1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memfd.h> 9 #include <linux/memremap.h> 10 #include <linux/pagemap.h> 11 #include <linux/rmap.h> 12 #include <linux/swap.h> 13 #include <linux/swapops.h> 14 #include <linux/secretmem.h> 15 16 #include <linux/sched/signal.h> 17 #include <linux/rwsem.h> 18 #include <linux/hugetlb.h> 19 #include <linux/migrate.h> 20 #include <linux/mm_inline.h> 21 #include <linux/pagevec.h> 22 #include <linux/sched/mm.h> 23 #include <linux/shmem_fs.h> 24 25 #include <asm/mmu_context.h> 26 #include <asm/tlbflush.h> 27 28 #include "internal.h" 29 #include "swap.h" 30 31 struct follow_page_context { 32 struct dev_pagemap *pgmap; 33 unsigned int page_mask; 34 }; 35 36 static inline void sanity_check_pinned_pages(struct page **pages, 37 unsigned long npages) 38 { 39 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 40 return; 41 42 /* 43 * We only pin anonymous pages if they are exclusive. Once pinned, we 44 * can no longer turn them possibly shared and PageAnonExclusive() will 45 * stick around until the page is freed. 46 * 47 * We'd like to verify that our pinned anonymous pages are still mapped 48 * exclusively. The issue with anon THP is that we don't know how 49 * they are/were mapped when pinning them. However, for anon 50 * THP we can assume that either the given page (PTE-mapped THP) or 51 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If 52 * neither is the case, there is certainly something wrong. 53 */ 54 for (; npages; npages--, pages++) { 55 struct page *page = *pages; 56 struct folio *folio; 57 58 if (!page) 59 continue; 60 61 folio = page_folio(page); 62 63 if (is_zero_page(page) || 64 !folio_test_anon(folio)) 65 continue; 66 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 67 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page); 68 else 69 /* Either a PTE-mapped or a PMD-mapped THP. */ 70 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) && 71 !PageAnonExclusive(page), page); 72 } 73 } 74 75 /* 76 * Return the folio with ref appropriately incremented, 77 * or NULL if that failed. 78 */ 79 static inline struct folio *try_get_folio(struct page *page, int refs) 80 { 81 struct folio *folio; 82 83 retry: 84 folio = page_folio(page); 85 if (WARN_ON_ONCE(folio_ref_count(folio) < 0)) 86 return NULL; 87 if (unlikely(!folio_ref_try_add(folio, refs))) 88 return NULL; 89 90 /* 91 * At this point we have a stable reference to the folio; but it 92 * could be that between calling page_folio() and the refcount 93 * increment, the folio was split, in which case we'd end up 94 * holding a reference on a folio that has nothing to do with the page 95 * we were given anymore. 96 * So now that the folio is stable, recheck that the page still 97 * belongs to this folio. 98 */ 99 if (unlikely(page_folio(page) != folio)) { 100 folio_put_refs(folio, refs); 101 goto retry; 102 } 103 104 return folio; 105 } 106 107 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags) 108 { 109 if (flags & FOLL_PIN) { 110 if (is_zero_folio(folio)) 111 return; 112 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs); 113 if (folio_has_pincount(folio)) 114 atomic_sub(refs, &folio->_pincount); 115 else 116 refs *= GUP_PIN_COUNTING_BIAS; 117 } 118 119 folio_put_refs(folio, refs); 120 } 121 122 /** 123 * try_grab_folio() - add a folio's refcount by a flag-dependent amount 124 * @folio: pointer to folio to be grabbed 125 * @refs: the value to (effectively) add to the folio's refcount 126 * @flags: gup flags: these are the FOLL_* flag values 127 * 128 * This might not do anything at all, depending on the flags argument. 129 * 130 * "grab" names in this file mean, "look at flags to decide whether to use 131 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 132 * 133 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 134 * time. 135 * 136 * Return: 0 for success, or if no action was required (if neither FOLL_PIN 137 * nor FOLL_GET was set, nothing is done). A negative error code for failure: 138 * 139 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the folio could not 140 * be grabbed. 141 * 142 * It is called when we have a stable reference for the folio, typically in 143 * GUP slow path. 144 */ 145 int __must_check try_grab_folio(struct folio *folio, int refs, 146 unsigned int flags) 147 { 148 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0)) 149 return -ENOMEM; 150 151 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(&folio->page))) 152 return -EREMOTEIO; 153 154 if (flags & FOLL_GET) 155 folio_ref_add(folio, refs); 156 else if (flags & FOLL_PIN) { 157 /* 158 * Don't take a pin on the zero page - it's not going anywhere 159 * and it is used in a *lot* of places. 160 */ 161 if (is_zero_folio(folio)) 162 return 0; 163 164 /* 165 * Increment the normal page refcount field at least once, 166 * so that the page really is pinned. 167 */ 168 if (folio_has_pincount(folio)) { 169 folio_ref_add(folio, refs); 170 atomic_add(refs, &folio->_pincount); 171 } else { 172 folio_ref_add(folio, refs * GUP_PIN_COUNTING_BIAS); 173 } 174 175 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 176 } 177 178 return 0; 179 } 180 181 /** 182 * unpin_user_page() - release a dma-pinned page 183 * @page: pointer to page to be released 184 * 185 * Pages that were pinned via pin_user_pages*() must be released via either 186 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 187 * that such pages can be separately tracked and uniquely handled. In 188 * particular, interactions with RDMA and filesystems need special handling. 189 */ 190 void unpin_user_page(struct page *page) 191 { 192 sanity_check_pinned_pages(&page, 1); 193 gup_put_folio(page_folio(page), 1, FOLL_PIN); 194 } 195 EXPORT_SYMBOL(unpin_user_page); 196 197 /** 198 * unpin_folio() - release a dma-pinned folio 199 * @folio: pointer to folio to be released 200 * 201 * Folios that were pinned via memfd_pin_folios() or other similar routines 202 * must be released either using unpin_folio() or unpin_folios(). 203 */ 204 void unpin_folio(struct folio *folio) 205 { 206 gup_put_folio(folio, 1, FOLL_PIN); 207 } 208 EXPORT_SYMBOL_GPL(unpin_folio); 209 210 /** 211 * folio_add_pin - Try to get an additional pin on a pinned folio 212 * @folio: The folio to be pinned 213 * 214 * Get an additional pin on a folio we already have a pin on. Makes no change 215 * if the folio is a zero_page. 216 */ 217 void folio_add_pin(struct folio *folio) 218 { 219 if (is_zero_folio(folio)) 220 return; 221 222 /* 223 * Similar to try_grab_folio(): be sure to *also* increment the normal 224 * page refcount field at least once, so that the page really is 225 * pinned. 226 */ 227 if (folio_has_pincount(folio)) { 228 WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1); 229 folio_ref_inc(folio); 230 atomic_inc(&folio->_pincount); 231 } else { 232 WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS); 233 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 234 } 235 } 236 237 static inline struct folio *gup_folio_range_next(struct page *start, 238 unsigned long npages, unsigned long i, unsigned int *ntails) 239 { 240 struct page *next = nth_page(start, i); 241 struct folio *folio = page_folio(next); 242 unsigned int nr = 1; 243 244 if (folio_test_large(folio)) 245 nr = min_t(unsigned int, npages - i, 246 folio_nr_pages(folio) - folio_page_idx(folio, next)); 247 248 *ntails = nr; 249 return folio; 250 } 251 252 static inline struct folio *gup_folio_next(struct page **list, 253 unsigned long npages, unsigned long i, unsigned int *ntails) 254 { 255 struct folio *folio = page_folio(list[i]); 256 unsigned int nr; 257 258 for (nr = i + 1; nr < npages; nr++) { 259 if (page_folio(list[nr]) != folio) 260 break; 261 } 262 263 *ntails = nr - i; 264 return folio; 265 } 266 267 /** 268 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 269 * @pages: array of pages to be maybe marked dirty, and definitely released. 270 * @npages: number of pages in the @pages array. 271 * @make_dirty: whether to mark the pages dirty 272 * 273 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 274 * variants called on that page. 275 * 276 * For each page in the @pages array, make that page (or its head page, if a 277 * compound page) dirty, if @make_dirty is true, and if the page was previously 278 * listed as clean. In any case, releases all pages using unpin_user_page(), 279 * possibly via unpin_user_pages(), for the non-dirty case. 280 * 281 * Please see the unpin_user_page() documentation for details. 282 * 283 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 284 * required, then the caller should a) verify that this is really correct, 285 * because _lock() is usually required, and b) hand code it: 286 * set_page_dirty_lock(), unpin_user_page(). 287 * 288 */ 289 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 290 bool make_dirty) 291 { 292 unsigned long i; 293 struct folio *folio; 294 unsigned int nr; 295 296 if (!make_dirty) { 297 unpin_user_pages(pages, npages); 298 return; 299 } 300 301 sanity_check_pinned_pages(pages, npages); 302 for (i = 0; i < npages; i += nr) { 303 folio = gup_folio_next(pages, npages, i, &nr); 304 /* 305 * Checking PageDirty at this point may race with 306 * clear_page_dirty_for_io(), but that's OK. Two key 307 * cases: 308 * 309 * 1) This code sees the page as already dirty, so it 310 * skips the call to set_page_dirty(). That could happen 311 * because clear_page_dirty_for_io() called 312 * folio_mkclean(), followed by set_page_dirty(). 313 * However, now the page is going to get written back, 314 * which meets the original intention of setting it 315 * dirty, so all is well: clear_page_dirty_for_io() goes 316 * on to call TestClearPageDirty(), and write the page 317 * back. 318 * 319 * 2) This code sees the page as clean, so it calls 320 * set_page_dirty(). The page stays dirty, despite being 321 * written back, so it gets written back again in the 322 * next writeback cycle. This is harmless. 323 */ 324 if (!folio_test_dirty(folio)) { 325 folio_lock(folio); 326 folio_mark_dirty(folio); 327 folio_unlock(folio); 328 } 329 gup_put_folio(folio, nr, FOLL_PIN); 330 } 331 } 332 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 333 334 /** 335 * unpin_user_page_range_dirty_lock() - release and optionally dirty 336 * gup-pinned page range 337 * 338 * @page: the starting page of a range maybe marked dirty, and definitely released. 339 * @npages: number of consecutive pages to release. 340 * @make_dirty: whether to mark the pages dirty 341 * 342 * "gup-pinned page range" refers to a range of pages that has had one of the 343 * pin_user_pages() variants called on that page. 344 * 345 * For the page ranges defined by [page .. page+npages], make that range (or 346 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the 347 * page range was previously listed as clean. 348 * 349 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 350 * required, then the caller should a) verify that this is really correct, 351 * because _lock() is usually required, and b) hand code it: 352 * set_page_dirty_lock(), unpin_user_page(). 353 * 354 */ 355 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 356 bool make_dirty) 357 { 358 unsigned long i; 359 struct folio *folio; 360 unsigned int nr; 361 362 for (i = 0; i < npages; i += nr) { 363 folio = gup_folio_range_next(page, npages, i, &nr); 364 if (make_dirty && !folio_test_dirty(folio)) { 365 folio_lock(folio); 366 folio_mark_dirty(folio); 367 folio_unlock(folio); 368 } 369 gup_put_folio(folio, nr, FOLL_PIN); 370 } 371 } 372 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); 373 374 static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages) 375 { 376 unsigned long i; 377 struct folio *folio; 378 unsigned int nr; 379 380 /* 381 * Don't perform any sanity checks because we might have raced with 382 * fork() and some anonymous pages might now actually be shared -- 383 * which is why we're unpinning after all. 384 */ 385 for (i = 0; i < npages; i += nr) { 386 folio = gup_folio_next(pages, npages, i, &nr); 387 gup_put_folio(folio, nr, FOLL_PIN); 388 } 389 } 390 391 /** 392 * unpin_user_pages() - release an array of gup-pinned pages. 393 * @pages: array of pages to be marked dirty and released. 394 * @npages: number of pages in the @pages array. 395 * 396 * For each page in the @pages array, release the page using unpin_user_page(). 397 * 398 * Please see the unpin_user_page() documentation for details. 399 */ 400 void unpin_user_pages(struct page **pages, unsigned long npages) 401 { 402 unsigned long i; 403 struct folio *folio; 404 unsigned int nr; 405 406 /* 407 * If this WARN_ON() fires, then the system *might* be leaking pages (by 408 * leaving them pinned), but probably not. More likely, gup/pup returned 409 * a hard -ERRNO error to the caller, who erroneously passed it here. 410 */ 411 if (WARN_ON(IS_ERR_VALUE(npages))) 412 return; 413 414 sanity_check_pinned_pages(pages, npages); 415 for (i = 0; i < npages; i += nr) { 416 if (!pages[i]) { 417 nr = 1; 418 continue; 419 } 420 folio = gup_folio_next(pages, npages, i, &nr); 421 gup_put_folio(folio, nr, FOLL_PIN); 422 } 423 } 424 EXPORT_SYMBOL(unpin_user_pages); 425 426 /** 427 * unpin_user_folio() - release pages of a folio 428 * @folio: pointer to folio to be released 429 * @npages: number of pages of same folio 430 * 431 * Release npages of the folio 432 */ 433 void unpin_user_folio(struct folio *folio, unsigned long npages) 434 { 435 gup_put_folio(folio, npages, FOLL_PIN); 436 } 437 EXPORT_SYMBOL(unpin_user_folio); 438 439 /** 440 * unpin_folios() - release an array of gup-pinned folios. 441 * @folios: array of folios to be marked dirty and released. 442 * @nfolios: number of folios in the @folios array. 443 * 444 * For each folio in the @folios array, release the folio using gup_put_folio. 445 * 446 * Please see the unpin_folio() documentation for details. 447 */ 448 void unpin_folios(struct folio **folios, unsigned long nfolios) 449 { 450 unsigned long i = 0, j; 451 452 /* 453 * If this WARN_ON() fires, then the system *might* be leaking folios 454 * (by leaving them pinned), but probably not. More likely, gup/pup 455 * returned a hard -ERRNO error to the caller, who erroneously passed 456 * it here. 457 */ 458 if (WARN_ON(IS_ERR_VALUE(nfolios))) 459 return; 460 461 while (i < nfolios) { 462 for (j = i + 1; j < nfolios; j++) 463 if (folios[i] != folios[j]) 464 break; 465 466 if (folios[i]) 467 gup_put_folio(folios[i], j - i, FOLL_PIN); 468 i = j; 469 } 470 } 471 EXPORT_SYMBOL_GPL(unpin_folios); 472 473 /* 474 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's 475 * lifecycle. Avoid setting the bit unless necessary, or it might cause write 476 * cache bouncing on large SMP machines for concurrent pinned gups. 477 */ 478 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) 479 { 480 if (!test_bit(MMF_HAS_PINNED, mm_flags)) 481 set_bit(MMF_HAS_PINNED, mm_flags); 482 } 483 484 #ifdef CONFIG_MMU 485 486 #ifdef CONFIG_HAVE_GUP_FAST 487 static int record_subpages(struct page *page, unsigned long sz, 488 unsigned long addr, unsigned long end, 489 struct page **pages) 490 { 491 struct page *start_page; 492 int nr; 493 494 start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT); 495 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE) 496 pages[nr] = nth_page(start_page, nr); 497 498 return nr; 499 } 500 501 /** 502 * try_grab_folio_fast() - Attempt to get or pin a folio in fast path. 503 * @page: pointer to page to be grabbed 504 * @refs: the value to (effectively) add to the folio's refcount 505 * @flags: gup flags: these are the FOLL_* flag values. 506 * 507 * "grab" names in this file mean, "look at flags to decide whether to use 508 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 509 * 510 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 511 * same time. (That's true throughout the get_user_pages*() and 512 * pin_user_pages*() APIs.) Cases: 513 * 514 * FOLL_GET: folio's refcount will be incremented by @refs. 515 * 516 * FOLL_PIN on large folios: folio's refcount will be incremented by 517 * @refs, and its pincount will be incremented by @refs. 518 * 519 * FOLL_PIN on single-page folios: folio's refcount will be incremented by 520 * @refs * GUP_PIN_COUNTING_BIAS. 521 * 522 * Return: The folio containing @page (with refcount appropriately 523 * incremented) for success, or NULL upon failure. If neither FOLL_GET 524 * nor FOLL_PIN was set, that's considered failure, and furthermore, 525 * a likely bug in the caller, so a warning is also emitted. 526 * 527 * It uses add ref unless zero to elevate the folio refcount and must be called 528 * in fast path only. 529 */ 530 static struct folio *try_grab_folio_fast(struct page *page, int refs, 531 unsigned int flags) 532 { 533 struct folio *folio; 534 535 /* Raise warn if it is not called in fast GUP */ 536 VM_WARN_ON_ONCE(!irqs_disabled()); 537 538 if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0)) 539 return NULL; 540 541 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) 542 return NULL; 543 544 if (flags & FOLL_GET) 545 return try_get_folio(page, refs); 546 547 /* FOLL_PIN is set */ 548 549 /* 550 * Don't take a pin on the zero page - it's not going anywhere 551 * and it is used in a *lot* of places. 552 */ 553 if (is_zero_page(page)) 554 return page_folio(page); 555 556 folio = try_get_folio(page, refs); 557 if (!folio) 558 return NULL; 559 560 /* 561 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a 562 * right zone, so fail and let the caller fall back to the slow 563 * path. 564 */ 565 if (unlikely((flags & FOLL_LONGTERM) && 566 !folio_is_longterm_pinnable(folio))) { 567 folio_put_refs(folio, refs); 568 return NULL; 569 } 570 571 /* 572 * When pinning a large folio, use an exact count to track it. 573 * 574 * However, be sure to *also* increment the normal folio 575 * refcount field at least once, so that the folio really 576 * is pinned. That's why the refcount from the earlier 577 * try_get_folio() is left intact. 578 */ 579 if (folio_has_pincount(folio)) 580 atomic_add(refs, &folio->_pincount); 581 else 582 folio_ref_add(folio, 583 refs * (GUP_PIN_COUNTING_BIAS - 1)); 584 /* 585 * Adjust the pincount before re-checking the PTE for changes. 586 * This is essentially a smp_mb() and is paired with a memory 587 * barrier in folio_try_share_anon_rmap_*(). 588 */ 589 smp_mb__after_atomic(); 590 591 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 592 593 return folio; 594 } 595 #endif /* CONFIG_HAVE_GUP_FAST */ 596 597 /* Common code for can_follow_write_* */ 598 static inline bool can_follow_write_common(struct page *page, 599 struct vm_area_struct *vma, unsigned int flags) 600 { 601 /* Maybe FOLL_FORCE is set to override it? */ 602 if (!(flags & FOLL_FORCE)) 603 return false; 604 605 /* But FOLL_FORCE has no effect on shared mappings */ 606 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 607 return false; 608 609 /* ... or read-only private ones */ 610 if (!(vma->vm_flags & VM_MAYWRITE)) 611 return false; 612 613 /* ... or already writable ones that just need to take a write fault */ 614 if (vma->vm_flags & VM_WRITE) 615 return false; 616 617 /* 618 * See can_change_pte_writable(): we broke COW and could map the page 619 * writable if we have an exclusive anonymous page ... 620 */ 621 return page && PageAnon(page) && PageAnonExclusive(page); 622 } 623 624 static struct page *no_page_table(struct vm_area_struct *vma, 625 unsigned int flags, unsigned long address) 626 { 627 if (!(flags & FOLL_DUMP)) 628 return NULL; 629 630 /* 631 * When core dumping, we don't want to allocate unnecessary pages or 632 * page tables. Return error instead of NULL to skip handle_mm_fault, 633 * then get_dump_page() will return NULL to leave a hole in the dump. 634 * But we can only make this optimization where a hole would surely 635 * be zero-filled if handle_mm_fault() actually did handle it. 636 */ 637 if (is_vm_hugetlb_page(vma)) { 638 struct hstate *h = hstate_vma(vma); 639 640 if (!hugetlbfs_pagecache_present(h, vma, address)) 641 return ERR_PTR(-EFAULT); 642 } else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) { 643 return ERR_PTR(-EFAULT); 644 } 645 646 return NULL; 647 } 648 649 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES 650 /* FOLL_FORCE can write to even unwritable PUDs in COW mappings. */ 651 static inline bool can_follow_write_pud(pud_t pud, struct page *page, 652 struct vm_area_struct *vma, 653 unsigned int flags) 654 { 655 /* If the pud is writable, we can write to the page. */ 656 if (pud_write(pud)) 657 return true; 658 659 return can_follow_write_common(page, vma, flags); 660 } 661 662 static struct page *follow_huge_pud(struct vm_area_struct *vma, 663 unsigned long addr, pud_t *pudp, 664 int flags, struct follow_page_context *ctx) 665 { 666 struct mm_struct *mm = vma->vm_mm; 667 struct page *page; 668 pud_t pud = *pudp; 669 unsigned long pfn = pud_pfn(pud); 670 int ret; 671 672 assert_spin_locked(pud_lockptr(mm, pudp)); 673 674 if (!pud_present(pud)) 675 return NULL; 676 677 if ((flags & FOLL_WRITE) && 678 !can_follow_write_pud(pud, pfn_to_page(pfn), vma, flags)) 679 return NULL; 680 681 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; 682 683 if (IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) && 684 pud_devmap(pud)) { 685 /* 686 * device mapped pages can only be returned if the caller 687 * will manage the page reference count. 688 * 689 * At least one of FOLL_GET | FOLL_PIN must be set, so 690 * assert that here: 691 */ 692 if (!(flags & (FOLL_GET | FOLL_PIN))) 693 return ERR_PTR(-EEXIST); 694 695 if (flags & FOLL_TOUCH) 696 touch_pud(vma, addr, pudp, flags & FOLL_WRITE); 697 698 ctx->pgmap = get_dev_pagemap(pfn, ctx->pgmap); 699 if (!ctx->pgmap) 700 return ERR_PTR(-EFAULT); 701 } 702 703 page = pfn_to_page(pfn); 704 705 if (!pud_devmap(pud) && !pud_write(pud) && 706 gup_must_unshare(vma, flags, page)) 707 return ERR_PTR(-EMLINK); 708 709 ret = try_grab_folio(page_folio(page), 1, flags); 710 if (ret) 711 page = ERR_PTR(ret); 712 else 713 ctx->page_mask = HPAGE_PUD_NR - 1; 714 715 return page; 716 } 717 718 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */ 719 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page, 720 struct vm_area_struct *vma, 721 unsigned int flags) 722 { 723 /* If the pmd is writable, we can write to the page. */ 724 if (pmd_write(pmd)) 725 return true; 726 727 if (!can_follow_write_common(page, vma, flags)) 728 return false; 729 730 /* ... and a write-fault isn't required for other reasons. */ 731 if (pmd_needs_soft_dirty_wp(vma, pmd)) 732 return false; 733 return !userfaultfd_huge_pmd_wp(vma, pmd); 734 } 735 736 static struct page *follow_huge_pmd(struct vm_area_struct *vma, 737 unsigned long addr, pmd_t *pmd, 738 unsigned int flags, 739 struct follow_page_context *ctx) 740 { 741 struct mm_struct *mm = vma->vm_mm; 742 pmd_t pmdval = *pmd; 743 struct page *page; 744 int ret; 745 746 assert_spin_locked(pmd_lockptr(mm, pmd)); 747 748 page = pmd_page(pmdval); 749 if ((flags & FOLL_WRITE) && 750 !can_follow_write_pmd(pmdval, page, vma, flags)) 751 return NULL; 752 753 /* Avoid dumping huge zero page */ 754 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval)) 755 return ERR_PTR(-EFAULT); 756 757 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags)) 758 return NULL; 759 760 if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page)) 761 return ERR_PTR(-EMLINK); 762 763 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 764 !PageAnonExclusive(page), page); 765 766 ret = try_grab_folio(page_folio(page), 1, flags); 767 if (ret) 768 return ERR_PTR(ret); 769 770 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 771 if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH)) 772 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE); 773 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 774 775 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 776 ctx->page_mask = HPAGE_PMD_NR - 1; 777 778 return page; 779 } 780 781 #else /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */ 782 static struct page *follow_huge_pud(struct vm_area_struct *vma, 783 unsigned long addr, pud_t *pudp, 784 int flags, struct follow_page_context *ctx) 785 { 786 return NULL; 787 } 788 789 static struct page *follow_huge_pmd(struct vm_area_struct *vma, 790 unsigned long addr, pmd_t *pmd, 791 unsigned int flags, 792 struct follow_page_context *ctx) 793 { 794 return NULL; 795 } 796 #endif /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */ 797 798 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 799 pte_t *pte, unsigned int flags) 800 { 801 if (flags & FOLL_TOUCH) { 802 pte_t orig_entry = ptep_get(pte); 803 pte_t entry = orig_entry; 804 805 if (flags & FOLL_WRITE) 806 entry = pte_mkdirty(entry); 807 entry = pte_mkyoung(entry); 808 809 if (!pte_same(orig_entry, entry)) { 810 set_pte_at(vma->vm_mm, address, pte, entry); 811 update_mmu_cache(vma, address, pte); 812 } 813 } 814 815 /* Proper page table entry exists, but no corresponding struct page */ 816 return -EEXIST; 817 } 818 819 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */ 820 static inline bool can_follow_write_pte(pte_t pte, struct page *page, 821 struct vm_area_struct *vma, 822 unsigned int flags) 823 { 824 /* If the pte is writable, we can write to the page. */ 825 if (pte_write(pte)) 826 return true; 827 828 if (!can_follow_write_common(page, vma, flags)) 829 return false; 830 831 /* ... and a write-fault isn't required for other reasons. */ 832 if (pte_needs_soft_dirty_wp(vma, pte)) 833 return false; 834 return !userfaultfd_pte_wp(vma, pte); 835 } 836 837 static struct page *follow_page_pte(struct vm_area_struct *vma, 838 unsigned long address, pmd_t *pmd, unsigned int flags, 839 struct dev_pagemap **pgmap) 840 { 841 struct mm_struct *mm = vma->vm_mm; 842 struct folio *folio; 843 struct page *page; 844 spinlock_t *ptl; 845 pte_t *ptep, pte; 846 int ret; 847 848 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 849 if (!ptep) 850 return no_page_table(vma, flags, address); 851 pte = ptep_get(ptep); 852 if (!pte_present(pte)) 853 goto no_page; 854 if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags)) 855 goto no_page; 856 857 page = vm_normal_page(vma, address, pte); 858 859 /* 860 * We only care about anon pages in can_follow_write_pte() and don't 861 * have to worry about pte_devmap() because they are never anon. 862 */ 863 if ((flags & FOLL_WRITE) && 864 !can_follow_write_pte(pte, page, vma, flags)) { 865 page = NULL; 866 goto out; 867 } 868 869 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 870 /* 871 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 872 * case since they are only valid while holding the pgmap 873 * reference. 874 */ 875 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 876 if (*pgmap) 877 page = pte_page(pte); 878 else 879 goto no_page; 880 } else if (unlikely(!page)) { 881 if (flags & FOLL_DUMP) { 882 /* Avoid special (like zero) pages in core dumps */ 883 page = ERR_PTR(-EFAULT); 884 goto out; 885 } 886 887 if (is_zero_pfn(pte_pfn(pte))) { 888 page = pte_page(pte); 889 } else { 890 ret = follow_pfn_pte(vma, address, ptep, flags); 891 page = ERR_PTR(ret); 892 goto out; 893 } 894 } 895 folio = page_folio(page); 896 897 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) { 898 page = ERR_PTR(-EMLINK); 899 goto out; 900 } 901 902 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 903 !PageAnonExclusive(page), page); 904 905 /* try_grab_folio() does nothing unless FOLL_GET or FOLL_PIN is set. */ 906 ret = try_grab_folio(folio, 1, flags); 907 if (unlikely(ret)) { 908 page = ERR_PTR(ret); 909 goto out; 910 } 911 912 /* 913 * We need to make the page accessible if and only if we are going 914 * to access its content (the FOLL_PIN case). Please see 915 * Documentation/core-api/pin_user_pages.rst for details. 916 */ 917 if (flags & FOLL_PIN) { 918 ret = arch_make_folio_accessible(folio); 919 if (ret) { 920 unpin_user_page(page); 921 page = ERR_PTR(ret); 922 goto out; 923 } 924 } 925 if (flags & FOLL_TOUCH) { 926 if ((flags & FOLL_WRITE) && 927 !pte_dirty(pte) && !folio_test_dirty(folio)) 928 folio_mark_dirty(folio); 929 /* 930 * pte_mkyoung() would be more correct here, but atomic care 931 * is needed to avoid losing the dirty bit: it is easier to use 932 * folio_mark_accessed(). 933 */ 934 folio_mark_accessed(folio); 935 } 936 out: 937 pte_unmap_unlock(ptep, ptl); 938 return page; 939 no_page: 940 pte_unmap_unlock(ptep, ptl); 941 if (!pte_none(pte)) 942 return NULL; 943 return no_page_table(vma, flags, address); 944 } 945 946 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 947 unsigned long address, pud_t *pudp, 948 unsigned int flags, 949 struct follow_page_context *ctx) 950 { 951 pmd_t *pmd, pmdval; 952 spinlock_t *ptl; 953 struct page *page; 954 struct mm_struct *mm = vma->vm_mm; 955 956 pmd = pmd_offset(pudp, address); 957 pmdval = pmdp_get_lockless(pmd); 958 if (pmd_none(pmdval)) 959 return no_page_table(vma, flags, address); 960 if (!pmd_present(pmdval)) 961 return no_page_table(vma, flags, address); 962 if (pmd_devmap(pmdval)) { 963 ptl = pmd_lock(mm, pmd); 964 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 965 spin_unlock(ptl); 966 if (page) 967 return page; 968 return no_page_table(vma, flags, address); 969 } 970 if (likely(!pmd_leaf(pmdval))) 971 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 972 973 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags)) 974 return no_page_table(vma, flags, address); 975 976 ptl = pmd_lock(mm, pmd); 977 pmdval = *pmd; 978 if (unlikely(!pmd_present(pmdval))) { 979 spin_unlock(ptl); 980 return no_page_table(vma, flags, address); 981 } 982 if (unlikely(!pmd_leaf(pmdval))) { 983 spin_unlock(ptl); 984 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 985 } 986 if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) { 987 spin_unlock(ptl); 988 split_huge_pmd(vma, pmd, address); 989 /* If pmd was left empty, stuff a page table in there quickly */ 990 return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) : 991 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 992 } 993 page = follow_huge_pmd(vma, address, pmd, flags, ctx); 994 spin_unlock(ptl); 995 return page; 996 } 997 998 static struct page *follow_pud_mask(struct vm_area_struct *vma, 999 unsigned long address, p4d_t *p4dp, 1000 unsigned int flags, 1001 struct follow_page_context *ctx) 1002 { 1003 pud_t *pudp, pud; 1004 spinlock_t *ptl; 1005 struct page *page; 1006 struct mm_struct *mm = vma->vm_mm; 1007 1008 pudp = pud_offset(p4dp, address); 1009 pud = READ_ONCE(*pudp); 1010 if (!pud_present(pud)) 1011 return no_page_table(vma, flags, address); 1012 if (pud_leaf(pud)) { 1013 ptl = pud_lock(mm, pudp); 1014 page = follow_huge_pud(vma, address, pudp, flags, ctx); 1015 spin_unlock(ptl); 1016 if (page) 1017 return page; 1018 return no_page_table(vma, flags, address); 1019 } 1020 if (unlikely(pud_bad(pud))) 1021 return no_page_table(vma, flags, address); 1022 1023 return follow_pmd_mask(vma, address, pudp, flags, ctx); 1024 } 1025 1026 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 1027 unsigned long address, pgd_t *pgdp, 1028 unsigned int flags, 1029 struct follow_page_context *ctx) 1030 { 1031 p4d_t *p4dp, p4d; 1032 1033 p4dp = p4d_offset(pgdp, address); 1034 p4d = READ_ONCE(*p4dp); 1035 BUILD_BUG_ON(p4d_leaf(p4d)); 1036 1037 if (!p4d_present(p4d) || p4d_bad(p4d)) 1038 return no_page_table(vma, flags, address); 1039 1040 return follow_pud_mask(vma, address, p4dp, flags, ctx); 1041 } 1042 1043 /** 1044 * follow_page_mask - look up a page descriptor from a user-virtual address 1045 * @vma: vm_area_struct mapping @address 1046 * @address: virtual address to look up 1047 * @flags: flags modifying lookup behaviour 1048 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 1049 * pointer to output page_mask 1050 * 1051 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 1052 * 1053 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 1054 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 1055 * 1056 * When getting an anonymous page and the caller has to trigger unsharing 1057 * of a shared anonymous page first, -EMLINK is returned. The caller should 1058 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only 1059 * relevant with FOLL_PIN and !FOLL_WRITE. 1060 * 1061 * On output, the @ctx->page_mask is set according to the size of the page. 1062 * 1063 * Return: the mapped (struct page *), %NULL if no mapping exists, or 1064 * an error pointer if there is a mapping to something not represented 1065 * by a page descriptor (see also vm_normal_page()). 1066 */ 1067 static struct page *follow_page_mask(struct vm_area_struct *vma, 1068 unsigned long address, unsigned int flags, 1069 struct follow_page_context *ctx) 1070 { 1071 pgd_t *pgd; 1072 struct mm_struct *mm = vma->vm_mm; 1073 struct page *page; 1074 1075 vma_pgtable_walk_begin(vma); 1076 1077 ctx->page_mask = 0; 1078 pgd = pgd_offset(mm, address); 1079 1080 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1081 page = no_page_table(vma, flags, address); 1082 else 1083 page = follow_p4d_mask(vma, address, pgd, flags, ctx); 1084 1085 vma_pgtable_walk_end(vma); 1086 1087 return page; 1088 } 1089 1090 static int get_gate_page(struct mm_struct *mm, unsigned long address, 1091 unsigned int gup_flags, struct vm_area_struct **vma, 1092 struct page **page) 1093 { 1094 pgd_t *pgd; 1095 p4d_t *p4d; 1096 pud_t *pud; 1097 pmd_t *pmd; 1098 pte_t *pte; 1099 pte_t entry; 1100 int ret = -EFAULT; 1101 1102 /* user gate pages are read-only */ 1103 if (gup_flags & FOLL_WRITE) 1104 return -EFAULT; 1105 pgd = pgd_offset(mm, address); 1106 if (pgd_none(*pgd)) 1107 return -EFAULT; 1108 p4d = p4d_offset(pgd, address); 1109 if (p4d_none(*p4d)) 1110 return -EFAULT; 1111 pud = pud_offset(p4d, address); 1112 if (pud_none(*pud)) 1113 return -EFAULT; 1114 pmd = pmd_offset(pud, address); 1115 if (!pmd_present(*pmd)) 1116 return -EFAULT; 1117 pte = pte_offset_map(pmd, address); 1118 if (!pte) 1119 return -EFAULT; 1120 entry = ptep_get(pte); 1121 if (pte_none(entry)) 1122 goto unmap; 1123 *vma = get_gate_vma(mm); 1124 if (!page) 1125 goto out; 1126 *page = vm_normal_page(*vma, address, entry); 1127 if (!*page) { 1128 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry))) 1129 goto unmap; 1130 *page = pte_page(entry); 1131 } 1132 ret = try_grab_folio(page_folio(*page), 1, gup_flags); 1133 if (unlikely(ret)) 1134 goto unmap; 1135 out: 1136 ret = 0; 1137 unmap: 1138 pte_unmap(pte); 1139 return ret; 1140 } 1141 1142 /* 1143 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not 1144 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set 1145 * to 0 and -EBUSY returned. 1146 */ 1147 static int faultin_page(struct vm_area_struct *vma, 1148 unsigned long address, unsigned int flags, bool unshare, 1149 int *locked) 1150 { 1151 unsigned int fault_flags = 0; 1152 vm_fault_t ret; 1153 1154 if (flags & FOLL_NOFAULT) 1155 return -EFAULT; 1156 if (flags & FOLL_WRITE) 1157 fault_flags |= FAULT_FLAG_WRITE; 1158 if (flags & FOLL_REMOTE) 1159 fault_flags |= FAULT_FLAG_REMOTE; 1160 if (flags & FOLL_UNLOCKABLE) { 1161 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1162 /* 1163 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set 1164 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE. 1165 * That's because some callers may not be prepared to 1166 * handle early exits caused by non-fatal signals. 1167 */ 1168 if (flags & FOLL_INTERRUPTIBLE) 1169 fault_flags |= FAULT_FLAG_INTERRUPTIBLE; 1170 } 1171 if (flags & FOLL_NOWAIT) 1172 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 1173 if (flags & FOLL_TRIED) { 1174 /* 1175 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 1176 * can co-exist 1177 */ 1178 fault_flags |= FAULT_FLAG_TRIED; 1179 } 1180 if (unshare) { 1181 fault_flags |= FAULT_FLAG_UNSHARE; 1182 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */ 1183 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE); 1184 } 1185 1186 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1187 1188 if (ret & VM_FAULT_COMPLETED) { 1189 /* 1190 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the 1191 * mmap lock in the page fault handler. Sanity check this. 1192 */ 1193 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT); 1194 *locked = 0; 1195 1196 /* 1197 * We should do the same as VM_FAULT_RETRY, but let's not 1198 * return -EBUSY since that's not reflecting the reality of 1199 * what has happened - we've just fully completed a page 1200 * fault, with the mmap lock released. Use -EAGAIN to show 1201 * that we want to take the mmap lock _again_. 1202 */ 1203 return -EAGAIN; 1204 } 1205 1206 if (ret & VM_FAULT_ERROR) { 1207 int err = vm_fault_to_errno(ret, flags); 1208 1209 if (err) 1210 return err; 1211 BUG(); 1212 } 1213 1214 if (ret & VM_FAULT_RETRY) { 1215 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 1216 *locked = 0; 1217 return -EBUSY; 1218 } 1219 1220 return 0; 1221 } 1222 1223 /* 1224 * Writing to file-backed mappings which require folio dirty tracking using GUP 1225 * is a fundamentally broken operation, as kernel write access to GUP mappings 1226 * do not adhere to the semantics expected by a file system. 1227 * 1228 * Consider the following scenario:- 1229 * 1230 * 1. A folio is written to via GUP which write-faults the memory, notifying 1231 * the file system and dirtying the folio. 1232 * 2. Later, writeback is triggered, resulting in the folio being cleaned and 1233 * the PTE being marked read-only. 1234 * 3. The GUP caller writes to the folio, as it is mapped read/write via the 1235 * direct mapping. 1236 * 4. The GUP caller, now done with the page, unpins it and sets it dirty 1237 * (though it does not have to). 1238 * 1239 * This results in both data being written to a folio without writenotify, and 1240 * the folio being dirtied unexpectedly (if the caller decides to do so). 1241 */ 1242 static bool writable_file_mapping_allowed(struct vm_area_struct *vma, 1243 unsigned long gup_flags) 1244 { 1245 /* 1246 * If we aren't pinning then no problematic write can occur. A long term 1247 * pin is the most egregious case so this is the case we disallow. 1248 */ 1249 if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) != 1250 (FOLL_PIN | FOLL_LONGTERM)) 1251 return true; 1252 1253 /* 1254 * If the VMA does not require dirty tracking then no problematic write 1255 * can occur either. 1256 */ 1257 return !vma_needs_dirty_tracking(vma); 1258 } 1259 1260 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 1261 { 1262 vm_flags_t vm_flags = vma->vm_flags; 1263 int write = (gup_flags & FOLL_WRITE); 1264 int foreign = (gup_flags & FOLL_REMOTE); 1265 bool vma_anon = vma_is_anonymous(vma); 1266 1267 if (vm_flags & (VM_IO | VM_PFNMAP)) 1268 return -EFAULT; 1269 1270 if ((gup_flags & FOLL_ANON) && !vma_anon) 1271 return -EFAULT; 1272 1273 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) 1274 return -EOPNOTSUPP; 1275 1276 if ((gup_flags & FOLL_SPLIT_PMD) && is_vm_hugetlb_page(vma)) 1277 return -EOPNOTSUPP; 1278 1279 if (vma_is_secretmem(vma)) 1280 return -EFAULT; 1281 1282 if (write) { 1283 if (!vma_anon && 1284 !writable_file_mapping_allowed(vma, gup_flags)) 1285 return -EFAULT; 1286 1287 if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) { 1288 if (!(gup_flags & FOLL_FORCE)) 1289 return -EFAULT; 1290 /* 1291 * We used to let the write,force case do COW in a 1292 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 1293 * set a breakpoint in a read-only mapping of an 1294 * executable, without corrupting the file (yet only 1295 * when that file had been opened for writing!). 1296 * Anon pages in shared mappings are surprising: now 1297 * just reject it. 1298 */ 1299 if (!is_cow_mapping(vm_flags)) 1300 return -EFAULT; 1301 } 1302 } else if (!(vm_flags & VM_READ)) { 1303 if (!(gup_flags & FOLL_FORCE)) 1304 return -EFAULT; 1305 /* 1306 * Is there actually any vma we can reach here which does not 1307 * have VM_MAYREAD set? 1308 */ 1309 if (!(vm_flags & VM_MAYREAD)) 1310 return -EFAULT; 1311 } 1312 /* 1313 * gups are always data accesses, not instruction 1314 * fetches, so execute=false here 1315 */ 1316 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1317 return -EFAULT; 1318 return 0; 1319 } 1320 1321 /* 1322 * This is "vma_lookup()", but with a warning if we would have 1323 * historically expanded the stack in the GUP code. 1324 */ 1325 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm, 1326 unsigned long addr) 1327 { 1328 #ifdef CONFIG_STACK_GROWSUP 1329 return vma_lookup(mm, addr); 1330 #else 1331 static volatile unsigned long next_warn; 1332 struct vm_area_struct *vma; 1333 unsigned long now, next; 1334 1335 vma = find_vma(mm, addr); 1336 if (!vma || (addr >= vma->vm_start)) 1337 return vma; 1338 1339 /* Only warn for half-way relevant accesses */ 1340 if (!(vma->vm_flags & VM_GROWSDOWN)) 1341 return NULL; 1342 if (vma->vm_start - addr > 65536) 1343 return NULL; 1344 1345 /* Let's not warn more than once an hour.. */ 1346 now = jiffies; next = next_warn; 1347 if (next && time_before(now, next)) 1348 return NULL; 1349 next_warn = now + 60*60*HZ; 1350 1351 /* Let people know things may have changed. */ 1352 pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n", 1353 current->comm, task_pid_nr(current), 1354 vma->vm_start, vma->vm_end, addr); 1355 dump_stack(); 1356 return NULL; 1357 #endif 1358 } 1359 1360 /** 1361 * __get_user_pages() - pin user pages in memory 1362 * @mm: mm_struct of target mm 1363 * @start: starting user address 1364 * @nr_pages: number of pages from start to pin 1365 * @gup_flags: flags modifying pin behaviour 1366 * @pages: array that receives pointers to the pages pinned. 1367 * Should be at least nr_pages long. Or NULL, if caller 1368 * only intends to ensure the pages are faulted in. 1369 * @locked: whether we're still with the mmap_lock held 1370 * 1371 * Returns either number of pages pinned (which may be less than the 1372 * number requested), or an error. Details about the return value: 1373 * 1374 * -- If nr_pages is 0, returns 0. 1375 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1376 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1377 * pages pinned. Again, this may be less than nr_pages. 1378 * -- 0 return value is possible when the fault would need to be retried. 1379 * 1380 * The caller is responsible for releasing returned @pages, via put_page(). 1381 * 1382 * Must be called with mmap_lock held. It may be released. See below. 1383 * 1384 * __get_user_pages walks a process's page tables and takes a reference to 1385 * each struct page that each user address corresponds to at a given 1386 * instant. That is, it takes the page that would be accessed if a user 1387 * thread accesses the given user virtual address at that instant. 1388 * 1389 * This does not guarantee that the page exists in the user mappings when 1390 * __get_user_pages returns, and there may even be a completely different 1391 * page there in some cases (eg. if mmapped pagecache has been invalidated 1392 * and subsequently re-faulted). However it does guarantee that the page 1393 * won't be freed completely. And mostly callers simply care that the page 1394 * contains data that was valid *at some point in time*. Typically, an IO 1395 * or similar operation cannot guarantee anything stronger anyway because 1396 * locks can't be held over the syscall boundary. 1397 * 1398 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1399 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1400 * appropriate) must be called after the page is finished with, and 1401 * before put_page is called. 1402 * 1403 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may 1404 * be released. If this happens *@locked will be set to 0 on return. 1405 * 1406 * A caller using such a combination of @gup_flags must therefore hold the 1407 * mmap_lock for reading only, and recognize when it's been released. Otherwise, 1408 * it must be held for either reading or writing and will not be released. 1409 * 1410 * In most cases, get_user_pages or get_user_pages_fast should be used 1411 * instead of __get_user_pages. __get_user_pages should be used only if 1412 * you need some special @gup_flags. 1413 */ 1414 static long __get_user_pages(struct mm_struct *mm, 1415 unsigned long start, unsigned long nr_pages, 1416 unsigned int gup_flags, struct page **pages, 1417 int *locked) 1418 { 1419 long ret = 0, i = 0; 1420 struct vm_area_struct *vma = NULL; 1421 struct follow_page_context ctx = { NULL }; 1422 1423 if (!nr_pages) 1424 return 0; 1425 1426 start = untagged_addr_remote(mm, start); 1427 1428 VM_WARN_ON_ONCE(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1429 1430 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 1431 VM_WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) == 1432 (FOLL_PIN | FOLL_GET)); 1433 1434 do { 1435 struct page *page; 1436 unsigned int page_increm; 1437 1438 /* first iteration or cross vma bound */ 1439 if (!vma || start >= vma->vm_end) { 1440 /* 1441 * MADV_POPULATE_(READ|WRITE) wants to handle VMA 1442 * lookups+error reporting differently. 1443 */ 1444 if (gup_flags & FOLL_MADV_POPULATE) { 1445 vma = vma_lookup(mm, start); 1446 if (!vma) { 1447 ret = -ENOMEM; 1448 goto out; 1449 } 1450 if (check_vma_flags(vma, gup_flags)) { 1451 ret = -EINVAL; 1452 goto out; 1453 } 1454 goto retry; 1455 } 1456 vma = gup_vma_lookup(mm, start); 1457 if (!vma && in_gate_area(mm, start)) { 1458 ret = get_gate_page(mm, start & PAGE_MASK, 1459 gup_flags, &vma, 1460 pages ? &page : NULL); 1461 if (ret) 1462 goto out; 1463 ctx.page_mask = 0; 1464 goto next_page; 1465 } 1466 1467 if (!vma) { 1468 ret = -EFAULT; 1469 goto out; 1470 } 1471 ret = check_vma_flags(vma, gup_flags); 1472 if (ret) 1473 goto out; 1474 } 1475 retry: 1476 /* 1477 * If we have a pending SIGKILL, don't keep faulting pages and 1478 * potentially allocating memory. 1479 */ 1480 if (fatal_signal_pending(current)) { 1481 ret = -EINTR; 1482 goto out; 1483 } 1484 cond_resched(); 1485 1486 page = follow_page_mask(vma, start, gup_flags, &ctx); 1487 if (!page || PTR_ERR(page) == -EMLINK) { 1488 ret = faultin_page(vma, start, gup_flags, 1489 PTR_ERR(page) == -EMLINK, locked); 1490 switch (ret) { 1491 case 0: 1492 goto retry; 1493 case -EBUSY: 1494 case -EAGAIN: 1495 ret = 0; 1496 fallthrough; 1497 case -EFAULT: 1498 case -ENOMEM: 1499 case -EHWPOISON: 1500 goto out; 1501 } 1502 BUG(); 1503 } else if (PTR_ERR(page) == -EEXIST) { 1504 /* 1505 * Proper page table entry exists, but no corresponding 1506 * struct page. If the caller expects **pages to be 1507 * filled in, bail out now, because that can't be done 1508 * for this page. 1509 */ 1510 if (pages) { 1511 ret = PTR_ERR(page); 1512 goto out; 1513 } 1514 } else if (IS_ERR(page)) { 1515 ret = PTR_ERR(page); 1516 goto out; 1517 } 1518 next_page: 1519 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1520 if (page_increm > nr_pages) 1521 page_increm = nr_pages; 1522 1523 if (pages) { 1524 struct page *subpage; 1525 unsigned int j; 1526 1527 /* 1528 * This must be a large folio (and doesn't need to 1529 * be the whole folio; it can be part of it), do 1530 * the refcount work for all the subpages too. 1531 * 1532 * NOTE: here the page may not be the head page 1533 * e.g. when start addr is not thp-size aligned. 1534 * try_grab_folio() should have taken care of tail 1535 * pages. 1536 */ 1537 if (page_increm > 1) { 1538 struct folio *folio = page_folio(page); 1539 1540 /* 1541 * Since we already hold refcount on the 1542 * large folio, this should never fail. 1543 */ 1544 if (try_grab_folio(folio, page_increm - 1, 1545 gup_flags)) { 1546 /* 1547 * Release the 1st page ref if the 1548 * folio is problematic, fail hard. 1549 */ 1550 gup_put_folio(folio, 1, gup_flags); 1551 ret = -EFAULT; 1552 goto out; 1553 } 1554 } 1555 1556 for (j = 0; j < page_increm; j++) { 1557 subpage = nth_page(page, j); 1558 pages[i + j] = subpage; 1559 flush_anon_page(vma, subpage, start + j * PAGE_SIZE); 1560 flush_dcache_page(subpage); 1561 } 1562 } 1563 1564 i += page_increm; 1565 start += page_increm * PAGE_SIZE; 1566 nr_pages -= page_increm; 1567 } while (nr_pages); 1568 out: 1569 if (ctx.pgmap) 1570 put_dev_pagemap(ctx.pgmap); 1571 return i ? i : ret; 1572 } 1573 1574 static bool vma_permits_fault(struct vm_area_struct *vma, 1575 unsigned int fault_flags) 1576 { 1577 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1578 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1579 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1580 1581 if (!(vm_flags & vma->vm_flags)) 1582 return false; 1583 1584 /* 1585 * The architecture might have a hardware protection 1586 * mechanism other than read/write that can deny access. 1587 * 1588 * gup always represents data access, not instruction 1589 * fetches, so execute=false here: 1590 */ 1591 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1592 return false; 1593 1594 return true; 1595 } 1596 1597 /** 1598 * fixup_user_fault() - manually resolve a user page fault 1599 * @mm: mm_struct of target mm 1600 * @address: user address 1601 * @fault_flags:flags to pass down to handle_mm_fault() 1602 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1603 * does not allow retry. If NULL, the caller must guarantee 1604 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1605 * 1606 * This is meant to be called in the specific scenario where for locking reasons 1607 * we try to access user memory in atomic context (within a pagefault_disable() 1608 * section), this returns -EFAULT, and we want to resolve the user fault before 1609 * trying again. 1610 * 1611 * Typically this is meant to be used by the futex code. 1612 * 1613 * The main difference with get_user_pages() is that this function will 1614 * unconditionally call handle_mm_fault() which will in turn perform all the 1615 * necessary SW fixup of the dirty and young bits in the PTE, while 1616 * get_user_pages() only guarantees to update these in the struct page. 1617 * 1618 * This is important for some architectures where those bits also gate the 1619 * access permission to the page because they are maintained in software. On 1620 * such architectures, gup() will not be enough to make a subsequent access 1621 * succeed. 1622 * 1623 * This function will not return with an unlocked mmap_lock. So it has not the 1624 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1625 */ 1626 int fixup_user_fault(struct mm_struct *mm, 1627 unsigned long address, unsigned int fault_flags, 1628 bool *unlocked) 1629 { 1630 struct vm_area_struct *vma; 1631 vm_fault_t ret; 1632 1633 address = untagged_addr_remote(mm, address); 1634 1635 if (unlocked) 1636 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1637 1638 retry: 1639 vma = gup_vma_lookup(mm, address); 1640 if (!vma) 1641 return -EFAULT; 1642 1643 if (!vma_permits_fault(vma, fault_flags)) 1644 return -EFAULT; 1645 1646 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1647 fatal_signal_pending(current)) 1648 return -EINTR; 1649 1650 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1651 1652 if (ret & VM_FAULT_COMPLETED) { 1653 /* 1654 * NOTE: it's a pity that we need to retake the lock here 1655 * to pair with the unlock() in the callers. Ideally we 1656 * could tell the callers so they do not need to unlock. 1657 */ 1658 mmap_read_lock(mm); 1659 *unlocked = true; 1660 return 0; 1661 } 1662 1663 if (ret & VM_FAULT_ERROR) { 1664 int err = vm_fault_to_errno(ret, 0); 1665 1666 if (err) 1667 return err; 1668 BUG(); 1669 } 1670 1671 if (ret & VM_FAULT_RETRY) { 1672 mmap_read_lock(mm); 1673 *unlocked = true; 1674 fault_flags |= FAULT_FLAG_TRIED; 1675 goto retry; 1676 } 1677 1678 return 0; 1679 } 1680 EXPORT_SYMBOL_GPL(fixup_user_fault); 1681 1682 /* 1683 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is 1684 * specified, it'll also respond to generic signals. The caller of GUP 1685 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption. 1686 */ 1687 static bool gup_signal_pending(unsigned int flags) 1688 { 1689 if (fatal_signal_pending(current)) 1690 return true; 1691 1692 if (!(flags & FOLL_INTERRUPTIBLE)) 1693 return false; 1694 1695 return signal_pending(current); 1696 } 1697 1698 /* 1699 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by 1700 * the caller. This function may drop the mmap_lock. If it does so, then it will 1701 * set (*locked = 0). 1702 * 1703 * (*locked == 0) means that the caller expects this function to acquire and 1704 * drop the mmap_lock. Therefore, the value of *locked will still be zero when 1705 * the function returns, even though it may have changed temporarily during 1706 * function execution. 1707 * 1708 * Please note that this function, unlike __get_user_pages(), will not return 0 1709 * for nr_pages > 0, unless FOLL_NOWAIT is used. 1710 */ 1711 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1712 unsigned long start, 1713 unsigned long nr_pages, 1714 struct page **pages, 1715 int *locked, 1716 unsigned int flags) 1717 { 1718 long ret, pages_done; 1719 bool must_unlock = false; 1720 1721 if (!nr_pages) 1722 return 0; 1723 1724 /* 1725 * The internal caller expects GUP to manage the lock internally and the 1726 * lock must be released when this returns. 1727 */ 1728 if (!*locked) { 1729 if (mmap_read_lock_killable(mm)) 1730 return -EAGAIN; 1731 must_unlock = true; 1732 *locked = 1; 1733 } 1734 else 1735 mmap_assert_locked(mm); 1736 1737 if (flags & FOLL_PIN) 1738 mm_set_has_pinned_flag(&mm->flags); 1739 1740 /* 1741 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1742 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1743 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1744 * for FOLL_GET, not for the newer FOLL_PIN. 1745 * 1746 * FOLL_PIN always expects pages to be non-null, but no need to assert 1747 * that here, as any failures will be obvious enough. 1748 */ 1749 if (pages && !(flags & FOLL_PIN)) 1750 flags |= FOLL_GET; 1751 1752 pages_done = 0; 1753 for (;;) { 1754 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1755 locked); 1756 if (!(flags & FOLL_UNLOCKABLE)) { 1757 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1758 pages_done = ret; 1759 break; 1760 } 1761 1762 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */ 1763 if (!*locked) { 1764 BUG_ON(ret < 0); 1765 BUG_ON(ret >= nr_pages); 1766 } 1767 1768 if (ret > 0) { 1769 nr_pages -= ret; 1770 pages_done += ret; 1771 if (!nr_pages) 1772 break; 1773 } 1774 if (*locked) { 1775 /* 1776 * VM_FAULT_RETRY didn't trigger or it was a 1777 * FOLL_NOWAIT. 1778 */ 1779 if (!pages_done) 1780 pages_done = ret; 1781 break; 1782 } 1783 /* 1784 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1785 * For the prefault case (!pages) we only update counts. 1786 */ 1787 if (likely(pages)) 1788 pages += ret; 1789 start += ret << PAGE_SHIFT; 1790 1791 /* The lock was temporarily dropped, so we must unlock later */ 1792 must_unlock = true; 1793 1794 retry: 1795 /* 1796 * Repeat on the address that fired VM_FAULT_RETRY 1797 * with both FAULT_FLAG_ALLOW_RETRY and 1798 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1799 * by fatal signals of even common signals, depending on 1800 * the caller's request. So we need to check it before we 1801 * start trying again otherwise it can loop forever. 1802 */ 1803 if (gup_signal_pending(flags)) { 1804 if (!pages_done) 1805 pages_done = -EINTR; 1806 break; 1807 } 1808 1809 ret = mmap_read_lock_killable(mm); 1810 if (ret) { 1811 BUG_ON(ret > 0); 1812 if (!pages_done) 1813 pages_done = ret; 1814 break; 1815 } 1816 1817 *locked = 1; 1818 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1819 pages, locked); 1820 if (!*locked) { 1821 /* Continue to retry until we succeeded */ 1822 BUG_ON(ret != 0); 1823 goto retry; 1824 } 1825 if (ret != 1) { 1826 BUG_ON(ret > 1); 1827 if (!pages_done) 1828 pages_done = ret; 1829 break; 1830 } 1831 nr_pages--; 1832 pages_done++; 1833 if (!nr_pages) 1834 break; 1835 if (likely(pages)) 1836 pages++; 1837 start += PAGE_SIZE; 1838 } 1839 if (must_unlock && *locked) { 1840 /* 1841 * We either temporarily dropped the lock, or the caller 1842 * requested that we both acquire and drop the lock. Either way, 1843 * we must now unlock, and notify the caller of that state. 1844 */ 1845 mmap_read_unlock(mm); 1846 *locked = 0; 1847 } 1848 1849 /* 1850 * Failing to pin anything implies something has gone wrong (except when 1851 * FOLL_NOWAIT is specified). 1852 */ 1853 if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT))) 1854 return -EFAULT; 1855 1856 return pages_done; 1857 } 1858 1859 /** 1860 * populate_vma_page_range() - populate a range of pages in the vma. 1861 * @vma: target vma 1862 * @start: start address 1863 * @end: end address 1864 * @locked: whether the mmap_lock is still held 1865 * 1866 * This takes care of mlocking the pages too if VM_LOCKED is set. 1867 * 1868 * Return either number of pages pinned in the vma, or a negative error 1869 * code on error. 1870 * 1871 * vma->vm_mm->mmap_lock must be held. 1872 * 1873 * If @locked is NULL, it may be held for read or write and will 1874 * be unperturbed. 1875 * 1876 * If @locked is non-NULL, it must held for read only and may be 1877 * released. If it's released, *@locked will be set to 0. 1878 */ 1879 long populate_vma_page_range(struct vm_area_struct *vma, 1880 unsigned long start, unsigned long end, int *locked) 1881 { 1882 struct mm_struct *mm = vma->vm_mm; 1883 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1884 int local_locked = 1; 1885 int gup_flags; 1886 long ret; 1887 1888 VM_BUG_ON(!PAGE_ALIGNED(start)); 1889 VM_BUG_ON(!PAGE_ALIGNED(end)); 1890 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1891 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1892 mmap_assert_locked(mm); 1893 1894 /* 1895 * Rightly or wrongly, the VM_LOCKONFAULT case has never used 1896 * faultin_page() to break COW, so it has no work to do here. 1897 */ 1898 if (vma->vm_flags & VM_LOCKONFAULT) 1899 return nr_pages; 1900 1901 /* ... similarly, we've never faulted in PROT_NONE pages */ 1902 if (!vma_is_accessible(vma)) 1903 return -EFAULT; 1904 1905 gup_flags = FOLL_TOUCH; 1906 /* 1907 * We want to touch writable mappings with a write fault in order 1908 * to break COW, except for shared mappings because these don't COW 1909 * and we would not want to dirty them for nothing. 1910 * 1911 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not 1912 * readable (ie write-only or executable). 1913 */ 1914 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1915 gup_flags |= FOLL_WRITE; 1916 else 1917 gup_flags |= FOLL_FORCE; 1918 1919 if (locked) 1920 gup_flags |= FOLL_UNLOCKABLE; 1921 1922 /* 1923 * We made sure addr is within a VMA, so the following will 1924 * not result in a stack expansion that recurses back here. 1925 */ 1926 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1927 NULL, locked ? locked : &local_locked); 1928 lru_add_drain(); 1929 return ret; 1930 } 1931 1932 /* 1933 * faultin_page_range() - populate (prefault) page tables inside the 1934 * given range readable/writable 1935 * 1936 * This takes care of mlocking the pages, too, if VM_LOCKED is set. 1937 * 1938 * @mm: the mm to populate page tables in 1939 * @start: start address 1940 * @end: end address 1941 * @write: whether to prefault readable or writable 1942 * @locked: whether the mmap_lock is still held 1943 * 1944 * Returns either number of processed pages in the MM, or a negative error 1945 * code on error (see __get_user_pages()). Note that this function reports 1946 * errors related to VMAs, such as incompatible mappings, as expected by 1947 * MADV_POPULATE_(READ|WRITE). 1948 * 1949 * The range must be page-aligned. 1950 * 1951 * mm->mmap_lock must be held. If it's released, *@locked will be set to 0. 1952 */ 1953 long faultin_page_range(struct mm_struct *mm, unsigned long start, 1954 unsigned long end, bool write, int *locked) 1955 { 1956 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1957 int gup_flags; 1958 long ret; 1959 1960 VM_BUG_ON(!PAGE_ALIGNED(start)); 1961 VM_BUG_ON(!PAGE_ALIGNED(end)); 1962 mmap_assert_locked(mm); 1963 1964 /* 1965 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark 1966 * the page dirty with FOLL_WRITE -- which doesn't make a 1967 * difference with !FOLL_FORCE, because the page is writable 1968 * in the page table. 1969 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit 1970 * a poisoned page. 1971 * !FOLL_FORCE: Require proper access permissions. 1972 */ 1973 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE | 1974 FOLL_MADV_POPULATE; 1975 if (write) 1976 gup_flags |= FOLL_WRITE; 1977 1978 ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked, 1979 gup_flags); 1980 lru_add_drain(); 1981 return ret; 1982 } 1983 1984 /* 1985 * __mm_populate - populate and/or mlock pages within a range of address space. 1986 * 1987 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1988 * flags. VMAs must be already marked with the desired vm_flags, and 1989 * mmap_lock must not be held. 1990 */ 1991 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1992 { 1993 struct mm_struct *mm = current->mm; 1994 unsigned long end, nstart, nend; 1995 struct vm_area_struct *vma = NULL; 1996 int locked = 0; 1997 long ret = 0; 1998 1999 end = start + len; 2000 2001 for (nstart = start; nstart < end; nstart = nend) { 2002 /* 2003 * We want to fault in pages for [nstart; end) address range. 2004 * Find first corresponding VMA. 2005 */ 2006 if (!locked) { 2007 locked = 1; 2008 mmap_read_lock(mm); 2009 vma = find_vma_intersection(mm, nstart, end); 2010 } else if (nstart >= vma->vm_end) 2011 vma = find_vma_intersection(mm, vma->vm_end, end); 2012 2013 if (!vma) 2014 break; 2015 /* 2016 * Set [nstart; nend) to intersection of desired address 2017 * range with the first VMA. Also, skip undesirable VMA types. 2018 */ 2019 nend = min(end, vma->vm_end); 2020 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 2021 continue; 2022 if (nstart < vma->vm_start) 2023 nstart = vma->vm_start; 2024 /* 2025 * Now fault in a range of pages. populate_vma_page_range() 2026 * double checks the vma flags, so that it won't mlock pages 2027 * if the vma was already munlocked. 2028 */ 2029 ret = populate_vma_page_range(vma, nstart, nend, &locked); 2030 if (ret < 0) { 2031 if (ignore_errors) { 2032 ret = 0; 2033 continue; /* continue at next VMA */ 2034 } 2035 break; 2036 } 2037 nend = nstart + ret * PAGE_SIZE; 2038 ret = 0; 2039 } 2040 if (locked) 2041 mmap_read_unlock(mm); 2042 return ret; /* 0 or negative error code */ 2043 } 2044 #else /* CONFIG_MMU */ 2045 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 2046 unsigned long nr_pages, struct page **pages, 2047 int *locked, unsigned int foll_flags) 2048 { 2049 struct vm_area_struct *vma; 2050 bool must_unlock = false; 2051 unsigned long vm_flags; 2052 long i; 2053 2054 if (!nr_pages) 2055 return 0; 2056 2057 /* 2058 * The internal caller expects GUP to manage the lock internally and the 2059 * lock must be released when this returns. 2060 */ 2061 if (!*locked) { 2062 if (mmap_read_lock_killable(mm)) 2063 return -EAGAIN; 2064 must_unlock = true; 2065 *locked = 1; 2066 } 2067 2068 /* calculate required read or write permissions. 2069 * If FOLL_FORCE is set, we only require the "MAY" flags. 2070 */ 2071 vm_flags = (foll_flags & FOLL_WRITE) ? 2072 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 2073 vm_flags &= (foll_flags & FOLL_FORCE) ? 2074 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 2075 2076 for (i = 0; i < nr_pages; i++) { 2077 vma = find_vma(mm, start); 2078 if (!vma) 2079 break; 2080 2081 /* protect what we can, including chardevs */ 2082 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 2083 !(vm_flags & vma->vm_flags)) 2084 break; 2085 2086 if (pages) { 2087 pages[i] = virt_to_page((void *)start); 2088 if (pages[i]) 2089 get_page(pages[i]); 2090 } 2091 2092 start = (start + PAGE_SIZE) & PAGE_MASK; 2093 } 2094 2095 if (must_unlock && *locked) { 2096 mmap_read_unlock(mm); 2097 *locked = 0; 2098 } 2099 2100 return i ? : -EFAULT; 2101 } 2102 #endif /* !CONFIG_MMU */ 2103 2104 /** 2105 * fault_in_writeable - fault in userspace address range for writing 2106 * @uaddr: start of address range 2107 * @size: size of address range 2108 * 2109 * Returns the number of bytes not faulted in (like copy_to_user() and 2110 * copy_from_user()). 2111 */ 2112 size_t fault_in_writeable(char __user *uaddr, size_t size) 2113 { 2114 const unsigned long start = (unsigned long)uaddr; 2115 const unsigned long end = start + size; 2116 unsigned long cur; 2117 2118 if (unlikely(size == 0)) 2119 return 0; 2120 if (!user_write_access_begin(uaddr, size)) 2121 return size; 2122 2123 /* Stop once we overflow to 0. */ 2124 for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE)) 2125 unsafe_put_user(0, (char __user *)cur, out); 2126 out: 2127 user_write_access_end(); 2128 if (size > cur - start) 2129 return size - (cur - start); 2130 return 0; 2131 } 2132 EXPORT_SYMBOL(fault_in_writeable); 2133 2134 /** 2135 * fault_in_subpage_writeable - fault in an address range for writing 2136 * @uaddr: start of address range 2137 * @size: size of address range 2138 * 2139 * Fault in a user address range for writing while checking for permissions at 2140 * sub-page granularity (e.g. arm64 MTE). This function should be used when 2141 * the caller cannot guarantee forward progress of a copy_to_user() loop. 2142 * 2143 * Returns the number of bytes not faulted in (like copy_to_user() and 2144 * copy_from_user()). 2145 */ 2146 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size) 2147 { 2148 size_t faulted_in; 2149 2150 /* 2151 * Attempt faulting in at page granularity first for page table 2152 * permission checking. The arch-specific probe_subpage_writeable() 2153 * functions may not check for this. 2154 */ 2155 faulted_in = size - fault_in_writeable(uaddr, size); 2156 if (faulted_in) 2157 faulted_in -= probe_subpage_writeable(uaddr, faulted_in); 2158 2159 return size - faulted_in; 2160 } 2161 EXPORT_SYMBOL(fault_in_subpage_writeable); 2162 2163 /* 2164 * fault_in_safe_writeable - fault in an address range for writing 2165 * @uaddr: start of address range 2166 * @size: length of address range 2167 * 2168 * Faults in an address range for writing. This is primarily useful when we 2169 * already know that some or all of the pages in the address range aren't in 2170 * memory. 2171 * 2172 * Unlike fault_in_writeable(), this function is non-destructive. 2173 * 2174 * Note that we don't pin or otherwise hold the pages referenced that we fault 2175 * in. There's no guarantee that they'll stay in memory for any duration of 2176 * time. 2177 * 2178 * Returns the number of bytes not faulted in, like copy_to_user() and 2179 * copy_from_user(). 2180 */ 2181 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) 2182 { 2183 const unsigned long start = (unsigned long)uaddr; 2184 const unsigned long end = start + size; 2185 unsigned long cur; 2186 struct mm_struct *mm = current->mm; 2187 bool unlocked = false; 2188 2189 if (unlikely(size == 0)) 2190 return 0; 2191 2192 mmap_read_lock(mm); 2193 /* Stop once we overflow to 0. */ 2194 for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE)) 2195 if (fixup_user_fault(mm, cur, FAULT_FLAG_WRITE, &unlocked)) 2196 break; 2197 mmap_read_unlock(mm); 2198 2199 if (size > cur - start) 2200 return size - (cur - start); 2201 return 0; 2202 } 2203 EXPORT_SYMBOL(fault_in_safe_writeable); 2204 2205 /** 2206 * fault_in_readable - fault in userspace address range for reading 2207 * @uaddr: start of user address range 2208 * @size: size of user address range 2209 * 2210 * Returns the number of bytes not faulted in (like copy_to_user() and 2211 * copy_from_user()). 2212 */ 2213 size_t fault_in_readable(const char __user *uaddr, size_t size) 2214 { 2215 const unsigned long start = (unsigned long)uaddr; 2216 const unsigned long end = start + size; 2217 unsigned long cur; 2218 volatile char c; 2219 2220 if (unlikely(size == 0)) 2221 return 0; 2222 if (!user_read_access_begin(uaddr, size)) 2223 return size; 2224 2225 /* Stop once we overflow to 0. */ 2226 for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE)) 2227 unsafe_get_user(c, (const char __user *)cur, out); 2228 out: 2229 user_read_access_end(); 2230 (void)c; 2231 if (size > cur - start) 2232 return size - (cur - start); 2233 return 0; 2234 } 2235 EXPORT_SYMBOL(fault_in_readable); 2236 2237 /** 2238 * get_dump_page() - pin user page in memory while writing it to core dump 2239 * @addr: user address 2240 * @locked: a pointer to an int denoting whether the mmap sem is held 2241 * 2242 * Returns struct page pointer of user page pinned for dump, 2243 * to be freed afterwards by put_page(). 2244 * 2245 * Returns NULL on any kind of failure - a hole must then be inserted into 2246 * the corefile, to preserve alignment with its headers; and also returns 2247 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 2248 * allowing a hole to be left in the corefile to save disk space. 2249 * 2250 * Called without mmap_lock (takes and releases the mmap_lock by itself). 2251 */ 2252 #ifdef CONFIG_ELF_CORE 2253 struct page *get_dump_page(unsigned long addr, int *locked) 2254 { 2255 struct page *page; 2256 int ret; 2257 2258 ret = __get_user_pages_locked(current->mm, addr, 1, &page, locked, 2259 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 2260 return (ret == 1) ? page : NULL; 2261 } 2262 #endif /* CONFIG_ELF_CORE */ 2263 2264 #ifdef CONFIG_MIGRATION 2265 2266 /* 2267 * An array of either pages or folios ("pofs"). Although it may seem tempting to 2268 * avoid this complication, by simply interpreting a list of folios as a list of 2269 * pages, that approach won't work in the longer term, because eventually the 2270 * layouts of struct page and struct folio will become completely different. 2271 * Furthermore, this pof approach avoids excessive page_folio() calls. 2272 */ 2273 struct pages_or_folios { 2274 union { 2275 struct page **pages; 2276 struct folio **folios; 2277 void **entries; 2278 }; 2279 bool has_folios; 2280 long nr_entries; 2281 }; 2282 2283 static struct folio *pofs_get_folio(struct pages_or_folios *pofs, long i) 2284 { 2285 if (pofs->has_folios) 2286 return pofs->folios[i]; 2287 return page_folio(pofs->pages[i]); 2288 } 2289 2290 static void pofs_clear_entry(struct pages_or_folios *pofs, long i) 2291 { 2292 pofs->entries[i] = NULL; 2293 } 2294 2295 static void pofs_unpin(struct pages_or_folios *pofs) 2296 { 2297 if (pofs->has_folios) 2298 unpin_folios(pofs->folios, pofs->nr_entries); 2299 else 2300 unpin_user_pages(pofs->pages, pofs->nr_entries); 2301 } 2302 2303 /* 2304 * Returns the number of collected folios. Return value is always >= 0. 2305 */ 2306 static void collect_longterm_unpinnable_folios( 2307 struct list_head *movable_folio_list, 2308 struct pages_or_folios *pofs) 2309 { 2310 struct folio *prev_folio = NULL; 2311 bool drain_allow = true; 2312 unsigned long i; 2313 2314 for (i = 0; i < pofs->nr_entries; i++) { 2315 struct folio *folio = pofs_get_folio(pofs, i); 2316 2317 if (folio == prev_folio) 2318 continue; 2319 prev_folio = folio; 2320 2321 if (folio_is_longterm_pinnable(folio)) 2322 continue; 2323 2324 if (folio_is_device_coherent(folio)) 2325 continue; 2326 2327 if (folio_test_hugetlb(folio)) { 2328 folio_isolate_hugetlb(folio, movable_folio_list); 2329 continue; 2330 } 2331 2332 if (!folio_test_lru(folio) && drain_allow) { 2333 lru_add_drain_all(); 2334 drain_allow = false; 2335 } 2336 2337 if (!folio_isolate_lru(folio)) 2338 continue; 2339 2340 list_add_tail(&folio->lru, movable_folio_list); 2341 node_stat_mod_folio(folio, 2342 NR_ISOLATED_ANON + folio_is_file_lru(folio), 2343 folio_nr_pages(folio)); 2344 } 2345 } 2346 2347 /* 2348 * Unpins all folios and migrates device coherent folios and movable_folio_list. 2349 * Returns -EAGAIN if all folios were successfully migrated or -errno for 2350 * failure (or partial success). 2351 */ 2352 static int 2353 migrate_longterm_unpinnable_folios(struct list_head *movable_folio_list, 2354 struct pages_or_folios *pofs) 2355 { 2356 int ret; 2357 unsigned long i; 2358 2359 for (i = 0; i < pofs->nr_entries; i++) { 2360 struct folio *folio = pofs_get_folio(pofs, i); 2361 2362 if (folio_is_device_coherent(folio)) { 2363 /* 2364 * Migration will fail if the folio is pinned, so 2365 * convert the pin on the source folio to a normal 2366 * reference. 2367 */ 2368 pofs_clear_entry(pofs, i); 2369 folio_get(folio); 2370 gup_put_folio(folio, 1, FOLL_PIN); 2371 2372 if (migrate_device_coherent_folio(folio)) { 2373 ret = -EBUSY; 2374 goto err; 2375 } 2376 2377 continue; 2378 } 2379 2380 /* 2381 * We can't migrate folios with unexpected references, so drop 2382 * the reference obtained by __get_user_pages_locked(). 2383 * Migrating folios have been added to movable_folio_list after 2384 * calling folio_isolate_lru() which takes a reference so the 2385 * folio won't be freed if it's migrating. 2386 */ 2387 unpin_folio(folio); 2388 pofs_clear_entry(pofs, i); 2389 } 2390 2391 if (!list_empty(movable_folio_list)) { 2392 struct migration_target_control mtc = { 2393 .nid = NUMA_NO_NODE, 2394 .gfp_mask = GFP_USER | __GFP_NOWARN, 2395 .reason = MR_LONGTERM_PIN, 2396 }; 2397 2398 if (migrate_pages(movable_folio_list, alloc_migration_target, 2399 NULL, (unsigned long)&mtc, MIGRATE_SYNC, 2400 MR_LONGTERM_PIN, NULL)) { 2401 ret = -ENOMEM; 2402 goto err; 2403 } 2404 } 2405 2406 putback_movable_pages(movable_folio_list); 2407 2408 return -EAGAIN; 2409 2410 err: 2411 pofs_unpin(pofs); 2412 putback_movable_pages(movable_folio_list); 2413 2414 return ret; 2415 } 2416 2417 static long 2418 check_and_migrate_movable_pages_or_folios(struct pages_or_folios *pofs) 2419 { 2420 LIST_HEAD(movable_folio_list); 2421 2422 collect_longterm_unpinnable_folios(&movable_folio_list, pofs); 2423 if (list_empty(&movable_folio_list)) 2424 return 0; 2425 2426 return migrate_longterm_unpinnable_folios(&movable_folio_list, pofs); 2427 } 2428 2429 /* 2430 * Check whether all folios are *allowed* to be pinned indefinitely (long term). 2431 * Rather confusingly, all folios in the range are required to be pinned via 2432 * FOLL_PIN, before calling this routine. 2433 * 2434 * Return values: 2435 * 2436 * 0: if everything is OK and all folios in the range are allowed to be pinned, 2437 * then this routine leaves all folios pinned and returns zero for success. 2438 * 2439 * -EAGAIN: if any folios in the range are not allowed to be pinned, then this 2440 * routine will migrate those folios away, unpin all the folios in the range. If 2441 * migration of the entire set of folios succeeds, then -EAGAIN is returned. The 2442 * caller should re-pin the entire range with FOLL_PIN and then call this 2443 * routine again. 2444 * 2445 * -ENOMEM, or any other -errno: if an error *other* than -EAGAIN occurs, this 2446 * indicates a migration failure. The caller should give up, and propagate the 2447 * error back up the call stack. The caller does not need to unpin any folios in 2448 * that case, because this routine will do the unpinning. 2449 */ 2450 static long check_and_migrate_movable_folios(unsigned long nr_folios, 2451 struct folio **folios) 2452 { 2453 struct pages_or_folios pofs = { 2454 .folios = folios, 2455 .has_folios = true, 2456 .nr_entries = nr_folios, 2457 }; 2458 2459 return check_and_migrate_movable_pages_or_folios(&pofs); 2460 } 2461 2462 /* 2463 * Return values and behavior are the same as those for 2464 * check_and_migrate_movable_folios(). 2465 */ 2466 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2467 struct page **pages) 2468 { 2469 struct pages_or_folios pofs = { 2470 .pages = pages, 2471 .has_folios = false, 2472 .nr_entries = nr_pages, 2473 }; 2474 2475 return check_and_migrate_movable_pages_or_folios(&pofs); 2476 } 2477 #else 2478 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2479 struct page **pages) 2480 { 2481 return 0; 2482 } 2483 2484 static long check_and_migrate_movable_folios(unsigned long nr_folios, 2485 struct folio **folios) 2486 { 2487 return 0; 2488 } 2489 #endif /* CONFIG_MIGRATION */ 2490 2491 /* 2492 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 2493 * allows us to process the FOLL_LONGTERM flag. 2494 */ 2495 static long __gup_longterm_locked(struct mm_struct *mm, 2496 unsigned long start, 2497 unsigned long nr_pages, 2498 struct page **pages, 2499 int *locked, 2500 unsigned int gup_flags) 2501 { 2502 unsigned int flags; 2503 long rc, nr_pinned_pages; 2504 2505 if (!(gup_flags & FOLL_LONGTERM)) 2506 return __get_user_pages_locked(mm, start, nr_pages, pages, 2507 locked, gup_flags); 2508 2509 flags = memalloc_pin_save(); 2510 do { 2511 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages, 2512 pages, locked, 2513 gup_flags); 2514 if (nr_pinned_pages <= 0) { 2515 rc = nr_pinned_pages; 2516 break; 2517 } 2518 2519 /* FOLL_LONGTERM implies FOLL_PIN */ 2520 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages); 2521 } while (rc == -EAGAIN); 2522 memalloc_pin_restore(flags); 2523 return rc ? rc : nr_pinned_pages; 2524 } 2525 2526 /* 2527 * Check that the given flags are valid for the exported gup/pup interface, and 2528 * update them with the required flags that the caller must have set. 2529 */ 2530 static bool is_valid_gup_args(struct page **pages, int *locked, 2531 unsigned int *gup_flags_p, unsigned int to_set) 2532 { 2533 unsigned int gup_flags = *gup_flags_p; 2534 2535 /* 2536 * These flags not allowed to be specified externally to the gup 2537 * interfaces: 2538 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only 2539 * - FOLL_REMOTE is internal only, set in (get|pin)_user_pages_remote() 2540 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL 2541 */ 2542 if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS)) 2543 return false; 2544 2545 gup_flags |= to_set; 2546 if (locked) { 2547 /* At the external interface locked must be set */ 2548 if (WARN_ON_ONCE(*locked != 1)) 2549 return false; 2550 2551 gup_flags |= FOLL_UNLOCKABLE; 2552 } 2553 2554 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2555 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) == 2556 (FOLL_PIN | FOLL_GET))) 2557 return false; 2558 2559 /* LONGTERM can only be specified when pinning */ 2560 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM))) 2561 return false; 2562 2563 /* Pages input must be given if using GET/PIN */ 2564 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages)) 2565 return false; 2566 2567 /* We want to allow the pgmap to be hot-unplugged at all times */ 2568 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) && 2569 (gup_flags & FOLL_PCI_P2PDMA))) 2570 return false; 2571 2572 *gup_flags_p = gup_flags; 2573 return true; 2574 } 2575 2576 #ifdef CONFIG_MMU 2577 /** 2578 * get_user_pages_remote() - pin user pages in memory 2579 * @mm: mm_struct of target mm 2580 * @start: starting user address 2581 * @nr_pages: number of pages from start to pin 2582 * @gup_flags: flags modifying lookup behaviour 2583 * @pages: array that receives pointers to the pages pinned. 2584 * Should be at least nr_pages long. Or NULL, if caller 2585 * only intends to ensure the pages are faulted in. 2586 * @locked: pointer to lock flag indicating whether lock is held and 2587 * subsequently whether VM_FAULT_RETRY functionality can be 2588 * utilised. Lock must initially be held. 2589 * 2590 * Returns either number of pages pinned (which may be less than the 2591 * number requested), or an error. Details about the return value: 2592 * 2593 * -- If nr_pages is 0, returns 0. 2594 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 2595 * -- If nr_pages is >0, and some pages were pinned, returns the number of 2596 * pages pinned. Again, this may be less than nr_pages. 2597 * 2598 * The caller is responsible for releasing returned @pages, via put_page(). 2599 * 2600 * Must be called with mmap_lock held for read or write. 2601 * 2602 * get_user_pages_remote walks a process's page tables and takes a reference 2603 * to each struct page that each user address corresponds to at a given 2604 * instant. That is, it takes the page that would be accessed if a user 2605 * thread accesses the given user virtual address at that instant. 2606 * 2607 * This does not guarantee that the page exists in the user mappings when 2608 * get_user_pages_remote returns, and there may even be a completely different 2609 * page there in some cases (eg. if mmapped pagecache has been invalidated 2610 * and subsequently re-faulted). However it does guarantee that the page 2611 * won't be freed completely. And mostly callers simply care that the page 2612 * contains data that was valid *at some point in time*. Typically, an IO 2613 * or similar operation cannot guarantee anything stronger anyway because 2614 * locks can't be held over the syscall boundary. 2615 * 2616 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 2617 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 2618 * be called after the page is finished with, and before put_page is called. 2619 * 2620 * get_user_pages_remote is typically used for fewer-copy IO operations, 2621 * to get a handle on the memory by some means other than accesses 2622 * via the user virtual addresses. The pages may be submitted for 2623 * DMA to devices or accessed via their kernel linear mapping (via the 2624 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 2625 * 2626 * See also get_user_pages_fast, for performance critical applications. 2627 * 2628 * get_user_pages_remote should be phased out in favor of 2629 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 2630 * should use get_user_pages_remote because it cannot pass 2631 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 2632 */ 2633 long get_user_pages_remote(struct mm_struct *mm, 2634 unsigned long start, unsigned long nr_pages, 2635 unsigned int gup_flags, struct page **pages, 2636 int *locked) 2637 { 2638 int local_locked = 1; 2639 2640 if (!is_valid_gup_args(pages, locked, &gup_flags, 2641 FOLL_TOUCH | FOLL_REMOTE)) 2642 return -EINVAL; 2643 2644 return __get_user_pages_locked(mm, start, nr_pages, pages, 2645 locked ? locked : &local_locked, 2646 gup_flags); 2647 } 2648 EXPORT_SYMBOL(get_user_pages_remote); 2649 2650 #else /* CONFIG_MMU */ 2651 long get_user_pages_remote(struct mm_struct *mm, 2652 unsigned long start, unsigned long nr_pages, 2653 unsigned int gup_flags, struct page **pages, 2654 int *locked) 2655 { 2656 return 0; 2657 } 2658 #endif /* !CONFIG_MMU */ 2659 2660 /** 2661 * get_user_pages() - pin user pages in memory 2662 * @start: starting user address 2663 * @nr_pages: number of pages from start to pin 2664 * @gup_flags: flags modifying lookup behaviour 2665 * @pages: array that receives pointers to the pages pinned. 2666 * Should be at least nr_pages long. Or NULL, if caller 2667 * only intends to ensure the pages are faulted in. 2668 * 2669 * This is the same as get_user_pages_remote(), just with a less-flexible 2670 * calling convention where we assume that the mm being operated on belongs to 2671 * the current task, and doesn't allow passing of a locked parameter. We also 2672 * obviously don't pass FOLL_REMOTE in here. 2673 */ 2674 long get_user_pages(unsigned long start, unsigned long nr_pages, 2675 unsigned int gup_flags, struct page **pages) 2676 { 2677 int locked = 1; 2678 2679 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH)) 2680 return -EINVAL; 2681 2682 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2683 &locked, gup_flags); 2684 } 2685 EXPORT_SYMBOL(get_user_pages); 2686 2687 /* 2688 * get_user_pages_unlocked() is suitable to replace the form: 2689 * 2690 * mmap_read_lock(mm); 2691 * get_user_pages(mm, ..., pages, NULL); 2692 * mmap_read_unlock(mm); 2693 * 2694 * with: 2695 * 2696 * get_user_pages_unlocked(mm, ..., pages); 2697 * 2698 * It is functionally equivalent to get_user_pages_fast so 2699 * get_user_pages_fast should be used instead if specific gup_flags 2700 * (e.g. FOLL_FORCE) are not required. 2701 */ 2702 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2703 struct page **pages, unsigned int gup_flags) 2704 { 2705 int locked = 0; 2706 2707 if (!is_valid_gup_args(pages, NULL, &gup_flags, 2708 FOLL_TOUCH | FOLL_UNLOCKABLE)) 2709 return -EINVAL; 2710 2711 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2712 &locked, gup_flags); 2713 } 2714 EXPORT_SYMBOL(get_user_pages_unlocked); 2715 2716 /* 2717 * GUP-fast 2718 * 2719 * get_user_pages_fast attempts to pin user pages by walking the page 2720 * tables directly and avoids taking locks. Thus the walker needs to be 2721 * protected from page table pages being freed from under it, and should 2722 * block any THP splits. 2723 * 2724 * One way to achieve this is to have the walker disable interrupts, and 2725 * rely on IPIs from the TLB flushing code blocking before the page table 2726 * pages are freed. This is unsuitable for architectures that do not need 2727 * to broadcast an IPI when invalidating TLBs. 2728 * 2729 * Another way to achieve this is to batch up page table containing pages 2730 * belonging to more than one mm_user, then rcu_sched a callback to free those 2731 * pages. Disabling interrupts will allow the gup_fast() walker to both block 2732 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2733 * (which is a relatively rare event). The code below adopts this strategy. 2734 * 2735 * Before activating this code, please be aware that the following assumptions 2736 * are currently made: 2737 * 2738 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2739 * free pages containing page tables or TLB flushing requires IPI broadcast. 2740 * 2741 * *) ptes can be read atomically by the architecture. 2742 * 2743 * *) valid user addesses are below TASK_MAX_SIZE 2744 * 2745 * The last two assumptions can be relaxed by the addition of helper functions. 2746 * 2747 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2748 */ 2749 #ifdef CONFIG_HAVE_GUP_FAST 2750 /* 2751 * Used in the GUP-fast path to determine whether GUP is permitted to work on 2752 * a specific folio. 2753 * 2754 * This call assumes the caller has pinned the folio, that the lowest page table 2755 * level still points to this folio, and that interrupts have been disabled. 2756 * 2757 * GUP-fast must reject all secretmem folios. 2758 * 2759 * Writing to pinned file-backed dirty tracked folios is inherently problematic 2760 * (see comment describing the writable_file_mapping_allowed() function). We 2761 * therefore try to avoid the most egregious case of a long-term mapping doing 2762 * so. 2763 * 2764 * This function cannot be as thorough as that one as the VMA is not available 2765 * in the fast path, so instead we whitelist known good cases and if in doubt, 2766 * fall back to the slow path. 2767 */ 2768 static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags) 2769 { 2770 bool reject_file_backed = false; 2771 struct address_space *mapping; 2772 bool check_secretmem = false; 2773 unsigned long mapping_flags; 2774 2775 /* 2776 * If we aren't pinning then no problematic write can occur. A long term 2777 * pin is the most egregious case so this is the one we disallow. 2778 */ 2779 if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) == 2780 (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) 2781 reject_file_backed = true; 2782 2783 /* We hold a folio reference, so we can safely access folio fields. */ 2784 2785 /* secretmem folios are always order-0 folios. */ 2786 if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio)) 2787 check_secretmem = true; 2788 2789 if (!reject_file_backed && !check_secretmem) 2790 return true; 2791 2792 if (WARN_ON_ONCE(folio_test_slab(folio))) 2793 return false; 2794 2795 /* hugetlb neither requires dirty-tracking nor can be secretmem. */ 2796 if (folio_test_hugetlb(folio)) 2797 return true; 2798 2799 /* 2800 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods 2801 * cannot proceed, which means no actions performed under RCU can 2802 * proceed either. 2803 * 2804 * inodes and thus their mappings are freed under RCU, which means the 2805 * mapping cannot be freed beneath us and thus we can safely dereference 2806 * it. 2807 */ 2808 lockdep_assert_irqs_disabled(); 2809 2810 /* 2811 * However, there may be operations which _alter_ the mapping, so ensure 2812 * we read it once and only once. 2813 */ 2814 mapping = READ_ONCE(folio->mapping); 2815 2816 /* 2817 * The mapping may have been truncated, in any case we cannot determine 2818 * if this mapping is safe - fall back to slow path to determine how to 2819 * proceed. 2820 */ 2821 if (!mapping) 2822 return false; 2823 2824 /* Anonymous folios pose no problem. */ 2825 mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS; 2826 if (mapping_flags) 2827 return mapping_flags & PAGE_MAPPING_ANON; 2828 2829 /* 2830 * At this point, we know the mapping is non-null and points to an 2831 * address_space object. 2832 */ 2833 if (check_secretmem && secretmem_mapping(mapping)) 2834 return false; 2835 /* The only remaining allowed file system is shmem. */ 2836 return !reject_file_backed || shmem_mapping(mapping); 2837 } 2838 2839 static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start, 2840 unsigned int flags, struct page **pages) 2841 { 2842 while ((*nr) - nr_start) { 2843 struct folio *folio = page_folio(pages[--(*nr)]); 2844 2845 folio_clear_referenced(folio); 2846 gup_put_folio(folio, 1, flags); 2847 } 2848 } 2849 2850 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2851 /* 2852 * GUP-fast relies on pte change detection to avoid concurrent pgtable 2853 * operations. 2854 * 2855 * To pin the page, GUP-fast needs to do below in order: 2856 * (1) pin the page (by prefetching pte), then (2) check pte not changed. 2857 * 2858 * For the rest of pgtable operations where pgtable updates can be racy 2859 * with GUP-fast, we need to do (1) clear pte, then (2) check whether page 2860 * is pinned. 2861 * 2862 * Above will work for all pte-level operations, including THP split. 2863 * 2864 * For THP collapse, it's a bit more complicated because GUP-fast may be 2865 * walking a pgtable page that is being freed (pte is still valid but pmd 2866 * can be cleared already). To avoid race in such condition, we need to 2867 * also check pmd here to make sure pmd doesn't change (corresponds to 2868 * pmdp_collapse_flush() in the THP collapse code path). 2869 */ 2870 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2871 unsigned long end, unsigned int flags, struct page **pages, 2872 int *nr) 2873 { 2874 struct dev_pagemap *pgmap = NULL; 2875 int nr_start = *nr, ret = 0; 2876 pte_t *ptep, *ptem; 2877 2878 ptem = ptep = pte_offset_map(&pmd, addr); 2879 if (!ptep) 2880 return 0; 2881 do { 2882 pte_t pte = ptep_get_lockless(ptep); 2883 struct page *page; 2884 struct folio *folio; 2885 2886 /* 2887 * Always fallback to ordinary GUP on PROT_NONE-mapped pages: 2888 * pte_access_permitted() better should reject these pages 2889 * either way: otherwise, GUP-fast might succeed in 2890 * cases where ordinary GUP would fail due to VMA access 2891 * permissions. 2892 */ 2893 if (pte_protnone(pte)) 2894 goto pte_unmap; 2895 2896 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2897 goto pte_unmap; 2898 2899 if (pte_devmap(pte)) { 2900 if (unlikely(flags & FOLL_LONGTERM)) 2901 goto pte_unmap; 2902 2903 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2904 if (unlikely(!pgmap)) { 2905 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 2906 goto pte_unmap; 2907 } 2908 } else if (pte_special(pte)) 2909 goto pte_unmap; 2910 2911 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2912 page = pte_page(pte); 2913 2914 folio = try_grab_folio_fast(page, 1, flags); 2915 if (!folio) 2916 goto pte_unmap; 2917 2918 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) || 2919 unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) { 2920 gup_put_folio(folio, 1, flags); 2921 goto pte_unmap; 2922 } 2923 2924 if (!gup_fast_folio_allowed(folio, flags)) { 2925 gup_put_folio(folio, 1, flags); 2926 goto pte_unmap; 2927 } 2928 2929 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) { 2930 gup_put_folio(folio, 1, flags); 2931 goto pte_unmap; 2932 } 2933 2934 /* 2935 * We need to make the page accessible if and only if we are 2936 * going to access its content (the FOLL_PIN case). Please 2937 * see Documentation/core-api/pin_user_pages.rst for 2938 * details. 2939 */ 2940 if (flags & FOLL_PIN) { 2941 ret = arch_make_folio_accessible(folio); 2942 if (ret) { 2943 gup_put_folio(folio, 1, flags); 2944 goto pte_unmap; 2945 } 2946 } 2947 folio_set_referenced(folio); 2948 pages[*nr] = page; 2949 (*nr)++; 2950 } while (ptep++, addr += PAGE_SIZE, addr != end); 2951 2952 ret = 1; 2953 2954 pte_unmap: 2955 if (pgmap) 2956 put_dev_pagemap(pgmap); 2957 pte_unmap(ptem); 2958 return ret; 2959 } 2960 #else 2961 2962 /* 2963 * If we can't determine whether or not a pte is special, then fail immediately 2964 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2965 * to be special. 2966 * 2967 * For a futex to be placed on a THP tail page, get_futex_key requires a 2968 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2969 * useful to have gup_fast_pmd_leaf even if we can't operate on ptes. 2970 */ 2971 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2972 unsigned long end, unsigned int flags, struct page **pages, 2973 int *nr) 2974 { 2975 return 0; 2976 } 2977 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2978 2979 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2980 static int gup_fast_devmap_leaf(unsigned long pfn, unsigned long addr, 2981 unsigned long end, unsigned int flags, struct page **pages, int *nr) 2982 { 2983 int nr_start = *nr; 2984 struct dev_pagemap *pgmap = NULL; 2985 2986 do { 2987 struct folio *folio; 2988 struct page *page = pfn_to_page(pfn); 2989 2990 pgmap = get_dev_pagemap(pfn, pgmap); 2991 if (unlikely(!pgmap)) { 2992 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 2993 break; 2994 } 2995 2996 folio = try_grab_folio_fast(page, 1, flags); 2997 if (!folio) { 2998 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 2999 break; 3000 } 3001 folio_set_referenced(folio); 3002 pages[*nr] = page; 3003 (*nr)++; 3004 pfn++; 3005 } while (addr += PAGE_SIZE, addr != end); 3006 3007 put_dev_pagemap(pgmap); 3008 return addr == end; 3009 } 3010 3011 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr, 3012 unsigned long end, unsigned int flags, struct page **pages, 3013 int *nr) 3014 { 3015 unsigned long fault_pfn; 3016 int nr_start = *nr; 3017 3018 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 3019 if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr)) 3020 return 0; 3021 3022 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 3023 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 3024 return 0; 3025 } 3026 return 1; 3027 } 3028 3029 static int gup_fast_devmap_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr, 3030 unsigned long end, unsigned int flags, struct page **pages, 3031 int *nr) 3032 { 3033 unsigned long fault_pfn; 3034 int nr_start = *nr; 3035 3036 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 3037 if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr)) 3038 return 0; 3039 3040 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 3041 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 3042 return 0; 3043 } 3044 return 1; 3045 } 3046 #else 3047 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr, 3048 unsigned long end, unsigned int flags, struct page **pages, 3049 int *nr) 3050 { 3051 BUILD_BUG(); 3052 return 0; 3053 } 3054 3055 static int gup_fast_devmap_pud_leaf(pud_t pud, pud_t *pudp, unsigned long addr, 3056 unsigned long end, unsigned int flags, struct page **pages, 3057 int *nr) 3058 { 3059 BUILD_BUG(); 3060 return 0; 3061 } 3062 #endif 3063 3064 static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr, 3065 unsigned long end, unsigned int flags, struct page **pages, 3066 int *nr) 3067 { 3068 struct page *page; 3069 struct folio *folio; 3070 int refs; 3071 3072 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 3073 return 0; 3074 3075 if (pmd_special(orig)) 3076 return 0; 3077 3078 if (pmd_devmap(orig)) { 3079 if (unlikely(flags & FOLL_LONGTERM)) 3080 return 0; 3081 return gup_fast_devmap_pmd_leaf(orig, pmdp, addr, end, flags, 3082 pages, nr); 3083 } 3084 3085 page = pmd_page(orig); 3086 refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr); 3087 3088 folio = try_grab_folio_fast(page, refs, flags); 3089 if (!folio) 3090 return 0; 3091 3092 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 3093 gup_put_folio(folio, refs, flags); 3094 return 0; 3095 } 3096 3097 if (!gup_fast_folio_allowed(folio, flags)) { 3098 gup_put_folio(folio, refs, flags); 3099 return 0; 3100 } 3101 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 3102 gup_put_folio(folio, refs, flags); 3103 return 0; 3104 } 3105 3106 *nr += refs; 3107 folio_set_referenced(folio); 3108 return 1; 3109 } 3110 3111 static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr, 3112 unsigned long end, unsigned int flags, struct page **pages, 3113 int *nr) 3114 { 3115 struct page *page; 3116 struct folio *folio; 3117 int refs; 3118 3119 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 3120 return 0; 3121 3122 if (pud_special(orig)) 3123 return 0; 3124 3125 if (pud_devmap(orig)) { 3126 if (unlikely(flags & FOLL_LONGTERM)) 3127 return 0; 3128 return gup_fast_devmap_pud_leaf(orig, pudp, addr, end, flags, 3129 pages, nr); 3130 } 3131 3132 page = pud_page(orig); 3133 refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr); 3134 3135 folio = try_grab_folio_fast(page, refs, flags); 3136 if (!folio) 3137 return 0; 3138 3139 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 3140 gup_put_folio(folio, refs, flags); 3141 return 0; 3142 } 3143 3144 if (!gup_fast_folio_allowed(folio, flags)) { 3145 gup_put_folio(folio, refs, flags); 3146 return 0; 3147 } 3148 3149 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 3150 gup_put_folio(folio, refs, flags); 3151 return 0; 3152 } 3153 3154 *nr += refs; 3155 folio_set_referenced(folio); 3156 return 1; 3157 } 3158 3159 static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, 3160 unsigned long end, unsigned int flags, struct page **pages, 3161 int *nr) 3162 { 3163 unsigned long next; 3164 pmd_t *pmdp; 3165 3166 pmdp = pmd_offset_lockless(pudp, pud, addr); 3167 do { 3168 pmd_t pmd = pmdp_get_lockless(pmdp); 3169 3170 next = pmd_addr_end(addr, end); 3171 if (!pmd_present(pmd)) 3172 return 0; 3173 3174 if (unlikely(pmd_leaf(pmd))) { 3175 /* See gup_fast_pte_range() */ 3176 if (pmd_protnone(pmd)) 3177 return 0; 3178 3179 if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags, 3180 pages, nr)) 3181 return 0; 3182 3183 } else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags, 3184 pages, nr)) 3185 return 0; 3186 } while (pmdp++, addr = next, addr != end); 3187 3188 return 1; 3189 } 3190 3191 static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, 3192 unsigned long end, unsigned int flags, struct page **pages, 3193 int *nr) 3194 { 3195 unsigned long next; 3196 pud_t *pudp; 3197 3198 pudp = pud_offset_lockless(p4dp, p4d, addr); 3199 do { 3200 pud_t pud = READ_ONCE(*pudp); 3201 3202 next = pud_addr_end(addr, end); 3203 if (unlikely(!pud_present(pud))) 3204 return 0; 3205 if (unlikely(pud_leaf(pud))) { 3206 if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags, 3207 pages, nr)) 3208 return 0; 3209 } else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags, 3210 pages, nr)) 3211 return 0; 3212 } while (pudp++, addr = next, addr != end); 3213 3214 return 1; 3215 } 3216 3217 static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, 3218 unsigned long end, unsigned int flags, struct page **pages, 3219 int *nr) 3220 { 3221 unsigned long next; 3222 p4d_t *p4dp; 3223 3224 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 3225 do { 3226 p4d_t p4d = READ_ONCE(*p4dp); 3227 3228 next = p4d_addr_end(addr, end); 3229 if (!p4d_present(p4d)) 3230 return 0; 3231 BUILD_BUG_ON(p4d_leaf(p4d)); 3232 if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags, 3233 pages, nr)) 3234 return 0; 3235 } while (p4dp++, addr = next, addr != end); 3236 3237 return 1; 3238 } 3239 3240 static void gup_fast_pgd_range(unsigned long addr, unsigned long end, 3241 unsigned int flags, struct page **pages, int *nr) 3242 { 3243 unsigned long next; 3244 pgd_t *pgdp; 3245 3246 pgdp = pgd_offset(current->mm, addr); 3247 do { 3248 pgd_t pgd = READ_ONCE(*pgdp); 3249 3250 next = pgd_addr_end(addr, end); 3251 if (pgd_none(pgd)) 3252 return; 3253 BUILD_BUG_ON(pgd_leaf(pgd)); 3254 if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags, 3255 pages, nr)) 3256 return; 3257 } while (pgdp++, addr = next, addr != end); 3258 } 3259 #else 3260 static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end, 3261 unsigned int flags, struct page **pages, int *nr) 3262 { 3263 } 3264 #endif /* CONFIG_HAVE_GUP_FAST */ 3265 3266 #ifndef gup_fast_permitted 3267 /* 3268 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 3269 * we need to fall back to the slow version: 3270 */ 3271 static bool gup_fast_permitted(unsigned long start, unsigned long end) 3272 { 3273 return true; 3274 } 3275 #endif 3276 3277 static unsigned long gup_fast(unsigned long start, unsigned long end, 3278 unsigned int gup_flags, struct page **pages) 3279 { 3280 unsigned long flags; 3281 int nr_pinned = 0; 3282 unsigned seq; 3283 3284 if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) || 3285 !gup_fast_permitted(start, end)) 3286 return 0; 3287 3288 if (gup_flags & FOLL_PIN) { 3289 if (!raw_seqcount_try_begin(¤t->mm->write_protect_seq, seq)) 3290 return 0; 3291 } 3292 3293 /* 3294 * Disable interrupts. The nested form is used, in order to allow full, 3295 * general purpose use of this routine. 3296 * 3297 * With interrupts disabled, we block page table pages from being freed 3298 * from under us. See struct mmu_table_batch comments in 3299 * include/asm-generic/tlb.h for more details. 3300 * 3301 * We do not adopt an rcu_read_lock() here as we also want to block IPIs 3302 * that come from callers of tlb_remove_table_sync_one(). 3303 */ 3304 local_irq_save(flags); 3305 gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned); 3306 local_irq_restore(flags); 3307 3308 /* 3309 * When pinning pages for DMA there could be a concurrent write protect 3310 * from fork() via copy_page_range(), in this case always fail GUP-fast. 3311 */ 3312 if (gup_flags & FOLL_PIN) { 3313 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { 3314 gup_fast_unpin_user_pages(pages, nr_pinned); 3315 return 0; 3316 } else { 3317 sanity_check_pinned_pages(pages, nr_pinned); 3318 } 3319 } 3320 return nr_pinned; 3321 } 3322 3323 static int gup_fast_fallback(unsigned long start, unsigned long nr_pages, 3324 unsigned int gup_flags, struct page **pages) 3325 { 3326 unsigned long len, end; 3327 unsigned long nr_pinned; 3328 int locked = 0; 3329 int ret; 3330 3331 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 3332 FOLL_FORCE | FOLL_PIN | FOLL_GET | 3333 FOLL_FAST_ONLY | FOLL_NOFAULT | 3334 FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT))) 3335 return -EINVAL; 3336 3337 if (gup_flags & FOLL_PIN) 3338 mm_set_has_pinned_flag(¤t->mm->flags); 3339 3340 if (!(gup_flags & FOLL_FAST_ONLY)) 3341 might_lock_read(¤t->mm->mmap_lock); 3342 3343 start = untagged_addr(start) & PAGE_MASK; 3344 len = nr_pages << PAGE_SHIFT; 3345 if (check_add_overflow(start, len, &end)) 3346 return -EOVERFLOW; 3347 if (end > TASK_SIZE_MAX) 3348 return -EFAULT; 3349 3350 nr_pinned = gup_fast(start, end, gup_flags, pages); 3351 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) 3352 return nr_pinned; 3353 3354 /* Slow path: try to get the remaining pages with get_user_pages */ 3355 start += nr_pinned << PAGE_SHIFT; 3356 pages += nr_pinned; 3357 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned, 3358 pages, &locked, 3359 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE); 3360 if (ret < 0) { 3361 /* 3362 * The caller has to unpin the pages we already pinned so 3363 * returning -errno is not an option 3364 */ 3365 if (nr_pinned) 3366 return nr_pinned; 3367 return ret; 3368 } 3369 return ret + nr_pinned; 3370 } 3371 3372 /** 3373 * get_user_pages_fast_only() - pin user pages in memory 3374 * @start: starting user address 3375 * @nr_pages: number of pages from start to pin 3376 * @gup_flags: flags modifying pin behaviour 3377 * @pages: array that receives pointers to the pages pinned. 3378 * Should be at least nr_pages long. 3379 * 3380 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 3381 * the regular GUP. 3382 * 3383 * If the architecture does not support this function, simply return with no 3384 * pages pinned. 3385 * 3386 * Careful, careful! COW breaking can go either way, so a non-write 3387 * access can get ambiguous page results. If you call this function without 3388 * 'write' set, you'd better be sure that you're ok with that ambiguity. 3389 */ 3390 int get_user_pages_fast_only(unsigned long start, int nr_pages, 3391 unsigned int gup_flags, struct page **pages) 3392 { 3393 /* 3394 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 3395 * because gup fast is always a "pin with a +1 page refcount" request. 3396 * 3397 * FOLL_FAST_ONLY is required in order to match the API description of 3398 * this routine: no fall back to regular ("slow") GUP. 3399 */ 3400 if (!is_valid_gup_args(pages, NULL, &gup_flags, 3401 FOLL_GET | FOLL_FAST_ONLY)) 3402 return -EINVAL; 3403 3404 return gup_fast_fallback(start, nr_pages, gup_flags, pages); 3405 } 3406 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 3407 3408 /** 3409 * get_user_pages_fast() - pin user pages in memory 3410 * @start: starting user address 3411 * @nr_pages: number of pages from start to pin 3412 * @gup_flags: flags modifying pin behaviour 3413 * @pages: array that receives pointers to the pages pinned. 3414 * Should be at least nr_pages long. 3415 * 3416 * Attempt to pin user pages in memory without taking mm->mmap_lock. 3417 * If not successful, it will fall back to taking the lock and 3418 * calling get_user_pages(). 3419 * 3420 * Returns number of pages pinned. This may be fewer than the number requested. 3421 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 3422 * -errno. 3423 */ 3424 int get_user_pages_fast(unsigned long start, int nr_pages, 3425 unsigned int gup_flags, struct page **pages) 3426 { 3427 /* 3428 * The caller may or may not have explicitly set FOLL_GET; either way is 3429 * OK. However, internally (within mm/gup.c), gup fast variants must set 3430 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 3431 * request. 3432 */ 3433 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET)) 3434 return -EINVAL; 3435 return gup_fast_fallback(start, nr_pages, gup_flags, pages); 3436 } 3437 EXPORT_SYMBOL_GPL(get_user_pages_fast); 3438 3439 /** 3440 * pin_user_pages_fast() - pin user pages in memory without taking locks 3441 * 3442 * @start: starting user address 3443 * @nr_pages: number of pages from start to pin 3444 * @gup_flags: flags modifying pin behaviour 3445 * @pages: array that receives pointers to the pages pinned. 3446 * Should be at least nr_pages long. 3447 * 3448 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 3449 * get_user_pages_fast() for documentation on the function arguments, because 3450 * the arguments here are identical. 3451 * 3452 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3453 * see Documentation/core-api/pin_user_pages.rst for further details. 3454 * 3455 * Note that if a zero_page is amongst the returned pages, it will not have 3456 * pins in it and unpin_user_page() will not remove pins from it. 3457 */ 3458 int pin_user_pages_fast(unsigned long start, int nr_pages, 3459 unsigned int gup_flags, struct page **pages) 3460 { 3461 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) 3462 return -EINVAL; 3463 return gup_fast_fallback(start, nr_pages, gup_flags, pages); 3464 } 3465 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 3466 3467 /** 3468 * pin_user_pages_remote() - pin pages of a remote process 3469 * 3470 * @mm: mm_struct of target mm 3471 * @start: starting user address 3472 * @nr_pages: number of pages from start to pin 3473 * @gup_flags: flags modifying lookup behaviour 3474 * @pages: array that receives pointers to the pages pinned. 3475 * Should be at least nr_pages long. 3476 * @locked: pointer to lock flag indicating whether lock is held and 3477 * subsequently whether VM_FAULT_RETRY functionality can be 3478 * utilised. Lock must initially be held. 3479 * 3480 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 3481 * get_user_pages_remote() for documentation on the function arguments, because 3482 * the arguments here are identical. 3483 * 3484 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3485 * see Documentation/core-api/pin_user_pages.rst for details. 3486 * 3487 * Note that if a zero_page is amongst the returned pages, it will not have 3488 * pins in it and unpin_user_page*() will not remove pins from it. 3489 */ 3490 long pin_user_pages_remote(struct mm_struct *mm, 3491 unsigned long start, unsigned long nr_pages, 3492 unsigned int gup_flags, struct page **pages, 3493 int *locked) 3494 { 3495 int local_locked = 1; 3496 3497 if (!is_valid_gup_args(pages, locked, &gup_flags, 3498 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE)) 3499 return 0; 3500 return __gup_longterm_locked(mm, start, nr_pages, pages, 3501 locked ? locked : &local_locked, 3502 gup_flags); 3503 } 3504 EXPORT_SYMBOL(pin_user_pages_remote); 3505 3506 /** 3507 * pin_user_pages() - pin user pages in memory for use by other devices 3508 * 3509 * @start: starting user address 3510 * @nr_pages: number of pages from start to pin 3511 * @gup_flags: flags modifying lookup behaviour 3512 * @pages: array that receives pointers to the pages pinned. 3513 * Should be at least nr_pages long. 3514 * 3515 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 3516 * FOLL_PIN is set. 3517 * 3518 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3519 * see Documentation/core-api/pin_user_pages.rst for details. 3520 * 3521 * Note that if a zero_page is amongst the returned pages, it will not have 3522 * pins in it and unpin_user_page*() will not remove pins from it. 3523 */ 3524 long pin_user_pages(unsigned long start, unsigned long nr_pages, 3525 unsigned int gup_flags, struct page **pages) 3526 { 3527 int locked = 1; 3528 3529 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) 3530 return 0; 3531 return __gup_longterm_locked(current->mm, start, nr_pages, 3532 pages, &locked, gup_flags); 3533 } 3534 EXPORT_SYMBOL(pin_user_pages); 3535 3536 /* 3537 * pin_user_pages_unlocked() is the FOLL_PIN variant of 3538 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 3539 * FOLL_PIN and rejects FOLL_GET. 3540 * 3541 * Note that if a zero_page is amongst the returned pages, it will not have 3542 * pins in it and unpin_user_page*() will not remove pins from it. 3543 */ 3544 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 3545 struct page **pages, unsigned int gup_flags) 3546 { 3547 int locked = 0; 3548 3549 if (!is_valid_gup_args(pages, NULL, &gup_flags, 3550 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE)) 3551 return 0; 3552 3553 return __gup_longterm_locked(current->mm, start, nr_pages, pages, 3554 &locked, gup_flags); 3555 } 3556 EXPORT_SYMBOL(pin_user_pages_unlocked); 3557 3558 /** 3559 * memfd_pin_folios() - pin folios associated with a memfd 3560 * @memfd: the memfd whose folios are to be pinned 3561 * @start: the first memfd offset 3562 * @end: the last memfd offset (inclusive) 3563 * @folios: array that receives pointers to the folios pinned 3564 * @max_folios: maximum number of entries in @folios 3565 * @offset: the offset into the first folio 3566 * 3567 * Attempt to pin folios associated with a memfd in the contiguous range 3568 * [start, end]. Given that a memfd is either backed by shmem or hugetlb, 3569 * the folios can either be found in the page cache or need to be allocated 3570 * if necessary. Once the folios are located, they are all pinned via 3571 * FOLL_PIN and @offset is populatedwith the offset into the first folio. 3572 * And, eventually, these pinned folios must be released either using 3573 * unpin_folios() or unpin_folio(). 3574 * 3575 * It must be noted that the folios may be pinned for an indefinite amount 3576 * of time. And, in most cases, the duration of time they may stay pinned 3577 * would be controlled by the userspace. This behavior is effectively the 3578 * same as using FOLL_LONGTERM with other GUP APIs. 3579 * 3580 * Returns number of folios pinned, which could be less than @max_folios 3581 * as it depends on the folio sizes that cover the range [start, end]. 3582 * If no folios were pinned, it returns -errno. 3583 */ 3584 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end, 3585 struct folio **folios, unsigned int max_folios, 3586 pgoff_t *offset) 3587 { 3588 unsigned int flags, nr_folios, nr_found; 3589 unsigned int i, pgshift = PAGE_SHIFT; 3590 pgoff_t start_idx, end_idx; 3591 struct folio *folio = NULL; 3592 struct folio_batch fbatch; 3593 struct hstate *h; 3594 long ret = -EINVAL; 3595 3596 if (start < 0 || start > end || !max_folios) 3597 return -EINVAL; 3598 3599 if (!memfd) 3600 return -EINVAL; 3601 3602 if (!shmem_file(memfd) && !is_file_hugepages(memfd)) 3603 return -EINVAL; 3604 3605 if (end >= i_size_read(file_inode(memfd))) 3606 return -EINVAL; 3607 3608 if (is_file_hugepages(memfd)) { 3609 h = hstate_file(memfd); 3610 pgshift = huge_page_shift(h); 3611 } 3612 3613 flags = memalloc_pin_save(); 3614 do { 3615 nr_folios = 0; 3616 start_idx = start >> pgshift; 3617 end_idx = end >> pgshift; 3618 if (is_file_hugepages(memfd)) { 3619 start_idx <<= huge_page_order(h); 3620 end_idx <<= huge_page_order(h); 3621 } 3622 3623 folio_batch_init(&fbatch); 3624 while (start_idx <= end_idx && nr_folios < max_folios) { 3625 /* 3626 * In most cases, we should be able to find the folios 3627 * in the page cache. If we cannot find them for some 3628 * reason, we try to allocate them and add them to the 3629 * page cache. 3630 */ 3631 nr_found = filemap_get_folios_contig(memfd->f_mapping, 3632 &start_idx, 3633 end_idx, 3634 &fbatch); 3635 if (folio) { 3636 folio_put(folio); 3637 folio = NULL; 3638 } 3639 3640 for (i = 0; i < nr_found; i++) { 3641 folio = fbatch.folios[i]; 3642 3643 if (try_grab_folio(folio, 1, FOLL_PIN)) { 3644 folio_batch_release(&fbatch); 3645 ret = -EINVAL; 3646 goto err; 3647 } 3648 3649 if (nr_folios == 0) 3650 *offset = offset_in_folio(folio, start); 3651 3652 folios[nr_folios] = folio; 3653 if (++nr_folios == max_folios) 3654 break; 3655 } 3656 3657 folio = NULL; 3658 folio_batch_release(&fbatch); 3659 if (!nr_found) { 3660 folio = memfd_alloc_folio(memfd, start_idx); 3661 if (IS_ERR(folio)) { 3662 ret = PTR_ERR(folio); 3663 if (ret != -EEXIST) 3664 goto err; 3665 folio = NULL; 3666 } 3667 } 3668 } 3669 3670 ret = check_and_migrate_movable_folios(nr_folios, folios); 3671 } while (ret == -EAGAIN); 3672 3673 memalloc_pin_restore(flags); 3674 return ret ? ret : nr_folios; 3675 err: 3676 memalloc_pin_restore(flags); 3677 unpin_folios(folios, nr_folios); 3678 3679 return ret; 3680 } 3681 EXPORT_SYMBOL_GPL(memfd_pin_folios); 3682 3683 /** 3684 * folio_add_pins() - add pins to an already-pinned folio 3685 * @folio: the folio to add more pins to 3686 * @pins: number of pins to add 3687 * 3688 * Try to add more pins to an already-pinned folio. The semantics 3689 * of the pin (e.g., FOLL_WRITE) follow any existing pin and cannot 3690 * be changed. 3691 * 3692 * This function is helpful when having obtained a pin on a large folio 3693 * using memfd_pin_folios(), but wanting to logically unpin parts 3694 * (e.g., individual pages) of the folio later, for example, using 3695 * unpin_user_page_range_dirty_lock(). 3696 * 3697 * This is not the right interface to initially pin a folio. 3698 */ 3699 int folio_add_pins(struct folio *folio, unsigned int pins) 3700 { 3701 VM_WARN_ON_ONCE(!folio_maybe_dma_pinned(folio)); 3702 3703 return try_grab_folio(folio, pins, FOLL_PIN); 3704 } 3705 EXPORT_SYMBOL_GPL(folio_add_pins); 3706