xref: /linux/kernel/time/clocksource.c (revision f7f0adfe64de08803990dc4cbecd2849c04e314a)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * This file contains the functions which manage clocksource drivers.
4  *
5  * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/device.h>
11 #include <linux/clocksource.h>
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
15 #include <linux/tick.h>
16 #include <linux/kthread.h>
17 #include <linux/prandom.h>
18 #include <linux/cpu.h>
19 
20 #include "tick-internal.h"
21 #include "timekeeping_internal.h"
22 
23 static void clocksource_enqueue(struct clocksource *cs);
24 
25 static noinline u64 cycles_to_nsec_safe(struct clocksource *cs, u64 start, u64 end)
26 {
27 	u64 delta = clocksource_delta(end, start, cs->mask, cs->max_raw_delta);
28 
29 	if (likely(delta < cs->max_cycles))
30 		return clocksource_cyc2ns(delta, cs->mult, cs->shift);
31 
32 	return mul_u64_u32_shr(delta, cs->mult, cs->shift);
33 }
34 
35 /**
36  * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
37  * @mult:	pointer to mult variable
38  * @shift:	pointer to shift variable
39  * @from:	frequency to convert from
40  * @to:		frequency to convert to
41  * @maxsec:	guaranteed runtime conversion range in seconds
42  *
43  * The function evaluates the shift/mult pair for the scaled math
44  * operations of clocksources and clockevents.
45  *
46  * @to and @from are frequency values in HZ. For clock sources @to is
47  * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
48  * event @to is the counter frequency and @from is NSEC_PER_SEC.
49  *
50  * The @maxsec conversion range argument controls the time frame in
51  * seconds which must be covered by the runtime conversion with the
52  * calculated mult and shift factors. This guarantees that no 64bit
53  * overflow happens when the input value of the conversion is
54  * multiplied with the calculated mult factor. Larger ranges may
55  * reduce the conversion accuracy by choosing smaller mult and shift
56  * factors.
57  */
58 void
59 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
60 {
61 	u64 tmp;
62 	u32 sft, sftacc= 32;
63 
64 	/*
65 	 * Calculate the shift factor which is limiting the conversion
66 	 * range:
67 	 */
68 	tmp = ((u64)maxsec * from) >> 32;
69 	while (tmp) {
70 		tmp >>=1;
71 		sftacc--;
72 	}
73 
74 	/*
75 	 * Find the conversion shift/mult pair which has the best
76 	 * accuracy and fits the maxsec conversion range:
77 	 */
78 	for (sft = 32; sft > 0; sft--) {
79 		tmp = (u64) to << sft;
80 		tmp += from / 2;
81 		do_div(tmp, from);
82 		if ((tmp >> sftacc) == 0)
83 			break;
84 	}
85 	*mult = tmp;
86 	*shift = sft;
87 }
88 EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
89 
90 /*[Clocksource internal variables]---------
91  * curr_clocksource:
92  *	currently selected clocksource.
93  * suspend_clocksource:
94  *	used to calculate the suspend time.
95  * clocksource_list:
96  *	linked list with the registered clocksources
97  * clocksource_mutex:
98  *	protects manipulations to curr_clocksource and the clocksource_list
99  * override_name:
100  *	Name of the user-specified clocksource.
101  */
102 static struct clocksource *curr_clocksource;
103 static struct clocksource *suspend_clocksource;
104 static LIST_HEAD(clocksource_list);
105 static DEFINE_MUTEX(clocksource_mutex);
106 static char override_name[CS_NAME_LEN];
107 static int finished_booting;
108 static u64 suspend_start;
109 
110 /*
111  * Interval: 0.5sec.
112  */
113 #define WATCHDOG_INTERVAL (HZ >> 1)
114 #define WATCHDOG_INTERVAL_MAX_NS ((2 * WATCHDOG_INTERVAL) * (NSEC_PER_SEC / HZ))
115 
116 /*
117  * Threshold: 0.0312s, when doubled: 0.0625s.
118  */
119 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 5)
120 
121 /*
122  * Maximum permissible delay between two readouts of the watchdog
123  * clocksource surrounding a read of the clocksource being validated.
124  * This delay could be due to SMIs, NMIs, or to VCPU preemptions.  Used as
125  * a lower bound for cs->uncertainty_margin values when registering clocks.
126  *
127  * The default of 500 parts per million is based on NTP's limits.
128  * If a clocksource is good enough for NTP, it is good enough for us!
129  *
130  * In other words, by default, even if a clocksource is extremely
131  * precise (for example, with a sub-nanosecond period), the maximum
132  * permissible skew between the clocksource watchdog and the clocksource
133  * under test is not permitted to go below the 500ppm minimum defined
134  * by MAX_SKEW_USEC.  This 500ppm minimum may be overridden using the
135  * CLOCKSOURCE_WATCHDOG_MAX_SKEW_US Kconfig option.
136  */
137 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US
138 #define MAX_SKEW_USEC	CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US
139 #else
140 #define MAX_SKEW_USEC	(125 * WATCHDOG_INTERVAL / HZ)
141 #endif
142 
143 /*
144  * Default for maximum permissible skew when cs->uncertainty_margin is
145  * not specified, and the lower bound even when cs->uncertainty_margin
146  * is specified.  This is also the default that is used when registering
147  * clocks with unspecifed cs->uncertainty_margin, so this macro is used
148  * even in CONFIG_CLOCKSOURCE_WATCHDOG=n kernels.
149  */
150 #define WATCHDOG_MAX_SKEW (MAX_SKEW_USEC * NSEC_PER_USEC)
151 
152 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
153 static void clocksource_watchdog_work(struct work_struct *work);
154 static void clocksource_select(void);
155 
156 static LIST_HEAD(watchdog_list);
157 static struct clocksource *watchdog;
158 static struct timer_list watchdog_timer;
159 static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
160 static DEFINE_SPINLOCK(watchdog_lock);
161 static int watchdog_running;
162 static atomic_t watchdog_reset_pending;
163 static int64_t watchdog_max_interval;
164 
165 static inline void clocksource_watchdog_lock(unsigned long *flags)
166 {
167 	spin_lock_irqsave(&watchdog_lock, *flags);
168 }
169 
170 static inline void clocksource_watchdog_unlock(unsigned long *flags)
171 {
172 	spin_unlock_irqrestore(&watchdog_lock, *flags);
173 }
174 
175 static int clocksource_watchdog_kthread(void *data);
176 
177 static void clocksource_watchdog_work(struct work_struct *work)
178 {
179 	/*
180 	 * We cannot directly run clocksource_watchdog_kthread() here, because
181 	 * clocksource_select() calls timekeeping_notify() which uses
182 	 * stop_machine(). One cannot use stop_machine() from a workqueue() due
183 	 * lock inversions wrt CPU hotplug.
184 	 *
185 	 * Also, we only ever run this work once or twice during the lifetime
186 	 * of the kernel, so there is no point in creating a more permanent
187 	 * kthread for this.
188 	 *
189 	 * If kthread_run fails the next watchdog scan over the
190 	 * watchdog_list will find the unstable clock again.
191 	 */
192 	kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
193 }
194 
195 static void clocksource_change_rating(struct clocksource *cs, int rating)
196 {
197 	list_del(&cs->list);
198 	cs->rating = rating;
199 	clocksource_enqueue(cs);
200 }
201 
202 static void __clocksource_unstable(struct clocksource *cs)
203 {
204 	cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
205 	cs->flags |= CLOCK_SOURCE_UNSTABLE;
206 
207 	/*
208 	 * If the clocksource is registered clocksource_watchdog_kthread() will
209 	 * re-rate and re-select.
210 	 */
211 	if (list_empty(&cs->list)) {
212 		cs->rating = 0;
213 		return;
214 	}
215 
216 	if (cs->mark_unstable)
217 		cs->mark_unstable(cs);
218 
219 	/* kick clocksource_watchdog_kthread() */
220 	if (finished_booting)
221 		schedule_work(&watchdog_work);
222 }
223 
224 /**
225  * clocksource_mark_unstable - mark clocksource unstable via watchdog
226  * @cs:		clocksource to be marked unstable
227  *
228  * This function is called by the x86 TSC code to mark clocksources as unstable;
229  * it defers demotion and re-selection to a kthread.
230  */
231 void clocksource_mark_unstable(struct clocksource *cs)
232 {
233 	unsigned long flags;
234 
235 	spin_lock_irqsave(&watchdog_lock, flags);
236 	if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
237 		if (!list_empty(&cs->list) && list_empty(&cs->wd_list))
238 			list_add(&cs->wd_list, &watchdog_list);
239 		__clocksource_unstable(cs);
240 	}
241 	spin_unlock_irqrestore(&watchdog_lock, flags);
242 }
243 
244 static int verify_n_cpus = 8;
245 module_param(verify_n_cpus, int, 0644);
246 
247 enum wd_read_status {
248 	WD_READ_SUCCESS,
249 	WD_READ_UNSTABLE,
250 	WD_READ_SKIP
251 };
252 
253 static enum wd_read_status cs_watchdog_read(struct clocksource *cs, u64 *csnow, u64 *wdnow)
254 {
255 	int64_t md = 2 * watchdog->uncertainty_margin;
256 	unsigned int nretries, max_retries;
257 	int64_t wd_delay, wd_seq_delay;
258 	u64 wd_end, wd_end2;
259 
260 	max_retries = clocksource_get_max_watchdog_retry();
261 	for (nretries = 0; nretries <= max_retries; nretries++) {
262 		local_irq_disable();
263 		*wdnow = watchdog->read(watchdog);
264 		*csnow = cs->read(cs);
265 		wd_end = watchdog->read(watchdog);
266 		wd_end2 = watchdog->read(watchdog);
267 		local_irq_enable();
268 
269 		wd_delay = cycles_to_nsec_safe(watchdog, *wdnow, wd_end);
270 		if (wd_delay <= md + cs->uncertainty_margin) {
271 			if (nretries > 1 && nretries >= max_retries) {
272 				pr_warn("timekeeping watchdog on CPU%d: %s retried %d times before success\n",
273 					smp_processor_id(), watchdog->name, nretries);
274 			}
275 			return WD_READ_SUCCESS;
276 		}
277 
278 		/*
279 		 * Now compute delay in consecutive watchdog read to see if
280 		 * there is too much external interferences that cause
281 		 * significant delay in reading both clocksource and watchdog.
282 		 *
283 		 * If consecutive WD read-back delay > md, report
284 		 * system busy, reinit the watchdog and skip the current
285 		 * watchdog test.
286 		 */
287 		wd_seq_delay = cycles_to_nsec_safe(watchdog, wd_end, wd_end2);
288 		if (wd_seq_delay > md)
289 			goto skip_test;
290 	}
291 
292 	pr_warn("timekeeping watchdog on CPU%d: wd-%s-wd excessive read-back delay of %lldns vs. limit of %ldns, wd-wd read-back delay only %lldns, attempt %d, marking %s unstable\n",
293 		smp_processor_id(), cs->name, wd_delay, WATCHDOG_MAX_SKEW, wd_seq_delay, nretries, cs->name);
294 	return WD_READ_UNSTABLE;
295 
296 skip_test:
297 	pr_info("timekeeping watchdog on CPU%d: %s wd-wd read-back delay of %lldns\n",
298 		smp_processor_id(), watchdog->name, wd_seq_delay);
299 	pr_info("wd-%s-wd read-back delay of %lldns, clock-skew test skipped!\n",
300 		cs->name, wd_delay);
301 	return WD_READ_SKIP;
302 }
303 
304 static u64 csnow_mid;
305 static cpumask_t cpus_ahead;
306 static cpumask_t cpus_behind;
307 static cpumask_t cpus_chosen;
308 
309 static void clocksource_verify_choose_cpus(void)
310 {
311 	int cpu, i, n = verify_n_cpus;
312 
313 	if (n < 0) {
314 		/* Check all of the CPUs. */
315 		cpumask_copy(&cpus_chosen, cpu_online_mask);
316 		cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
317 		return;
318 	}
319 
320 	/* If no checking desired, or no other CPU to check, leave. */
321 	cpumask_clear(&cpus_chosen);
322 	if (n == 0 || num_online_cpus() <= 1)
323 		return;
324 
325 	/* Make sure to select at least one CPU other than the current CPU. */
326 	cpu = cpumask_first(cpu_online_mask);
327 	if (cpu == smp_processor_id())
328 		cpu = cpumask_next(cpu, cpu_online_mask);
329 	if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
330 		return;
331 	cpumask_set_cpu(cpu, &cpus_chosen);
332 
333 	/* Force a sane value for the boot parameter. */
334 	if (n > nr_cpu_ids)
335 		n = nr_cpu_ids;
336 
337 	/*
338 	 * Randomly select the specified number of CPUs.  If the same
339 	 * CPU is selected multiple times, that CPU is checked only once,
340 	 * and no replacement CPU is selected.  This gracefully handles
341 	 * situations where verify_n_cpus is greater than the number of
342 	 * CPUs that are currently online.
343 	 */
344 	for (i = 1; i < n; i++) {
345 		cpu = get_random_u32_below(nr_cpu_ids);
346 		cpu = cpumask_next(cpu - 1, cpu_online_mask);
347 		if (cpu >= nr_cpu_ids)
348 			cpu = cpumask_first(cpu_online_mask);
349 		if (!WARN_ON_ONCE(cpu >= nr_cpu_ids))
350 			cpumask_set_cpu(cpu, &cpus_chosen);
351 	}
352 
353 	/* Don't verify ourselves. */
354 	cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
355 }
356 
357 static void clocksource_verify_one_cpu(void *csin)
358 {
359 	struct clocksource *cs = (struct clocksource *)csin;
360 
361 	csnow_mid = cs->read(cs);
362 }
363 
364 void clocksource_verify_percpu(struct clocksource *cs)
365 {
366 	int64_t cs_nsec, cs_nsec_max = 0, cs_nsec_min = LLONG_MAX;
367 	u64 csnow_begin, csnow_end;
368 	int cpu, testcpu;
369 	s64 delta;
370 
371 	if (verify_n_cpus == 0)
372 		return;
373 	cpumask_clear(&cpus_ahead);
374 	cpumask_clear(&cpus_behind);
375 	cpus_read_lock();
376 	preempt_disable();
377 	clocksource_verify_choose_cpus();
378 	if (cpumask_empty(&cpus_chosen)) {
379 		preempt_enable();
380 		cpus_read_unlock();
381 		pr_warn("Not enough CPUs to check clocksource '%s'.\n", cs->name);
382 		return;
383 	}
384 	testcpu = smp_processor_id();
385 	pr_info("Checking clocksource %s synchronization from CPU %d to CPUs %*pbl.\n",
386 		cs->name, testcpu, cpumask_pr_args(&cpus_chosen));
387 	for_each_cpu(cpu, &cpus_chosen) {
388 		if (cpu == testcpu)
389 			continue;
390 		csnow_begin = cs->read(cs);
391 		smp_call_function_single(cpu, clocksource_verify_one_cpu, cs, 1);
392 		csnow_end = cs->read(cs);
393 		delta = (s64)((csnow_mid - csnow_begin) & cs->mask);
394 		if (delta < 0)
395 			cpumask_set_cpu(cpu, &cpus_behind);
396 		delta = (csnow_end - csnow_mid) & cs->mask;
397 		if (delta < 0)
398 			cpumask_set_cpu(cpu, &cpus_ahead);
399 		cs_nsec = cycles_to_nsec_safe(cs, csnow_begin, csnow_end);
400 		if (cs_nsec > cs_nsec_max)
401 			cs_nsec_max = cs_nsec;
402 		if (cs_nsec < cs_nsec_min)
403 			cs_nsec_min = cs_nsec;
404 	}
405 	preempt_enable();
406 	cpus_read_unlock();
407 	if (!cpumask_empty(&cpus_ahead))
408 		pr_warn("        CPUs %*pbl ahead of CPU %d for clocksource %s.\n",
409 			cpumask_pr_args(&cpus_ahead), testcpu, cs->name);
410 	if (!cpumask_empty(&cpus_behind))
411 		pr_warn("        CPUs %*pbl behind CPU %d for clocksource %s.\n",
412 			cpumask_pr_args(&cpus_behind), testcpu, cs->name);
413 	if (!cpumask_empty(&cpus_ahead) || !cpumask_empty(&cpus_behind))
414 		pr_warn("        CPU %d check durations %lldns - %lldns for clocksource %s.\n",
415 			testcpu, cs_nsec_min, cs_nsec_max, cs->name);
416 }
417 EXPORT_SYMBOL_GPL(clocksource_verify_percpu);
418 
419 static inline void clocksource_reset_watchdog(void)
420 {
421 	struct clocksource *cs;
422 
423 	list_for_each_entry(cs, &watchdog_list, wd_list)
424 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
425 }
426 
427 
428 static void clocksource_watchdog(struct timer_list *unused)
429 {
430 	int64_t wd_nsec, cs_nsec, interval;
431 	u64 csnow, wdnow, cslast, wdlast;
432 	int next_cpu, reset_pending;
433 	struct clocksource *cs;
434 	enum wd_read_status read_ret;
435 	unsigned long extra_wait = 0;
436 	u32 md;
437 
438 	spin_lock(&watchdog_lock);
439 	if (!watchdog_running)
440 		goto out;
441 
442 	reset_pending = atomic_read(&watchdog_reset_pending);
443 
444 	list_for_each_entry(cs, &watchdog_list, wd_list) {
445 
446 		/* Clocksource already marked unstable? */
447 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
448 			if (finished_booting)
449 				schedule_work(&watchdog_work);
450 			continue;
451 		}
452 
453 		read_ret = cs_watchdog_read(cs, &csnow, &wdnow);
454 
455 		if (read_ret == WD_READ_UNSTABLE) {
456 			/* Clock readout unreliable, so give it up. */
457 			__clocksource_unstable(cs);
458 			continue;
459 		}
460 
461 		/*
462 		 * When WD_READ_SKIP is returned, it means the system is likely
463 		 * under very heavy load, where the latency of reading
464 		 * watchdog/clocksource is very big, and affect the accuracy of
465 		 * watchdog check. So give system some space and suspend the
466 		 * watchdog check for 5 minutes.
467 		 */
468 		if (read_ret == WD_READ_SKIP) {
469 			/*
470 			 * As the watchdog timer will be suspended, and
471 			 * cs->last could keep unchanged for 5 minutes, reset
472 			 * the counters.
473 			 */
474 			clocksource_reset_watchdog();
475 			extra_wait = HZ * 300;
476 			break;
477 		}
478 
479 		/* Clocksource initialized ? */
480 		if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
481 		    atomic_read(&watchdog_reset_pending)) {
482 			cs->flags |= CLOCK_SOURCE_WATCHDOG;
483 			cs->wd_last = wdnow;
484 			cs->cs_last = csnow;
485 			continue;
486 		}
487 
488 		wd_nsec = cycles_to_nsec_safe(watchdog, cs->wd_last, wdnow);
489 		cs_nsec = cycles_to_nsec_safe(cs, cs->cs_last, csnow);
490 		wdlast = cs->wd_last; /* save these in case we print them */
491 		cslast = cs->cs_last;
492 		cs->cs_last = csnow;
493 		cs->wd_last = wdnow;
494 
495 		if (atomic_read(&watchdog_reset_pending))
496 			continue;
497 
498 		/*
499 		 * The processing of timer softirqs can get delayed (usually
500 		 * on account of ksoftirqd not getting to run in a timely
501 		 * manner), which causes the watchdog interval to stretch.
502 		 * Skew detection may fail for longer watchdog intervals
503 		 * on account of fixed margins being used.
504 		 * Some clocksources, e.g. acpi_pm, cannot tolerate
505 		 * watchdog intervals longer than a few seconds.
506 		 */
507 		interval = max(cs_nsec, wd_nsec);
508 		if (unlikely(interval > WATCHDOG_INTERVAL_MAX_NS)) {
509 			if (system_state > SYSTEM_SCHEDULING &&
510 			    interval > 2 * watchdog_max_interval) {
511 				watchdog_max_interval = interval;
512 				pr_warn("Long readout interval, skipping watchdog check: cs_nsec: %lld wd_nsec: %lld\n",
513 					cs_nsec, wd_nsec);
514 			}
515 			watchdog_timer.expires = jiffies;
516 			continue;
517 		}
518 
519 		/* Check the deviation from the watchdog clocksource. */
520 		md = cs->uncertainty_margin + watchdog->uncertainty_margin;
521 		if (abs(cs_nsec - wd_nsec) > md) {
522 			s64 cs_wd_msec;
523 			s64 wd_msec;
524 			u32 wd_rem;
525 
526 			pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
527 				smp_processor_id(), cs->name);
528 			pr_warn("                      '%s' wd_nsec: %lld wd_now: %llx wd_last: %llx mask: %llx\n",
529 				watchdog->name, wd_nsec, wdnow, wdlast, watchdog->mask);
530 			pr_warn("                      '%s' cs_nsec: %lld cs_now: %llx cs_last: %llx mask: %llx\n",
531 				cs->name, cs_nsec, csnow, cslast, cs->mask);
532 			cs_wd_msec = div_s64_rem(cs_nsec - wd_nsec, 1000 * 1000, &wd_rem);
533 			wd_msec = div_s64_rem(wd_nsec, 1000 * 1000, &wd_rem);
534 			pr_warn("                      Clocksource '%s' skewed %lld ns (%lld ms) over watchdog '%s' interval of %lld ns (%lld ms)\n",
535 				cs->name, cs_nsec - wd_nsec, cs_wd_msec, watchdog->name, wd_nsec, wd_msec);
536 			if (curr_clocksource == cs)
537 				pr_warn("                      '%s' is current clocksource.\n", cs->name);
538 			else if (curr_clocksource)
539 				pr_warn("                      '%s' (not '%s') is current clocksource.\n", curr_clocksource->name, cs->name);
540 			else
541 				pr_warn("                      No current clocksource.\n");
542 			__clocksource_unstable(cs);
543 			continue;
544 		}
545 
546 		if (cs == curr_clocksource && cs->tick_stable)
547 			cs->tick_stable(cs);
548 
549 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
550 		    (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
551 		    (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
552 			/* Mark it valid for high-res. */
553 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
554 
555 			/*
556 			 * clocksource_done_booting() will sort it if
557 			 * finished_booting is not set yet.
558 			 */
559 			if (!finished_booting)
560 				continue;
561 
562 			/*
563 			 * If this is not the current clocksource let
564 			 * the watchdog thread reselect it. Due to the
565 			 * change to high res this clocksource might
566 			 * be preferred now. If it is the current
567 			 * clocksource let the tick code know about
568 			 * that change.
569 			 */
570 			if (cs != curr_clocksource) {
571 				cs->flags |= CLOCK_SOURCE_RESELECT;
572 				schedule_work(&watchdog_work);
573 			} else {
574 				tick_clock_notify();
575 			}
576 		}
577 	}
578 
579 	/*
580 	 * We only clear the watchdog_reset_pending, when we did a
581 	 * full cycle through all clocksources.
582 	 */
583 	if (reset_pending)
584 		atomic_dec(&watchdog_reset_pending);
585 
586 	/*
587 	 * Cycle through CPUs to check if the CPUs stay synchronized
588 	 * to each other.
589 	 */
590 	next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
591 	if (next_cpu >= nr_cpu_ids)
592 		next_cpu = cpumask_first(cpu_online_mask);
593 
594 	/*
595 	 * Arm timer if not already pending: could race with concurrent
596 	 * pair clocksource_stop_watchdog() clocksource_start_watchdog().
597 	 */
598 	if (!timer_pending(&watchdog_timer)) {
599 		watchdog_timer.expires += WATCHDOG_INTERVAL + extra_wait;
600 		add_timer_on(&watchdog_timer, next_cpu);
601 	}
602 out:
603 	spin_unlock(&watchdog_lock);
604 }
605 
606 static inline void clocksource_start_watchdog(void)
607 {
608 	if (watchdog_running || !watchdog || list_empty(&watchdog_list))
609 		return;
610 	timer_setup(&watchdog_timer, clocksource_watchdog, 0);
611 	watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
612 	add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
613 	watchdog_running = 1;
614 }
615 
616 static inline void clocksource_stop_watchdog(void)
617 {
618 	if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
619 		return;
620 	del_timer(&watchdog_timer);
621 	watchdog_running = 0;
622 }
623 
624 static void clocksource_resume_watchdog(void)
625 {
626 	atomic_inc(&watchdog_reset_pending);
627 }
628 
629 static void clocksource_enqueue_watchdog(struct clocksource *cs)
630 {
631 	INIT_LIST_HEAD(&cs->wd_list);
632 
633 	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
634 		/* cs is a clocksource to be watched. */
635 		list_add(&cs->wd_list, &watchdog_list);
636 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
637 	} else {
638 		/* cs is a watchdog. */
639 		if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
640 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
641 	}
642 }
643 
644 static void clocksource_select_watchdog(bool fallback)
645 {
646 	struct clocksource *cs, *old_wd;
647 	unsigned long flags;
648 
649 	spin_lock_irqsave(&watchdog_lock, flags);
650 	/* save current watchdog */
651 	old_wd = watchdog;
652 	if (fallback)
653 		watchdog = NULL;
654 
655 	list_for_each_entry(cs, &clocksource_list, list) {
656 		/* cs is a clocksource to be watched. */
657 		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
658 			continue;
659 
660 		/* Skip current if we were requested for a fallback. */
661 		if (fallback && cs == old_wd)
662 			continue;
663 
664 		/* Pick the best watchdog. */
665 		if (!watchdog || cs->rating > watchdog->rating)
666 			watchdog = cs;
667 	}
668 	/* If we failed to find a fallback restore the old one. */
669 	if (!watchdog)
670 		watchdog = old_wd;
671 
672 	/* If we changed the watchdog we need to reset cycles. */
673 	if (watchdog != old_wd)
674 		clocksource_reset_watchdog();
675 
676 	/* Check if the watchdog timer needs to be started. */
677 	clocksource_start_watchdog();
678 	spin_unlock_irqrestore(&watchdog_lock, flags);
679 }
680 
681 static void clocksource_dequeue_watchdog(struct clocksource *cs)
682 {
683 	if (cs != watchdog) {
684 		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
685 			/* cs is a watched clocksource. */
686 			list_del_init(&cs->wd_list);
687 			/* Check if the watchdog timer needs to be stopped. */
688 			clocksource_stop_watchdog();
689 		}
690 	}
691 }
692 
693 static int __clocksource_watchdog_kthread(void)
694 {
695 	struct clocksource *cs, *tmp;
696 	unsigned long flags;
697 	int select = 0;
698 
699 	/* Do any required per-CPU skew verification. */
700 	if (curr_clocksource &&
701 	    curr_clocksource->flags & CLOCK_SOURCE_UNSTABLE &&
702 	    curr_clocksource->flags & CLOCK_SOURCE_VERIFY_PERCPU)
703 		clocksource_verify_percpu(curr_clocksource);
704 
705 	spin_lock_irqsave(&watchdog_lock, flags);
706 	list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
707 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
708 			list_del_init(&cs->wd_list);
709 			clocksource_change_rating(cs, 0);
710 			select = 1;
711 		}
712 		if (cs->flags & CLOCK_SOURCE_RESELECT) {
713 			cs->flags &= ~CLOCK_SOURCE_RESELECT;
714 			select = 1;
715 		}
716 	}
717 	/* Check if the watchdog timer needs to be stopped. */
718 	clocksource_stop_watchdog();
719 	spin_unlock_irqrestore(&watchdog_lock, flags);
720 
721 	return select;
722 }
723 
724 static int clocksource_watchdog_kthread(void *data)
725 {
726 	mutex_lock(&clocksource_mutex);
727 	if (__clocksource_watchdog_kthread())
728 		clocksource_select();
729 	mutex_unlock(&clocksource_mutex);
730 	return 0;
731 }
732 
733 static bool clocksource_is_watchdog(struct clocksource *cs)
734 {
735 	return cs == watchdog;
736 }
737 
738 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */
739 
740 static void clocksource_enqueue_watchdog(struct clocksource *cs)
741 {
742 	if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
743 		cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
744 }
745 
746 static void clocksource_select_watchdog(bool fallback) { }
747 static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
748 static inline void clocksource_resume_watchdog(void) { }
749 static inline int __clocksource_watchdog_kthread(void) { return 0; }
750 static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
751 void clocksource_mark_unstable(struct clocksource *cs) { }
752 
753 static inline void clocksource_watchdog_lock(unsigned long *flags) { }
754 static inline void clocksource_watchdog_unlock(unsigned long *flags) { }
755 
756 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
757 
758 static bool clocksource_is_suspend(struct clocksource *cs)
759 {
760 	return cs == suspend_clocksource;
761 }
762 
763 static void __clocksource_suspend_select(struct clocksource *cs)
764 {
765 	/*
766 	 * Skip the clocksource which will be stopped in suspend state.
767 	 */
768 	if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP))
769 		return;
770 
771 	/*
772 	 * The nonstop clocksource can be selected as the suspend clocksource to
773 	 * calculate the suspend time, so it should not supply suspend/resume
774 	 * interfaces to suspend the nonstop clocksource when system suspends.
775 	 */
776 	if (cs->suspend || cs->resume) {
777 		pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n",
778 			cs->name);
779 	}
780 
781 	/* Pick the best rating. */
782 	if (!suspend_clocksource || cs->rating > suspend_clocksource->rating)
783 		suspend_clocksource = cs;
784 }
785 
786 /**
787  * clocksource_suspend_select - Select the best clocksource for suspend timing
788  * @fallback:	if select a fallback clocksource
789  */
790 static void clocksource_suspend_select(bool fallback)
791 {
792 	struct clocksource *cs, *old_suspend;
793 
794 	old_suspend = suspend_clocksource;
795 	if (fallback)
796 		suspend_clocksource = NULL;
797 
798 	list_for_each_entry(cs, &clocksource_list, list) {
799 		/* Skip current if we were requested for a fallback. */
800 		if (fallback && cs == old_suspend)
801 			continue;
802 
803 		__clocksource_suspend_select(cs);
804 	}
805 }
806 
807 /**
808  * clocksource_start_suspend_timing - Start measuring the suspend timing
809  * @cs:			current clocksource from timekeeping
810  * @start_cycles:	current cycles from timekeeping
811  *
812  * This function will save the start cycle values of suspend timer to calculate
813  * the suspend time when resuming system.
814  *
815  * This function is called late in the suspend process from timekeeping_suspend(),
816  * that means processes are frozen, non-boot cpus and interrupts are disabled
817  * now. It is therefore possible to start the suspend timer without taking the
818  * clocksource mutex.
819  */
820 void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles)
821 {
822 	if (!suspend_clocksource)
823 		return;
824 
825 	/*
826 	 * If current clocksource is the suspend timer, we should use the
827 	 * tkr_mono.cycle_last value as suspend_start to avoid same reading
828 	 * from suspend timer.
829 	 */
830 	if (clocksource_is_suspend(cs)) {
831 		suspend_start = start_cycles;
832 		return;
833 	}
834 
835 	if (suspend_clocksource->enable &&
836 	    suspend_clocksource->enable(suspend_clocksource)) {
837 		pr_warn_once("Failed to enable the non-suspend-able clocksource.\n");
838 		return;
839 	}
840 
841 	suspend_start = suspend_clocksource->read(suspend_clocksource);
842 }
843 
844 /**
845  * clocksource_stop_suspend_timing - Stop measuring the suspend timing
846  * @cs:		current clocksource from timekeeping
847  * @cycle_now:	current cycles from timekeeping
848  *
849  * This function will calculate the suspend time from suspend timer.
850  *
851  * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource.
852  *
853  * This function is called early in the resume process from timekeeping_resume(),
854  * that means there is only one cpu, no processes are running and the interrupts
855  * are disabled. It is therefore possible to stop the suspend timer without
856  * taking the clocksource mutex.
857  */
858 u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now)
859 {
860 	u64 now, nsec = 0;
861 
862 	if (!suspend_clocksource)
863 		return 0;
864 
865 	/*
866 	 * If current clocksource is the suspend timer, we should use the
867 	 * tkr_mono.cycle_last value from timekeeping as current cycle to
868 	 * avoid same reading from suspend timer.
869 	 */
870 	if (clocksource_is_suspend(cs))
871 		now = cycle_now;
872 	else
873 		now = suspend_clocksource->read(suspend_clocksource);
874 
875 	if (now > suspend_start)
876 		nsec = cycles_to_nsec_safe(suspend_clocksource, suspend_start, now);
877 
878 	/*
879 	 * Disable the suspend timer to save power if current clocksource is
880 	 * not the suspend timer.
881 	 */
882 	if (!clocksource_is_suspend(cs) && suspend_clocksource->disable)
883 		suspend_clocksource->disable(suspend_clocksource);
884 
885 	return nsec;
886 }
887 
888 /**
889  * clocksource_suspend - suspend the clocksource(s)
890  */
891 void clocksource_suspend(void)
892 {
893 	struct clocksource *cs;
894 
895 	list_for_each_entry_reverse(cs, &clocksource_list, list)
896 		if (cs->suspend)
897 			cs->suspend(cs);
898 }
899 
900 /**
901  * clocksource_resume - resume the clocksource(s)
902  */
903 void clocksource_resume(void)
904 {
905 	struct clocksource *cs;
906 
907 	list_for_each_entry(cs, &clocksource_list, list)
908 		if (cs->resume)
909 			cs->resume(cs);
910 
911 	clocksource_resume_watchdog();
912 }
913 
914 /**
915  * clocksource_touch_watchdog - Update watchdog
916  *
917  * Update the watchdog after exception contexts such as kgdb so as not
918  * to incorrectly trip the watchdog. This might fail when the kernel
919  * was stopped in code which holds watchdog_lock.
920  */
921 void clocksource_touch_watchdog(void)
922 {
923 	clocksource_resume_watchdog();
924 }
925 
926 /**
927  * clocksource_max_adjustment- Returns max adjustment amount
928  * @cs:         Pointer to clocksource
929  *
930  */
931 static u32 clocksource_max_adjustment(struct clocksource *cs)
932 {
933 	u64 ret;
934 	/*
935 	 * We won't try to correct for more than 11% adjustments (110,000 ppm),
936 	 */
937 	ret = (u64)cs->mult * 11;
938 	do_div(ret,100);
939 	return (u32)ret;
940 }
941 
942 /**
943  * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
944  * @mult:	cycle to nanosecond multiplier
945  * @shift:	cycle to nanosecond divisor (power of two)
946  * @maxadj:	maximum adjustment value to mult (~11%)
947  * @mask:	bitmask for two's complement subtraction of non 64 bit counters
948  * @max_cyc:	maximum cycle value before potential overflow (does not include
949  *		any safety margin)
950  *
951  * NOTE: This function includes a safety margin of 50%, in other words, we
952  * return half the number of nanoseconds the hardware counter can technically
953  * cover. This is done so that we can potentially detect problems caused by
954  * delayed timers or bad hardware, which might result in time intervals that
955  * are larger than what the math used can handle without overflows.
956  */
957 u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
958 {
959 	u64 max_nsecs, max_cycles;
960 
961 	/*
962 	 * Calculate the maximum number of cycles that we can pass to the
963 	 * cyc2ns() function without overflowing a 64-bit result.
964 	 */
965 	max_cycles = ULLONG_MAX;
966 	do_div(max_cycles, mult+maxadj);
967 
968 	/*
969 	 * The actual maximum number of cycles we can defer the clocksource is
970 	 * determined by the minimum of max_cycles and mask.
971 	 * Note: Here we subtract the maxadj to make sure we don't sleep for
972 	 * too long if there's a large negative adjustment.
973 	 */
974 	max_cycles = min(max_cycles, mask);
975 	max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
976 
977 	/* return the max_cycles value as well if requested */
978 	if (max_cyc)
979 		*max_cyc = max_cycles;
980 
981 	/* Return 50% of the actual maximum, so we can detect bad values */
982 	max_nsecs >>= 1;
983 
984 	return max_nsecs;
985 }
986 
987 /**
988  * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
989  * @cs:         Pointer to clocksource to be updated
990  *
991  */
992 static inline void clocksource_update_max_deferment(struct clocksource *cs)
993 {
994 	cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
995 						cs->maxadj, cs->mask,
996 						&cs->max_cycles);
997 
998 	/*
999 	 * Threshold for detecting negative motion in clocksource_delta().
1000 	 *
1001 	 * Allow for 0.875 of the counter width so that overly long idle
1002 	 * sleeps, which go slightly over mask/2, do not trigger the
1003 	 * negative motion detection.
1004 	 */
1005 	cs->max_raw_delta = (cs->mask >> 1) + (cs->mask >> 2) + (cs->mask >> 3);
1006 }
1007 
1008 static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
1009 {
1010 	struct clocksource *cs;
1011 
1012 	if (!finished_booting || list_empty(&clocksource_list))
1013 		return NULL;
1014 
1015 	/*
1016 	 * We pick the clocksource with the highest rating. If oneshot
1017 	 * mode is active, we pick the highres valid clocksource with
1018 	 * the best rating.
1019 	 */
1020 	list_for_each_entry(cs, &clocksource_list, list) {
1021 		if (skipcur && cs == curr_clocksource)
1022 			continue;
1023 		if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1024 			continue;
1025 		return cs;
1026 	}
1027 	return NULL;
1028 }
1029 
1030 static void __clocksource_select(bool skipcur)
1031 {
1032 	bool oneshot = tick_oneshot_mode_active();
1033 	struct clocksource *best, *cs;
1034 
1035 	/* Find the best suitable clocksource */
1036 	best = clocksource_find_best(oneshot, skipcur);
1037 	if (!best)
1038 		return;
1039 
1040 	if (!strlen(override_name))
1041 		goto found;
1042 
1043 	/* Check for the override clocksource. */
1044 	list_for_each_entry(cs, &clocksource_list, list) {
1045 		if (skipcur && cs == curr_clocksource)
1046 			continue;
1047 		if (strcmp(cs->name, override_name) != 0)
1048 			continue;
1049 		/*
1050 		 * Check to make sure we don't switch to a non-highres
1051 		 * capable clocksource if the tick code is in oneshot
1052 		 * mode (highres or nohz)
1053 		 */
1054 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
1055 			/* Override clocksource cannot be used. */
1056 			if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
1057 				pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
1058 					cs->name);
1059 				override_name[0] = 0;
1060 			} else {
1061 				/*
1062 				 * The override cannot be currently verified.
1063 				 * Deferring to let the watchdog check.
1064 				 */
1065 				pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
1066 					cs->name);
1067 			}
1068 		} else
1069 			/* Override clocksource can be used. */
1070 			best = cs;
1071 		break;
1072 	}
1073 
1074 found:
1075 	if (curr_clocksource != best && !timekeeping_notify(best)) {
1076 		pr_info("Switched to clocksource %s\n", best->name);
1077 		curr_clocksource = best;
1078 	}
1079 }
1080 
1081 /**
1082  * clocksource_select - Select the best clocksource available
1083  *
1084  * Private function. Must hold clocksource_mutex when called.
1085  *
1086  * Select the clocksource with the best rating, or the clocksource,
1087  * which is selected by userspace override.
1088  */
1089 static void clocksource_select(void)
1090 {
1091 	__clocksource_select(false);
1092 }
1093 
1094 static void clocksource_select_fallback(void)
1095 {
1096 	__clocksource_select(true);
1097 }
1098 
1099 /*
1100  * clocksource_done_booting - Called near the end of core bootup
1101  *
1102  * Hack to avoid lots of clocksource churn at boot time.
1103  * We use fs_initcall because we want this to start before
1104  * device_initcall but after subsys_initcall.
1105  */
1106 static int __init clocksource_done_booting(void)
1107 {
1108 	mutex_lock(&clocksource_mutex);
1109 	curr_clocksource = clocksource_default_clock();
1110 	finished_booting = 1;
1111 	/*
1112 	 * Run the watchdog first to eliminate unstable clock sources
1113 	 */
1114 	__clocksource_watchdog_kthread();
1115 	clocksource_select();
1116 	mutex_unlock(&clocksource_mutex);
1117 	return 0;
1118 }
1119 fs_initcall(clocksource_done_booting);
1120 
1121 /*
1122  * Enqueue the clocksource sorted by rating
1123  */
1124 static void clocksource_enqueue(struct clocksource *cs)
1125 {
1126 	struct list_head *entry = &clocksource_list;
1127 	struct clocksource *tmp;
1128 
1129 	list_for_each_entry(tmp, &clocksource_list, list) {
1130 		/* Keep track of the place, where to insert */
1131 		if (tmp->rating < cs->rating)
1132 			break;
1133 		entry = &tmp->list;
1134 	}
1135 	list_add(&cs->list, entry);
1136 }
1137 
1138 /**
1139  * __clocksource_update_freq_scale - Used update clocksource with new freq
1140  * @cs:		clocksource to be registered
1141  * @scale:	Scale factor multiplied against freq to get clocksource hz
1142  * @freq:	clocksource frequency (cycles per second) divided by scale
1143  *
1144  * This should only be called from the clocksource->enable() method.
1145  *
1146  * This *SHOULD NOT* be called directly! Please use the
1147  * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
1148  * functions.
1149  */
1150 void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
1151 {
1152 	u64 sec;
1153 
1154 	/*
1155 	 * Default clocksources are *special* and self-define their mult/shift.
1156 	 * But, you're not special, so you should specify a freq value.
1157 	 */
1158 	if (freq) {
1159 		/*
1160 		 * Calc the maximum number of seconds which we can run before
1161 		 * wrapping around. For clocksources which have a mask > 32-bit
1162 		 * we need to limit the max sleep time to have a good
1163 		 * conversion precision. 10 minutes is still a reasonable
1164 		 * amount. That results in a shift value of 24 for a
1165 		 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
1166 		 * ~ 0.06ppm granularity for NTP.
1167 		 */
1168 		sec = cs->mask;
1169 		do_div(sec, freq);
1170 		do_div(sec, scale);
1171 		if (!sec)
1172 			sec = 1;
1173 		else if (sec > 600 && cs->mask > UINT_MAX)
1174 			sec = 600;
1175 
1176 		clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
1177 				       NSEC_PER_SEC / scale, sec * scale);
1178 	}
1179 
1180 	/*
1181 	 * If the uncertainty margin is not specified, calculate it.  If
1182 	 * both scale and freq are non-zero, calculate the clock period, but
1183 	 * bound below at 2*WATCHDOG_MAX_SKEW, that is, 500ppm by default.
1184 	 * However, if either of scale or freq is zero, be very conservative
1185 	 * and take the tens-of-milliseconds WATCHDOG_THRESHOLD value
1186 	 * for the uncertainty margin.  Allow stupidly small uncertainty
1187 	 * margins to be specified by the caller for testing purposes,
1188 	 * but warn to discourage production use of this capability.
1189 	 *
1190 	 * Bottom line:  The sum of the uncertainty margins of the
1191 	 * watchdog clocksource and the clocksource under test will be at
1192 	 * least 500ppm by default.  For more information, please see the
1193 	 * comment preceding CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US above.
1194 	 */
1195 	if (scale && freq && !cs->uncertainty_margin) {
1196 		cs->uncertainty_margin = NSEC_PER_SEC / (scale * freq);
1197 		if (cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW)
1198 			cs->uncertainty_margin = 2 * WATCHDOG_MAX_SKEW;
1199 	} else if (!cs->uncertainty_margin) {
1200 		cs->uncertainty_margin = WATCHDOG_THRESHOLD;
1201 	}
1202 	WARN_ON_ONCE(cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW);
1203 
1204 	/*
1205 	 * Ensure clocksources that have large 'mult' values don't overflow
1206 	 * when adjusted.
1207 	 */
1208 	cs->maxadj = clocksource_max_adjustment(cs);
1209 	while (freq && ((cs->mult + cs->maxadj < cs->mult)
1210 		|| (cs->mult - cs->maxadj > cs->mult))) {
1211 		cs->mult >>= 1;
1212 		cs->shift--;
1213 		cs->maxadj = clocksource_max_adjustment(cs);
1214 	}
1215 
1216 	/*
1217 	 * Only warn for *special* clocksources that self-define
1218 	 * their mult/shift values and don't specify a freq.
1219 	 */
1220 	WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
1221 		"timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
1222 		cs->name);
1223 
1224 	clocksource_update_max_deferment(cs);
1225 
1226 	pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
1227 		cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
1228 }
1229 EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
1230 
1231 /**
1232  * __clocksource_register_scale - Used to install new clocksources
1233  * @cs:		clocksource to be registered
1234  * @scale:	Scale factor multiplied against freq to get clocksource hz
1235  * @freq:	clocksource frequency (cycles per second) divided by scale
1236  *
1237  * Returns -EBUSY if registration fails, zero otherwise.
1238  *
1239  * This *SHOULD NOT* be called directly! Please use the
1240  * clocksource_register_hz() or clocksource_register_khz helper functions.
1241  */
1242 int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
1243 {
1244 	unsigned long flags;
1245 
1246 	clocksource_arch_init(cs);
1247 
1248 	if (WARN_ON_ONCE((unsigned int)cs->id >= CSID_MAX))
1249 		cs->id = CSID_GENERIC;
1250 	if (cs->vdso_clock_mode < 0 ||
1251 	    cs->vdso_clock_mode >= VDSO_CLOCKMODE_MAX) {
1252 		pr_warn("clocksource %s registered with invalid VDSO mode %d. Disabling VDSO support.\n",
1253 			cs->name, cs->vdso_clock_mode);
1254 		cs->vdso_clock_mode = VDSO_CLOCKMODE_NONE;
1255 	}
1256 
1257 	/* Initialize mult/shift and max_idle_ns */
1258 	__clocksource_update_freq_scale(cs, scale, freq);
1259 
1260 	/* Add clocksource to the clocksource list */
1261 	mutex_lock(&clocksource_mutex);
1262 
1263 	clocksource_watchdog_lock(&flags);
1264 	clocksource_enqueue(cs);
1265 	clocksource_enqueue_watchdog(cs);
1266 	clocksource_watchdog_unlock(&flags);
1267 
1268 	clocksource_select();
1269 	clocksource_select_watchdog(false);
1270 	__clocksource_suspend_select(cs);
1271 	mutex_unlock(&clocksource_mutex);
1272 	return 0;
1273 }
1274 EXPORT_SYMBOL_GPL(__clocksource_register_scale);
1275 
1276 /*
1277  * Unbind clocksource @cs. Called with clocksource_mutex held
1278  */
1279 static int clocksource_unbind(struct clocksource *cs)
1280 {
1281 	unsigned long flags;
1282 
1283 	if (clocksource_is_watchdog(cs)) {
1284 		/* Select and try to install a replacement watchdog. */
1285 		clocksource_select_watchdog(true);
1286 		if (clocksource_is_watchdog(cs))
1287 			return -EBUSY;
1288 	}
1289 
1290 	if (cs == curr_clocksource) {
1291 		/* Select and try to install a replacement clock source */
1292 		clocksource_select_fallback();
1293 		if (curr_clocksource == cs)
1294 			return -EBUSY;
1295 	}
1296 
1297 	if (clocksource_is_suspend(cs)) {
1298 		/*
1299 		 * Select and try to install a replacement suspend clocksource.
1300 		 * If no replacement suspend clocksource, we will just let the
1301 		 * clocksource go and have no suspend clocksource.
1302 		 */
1303 		clocksource_suspend_select(true);
1304 	}
1305 
1306 	clocksource_watchdog_lock(&flags);
1307 	clocksource_dequeue_watchdog(cs);
1308 	list_del_init(&cs->list);
1309 	clocksource_watchdog_unlock(&flags);
1310 
1311 	return 0;
1312 }
1313 
1314 /**
1315  * clocksource_unregister - remove a registered clocksource
1316  * @cs:	clocksource to be unregistered
1317  */
1318 int clocksource_unregister(struct clocksource *cs)
1319 {
1320 	int ret = 0;
1321 
1322 	mutex_lock(&clocksource_mutex);
1323 	if (!list_empty(&cs->list))
1324 		ret = clocksource_unbind(cs);
1325 	mutex_unlock(&clocksource_mutex);
1326 	return ret;
1327 }
1328 EXPORT_SYMBOL(clocksource_unregister);
1329 
1330 #ifdef CONFIG_SYSFS
1331 /**
1332  * current_clocksource_show - sysfs interface for current clocksource
1333  * @dev:	unused
1334  * @attr:	unused
1335  * @buf:	char buffer to be filled with clocksource list
1336  *
1337  * Provides sysfs interface for listing current clocksource.
1338  */
1339 static ssize_t current_clocksource_show(struct device *dev,
1340 					struct device_attribute *attr,
1341 					char *buf)
1342 {
1343 	ssize_t count = 0;
1344 
1345 	mutex_lock(&clocksource_mutex);
1346 	count = sysfs_emit(buf, "%s\n", curr_clocksource->name);
1347 	mutex_unlock(&clocksource_mutex);
1348 
1349 	return count;
1350 }
1351 
1352 ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
1353 {
1354 	size_t ret = cnt;
1355 
1356 	/* strings from sysfs write are not 0 terminated! */
1357 	if (!cnt || cnt >= CS_NAME_LEN)
1358 		return -EINVAL;
1359 
1360 	/* strip of \n: */
1361 	if (buf[cnt-1] == '\n')
1362 		cnt--;
1363 	if (cnt > 0)
1364 		memcpy(dst, buf, cnt);
1365 	dst[cnt] = 0;
1366 	return ret;
1367 }
1368 
1369 /**
1370  * current_clocksource_store - interface for manually overriding clocksource
1371  * @dev:	unused
1372  * @attr:	unused
1373  * @buf:	name of override clocksource
1374  * @count:	length of buffer
1375  *
1376  * Takes input from sysfs interface for manually overriding the default
1377  * clocksource selection.
1378  */
1379 static ssize_t current_clocksource_store(struct device *dev,
1380 					 struct device_attribute *attr,
1381 					 const char *buf, size_t count)
1382 {
1383 	ssize_t ret;
1384 
1385 	mutex_lock(&clocksource_mutex);
1386 
1387 	ret = sysfs_get_uname(buf, override_name, count);
1388 	if (ret >= 0)
1389 		clocksource_select();
1390 
1391 	mutex_unlock(&clocksource_mutex);
1392 
1393 	return ret;
1394 }
1395 static DEVICE_ATTR_RW(current_clocksource);
1396 
1397 /**
1398  * unbind_clocksource_store - interface for manually unbinding clocksource
1399  * @dev:	unused
1400  * @attr:	unused
1401  * @buf:	unused
1402  * @count:	length of buffer
1403  *
1404  * Takes input from sysfs interface for manually unbinding a clocksource.
1405  */
1406 static ssize_t unbind_clocksource_store(struct device *dev,
1407 					struct device_attribute *attr,
1408 					const char *buf, size_t count)
1409 {
1410 	struct clocksource *cs;
1411 	char name[CS_NAME_LEN];
1412 	ssize_t ret;
1413 
1414 	ret = sysfs_get_uname(buf, name, count);
1415 	if (ret < 0)
1416 		return ret;
1417 
1418 	ret = -ENODEV;
1419 	mutex_lock(&clocksource_mutex);
1420 	list_for_each_entry(cs, &clocksource_list, list) {
1421 		if (strcmp(cs->name, name))
1422 			continue;
1423 		ret = clocksource_unbind(cs);
1424 		break;
1425 	}
1426 	mutex_unlock(&clocksource_mutex);
1427 
1428 	return ret ? ret : count;
1429 }
1430 static DEVICE_ATTR_WO(unbind_clocksource);
1431 
1432 /**
1433  * available_clocksource_show - sysfs interface for listing clocksource
1434  * @dev:	unused
1435  * @attr:	unused
1436  * @buf:	char buffer to be filled with clocksource list
1437  *
1438  * Provides sysfs interface for listing registered clocksources
1439  */
1440 static ssize_t available_clocksource_show(struct device *dev,
1441 					  struct device_attribute *attr,
1442 					  char *buf)
1443 {
1444 	struct clocksource *src;
1445 	ssize_t count = 0;
1446 
1447 	mutex_lock(&clocksource_mutex);
1448 	list_for_each_entry(src, &clocksource_list, list) {
1449 		/*
1450 		 * Don't show non-HRES clocksource if the tick code is
1451 		 * in one shot mode (highres=on or nohz=on)
1452 		 */
1453 		if (!tick_oneshot_mode_active() ||
1454 		    (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1455 			count += snprintf(buf + count,
1456 				  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1457 				  "%s ", src->name);
1458 	}
1459 	mutex_unlock(&clocksource_mutex);
1460 
1461 	count += snprintf(buf + count,
1462 			  max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1463 
1464 	return count;
1465 }
1466 static DEVICE_ATTR_RO(available_clocksource);
1467 
1468 static struct attribute *clocksource_attrs[] = {
1469 	&dev_attr_current_clocksource.attr,
1470 	&dev_attr_unbind_clocksource.attr,
1471 	&dev_attr_available_clocksource.attr,
1472 	NULL
1473 };
1474 ATTRIBUTE_GROUPS(clocksource);
1475 
1476 static const struct bus_type clocksource_subsys = {
1477 	.name = "clocksource",
1478 	.dev_name = "clocksource",
1479 };
1480 
1481 static struct device device_clocksource = {
1482 	.id	= 0,
1483 	.bus	= &clocksource_subsys,
1484 	.groups	= clocksource_groups,
1485 };
1486 
1487 static int __init init_clocksource_sysfs(void)
1488 {
1489 	int error = subsys_system_register(&clocksource_subsys, NULL);
1490 
1491 	if (!error)
1492 		error = device_register(&device_clocksource);
1493 
1494 	return error;
1495 }
1496 
1497 device_initcall(init_clocksource_sysfs);
1498 #endif /* CONFIG_SYSFS */
1499 
1500 /**
1501  * boot_override_clocksource - boot clock override
1502  * @str:	override name
1503  *
1504  * Takes a clocksource= boot argument and uses it
1505  * as the clocksource override name.
1506  */
1507 static int __init boot_override_clocksource(char* str)
1508 {
1509 	mutex_lock(&clocksource_mutex);
1510 	if (str)
1511 		strscpy(override_name, str, sizeof(override_name));
1512 	mutex_unlock(&clocksource_mutex);
1513 	return 1;
1514 }
1515 
1516 __setup("clocksource=", boot_override_clocksource);
1517 
1518 /**
1519  * boot_override_clock - Compatibility layer for deprecated boot option
1520  * @str:	override name
1521  *
1522  * DEPRECATED! Takes a clock= boot argument and uses it
1523  * as the clocksource override name
1524  */
1525 static int __init boot_override_clock(char* str)
1526 {
1527 	if (!strcmp(str, "pmtmr")) {
1528 		pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1529 		return boot_override_clocksource("acpi_pm");
1530 	}
1531 	pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1532 	return boot_override_clocksource(str);
1533 }
1534 
1535 __setup("clock=", boot_override_clock);
1536