offset(p4dp, address);
1009 	pud = READ_ONCE(*pudp);
1010 	if (!pud_present(pud))
1011 		return no_page_table(vma, flags, address);
1012 	if (pud_leaf(pud)) {
1013 		ptl = pud_lock(mm, pudp);
1014 		page = follow_huge_pud(vma, address, pudp, flags, ctx);
1015 		spin_unlock(ptl);
1016 		if (page)
1017 			return page;
1018 		return no_page_table(vma, flags, address);
1019 	}
1020 	if (unlikely(pud_bad(pud)))
1021 		return no_page_table(vma, flags, address);
1022 
1023 	return follow_pmd_mask(vma, address, pudp, flags, ctx);
1024 }
1025 
1026 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
1027 				    unsigned long address, pgd_t *pgdp,
1028 				    unsigned int flags,
1029 				    struct follow_page_context *ctx)
1030 {
1031 	p4d_t *p4dp, p4d;
1032 
1033 	p4dp = p4d_offset(pgdp, address);
1034 	p4d = READ_ONCE(*p4dp);
1035 	BUILD_BUG_ON(p4d_leaf(p4d));
1036 
1037 	if (!p4d_present(p4d) || p4d_bad(p4d))
1038 		return no_page_table(vma, flags, address);
1039 
1040 	return follow_pud_mask(vma, address, p4dp, flags, ctx);
1041 }
1042 
1043 /**
1044  * follow_page_mask - look up a page descriptor from a user-virtual address
1045  * @vma: vm_area_struct mapping @address
1046  * @address: virtual address to look up
1047  * @flags: flags modifying lookup behaviour
1048  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
1049  *       pointer to output page_mask
1050  *
1051  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1052  *
1053  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
1054  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
1055  *
1056  * When getting an anonymous page and the caller has to trigger unsharing
1057  * of a shared anonymous page first, -EMLINK is returned. The caller should
1058  * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
1059  * relevant with FOLL_PIN and !FOLL_WRITE.
1060  *
1061  * On output, the @ctx->page_mask is set according to the size of the page.
1062  *
1063  * Return: the mapped (struct page *), %NULL if no mapping exists, or
1064  * an error pointer if there is a mapping to something not represented
1065  * by a page descriptor (see also vm_normal_page()).
1066  */
1067 static struct page *follow_page_mask(struct vm_area_struct *vma,
1068 			      unsigned long address, unsigned int flags,
1069 			      struct follow_page_context *ctx)
1070 {
1071 	pgd_t *pgd;
1072 	struct mm_struct *mm = vma->vm_mm;
1073 	struct page *page;
1074 
1075 	vma_pgtable_walk_begin(vma);
1076 
1077 	ctx->page_mask = 0;
1078 	pgd = pgd_offset(mm, address);
1079 
1080 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1081 		page = no_page_table(vma, flags, address);
1082 	else
1083 		page = follow_p4d_mask(vma, address, pgd, flags, ctx);
1084 
1085 	vma_pgtable_walk_end(vma);
1086 
1087 	return page;
1088 }
1089 
1090 static int get_gate_page(struct mm_struct *mm, unsigned long address,
1091 		unsigned int gup_flags, struct vm_area_struct **vma,
1092 		struct page **page)
1093 {
1094 	pgd_t *pgd;
1095 	p4d_t *p4d;
1096 	pud_t *pud;
1097 	pmd_t *pmd;
1098 	pte_t *pte;
1099 	pte_t entry;
1100 	int ret = -EFAULT;
1101 
1102 	/* user gate pages are read-only */
1103 	if (gup_flags & FOLL_WRITE)
1104 		return -EFAULT;
1105 	pgd = pgd_offset(mm, address);
1106 	if (pgd_none(*pgd))
1107 		return -EFAULT;
1108 	p4d = p4d_offset(pgd, address);
1109 	if (p4d_none(*p4d))
1110 		return -EFAULT;
1111 	pud = pud_offset(p4d, address);
1112 	if (pud_none(*pud))
1113 		return -EFAULT;
1114 	pmd = pmd_offset(pud, address);
1115 	if (!pmd_present(*pmd))
1116 		return -EFAULT;
1117 	pte = pte_offset_map(pmd, address);
1118 	if (!pte)
1119 		return -EFAULT;
1120 	entry = ptep_get(pte);
1121 	if (pte_none(entry))
1122 		goto unmap;
1123 	*vma = get_gate_vma(mm);
1124 	if (!page)
1125 		goto out;
1126 	*page = vm_normal_page(*vma, address, entry);
1127 	if (!*page) {
1128 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
1129 			goto unmap;
1130 		*page = pte_page(entry);
1131 	}
1132 	ret = try_grab_folio(page_folio(*page), 1, gup_flags);
1133 	if (unlikely(ret))
1134 		goto unmap;
1135 out:
1136 	ret = 0;
1137 unmap:
1138 	pte_unmap(pte);
1139 	return ret;
1140 }
1141 
1142 /*
1143  * mmap_lock must be held on entry.  If @flags has FOLL_UNLOCKABLE but not
1144  * FOLL_NOWAIT, the mmap_lock may be released.  If it is, *@locked will be set
1145  * to 0 and -EBUSY returned.
1146  */
1147 static int faultin_page(struct vm_area_struct *vma,
1148 		unsigned long address, unsigned int flags, bool unshare,
1149 		int *locked)
1150 {
1151 	unsigned int fault_flags = 0;
1152 	vm_fault_t ret;
1153 
1154 	if (flags & FOLL_NOFAULT)
1155 		return -EFAULT;
1156 	if (flags & FOLL_WRITE)
1157 		fault_flags |= FAULT_FLAG_WRITE;
1158 	if (flags & FOLL_REMOTE)
1159 		fault_flags |= FAULT_FLAG_REMOTE;
1160 	if (flags & FOLL_UNLOCKABLE) {
1161 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1162 		/*
1163 		 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
1164 		 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
1165 		 * That's because some callers may not be prepared to
1166 		 * handle early exits caused by non-fatal signals.
1167 		 */
1168 		if (flags & FOLL_INTERRUPTIBLE)
1169 			fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
1170 	}
1171 	if (flags & FOLL_NOWAIT)
1172 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
1173 	if (flags & FOLL_TRIED) {
1174 		/*
1175 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
1176 		 * can co-exist
1177 		 */
1178 		fault_flags |= FAULT_FLAG_TRIED;
1179 	}
1180 	if (unshare) {
1181 		fault_flags |= FAULT_FLAG_UNSHARE;
1182 		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
1183 		VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
1184 	}
1185 
1186 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1187 
1188 	if (ret & VM_FAULT_COMPLETED) {
1189 		/*
1190 		 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
1191 		 * mmap lock in the page fault handler. Sanity check this.
1192 		 */
1193 		WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
1194 		*locked = 0;
1195 
1196 		/*
1197 		 * We should do the same as VM_FAULT_RETRY, but let's not
1198 		 * return -EBUSY since that's not reflecting the reality of
1199 		 * what has happened - we've just fully completed a page
1200 		 * fault, with the mmap lock released.  Use -EAGAIN to show
1201 		 * that we want to take the mmap lock _again_.
1202 		 */
1203 		return -EAGAIN;
1204 	}
1205 
1206 	if (ret & VM_FAULT_ERROR) {
1207 		int err = vm_fault_to_errno(ret, flags);
1208 
1209 		if (err)
1210 			return err;
1211 		BUG();
1212 	}
1213 
1214 	if (ret & VM_FAULT_RETRY) {
1215 		if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
1216 			*locked = 0;
1217 		return -EBUSY;
1218 	}
1219 
1220 	return 0;
1221 }
1222 
1223 /*
1224  * Writing to file-backed mappings which require folio dirty tracking using GUP
1225  * is a fundamentally broken operation, as kernel write access to GUP mappings
1226  * do not adhere to the semantics expected by a file system.
1227  *
1228  * Consider the following scenario:-
1229  *
1230  * 1. A folio is written to via GUP which write-faults the memory, notifying
1231  *    the file system and dirtying the folio.
1232  * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1233  *    the PTE being marked read-only.
1234  * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1235  *    direct mapping.
1236  * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1237  *    (though it does not have to).
1238  *
1239  * This results in both data being written to a folio without writenotify, and
1240  * the folio being dirtied unexpectedly (if the caller decides to do so).
1241  */
1242 static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1243 					  unsigned long gup_flags)
1244 {
1245 	/*
1246 	 * If we aren't pinning then no problematic write can occur. A long term
1247 	 * pin is the most egregious case so this is the case we disallow.
1248 	 */
1249 	if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1250 	    (FOLL_PIN | FOLL_LONGTERM))
1251 		return true;
1252 
1253 	/*
1254 	 * If the VMA does not require dirty tracking then no problematic write
1255 	 * can occur either.
1256 	 */
1257 	return !vma_needs_dirty_tracking(vma);
1258 }
1259 
1260 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1261 {
1262 	vm_flags_t vm_flags = vma->vm_flags;
1263 	int write = (gup_flags & FOLL_WRITE);
1264 	int foreign = (gup_flags & FOLL_REMOTE);
1265 	bool vma_anon = vma_is_anonymous(vma);
1266 
1267 	if (vm_flags & (VM_IO | VM_PFNMAP))
1268 		return -EFAULT;
1269 
1270 	if ((gup_flags & FOLL_ANON) && !vma_anon)
1271 		return -EFAULT;
1272 
1273 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1274 		return -EOPNOTSUPP;
1275 
1276 	if ((gup_flags & FOLL_SPLIT_PMD) && is_vm_hugetlb_page(vma))
1277 		return -EOPNOTSUPP;
1278 
1279 	if (vma_is_secretmem(vma))
1280 		return -EFAULT;
1281 
1282 	if (write) {
1283 		if (!vma_anon &&
1284 		    !writable_file_mapping_allowed(vma, gup_flags))
1285 			return -EFAULT;
1286 
1287 		if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) {
1288 			if (!(gup_flags & FOLL_FORCE))
1289 				return -EFAULT;
1290 			/*
1291 			 * We used to let the write,force case do COW in a
1292 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1293 			 * set a breakpoint in a read-only mapping of an
1294 			 * executable, without corrupting the file (yet only
1295 			 * when that file had been opened for writing!).
1296 			 * Anon pages in shared mappings are surprising: now
1297 			 * just reject it.
1298 			 */
1299 			if (!is_cow_mapping(vm_flags))
1300 				return -EFAULT;
1301 		}
1302 	} else if (!(vm_flags & VM_READ)) {
1303 		if (!(gup_flags & FOLL_FORCE))
1304 			return -EFAULT;
1305 		/*
1306 		 * Is there actually any vma we can reach here which does not
1307 		 * have VM_MAYREAD set?
1308 		 */
1309 		if (!(vm_flags & VM_MAYREAD))
1310 			return -EFAULT;
1311 	}
1312 	/*
1313 	 * gups are always data accesses, not instruction
1314 	 * fetches, so execute=false here
1315 	 */
1316 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1317 		return -EFAULT;
1318 	return 0;
1319 }
1320 
1321 /*
1322  * This is "vma_lookup()", but with a warning if we would have
1323  * historically expanded the stack in the GUP code.
1324  */
1325 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1326 	 unsigned long addr)
1327 {
1328 #ifdef CONFIG_STACK_GROWSUP
1329 	return vma_lookup(mm, addr);
1330 #else
1331 	static volatile unsigned long next_warn;
1332 	struct vm_area_struct *vma;
1333 	unsigned long now, next;
1334 
1335 	vma = find_vma(mm, addr);
1336 	if (!vma || (addr >= vma->vm_start))
1337 		return vma;
1338 
1339 	/* Only warn for half-way relevant accesses */
1340 	if (!(vma->vm_flags & VM_GROWSDOWN))
1341 		return NULL;
1342 	if (vma->vm_start - addr > 65536)
1343 		return NULL;
1344 
1345 	/* Let's not warn more than once an hour.. */
1346 	now = jiffies; next = next_warn;
1347 	if (next && time_before(now, next))
1348 		return NULL;
1349 	next_warn = now + 60*60*HZ;
1350 
1351 	/* Let people know things may have changed. */
1352 	pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1353 		current->comm, task_pid_nr(current),
1354 		vma->vm_start, vma->vm_end, addr);
1355 	dump_stack();
1356 	return NULL;
1357 #endif
1358 }
1359 
1360 /**
1361  * __get_user_pages() - pin user pages in memory
1362  * @mm:		mm_struct of target mm
1363  * @start:	starting user address
1364  * @nr_pages:	number of pages from start to pin
1365  * @gup_flags:	flags modifying pin behaviour
1366  * @pages:	array that receives pointers to the pages pinned.
1367  *		Should be at least nr_pages long. Or NULL, if caller
1368  *		only intends to ensure the pages are faulted in.
1369  * @locked:     whether we're still with the mmap_lock held
1370  *
1371  * Returns either number of pages pinned (which may be less than the
1372  * number requested), or an error. Details about the return value:
1373  *
1374  * -- If nr_pages is 0, returns 0.
1375  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1376  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1377  *    pages pinned. Again, this may be less than nr_pages.
1378  * -- 0 return value is possible when the fault would need to be retried.
1379  *
1380  * The caller is responsible for releasing returned @pages, via put_page().
1381  *
1382  * Must be called with mmap_lock held.  It may be released.  See below.
1383  *
1384  * __get_user_pages walks a process's page tables and takes a reference to
1385  * each struct page that each user address corresponds to at a given
1386  * instant. That is, it takes the page that would be accessed if a user
1387  * thread accesses the given user virtual address at that instant.
1388  *
1389  * This does not guarantee that the page exists in the user mappings when
1390  * __get_user_pages returns, and there may even be a completely different
1391  * page there in some cases (eg. if mmapped pagecache has been invalidated
1392  * and subsequently re-faulted). However it does guarantee that the page
1393  * won't be freed completely. And mostly callers simply care that the page
1394  * contains data that was valid *at some point in time*. Typically, an IO
1395  * or similar operation cannot guarantee anything stronger anyway because
1396  * locks can't be held over the syscall boundary.
1397  *
1398  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1399  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1400  * appropriate) must be called after the page is finished with, and
1401  * before put_page is called.
1402  *
1403  * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1404  * be released. If this happens *@locked will be set to 0 on return.
1405  *
1406  * A caller using such a combination of @gup_flags must therefore hold the
1407  * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1408  * it must be held for either reading or writing and will not be released.
1409  *
1410  * In most cases, get_user_pages or get_user_pages_fast should be used
1411  * instead of __get_user_pages. __get_user_pages should be used only if
1412  * you need some special @gup_flags.
1413  */
1414 static long __get_user_pages(struct mm_struct *mm,
1415 		unsigned long start, unsigned long nr_pages,
1416 		unsigned int gup_flags, struct page **pages,
1417 		int *locked)
1418 {
1419 	long ret = 0, i = 0;
1420 	struct vm_area_struct *vma = NULL;
1421 	struct follow_page_context ctx = { NULL };
1422 
1423 	if (!nr_pages)
1424 		return 0;
1425 
1426 	start = untagged_addr_remote(mm, start);
1427 
1428 	VM_WARN_ON_ONCE(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1429 
1430 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1431 	VM_WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
1432 			(FOLL_PIN | FOLL_GET));
1433 
1434 	do {
1435 		struct page *page;
1436 		unsigned int page_increm;
1437 
1438 		/* first iteration or cross vma bound */
1439 		if (!vma || start >= vma->vm_end) {
1440 			/*
1441 			 * MADV_POPULATE_(READ|WRITE) wants to handle VMA
1442 			 * lookups+error reporting differently.
1443 			 */
1444 			if (gup_flags & FOLL_MADV_POPULATE) {
1445 				vma = vma_lookup(mm, start);
1446 				if (!vma) {
1447 					ret = -ENOMEM;
1448 					goto out;
1449 				}
1450 				if (check_vma_flags(vma, gup_flags)) {
1451 					ret = -EINVAL;
1452 					goto out;
1453 				}
1454 				goto retry;
1455 			}
1456 			vma = gup_vma_lookup(mm, start);
1457 			if (!vma && in_gate_area(mm, start)) {
1458 				ret = get_gate_page(mm, start & PAGE_MASK,
1459 						gup_flags, &vma,
1460 						pages ? &page : NULL);
1461 				if (ret)
1462 					goto out;
1463 				ctx.page_mask = 0;
1464 				goto next_page;
1465 			}
1466 
1467 			if (!vma) {
1468 				ret = -EFAULT;
1469 				goto out;
1470 			}
1471 			ret = check_vma_flags(vma, gup_flags);
1472 			if (ret)
1473 				goto out;
1474 		}
1475 retry:
1476 		/*
1477 		 * If we have a pending SIGKILL, don't keep faulting pages and
1478 		 * potentially allocating memory.
1479 		 */
1480 		if (fatal_signal_pending(current)) {
1481 			ret = -EINTR;
1482 			goto out;
1483 		}
1484 		cond_resched();
1485 
1486 		page = follow_page_mask(vma, start, gup_flags, &ctx);
1487 		if (!page || PTR_ERR(page) == -EMLINK) {
1488 			ret = faultin_page(vma, start, gup_flags,
1489 					   PTR_ERR(page) == -EMLINK, locked);
1490 			switch (ret) {
1491 			case 0:
1492 				goto retry;
1493 			case -EBUSY:
1494 			case -EAGAIN:
1495 				ret = 0;
1496 				fallthrough;
1497 			case -EFAULT:
1498 			case -ENOMEM:
1499 			case -EHWPOISON:
1500 				goto out;
1501 			}
1502 			BUG();
1503 		} else if (PTR_ERR(page) == -EEXIST) {
1504 			/*
1505 			 * Proper page table entry exists, but no corresponding
1506 			 * struct page. If the caller expects **pages to be
1507 			 * filled in, bail out now, because that can't be done
1508 			 * for this page.
1509 			 */
1510 			if (pages) {
1511 				ret = PTR_ERR(page);
1512 				goto out;
1513 			}
1514 		} else if (IS_ERR(page)) {
1515 			ret = PTR_ERR(page);
1516 			goto out;
1517 		}
1518 next_page:
1519 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1520 		if (page_increm > nr_pages)
1521 			page_increm = nr_pages;
1522 
1523 		if (pages) {
1524 			struct page *subpage;
1525 			unsigned int j;
1526 
1527 			/*
1528 			 * This must be a large folio (and doesn't need to
1529 			 * be the whole folio; it can be part of it), do
1530 			 * the refcount work for all the subpages too.
1531 			 *
1532 			 * NOTE: here the page may not be the head page
1533 			 * e.g. when start addr is not thp-size aligned.
1534 			 * try_grab_folio() should have taken care of tail
1535 			 * pages.
1536 			 */
1537 			if (page_increm > 1) {
1538 				struct folio *folio = page_folio(page);
1539 
1540 				/*
1541 				 * Since we already hold refcount on the
1542 				 * large folio, this should never fail.
1543 				 */
1544 				if (try_grab_folio(folio, page_increm - 1,
1545 						   gup_flags)) {
1546 					/*
1547 					 * Release the 1st page ref if the
1548 					 * folio is problematic, fail hard.
1549 					 */
1550 					gup_put_folio(folio, 1, gup_flags);
1551 					ret = -EFAULT;
1552 					goto out;
1553 				}
1554 			}
1555 
1556 			for (j = 0; j < page_increm; j++) {
1557 				subpage = nth_page(page, j);
1558 				pages[i + j] = subpage;
1559 				flush_anon_page(vma, subpage, start + j * PAGE_SIZE);
1560 				flush_dcache_page(subpage);
1561 			}
1562 		}
1563 
1564 		i += page_increm;
1565 		start += page_increm * PAGE_SIZE;
1566 		nr_pages -= page_increm;
1567 	} while (nr_pages);
1568 out:
1569 	if (ctx.pgmap)
1570 		put_dev_pagemap(ctx.pgmap);
1571 	return i ? i : ret;
1572 }
1573 
1574 static bool vma_permits_fault(struct vm_area_struct *vma,
1575 			      unsigned int fault_flags)
1576 {
1577 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1578 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1579 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1580 
1581 	if (!(vm_flags & vma->vm_flags))
1582 		return false;
1583 
1584 	/*
1585 	 * The architecture might have a hardware protection
1586 	 * mechanism other than read/write that can deny access.
1587 	 *
1588 	 * gup always represents data access, not instruction
1589 	 * fetches, so execute=false here:
1590 	 */
1591 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1592 		return false;
1593 
1594 	return true;
1595 }
1596 
1597 /**
1598  * fixup_user_fault() - manually resolve a user page fault
1599  * @mm:		mm_struct of target mm
1600  * @address:	user address
1601  * @fault_flags:flags to pass down to handle_mm_fault()
1602  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1603  *		does not allow retry. If NULL, the caller must guarantee
1604  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1605  *
1606  * This is meant to be called in the specific scenario where for locking reasons
1607  * we try to access user memory in atomic context (within a pagefault_disable()
1608  * section), this returns -EFAULT, and we want to resolve the user fault before
1609  * trying again.
1610  *
1611  * Typically this is meant to be used by the futex code.
1612  *
1613  * The main difference with get_user_pages() is that this function will
1614  * unconditionally call handle_mm_fault() which will in turn perform all the
1615  * necessary SW fixup of the dirty and young bits in the PTE, while
1616  * get_user_pages() only guarantees to update these in the struct page.
1617  *
1618  * This is important for some architectures where those bits also gate the
1619  * access permission to the page because they are maintained in software.  On
1620  * such architectures, gup() will not be enough to make a subsequent access
1621  * succeed.
1622  *
1623  * This function will not return with an unlocked mmap_lock. So it has not the
1624  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1625  */
1626 int fixup_user_fault(struct mm_struct *mm,
1627 		     unsigned long address, unsigned int fault_flags,
1628 		     bool *unlocked)
1629 {
1630 	struct vm_area_struct *vma;
1631 	vm_fault_t ret;
1632 
1633 	address = untagged_addr_remote(mm, address);
1634 
1635 	if (unlocked)
1636 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1637 
1638 retry:
1639 	vma = gup_vma_lookup(mm, address);
1640 	if (!vma)
1641 		return -EFAULT;
1642 
1643 	if (!vma_permits_fault(vma, fault_flags))
1644 		return -EFAULT;
1645 
1646 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1647 	    fatal_signal_pending(current))
1648 		return -EINTR;
1649 
1650 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1651 
1652 	if (ret & VM_FAULT_COMPLETED) {
1653 		/*
1654 		 * NOTE: it's a pity that we need to retake the lock here
1655 		 * to pair with the unlock() in the callers. Ideally we
1656 		 * could tell the callers so they do not need to unlock.
1657 		 */
1658 		mmap_read_lock(mm);
1659 		*unlocked = true;
1660 		return 0;
1661 	}
1662 
1663 	if (ret & VM_FAULT_ERROR) {
1664 		int err = vm_fault_to_errno(ret, 0);
1665 
1666 		if (err)
1667 			return err;
1668 		BUG();
1669 	}
1670 
1671 	if (ret & VM_FAULT_RETRY) {
1672 		mmap_read_lock(mm);
1673 		*unlocked = true;
1674 		fault_flags |= FAULT_FLAG_TRIED;
1675 		goto retry;
1676 	}
1677 
1678 	return 0;
1679 }
1680 EXPORT_SYMBOL_GPL(fixup_user_fault);
1681 
1682 /*
1683  * GUP always responds to fatal signals.  When FOLL_INTERRUPTIBLE is
1684  * specified, it'll also respond to generic signals.  The caller of GUP
1685  * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1686  */
1687 static bool gup_signal_pending(unsigned int flags)
1688 {
1689 	if (fatal_signal_pending(current))
1690 		return true;
1691 
1692 	if (!(flags & FOLL_INTERRUPTIBLE))
1693 		return false;
1694 
1695 	return signal_pending(current);
1696 }
1697 
1698 /*
1699  * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1700  * the caller. This function may drop the mmap_lock. If it does so, then it will
1701  * set (*locked = 0).
1702  *
1703  * (*locked == 0) means that the caller expects this function to acquire and
1704  * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1705  * the function returns, even though it may have changed temporarily during
1706  * function execution.
1707  *
1708  * Please note that this function, unlike __get_user_pages(), will not return 0
1709  * for nr_pages > 0, unless FOLL_NOWAIT is used.
1710  */
1711 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1712 						unsigned long start,
1713 						unsigned long nr_pages,
1714 						struct page **pages,
1715 						int *locked,
1716 						unsigned int flags)
1717 {
1718 	long ret, pages_done;
1719 	bool must_unlock = false;
1720 
1721 	if (!nr_pages)
1722 		return 0;
1723 
1724 	/*
1725 	 * The internal caller expects GUP to manage the lock internally and the
1726 	 * lock must be released when this returns.
1727 	 */
1728 	if (!*locked) {
1729 		if (mmap_read_lock_killable(mm))
1730 			return -EAGAIN;
1731 		must_unlock = true;
1732 		*locked = 1;
1733 	}
1734 	else
1735 		mmap_assert_locked(mm);
1736 
1737 	if (flags & FOLL_PIN)
1738 		mm_set_has_pinned_flag(&mm->flags);
1739 
1740 	/*
1741 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1742 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1743 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1744 	 * for FOLL_GET, not for the newer FOLL_PIN.
1745 	 *
1746 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1747 	 * that here, as any failures will be obvious enough.
1748 	 */
1749 	if (pages && !(flags & FOLL_PIN))
1750 		flags |= FOLL_GET;
1751 
1752 	pages_done = 0;
1753 	for (;;) {
1754 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1755 				       locked);
1756 		if (!(flags & FOLL_UNLOCKABLE)) {
1757 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1758 			pages_done = ret;
1759 			break;
1760 		}
1761 
1762 		/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1763 		if (!*locked) {
1764 			BUG_ON(ret < 0);
1765 			BUG_ON(ret >= nr_pages);
1766 		}
1767 
1768 		if (ret > 0) {
1769 			nr_pages -= ret;
1770 			pages_done += ret;
1771 			if (!nr_pages)
1772 				break;
1773 		}
1774 		if (*locked) {
1775 			/*
1776 			 * VM_FAULT_RETRY didn't trigger or it was a
1777 			 * FOLL_NOWAIT.
1778 			 */
1779 			if (!pages_done)
1780 				pages_done = ret;
1781 			break;
1782 		}
1783 		/*
1784 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1785 		 * For the prefault case (!pages) we only update counts.
1786 		 */
1787 		if (likely(pages))
1788 			pages += ret;
1789 		start += ret << PAGE_SHIFT;
1790 
1791 		/* The lock was temporarily dropped, so we must unlock later */
1792 		must_unlock = true;
1793 
1794 retry:
1795 		/*
1796 		 * Repeat on the address that fired VM_FAULT_RETRY
1797 		 * with both FAULT_FLAG_ALLOW_RETRY and
1798 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1799 		 * by fatal signals of even common signals, depending on
1800 		 * the caller's request. So we need to check it before we
1801 		 * start trying again otherwise it can loop forever.
1802 		 */
1803 		if (gup_signal_pending(flags)) {
1804 			if (!pages_done)
1805 				pages_done = -EINTR;
1806 			break;
1807 		}
1808 
1809 		ret = mmap_read_lock_killable(mm);
1810 		if (ret) {
1811 			BUG_ON(ret > 0);
1812 			if (!pages_done)
1813 				pages_done = ret;
1814 			break;
1815 		}
1816 
1817 		*locked = 1;
1818 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1819 				       pages, locked);
1820 		if (!*locked) {
1821 			/* Continue to retry until we succeeded */
1822 			BUG_ON(ret != 0);
1823 			goto retry;
1824 		}
1825 		if (ret != 1) {
1826 			BUG_ON(ret > 1);
1827 			if (!pages_done)
1828 				pages_done = ret;
1829 			break;
1830 		}
1831 		nr_pages--;
1832 		pages_done++;
1833 		if (!nr_pages)
1834 			break;
1835 		if (likely(pages))
1836 			pages++;
1837 		start += PAGE_SIZE;
1838 	}
1839 	if (must_unlock && *locked) {
1840 		/*
1841 		 * We either temporarily dropped the lock, or the caller
1842 		 * requested that we both acquire and drop the lock. Either way,
1843 		 * we must now unlock, and notify the caller of that state.
1844 		 */
1845 		mmap_read_unlock(mm);
1846 		*locked = 0;
1847 	}
1848 
1849 	/*
1850 	 * Failing to pin anything implies something has gone wrong (except when
1851 	 * FOLL_NOWAIT is specified).
1852 	 */
1853 	if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT)))
1854 		return -EFAULT;
1855 
1856 	return pages_done;
1857 }
1858 
1859 /**
1860  * populate_vma_page_range() -  populate a range of pages in the vma.
1861  * @vma:   target vma
1862  * @start: start address
1863  * @end:   end address
1864  * @locked: whether the mmap_lock is still held
1865  *
1866  * This takes care of mlocking the pages too if VM_LOCKED is set.
1867  *
1868  * Return either number of pages pinned in the vma, or a negative error
1869  * code on error.
1870  *
1871  * vma->vm_mm->mmap_lock must be held.
1872  *
1873  * If @locked is NULL, it may be held for read or write and will
1874  * be unperturbed.
1875  *
1876  * If @locked is non-NULL, it must held for read only and may be
1877  * released.  If it's released, *@locked will be set to 0.
1878  */
1879 long populate_vma_page_range(struct vm_area_struct *vma,
1880 		unsigned long start, unsigned long end, int *locked)
1881 {
1882 	struct mm_struct *mm = vma->vm_mm;
1883 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1884 	int local_locked = 1;
1885 	int gup_flags;
1886 	long ret;
1887 
1888 	VM_BUG_ON(!PAGE_ALIGNED(start));
1889 	VM_BUG_ON(!PAGE_ALIGNED(end));
1890 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1891 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1892 	mmap_assert_locked(mm);
1893 
1894 	/*
1895 	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1896 	 * faultin_page() to break COW, so it has no work to do here.
1897 	 */
1898 	if (vma->vm_flags & VM_LOCKONFAULT)
1899 		return nr_pages;
1900 
1901 	/* ... similarly, we've never faulted in PROT_NONE pages */
1902 	if (!vma_is_accessible(vma))
1903 		return -EFAULT;
1904 
1905 	gup_flags = FOLL_TOUCH;
1906 	/*
1907 	 * We want to touch writable mappings with a write fault in order
1908 	 * to break COW, except for shared mappings because these don't COW
1909 	 * and we would not want to dirty them for nothing.
1910 	 *
1911 	 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not
1912 	 * readable (ie write-only or executable).
1913 	 */
1914 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1915 		gup_flags |= FOLL_WRITE;
1916 	else
1917 		gup_flags |= FOLL_FORCE;
1918 
1919 	if (locked)
1920 		gup_flags |= FOLL_UNLOCKABLE;
1921 
1922 	/*
1923 	 * We made sure addr is within a VMA, so the following will
1924 	 * not result in a stack expansion that recurses back here.
1925 	 */
1926 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1927 			       NULL, locked ? locked : &local_locked);
1928 	lru_add_drain();
1929 	return ret;
1930 }
1931 
1932 /*
1933  * faultin_page_range() - populate (prefault) page tables inside the
1934  *			  given range readable/writable
1935  *
1936  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1937  *
1938  * @mm: the mm to populate page tables in
1939  * @start: start address
1940  * @end: end address
1941  * @write: whether to prefault readable or writable
1942  * @locked: whether the mmap_lock is still held
1943  *
1944  * Returns either number of processed pages in the MM, or a negative error
1945  * code on error (see __get_user_pages()). Note that this function reports
1946  * errors related to VMAs, such as incompatible mappings, as expected by
1947  * MADV_POPULATE_(READ|WRITE).
1948  *
1949  * The range must be page-aligned.
1950  *
1951  * mm->mmap_lock must be held. If it's released, *@locked will be set to 0.
1952  */
1953 long faultin_page_range(struct mm_struct *mm, unsigned long start,
1954 			unsigned long end, bool write, int *locked)
1955 {
1956 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1957 	int gup_flags;
1958 	long ret;
1959 
1960 	VM_BUG_ON(!PAGE_ALIGNED(start));
1961 	VM_BUG_ON(!PAGE_ALIGNED(end));
1962 	mmap_assert_locked(mm);
1963 
1964 	/*
1965 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1966 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1967 	 *	       difference with !FOLL_FORCE, because the page is writable
1968 	 *	       in the page table.
1969 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1970 	 *		  a poisoned page.
1971 	 * !FOLL_FORCE: Require proper access permissions.
1972 	 */
1973 	gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE |
1974 		    FOLL_MADV_POPULATE;
1975 	if (write)
1976 		gup_flags |= FOLL_WRITE;
1977 
1978 	ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked,
1979 				      gup_flags);
1980 	lru_add_drain();
1981 	return ret;
1982 }
1983 
1984 /*
1985  * __mm_populate - populate and/or mlock pages within a range of address space.
1986  *
1987  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1988  * flags. VMAs must be already marked with the desired vm_flags, and
1989  * mmap_lock must not be held.
1990  */
1991 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1992 {
1993 	struct mm_struct *mm = current->mm;
1994 	unsigned long end, nstart, nend;
1995 	struct vm_area_struct *vma = NULL;
1996 	int locked = 0;
1997 	long ret = 0;
1998 
1999 	end = start + len;
2000 
2001 	for (nstart = start; nstart < end; nstart = nend) {
2002 		/*
2003 		 * We want to fault in pages for [nstart; end) address range.
2004 		 * Find first corresponding VMA.
2005 		 */
2006 		if (!locked) {
2007 			locked = 1;
2008 			mmap_read_lock(mm);
2009 			vma = find_vma_intersection(mm, nstart, end);
2010 		} else if (nstart >= vma->vm_end)
2011 			vma = find_vma_intersection(mm, vma->vm_end, end);
2012 
2013 		if (!vma)
2014 			break;
2015 		/*
2016 		 * Set [nstart; nend) to intersection of desired address
2017 		 * range with the first VMA. Also, skip undesirable VMA types.
2018 		 */
2019 		nend = min(end, vma->vm_end);
2020 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
2021 			continue;
2022 		if (nstart < vma->vm_start)
2023 			nstart = vma->vm_start;
2024 		/*
2025 		 * Now fault in a range of pages. populate_vma_page_range()
2026 		 * double checks the vma flags, so that it won't mlock pages
2027 		 * if the vma was already munlocked.
2028 		 */
2029 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
2030 		if (ret < 0) {
2031 			if (ignore_errors) {
2032 				ret = 0;
2033 				continue;	/* continue at next VMA */
2034 			}
2035 			break;
2036 		}
2037 		nend = nstart + ret * PAGE_SIZE;
2038 		ret = 0;
2039 	}
2040 	if (locked)
2041 		mmap_read_unlock(mm);
2042 	return ret;	/* 0 or negative error code */
2043 }
2044 #else /* CONFIG_MMU */
2045 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
2046 		unsigned long nr_pages, struct page **pages,
2047 		int *locked, unsigned int foll_flags)
2048 {
2049 	struct vm_area_struct *vma;
2050 	bool must_unlock = false;
2051 	unsigned long vm_flags;
2052 	long i;
2053 
2054 	if (!nr_pages)
2055 		return 0;
2056 
2057 	/*
2058 	 * The internal caller expects GUP to manage the lock internally and the
2059 	 * lock must be released when this returns.
2060 	 */
2061 	if (!*locked) {
2062 		if (mmap_read_lock_killable(mm))
2063 			return -EAGAIN;
2064 		must_unlock = true;
2065 		*locked = 1;
2066 	}
2067 
2068 	/* calculate required read or write permissions.
2069 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
2070 	 */
2071 	vm_flags  = (foll_flags & FOLL_WRITE) ?
2072 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
2073 	vm_flags &= (foll_flags & FOLL_FORCE) ?
2074 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
2075 
2076 	for (i = 0; i < nr_pages; i++) {
2077 		vma = find_vma(mm, start);
2078 		if (!vma)
2079 			break;
2080 
2081 		/* protect what we can, including chardevs */
2082 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
2083 		    !(vm_flags & vma->vm_flags))
2084 			break;
2085 
2086 		if (pages) {
2087 			pages[i] = virt_to_page((void *)start);
2088 			if (pages[i])
2089 				get_page(pages[i]);
2090 		}
2091 
2092 		start = (start + PAGE_SIZE) & PAGE_MASK;
2093 	}
2094 
2095 	if (must_unlock && *locked) {
2096 		mmap_read_unlock(mm);
2097 		*locked = 0;
2098 	}
2099 
2100 	return i ? : -EFAULT;
2101 }
2102 #endif /* !CONFIG_MMU */
2103 
2104 /**
2105  * fault_in_writeable - fault in userspace address range for writing
2106  * @uaddr: start of address range
2107  * @size: size of address range
2108  *
2109  * Returns the number of bytes not faulted in (like copy_to_user() and
2110  * copy_from_user()).
2111  */
2112 size_t fault_in_writeable(char __user *uaddr, size_t size)
2113 {
2114 	const unsigned long start = (unsigned long)uaddr;
2115 	const unsigned long end = start + size;
2116 	unsigned long cur;
2117 
2118 	if (unlikely(size == 0))
2119 		return 0;
2120 	if (!user_write_access_begin(uaddr, size))
2121 		return size;
2122 
2123 	/* Stop once we overflow to 0. */
2124 	for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE))
2125 		unsafe_put_user(0, (char __user *)cur, out);
2126 out:
2127 	user_write_access_end();
2128 	if (size > cur - start)
2129 		return size - (cur - start);
2130 	return 0;
2131 }
2132 EXPORT_SYMBOL(fault_in_writeable);
2133 
2134 /**
2135  * fault_in_subpage_writeable - fault in an address range for writing
2136  * @uaddr: start of address range
2137  * @size: size of address range
2138  *
2139  * Fault in a user address range for writing while checking for permissions at
2140  * sub-page granularity (e.g. arm64 MTE). This function should be used when
2141  * the caller cannot guarantee forward progress of a copy_to_user() loop.
2142  *
2143  * Returns the number of bytes not faulted in (like copy_to_user() and
2144  * copy_from_user()).
2145  */
2146 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
2147 {
2148 	size_t faulted_in;
2149 
2150 	/*
2151 	 * Attempt faulting in at page granularity first for page table
2152 	 * permission checking. The arch-specific probe_subpage_writeable()
2153 	 * functions may not check for this.
2154 	 */
2155 	faulted_in = size - fault_in_writeable(uaddr, size);
2156 	if (faulted_in)
2157 		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
2158 
2159 	return size - faulted_in;
2160 }
2161 EXPORT_SYMBOL(fault_in_subpage_writeable);
2162 
2163 /*
2164  * fault_in_safe_writeable - fault in an address range for writing
2165  * @uaddr: start of address range
2166  * @size: length of address range
2167  *
2168  * Faults in an address range for writing.  This is primarily useful when we
2169  * already know that some or all of the pages in the address range aren't in
2170  * memory.
2171  *
2172  * Unlike fault_in_writeable(), this function is non-destructive.
2173  *
2174  * Note that we don't pin or otherwise hold the pages referenced that we fault
2175  * in.  There's no guarantee that they'll stay in memory for any duration of
2176  * time.
2177  *
2178  * Returns the number of bytes not faulted in, like copy_to_user() and
2179  * copy_from_user().
2180  */
2181 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
2182 {
2183 	const unsigned long start = (unsigned long)uaddr;
2184 	const unsigned long end = start + size;
2185 	unsigned long cur;
2186 	struct mm_struct *mm = current->mm;
2187 	bool unlocked = false;
2188 
2189 	if (unlikely(size == 0))
2190 		return 0;
2191 
2192 	mmap_read_lock(mm);
2193 	/* Stop once we overflow to 0. */
2194 	for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE))
2195 		if (fixup_user_fault(mm, cur, FAULT_FLAG_WRITE, &unlocked))
2196 			break;
2197 	mmap_read_unlock(mm);
2198 
2199 	if (size > cur - start)
2200 		return size - (cur - start);
2201 	return 0;
2202 }
2203 EXPORT_SYMBOL(fault_in_safe_writeable);
2204 
2205 /**
2206  * fault_in_readable - fault in userspace address range for reading
2207  * @uaddr: start of user address range
2208  * @size: size of user address range
2209  *
2210  * Returns the number of bytes not faulted in (like copy_to_user() and
2211  * copy_from_user()).
2212  */
2213 size_t fault_in_readable(const char __user *uaddr, size_t size)
2214 {
2215 	const unsigned long start = (unsigned long)uaddr;
2216 	const unsigned long end = start + size;
2217 	unsigned long cur;
2218 	volatile char c;
2219 
2220 	if (unlikely(size == 0))
2221 		return 0;
2222 	if (!user_read_access_begin(uaddr, size))
2223 		return size;
2224 
2225 	/* Stop once we overflow to 0. */
2226 	for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE))
2227 		unsafe_get_user(c, (const char __user *)cur, out);
2228 out:
2229 	user_read_access_end();
2230 	(void)c;
2231 	if (size > cur - start)
2232 		return size - (cur - start);
2233 	return 0;
2234 }
2235 EXPORT_SYMBOL(fault_in_readable);
2236 
2237 /**
2238  * get_dump_page() - pin user page in memory while writing it to core dump
2239  * @addr: user address
2240  * @locked: a pointer to an int denoting whether the mmap sem is held
2241  *
2242  * Returns struct page pointer of user page pinned for dump,
2243  * to be freed afterwards by put_page().
2244  *
2245  * Returns NULL on any kind of failure - a hole must then be inserted into
2246  * the corefile, to preserve alignment with its headers; and also returns
2247  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2248  * allowing a hole to be left in the corefile to save disk space.
2249  *
2250  * Called without mmap_lock (takes and releases the mmap_lock by itself).
2251  */
2252 #ifdef CONFIG_ELF_CORE
2253 struct page *get_dump_page(unsigned long addr, int *locked)
2254 {
2255 	struct page *page;
2256 	int ret;
2257 
2258 	ret = __get_user_pages_locked(current->mm, addr, 1, &page, locked,
2259 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
2260 	return (ret == 1) ? page : NULL;
2261 }
2262 #endif /* CONFIG_ELF_CORE */
2263 
2264 #ifdef CONFIG_MIGRATION
2265 
2266 /*
2267  * An array of either pages or folios ("pofs"). Although it may seem tempting to
2268  * avoid this complication, by simply interpreting a list of folios as a list of
2269  * pages, that approach won't work in the longer term, because eventually the
2270  * layouts of struct page and struct folio will become completely different.
2271  * Furthermore, this pof approach avoids excessive page_folio() calls.
2272  */
2273 struct pages_or_folios {
2274 	union {
2275 		struct page **pages;
2276 		struct folio **folios;
2277 		void **entries;
2278 	};
2279 	bool has_folios;
2280 	long nr_entries;
2281 };
2282 
2283 static struct folio *pofs_get_folio(struct pages_or_folios *pofs, long i)
2284 {
2285 	if (pofs->has_folios)
2286 		return pofs->folios[i];
2287 	return page_folio(pofs->pages[i]);
2288 }
2289 
2290 static void pofs_clear_entry(struct pages_or_folios *pofs, long i)
2291 {
2292 	pofs->entries[i] = NULL;
2293 }
2294 
2295 static void pofs_unpin(struct pages_or_folios *pofs)
2296 {
2297 	if (pofs->has_folios)
2298 		unpin_folios(pofs->folios, pofs->nr_entries);
2299 	else
2300 		unpin_user_pages(pofs->pages, pofs->nr_entries);
2301 }
2302 
2303 /*
2304  * Returns the number of collected folios. Return value is always >= 0.
2305  */
2306 static void collect_longterm_unpinnable_folios(
2307 		struct list_head *movable_folio_list,
2308 		struct pages_or_folios *pofs)
2309 {
2310 	struct folio *prev_folio = NULL;
2311 	bool drain_allow = true;
2312 	unsigned long i;
2313 
2314 	for (i = 0; i < pofs->nr_entries; i++) {
2315 		struct folio *folio = pofs_get_folio(pofs, i);
2316 
2317 		if (folio == prev_folio)
2318 			continue;
2319 		prev_folio = folio;
2320 
2321 		if (folio_is_longterm_pinnable(folio))
2322 			continue;
2323 
2324 		if (folio_is_device_coherent(folio))
2325 			continue;
2326 
2327 		if (folio_test_hugetlb(folio)) {
2328 			folio_isolate_hugetlb(folio, movable_folio_list);
2329 			continue;
2330 		}
2331 
2332 		if (!folio_test_lru(folio) && drain_allow) {
2333 			lru_add_drain_all();
2334 			drain_allow = false;
2335 		}
2336 
2337 		if (!folio_isolate_lru(folio))
2338 			continue;
2339 
2340 		list_add_tail(&folio->lru, movable_folio_list);
2341 		node_stat_mod_folio(folio,
2342 				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
2343 				    folio_nr_pages(folio));
2344 	}
2345 }
2346 
2347 /*
2348  * Unpins all folios and migrates device coherent folios and movable_folio_list.
2349  * Returns -EAGAIN if all folios were successfully migrated or -errno for
2350  * failure (or partial success).
2351  */
2352 static int
2353 migrate_longterm_unpinnable_folios(struct list_head *movable_folio_list,
2354 				   struct pages_or_folios *pofs)
2355 {
2356 	int ret;
2357 	unsigned long i;
2358 
2359 	for (i = 0; i < pofs->nr_entries; i++) {
2360 		struct folio *folio = pofs_get_folio(pofs, i);
2361 
2362 		if (folio_is_device_coherent(folio)) {
2363 			/*
2364 			 * Migration will fail if the folio is pinned, so
2365 			 * convert the pin on the source folio to a normal
2366 			 * reference.
2367 			 */
2368 			pofs_clear_entry(pofs, i);
2369 			folio_get(folio);
2370 			gup_put_folio(folio, 1, FOLL_PIN);
2371 
2372 			if (migrate_device_coherent_folio(folio)) {
2373 				ret = -EBUSY;
2374 				goto err;
2375 			}
2376 
2377 			continue;
2378 		}
2379 
2380 		/*
2381 		 * We can't migrate folios with unexpected references, so drop
2382 		 * the reference obtained by __get_user_pages_locked().
2383 		 * Migrating folios have been added to movable_folio_list after
2384 		 * calling folio_isolate_lru() which takes a reference so the
2385 		 * folio won't be freed if it's migrating.
2386 		 */
2387 		unpin_folio(folio);
2388 		pofs_clear_entry(pofs, i);
2389 	}
2390 
2391 	if (!list_empty(movable_folio_list)) {
2392 		struct migration_target_control mtc = {
2393 			.nid = NUMA_NO_NODE,
2394 			.gfp_mask = GFP_USER | __GFP_NOWARN,
2395 			.reason = MR_LONGTERM_PIN,
2396 		};
2397 
2398 		if (migrate_pages(movable_folio_list, alloc_migration_target,
2399 				  NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2400 				  MR_LONGTERM_PIN, NULL)) {
2401 			ret = -ENOMEM;
2402 			goto err;
2403 		}
2404 	}
2405 
2406 	putback_movable_pages(movable_folio_list);
2407 
2408 	return -EAGAIN;
2409 
2410 err:
2411 	pofs_unpin(pofs);
2412 	putback_movable_pages(movable_folio_list);
2413 
2414 	return ret;
2415 }
2416 
2417 static long
2418 check_and_migrate_movable_pages_or_folios(struct pages_or_folios *pofs)
2419 {
2420 	LIST_HEAD(movable_folio_list);
2421 
2422 	collect_longterm_unpinnable_folios(&movable_folio_list, pofs);
2423 	if (list_empty(&movable_folio_list))
2424 		return 0;
2425 
2426 	return migrate_longterm_unpinnable_folios(&movable_folio_list, pofs);
2427 }
2428 
2429 /*
2430  * Check whether all folios are *allowed* to be pinned indefinitely (long term).
2431  * Rather confusingly, all folios in the range are required to be pinned via
2432  * FOLL_PIN, before calling this routine.
2433  *
2434  * Return values:
2435  *
2436  * 0: if everything is OK and all folios in the range are allowed to be pinned,
2437  * then this routine leaves all folios pinned and returns zero for success.
2438  *
2439  * -EAGAIN: if any folios in the range are not allowed to be pinned, then this
2440  * routine will migrate those folios away, unpin all the folios in the range. If
2441  * migration of the entire set of folios succeeds, then -EAGAIN is returned. The
2442  * caller should re-pin the entire range with FOLL_PIN and then call this
2443  * routine again.
2444  *
2445  * -ENOMEM, or any other -errno: if an error *other* than -EAGAIN occurs, this
2446  * indicates a migration failure. The caller should give up, and propagate the
2447  * error back up the call stack. The caller does not need to unpin any folios in
2448  * that case, because this routine will do the unpinning.
2449  */
2450 static long check_and_migrate_movable_folios(unsigned long nr_folios,
2451 					     struct folio **folios)
2452 {
2453 	struct pages_or_folios pofs = {
2454 		.folios = folios,
2455 		.has_folios = true,
2456 		.nr_entries = nr_folios,
2457 	};
2458 
2459 	return check_and_migrate_movable_pages_or_folios(&pofs);
2460 }
2461 
2462 /*
2463  * Return values and behavior are the same as those for
2464  * check_and_migrate_movable_folios().
2465  */
2466 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2467 					    struct page **pages)
2468 {
2469 	struct pages_or_folios pofs = {
2470 		.pages = pages,
2471 		.has_folios = false,
2472 		.nr_entries = nr_pages,
2473 	};
2474 
2475 	return check_and_migrate_movable_pages_or_folios(&pofs);
2476 }
2477 #else
2478 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2479 					    struct page **pages)
2480 {
2481 	return 0;
2482 }
2483 
2484 static long check_and_migrate_movable_folios(unsigned long nr_folios,
2485 					     struct folio **folios)
2486 {
2487 	return 0;
2488 }
2489 #endif /* CONFIG_MIGRATION */
2490 
2491 /*
2492  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2493  * allows us to process the FOLL_LONGTERM flag.
2494  */
2495 static long __gup_longterm_locked(struct mm_struct *mm,
2496 				  unsigned long start,
2497 				  unsigned long nr_pages,
2498 				  struct page **pages,
2499 				  int *locked,
2500 				  unsigned int gup_flags)
2501 {
2502 	unsigned int flags;
2503 	long rc, nr_pinned_pages;
2504 
2505 	if (!(gup_flags & FOLL_LONGTERM))
2506 		return __get_user_pages_locked(mm, start, nr_pages, pages,
2507 					       locked, gup_flags);
2508 
2509 	flags = memalloc_pin_save();
2510 	do {
2511 		nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2512 							  pages, locked,
2513 							  gup_flags);
2514 		if (nr_pinned_pages <= 0) {
2515 			rc = nr_pinned_pages;
2516 			break;
2517 		}
2518 
2519 		/* FOLL_LONGTERM implies FOLL_PIN */
2520 		rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2521 	} while (rc == -EAGAIN);
2522 	memalloc_pin_restore(flags);
2523 	return rc ? rc : nr_pinned_pages;
2524 }
2525 
2526 /*
2527  * Check that the given flags are valid for the exported gup/pup interface, and
2528  * update them with the required flags that the caller must have set.
2529  */
2530 static bool is_valid_gup_args(struct page **pages, int *locked,
2531 			      unsigned int *gup_flags_p, unsigned int to_set)
2532 {
2533 	unsigned int gup_flags = *gup_flags_p;
2534 
2535 	/*
2536 	 * These flags not allowed to be specified externally to the gup
2537 	 * interfaces:
2538 	 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2539 	 * - FOLL_REMOTE is internal only, set in (get|pin)_user_pages_remote()
2540 	 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2541 	 */
2542 	if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS))
2543 		return false;
2544 
2545 	gup_flags |= to_set;
2546 	if (locked) {
2547 		/* At the external interface locked must be set */
2548 		if (WARN_ON_ONCE(*locked != 1))
2549 			return false;
2550 
2551 		gup_flags |= FOLL_UNLOCKABLE;
2552 	}
2553 
2554 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2555 	if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2556 			 (FOLL_PIN | FOLL_GET)))
2557 		return false;
2558 
2559 	/* LONGTERM can only be specified when pinning */
2560 	if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2561 		return false;
2562 
2563 	/* Pages input must be given if using GET/PIN */
2564 	if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2565 		return false;
2566 
2567 	/* We want to allow the pgmap to be hot-unplugged at all times */
2568 	if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2569 			 (gup_flags & FOLL_PCI_P2PDMA)))
2570 		return false;
2571 
2572 	*gup_flags_p = gup_flags;
2573 	return true;
2574 }
2575 
2576 #ifdef CONFIG_MMU
2577 /**
2578  * get_user_pages_remote() - pin user pages in memory
2579  * @mm:		mm_struct of target mm
2580  * @start:	starting user address
2581  * @nr_pages:	number of pages from start to pin
2582  * @gup_flags:	flags modifying lookup behaviour
2583  * @pages:	array that receives pointers to the pages pinned.
2584  *		Should be at least nr_pages long. Or NULL, if caller
2585  *		only intends to ensure the pages are faulted in.
2586  * @locked:	pointer to lock flag indicating whether lock is held and
2587  *		subsequently whether VM_FAULT_RETRY functionality can be
2588  *		utilised. Lock must initially be held.
2589  *
2590  * Returns either number of pages pinned (which may be less than the
2591  * number requested), or an error. Details about the return value:
2592  *
2593  * -- If nr_pages is 0, returns 0.
2594  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2595  * -- If nr_pages is >0, and some pages were pinned, returns the number of
2596  *    pages pinned. Again, this may be less than nr_pages.
2597  *
2598  * The caller is responsible for releasing returned @pages, via put_page().
2599  *
2600  * Must be called with mmap_lock held for read or write.
2601  *
2602  * get_user_pages_remote walks a process's page tables and takes a reference
2603  * to each struct page that each user address corresponds to at a given
2604  * instant. That is, it takes the page that would be accessed if a user
2605  * thread accesses the given user virtual address at that instant.
2606  *
2607  * This does not guarantee that the page exists in the user mappings when
2608  * get_user_pages_remote returns, and there may even be a completely different
2609  * page there in some cases (eg. if mmapped pagecache has been invalidated
2610  * and subsequently re-faulted). However it does guarantee that the page
2611  * won't be freed completely. And mostly callers simply care that the page
2612  * contains data that was valid *at some point in time*. Typically, an IO
2613  * or similar operation cannot guarantee anything stronger anyway because
2614  * locks can't be held over the syscall boundary.
2615  *
2616  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2617  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2618  * be called after the page is finished with, and before put_page is called.
2619  *
2620  * get_user_pages_remote is typically used for fewer-copy IO operations,
2621  * to get a handle on the memory by some means other than accesses
2622  * via the user virtual addresses. The pages may be submitted for
2623  * DMA to devices or accessed via their kernel linear mapping (via the
2624  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2625  *
2626  * See also get_user_pages_fast, for performance critical applications.
2627  *
2628  * get_user_pages_remote should be phased out in favor of
2629  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2630  * should use get_user_pages_remote because it cannot pass
2631  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2632  */
2633 long get_user_pages_remote(struct mm_struct *mm,
2634 		unsigned long start, unsigned long nr_pages,
2635 		unsigned int gup_flags, struct page **pages,
2636 		int *locked)
2637 {
2638 	int local_locked = 1;
2639 
2640 	if (!is_valid_gup_args(pages, locked, &gup_flags,
2641 			       FOLL_TOUCH | FOLL_REMOTE))
2642 		return -EINVAL;
2643 
2644 	return __get_user_pages_locked(mm, start, nr_pages, pages,
2645 				       locked ? locked : &local_locked,
2646 				       gup_flags);
2647 }
2648 EXPORT_SYMBOL(get_user_pages_remote);
2649 
2650 #else /* CONFIG_MMU */
2651 long get_user_pages_remote(struct mm_struct *mm,
2652 			   unsigned long start, unsigned long nr_pages,
2653 			   unsigned int gup_flags, struct page **pages,
2654 			   int *locked)
2655 {
2656 	return 0;
2657 }
2658 #endif /* !CONFIG_MMU */
2659 
2660 /**
2661  * get_user_pages() - pin user pages in memory
2662  * @start:      starting user address
2663  * @nr_pages:   number of pages from start to pin
2664  * @gup_flags:  flags modifying lookup behaviour
2665  * @pages:      array that receives pointers to the pages pinned.
2666  *              Should be at least nr_pages long. Or NULL, if caller
2667  *              only intends to ensure the pages are faulted in.
2668  *
2669  * This is the same as get_user_pages_remote(), just with a less-flexible
2670  * calling convention where we assume that the mm being operated on belongs to
2671  * the current task, and doesn't allow passing of a locked parameter.  We also
2672  * obviously don't pass FOLL_REMOTE in here.
2673  */
2674 long get_user_pages(unsigned long start, unsigned long nr_pages,
2675 		    unsigned int gup_flags, struct page **pages)
2676 {
2677 	int locked = 1;
2678 
2679 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
2680 		return -EINVAL;
2681 
2682 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2683 				       &locked, gup_flags);
2684 }
2685 EXPORT_SYMBOL(get_user_pages);
2686 
2687 /*
2688  * get_user_pages_unlocked() is suitable to replace the form:
2689  *
2690  *      mmap_read_lock(mm);
2691  *      get_user_pages(mm, ..., pages, NULL);
2692  *      mmap_read_unlock(mm);
2693  *
2694  *  with:
2695  *
2696  *      get_user_pages_unlocked(mm, ..., pages);
2697  *
2698  * It is functionally equivalent to get_user_pages_fast so
2699  * get_user_pages_fast should be used instead if specific gup_flags
2700  * (e.g. FOLL_FORCE) are not required.
2701  */
2702 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2703 			     struct page **pages, unsigned int gup_flags)
2704 {
2705 	int locked = 0;
2706 
2707 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
2708 			       FOLL_TOUCH | FOLL_UNLOCKABLE))
2709 		return -EINVAL;
2710 
2711 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2712 				       &locked, gup_flags);
2713 }
2714 EXPORT_SYMBOL(get_user_pages_unlocked);
2715 
2716 /*
2717  * GUP-fast
2718  *
2719  * get_user_pages_fast attempts to pin user pages by walking the page
2720  * tables directly and avoids taking locks. Thus the walker needs to be
2721  * protected from page table pages being freed from under it, and should
2722  * block any THP splits.
2723  *
2724  * One way to achieve this is to have the walker disable interrupts, and
2725  * rely on IPIs from the TLB flushing code blocking before the page table
2726  * pages are freed. This is unsuitable for architectures that do not need
2727  * to broadcast an IPI when invalidating TLBs.
2728  *
2729  * Another way to achieve this is to batch up page table containing pages
2730  * belonging to more than one mm_user, then rcu_sched a callback to free those
2731  * pages. Disabling interrupts will allow the gup_fast() walker to both block
2732  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2733  * (which is a relatively rare event). The code below adopts this strategy.
2734  *
2735  * Before activating this code, please be aware that the following assumptions
2736  * are currently made:
2737  *
2738  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2739  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2740  *
2741  *  *) ptes can be read atomically by the architecture.
2742  *
2743  *  *) valid user addesses are below TASK_MAX_SIZE
2744  *
2745  * The last two assumptions can be relaxed by the addition of helper functions.
2746  *
2747  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2748  */
2749 #ifdef CONFIG_HAVE_GUP_FAST
2750 /*
2751  * Used in the GUP-fast path to determine whether GUP is permitted to work on
2752  * a specific folio.
2753  *
2754  * This call assumes the caller has pinned the folio, that the lowest page table
2755  * level still points to this folio, and that interrupts have been disabled.
2756  *
2757  * GUP-fast must reject all secretmem folios.
2758  *
2759  * Writing to pinned file-backed dirty tracked folios is inherently problematic
2760  * (see comment describing the writable_file_mapping_allowed() function). We
2761  * therefore try to avoid the most egregious case of a long-term mapping doing
2762  * so.
2763  *
2764  * This function cannot be as thorough as that one as the VMA is not available
2765  * in the fast path, so instead we whitelist known good cases and if in doubt,
2766  * fall back to the slow path.
2767  */
2768 static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags)
2769 {
2770 	bool reject_file_backed = false;
2771 	struct address_space *mapping;
2772 	bool check_secretmem = false;
2773 	unsigned long mapping_flags;
2774 
2775 	/*
2776 	 * If we aren't pinning then no problematic write can occur. A long term
2777 	 * pin is the most egregious case so this is the one we disallow.
2778 	 */
2779 	if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) ==
2780 	    (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2781 		reject_file_backed = true;
2782 
2783 	/* We hold a folio reference, so we can safely access folio fields. */
2784 
2785 	/* secretmem folios are always order-0 folios. */
2786 	if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio))
2787 		check_secretmem = true;
2788 
2789 	if (!reject_file_backed && !check_secretmem)
2790 		return true;
2791 
2792 	if (WARN_ON_ONCE(folio_test_slab(folio)))
2793 		return false;
2794 
2795 	/* hugetlb neither requires dirty-tracking nor can be secretmem. */
2796 	if (folio_test_hugetlb(folio))
2797 		return true;
2798 
2799 	/*
2800 	 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2801 	 * cannot proceed, which means no actions performed under RCU can
2802 	 * proceed either.
2803 	 *
2804 	 * inodes and thus their mappings are freed under RCU, which means the
2805 	 * mapping cannot be freed beneath us and thus we can safely dereference
2806 	 * it.
2807 	 */
2808 	lockdep_assert_irqs_disabled();
2809 
2810 	/*
2811 	 * However, there may be operations which _alter_ the mapping, so ensure
2812 	 * we read it once and only once.
2813 	 */
2814 	mapping = READ_ONCE(folio->mapping);
2815 
2816 	/*
2817 	 * The mapping may have been truncated, in any case we cannot determine
2818 	 * if this mapping is safe - fall back to slow path to determine how to
2819 	 * proceed.
2820 	 */
2821 	if (!mapping)
2822 		return false;
2823 
2824 	/* Anonymous folios pose no problem. */
2825 	mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2826 	if (mapping_flags)
2827 		return mapping_flags & PAGE_MAPPING_ANON;
2828 
2829 	/*
2830 	 * At this point, we know the mapping is non-null and points to an
2831 	 * address_space object.
2832 	 */
2833 	if (check_secretmem && secretmem_mapping(mapping))
2834 		return false;
2835 	/* The only remaining allowed file system is shmem. */
2836 	return !reject_file_backed || shmem_mapping(mapping);
2837 }
2838 
2839 static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start,
2840 		unsigned int flags, struct page **pages)
2841 {
2842 	while ((*nr) - nr_start) {
2843 		struct folio *folio = page_folio(pages[--(*nr)]);
2844 
2845 		folio_clear_referenced(folio);
2846 		gup_put_folio(folio, 1, flags);
2847 	}
2848 }
2849 
2850 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2851 /*
2852  * GUP-fast relies on pte change detection to avoid concurrent pgtable
2853  * operations.
2854  *
2855  * To pin the page, GUP-fast needs to do below in order:
2856  * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2857  *
2858  * For the rest of pgtable operations where pgtable updates can be racy
2859  * with GUP-fast, we need to do (1) clear pte, then (2) check whether page
2860  * is pinned.
2861  *
2862  * Above will work for all pte-level operations, including THP split.
2863  *
2864  * For THP collapse, it's a bit more complicated because GUP-fast may be
2865  * walking a pgtable page that is being freed (pte is still valid but pmd
2866  * can be cleared already).  To avoid race in such condition, we need to
2867  * also check pmd here to make sure pmd doesn't change (corresponds to
2868  * pmdp_collapse_flush() in the THP collapse code path).
2869  */
2870 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2871 		unsigned long end, unsigned int flags, struct page **pages,
2872 		int *nr)
2873 {
2874 	struct dev_pagemap *pgmap = NULL;
2875 	int nr_start = *nr, ret = 0;
2876 	pte_t *ptep, *ptem;
2877 
2878 	ptem = ptep = pte_offset_map(&pmd, addr);
2879 	if (!ptep)
2880 		return 0;
2881 	do {
2882 		pte_t pte = ptep_get_lockless(ptep);
2883 		struct page *page;
2884 		struct folio *folio;
2885 
2886 		/*
2887 		 * Always fallback to ordinary GUP on PROT_NONE-mapped pages:
2888 		 * pte_access_permitted() better should reject these pages
2889 		 * either way: otherwise, GUP-fast might succeed in
2890 		 * cases where ordinary GUP would fail due to VMA access
2891 		 * permissions.
2892 		 */
2893 		if (pte_protnone(pte))
2894 			goto pte_unmap;
2895 
2896 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2897 			goto pte_unmap;
2898 
2899 		if (pte_devmap(pte)) {
2900 			if (unlikely(flags & FOLL_LONGTERM))
2901 				goto pte_unmap;
2902 
2903 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2904 			if (unlikely(!pgmap)) {
2905 				gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
2906 				goto pte_unmap;
2907 			}
2908 		} else if (pte_special(pte))
2909 			goto pte_unmap;
2910 
2911 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2912 		page = pte_page(pte);
2913 
2914 		folio = try_grab_folio_fast(page, 1, flags);
2915 		if (!folio)
2916 			goto pte_unmap;
2917 
2918 		if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2919 		    unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2920 			gup_put_folio(folio, 1, flags);
2921 			goto pte_unmap;
2922 		}
2923 
2924 		if (!gup_fast_folio_allowed(folio, flags)) {
2925 			gup_put_folio(folio, 1, flags);
2926 			goto pte_unmap;
2927 		}
2928 
2929 		if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2930 			gup_put_folio(folio, 1, flags);
2931 			goto pte_unmap;
2932 		}
2933 
2934 		/*
2935 		 * We need to make the page accessible if and only if we are
2936 		 * going to access its content (the FOLL_PIN case).  Please
2937 		 * see Documentation/core-api/pin_user_pages.rst for
2938 		 * details.
2939 		 */
2940 		if (flags & FOLL_PIN) {
2941 			ret = arch_make_folio_accessible(folio);
2942 			if (ret) {
2943 				gup_put_folio(folio, 1, flags);
2944 				goto pte_unmap;
2945 			}
2946 		}
2947 		folio_set_referenced(folio);
2948 		pages[*nr] = page;
2949 		(*nr)++;
2950 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2951 
2952 	ret = 1;
2953 
2954 pte_unmap:
2955 	if (pgmap)
2956 		put_dev_pagemap(pgmap);
2957 	pte_unmap(ptem);
2958 	return ret;
2959 }
2960 #else
2961 
2962 /*
2963  * If we can't determine whether or not a pte is special, then fail immediately
2964  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2965  * to be special.
2966  *
2967  * For a futex to be placed on a THP tail page, get_futex_key requires a
2968  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2969  * useful to have gup_fast_pmd_leaf even if we can't operate on ptes.
2970  */
2971 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2972 		unsigned long end, unsigned int flags, struct page **pages,
2973 		int *nr)
2974 {
2975 	return 0;
2976 }
2977 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2978 
2979 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2980 static int gup_fast_devmap_leaf(unsigned long pfn, unsigned long addr,
2981 	unsigned long end, unsigned int flags, struct page **pages, int *nr)
2982 {
2983 	int nr_start = *nr;
2984 	struct dev_pagemap *pgmap = NULL;
2985 
2986 	do {
2987 		struct folio *folio;
2988 		struct page *page = pfn_to_page(pfn);
2989 
2990 		pgmap = get_dev_pagemap(pfn, pgmap);
2991 		if (unlikely(!pgmap)) {
2992 			gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
2993 			break;
2994 		}
2995 
2996 		folio = try_grab_folio_fast(page, 1, flags);
2997 		if (!folio) {
2998 			gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
2999 			break;
3000 		}
3001 		folio_set_referenced(folio);
3002 		pages[*nr] = page;
3003 		(*nr)++;
3004 		pfn++;
3005 	} while (addr += PAGE_SIZE, addr != end);
3006 
3007 	put_dev_pagemap(pgmap);
3008 	return addr == end;
3009 }
3010 
3011 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3012 		unsigned long end, unsigned int flags, struct page **pages,
3013 		int *nr)
3014 {
3015 	unsigned long fault_pfn;
3016 	int nr_start = *nr;
3017 
3018 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
3019 	if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
3020 		return 0;
3021 
3022 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3023 		gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3024 		return 0;
3025 	}
3026 	return 1;
3027 }
3028 
3029 static int gup_fast_devmap_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
3030 		unsigned long end, unsigned int flags, struct page **pages,
3031 		int *nr)
3032 {
3033 	unsigned long fault_pfn;
3034 	int nr_start = *nr;
3035 
3036 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
3037 	if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
3038 		return 0;
3039 
3040 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3041 		gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3042 		return 0;
3043 	}
3044 	return 1;
3045 }
3046 #else
3047 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3048 		unsigned long end, unsigned int flags, struct page **pages,
3049 		int *nr)
3050 {
3051 	BUILD_BUG();
3052 	return 0;
3053 }
3054 
3055 static int gup_fast_devmap_pud_leaf(pud_t pud, pud_t *pudp, unsigned long addr,
3056 		unsigned long end, unsigned int flags, struct page **pages,
3057 		int *nr)
3058 {
3059 	BUILD_BUG();
3060 	return 0;
3061 }
3062 #endif
3063 
3064 static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3065 		unsigned long end, unsigned int flags, struct page **pages,
3066 		int *nr)
3067 {
3068 	struct page *page;
3069 	struct folio *folio;
3070 	int refs;
3071 
3072 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
3073 		return 0;
3074 
3075 	if (pmd_special(orig))
3076 		return 0;
3077 
3078 	if (pmd_devmap(orig)) {
3079 		if (unlikely(flags & FOLL_LONGTERM))
3080 			return 0;
3081 		return gup_fast_devmap_pmd_leaf(orig, pmdp, addr, end, flags,
3082 					        pages, nr);
3083 	}
3084 
3085 	page = pmd_page(orig);
3086 	refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr);
3087 
3088 	folio = try_grab_folio_fast(page, refs, flags);
3089 	if (!folio)
3090 		return 0;
3091 
3092 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3093 		gup_put_folio(folio, refs, flags);
3094 		return 0;
3095 	}
3096 
3097 	if (!gup_fast_folio_allowed(folio, flags)) {
3098 		gup_put_folio(folio, refs, flags);
3099 		return 0;
3100 	}
3101 	if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3102 		gup_put_folio(folio, refs, flags);
3103 		return 0;
3104 	}
3105 
3106 	*nr += refs;
3107 	folio_set_referenced(folio);
3108 	return 1;
3109 }
3110 
3111 static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
3112 		unsigned long end, unsigned int flags, struct page **pages,
3113 		int *nr)
3114 {
3115 	struct page *page;
3116 	struct folio *folio;
3117 	int refs;
3118 
3119 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
3120 		return 0;
3121 
3122 	if (pud_special(orig))
3123 		return 0;
3124 
3125 	if (pud_devmap(orig)) {
3126 		if (unlikely(flags & FOLL_LONGTERM))
3127 			return 0;
3128 		return gup_fast_devmap_pud_leaf(orig, pudp, addr, end, flags,
3129 					        pages, nr);
3130 	}
3131 
3132 	page = pud_page(orig);
3133 	refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr);
3134 
3135 	folio = try_grab_folio_fast(page, refs, flags);
3136 	if (!folio)
3137 		return 0;
3138 
3139 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3140 		gup_put_folio(folio, refs, flags);
3141 		return 0;
3142 	}
3143 
3144 	if (!gup_fast_folio_allowed(folio, flags)) {
3145 		gup_put_folio(folio, refs, flags);
3146 		return 0;
3147 	}
3148 
3149 	if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3150 		gup_put_folio(folio, refs, flags);
3151 		return 0;
3152 	}
3153 
3154 	*nr += refs;
3155 	folio_set_referenced(folio);
3156 	return 1;
3157 }
3158 
3159 static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr,
3160 		unsigned long end, unsigned int flags, struct page **pages,
3161 		int *nr)
3162 {
3163 	unsigned long next;
3164 	pmd_t *pmdp;
3165 
3166 	pmdp = pmd_offset_lockless(pudp, pud, addr);
3167 	do {
3168 		pmd_t pmd = pmdp_get_lockless(pmdp);
3169 
3170 		next = pmd_addr_end(addr, end);
3171 		if (!pmd_present(pmd))
3172 			return 0;
3173 
3174 		if (unlikely(pmd_leaf(pmd))) {
3175 			/* See gup_fast_pte_range() */
3176 			if (pmd_protnone(pmd))
3177 				return 0;
3178 
3179 			if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags,
3180 				pages, nr))
3181 				return 0;
3182 
3183 		} else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags,
3184 					       pages, nr))
3185 			return 0;
3186 	} while (pmdp++, addr = next, addr != end);
3187 
3188 	return 1;
3189 }
3190 
3191 static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr,
3192 		unsigned long end, unsigned int flags, struct page **pages,
3193 		int *nr)
3194 {
3195 	unsigned long next;
3196 	pud_t *pudp;
3197 
3198 	pudp = pud_offset_lockless(p4dp, p4d, addr);
3199 	do {
3200 		pud_t pud = READ_ONCE(*pudp);
3201 
3202 		next = pud_addr_end(addr, end);
3203 		if (unlikely(!pud_present(pud)))
3204 			return 0;
3205 		if (unlikely(pud_leaf(pud))) {
3206 			if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags,
3207 					       pages, nr))
3208 				return 0;
3209 		} else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags,
3210 					       pages, nr))
3211 			return 0;
3212 	} while (pudp++, addr = next, addr != end);
3213 
3214 	return 1;
3215 }
3216 
3217 static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr,
3218 		unsigned long end, unsigned int flags, struct page **pages,
3219 		int *nr)
3220 {
3221 	unsigned long next;
3222 	p4d_t *p4dp;
3223 
3224 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
3225 	do {
3226 		p4d_t p4d = READ_ONCE(*p4dp);
3227 
3228 		next = p4d_addr_end(addr, end);
3229 		if (!p4d_present(p4d))
3230 			return 0;
3231 		BUILD_BUG_ON(p4d_leaf(p4d));
3232 		if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags,
3233 					pages, nr))
3234 			return 0;
3235 	} while (p4dp++, addr = next, addr != end);
3236 
3237 	return 1;
3238 }
3239 
3240 static void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3241 		unsigned int flags, struct page **pages, int *nr)
3242 {
3243 	unsigned long next;
3244 	pgd_t *pgdp;
3245 
3246 	pgdp = pgd_offset(current->mm, addr);
3247 	do {
3248 		pgd_t pgd = READ_ONCE(*pgdp);
3249 
3250 		next = pgd_addr_end(addr, end);
3251 		if (pgd_none(pgd))
3252 			return;
3253 		BUILD_BUG_ON(pgd_leaf(pgd));
3254 		if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags,
3255 					pages, nr))
3256 			return;
3257 	} while (pgdp++, addr = next, addr != end);
3258 }
3259 #else
3260 static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3261 		unsigned int flags, struct page **pages, int *nr)
3262 {
3263 }
3264 #endif /* CONFIG_HAVE_GUP_FAST */
3265 
3266 #ifndef gup_fast_permitted
3267 /*
3268  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
3269  * we need to fall back to the slow version:
3270  */
3271 static bool gup_fast_permitted(unsigned long start, unsigned long end)
3272 {
3273 	return true;
3274 }
3275 #endif
3276 
3277 static unsigned long gup_fast(unsigned long start, unsigned long end,
3278 		unsigned int gup_flags, struct page **pages)
3279 {
3280 	unsigned long flags;
3281 	int nr_pinned = 0;
3282 	unsigned seq;
3283 
3284 	if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) ||
3285 	    !gup_fast_permitted(start, end))
3286 		return 0;
3287 
3288 	if (gup_flags & FOLL_PIN) {
3289 		if (!raw_seqcount_try_begin(&current->mm->write_protect_seq, seq))
3290 			return 0;
3291 	}
3292 
3293 	/*
3294 	 * Disable interrupts. The nested form is used, in order to allow full,
3295 	 * general purpose use of this routine.
3296 	 *
3297 	 * With interrupts disabled, we block page table pages from being freed
3298 	 * from under us. See struct mmu_table_batch comments in
3299 	 * include/asm-generic/tlb.h for more details.
3300 	 *
3301 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3302 	 * that come from callers of tlb_remove_table_sync_one().
3303 	 */
3304 	local_irq_save(flags);
3305 	gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3306 	local_irq_restore(flags);
3307 
3308 	/*
3309 	 * When pinning pages for DMA there could be a concurrent write protect
3310 	 * from fork() via copy_page_range(), in this case always fail GUP-fast.
3311 	 */
3312 	if (gup_flags & FOLL_PIN) {
3313 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
3314 			gup_fast_unpin_user_pages(pages, nr_pinned);
3315 			return 0;
3316 		} else {
3317 			sanity_check_pinned_pages(pages, nr_pinned);
3318 		}
3319 	}
3320 	return nr_pinned;
3321 }
3322 
3323 static int gup_fast_fallback(unsigned long start, unsigned long nr_pages,
3324 		unsigned int gup_flags, struct page **pages)
3325 {
3326 	unsigned long len, end;
3327 	unsigned long nr_pinned;
3328 	int locked = 0;
3329 	int ret;
3330 
3331 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3332 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
3333 				       FOLL_FAST_ONLY | FOLL_NOFAULT |
3334 				       FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT)))
3335 		return -EINVAL;
3336 
3337 	if (gup_flags & FOLL_PIN)
3338 		mm_set_has_pinned_flag(&current->mm->flags);
3339 
3340 	if (!(gup_flags & FOLL_FAST_ONLY))
3341 		might_lock_read(&current->mm->mmap_lock);
3342 
3343 	start = untagged_addr(start) & PAGE_MASK;
3344 	len = nr_pages << PAGE_SHIFT;
3345 	if (check_add_overflow(start, len, &end))
3346 		return -EOVERFLOW;
3347 	if (end > TASK_SIZE_MAX)
3348 		return -EFAULT;
3349 
3350 	nr_pinned = gup_fast(start, end, gup_flags, pages);
3351 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3352 		return nr_pinned;
3353 
3354 	/* Slow path: try to get the remaining pages with get_user_pages */
3355 	start += nr_pinned << PAGE_SHIFT;
3356 	pages += nr_pinned;
3357 	ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
3358 				    pages, &locked,
3359 				    gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
3360 	if (ret < 0) {
3361 		/*
3362 		 * The caller has to unpin the pages we already pinned so
3363 		 * returning -errno is not an option
3364 		 */
3365 		if (nr_pinned)
3366 			return nr_pinned;
3367 		return ret;
3368 	}
3369 	return ret + nr_pinned;
3370 }
3371 
3372 /**
3373  * get_user_pages_fast_only() - pin user pages in memory
3374  * @start:      starting user address
3375  * @nr_pages:   number of pages from start to pin
3376  * @gup_flags:  flags modifying pin behaviour
3377  * @pages:      array that receives pointers to the pages pinned.
3378  *              Should be at least nr_pages long.
3379  *
3380  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3381  * the regular GUP.
3382  *
3383  * If the architecture does not support this function, simply return with no
3384  * pages pinned.
3385  *
3386  * Careful, careful! COW breaking can go either way, so a non-write
3387  * access can get ambiguous page results. If you call this function without
3388  * 'write' set, you'd better be sure that you're ok with that ambiguity.
3389  */
3390 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3391 			     unsigned int gup_flags, struct page **pages)
3392 {
3393 	/*
3394 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3395 	 * because gup fast is always a "pin with a +1 page refcount" request.
3396 	 *
3397 	 * FOLL_FAST_ONLY is required in order to match the API description of
3398 	 * this routine: no fall back to regular ("slow") GUP.
3399 	 */
3400 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3401 			       FOLL_GET | FOLL_FAST_ONLY))
3402 		return -EINVAL;
3403 
3404 	return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3405 }
3406 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3407 
3408 /**
3409  * get_user_pages_fast() - pin user pages in memory
3410  * @start:      starting user address
3411  * @nr_pages:   number of pages from start to pin
3412  * @gup_flags:  flags modifying pin behaviour
3413  * @pages:      array that receives pointers to the pages pinned.
3414  *              Should be at least nr_pages long.
3415  *
3416  * Attempt to pin user pages in memory without taking mm->mmap_lock.
3417  * If not successful, it will fall back to taking the lock and
3418  * calling get_user_pages().
3419  *
3420  * Returns number of pages pinned. This may be fewer than the number requested.
3421  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3422  * -errno.
3423  */
3424 int get_user_pages_fast(unsigned long start, int nr_pages,
3425 			unsigned int gup_flags, struct page **pages)
3426 {
3427 	/*
3428 	 * The caller may or may not have explicitly set FOLL_GET; either way is
3429 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
3430 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3431 	 * request.
3432 	 */
3433 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
3434 		return -EINVAL;
3435 	return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3436 }
3437 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3438 
3439 /**
3440  * pin_user_pages_fast() - pin user pages in memory without taking locks
3441  *
3442  * @start:      starting user address
3443  * @nr_pages:   number of pages from start to pin
3444  * @gup_flags:  flags modifying pin behaviour
3445  * @pages:      array that receives pointers to the pages pinned.
3446  *              Should be at least nr_pages long.
3447  *
3448  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3449  * get_user_pages_fast() for documentation on the function arguments, because
3450  * the arguments here are identical.
3451  *
3452  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3453  * see Documentation/core-api/pin_user_pages.rst for further details.
3454  *
3455  * Note that if a zero_page is amongst the returned pages, it will not have
3456  * pins in it and unpin_user_page() will not remove pins from it.
3457  */
3458 int pin_user_pages_fast(unsigned long start, int nr_pages,
3459 			unsigned int gup_flags, struct page **pages)
3460 {
3461 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3462 		return -EINVAL;
3463 	return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3464 }
3465 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3466 
3467 /**
3468  * pin_user_pages_remote() - pin pages of a remote process
3469  *
3470  * @mm:		mm_struct of target mm
3471  * @start:	starting user address
3472  * @nr_pages:	number of pages from start to pin
3473  * @gup_flags:	flags modifying lookup behaviour
3474  * @pages:	array that receives pointers to the pages pinned.
3475  *		Should be at least nr_pages long.
3476  * @locked:	pointer to lock flag indicating whether lock is held and
3477  *		subsequently whether VM_FAULT_RETRY functionality can be
3478  *		utilised. Lock must initially be held.
3479  *
3480  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3481  * get_user_pages_remote() for documentation on the function arguments, because
3482  * the arguments here are identical.
3483  *
3484  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3485  * see Documentation/core-api/pin_user_pages.rst for details.
3486  *
3487  * Note that if a zero_page is amongst the returned pages, it will not have
3488  * pins in it and unpin_user_page*() will not remove pins from it.
3489  */
3490 long pin_user_pages_remote(struct mm_struct *mm,
3491 			   unsigned long start, unsigned long nr_pages,
3492 			   unsigned int gup_flags, struct page **pages,
3493 			   int *locked)
3494 {
3495 	int local_locked = 1;
3496 
3497 	if (!is_valid_gup_args(pages, locked, &gup_flags,
3498 			       FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3499 		return 0;
3500 	return __gup_longterm_locked(mm, start, nr_pages, pages,
3501 				     locked ? locked : &local_locked,
3502 				     gup_flags);
3503 }
3504 EXPORT_SYMBOL(pin_user_pages_remote);
3505 
3506 /**
3507  * pin_user_pages() - pin user pages in memory for use by other devices
3508  *
3509  * @start:	starting user address
3510  * @nr_pages:	number of pages from start to pin
3511  * @gup_flags:	flags modifying lookup behaviour
3512  * @pages:	array that receives pointers to the pages pinned.
3513  *		Should be at least nr_pages long.
3514  *
3515  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3516  * FOLL_PIN is set.
3517  *
3518  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3519  * see Documentation/core-api/pin_user_pages.rst for details.
3520  *
3521  * Note that if a zero_page is amongst the returned pages, it will not have
3522  * pins in it and unpin_user_page*() will not remove pins from it.
3523  */
3524 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3525 		    unsigned int gup_flags, struct page **pages)
3526 {
3527 	int locked = 1;
3528 
3529 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3530 		return 0;
3531 	return __gup_longterm_locked(current->mm, start, nr_pages,
3532 				     pages, &locked, gup_flags);
3533 }
3534 EXPORT_SYMBOL(pin_user_pages);
3535 
3536 /*
3537  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3538  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3539  * FOLL_PIN and rejects FOLL_GET.
3540  *
3541  * Note that if a zero_page is amongst the returned pages, it will not have
3542  * pins in it and unpin_user_page*() will not remove pins from it.
3543  */
3544 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3545 			     struct page **pages, unsigned int gup_flags)
3546 {
3547 	int locked = 0;
3548 
3549 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3550 			       FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3551 		return 0;
3552 
3553 	return __gup_longterm_locked(current->mm, start, nr_pages, pages,
3554 				     &locked, gup_flags);
3555 }
3556 EXPORT_SYMBOL(pin_user_pages_unlocked);
3557 
3558 /**
3559  * memfd_pin_folios() - pin folios associated with a memfd
3560  * @memfd:      the memfd whose folios are to be pinned
3561  * @start:      the first memfd offset
3562  * @end:        the last memfd offset (inclusive)
3563  * @folios:     array that receives pointers to the folios pinned
3564  * @max_folios: maximum number of entries in @folios
3565  * @offset:     the offset into the first folio
3566  *
3567  * Attempt to pin folios associated with a memfd in the contiguous range
3568  * [start, end]. Given that a memfd is either backed by shmem or hugetlb,
3569  * the folios can either be found in the page cache or need to be allocated
3570  * if necessary. Once the folios are located, they are all pinned via
3571  * FOLL_PIN and @offset is populatedwith the offset into the first folio.
3572  * And, eventually, these pinned folios must be released either using
3573  * unpin_folios() or unpin_folio().
3574  *
3575  * It must be noted that the folios may be pinned for an indefinite amount
3576  * of time. And, in most cases, the duration of time they may stay pinned
3577  * would be controlled by the userspace. This behavior is effectively the
3578  * same as using FOLL_LONGTERM with other GUP APIs.
3579  *
3580  * Returns number of folios pinned, which could be less than @max_folios
3581  * as it depends on the folio sizes that cover the range [start, end].
3582  * If no folios were pinned, it returns -errno.
3583  */
3584 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
3585 		      struct folio **folios, unsigned int max_folios,
3586 		      pgoff_t *offset)
3587 {
3588 	unsigned int flags, nr_folios, nr_found;
3589 	unsigned int i, pgshift = PAGE_SHIFT;
3590 	pgoff_t start_idx, end_idx;
3591 	struct folio *folio = NULL;
3592 	struct folio_batch fbatch;
3593 	struct hstate *h;
3594 	long ret = -EINVAL;
3595 
3596 	if (start < 0 || start > end || !max_folios)
3597 		return -EINVAL;
3598 
3599 	if (!memfd)
3600 		return -EINVAL;
3601 
3602 	if (!shmem_file(memfd) && !is_file_hugepages(memfd))
3603 		return -EINVAL;
3604 
3605 	if (end >= i_size_read(file_inode(memfd)))
3606 		return -EINVAL;
3607 
3608 	if (is_file_hugepages(memfd)) {
3609 		h = hstate_file(memfd);
3610 		pgshift = huge_page_shift(h);
3611 	}
3612 
3613 	flags = memalloc_pin_save();
3614 	do {
3615 		nr_folios = 0;
3616 		start_idx = start >> pgshift;
3617 		end_idx = end >> pgshift;
3618 		if (is_file_hugepages(memfd)) {
3619 			start_idx <<= huge_page_order(h);
3620 			end_idx <<= huge_page_order(h);
3621 		}
3622 
3623 		folio_batch_init(&fbatch);
3624 		while (start_idx <= end_idx && nr_folios < max_folios) {
3625 			/*
3626 			 * In most cases, we should be able to find the folios
3627 			 * in the page cache. If we cannot find them for some
3628 			 * reason, we try to allocate them and add them to the
3629 			 * page cache.
3630 			 */
3631 			nr_found = filemap_get_folios_contig(memfd->f_mapping,
3632 							     &start_idx,
3633 							     end_idx,
3634 							     &fbatch);
3635 			if (folio) {
3636 				folio_put(folio);
3637 				folio = NULL;
3638 			}
3639 
3640 			for (i = 0; i < nr_found; i++) {
3641 				folio = fbatch.folios[i];
3642 
3643 				if (try_grab_folio(folio, 1, FOLL_PIN)) {
3644 					folio_batch_release(&fbatch);
3645 					ret = -EINVAL;
3646 					goto err;
3647 				}
3648 
3649 				if (nr_folios == 0)
3650 					*offset = offset_in_folio(folio, start);
3651 
3652 				folios[nr_folios] = folio;
3653 				if (++nr_folios == max_folios)
3654 					break;
3655 			}
3656 
3657 			folio = NULL;
3658 			folio_batch_release(&fbatch);
3659 			if (!nr_found) {
3660 				folio = memfd_alloc_folio(memfd, start_idx);
3661 				if (IS_ERR(folio)) {
3662 					ret = PTR_ERR(folio);
3663 					if (ret != -EEXIST)
3664 						goto err;
3665 					folio = NULL;
3666 				}
3667 			}
3668 		}
3669 
3670 		ret = check_and_migrate_movable_folios(nr_folios, folios);
3671 	} while (ret == -EAGAIN);
3672 
3673 	memalloc_pin_restore(flags);
3674 	return ret ? ret : nr_folios;
3675 err:
3676 	memalloc_pin_restore(flags);
3677 	unpin_folios(folios, nr_folios);
3678 
3679 	return ret;
3680 }
3681 EXPORT_SYMBOL_GPL(memfd_pin_folios);
3682 
3683 /**
3684  * folio_add_pins() - add pins to an already-pinned folio
3685  * @folio: the folio to add more pins to
3686  * @pins: number of pins to add
3687  *
3688  * Try to add more pins to an already-pinned folio. The semantics
3689  * of the pin (e.g., FOLL_WRITE) follow any existing pin and cannot
3690  * be changed.
3691  *
3692  * This function is helpful when having obtained a pin on a large folio
3693  * using memfd_pin_folios(), but wanting to logically unpin parts
3694  * (e.g., individual pages) of the folio later, for example, using
3695  * unpin_user_page_range_dirty_lock().
3696  *
3697  * This is not the right interface to initially pin a folio.
3698  */
3699 int folio_add_pins(struct folio *folio, unsigned int pins)
3700 {
3701 	VM_WARN_ON_ONCE(!folio_maybe_dma_pinned(folio));
3702 
3703 	return try_grab_folio(folio, pins, FOLL_PIN);
3704 }
3705 EXPORT_SYMBOL_GPL(folio_add_pins);
3706