1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 #include <linux/sched/prio.h> 41 42 #include <linux/cpuidle.h> 43 #include <linux/interrupt.h> 44 #include <linux/memory-tiers.h> 45 #include <linux/mempolicy.h> 46 #include <linux/mutex_api.h> 47 #include <linux/profile.h> 48 #include <linux/psi.h> 49 #include <linux/ratelimit.h> 50 #include <linux/task_work.h> 51 #include <linux/rbtree_augmented.h> 52 53 #include <asm/switch_to.h> 54 55 #include <uapi/linux/sched/types.h> 56 57 #include "sched.h" 58 #include "stats.h" 59 #include "autogroup.h" 60 61 /* 62 * The initial- and re-scaling of tunables is configurable 63 * 64 * Options are: 65 * 66 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 67 * SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus) 68 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 69 * 70 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 71 */ 72 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 73 74 /* 75 * Minimal preemption granularity for CPU-bound tasks: 76 * 77 * (default: 0.70 msec * (1 + ilog(ncpus)), units: nanoseconds) 78 */ 79 unsigned int sysctl_sched_base_slice = 700000ULL; 80 static unsigned int normalized_sysctl_sched_base_slice = 700000ULL; 81 82 __read_mostly unsigned int sysctl_sched_migration_cost = 500000UL; 83 84 static int __init setup_sched_thermal_decay_shift(char *str) 85 { 86 pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n"); 87 return 1; 88 } 89 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 90 91 #ifdef CONFIG_SMP 92 /* 93 * For asym packing, by default the lower numbered CPU has higher priority. 94 */ 95 int __weak arch_asym_cpu_priority(int cpu) 96 { 97 return -cpu; 98 } 99 100 /* 101 * The margin used when comparing utilization with CPU capacity. 102 * 103 * (default: ~20%) 104 */ 105 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 106 107 /* 108 * The margin used when comparing CPU capacities. 109 * is 'cap1' noticeably greater than 'cap2' 110 * 111 * (default: ~5%) 112 */ 113 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 114 #endif 115 116 #ifdef CONFIG_CFS_BANDWIDTH 117 /* 118 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 119 * each time a cfs_rq requests quota. 120 * 121 * Note: in the case that the slice exceeds the runtime remaining (either due 122 * to consumption or the quota being specified to be smaller than the slice) 123 * we will always only issue the remaining available time. 124 * 125 * (default: 5 msec, units: microseconds) 126 */ 127 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 128 #endif 129 130 #ifdef CONFIG_NUMA_BALANCING 131 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ 132 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; 133 #endif 134 135 #ifdef CONFIG_SYSCTL 136 static const struct ctl_table sched_fair_sysctls[] = { 137 #ifdef CONFIG_CFS_BANDWIDTH 138 { 139 .procname = "sched_cfs_bandwidth_slice_us", 140 .data = &sysctl_sched_cfs_bandwidth_slice, 141 .maxlen = sizeof(unsigned int), 142 .mode = 0644, 143 .proc_handler = proc_dointvec_minmax, 144 .extra1 = SYSCTL_ONE, 145 }, 146 #endif 147 #ifdef CONFIG_NUMA_BALANCING 148 { 149 .procname = "numa_balancing_promote_rate_limit_MBps", 150 .data = &sysctl_numa_balancing_promote_rate_limit, 151 .maxlen = sizeof(unsigned int), 152 .mode = 0644, 153 .proc_handler = proc_dointvec_minmax, 154 .extra1 = SYSCTL_ZERO, 155 }, 156 #endif /* CONFIG_NUMA_BALANCING */ 157 }; 158 159 static int __init sched_fair_sysctl_init(void) 160 { 161 register_sysctl_init("kernel", sched_fair_sysctls); 162 return 0; 163 } 164 late_initcall(sched_fair_sysctl_init); 165 #endif 166 167 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 168 { 169 lw->weight += inc; 170 lw->inv_weight = 0; 171 } 172 173 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 174 { 175 lw->weight -= dec; 176 lw->inv_weight = 0; 177 } 178 179 static inline void update_load_set(struct load_weight *lw, unsigned long w) 180 { 181 lw->weight = w; 182 lw->inv_weight = 0; 183 } 184 185 /* 186 * Increase the granularity value when there are more CPUs, 187 * because with more CPUs the 'effective latency' as visible 188 * to users decreases. But the relationship is not linear, 189 * so pick a second-best guess by going with the log2 of the 190 * number of CPUs. 191 * 192 * This idea comes from the SD scheduler of Con Kolivas: 193 */ 194 static unsigned int get_update_sysctl_factor(void) 195 { 196 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 197 unsigned int factor; 198 199 switch (sysctl_sched_tunable_scaling) { 200 case SCHED_TUNABLESCALING_NONE: 201 factor = 1; 202 break; 203 case SCHED_TUNABLESCALING_LINEAR: 204 factor = cpus; 205 break; 206 case SCHED_TUNABLESCALING_LOG: 207 default: 208 factor = 1 + ilog2(cpus); 209 break; 210 } 211 212 return factor; 213 } 214 215 static void update_sysctl(void) 216 { 217 unsigned int factor = get_update_sysctl_factor(); 218 219 #define SET_SYSCTL(name) \ 220 (sysctl_##name = (factor) * normalized_sysctl_##name) 221 SET_SYSCTL(sched_base_slice); 222 #undef SET_SYSCTL 223 } 224 225 void __init sched_init_granularity(void) 226 { 227 update_sysctl(); 228 } 229 230 #define WMULT_CONST (~0U) 231 #define WMULT_SHIFT 32 232 233 static void __update_inv_weight(struct load_weight *lw) 234 { 235 unsigned long w; 236 237 if (likely(lw->inv_weight)) 238 return; 239 240 w = scale_load_down(lw->weight); 241 242 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 243 lw->inv_weight = 1; 244 else if (unlikely(!w)) 245 lw->inv_weight = WMULT_CONST; 246 else 247 lw->inv_weight = WMULT_CONST / w; 248 } 249 250 /* 251 * delta_exec * weight / lw.weight 252 * OR 253 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 254 * 255 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 256 * we're guaranteed shift stays positive because inv_weight is guaranteed to 257 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 258 * 259 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 260 * weight/lw.weight <= 1, and therefore our shift will also be positive. 261 */ 262 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 263 { 264 u64 fact = scale_load_down(weight); 265 u32 fact_hi = (u32)(fact >> 32); 266 int shift = WMULT_SHIFT; 267 int fs; 268 269 __update_inv_weight(lw); 270 271 if (unlikely(fact_hi)) { 272 fs = fls(fact_hi); 273 shift -= fs; 274 fact >>= fs; 275 } 276 277 fact = mul_u32_u32(fact, lw->inv_weight); 278 279 fact_hi = (u32)(fact >> 32); 280 if (fact_hi) { 281 fs = fls(fact_hi); 282 shift -= fs; 283 fact >>= fs; 284 } 285 286 return mul_u64_u32_shr(delta_exec, fact, shift); 287 } 288 289 /* 290 * delta /= w 291 */ 292 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 293 { 294 if (unlikely(se->load.weight != NICE_0_LOAD)) 295 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 296 297 return delta; 298 } 299 300 const struct sched_class fair_sched_class; 301 302 /************************************************************** 303 * CFS operations on generic schedulable entities: 304 */ 305 306 #ifdef CONFIG_FAIR_GROUP_SCHED 307 308 /* Walk up scheduling entities hierarchy */ 309 #define for_each_sched_entity(se) \ 310 for (; se; se = se->parent) 311 312 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 313 { 314 struct rq *rq = rq_of(cfs_rq); 315 int cpu = cpu_of(rq); 316 317 if (cfs_rq->on_list) 318 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 319 320 cfs_rq->on_list = 1; 321 322 /* 323 * Ensure we either appear before our parent (if already 324 * enqueued) or force our parent to appear after us when it is 325 * enqueued. The fact that we always enqueue bottom-up 326 * reduces this to two cases and a special case for the root 327 * cfs_rq. Furthermore, it also means that we will always reset 328 * tmp_alone_branch either when the branch is connected 329 * to a tree or when we reach the top of the tree 330 */ 331 if (cfs_rq->tg->parent && 332 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 333 /* 334 * If parent is already on the list, we add the child 335 * just before. Thanks to circular linked property of 336 * the list, this means to put the child at the tail 337 * of the list that starts by parent. 338 */ 339 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 340 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 341 /* 342 * The branch is now connected to its tree so we can 343 * reset tmp_alone_branch to the beginning of the 344 * list. 345 */ 346 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 347 return true; 348 } 349 350 if (!cfs_rq->tg->parent) { 351 /* 352 * cfs rq without parent should be put 353 * at the tail of the list. 354 */ 355 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 356 &rq->leaf_cfs_rq_list); 357 /* 358 * We have reach the top of a tree so we can reset 359 * tmp_alone_branch to the beginning of the list. 360 */ 361 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 362 return true; 363 } 364 365 /* 366 * The parent has not already been added so we want to 367 * make sure that it will be put after us. 368 * tmp_alone_branch points to the begin of the branch 369 * where we will add parent. 370 */ 371 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 372 /* 373 * update tmp_alone_branch to points to the new begin 374 * of the branch 375 */ 376 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 377 return false; 378 } 379 380 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 381 { 382 if (cfs_rq->on_list) { 383 struct rq *rq = rq_of(cfs_rq); 384 385 /* 386 * With cfs_rq being unthrottled/throttled during an enqueue, 387 * it can happen the tmp_alone_branch points to the leaf that 388 * we finally want to delete. In this case, tmp_alone_branch moves 389 * to the prev element but it will point to rq->leaf_cfs_rq_list 390 * at the end of the enqueue. 391 */ 392 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 393 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 394 395 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 396 cfs_rq->on_list = 0; 397 } 398 } 399 400 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 401 { 402 WARN_ON_ONCE(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 403 } 404 405 /* Iterate through all leaf cfs_rq's on a runqueue */ 406 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 407 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 408 leaf_cfs_rq_list) 409 410 /* Do the two (enqueued) entities belong to the same group ? */ 411 static inline struct cfs_rq * 412 is_same_group(struct sched_entity *se, struct sched_entity *pse) 413 { 414 if (se->cfs_rq == pse->cfs_rq) 415 return se->cfs_rq; 416 417 return NULL; 418 } 419 420 static inline struct sched_entity *parent_entity(const struct sched_entity *se) 421 { 422 return se->parent; 423 } 424 425 static void 426 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 427 { 428 int se_depth, pse_depth; 429 430 /* 431 * preemption test can be made between sibling entities who are in the 432 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 433 * both tasks until we find their ancestors who are siblings of common 434 * parent. 435 */ 436 437 /* First walk up until both entities are at same depth */ 438 se_depth = (*se)->depth; 439 pse_depth = (*pse)->depth; 440 441 while (se_depth > pse_depth) { 442 se_depth--; 443 *se = parent_entity(*se); 444 } 445 446 while (pse_depth > se_depth) { 447 pse_depth--; 448 *pse = parent_entity(*pse); 449 } 450 451 while (!is_same_group(*se, *pse)) { 452 *se = parent_entity(*se); 453 *pse = parent_entity(*pse); 454 } 455 } 456 457 static int tg_is_idle(struct task_group *tg) 458 { 459 return tg->idle > 0; 460 } 461 462 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 463 { 464 return cfs_rq->idle > 0; 465 } 466 467 static int se_is_idle(struct sched_entity *se) 468 { 469 if (entity_is_task(se)) 470 return task_has_idle_policy(task_of(se)); 471 return cfs_rq_is_idle(group_cfs_rq(se)); 472 } 473 474 #else /* !CONFIG_FAIR_GROUP_SCHED */ 475 476 #define for_each_sched_entity(se) \ 477 for (; se; se = NULL) 478 479 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 480 { 481 return true; 482 } 483 484 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 485 { 486 } 487 488 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 489 { 490 } 491 492 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 493 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 494 495 static inline struct sched_entity *parent_entity(struct sched_entity *se) 496 { 497 return NULL; 498 } 499 500 static inline void 501 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 502 { 503 } 504 505 static inline int tg_is_idle(struct task_group *tg) 506 { 507 return 0; 508 } 509 510 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 511 { 512 return 0; 513 } 514 515 static int se_is_idle(struct sched_entity *se) 516 { 517 return task_has_idle_policy(task_of(se)); 518 } 519 520 #endif /* CONFIG_FAIR_GROUP_SCHED */ 521 522 static __always_inline 523 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 524 525 /************************************************************** 526 * Scheduling class tree data structure manipulation methods: 527 */ 528 529 static inline __maybe_unused u64 max_vruntime(u64 max_vruntime, u64 vruntime) 530 { 531 s64 delta = (s64)(vruntime - max_vruntime); 532 if (delta > 0) 533 max_vruntime = vruntime; 534 535 return max_vruntime; 536 } 537 538 static inline __maybe_unused u64 min_vruntime(u64 min_vruntime, u64 vruntime) 539 { 540 s64 delta = (s64)(vruntime - min_vruntime); 541 if (delta < 0) 542 min_vruntime = vruntime; 543 544 return min_vruntime; 545 } 546 547 static inline bool entity_before(const struct sched_entity *a, 548 const struct sched_entity *b) 549 { 550 /* 551 * Tiebreak on vruntime seems unnecessary since it can 552 * hardly happen. 553 */ 554 return (s64)(a->deadline - b->deadline) < 0; 555 } 556 557 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) 558 { 559 return (s64)(se->vruntime - cfs_rq->min_vruntime); 560 } 561 562 #define __node_2_se(node) \ 563 rb_entry((node), struct sched_entity, run_node) 564 565 /* 566 * Compute virtual time from the per-task service numbers: 567 * 568 * Fair schedulers conserve lag: 569 * 570 * \Sum lag_i = 0 571 * 572 * Where lag_i is given by: 573 * 574 * lag_i = S - s_i = w_i * (V - v_i) 575 * 576 * Where S is the ideal service time and V is it's virtual time counterpart. 577 * Therefore: 578 * 579 * \Sum lag_i = 0 580 * \Sum w_i * (V - v_i) = 0 581 * \Sum w_i * V - w_i * v_i = 0 582 * 583 * From which we can solve an expression for V in v_i (which we have in 584 * se->vruntime): 585 * 586 * \Sum v_i * w_i \Sum v_i * w_i 587 * V = -------------- = -------------- 588 * \Sum w_i W 589 * 590 * Specifically, this is the weighted average of all entity virtual runtimes. 591 * 592 * [[ NOTE: this is only equal to the ideal scheduler under the condition 593 * that join/leave operations happen at lag_i = 0, otherwise the 594 * virtual time has non-contiguous motion equivalent to: 595 * 596 * V +-= lag_i / W 597 * 598 * Also see the comment in place_entity() that deals with this. ]] 599 * 600 * However, since v_i is u64, and the multiplication could easily overflow 601 * transform it into a relative form that uses smaller quantities: 602 * 603 * Substitute: v_i == (v_i - v0) + v0 604 * 605 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i 606 * V = ---------------------------- = --------------------- + v0 607 * W W 608 * 609 * Which we track using: 610 * 611 * v0 := cfs_rq->min_vruntime 612 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime 613 * \Sum w_i := cfs_rq->avg_load 614 * 615 * Since min_vruntime is a monotonic increasing variable that closely tracks 616 * the per-task service, these deltas: (v_i - v), will be in the order of the 617 * maximal (virtual) lag induced in the system due to quantisation. 618 * 619 * Also, we use scale_load_down() to reduce the size. 620 * 621 * As measured, the max (key * weight) value was ~44 bits for a kernel build. 622 */ 623 static void 624 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se) 625 { 626 unsigned long weight = scale_load_down(se->load.weight); 627 s64 key = entity_key(cfs_rq, se); 628 629 cfs_rq->avg_vruntime += key * weight; 630 cfs_rq->avg_load += weight; 631 } 632 633 static void 634 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se) 635 { 636 unsigned long weight = scale_load_down(se->load.weight); 637 s64 key = entity_key(cfs_rq, se); 638 639 cfs_rq->avg_vruntime -= key * weight; 640 cfs_rq->avg_load -= weight; 641 } 642 643 static inline 644 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta) 645 { 646 /* 647 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load 648 */ 649 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta; 650 } 651 652 /* 653 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true 654 * For this to be so, the result of this function must have a left bias. 655 */ 656 u64 avg_vruntime(struct cfs_rq *cfs_rq) 657 { 658 struct sched_entity *curr = cfs_rq->curr; 659 s64 avg = cfs_rq->avg_vruntime; 660 long load = cfs_rq->avg_load; 661 662 if (curr && curr->on_rq) { 663 unsigned long weight = scale_load_down(curr->load.weight); 664 665 avg += entity_key(cfs_rq, curr) * weight; 666 load += weight; 667 } 668 669 if (load) { 670 /* sign flips effective floor / ceiling */ 671 if (avg < 0) 672 avg -= (load - 1); 673 avg = div_s64(avg, load); 674 } 675 676 return cfs_rq->min_vruntime + avg; 677 } 678 679 /* 680 * lag_i = S - s_i = w_i * (V - v_i) 681 * 682 * However, since V is approximated by the weighted average of all entities it 683 * is possible -- by addition/removal/reweight to the tree -- to move V around 684 * and end up with a larger lag than we started with. 685 * 686 * Limit this to either double the slice length with a minimum of TICK_NSEC 687 * since that is the timing granularity. 688 * 689 * EEVDF gives the following limit for a steady state system: 690 * 691 * -r_max < lag < max(r_max, q) 692 * 693 * XXX could add max_slice to the augmented data to track this. 694 */ 695 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) 696 { 697 s64 vlag, limit; 698 699 WARN_ON_ONCE(!se->on_rq); 700 701 vlag = avg_vruntime(cfs_rq) - se->vruntime; 702 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); 703 704 se->vlag = clamp(vlag, -limit, limit); 705 } 706 707 /* 708 * Entity is eligible once it received less service than it ought to have, 709 * eg. lag >= 0. 710 * 711 * lag_i = S - s_i = w_i*(V - v_i) 712 * 713 * lag_i >= 0 -> V >= v_i 714 * 715 * \Sum (v_i - v)*w_i 716 * V = ------------------ + v 717 * \Sum w_i 718 * 719 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i) 720 * 721 * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due 722 * to the loss in precision caused by the division. 723 */ 724 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime) 725 { 726 struct sched_entity *curr = cfs_rq->curr; 727 s64 avg = cfs_rq->avg_vruntime; 728 long load = cfs_rq->avg_load; 729 730 if (curr && curr->on_rq) { 731 unsigned long weight = scale_load_down(curr->load.weight); 732 733 avg += entity_key(cfs_rq, curr) * weight; 734 load += weight; 735 } 736 737 return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load; 738 } 739 740 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se) 741 { 742 return vruntime_eligible(cfs_rq, se->vruntime); 743 } 744 745 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime) 746 { 747 u64 min_vruntime = cfs_rq->min_vruntime; 748 /* 749 * open coded max_vruntime() to allow updating avg_vruntime 750 */ 751 s64 delta = (s64)(vruntime - min_vruntime); 752 if (delta > 0) { 753 avg_vruntime_update(cfs_rq, delta); 754 min_vruntime = vruntime; 755 } 756 return min_vruntime; 757 } 758 759 static void update_min_vruntime(struct cfs_rq *cfs_rq) 760 { 761 struct sched_entity *se = __pick_root_entity(cfs_rq); 762 struct sched_entity *curr = cfs_rq->curr; 763 u64 vruntime = cfs_rq->min_vruntime; 764 765 if (curr) { 766 if (curr->on_rq) 767 vruntime = curr->vruntime; 768 else 769 curr = NULL; 770 } 771 772 if (se) { 773 if (!curr) 774 vruntime = se->min_vruntime; 775 else 776 vruntime = min_vruntime(vruntime, se->min_vruntime); 777 } 778 779 /* ensure we never gain time by being placed backwards. */ 780 cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime); 781 } 782 783 static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq) 784 { 785 struct sched_entity *root = __pick_root_entity(cfs_rq); 786 struct sched_entity *curr = cfs_rq->curr; 787 u64 min_slice = ~0ULL; 788 789 if (curr && curr->on_rq) 790 min_slice = curr->slice; 791 792 if (root) 793 min_slice = min(min_slice, root->min_slice); 794 795 return min_slice; 796 } 797 798 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 799 { 800 return entity_before(__node_2_se(a), __node_2_se(b)); 801 } 802 803 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; }) 804 805 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node) 806 { 807 if (node) { 808 struct sched_entity *rse = __node_2_se(node); 809 if (vruntime_gt(min_vruntime, se, rse)) 810 se->min_vruntime = rse->min_vruntime; 811 } 812 } 813 814 static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node) 815 { 816 if (node) { 817 struct sched_entity *rse = __node_2_se(node); 818 if (rse->min_slice < se->min_slice) 819 se->min_slice = rse->min_slice; 820 } 821 } 822 823 /* 824 * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime) 825 */ 826 static inline bool min_vruntime_update(struct sched_entity *se, bool exit) 827 { 828 u64 old_min_vruntime = se->min_vruntime; 829 u64 old_min_slice = se->min_slice; 830 struct rb_node *node = &se->run_node; 831 832 se->min_vruntime = se->vruntime; 833 __min_vruntime_update(se, node->rb_right); 834 __min_vruntime_update(se, node->rb_left); 835 836 se->min_slice = se->slice; 837 __min_slice_update(se, node->rb_right); 838 __min_slice_update(se, node->rb_left); 839 840 return se->min_vruntime == old_min_vruntime && 841 se->min_slice == old_min_slice; 842 } 843 844 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity, 845 run_node, min_vruntime, min_vruntime_update); 846 847 /* 848 * Enqueue an entity into the rb-tree: 849 */ 850 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 851 { 852 avg_vruntime_add(cfs_rq, se); 853 se->min_vruntime = se->vruntime; 854 se->min_slice = se->slice; 855 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 856 __entity_less, &min_vruntime_cb); 857 } 858 859 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 860 { 861 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 862 &min_vruntime_cb); 863 avg_vruntime_sub(cfs_rq, se); 864 } 865 866 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq) 867 { 868 struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node; 869 870 if (!root) 871 return NULL; 872 873 return __node_2_se(root); 874 } 875 876 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 877 { 878 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 879 880 if (!left) 881 return NULL; 882 883 return __node_2_se(left); 884 } 885 886 /* 887 * HACK, stash a copy of deadline at the point of pick in vlag, 888 * which isn't used until dequeue. 889 */ 890 static inline void set_protect_slice(struct sched_entity *se) 891 { 892 se->vlag = se->deadline; 893 } 894 895 static inline bool protect_slice(struct sched_entity *se) 896 { 897 return se->vlag == se->deadline; 898 } 899 900 static inline void cancel_protect_slice(struct sched_entity *se) 901 { 902 if (protect_slice(se)) 903 se->vlag = se->deadline + 1; 904 } 905 906 /* 907 * Earliest Eligible Virtual Deadline First 908 * 909 * In order to provide latency guarantees for different request sizes 910 * EEVDF selects the best runnable task from two criteria: 911 * 912 * 1) the task must be eligible (must be owed service) 913 * 914 * 2) from those tasks that meet 1), we select the one 915 * with the earliest virtual deadline. 916 * 917 * We can do this in O(log n) time due to an augmented RB-tree. The 918 * tree keeps the entries sorted on deadline, but also functions as a 919 * heap based on the vruntime by keeping: 920 * 921 * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime) 922 * 923 * Which allows tree pruning through eligibility. 924 */ 925 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq) 926 { 927 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; 928 struct sched_entity *se = __pick_first_entity(cfs_rq); 929 struct sched_entity *curr = cfs_rq->curr; 930 struct sched_entity *best = NULL; 931 932 /* 933 * We can safely skip eligibility check if there is only one entity 934 * in this cfs_rq, saving some cycles. 935 */ 936 if (cfs_rq->nr_queued == 1) 937 return curr && curr->on_rq ? curr : se; 938 939 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr))) 940 curr = NULL; 941 942 if (sched_feat(RUN_TO_PARITY) && curr && protect_slice(curr)) 943 return curr; 944 945 /* Pick the leftmost entity if it's eligible */ 946 if (se && entity_eligible(cfs_rq, se)) { 947 best = se; 948 goto found; 949 } 950 951 /* Heap search for the EEVD entity */ 952 while (node) { 953 struct rb_node *left = node->rb_left; 954 955 /* 956 * Eligible entities in left subtree are always better 957 * choices, since they have earlier deadlines. 958 */ 959 if (left && vruntime_eligible(cfs_rq, 960 __node_2_se(left)->min_vruntime)) { 961 node = left; 962 continue; 963 } 964 965 se = __node_2_se(node); 966 967 /* 968 * The left subtree either is empty or has no eligible 969 * entity, so check the current node since it is the one 970 * with earliest deadline that might be eligible. 971 */ 972 if (entity_eligible(cfs_rq, se)) { 973 best = se; 974 break; 975 } 976 977 node = node->rb_right; 978 } 979 found: 980 if (!best || (curr && entity_before(curr, best))) 981 best = curr; 982 983 return best; 984 } 985 986 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 987 { 988 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 989 990 if (!last) 991 return NULL; 992 993 return __node_2_se(last); 994 } 995 996 /************************************************************** 997 * Scheduling class statistics methods: 998 */ 999 #ifdef CONFIG_SMP 1000 int sched_update_scaling(void) 1001 { 1002 unsigned int factor = get_update_sysctl_factor(); 1003 1004 #define WRT_SYSCTL(name) \ 1005 (normalized_sysctl_##name = sysctl_##name / (factor)) 1006 WRT_SYSCTL(sched_base_slice); 1007 #undef WRT_SYSCTL 1008 1009 return 0; 1010 } 1011 #endif 1012 1013 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); 1014 1015 /* 1016 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i 1017 * this is probably good enough. 1018 */ 1019 static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) 1020 { 1021 if ((s64)(se->vruntime - se->deadline) < 0) 1022 return false; 1023 1024 /* 1025 * For EEVDF the virtual time slope is determined by w_i (iow. 1026 * nice) while the request time r_i is determined by 1027 * sysctl_sched_base_slice. 1028 */ 1029 if (!se->custom_slice) 1030 se->slice = sysctl_sched_base_slice; 1031 1032 /* 1033 * EEVDF: vd_i = ve_i + r_i / w_i 1034 */ 1035 se->deadline = se->vruntime + calc_delta_fair(se->slice, se); 1036 1037 /* 1038 * The task has consumed its request, reschedule. 1039 */ 1040 return true; 1041 } 1042 1043 #include "pelt.h" 1044 #ifdef CONFIG_SMP 1045 1046 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 1047 static unsigned long task_h_load(struct task_struct *p); 1048 static unsigned long capacity_of(int cpu); 1049 1050 /* Give new sched_entity start runnable values to heavy its load in infant time */ 1051 void init_entity_runnable_average(struct sched_entity *se) 1052 { 1053 struct sched_avg *sa = &se->avg; 1054 1055 memset(sa, 0, sizeof(*sa)); 1056 1057 /* 1058 * Tasks are initialized with full load to be seen as heavy tasks until 1059 * they get a chance to stabilize to their real load level. 1060 * Group entities are initialized with zero load to reflect the fact that 1061 * nothing has been attached to the task group yet. 1062 */ 1063 if (entity_is_task(se)) 1064 sa->load_avg = scale_load_down(se->load.weight); 1065 1066 /* when this task is enqueued, it will contribute to its cfs_rq's load_avg */ 1067 } 1068 1069 /* 1070 * With new tasks being created, their initial util_avgs are extrapolated 1071 * based on the cfs_rq's current util_avg: 1072 * 1073 * util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1) 1074 * * se_weight(se) 1075 * 1076 * However, in many cases, the above util_avg does not give a desired 1077 * value. Moreover, the sum of the util_avgs may be divergent, such 1078 * as when the series is a harmonic series. 1079 * 1080 * To solve this problem, we also cap the util_avg of successive tasks to 1081 * only 1/2 of the left utilization budget: 1082 * 1083 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 1084 * 1085 * where n denotes the nth task and cpu_scale the CPU capacity. 1086 * 1087 * For example, for a CPU with 1024 of capacity, a simplest series from 1088 * the beginning would be like: 1089 * 1090 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 1091 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 1092 * 1093 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 1094 * if util_avg > util_avg_cap. 1095 */ 1096 void post_init_entity_util_avg(struct task_struct *p) 1097 { 1098 struct sched_entity *se = &p->se; 1099 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1100 struct sched_avg *sa = &se->avg; 1101 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 1102 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 1103 1104 if (p->sched_class != &fair_sched_class) { 1105 /* 1106 * For !fair tasks do: 1107 * 1108 update_cfs_rq_load_avg(now, cfs_rq); 1109 attach_entity_load_avg(cfs_rq, se); 1110 switched_from_fair(rq, p); 1111 * 1112 * such that the next switched_to_fair() has the 1113 * expected state. 1114 */ 1115 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 1116 return; 1117 } 1118 1119 if (cap > 0) { 1120 if (cfs_rq->avg.util_avg != 0) { 1121 sa->util_avg = cfs_rq->avg.util_avg * se_weight(se); 1122 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 1123 1124 if (sa->util_avg > cap) 1125 sa->util_avg = cap; 1126 } else { 1127 sa->util_avg = cap; 1128 } 1129 } 1130 1131 sa->runnable_avg = sa->util_avg; 1132 } 1133 1134 #else /* !CONFIG_SMP */ 1135 void init_entity_runnable_average(struct sched_entity *se) 1136 { 1137 } 1138 void post_init_entity_util_avg(struct task_struct *p) 1139 { 1140 } 1141 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 1142 { 1143 } 1144 #endif /* CONFIG_SMP */ 1145 1146 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr) 1147 { 1148 u64 now = rq_clock_task(rq); 1149 s64 delta_exec; 1150 1151 delta_exec = now - curr->exec_start; 1152 if (unlikely(delta_exec <= 0)) 1153 return delta_exec; 1154 1155 curr->exec_start = now; 1156 curr->sum_exec_runtime += delta_exec; 1157 1158 if (schedstat_enabled()) { 1159 struct sched_statistics *stats; 1160 1161 stats = __schedstats_from_se(curr); 1162 __schedstat_set(stats->exec_max, 1163 max(delta_exec, stats->exec_max)); 1164 } 1165 1166 return delta_exec; 1167 } 1168 1169 static inline void update_curr_task(struct task_struct *p, s64 delta_exec) 1170 { 1171 trace_sched_stat_runtime(p, delta_exec); 1172 account_group_exec_runtime(p, delta_exec); 1173 cgroup_account_cputime(p, delta_exec); 1174 } 1175 1176 static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr) 1177 { 1178 if (!sched_feat(PREEMPT_SHORT)) 1179 return false; 1180 1181 if (curr->vlag == curr->deadline) 1182 return false; 1183 1184 return !entity_eligible(cfs_rq, curr); 1185 } 1186 1187 static inline bool do_preempt_short(struct cfs_rq *cfs_rq, 1188 struct sched_entity *pse, struct sched_entity *se) 1189 { 1190 if (!sched_feat(PREEMPT_SHORT)) 1191 return false; 1192 1193 if (pse->slice >= se->slice) 1194 return false; 1195 1196 if (!entity_eligible(cfs_rq, pse)) 1197 return false; 1198 1199 if (entity_before(pse, se)) 1200 return true; 1201 1202 if (!entity_eligible(cfs_rq, se)) 1203 return true; 1204 1205 return false; 1206 } 1207 1208 /* 1209 * Used by other classes to account runtime. 1210 */ 1211 s64 update_curr_common(struct rq *rq) 1212 { 1213 struct task_struct *donor = rq->donor; 1214 s64 delta_exec; 1215 1216 delta_exec = update_curr_se(rq, &donor->se); 1217 if (likely(delta_exec > 0)) 1218 update_curr_task(donor, delta_exec); 1219 1220 return delta_exec; 1221 } 1222 1223 /* 1224 * Update the current task's runtime statistics. 1225 */ 1226 static void update_curr(struct cfs_rq *cfs_rq) 1227 { 1228 struct sched_entity *curr = cfs_rq->curr; 1229 struct rq *rq = rq_of(cfs_rq); 1230 s64 delta_exec; 1231 bool resched; 1232 1233 if (unlikely(!curr)) 1234 return; 1235 1236 delta_exec = update_curr_se(rq, curr); 1237 if (unlikely(delta_exec <= 0)) 1238 return; 1239 1240 curr->vruntime += calc_delta_fair(delta_exec, curr); 1241 resched = update_deadline(cfs_rq, curr); 1242 update_min_vruntime(cfs_rq); 1243 1244 if (entity_is_task(curr)) { 1245 struct task_struct *p = task_of(curr); 1246 1247 update_curr_task(p, delta_exec); 1248 1249 /* 1250 * If the fair_server is active, we need to account for the 1251 * fair_server time whether or not the task is running on 1252 * behalf of fair_server or not: 1253 * - If the task is running on behalf of fair_server, we need 1254 * to limit its time based on the assigned runtime. 1255 * - Fair task that runs outside of fair_server should account 1256 * against fair_server such that it can account for this time 1257 * and possibly avoid running this period. 1258 */ 1259 if (dl_server_active(&rq->fair_server)) 1260 dl_server_update(&rq->fair_server, delta_exec); 1261 } 1262 1263 account_cfs_rq_runtime(cfs_rq, delta_exec); 1264 1265 if (cfs_rq->nr_queued == 1) 1266 return; 1267 1268 if (resched || did_preempt_short(cfs_rq, curr)) { 1269 resched_curr_lazy(rq); 1270 clear_buddies(cfs_rq, curr); 1271 } 1272 } 1273 1274 static void update_curr_fair(struct rq *rq) 1275 { 1276 update_curr(cfs_rq_of(&rq->donor->se)); 1277 } 1278 1279 static inline void 1280 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1281 { 1282 struct sched_statistics *stats; 1283 struct task_struct *p = NULL; 1284 1285 if (!schedstat_enabled()) 1286 return; 1287 1288 stats = __schedstats_from_se(se); 1289 1290 if (entity_is_task(se)) 1291 p = task_of(se); 1292 1293 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 1294 } 1295 1296 static inline void 1297 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1298 { 1299 struct sched_statistics *stats; 1300 struct task_struct *p = NULL; 1301 1302 if (!schedstat_enabled()) 1303 return; 1304 1305 stats = __schedstats_from_se(se); 1306 1307 /* 1308 * When the sched_schedstat changes from 0 to 1, some sched se 1309 * maybe already in the runqueue, the se->statistics.wait_start 1310 * will be 0.So it will let the delta wrong. We need to avoid this 1311 * scenario. 1312 */ 1313 if (unlikely(!schedstat_val(stats->wait_start))) 1314 return; 1315 1316 if (entity_is_task(se)) 1317 p = task_of(se); 1318 1319 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 1320 } 1321 1322 static inline void 1323 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1324 { 1325 struct sched_statistics *stats; 1326 struct task_struct *tsk = NULL; 1327 1328 if (!schedstat_enabled()) 1329 return; 1330 1331 stats = __schedstats_from_se(se); 1332 1333 if (entity_is_task(se)) 1334 tsk = task_of(se); 1335 1336 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 1337 } 1338 1339 /* 1340 * Task is being enqueued - update stats: 1341 */ 1342 static inline void 1343 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1344 { 1345 if (!schedstat_enabled()) 1346 return; 1347 1348 /* 1349 * Are we enqueueing a waiting task? (for current tasks 1350 * a dequeue/enqueue event is a NOP) 1351 */ 1352 if (se != cfs_rq->curr) 1353 update_stats_wait_start_fair(cfs_rq, se); 1354 1355 if (flags & ENQUEUE_WAKEUP) 1356 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1357 } 1358 1359 static inline void 1360 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1361 { 1362 1363 if (!schedstat_enabled()) 1364 return; 1365 1366 /* 1367 * Mark the end of the wait period if dequeueing a 1368 * waiting task: 1369 */ 1370 if (se != cfs_rq->curr) 1371 update_stats_wait_end_fair(cfs_rq, se); 1372 1373 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1374 struct task_struct *tsk = task_of(se); 1375 unsigned int state; 1376 1377 /* XXX racy against TTWU */ 1378 state = READ_ONCE(tsk->__state); 1379 if (state & TASK_INTERRUPTIBLE) 1380 __schedstat_set(tsk->stats.sleep_start, 1381 rq_clock(rq_of(cfs_rq))); 1382 if (state & TASK_UNINTERRUPTIBLE) 1383 __schedstat_set(tsk->stats.block_start, 1384 rq_clock(rq_of(cfs_rq))); 1385 } 1386 } 1387 1388 /* 1389 * We are picking a new current task - update its stats: 1390 */ 1391 static inline void 1392 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1393 { 1394 /* 1395 * We are starting a new run period: 1396 */ 1397 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1398 } 1399 1400 /************************************************** 1401 * Scheduling class queueing methods: 1402 */ 1403 1404 static inline bool is_core_idle(int cpu) 1405 { 1406 #ifdef CONFIG_SCHED_SMT 1407 int sibling; 1408 1409 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1410 if (cpu == sibling) 1411 continue; 1412 1413 if (!idle_cpu(sibling)) 1414 return false; 1415 } 1416 #endif 1417 1418 return true; 1419 } 1420 1421 #ifdef CONFIG_NUMA 1422 #define NUMA_IMBALANCE_MIN 2 1423 1424 static inline long 1425 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1426 { 1427 /* 1428 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1429 * threshold. Above this threshold, individual tasks may be contending 1430 * for both memory bandwidth and any shared HT resources. This is an 1431 * approximation as the number of running tasks may not be related to 1432 * the number of busy CPUs due to sched_setaffinity. 1433 */ 1434 if (dst_running > imb_numa_nr) 1435 return imbalance; 1436 1437 /* 1438 * Allow a small imbalance based on a simple pair of communicating 1439 * tasks that remain local when the destination is lightly loaded. 1440 */ 1441 if (imbalance <= NUMA_IMBALANCE_MIN) 1442 return 0; 1443 1444 return imbalance; 1445 } 1446 #endif /* CONFIG_NUMA */ 1447 1448 #ifdef CONFIG_NUMA_BALANCING 1449 /* 1450 * Approximate time to scan a full NUMA task in ms. The task scan period is 1451 * calculated based on the tasks virtual memory size and 1452 * numa_balancing_scan_size. 1453 */ 1454 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1455 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1456 1457 /* Portion of address space to scan in MB */ 1458 unsigned int sysctl_numa_balancing_scan_size = 256; 1459 1460 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1461 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1462 1463 /* The page with hint page fault latency < threshold in ms is considered hot */ 1464 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; 1465 1466 struct numa_group { 1467 refcount_t refcount; 1468 1469 spinlock_t lock; /* nr_tasks, tasks */ 1470 int nr_tasks; 1471 pid_t gid; 1472 int active_nodes; 1473 1474 struct rcu_head rcu; 1475 unsigned long total_faults; 1476 unsigned long max_faults_cpu; 1477 /* 1478 * faults[] array is split into two regions: faults_mem and faults_cpu. 1479 * 1480 * Faults_cpu is used to decide whether memory should move 1481 * towards the CPU. As a consequence, these stats are weighted 1482 * more by CPU use than by memory faults. 1483 */ 1484 unsigned long faults[]; 1485 }; 1486 1487 /* 1488 * For functions that can be called in multiple contexts that permit reading 1489 * ->numa_group (see struct task_struct for locking rules). 1490 */ 1491 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1492 { 1493 return rcu_dereference_check(p->numa_group, p == current || 1494 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1495 } 1496 1497 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1498 { 1499 return rcu_dereference_protected(p->numa_group, p == current); 1500 } 1501 1502 static inline unsigned long group_faults_priv(struct numa_group *ng); 1503 static inline unsigned long group_faults_shared(struct numa_group *ng); 1504 1505 static unsigned int task_nr_scan_windows(struct task_struct *p) 1506 { 1507 unsigned long rss = 0; 1508 unsigned long nr_scan_pages; 1509 1510 /* 1511 * Calculations based on RSS as non-present and empty pages are skipped 1512 * by the PTE scanner and NUMA hinting faults should be trapped based 1513 * on resident pages 1514 */ 1515 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1516 rss = get_mm_rss(p->mm); 1517 if (!rss) 1518 rss = nr_scan_pages; 1519 1520 rss = round_up(rss, nr_scan_pages); 1521 return rss / nr_scan_pages; 1522 } 1523 1524 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1525 #define MAX_SCAN_WINDOW 2560 1526 1527 static unsigned int task_scan_min(struct task_struct *p) 1528 { 1529 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1530 unsigned int scan, floor; 1531 unsigned int windows = 1; 1532 1533 if (scan_size < MAX_SCAN_WINDOW) 1534 windows = MAX_SCAN_WINDOW / scan_size; 1535 floor = 1000 / windows; 1536 1537 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1538 return max_t(unsigned int, floor, scan); 1539 } 1540 1541 static unsigned int task_scan_start(struct task_struct *p) 1542 { 1543 unsigned long smin = task_scan_min(p); 1544 unsigned long period = smin; 1545 struct numa_group *ng; 1546 1547 /* Scale the maximum scan period with the amount of shared memory. */ 1548 rcu_read_lock(); 1549 ng = rcu_dereference(p->numa_group); 1550 if (ng) { 1551 unsigned long shared = group_faults_shared(ng); 1552 unsigned long private = group_faults_priv(ng); 1553 1554 period *= refcount_read(&ng->refcount); 1555 period *= shared + 1; 1556 period /= private + shared + 1; 1557 } 1558 rcu_read_unlock(); 1559 1560 return max(smin, period); 1561 } 1562 1563 static unsigned int task_scan_max(struct task_struct *p) 1564 { 1565 unsigned long smin = task_scan_min(p); 1566 unsigned long smax; 1567 struct numa_group *ng; 1568 1569 /* Watch for min being lower than max due to floor calculations */ 1570 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1571 1572 /* Scale the maximum scan period with the amount of shared memory. */ 1573 ng = deref_curr_numa_group(p); 1574 if (ng) { 1575 unsigned long shared = group_faults_shared(ng); 1576 unsigned long private = group_faults_priv(ng); 1577 unsigned long period = smax; 1578 1579 period *= refcount_read(&ng->refcount); 1580 period *= shared + 1; 1581 period /= private + shared + 1; 1582 1583 smax = max(smax, period); 1584 } 1585 1586 return max(smin, smax); 1587 } 1588 1589 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1590 { 1591 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1592 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1593 } 1594 1595 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1596 { 1597 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1598 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1599 } 1600 1601 /* Shared or private faults. */ 1602 #define NR_NUMA_HINT_FAULT_TYPES 2 1603 1604 /* Memory and CPU locality */ 1605 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1606 1607 /* Averaged statistics, and temporary buffers. */ 1608 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1609 1610 pid_t task_numa_group_id(struct task_struct *p) 1611 { 1612 struct numa_group *ng; 1613 pid_t gid = 0; 1614 1615 rcu_read_lock(); 1616 ng = rcu_dereference(p->numa_group); 1617 if (ng) 1618 gid = ng->gid; 1619 rcu_read_unlock(); 1620 1621 return gid; 1622 } 1623 1624 /* 1625 * The averaged statistics, shared & private, memory & CPU, 1626 * occupy the first half of the array. The second half of the 1627 * array is for current counters, which are averaged into the 1628 * first set by task_numa_placement. 1629 */ 1630 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1631 { 1632 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1633 } 1634 1635 static inline unsigned long task_faults(struct task_struct *p, int nid) 1636 { 1637 if (!p->numa_faults) 1638 return 0; 1639 1640 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1641 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1642 } 1643 1644 static inline unsigned long group_faults(struct task_struct *p, int nid) 1645 { 1646 struct numa_group *ng = deref_task_numa_group(p); 1647 1648 if (!ng) 1649 return 0; 1650 1651 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1652 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1653 } 1654 1655 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1656 { 1657 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1658 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1659 } 1660 1661 static inline unsigned long group_faults_priv(struct numa_group *ng) 1662 { 1663 unsigned long faults = 0; 1664 int node; 1665 1666 for_each_online_node(node) { 1667 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1668 } 1669 1670 return faults; 1671 } 1672 1673 static inline unsigned long group_faults_shared(struct numa_group *ng) 1674 { 1675 unsigned long faults = 0; 1676 int node; 1677 1678 for_each_online_node(node) { 1679 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1680 } 1681 1682 return faults; 1683 } 1684 1685 /* 1686 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1687 * considered part of a numa group's pseudo-interleaving set. Migrations 1688 * between these nodes are slowed down, to allow things to settle down. 1689 */ 1690 #define ACTIVE_NODE_FRACTION 3 1691 1692 static bool numa_is_active_node(int nid, struct numa_group *ng) 1693 { 1694 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1695 } 1696 1697 /* Handle placement on systems where not all nodes are directly connected. */ 1698 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1699 int lim_dist, bool task) 1700 { 1701 unsigned long score = 0; 1702 int node, max_dist; 1703 1704 /* 1705 * All nodes are directly connected, and the same distance 1706 * from each other. No need for fancy placement algorithms. 1707 */ 1708 if (sched_numa_topology_type == NUMA_DIRECT) 1709 return 0; 1710 1711 /* sched_max_numa_distance may be changed in parallel. */ 1712 max_dist = READ_ONCE(sched_max_numa_distance); 1713 /* 1714 * This code is called for each node, introducing N^2 complexity, 1715 * which should be OK given the number of nodes rarely exceeds 8. 1716 */ 1717 for_each_online_node(node) { 1718 unsigned long faults; 1719 int dist = node_distance(nid, node); 1720 1721 /* 1722 * The furthest away nodes in the system are not interesting 1723 * for placement; nid was already counted. 1724 */ 1725 if (dist >= max_dist || node == nid) 1726 continue; 1727 1728 /* 1729 * On systems with a backplane NUMA topology, compare groups 1730 * of nodes, and move tasks towards the group with the most 1731 * memory accesses. When comparing two nodes at distance 1732 * "hoplimit", only nodes closer by than "hoplimit" are part 1733 * of each group. Skip other nodes. 1734 */ 1735 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1736 continue; 1737 1738 /* Add up the faults from nearby nodes. */ 1739 if (task) 1740 faults = task_faults(p, node); 1741 else 1742 faults = group_faults(p, node); 1743 1744 /* 1745 * On systems with a glueless mesh NUMA topology, there are 1746 * no fixed "groups of nodes". Instead, nodes that are not 1747 * directly connected bounce traffic through intermediate 1748 * nodes; a numa_group can occupy any set of nodes. 1749 * The further away a node is, the less the faults count. 1750 * This seems to result in good task placement. 1751 */ 1752 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1753 faults *= (max_dist - dist); 1754 faults /= (max_dist - LOCAL_DISTANCE); 1755 } 1756 1757 score += faults; 1758 } 1759 1760 return score; 1761 } 1762 1763 /* 1764 * These return the fraction of accesses done by a particular task, or 1765 * task group, on a particular numa node. The group weight is given a 1766 * larger multiplier, in order to group tasks together that are almost 1767 * evenly spread out between numa nodes. 1768 */ 1769 static inline unsigned long task_weight(struct task_struct *p, int nid, 1770 int dist) 1771 { 1772 unsigned long faults, total_faults; 1773 1774 if (!p->numa_faults) 1775 return 0; 1776 1777 total_faults = p->total_numa_faults; 1778 1779 if (!total_faults) 1780 return 0; 1781 1782 faults = task_faults(p, nid); 1783 faults += score_nearby_nodes(p, nid, dist, true); 1784 1785 return 1000 * faults / total_faults; 1786 } 1787 1788 static inline unsigned long group_weight(struct task_struct *p, int nid, 1789 int dist) 1790 { 1791 struct numa_group *ng = deref_task_numa_group(p); 1792 unsigned long faults, total_faults; 1793 1794 if (!ng) 1795 return 0; 1796 1797 total_faults = ng->total_faults; 1798 1799 if (!total_faults) 1800 return 0; 1801 1802 faults = group_faults(p, nid); 1803 faults += score_nearby_nodes(p, nid, dist, false); 1804 1805 return 1000 * faults / total_faults; 1806 } 1807 1808 /* 1809 * If memory tiering mode is enabled, cpupid of slow memory page is 1810 * used to record scan time instead of CPU and PID. When tiering mode 1811 * is disabled at run time, the scan time (in cpupid) will be 1812 * interpreted as CPU and PID. So CPU needs to be checked to avoid to 1813 * access out of array bound. 1814 */ 1815 static inline bool cpupid_valid(int cpupid) 1816 { 1817 return cpupid_to_cpu(cpupid) < nr_cpu_ids; 1818 } 1819 1820 /* 1821 * For memory tiering mode, if there are enough free pages (more than 1822 * enough watermark defined here) in fast memory node, to take full 1823 * advantage of fast memory capacity, all recently accessed slow 1824 * memory pages will be migrated to fast memory node without 1825 * considering hot threshold. 1826 */ 1827 static bool pgdat_free_space_enough(struct pglist_data *pgdat) 1828 { 1829 int z; 1830 unsigned long enough_wmark; 1831 1832 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, 1833 pgdat->node_present_pages >> 4); 1834 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1835 struct zone *zone = pgdat->node_zones + z; 1836 1837 if (!populated_zone(zone)) 1838 continue; 1839 1840 if (zone_watermark_ok(zone, 0, 1841 promo_wmark_pages(zone) + enough_wmark, 1842 ZONE_MOVABLE, 0)) 1843 return true; 1844 } 1845 return false; 1846 } 1847 1848 /* 1849 * For memory tiering mode, when page tables are scanned, the scan 1850 * time will be recorded in struct page in addition to make page 1851 * PROT_NONE for slow memory page. So when the page is accessed, in 1852 * hint page fault handler, the hint page fault latency is calculated 1853 * via, 1854 * 1855 * hint page fault latency = hint page fault time - scan time 1856 * 1857 * The smaller the hint page fault latency, the higher the possibility 1858 * for the page to be hot. 1859 */ 1860 static int numa_hint_fault_latency(struct folio *folio) 1861 { 1862 int last_time, time; 1863 1864 time = jiffies_to_msecs(jiffies); 1865 last_time = folio_xchg_access_time(folio, time); 1866 1867 return (time - last_time) & PAGE_ACCESS_TIME_MASK; 1868 } 1869 1870 /* 1871 * For memory tiering mode, too high promotion/demotion throughput may 1872 * hurt application latency. So we provide a mechanism to rate limit 1873 * the number of pages that are tried to be promoted. 1874 */ 1875 static bool numa_promotion_rate_limit(struct pglist_data *pgdat, 1876 unsigned long rate_limit, int nr) 1877 { 1878 unsigned long nr_cand; 1879 unsigned int now, start; 1880 1881 now = jiffies_to_msecs(jiffies); 1882 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); 1883 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1884 start = pgdat->nbp_rl_start; 1885 if (now - start > MSEC_PER_SEC && 1886 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) 1887 pgdat->nbp_rl_nr_cand = nr_cand; 1888 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) 1889 return true; 1890 return false; 1891 } 1892 1893 #define NUMA_MIGRATION_ADJUST_STEPS 16 1894 1895 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, 1896 unsigned long rate_limit, 1897 unsigned int ref_th) 1898 { 1899 unsigned int now, start, th_period, unit_th, th; 1900 unsigned long nr_cand, ref_cand, diff_cand; 1901 1902 now = jiffies_to_msecs(jiffies); 1903 th_period = sysctl_numa_balancing_scan_period_max; 1904 start = pgdat->nbp_th_start; 1905 if (now - start > th_period && 1906 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { 1907 ref_cand = rate_limit * 1908 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; 1909 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1910 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; 1911 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; 1912 th = pgdat->nbp_threshold ? : ref_th; 1913 if (diff_cand > ref_cand * 11 / 10) 1914 th = max(th - unit_th, unit_th); 1915 else if (diff_cand < ref_cand * 9 / 10) 1916 th = min(th + unit_th, ref_th * 2); 1917 pgdat->nbp_th_nr_cand = nr_cand; 1918 pgdat->nbp_threshold = th; 1919 } 1920 } 1921 1922 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio, 1923 int src_nid, int dst_cpu) 1924 { 1925 struct numa_group *ng = deref_curr_numa_group(p); 1926 int dst_nid = cpu_to_node(dst_cpu); 1927 int last_cpupid, this_cpupid; 1928 1929 /* 1930 * Cannot migrate to memoryless nodes. 1931 */ 1932 if (!node_state(dst_nid, N_MEMORY)) 1933 return false; 1934 1935 /* 1936 * The pages in slow memory node should be migrated according 1937 * to hot/cold instead of private/shared. 1938 */ 1939 if (folio_use_access_time(folio)) { 1940 struct pglist_data *pgdat; 1941 unsigned long rate_limit; 1942 unsigned int latency, th, def_th; 1943 1944 pgdat = NODE_DATA(dst_nid); 1945 if (pgdat_free_space_enough(pgdat)) { 1946 /* workload changed, reset hot threshold */ 1947 pgdat->nbp_threshold = 0; 1948 return true; 1949 } 1950 1951 def_th = sysctl_numa_balancing_hot_threshold; 1952 rate_limit = sysctl_numa_balancing_promote_rate_limit << \ 1953 (20 - PAGE_SHIFT); 1954 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); 1955 1956 th = pgdat->nbp_threshold ? : def_th; 1957 latency = numa_hint_fault_latency(folio); 1958 if (latency >= th) 1959 return false; 1960 1961 return !numa_promotion_rate_limit(pgdat, rate_limit, 1962 folio_nr_pages(folio)); 1963 } 1964 1965 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1966 last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid); 1967 1968 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 1969 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) 1970 return false; 1971 1972 /* 1973 * Allow first faults or private faults to migrate immediately early in 1974 * the lifetime of a task. The magic number 4 is based on waiting for 1975 * two full passes of the "multi-stage node selection" test that is 1976 * executed below. 1977 */ 1978 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1979 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1980 return true; 1981 1982 /* 1983 * Multi-stage node selection is used in conjunction with a periodic 1984 * migration fault to build a temporal task<->page relation. By using 1985 * a two-stage filter we remove short/unlikely relations. 1986 * 1987 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1988 * a task's usage of a particular page (n_p) per total usage of this 1989 * page (n_t) (in a given time-span) to a probability. 1990 * 1991 * Our periodic faults will sample this probability and getting the 1992 * same result twice in a row, given these samples are fully 1993 * independent, is then given by P(n)^2, provided our sample period 1994 * is sufficiently short compared to the usage pattern. 1995 * 1996 * This quadric squishes small probabilities, making it less likely we 1997 * act on an unlikely task<->page relation. 1998 */ 1999 if (!cpupid_pid_unset(last_cpupid) && 2000 cpupid_to_nid(last_cpupid) != dst_nid) 2001 return false; 2002 2003 /* Always allow migrate on private faults */ 2004 if (cpupid_match_pid(p, last_cpupid)) 2005 return true; 2006 2007 /* A shared fault, but p->numa_group has not been set up yet. */ 2008 if (!ng) 2009 return true; 2010 2011 /* 2012 * Destination node is much more heavily used than the source 2013 * node? Allow migration. 2014 */ 2015 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 2016 ACTIVE_NODE_FRACTION) 2017 return true; 2018 2019 /* 2020 * Distribute memory according to CPU & memory use on each node, 2021 * with 3/4 hysteresis to avoid unnecessary memory migrations: 2022 * 2023 * faults_cpu(dst) 3 faults_cpu(src) 2024 * --------------- * - > --------------- 2025 * faults_mem(dst) 4 faults_mem(src) 2026 */ 2027 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 2028 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 2029 } 2030 2031 /* 2032 * 'numa_type' describes the node at the moment of load balancing. 2033 */ 2034 enum numa_type { 2035 /* The node has spare capacity that can be used to run more tasks. */ 2036 node_has_spare = 0, 2037 /* 2038 * The node is fully used and the tasks don't compete for more CPU 2039 * cycles. Nevertheless, some tasks might wait before running. 2040 */ 2041 node_fully_busy, 2042 /* 2043 * The node is overloaded and can't provide expected CPU cycles to all 2044 * tasks. 2045 */ 2046 node_overloaded 2047 }; 2048 2049 /* Cached statistics for all CPUs within a node */ 2050 struct numa_stats { 2051 unsigned long load; 2052 unsigned long runnable; 2053 unsigned long util; 2054 /* Total compute capacity of CPUs on a node */ 2055 unsigned long compute_capacity; 2056 unsigned int nr_running; 2057 unsigned int weight; 2058 enum numa_type node_type; 2059 int idle_cpu; 2060 }; 2061 2062 struct task_numa_env { 2063 struct task_struct *p; 2064 2065 int src_cpu, src_nid; 2066 int dst_cpu, dst_nid; 2067 int imb_numa_nr; 2068 2069 struct numa_stats src_stats, dst_stats; 2070 2071 int imbalance_pct; 2072 int dist; 2073 2074 struct task_struct *best_task; 2075 long best_imp; 2076 int best_cpu; 2077 }; 2078 2079 static unsigned long cpu_load(struct rq *rq); 2080 static unsigned long cpu_runnable(struct rq *rq); 2081 2082 static inline enum 2083 numa_type numa_classify(unsigned int imbalance_pct, 2084 struct numa_stats *ns) 2085 { 2086 if ((ns->nr_running > ns->weight) && 2087 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 2088 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 2089 return node_overloaded; 2090 2091 if ((ns->nr_running < ns->weight) || 2092 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 2093 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 2094 return node_has_spare; 2095 2096 return node_fully_busy; 2097 } 2098 2099 #ifdef CONFIG_SCHED_SMT 2100 /* Forward declarations of select_idle_sibling helpers */ 2101 static inline bool test_idle_cores(int cpu); 2102 static inline int numa_idle_core(int idle_core, int cpu) 2103 { 2104 if (!static_branch_likely(&sched_smt_present) || 2105 idle_core >= 0 || !test_idle_cores(cpu)) 2106 return idle_core; 2107 2108 /* 2109 * Prefer cores instead of packing HT siblings 2110 * and triggering future load balancing. 2111 */ 2112 if (is_core_idle(cpu)) 2113 idle_core = cpu; 2114 2115 return idle_core; 2116 } 2117 #else 2118 static inline int numa_idle_core(int idle_core, int cpu) 2119 { 2120 return idle_core; 2121 } 2122 #endif 2123 2124 /* 2125 * Gather all necessary information to make NUMA balancing placement 2126 * decisions that are compatible with standard load balancer. This 2127 * borrows code and logic from update_sg_lb_stats but sharing a 2128 * common implementation is impractical. 2129 */ 2130 static void update_numa_stats(struct task_numa_env *env, 2131 struct numa_stats *ns, int nid, 2132 bool find_idle) 2133 { 2134 int cpu, idle_core = -1; 2135 2136 memset(ns, 0, sizeof(*ns)); 2137 ns->idle_cpu = -1; 2138 2139 rcu_read_lock(); 2140 for_each_cpu(cpu, cpumask_of_node(nid)) { 2141 struct rq *rq = cpu_rq(cpu); 2142 2143 ns->load += cpu_load(rq); 2144 ns->runnable += cpu_runnable(rq); 2145 ns->util += cpu_util_cfs(cpu); 2146 ns->nr_running += rq->cfs.h_nr_runnable; 2147 ns->compute_capacity += capacity_of(cpu); 2148 2149 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { 2150 if (READ_ONCE(rq->numa_migrate_on) || 2151 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2152 continue; 2153 2154 if (ns->idle_cpu == -1) 2155 ns->idle_cpu = cpu; 2156 2157 idle_core = numa_idle_core(idle_core, cpu); 2158 } 2159 } 2160 rcu_read_unlock(); 2161 2162 ns->weight = cpumask_weight(cpumask_of_node(nid)); 2163 2164 ns->node_type = numa_classify(env->imbalance_pct, ns); 2165 2166 if (idle_core >= 0) 2167 ns->idle_cpu = idle_core; 2168 } 2169 2170 static void task_numa_assign(struct task_numa_env *env, 2171 struct task_struct *p, long imp) 2172 { 2173 struct rq *rq = cpu_rq(env->dst_cpu); 2174 2175 /* Check if run-queue part of active NUMA balance. */ 2176 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 2177 int cpu; 2178 int start = env->dst_cpu; 2179 2180 /* Find alternative idle CPU. */ 2181 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { 2182 if (cpu == env->best_cpu || !idle_cpu(cpu) || 2183 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 2184 continue; 2185 } 2186 2187 env->dst_cpu = cpu; 2188 rq = cpu_rq(env->dst_cpu); 2189 if (!xchg(&rq->numa_migrate_on, 1)) 2190 goto assign; 2191 } 2192 2193 /* Failed to find an alternative idle CPU */ 2194 return; 2195 } 2196 2197 assign: 2198 /* 2199 * Clear previous best_cpu/rq numa-migrate flag, since task now 2200 * found a better CPU to move/swap. 2201 */ 2202 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 2203 rq = cpu_rq(env->best_cpu); 2204 WRITE_ONCE(rq->numa_migrate_on, 0); 2205 } 2206 2207 if (env->best_task) 2208 put_task_struct(env->best_task); 2209 if (p) 2210 get_task_struct(p); 2211 2212 env->best_task = p; 2213 env->best_imp = imp; 2214 env->best_cpu = env->dst_cpu; 2215 } 2216 2217 static bool load_too_imbalanced(long src_load, long dst_load, 2218 struct task_numa_env *env) 2219 { 2220 long imb, old_imb; 2221 long orig_src_load, orig_dst_load; 2222 long src_capacity, dst_capacity; 2223 2224 /* 2225 * The load is corrected for the CPU capacity available on each node. 2226 * 2227 * src_load dst_load 2228 * ------------ vs --------- 2229 * src_capacity dst_capacity 2230 */ 2231 src_capacity = env->src_stats.compute_capacity; 2232 dst_capacity = env->dst_stats.compute_capacity; 2233 2234 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 2235 2236 orig_src_load = env->src_stats.load; 2237 orig_dst_load = env->dst_stats.load; 2238 2239 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 2240 2241 /* Would this change make things worse? */ 2242 return (imb > old_imb); 2243 } 2244 2245 /* 2246 * Maximum NUMA importance can be 1998 (2*999); 2247 * SMALLIMP @ 30 would be close to 1998/64. 2248 * Used to deter task migration. 2249 */ 2250 #define SMALLIMP 30 2251 2252 /* 2253 * This checks if the overall compute and NUMA accesses of the system would 2254 * be improved if the source tasks was migrated to the target dst_cpu taking 2255 * into account that it might be best if task running on the dst_cpu should 2256 * be exchanged with the source task 2257 */ 2258 static bool task_numa_compare(struct task_numa_env *env, 2259 long taskimp, long groupimp, bool maymove) 2260 { 2261 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 2262 struct rq *dst_rq = cpu_rq(env->dst_cpu); 2263 long imp = p_ng ? groupimp : taskimp; 2264 struct task_struct *cur; 2265 long src_load, dst_load; 2266 int dist = env->dist; 2267 long moveimp = imp; 2268 long load; 2269 bool stopsearch = false; 2270 2271 if (READ_ONCE(dst_rq->numa_migrate_on)) 2272 return false; 2273 2274 rcu_read_lock(); 2275 cur = rcu_dereference(dst_rq->curr); 2276 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 2277 cur = NULL; 2278 2279 /* 2280 * Because we have preemption enabled we can get migrated around and 2281 * end try selecting ourselves (current == env->p) as a swap candidate. 2282 */ 2283 if (cur == env->p) { 2284 stopsearch = true; 2285 goto unlock; 2286 } 2287 2288 if (!cur) { 2289 if (maymove && moveimp >= env->best_imp) 2290 goto assign; 2291 else 2292 goto unlock; 2293 } 2294 2295 /* Skip this swap candidate if cannot move to the source cpu. */ 2296 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 2297 goto unlock; 2298 2299 /* 2300 * Skip this swap candidate if it is not moving to its preferred 2301 * node and the best task is. 2302 */ 2303 if (env->best_task && 2304 env->best_task->numa_preferred_nid == env->src_nid && 2305 cur->numa_preferred_nid != env->src_nid) { 2306 goto unlock; 2307 } 2308 2309 /* 2310 * "imp" is the fault differential for the source task between the 2311 * source and destination node. Calculate the total differential for 2312 * the source task and potential destination task. The more negative 2313 * the value is, the more remote accesses that would be expected to 2314 * be incurred if the tasks were swapped. 2315 * 2316 * If dst and source tasks are in the same NUMA group, or not 2317 * in any group then look only at task weights. 2318 */ 2319 cur_ng = rcu_dereference(cur->numa_group); 2320 if (cur_ng == p_ng) { 2321 /* 2322 * Do not swap within a group or between tasks that have 2323 * no group if there is spare capacity. Swapping does 2324 * not address the load imbalance and helps one task at 2325 * the cost of punishing another. 2326 */ 2327 if (env->dst_stats.node_type == node_has_spare) 2328 goto unlock; 2329 2330 imp = taskimp + task_weight(cur, env->src_nid, dist) - 2331 task_weight(cur, env->dst_nid, dist); 2332 /* 2333 * Add some hysteresis to prevent swapping the 2334 * tasks within a group over tiny differences. 2335 */ 2336 if (cur_ng) 2337 imp -= imp / 16; 2338 } else { 2339 /* 2340 * Compare the group weights. If a task is all by itself 2341 * (not part of a group), use the task weight instead. 2342 */ 2343 if (cur_ng && p_ng) 2344 imp += group_weight(cur, env->src_nid, dist) - 2345 group_weight(cur, env->dst_nid, dist); 2346 else 2347 imp += task_weight(cur, env->src_nid, dist) - 2348 task_weight(cur, env->dst_nid, dist); 2349 } 2350 2351 /* Discourage picking a task already on its preferred node */ 2352 if (cur->numa_preferred_nid == env->dst_nid) 2353 imp -= imp / 16; 2354 2355 /* 2356 * Encourage picking a task that moves to its preferred node. 2357 * This potentially makes imp larger than it's maximum of 2358 * 1998 (see SMALLIMP and task_weight for why) but in this 2359 * case, it does not matter. 2360 */ 2361 if (cur->numa_preferred_nid == env->src_nid) 2362 imp += imp / 8; 2363 2364 if (maymove && moveimp > imp && moveimp > env->best_imp) { 2365 imp = moveimp; 2366 cur = NULL; 2367 goto assign; 2368 } 2369 2370 /* 2371 * Prefer swapping with a task moving to its preferred node over a 2372 * task that is not. 2373 */ 2374 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 2375 env->best_task->numa_preferred_nid != env->src_nid) { 2376 goto assign; 2377 } 2378 2379 /* 2380 * If the NUMA importance is less than SMALLIMP, 2381 * task migration might only result in ping pong 2382 * of tasks and also hurt performance due to cache 2383 * misses. 2384 */ 2385 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 2386 goto unlock; 2387 2388 /* 2389 * In the overloaded case, try and keep the load balanced. 2390 */ 2391 load = task_h_load(env->p) - task_h_load(cur); 2392 if (!load) 2393 goto assign; 2394 2395 dst_load = env->dst_stats.load + load; 2396 src_load = env->src_stats.load - load; 2397 2398 if (load_too_imbalanced(src_load, dst_load, env)) 2399 goto unlock; 2400 2401 assign: 2402 /* Evaluate an idle CPU for a task numa move. */ 2403 if (!cur) { 2404 int cpu = env->dst_stats.idle_cpu; 2405 2406 /* Nothing cached so current CPU went idle since the search. */ 2407 if (cpu < 0) 2408 cpu = env->dst_cpu; 2409 2410 /* 2411 * If the CPU is no longer truly idle and the previous best CPU 2412 * is, keep using it. 2413 */ 2414 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 2415 idle_cpu(env->best_cpu)) { 2416 cpu = env->best_cpu; 2417 } 2418 2419 env->dst_cpu = cpu; 2420 } 2421 2422 task_numa_assign(env, cur, imp); 2423 2424 /* 2425 * If a move to idle is allowed because there is capacity or load 2426 * balance improves then stop the search. While a better swap 2427 * candidate may exist, a search is not free. 2428 */ 2429 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 2430 stopsearch = true; 2431 2432 /* 2433 * If a swap candidate must be identified and the current best task 2434 * moves its preferred node then stop the search. 2435 */ 2436 if (!maymove && env->best_task && 2437 env->best_task->numa_preferred_nid == env->src_nid) { 2438 stopsearch = true; 2439 } 2440 unlock: 2441 rcu_read_unlock(); 2442 2443 return stopsearch; 2444 } 2445 2446 static void task_numa_find_cpu(struct task_numa_env *env, 2447 long taskimp, long groupimp) 2448 { 2449 bool maymove = false; 2450 int cpu; 2451 2452 /* 2453 * If dst node has spare capacity, then check if there is an 2454 * imbalance that would be overruled by the load balancer. 2455 */ 2456 if (env->dst_stats.node_type == node_has_spare) { 2457 unsigned int imbalance; 2458 int src_running, dst_running; 2459 2460 /* 2461 * Would movement cause an imbalance? Note that if src has 2462 * more running tasks that the imbalance is ignored as the 2463 * move improves the imbalance from the perspective of the 2464 * CPU load balancer. 2465 * */ 2466 src_running = env->src_stats.nr_running - 1; 2467 dst_running = env->dst_stats.nr_running + 1; 2468 imbalance = max(0, dst_running - src_running); 2469 imbalance = adjust_numa_imbalance(imbalance, dst_running, 2470 env->imb_numa_nr); 2471 2472 /* Use idle CPU if there is no imbalance */ 2473 if (!imbalance) { 2474 maymove = true; 2475 if (env->dst_stats.idle_cpu >= 0) { 2476 env->dst_cpu = env->dst_stats.idle_cpu; 2477 task_numa_assign(env, NULL, 0); 2478 return; 2479 } 2480 } 2481 } else { 2482 long src_load, dst_load, load; 2483 /* 2484 * If the improvement from just moving env->p direction is better 2485 * than swapping tasks around, check if a move is possible. 2486 */ 2487 load = task_h_load(env->p); 2488 dst_load = env->dst_stats.load + load; 2489 src_load = env->src_stats.load - load; 2490 maymove = !load_too_imbalanced(src_load, dst_load, env); 2491 } 2492 2493 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 2494 /* Skip this CPU if the source task cannot migrate */ 2495 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2496 continue; 2497 2498 env->dst_cpu = cpu; 2499 if (task_numa_compare(env, taskimp, groupimp, maymove)) 2500 break; 2501 } 2502 } 2503 2504 static int task_numa_migrate(struct task_struct *p) 2505 { 2506 struct task_numa_env env = { 2507 .p = p, 2508 2509 .src_cpu = task_cpu(p), 2510 .src_nid = task_node(p), 2511 2512 .imbalance_pct = 112, 2513 2514 .best_task = NULL, 2515 .best_imp = 0, 2516 .best_cpu = -1, 2517 }; 2518 unsigned long taskweight, groupweight; 2519 struct sched_domain *sd; 2520 long taskimp, groupimp; 2521 struct numa_group *ng; 2522 struct rq *best_rq; 2523 int nid, ret, dist; 2524 2525 /* 2526 * Pick the lowest SD_NUMA domain, as that would have the smallest 2527 * imbalance and would be the first to start moving tasks about. 2528 * 2529 * And we want to avoid any moving of tasks about, as that would create 2530 * random movement of tasks -- counter the numa conditions we're trying 2531 * to satisfy here. 2532 */ 2533 rcu_read_lock(); 2534 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2535 if (sd) { 2536 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2537 env.imb_numa_nr = sd->imb_numa_nr; 2538 } 2539 rcu_read_unlock(); 2540 2541 /* 2542 * Cpusets can break the scheduler domain tree into smaller 2543 * balance domains, some of which do not cross NUMA boundaries. 2544 * Tasks that are "trapped" in such domains cannot be migrated 2545 * elsewhere, so there is no point in (re)trying. 2546 */ 2547 if (unlikely(!sd)) { 2548 sched_setnuma(p, task_node(p)); 2549 return -EINVAL; 2550 } 2551 2552 env.dst_nid = p->numa_preferred_nid; 2553 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2554 taskweight = task_weight(p, env.src_nid, dist); 2555 groupweight = group_weight(p, env.src_nid, dist); 2556 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2557 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2558 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2559 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2560 2561 /* Try to find a spot on the preferred nid. */ 2562 task_numa_find_cpu(&env, taskimp, groupimp); 2563 2564 /* 2565 * Look at other nodes in these cases: 2566 * - there is no space available on the preferred_nid 2567 * - the task is part of a numa_group that is interleaved across 2568 * multiple NUMA nodes; in order to better consolidate the group, 2569 * we need to check other locations. 2570 */ 2571 ng = deref_curr_numa_group(p); 2572 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2573 for_each_node_state(nid, N_CPU) { 2574 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2575 continue; 2576 2577 dist = node_distance(env.src_nid, env.dst_nid); 2578 if (sched_numa_topology_type == NUMA_BACKPLANE && 2579 dist != env.dist) { 2580 taskweight = task_weight(p, env.src_nid, dist); 2581 groupweight = group_weight(p, env.src_nid, dist); 2582 } 2583 2584 /* Only consider nodes where both task and groups benefit */ 2585 taskimp = task_weight(p, nid, dist) - taskweight; 2586 groupimp = group_weight(p, nid, dist) - groupweight; 2587 if (taskimp < 0 && groupimp < 0) 2588 continue; 2589 2590 env.dist = dist; 2591 env.dst_nid = nid; 2592 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2593 task_numa_find_cpu(&env, taskimp, groupimp); 2594 } 2595 } 2596 2597 /* 2598 * If the task is part of a workload that spans multiple NUMA nodes, 2599 * and is migrating into one of the workload's active nodes, remember 2600 * this node as the task's preferred numa node, so the workload can 2601 * settle down. 2602 * A task that migrated to a second choice node will be better off 2603 * trying for a better one later. Do not set the preferred node here. 2604 */ 2605 if (ng) { 2606 if (env.best_cpu == -1) 2607 nid = env.src_nid; 2608 else 2609 nid = cpu_to_node(env.best_cpu); 2610 2611 if (nid != p->numa_preferred_nid) 2612 sched_setnuma(p, nid); 2613 } 2614 2615 /* No better CPU than the current one was found. */ 2616 if (env.best_cpu == -1) { 2617 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2618 return -EAGAIN; 2619 } 2620 2621 best_rq = cpu_rq(env.best_cpu); 2622 if (env.best_task == NULL) { 2623 ret = migrate_task_to(p, env.best_cpu); 2624 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2625 if (ret != 0) 2626 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2627 return ret; 2628 } 2629 2630 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2631 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2632 2633 if (ret != 0) 2634 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2635 put_task_struct(env.best_task); 2636 return ret; 2637 } 2638 2639 /* Attempt to migrate a task to a CPU on the preferred node. */ 2640 static void numa_migrate_preferred(struct task_struct *p) 2641 { 2642 unsigned long interval = HZ; 2643 2644 /* This task has no NUMA fault statistics yet */ 2645 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2646 return; 2647 2648 /* Periodically retry migrating the task to the preferred node */ 2649 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2650 p->numa_migrate_retry = jiffies + interval; 2651 2652 /* Success if task is already running on preferred CPU */ 2653 if (task_node(p) == p->numa_preferred_nid) 2654 return; 2655 2656 /* Otherwise, try migrate to a CPU on the preferred node */ 2657 task_numa_migrate(p); 2658 } 2659 2660 /* 2661 * Find out how many nodes the workload is actively running on. Do this by 2662 * tracking the nodes from which NUMA hinting faults are triggered. This can 2663 * be different from the set of nodes where the workload's memory is currently 2664 * located. 2665 */ 2666 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2667 { 2668 unsigned long faults, max_faults = 0; 2669 int nid, active_nodes = 0; 2670 2671 for_each_node_state(nid, N_CPU) { 2672 faults = group_faults_cpu(numa_group, nid); 2673 if (faults > max_faults) 2674 max_faults = faults; 2675 } 2676 2677 for_each_node_state(nid, N_CPU) { 2678 faults = group_faults_cpu(numa_group, nid); 2679 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2680 active_nodes++; 2681 } 2682 2683 numa_group->max_faults_cpu = max_faults; 2684 numa_group->active_nodes = active_nodes; 2685 } 2686 2687 /* 2688 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2689 * increments. The more local the fault statistics are, the higher the scan 2690 * period will be for the next scan window. If local/(local+remote) ratio is 2691 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2692 * the scan period will decrease. Aim for 70% local accesses. 2693 */ 2694 #define NUMA_PERIOD_SLOTS 10 2695 #define NUMA_PERIOD_THRESHOLD 7 2696 2697 /* 2698 * Increase the scan period (slow down scanning) if the majority of 2699 * our memory is already on our local node, or if the majority of 2700 * the page accesses are shared with other processes. 2701 * Otherwise, decrease the scan period. 2702 */ 2703 static void update_task_scan_period(struct task_struct *p, 2704 unsigned long shared, unsigned long private) 2705 { 2706 unsigned int period_slot; 2707 int lr_ratio, ps_ratio; 2708 int diff; 2709 2710 unsigned long remote = p->numa_faults_locality[0]; 2711 unsigned long local = p->numa_faults_locality[1]; 2712 2713 /* 2714 * If there were no record hinting faults then either the task is 2715 * completely idle or all activity is in areas that are not of interest 2716 * to automatic numa balancing. Related to that, if there were failed 2717 * migration then it implies we are migrating too quickly or the local 2718 * node is overloaded. In either case, scan slower 2719 */ 2720 if (local + shared == 0 || p->numa_faults_locality[2]) { 2721 p->numa_scan_period = min(p->numa_scan_period_max, 2722 p->numa_scan_period << 1); 2723 2724 p->mm->numa_next_scan = jiffies + 2725 msecs_to_jiffies(p->numa_scan_period); 2726 2727 return; 2728 } 2729 2730 /* 2731 * Prepare to scale scan period relative to the current period. 2732 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2733 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2734 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2735 */ 2736 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2737 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2738 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2739 2740 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2741 /* 2742 * Most memory accesses are local. There is no need to 2743 * do fast NUMA scanning, since memory is already local. 2744 */ 2745 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2746 if (!slot) 2747 slot = 1; 2748 diff = slot * period_slot; 2749 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2750 /* 2751 * Most memory accesses are shared with other tasks. 2752 * There is no point in continuing fast NUMA scanning, 2753 * since other tasks may just move the memory elsewhere. 2754 */ 2755 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2756 if (!slot) 2757 slot = 1; 2758 diff = slot * period_slot; 2759 } else { 2760 /* 2761 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2762 * yet they are not on the local NUMA node. Speed up 2763 * NUMA scanning to get the memory moved over. 2764 */ 2765 int ratio = max(lr_ratio, ps_ratio); 2766 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2767 } 2768 2769 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2770 task_scan_min(p), task_scan_max(p)); 2771 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2772 } 2773 2774 /* 2775 * Get the fraction of time the task has been running since the last 2776 * NUMA placement cycle. The scheduler keeps similar statistics, but 2777 * decays those on a 32ms period, which is orders of magnitude off 2778 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2779 * stats only if the task is so new there are no NUMA statistics yet. 2780 */ 2781 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2782 { 2783 u64 runtime, delta, now; 2784 /* Use the start of this time slice to avoid calculations. */ 2785 now = p->se.exec_start; 2786 runtime = p->se.sum_exec_runtime; 2787 2788 if (p->last_task_numa_placement) { 2789 delta = runtime - p->last_sum_exec_runtime; 2790 *period = now - p->last_task_numa_placement; 2791 2792 /* Avoid time going backwards, prevent potential divide error: */ 2793 if (unlikely((s64)*period < 0)) 2794 *period = 0; 2795 } else { 2796 delta = p->se.avg.load_sum; 2797 *period = LOAD_AVG_MAX; 2798 } 2799 2800 p->last_sum_exec_runtime = runtime; 2801 p->last_task_numa_placement = now; 2802 2803 return delta; 2804 } 2805 2806 /* 2807 * Determine the preferred nid for a task in a numa_group. This needs to 2808 * be done in a way that produces consistent results with group_weight, 2809 * otherwise workloads might not converge. 2810 */ 2811 static int preferred_group_nid(struct task_struct *p, int nid) 2812 { 2813 nodemask_t nodes; 2814 int dist; 2815 2816 /* Direct connections between all NUMA nodes. */ 2817 if (sched_numa_topology_type == NUMA_DIRECT) 2818 return nid; 2819 2820 /* 2821 * On a system with glueless mesh NUMA topology, group_weight 2822 * scores nodes according to the number of NUMA hinting faults on 2823 * both the node itself, and on nearby nodes. 2824 */ 2825 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2826 unsigned long score, max_score = 0; 2827 int node, max_node = nid; 2828 2829 dist = sched_max_numa_distance; 2830 2831 for_each_node_state(node, N_CPU) { 2832 score = group_weight(p, node, dist); 2833 if (score > max_score) { 2834 max_score = score; 2835 max_node = node; 2836 } 2837 } 2838 return max_node; 2839 } 2840 2841 /* 2842 * Finding the preferred nid in a system with NUMA backplane 2843 * interconnect topology is more involved. The goal is to locate 2844 * tasks from numa_groups near each other in the system, and 2845 * untangle workloads from different sides of the system. This requires 2846 * searching down the hierarchy of node groups, recursively searching 2847 * inside the highest scoring group of nodes. The nodemask tricks 2848 * keep the complexity of the search down. 2849 */ 2850 nodes = node_states[N_CPU]; 2851 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2852 unsigned long max_faults = 0; 2853 nodemask_t max_group = NODE_MASK_NONE; 2854 int a, b; 2855 2856 /* Are there nodes at this distance from each other? */ 2857 if (!find_numa_distance(dist)) 2858 continue; 2859 2860 for_each_node_mask(a, nodes) { 2861 unsigned long faults = 0; 2862 nodemask_t this_group; 2863 nodes_clear(this_group); 2864 2865 /* Sum group's NUMA faults; includes a==b case. */ 2866 for_each_node_mask(b, nodes) { 2867 if (node_distance(a, b) < dist) { 2868 faults += group_faults(p, b); 2869 node_set(b, this_group); 2870 node_clear(b, nodes); 2871 } 2872 } 2873 2874 /* Remember the top group. */ 2875 if (faults > max_faults) { 2876 max_faults = faults; 2877 max_group = this_group; 2878 /* 2879 * subtle: at the smallest distance there is 2880 * just one node left in each "group", the 2881 * winner is the preferred nid. 2882 */ 2883 nid = a; 2884 } 2885 } 2886 /* Next round, evaluate the nodes within max_group. */ 2887 if (!max_faults) 2888 break; 2889 nodes = max_group; 2890 } 2891 return nid; 2892 } 2893 2894 static void task_numa_placement(struct task_struct *p) 2895 { 2896 int seq, nid, max_nid = NUMA_NO_NODE; 2897 unsigned long max_faults = 0; 2898 unsigned long fault_types[2] = { 0, 0 }; 2899 unsigned long total_faults; 2900 u64 runtime, period; 2901 spinlock_t *group_lock = NULL; 2902 struct numa_group *ng; 2903 2904 /* 2905 * The p->mm->numa_scan_seq field gets updated without 2906 * exclusive access. Use READ_ONCE() here to ensure 2907 * that the field is read in a single access: 2908 */ 2909 seq = READ_ONCE(p->mm->numa_scan_seq); 2910 if (p->numa_scan_seq == seq) 2911 return; 2912 p->numa_scan_seq = seq; 2913 p->numa_scan_period_max = task_scan_max(p); 2914 2915 total_faults = p->numa_faults_locality[0] + 2916 p->numa_faults_locality[1]; 2917 runtime = numa_get_avg_runtime(p, &period); 2918 2919 /* If the task is part of a group prevent parallel updates to group stats */ 2920 ng = deref_curr_numa_group(p); 2921 if (ng) { 2922 group_lock = &ng->lock; 2923 spin_lock_irq(group_lock); 2924 } 2925 2926 /* Find the node with the highest number of faults */ 2927 for_each_online_node(nid) { 2928 /* Keep track of the offsets in numa_faults array */ 2929 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2930 unsigned long faults = 0, group_faults = 0; 2931 int priv; 2932 2933 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2934 long diff, f_diff, f_weight; 2935 2936 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2937 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2938 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2939 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2940 2941 /* Decay existing window, copy faults since last scan */ 2942 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2943 fault_types[priv] += p->numa_faults[membuf_idx]; 2944 p->numa_faults[membuf_idx] = 0; 2945 2946 /* 2947 * Normalize the faults_from, so all tasks in a group 2948 * count according to CPU use, instead of by the raw 2949 * number of faults. Tasks with little runtime have 2950 * little over-all impact on throughput, and thus their 2951 * faults are less important. 2952 */ 2953 f_weight = div64_u64(runtime << 16, period + 1); 2954 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2955 (total_faults + 1); 2956 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2957 p->numa_faults[cpubuf_idx] = 0; 2958 2959 p->numa_faults[mem_idx] += diff; 2960 p->numa_faults[cpu_idx] += f_diff; 2961 faults += p->numa_faults[mem_idx]; 2962 p->total_numa_faults += diff; 2963 if (ng) { 2964 /* 2965 * safe because we can only change our own group 2966 * 2967 * mem_idx represents the offset for a given 2968 * nid and priv in a specific region because it 2969 * is at the beginning of the numa_faults array. 2970 */ 2971 ng->faults[mem_idx] += diff; 2972 ng->faults[cpu_idx] += f_diff; 2973 ng->total_faults += diff; 2974 group_faults += ng->faults[mem_idx]; 2975 } 2976 } 2977 2978 if (!ng) { 2979 if (faults > max_faults) { 2980 max_faults = faults; 2981 max_nid = nid; 2982 } 2983 } else if (group_faults > max_faults) { 2984 max_faults = group_faults; 2985 max_nid = nid; 2986 } 2987 } 2988 2989 /* Cannot migrate task to CPU-less node */ 2990 max_nid = numa_nearest_node(max_nid, N_CPU); 2991 2992 if (ng) { 2993 numa_group_count_active_nodes(ng); 2994 spin_unlock_irq(group_lock); 2995 max_nid = preferred_group_nid(p, max_nid); 2996 } 2997 2998 if (max_faults) { 2999 /* Set the new preferred node */ 3000 if (max_nid != p->numa_preferred_nid) 3001 sched_setnuma(p, max_nid); 3002 } 3003 3004 update_task_scan_period(p, fault_types[0], fault_types[1]); 3005 } 3006 3007 static inline int get_numa_group(struct numa_group *grp) 3008 { 3009 return refcount_inc_not_zero(&grp->refcount); 3010 } 3011 3012 static inline void put_numa_group(struct numa_group *grp) 3013 { 3014 if (refcount_dec_and_test(&grp->refcount)) 3015 kfree_rcu(grp, rcu); 3016 } 3017 3018 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 3019 int *priv) 3020 { 3021 struct numa_group *grp, *my_grp; 3022 struct task_struct *tsk; 3023 bool join = false; 3024 int cpu = cpupid_to_cpu(cpupid); 3025 int i; 3026 3027 if (unlikely(!deref_curr_numa_group(p))) { 3028 unsigned int size = sizeof(struct numa_group) + 3029 NR_NUMA_HINT_FAULT_STATS * 3030 nr_node_ids * sizeof(unsigned long); 3031 3032 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 3033 if (!grp) 3034 return; 3035 3036 refcount_set(&grp->refcount, 1); 3037 grp->active_nodes = 1; 3038 grp->max_faults_cpu = 0; 3039 spin_lock_init(&grp->lock); 3040 grp->gid = p->pid; 3041 3042 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3043 grp->faults[i] = p->numa_faults[i]; 3044 3045 grp->total_faults = p->total_numa_faults; 3046 3047 grp->nr_tasks++; 3048 rcu_assign_pointer(p->numa_group, grp); 3049 } 3050 3051 rcu_read_lock(); 3052 tsk = READ_ONCE(cpu_rq(cpu)->curr); 3053 3054 if (!cpupid_match_pid(tsk, cpupid)) 3055 goto no_join; 3056 3057 grp = rcu_dereference(tsk->numa_group); 3058 if (!grp) 3059 goto no_join; 3060 3061 my_grp = deref_curr_numa_group(p); 3062 if (grp == my_grp) 3063 goto no_join; 3064 3065 /* 3066 * Only join the other group if its bigger; if we're the bigger group, 3067 * the other task will join us. 3068 */ 3069 if (my_grp->nr_tasks > grp->nr_tasks) 3070 goto no_join; 3071 3072 /* 3073 * Tie-break on the grp address. 3074 */ 3075 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 3076 goto no_join; 3077 3078 /* Always join threads in the same process. */ 3079 if (tsk->mm == current->mm) 3080 join = true; 3081 3082 /* Simple filter to avoid false positives due to PID collisions */ 3083 if (flags & TNF_SHARED) 3084 join = true; 3085 3086 /* Update priv based on whether false sharing was detected */ 3087 *priv = !join; 3088 3089 if (join && !get_numa_group(grp)) 3090 goto no_join; 3091 3092 rcu_read_unlock(); 3093 3094 if (!join) 3095 return; 3096 3097 WARN_ON_ONCE(irqs_disabled()); 3098 double_lock_irq(&my_grp->lock, &grp->lock); 3099 3100 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 3101 my_grp->faults[i] -= p->numa_faults[i]; 3102 grp->faults[i] += p->numa_faults[i]; 3103 } 3104 my_grp->total_faults -= p->total_numa_faults; 3105 grp->total_faults += p->total_numa_faults; 3106 3107 my_grp->nr_tasks--; 3108 grp->nr_tasks++; 3109 3110 spin_unlock(&my_grp->lock); 3111 spin_unlock_irq(&grp->lock); 3112 3113 rcu_assign_pointer(p->numa_group, grp); 3114 3115 put_numa_group(my_grp); 3116 return; 3117 3118 no_join: 3119 rcu_read_unlock(); 3120 return; 3121 } 3122 3123 /* 3124 * Get rid of NUMA statistics associated with a task (either current or dead). 3125 * If @final is set, the task is dead and has reached refcount zero, so we can 3126 * safely free all relevant data structures. Otherwise, there might be 3127 * concurrent reads from places like load balancing and procfs, and we should 3128 * reset the data back to default state without freeing ->numa_faults. 3129 */ 3130 void task_numa_free(struct task_struct *p, bool final) 3131 { 3132 /* safe: p either is current or is being freed by current */ 3133 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 3134 unsigned long *numa_faults = p->numa_faults; 3135 unsigned long flags; 3136 int i; 3137 3138 if (!numa_faults) 3139 return; 3140 3141 if (grp) { 3142 spin_lock_irqsave(&grp->lock, flags); 3143 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3144 grp->faults[i] -= p->numa_faults[i]; 3145 grp->total_faults -= p->total_numa_faults; 3146 3147 grp->nr_tasks--; 3148 spin_unlock_irqrestore(&grp->lock, flags); 3149 RCU_INIT_POINTER(p->numa_group, NULL); 3150 put_numa_group(grp); 3151 } 3152 3153 if (final) { 3154 p->numa_faults = NULL; 3155 kfree(numa_faults); 3156 } else { 3157 p->total_numa_faults = 0; 3158 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3159 numa_faults[i] = 0; 3160 } 3161 } 3162 3163 /* 3164 * Got a PROT_NONE fault for a page on @node. 3165 */ 3166 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 3167 { 3168 struct task_struct *p = current; 3169 bool migrated = flags & TNF_MIGRATED; 3170 int cpu_node = task_node(current); 3171 int local = !!(flags & TNF_FAULT_LOCAL); 3172 struct numa_group *ng; 3173 int priv; 3174 3175 if (!static_branch_likely(&sched_numa_balancing)) 3176 return; 3177 3178 /* for example, ksmd faulting in a user's mm */ 3179 if (!p->mm) 3180 return; 3181 3182 /* 3183 * NUMA faults statistics are unnecessary for the slow memory 3184 * node for memory tiering mode. 3185 */ 3186 if (!node_is_toptier(mem_node) && 3187 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || 3188 !cpupid_valid(last_cpupid))) 3189 return; 3190 3191 /* Allocate buffer to track faults on a per-node basis */ 3192 if (unlikely(!p->numa_faults)) { 3193 int size = sizeof(*p->numa_faults) * 3194 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 3195 3196 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 3197 if (!p->numa_faults) 3198 return; 3199 3200 p->total_numa_faults = 0; 3201 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 3202 } 3203 3204 /* 3205 * First accesses are treated as private, otherwise consider accesses 3206 * to be private if the accessing pid has not changed 3207 */ 3208 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 3209 priv = 1; 3210 } else { 3211 priv = cpupid_match_pid(p, last_cpupid); 3212 if (!priv && !(flags & TNF_NO_GROUP)) 3213 task_numa_group(p, last_cpupid, flags, &priv); 3214 } 3215 3216 /* 3217 * If a workload spans multiple NUMA nodes, a shared fault that 3218 * occurs wholly within the set of nodes that the workload is 3219 * actively using should be counted as local. This allows the 3220 * scan rate to slow down when a workload has settled down. 3221 */ 3222 ng = deref_curr_numa_group(p); 3223 if (!priv && !local && ng && ng->active_nodes > 1 && 3224 numa_is_active_node(cpu_node, ng) && 3225 numa_is_active_node(mem_node, ng)) 3226 local = 1; 3227 3228 /* 3229 * Retry to migrate task to preferred node periodically, in case it 3230 * previously failed, or the scheduler moved us. 3231 */ 3232 if (time_after(jiffies, p->numa_migrate_retry)) { 3233 task_numa_placement(p); 3234 numa_migrate_preferred(p); 3235 } 3236 3237 if (migrated) 3238 p->numa_pages_migrated += pages; 3239 if (flags & TNF_MIGRATE_FAIL) 3240 p->numa_faults_locality[2] += pages; 3241 3242 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 3243 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 3244 p->numa_faults_locality[local] += pages; 3245 } 3246 3247 static void reset_ptenuma_scan(struct task_struct *p) 3248 { 3249 /* 3250 * We only did a read acquisition of the mmap sem, so 3251 * p->mm->numa_scan_seq is written to without exclusive access 3252 * and the update is not guaranteed to be atomic. That's not 3253 * much of an issue though, since this is just used for 3254 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 3255 * expensive, to avoid any form of compiler optimizations: 3256 */ 3257 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 3258 p->mm->numa_scan_offset = 0; 3259 } 3260 3261 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma) 3262 { 3263 unsigned long pids; 3264 /* 3265 * Allow unconditional access first two times, so that all the (pages) 3266 * of VMAs get prot_none fault introduced irrespective of accesses. 3267 * This is also done to avoid any side effect of task scanning 3268 * amplifying the unfairness of disjoint set of VMAs' access. 3269 */ 3270 if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2) 3271 return true; 3272 3273 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1]; 3274 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids)) 3275 return true; 3276 3277 /* 3278 * Complete a scan that has already started regardless of PID access, or 3279 * some VMAs may never be scanned in multi-threaded applications: 3280 */ 3281 if (mm->numa_scan_offset > vma->vm_start) { 3282 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID); 3283 return true; 3284 } 3285 3286 /* 3287 * This vma has not been accessed for a while, and if the number 3288 * the threads in the same process is low, which means no other 3289 * threads can help scan this vma, force a vma scan. 3290 */ 3291 if (READ_ONCE(mm->numa_scan_seq) > 3292 (vma->numab_state->prev_scan_seq + get_nr_threads(current))) 3293 return true; 3294 3295 return false; 3296 } 3297 3298 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay) 3299 3300 /* 3301 * The expensive part of numa migration is done from task_work context. 3302 * Triggered from task_tick_numa(). 3303 */ 3304 static void task_numa_work(struct callback_head *work) 3305 { 3306 unsigned long migrate, next_scan, now = jiffies; 3307 struct task_struct *p = current; 3308 struct mm_struct *mm = p->mm; 3309 u64 runtime = p->se.sum_exec_runtime; 3310 struct vm_area_struct *vma; 3311 unsigned long start, end; 3312 unsigned long nr_pte_updates = 0; 3313 long pages, virtpages; 3314 struct vma_iterator vmi; 3315 bool vma_pids_skipped; 3316 bool vma_pids_forced = false; 3317 3318 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work)); 3319 3320 work->next = work; 3321 /* 3322 * Who cares about NUMA placement when they're dying. 3323 * 3324 * NOTE: make sure not to dereference p->mm before this check, 3325 * exit_task_work() happens _after_ exit_mm() so we could be called 3326 * without p->mm even though we still had it when we enqueued this 3327 * work. 3328 */ 3329 if (p->flags & PF_EXITING) 3330 return; 3331 3332 if (!mm->numa_next_scan) { 3333 mm->numa_next_scan = now + 3334 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3335 } 3336 3337 /* 3338 * Enforce maximal scan/migration frequency.. 3339 */ 3340 migrate = mm->numa_next_scan; 3341 if (time_before(now, migrate)) 3342 return; 3343 3344 if (p->numa_scan_period == 0) { 3345 p->numa_scan_period_max = task_scan_max(p); 3346 p->numa_scan_period = task_scan_start(p); 3347 } 3348 3349 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 3350 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) 3351 return; 3352 3353 /* 3354 * Delay this task enough that another task of this mm will likely win 3355 * the next time around. 3356 */ 3357 p->node_stamp += 2 * TICK_NSEC; 3358 3359 pages = sysctl_numa_balancing_scan_size; 3360 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 3361 virtpages = pages * 8; /* Scan up to this much virtual space */ 3362 if (!pages) 3363 return; 3364 3365 3366 if (!mmap_read_trylock(mm)) 3367 return; 3368 3369 /* 3370 * VMAs are skipped if the current PID has not trapped a fault within 3371 * the VMA recently. Allow scanning to be forced if there is no 3372 * suitable VMA remaining. 3373 */ 3374 vma_pids_skipped = false; 3375 3376 retry_pids: 3377 start = mm->numa_scan_offset; 3378 vma_iter_init(&vmi, mm, start); 3379 vma = vma_next(&vmi); 3380 if (!vma) { 3381 reset_ptenuma_scan(p); 3382 start = 0; 3383 vma_iter_set(&vmi, start); 3384 vma = vma_next(&vmi); 3385 } 3386 3387 for (; vma; vma = vma_next(&vmi)) { 3388 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 3389 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 3390 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE); 3391 continue; 3392 } 3393 3394 /* 3395 * Shared library pages mapped by multiple processes are not 3396 * migrated as it is expected they are cache replicated. Avoid 3397 * hinting faults in read-only file-backed mappings or the vDSO 3398 * as migrating the pages will be of marginal benefit. 3399 */ 3400 if (!vma->vm_mm || 3401 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) { 3402 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO); 3403 continue; 3404 } 3405 3406 /* 3407 * Skip inaccessible VMAs to avoid any confusion between 3408 * PROT_NONE and NUMA hinting PTEs 3409 */ 3410 if (!vma_is_accessible(vma)) { 3411 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE); 3412 continue; 3413 } 3414 3415 /* Initialise new per-VMA NUMAB state. */ 3416 if (!vma->numab_state) { 3417 struct vma_numab_state *ptr; 3418 3419 ptr = kzalloc(sizeof(*ptr), GFP_KERNEL); 3420 if (!ptr) 3421 continue; 3422 3423 if (cmpxchg(&vma->numab_state, NULL, ptr)) { 3424 kfree(ptr); 3425 continue; 3426 } 3427 3428 vma->numab_state->start_scan_seq = mm->numa_scan_seq; 3429 3430 vma->numab_state->next_scan = now + 3431 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3432 3433 /* Reset happens after 4 times scan delay of scan start */ 3434 vma->numab_state->pids_active_reset = vma->numab_state->next_scan + 3435 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3436 3437 /* 3438 * Ensure prev_scan_seq does not match numa_scan_seq, 3439 * to prevent VMAs being skipped prematurely on the 3440 * first scan: 3441 */ 3442 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1; 3443 } 3444 3445 /* 3446 * Scanning the VMAs of short lived tasks add more overhead. So 3447 * delay the scan for new VMAs. 3448 */ 3449 if (mm->numa_scan_seq && time_before(jiffies, 3450 vma->numab_state->next_scan)) { 3451 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY); 3452 continue; 3453 } 3454 3455 /* RESET access PIDs regularly for old VMAs. */ 3456 if (mm->numa_scan_seq && 3457 time_after(jiffies, vma->numab_state->pids_active_reset)) { 3458 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset + 3459 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3460 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]); 3461 vma->numab_state->pids_active[1] = 0; 3462 } 3463 3464 /* Do not rescan VMAs twice within the same sequence. */ 3465 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) { 3466 mm->numa_scan_offset = vma->vm_end; 3467 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED); 3468 continue; 3469 } 3470 3471 /* 3472 * Do not scan the VMA if task has not accessed it, unless no other 3473 * VMA candidate exists. 3474 */ 3475 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) { 3476 vma_pids_skipped = true; 3477 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE); 3478 continue; 3479 } 3480 3481 do { 3482 start = max(start, vma->vm_start); 3483 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 3484 end = min(end, vma->vm_end); 3485 nr_pte_updates = change_prot_numa(vma, start, end); 3486 3487 /* 3488 * Try to scan sysctl_numa_balancing_size worth of 3489 * hpages that have at least one present PTE that 3490 * is not already PTE-numa. If the VMA contains 3491 * areas that are unused or already full of prot_numa 3492 * PTEs, scan up to virtpages, to skip through those 3493 * areas faster. 3494 */ 3495 if (nr_pte_updates) 3496 pages -= (end - start) >> PAGE_SHIFT; 3497 virtpages -= (end - start) >> PAGE_SHIFT; 3498 3499 start = end; 3500 if (pages <= 0 || virtpages <= 0) 3501 goto out; 3502 3503 cond_resched(); 3504 } while (end != vma->vm_end); 3505 3506 /* VMA scan is complete, do not scan until next sequence. */ 3507 vma->numab_state->prev_scan_seq = mm->numa_scan_seq; 3508 3509 /* 3510 * Only force scan within one VMA at a time, to limit the 3511 * cost of scanning a potentially uninteresting VMA. 3512 */ 3513 if (vma_pids_forced) 3514 break; 3515 } 3516 3517 /* 3518 * If no VMAs are remaining and VMAs were skipped due to the PID 3519 * not accessing the VMA previously, then force a scan to ensure 3520 * forward progress: 3521 */ 3522 if (!vma && !vma_pids_forced && vma_pids_skipped) { 3523 vma_pids_forced = true; 3524 goto retry_pids; 3525 } 3526 3527 out: 3528 /* 3529 * It is possible to reach the end of the VMA list but the last few 3530 * VMAs are not guaranteed to the vma_migratable. If they are not, we 3531 * would find the !migratable VMA on the next scan but not reset the 3532 * scanner to the start so check it now. 3533 */ 3534 if (vma) 3535 mm->numa_scan_offset = start; 3536 else 3537 reset_ptenuma_scan(p); 3538 mmap_read_unlock(mm); 3539 3540 /* 3541 * Make sure tasks use at least 32x as much time to run other code 3542 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 3543 * Usually update_task_scan_period slows down scanning enough; on an 3544 * overloaded system we need to limit overhead on a per task basis. 3545 */ 3546 if (unlikely(p->se.sum_exec_runtime != runtime)) { 3547 u64 diff = p->se.sum_exec_runtime - runtime; 3548 p->node_stamp += 32 * diff; 3549 } 3550 } 3551 3552 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 3553 { 3554 int mm_users = 0; 3555 struct mm_struct *mm = p->mm; 3556 3557 if (mm) { 3558 mm_users = atomic_read(&mm->mm_users); 3559 if (mm_users == 1) { 3560 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3561 mm->numa_scan_seq = 0; 3562 } 3563 } 3564 p->node_stamp = 0; 3565 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 3566 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 3567 p->numa_migrate_retry = 0; 3568 /* Protect against double add, see task_tick_numa and task_numa_work */ 3569 p->numa_work.next = &p->numa_work; 3570 p->numa_faults = NULL; 3571 p->numa_pages_migrated = 0; 3572 p->total_numa_faults = 0; 3573 RCU_INIT_POINTER(p->numa_group, NULL); 3574 p->last_task_numa_placement = 0; 3575 p->last_sum_exec_runtime = 0; 3576 3577 init_task_work(&p->numa_work, task_numa_work); 3578 3579 /* New address space, reset the preferred nid */ 3580 if (!(clone_flags & CLONE_VM)) { 3581 p->numa_preferred_nid = NUMA_NO_NODE; 3582 return; 3583 } 3584 3585 /* 3586 * New thread, keep existing numa_preferred_nid which should be copied 3587 * already by arch_dup_task_struct but stagger when scans start. 3588 */ 3589 if (mm) { 3590 unsigned int delay; 3591 3592 delay = min_t(unsigned int, task_scan_max(current), 3593 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 3594 delay += 2 * TICK_NSEC; 3595 p->node_stamp = delay; 3596 } 3597 } 3598 3599 /* 3600 * Drive the periodic memory faults.. 3601 */ 3602 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3603 { 3604 struct callback_head *work = &curr->numa_work; 3605 u64 period, now; 3606 3607 /* 3608 * We don't care about NUMA placement if we don't have memory. 3609 */ 3610 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 3611 return; 3612 3613 /* 3614 * Using runtime rather than walltime has the dual advantage that 3615 * we (mostly) drive the selection from busy threads and that the 3616 * task needs to have done some actual work before we bother with 3617 * NUMA placement. 3618 */ 3619 now = curr->se.sum_exec_runtime; 3620 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 3621 3622 if (now > curr->node_stamp + period) { 3623 if (!curr->node_stamp) 3624 curr->numa_scan_period = task_scan_start(curr); 3625 curr->node_stamp += period; 3626 3627 if (!time_before(jiffies, curr->mm->numa_next_scan)) 3628 task_work_add(curr, work, TWA_RESUME); 3629 } 3630 } 3631 3632 static void update_scan_period(struct task_struct *p, int new_cpu) 3633 { 3634 int src_nid = cpu_to_node(task_cpu(p)); 3635 int dst_nid = cpu_to_node(new_cpu); 3636 3637 if (!static_branch_likely(&sched_numa_balancing)) 3638 return; 3639 3640 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 3641 return; 3642 3643 if (src_nid == dst_nid) 3644 return; 3645 3646 /* 3647 * Allow resets if faults have been trapped before one scan 3648 * has completed. This is most likely due to a new task that 3649 * is pulled cross-node due to wakeups or load balancing. 3650 */ 3651 if (p->numa_scan_seq) { 3652 /* 3653 * Avoid scan adjustments if moving to the preferred 3654 * node or if the task was not previously running on 3655 * the preferred node. 3656 */ 3657 if (dst_nid == p->numa_preferred_nid || 3658 (p->numa_preferred_nid != NUMA_NO_NODE && 3659 src_nid != p->numa_preferred_nid)) 3660 return; 3661 } 3662 3663 p->numa_scan_period = task_scan_start(p); 3664 } 3665 3666 #else 3667 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3668 { 3669 } 3670 3671 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3672 { 3673 } 3674 3675 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3676 { 3677 } 3678 3679 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3680 { 3681 } 3682 3683 #endif /* CONFIG_NUMA_BALANCING */ 3684 3685 static void 3686 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3687 { 3688 update_load_add(&cfs_rq->load, se->load.weight); 3689 #ifdef CONFIG_SMP 3690 if (entity_is_task(se)) { 3691 struct rq *rq = rq_of(cfs_rq); 3692 3693 account_numa_enqueue(rq, task_of(se)); 3694 list_add(&se->group_node, &rq->cfs_tasks); 3695 } 3696 #endif 3697 cfs_rq->nr_queued++; 3698 } 3699 3700 static void 3701 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3702 { 3703 update_load_sub(&cfs_rq->load, se->load.weight); 3704 #ifdef CONFIG_SMP 3705 if (entity_is_task(se)) { 3706 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3707 list_del_init(&se->group_node); 3708 } 3709 #endif 3710 cfs_rq->nr_queued--; 3711 } 3712 3713 /* 3714 * Signed add and clamp on underflow. 3715 * 3716 * Explicitly do a load-store to ensure the intermediate value never hits 3717 * memory. This allows lockless observations without ever seeing the negative 3718 * values. 3719 */ 3720 #define add_positive(_ptr, _val) do { \ 3721 typeof(_ptr) ptr = (_ptr); \ 3722 typeof(_val) val = (_val); \ 3723 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3724 \ 3725 res = var + val; \ 3726 \ 3727 if (val < 0 && res > var) \ 3728 res = 0; \ 3729 \ 3730 WRITE_ONCE(*ptr, res); \ 3731 } while (0) 3732 3733 /* 3734 * Unsigned subtract and clamp on underflow. 3735 * 3736 * Explicitly do a load-store to ensure the intermediate value never hits 3737 * memory. This allows lockless observations without ever seeing the negative 3738 * values. 3739 */ 3740 #define sub_positive(_ptr, _val) do { \ 3741 typeof(_ptr) ptr = (_ptr); \ 3742 typeof(*ptr) val = (_val); \ 3743 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3744 res = var - val; \ 3745 if (res > var) \ 3746 res = 0; \ 3747 WRITE_ONCE(*ptr, res); \ 3748 } while (0) 3749 3750 /* 3751 * Remove and clamp on negative, from a local variable. 3752 * 3753 * A variant of sub_positive(), which does not use explicit load-store 3754 * and is thus optimized for local variable updates. 3755 */ 3756 #define lsub_positive(_ptr, _val) do { \ 3757 typeof(_ptr) ptr = (_ptr); \ 3758 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3759 } while (0) 3760 3761 #ifdef CONFIG_SMP 3762 static inline void 3763 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3764 { 3765 cfs_rq->avg.load_avg += se->avg.load_avg; 3766 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3767 } 3768 3769 static inline void 3770 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3771 { 3772 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3773 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3774 /* See update_cfs_rq_load_avg() */ 3775 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3776 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3777 } 3778 #else 3779 static inline void 3780 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3781 static inline void 3782 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3783 #endif 3784 3785 static void place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags); 3786 3787 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3788 unsigned long weight) 3789 { 3790 bool curr = cfs_rq->curr == se; 3791 3792 if (se->on_rq) { 3793 /* commit outstanding execution time */ 3794 update_curr(cfs_rq); 3795 update_entity_lag(cfs_rq, se); 3796 se->deadline -= se->vruntime; 3797 se->rel_deadline = 1; 3798 if (!curr) 3799 __dequeue_entity(cfs_rq, se); 3800 update_load_sub(&cfs_rq->load, se->load.weight); 3801 } 3802 dequeue_load_avg(cfs_rq, se); 3803 3804 /* 3805 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), 3806 * we need to scale se->vlag when w_i changes. 3807 */ 3808 se->vlag = div_s64(se->vlag * se->load.weight, weight); 3809 if (se->rel_deadline) 3810 se->deadline = div_s64(se->deadline * se->load.weight, weight); 3811 3812 update_load_set(&se->load, weight); 3813 3814 #ifdef CONFIG_SMP 3815 do { 3816 u32 divider = get_pelt_divider(&se->avg); 3817 3818 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3819 } while (0); 3820 #endif 3821 3822 enqueue_load_avg(cfs_rq, se); 3823 if (se->on_rq) { 3824 update_load_add(&cfs_rq->load, se->load.weight); 3825 place_entity(cfs_rq, se, 0); 3826 if (!curr) 3827 __enqueue_entity(cfs_rq, se); 3828 3829 /* 3830 * The entity's vruntime has been adjusted, so let's check 3831 * whether the rq-wide min_vruntime needs updated too. Since 3832 * the calculations above require stable min_vruntime rather 3833 * than up-to-date one, we do the update at the end of the 3834 * reweight process. 3835 */ 3836 update_min_vruntime(cfs_rq); 3837 } 3838 } 3839 3840 static void reweight_task_fair(struct rq *rq, struct task_struct *p, 3841 const struct load_weight *lw) 3842 { 3843 struct sched_entity *se = &p->se; 3844 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3845 struct load_weight *load = &se->load; 3846 3847 reweight_entity(cfs_rq, se, lw->weight); 3848 load->inv_weight = lw->inv_weight; 3849 } 3850 3851 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3852 3853 #ifdef CONFIG_FAIR_GROUP_SCHED 3854 #ifdef CONFIG_SMP 3855 /* 3856 * All this does is approximate the hierarchical proportion which includes that 3857 * global sum we all love to hate. 3858 * 3859 * That is, the weight of a group entity, is the proportional share of the 3860 * group weight based on the group runqueue weights. That is: 3861 * 3862 * tg->weight * grq->load.weight 3863 * ge->load.weight = ----------------------------- (1) 3864 * \Sum grq->load.weight 3865 * 3866 * Now, because computing that sum is prohibitively expensive to compute (been 3867 * there, done that) we approximate it with this average stuff. The average 3868 * moves slower and therefore the approximation is cheaper and more stable. 3869 * 3870 * So instead of the above, we substitute: 3871 * 3872 * grq->load.weight -> grq->avg.load_avg (2) 3873 * 3874 * which yields the following: 3875 * 3876 * tg->weight * grq->avg.load_avg 3877 * ge->load.weight = ------------------------------ (3) 3878 * tg->load_avg 3879 * 3880 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3881 * 3882 * That is shares_avg, and it is right (given the approximation (2)). 3883 * 3884 * The problem with it is that because the average is slow -- it was designed 3885 * to be exactly that of course -- this leads to transients in boundary 3886 * conditions. In specific, the case where the group was idle and we start the 3887 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3888 * yielding bad latency etc.. 3889 * 3890 * Now, in that special case (1) reduces to: 3891 * 3892 * tg->weight * grq->load.weight 3893 * ge->load.weight = ----------------------------- = tg->weight (4) 3894 * grp->load.weight 3895 * 3896 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3897 * 3898 * So what we do is modify our approximation (3) to approach (4) in the (near) 3899 * UP case, like: 3900 * 3901 * ge->load.weight = 3902 * 3903 * tg->weight * grq->load.weight 3904 * --------------------------------------------------- (5) 3905 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3906 * 3907 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3908 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3909 * 3910 * 3911 * tg->weight * grq->load.weight 3912 * ge->load.weight = ----------------------------- (6) 3913 * tg_load_avg' 3914 * 3915 * Where: 3916 * 3917 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3918 * max(grq->load.weight, grq->avg.load_avg) 3919 * 3920 * And that is shares_weight and is icky. In the (near) UP case it approaches 3921 * (4) while in the normal case it approaches (3). It consistently 3922 * overestimates the ge->load.weight and therefore: 3923 * 3924 * \Sum ge->load.weight >= tg->weight 3925 * 3926 * hence icky! 3927 */ 3928 static long calc_group_shares(struct cfs_rq *cfs_rq) 3929 { 3930 long tg_weight, tg_shares, load, shares; 3931 struct task_group *tg = cfs_rq->tg; 3932 3933 tg_shares = READ_ONCE(tg->shares); 3934 3935 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3936 3937 tg_weight = atomic_long_read(&tg->load_avg); 3938 3939 /* Ensure tg_weight >= load */ 3940 tg_weight -= cfs_rq->tg_load_avg_contrib; 3941 tg_weight += load; 3942 3943 shares = (tg_shares * load); 3944 if (tg_weight) 3945 shares /= tg_weight; 3946 3947 /* 3948 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3949 * of a group with small tg->shares value. It is a floor value which is 3950 * assigned as a minimum load.weight to the sched_entity representing 3951 * the group on a CPU. 3952 * 3953 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3954 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3955 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3956 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3957 * instead of 0. 3958 */ 3959 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3960 } 3961 #endif /* CONFIG_SMP */ 3962 3963 /* 3964 * Recomputes the group entity based on the current state of its group 3965 * runqueue. 3966 */ 3967 static void update_cfs_group(struct sched_entity *se) 3968 { 3969 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3970 long shares; 3971 3972 /* 3973 * When a group becomes empty, preserve its weight. This matters for 3974 * DELAY_DEQUEUE. 3975 */ 3976 if (!gcfs_rq || !gcfs_rq->load.weight) 3977 return; 3978 3979 if (throttled_hierarchy(gcfs_rq)) 3980 return; 3981 3982 #ifndef CONFIG_SMP 3983 shares = READ_ONCE(gcfs_rq->tg->shares); 3984 #else 3985 shares = calc_group_shares(gcfs_rq); 3986 #endif 3987 if (unlikely(se->load.weight != shares)) 3988 reweight_entity(cfs_rq_of(se), se, shares); 3989 } 3990 3991 #else /* CONFIG_FAIR_GROUP_SCHED */ 3992 static inline void update_cfs_group(struct sched_entity *se) 3993 { 3994 } 3995 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3996 3997 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3998 { 3999 struct rq *rq = rq_of(cfs_rq); 4000 4001 if (&rq->cfs == cfs_rq) { 4002 /* 4003 * There are a few boundary cases this might miss but it should 4004 * get called often enough that that should (hopefully) not be 4005 * a real problem. 4006 * 4007 * It will not get called when we go idle, because the idle 4008 * thread is a different class (!fair), nor will the utilization 4009 * number include things like RT tasks. 4010 * 4011 * As is, the util number is not freq-invariant (we'd have to 4012 * implement arch_scale_freq_capacity() for that). 4013 * 4014 * See cpu_util_cfs(). 4015 */ 4016 cpufreq_update_util(rq, flags); 4017 } 4018 } 4019 4020 #ifdef CONFIG_SMP 4021 static inline bool load_avg_is_decayed(struct sched_avg *sa) 4022 { 4023 if (sa->load_sum) 4024 return false; 4025 4026 if (sa->util_sum) 4027 return false; 4028 4029 if (sa->runnable_sum) 4030 return false; 4031 4032 /* 4033 * _avg must be null when _sum are null because _avg = _sum / divider 4034 * Make sure that rounding and/or propagation of PELT values never 4035 * break this. 4036 */ 4037 WARN_ON_ONCE(sa->load_avg || 4038 sa->util_avg || 4039 sa->runnable_avg); 4040 4041 return true; 4042 } 4043 4044 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 4045 { 4046 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 4047 cfs_rq->last_update_time_copy); 4048 } 4049 #ifdef CONFIG_FAIR_GROUP_SCHED 4050 /* 4051 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 4052 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 4053 * bottom-up, we only have to test whether the cfs_rq before us on the list 4054 * is our child. 4055 * If cfs_rq is not on the list, test whether a child needs its to be added to 4056 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 4057 */ 4058 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 4059 { 4060 struct cfs_rq *prev_cfs_rq; 4061 struct list_head *prev; 4062 struct rq *rq = rq_of(cfs_rq); 4063 4064 if (cfs_rq->on_list) { 4065 prev = cfs_rq->leaf_cfs_rq_list.prev; 4066 } else { 4067 prev = rq->tmp_alone_branch; 4068 } 4069 4070 if (prev == &rq->leaf_cfs_rq_list) 4071 return false; 4072 4073 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 4074 4075 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 4076 } 4077 4078 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4079 { 4080 if (cfs_rq->load.weight) 4081 return false; 4082 4083 if (!load_avg_is_decayed(&cfs_rq->avg)) 4084 return false; 4085 4086 if (child_cfs_rq_on_list(cfs_rq)) 4087 return false; 4088 4089 return true; 4090 } 4091 4092 /** 4093 * update_tg_load_avg - update the tg's load avg 4094 * @cfs_rq: the cfs_rq whose avg changed 4095 * 4096 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 4097 * However, because tg->load_avg is a global value there are performance 4098 * considerations. 4099 * 4100 * In order to avoid having to look at the other cfs_rq's, we use a 4101 * differential update where we store the last value we propagated. This in 4102 * turn allows skipping updates if the differential is 'small'. 4103 * 4104 * Updating tg's load_avg is necessary before update_cfs_share(). 4105 */ 4106 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 4107 { 4108 long delta; 4109 u64 now; 4110 4111 /* 4112 * No need to update load_avg for root_task_group as it is not used. 4113 */ 4114 if (cfs_rq->tg == &root_task_group) 4115 return; 4116 4117 /* rq has been offline and doesn't contribute to the share anymore: */ 4118 if (!cpu_active(cpu_of(rq_of(cfs_rq)))) 4119 return; 4120 4121 /* 4122 * For migration heavy workloads, access to tg->load_avg can be 4123 * unbound. Limit the update rate to at most once per ms. 4124 */ 4125 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4126 if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC) 4127 return; 4128 4129 delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 4130 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 4131 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4132 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 4133 cfs_rq->last_update_tg_load_avg = now; 4134 } 4135 } 4136 4137 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq) 4138 { 4139 long delta; 4140 u64 now; 4141 4142 /* 4143 * No need to update load_avg for root_task_group, as it is not used. 4144 */ 4145 if (cfs_rq->tg == &root_task_group) 4146 return; 4147 4148 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4149 delta = 0 - cfs_rq->tg_load_avg_contrib; 4150 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4151 cfs_rq->tg_load_avg_contrib = 0; 4152 cfs_rq->last_update_tg_load_avg = now; 4153 } 4154 4155 /* CPU offline callback: */ 4156 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq) 4157 { 4158 struct task_group *tg; 4159 4160 lockdep_assert_rq_held(rq); 4161 4162 /* 4163 * The rq clock has already been updated in 4164 * set_rq_offline(), so we should skip updating 4165 * the rq clock again in unthrottle_cfs_rq(). 4166 */ 4167 rq_clock_start_loop_update(rq); 4168 4169 rcu_read_lock(); 4170 list_for_each_entry_rcu(tg, &task_groups, list) { 4171 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4172 4173 clear_tg_load_avg(cfs_rq); 4174 } 4175 rcu_read_unlock(); 4176 4177 rq_clock_stop_loop_update(rq); 4178 } 4179 4180 /* 4181 * Called within set_task_rq() right before setting a task's CPU. The 4182 * caller only guarantees p->pi_lock is held; no other assumptions, 4183 * including the state of rq->lock, should be made. 4184 */ 4185 void set_task_rq_fair(struct sched_entity *se, 4186 struct cfs_rq *prev, struct cfs_rq *next) 4187 { 4188 u64 p_last_update_time; 4189 u64 n_last_update_time; 4190 4191 if (!sched_feat(ATTACH_AGE_LOAD)) 4192 return; 4193 4194 /* 4195 * We are supposed to update the task to "current" time, then its up to 4196 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 4197 * getting what current time is, so simply throw away the out-of-date 4198 * time. This will result in the wakee task is less decayed, but giving 4199 * the wakee more load sounds not bad. 4200 */ 4201 if (!(se->avg.last_update_time && prev)) 4202 return; 4203 4204 p_last_update_time = cfs_rq_last_update_time(prev); 4205 n_last_update_time = cfs_rq_last_update_time(next); 4206 4207 __update_load_avg_blocked_se(p_last_update_time, se); 4208 se->avg.last_update_time = n_last_update_time; 4209 } 4210 4211 /* 4212 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 4213 * propagate its contribution. The key to this propagation is the invariant 4214 * that for each group: 4215 * 4216 * ge->avg == grq->avg (1) 4217 * 4218 * _IFF_ we look at the pure running and runnable sums. Because they 4219 * represent the very same entity, just at different points in the hierarchy. 4220 * 4221 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 4222 * and simply copies the running/runnable sum over (but still wrong, because 4223 * the group entity and group rq do not have their PELT windows aligned). 4224 * 4225 * However, update_tg_cfs_load() is more complex. So we have: 4226 * 4227 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 4228 * 4229 * And since, like util, the runnable part should be directly transferable, 4230 * the following would _appear_ to be the straight forward approach: 4231 * 4232 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 4233 * 4234 * And per (1) we have: 4235 * 4236 * ge->avg.runnable_avg == grq->avg.runnable_avg 4237 * 4238 * Which gives: 4239 * 4240 * ge->load.weight * grq->avg.load_avg 4241 * ge->avg.load_avg = ----------------------------------- (4) 4242 * grq->load.weight 4243 * 4244 * Except that is wrong! 4245 * 4246 * Because while for entities historical weight is not important and we 4247 * really only care about our future and therefore can consider a pure 4248 * runnable sum, runqueues can NOT do this. 4249 * 4250 * We specifically want runqueues to have a load_avg that includes 4251 * historical weights. Those represent the blocked load, the load we expect 4252 * to (shortly) return to us. This only works by keeping the weights as 4253 * integral part of the sum. We therefore cannot decompose as per (3). 4254 * 4255 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 4256 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 4257 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 4258 * runnable section of these tasks overlap (or not). If they were to perfectly 4259 * align the rq as a whole would be runnable 2/3 of the time. If however we 4260 * always have at least 1 runnable task, the rq as a whole is always runnable. 4261 * 4262 * So we'll have to approximate.. :/ 4263 * 4264 * Given the constraint: 4265 * 4266 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 4267 * 4268 * We can construct a rule that adds runnable to a rq by assuming minimal 4269 * overlap. 4270 * 4271 * On removal, we'll assume each task is equally runnable; which yields: 4272 * 4273 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 4274 * 4275 * XXX: only do this for the part of runnable > running ? 4276 * 4277 */ 4278 static inline void 4279 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4280 { 4281 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 4282 u32 new_sum, divider; 4283 4284 /* Nothing to update */ 4285 if (!delta_avg) 4286 return; 4287 4288 /* 4289 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4290 * See ___update_load_avg() for details. 4291 */ 4292 divider = get_pelt_divider(&cfs_rq->avg); 4293 4294 4295 /* Set new sched_entity's utilization */ 4296 se->avg.util_avg = gcfs_rq->avg.util_avg; 4297 new_sum = se->avg.util_avg * divider; 4298 delta_sum = (long)new_sum - (long)se->avg.util_sum; 4299 se->avg.util_sum = new_sum; 4300 4301 /* Update parent cfs_rq utilization */ 4302 add_positive(&cfs_rq->avg.util_avg, delta_avg); 4303 add_positive(&cfs_rq->avg.util_sum, delta_sum); 4304 4305 /* See update_cfs_rq_load_avg() */ 4306 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4307 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4308 } 4309 4310 static inline void 4311 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4312 { 4313 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 4314 u32 new_sum, divider; 4315 4316 /* Nothing to update */ 4317 if (!delta_avg) 4318 return; 4319 4320 /* 4321 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4322 * See ___update_load_avg() for details. 4323 */ 4324 divider = get_pelt_divider(&cfs_rq->avg); 4325 4326 /* Set new sched_entity's runnable */ 4327 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 4328 new_sum = se->avg.runnable_avg * divider; 4329 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 4330 se->avg.runnable_sum = new_sum; 4331 4332 /* Update parent cfs_rq runnable */ 4333 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 4334 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 4335 /* See update_cfs_rq_load_avg() */ 4336 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4337 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4338 } 4339 4340 static inline void 4341 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4342 { 4343 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 4344 unsigned long load_avg; 4345 u64 load_sum = 0; 4346 s64 delta_sum; 4347 u32 divider; 4348 4349 if (!runnable_sum) 4350 return; 4351 4352 gcfs_rq->prop_runnable_sum = 0; 4353 4354 /* 4355 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4356 * See ___update_load_avg() for details. 4357 */ 4358 divider = get_pelt_divider(&cfs_rq->avg); 4359 4360 if (runnable_sum >= 0) { 4361 /* 4362 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 4363 * the CPU is saturated running == runnable. 4364 */ 4365 runnable_sum += se->avg.load_sum; 4366 runnable_sum = min_t(long, runnable_sum, divider); 4367 } else { 4368 /* 4369 * Estimate the new unweighted runnable_sum of the gcfs_rq by 4370 * assuming all tasks are equally runnable. 4371 */ 4372 if (scale_load_down(gcfs_rq->load.weight)) { 4373 load_sum = div_u64(gcfs_rq->avg.load_sum, 4374 scale_load_down(gcfs_rq->load.weight)); 4375 } 4376 4377 /* But make sure to not inflate se's runnable */ 4378 runnable_sum = min(se->avg.load_sum, load_sum); 4379 } 4380 4381 /* 4382 * runnable_sum can't be lower than running_sum 4383 * Rescale running sum to be in the same range as runnable sum 4384 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 4385 * runnable_sum is in [0 : LOAD_AVG_MAX] 4386 */ 4387 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 4388 runnable_sum = max(runnable_sum, running_sum); 4389 4390 load_sum = se_weight(se) * runnable_sum; 4391 load_avg = div_u64(load_sum, divider); 4392 4393 delta_avg = load_avg - se->avg.load_avg; 4394 if (!delta_avg) 4395 return; 4396 4397 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 4398 4399 se->avg.load_sum = runnable_sum; 4400 se->avg.load_avg = load_avg; 4401 add_positive(&cfs_rq->avg.load_avg, delta_avg); 4402 add_positive(&cfs_rq->avg.load_sum, delta_sum); 4403 /* See update_cfs_rq_load_avg() */ 4404 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 4405 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 4406 } 4407 4408 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 4409 { 4410 cfs_rq->propagate = 1; 4411 cfs_rq->prop_runnable_sum += runnable_sum; 4412 } 4413 4414 /* Update task and its cfs_rq load average */ 4415 static inline int propagate_entity_load_avg(struct sched_entity *se) 4416 { 4417 struct cfs_rq *cfs_rq, *gcfs_rq; 4418 4419 if (entity_is_task(se)) 4420 return 0; 4421 4422 gcfs_rq = group_cfs_rq(se); 4423 if (!gcfs_rq->propagate) 4424 return 0; 4425 4426 gcfs_rq->propagate = 0; 4427 4428 cfs_rq = cfs_rq_of(se); 4429 4430 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 4431 4432 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 4433 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 4434 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 4435 4436 trace_pelt_cfs_tp(cfs_rq); 4437 trace_pelt_se_tp(se); 4438 4439 return 1; 4440 } 4441 4442 /* 4443 * Check if we need to update the load and the utilization of a blocked 4444 * group_entity: 4445 */ 4446 static inline bool skip_blocked_update(struct sched_entity *se) 4447 { 4448 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 4449 4450 /* 4451 * If sched_entity still have not zero load or utilization, we have to 4452 * decay it: 4453 */ 4454 if (se->avg.load_avg || se->avg.util_avg) 4455 return false; 4456 4457 /* 4458 * If there is a pending propagation, we have to update the load and 4459 * the utilization of the sched_entity: 4460 */ 4461 if (gcfs_rq->propagate) 4462 return false; 4463 4464 /* 4465 * Otherwise, the load and the utilization of the sched_entity is 4466 * already zero and there is no pending propagation, so it will be a 4467 * waste of time to try to decay it: 4468 */ 4469 return true; 4470 } 4471 4472 #else /* CONFIG_FAIR_GROUP_SCHED */ 4473 4474 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 4475 4476 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {} 4477 4478 static inline int propagate_entity_load_avg(struct sched_entity *se) 4479 { 4480 return 0; 4481 } 4482 4483 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 4484 4485 #endif /* CONFIG_FAIR_GROUP_SCHED */ 4486 4487 #ifdef CONFIG_NO_HZ_COMMON 4488 static inline void migrate_se_pelt_lag(struct sched_entity *se) 4489 { 4490 u64 throttled = 0, now, lut; 4491 struct cfs_rq *cfs_rq; 4492 struct rq *rq; 4493 bool is_idle; 4494 4495 if (load_avg_is_decayed(&se->avg)) 4496 return; 4497 4498 cfs_rq = cfs_rq_of(se); 4499 rq = rq_of(cfs_rq); 4500 4501 rcu_read_lock(); 4502 is_idle = is_idle_task(rcu_dereference(rq->curr)); 4503 rcu_read_unlock(); 4504 4505 /* 4506 * The lag estimation comes with a cost we don't want to pay all the 4507 * time. Hence, limiting to the case where the source CPU is idle and 4508 * we know we are at the greatest risk to have an outdated clock. 4509 */ 4510 if (!is_idle) 4511 return; 4512 4513 /* 4514 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 4515 * 4516 * last_update_time (the cfs_rq's last_update_time) 4517 * = cfs_rq_clock_pelt()@cfs_rq_idle 4518 * = rq_clock_pelt()@cfs_rq_idle 4519 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 4520 * 4521 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 4522 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 4523 * 4524 * rq_idle_lag (delta between now and rq's update) 4525 * = sched_clock_cpu() - rq_clock()@rq_idle 4526 * 4527 * We can then write: 4528 * 4529 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 4530 * sched_clock_cpu() - rq_clock()@rq_idle 4531 * Where: 4532 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 4533 * rq_clock()@rq_idle is rq->clock_idle 4534 * cfs->throttled_clock_pelt_time@cfs_rq_idle 4535 * is cfs_rq->throttled_pelt_idle 4536 */ 4537 4538 #ifdef CONFIG_CFS_BANDWIDTH 4539 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 4540 /* The clock has been stopped for throttling */ 4541 if (throttled == U64_MAX) 4542 return; 4543 #endif 4544 now = u64_u32_load(rq->clock_pelt_idle); 4545 /* 4546 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 4547 * is observed the old clock_pelt_idle value and the new clock_idle, 4548 * which lead to an underestimation. The opposite would lead to an 4549 * overestimation. 4550 */ 4551 smp_rmb(); 4552 lut = cfs_rq_last_update_time(cfs_rq); 4553 4554 now -= throttled; 4555 if (now < lut) 4556 /* 4557 * cfs_rq->avg.last_update_time is more recent than our 4558 * estimation, let's use it. 4559 */ 4560 now = lut; 4561 else 4562 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 4563 4564 __update_load_avg_blocked_se(now, se); 4565 } 4566 #else 4567 static void migrate_se_pelt_lag(struct sched_entity *se) {} 4568 #endif 4569 4570 /** 4571 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 4572 * @now: current time, as per cfs_rq_clock_pelt() 4573 * @cfs_rq: cfs_rq to update 4574 * 4575 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 4576 * avg. The immediate corollary is that all (fair) tasks must be attached. 4577 * 4578 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 4579 * 4580 * Return: true if the load decayed or we removed load. 4581 * 4582 * Since both these conditions indicate a changed cfs_rq->avg.load we should 4583 * call update_tg_load_avg() when this function returns true. 4584 */ 4585 static inline int 4586 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4587 { 4588 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 4589 struct sched_avg *sa = &cfs_rq->avg; 4590 int decayed = 0; 4591 4592 if (cfs_rq->removed.nr) { 4593 unsigned long r; 4594 u32 divider = get_pelt_divider(&cfs_rq->avg); 4595 4596 raw_spin_lock(&cfs_rq->removed.lock); 4597 swap(cfs_rq->removed.util_avg, removed_util); 4598 swap(cfs_rq->removed.load_avg, removed_load); 4599 swap(cfs_rq->removed.runnable_avg, removed_runnable); 4600 cfs_rq->removed.nr = 0; 4601 raw_spin_unlock(&cfs_rq->removed.lock); 4602 4603 r = removed_load; 4604 sub_positive(&sa->load_avg, r); 4605 sub_positive(&sa->load_sum, r * divider); 4606 /* See sa->util_sum below */ 4607 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 4608 4609 r = removed_util; 4610 sub_positive(&sa->util_avg, r); 4611 sub_positive(&sa->util_sum, r * divider); 4612 /* 4613 * Because of rounding, se->util_sum might ends up being +1 more than 4614 * cfs->util_sum. Although this is not a problem by itself, detaching 4615 * a lot of tasks with the rounding problem between 2 updates of 4616 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 4617 * cfs_util_avg is not. 4618 * Check that util_sum is still above its lower bound for the new 4619 * util_avg. Given that period_contrib might have moved since the last 4620 * sync, we are only sure that util_sum must be above or equal to 4621 * util_avg * minimum possible divider 4622 */ 4623 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 4624 4625 r = removed_runnable; 4626 sub_positive(&sa->runnable_avg, r); 4627 sub_positive(&sa->runnable_sum, r * divider); 4628 /* See sa->util_sum above */ 4629 sa->runnable_sum = max_t(u32, sa->runnable_sum, 4630 sa->runnable_avg * PELT_MIN_DIVIDER); 4631 4632 /* 4633 * removed_runnable is the unweighted version of removed_load so we 4634 * can use it to estimate removed_load_sum. 4635 */ 4636 add_tg_cfs_propagate(cfs_rq, 4637 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 4638 4639 decayed = 1; 4640 } 4641 4642 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 4643 u64_u32_store_copy(sa->last_update_time, 4644 cfs_rq->last_update_time_copy, 4645 sa->last_update_time); 4646 return decayed; 4647 } 4648 4649 /** 4650 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 4651 * @cfs_rq: cfs_rq to attach to 4652 * @se: sched_entity to attach 4653 * 4654 * Must call update_cfs_rq_load_avg() before this, since we rely on 4655 * cfs_rq->avg.last_update_time being current. 4656 */ 4657 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4658 { 4659 /* 4660 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4661 * See ___update_load_avg() for details. 4662 */ 4663 u32 divider = get_pelt_divider(&cfs_rq->avg); 4664 4665 /* 4666 * When we attach the @se to the @cfs_rq, we must align the decay 4667 * window because without that, really weird and wonderful things can 4668 * happen. 4669 * 4670 * XXX illustrate 4671 */ 4672 se->avg.last_update_time = cfs_rq->avg.last_update_time; 4673 se->avg.period_contrib = cfs_rq->avg.period_contrib; 4674 4675 /* 4676 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 4677 * period_contrib. This isn't strictly correct, but since we're 4678 * entirely outside of the PELT hierarchy, nobody cares if we truncate 4679 * _sum a little. 4680 */ 4681 se->avg.util_sum = se->avg.util_avg * divider; 4682 4683 se->avg.runnable_sum = se->avg.runnable_avg * divider; 4684 4685 se->avg.load_sum = se->avg.load_avg * divider; 4686 if (se_weight(se) < se->avg.load_sum) 4687 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 4688 else 4689 se->avg.load_sum = 1; 4690 4691 enqueue_load_avg(cfs_rq, se); 4692 cfs_rq->avg.util_avg += se->avg.util_avg; 4693 cfs_rq->avg.util_sum += se->avg.util_sum; 4694 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 4695 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 4696 4697 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 4698 4699 cfs_rq_util_change(cfs_rq, 0); 4700 4701 trace_pelt_cfs_tp(cfs_rq); 4702 } 4703 4704 /** 4705 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 4706 * @cfs_rq: cfs_rq to detach from 4707 * @se: sched_entity to detach 4708 * 4709 * Must call update_cfs_rq_load_avg() before this, since we rely on 4710 * cfs_rq->avg.last_update_time being current. 4711 */ 4712 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4713 { 4714 dequeue_load_avg(cfs_rq, se); 4715 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 4716 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 4717 /* See update_cfs_rq_load_avg() */ 4718 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4719 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4720 4721 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 4722 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 4723 /* See update_cfs_rq_load_avg() */ 4724 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4725 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4726 4727 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 4728 4729 cfs_rq_util_change(cfs_rq, 0); 4730 4731 trace_pelt_cfs_tp(cfs_rq); 4732 } 4733 4734 /* 4735 * Optional action to be done while updating the load average 4736 */ 4737 #define UPDATE_TG 0x1 4738 #define SKIP_AGE_LOAD 0x2 4739 #define DO_ATTACH 0x4 4740 #define DO_DETACH 0x8 4741 4742 /* Update task and its cfs_rq load average */ 4743 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4744 { 4745 u64 now = cfs_rq_clock_pelt(cfs_rq); 4746 int decayed; 4747 4748 /* 4749 * Track task load average for carrying it to new CPU after migrated, and 4750 * track group sched_entity load average for task_h_load calculation in migration 4751 */ 4752 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4753 __update_load_avg_se(now, cfs_rq, se); 4754 4755 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4756 decayed |= propagate_entity_load_avg(se); 4757 4758 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4759 4760 /* 4761 * DO_ATTACH means we're here from enqueue_entity(). 4762 * !last_update_time means we've passed through 4763 * migrate_task_rq_fair() indicating we migrated. 4764 * 4765 * IOW we're enqueueing a task on a new CPU. 4766 */ 4767 attach_entity_load_avg(cfs_rq, se); 4768 update_tg_load_avg(cfs_rq); 4769 4770 } else if (flags & DO_DETACH) { 4771 /* 4772 * DO_DETACH means we're here from dequeue_entity() 4773 * and we are migrating task out of the CPU. 4774 */ 4775 detach_entity_load_avg(cfs_rq, se); 4776 update_tg_load_avg(cfs_rq); 4777 } else if (decayed) { 4778 cfs_rq_util_change(cfs_rq, 0); 4779 4780 if (flags & UPDATE_TG) 4781 update_tg_load_avg(cfs_rq); 4782 } 4783 } 4784 4785 /* 4786 * Synchronize entity load avg of dequeued entity without locking 4787 * the previous rq. 4788 */ 4789 static void sync_entity_load_avg(struct sched_entity *se) 4790 { 4791 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4792 u64 last_update_time; 4793 4794 last_update_time = cfs_rq_last_update_time(cfs_rq); 4795 __update_load_avg_blocked_se(last_update_time, se); 4796 } 4797 4798 /* 4799 * Task first catches up with cfs_rq, and then subtract 4800 * itself from the cfs_rq (task must be off the queue now). 4801 */ 4802 static void remove_entity_load_avg(struct sched_entity *se) 4803 { 4804 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4805 unsigned long flags; 4806 4807 /* 4808 * tasks cannot exit without having gone through wake_up_new_task() -> 4809 * enqueue_task_fair() which will have added things to the cfs_rq, 4810 * so we can remove unconditionally. 4811 */ 4812 4813 sync_entity_load_avg(se); 4814 4815 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4816 ++cfs_rq->removed.nr; 4817 cfs_rq->removed.util_avg += se->avg.util_avg; 4818 cfs_rq->removed.load_avg += se->avg.load_avg; 4819 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4820 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4821 } 4822 4823 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4824 { 4825 return cfs_rq->avg.runnable_avg; 4826 } 4827 4828 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4829 { 4830 return cfs_rq->avg.load_avg; 4831 } 4832 4833 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf); 4834 4835 static inline unsigned long task_util(struct task_struct *p) 4836 { 4837 return READ_ONCE(p->se.avg.util_avg); 4838 } 4839 4840 static inline unsigned long task_runnable(struct task_struct *p) 4841 { 4842 return READ_ONCE(p->se.avg.runnable_avg); 4843 } 4844 4845 static inline unsigned long _task_util_est(struct task_struct *p) 4846 { 4847 return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED; 4848 } 4849 4850 static inline unsigned long task_util_est(struct task_struct *p) 4851 { 4852 return max(task_util(p), _task_util_est(p)); 4853 } 4854 4855 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4856 struct task_struct *p) 4857 { 4858 unsigned int enqueued; 4859 4860 if (!sched_feat(UTIL_EST)) 4861 return; 4862 4863 /* Update root cfs_rq's estimated utilization */ 4864 enqueued = cfs_rq->avg.util_est; 4865 enqueued += _task_util_est(p); 4866 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4867 4868 trace_sched_util_est_cfs_tp(cfs_rq); 4869 } 4870 4871 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4872 struct task_struct *p) 4873 { 4874 unsigned int enqueued; 4875 4876 if (!sched_feat(UTIL_EST)) 4877 return; 4878 4879 /* Update root cfs_rq's estimated utilization */ 4880 enqueued = cfs_rq->avg.util_est; 4881 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4882 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4883 4884 trace_sched_util_est_cfs_tp(cfs_rq); 4885 } 4886 4887 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4888 4889 static inline void util_est_update(struct cfs_rq *cfs_rq, 4890 struct task_struct *p, 4891 bool task_sleep) 4892 { 4893 unsigned int ewma, dequeued, last_ewma_diff; 4894 4895 if (!sched_feat(UTIL_EST)) 4896 return; 4897 4898 /* 4899 * Skip update of task's estimated utilization when the task has not 4900 * yet completed an activation, e.g. being migrated. 4901 */ 4902 if (!task_sleep) 4903 return; 4904 4905 /* Get current estimate of utilization */ 4906 ewma = READ_ONCE(p->se.avg.util_est); 4907 4908 /* 4909 * If the PELT values haven't changed since enqueue time, 4910 * skip the util_est update. 4911 */ 4912 if (ewma & UTIL_AVG_UNCHANGED) 4913 return; 4914 4915 /* Get utilization at dequeue */ 4916 dequeued = task_util(p); 4917 4918 /* 4919 * Reset EWMA on utilization increases, the moving average is used only 4920 * to smooth utilization decreases. 4921 */ 4922 if (ewma <= dequeued) { 4923 ewma = dequeued; 4924 goto done; 4925 } 4926 4927 /* 4928 * Skip update of task's estimated utilization when its members are 4929 * already ~1% close to its last activation value. 4930 */ 4931 last_ewma_diff = ewma - dequeued; 4932 if (last_ewma_diff < UTIL_EST_MARGIN) 4933 goto done; 4934 4935 /* 4936 * To avoid overestimation of actual task utilization, skip updates if 4937 * we cannot grant there is idle time in this CPU. 4938 */ 4939 if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)))) 4940 return; 4941 4942 /* 4943 * To avoid underestimate of task utilization, skip updates of EWMA if 4944 * we cannot grant that thread got all CPU time it wanted. 4945 */ 4946 if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p)) 4947 goto done; 4948 4949 4950 /* 4951 * Update Task's estimated utilization 4952 * 4953 * When *p completes an activation we can consolidate another sample 4954 * of the task size. This is done by using this value to update the 4955 * Exponential Weighted Moving Average (EWMA): 4956 * 4957 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4958 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4959 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4960 * = w * ( -last_ewma_diff ) + ewma(t-1) 4961 * = w * (-last_ewma_diff + ewma(t-1) / w) 4962 * 4963 * Where 'w' is the weight of new samples, which is configured to be 4964 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4965 */ 4966 ewma <<= UTIL_EST_WEIGHT_SHIFT; 4967 ewma -= last_ewma_diff; 4968 ewma >>= UTIL_EST_WEIGHT_SHIFT; 4969 done: 4970 ewma |= UTIL_AVG_UNCHANGED; 4971 WRITE_ONCE(p->se.avg.util_est, ewma); 4972 4973 trace_sched_util_est_se_tp(&p->se); 4974 } 4975 4976 static inline unsigned long get_actual_cpu_capacity(int cpu) 4977 { 4978 unsigned long capacity = arch_scale_cpu_capacity(cpu); 4979 4980 capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu)); 4981 4982 return capacity; 4983 } 4984 4985 static inline int util_fits_cpu(unsigned long util, 4986 unsigned long uclamp_min, 4987 unsigned long uclamp_max, 4988 int cpu) 4989 { 4990 unsigned long capacity = capacity_of(cpu); 4991 unsigned long capacity_orig; 4992 bool fits, uclamp_max_fits; 4993 4994 /* 4995 * Check if the real util fits without any uclamp boost/cap applied. 4996 */ 4997 fits = fits_capacity(util, capacity); 4998 4999 if (!uclamp_is_used()) 5000 return fits; 5001 5002 /* 5003 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and 5004 * uclamp_max. We only care about capacity pressure (by using 5005 * capacity_of()) for comparing against the real util. 5006 * 5007 * If a task is boosted to 1024 for example, we don't want a tiny 5008 * pressure to skew the check whether it fits a CPU or not. 5009 * 5010 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it 5011 * should fit a little cpu even if there's some pressure. 5012 * 5013 * Only exception is for HW or cpufreq pressure since it has a direct impact 5014 * on available OPP of the system. 5015 * 5016 * We honour it for uclamp_min only as a drop in performance level 5017 * could result in not getting the requested minimum performance level. 5018 * 5019 * For uclamp_max, we can tolerate a drop in performance level as the 5020 * goal is to cap the task. So it's okay if it's getting less. 5021 */ 5022 capacity_orig = arch_scale_cpu_capacity(cpu); 5023 5024 /* 5025 * We want to force a task to fit a cpu as implied by uclamp_max. 5026 * But we do have some corner cases to cater for.. 5027 * 5028 * 5029 * C=z 5030 * | ___ 5031 * | C=y | | 5032 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5033 * | C=x | | | | 5034 * | ___ | | | | 5035 * | | | | | | | (util somewhere in this region) 5036 * | | | | | | | 5037 * | | | | | | | 5038 * +---------------------------------------- 5039 * CPU0 CPU1 CPU2 5040 * 5041 * In the above example if a task is capped to a specific performance 5042 * point, y, then when: 5043 * 5044 * * util = 80% of x then it does not fit on CPU0 and should migrate 5045 * to CPU1 5046 * * util = 80% of y then it is forced to fit on CPU1 to honour 5047 * uclamp_max request. 5048 * 5049 * which is what we're enforcing here. A task always fits if 5050 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, 5051 * the normal upmigration rules should withhold still. 5052 * 5053 * Only exception is when we are on max capacity, then we need to be 5054 * careful not to block overutilized state. This is so because: 5055 * 5056 * 1. There's no concept of capping at max_capacity! We can't go 5057 * beyond this performance level anyway. 5058 * 2. The system is being saturated when we're operating near 5059 * max capacity, it doesn't make sense to block overutilized. 5060 */ 5061 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); 5062 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); 5063 fits = fits || uclamp_max_fits; 5064 5065 /* 5066 * 5067 * C=z 5068 * | ___ (region a, capped, util >= uclamp_max) 5069 * | C=y | | 5070 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5071 * | C=x | | | | 5072 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) 5073 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min 5074 * | | | | | | | 5075 * | | | | | | | (region c, boosted, util < uclamp_min) 5076 * +---------------------------------------- 5077 * CPU0 CPU1 CPU2 5078 * 5079 * a) If util > uclamp_max, then we're capped, we don't care about 5080 * actual fitness value here. We only care if uclamp_max fits 5081 * capacity without taking margin/pressure into account. 5082 * See comment above. 5083 * 5084 * b) If uclamp_min <= util <= uclamp_max, then the normal 5085 * fits_capacity() rules apply. Except we need to ensure that we 5086 * enforce we remain within uclamp_max, see comment above. 5087 * 5088 * c) If util < uclamp_min, then we are boosted. Same as (b) but we 5089 * need to take into account the boosted value fits the CPU without 5090 * taking margin/pressure into account. 5091 * 5092 * Cases (a) and (b) are handled in the 'fits' variable already. We 5093 * just need to consider an extra check for case (c) after ensuring we 5094 * handle the case uclamp_min > uclamp_max. 5095 */ 5096 uclamp_min = min(uclamp_min, uclamp_max); 5097 if (fits && (util < uclamp_min) && 5098 (uclamp_min > get_actual_cpu_capacity(cpu))) 5099 return -1; 5100 5101 return fits; 5102 } 5103 5104 static inline int task_fits_cpu(struct task_struct *p, int cpu) 5105 { 5106 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); 5107 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); 5108 unsigned long util = task_util_est(p); 5109 /* 5110 * Return true only if the cpu fully fits the task requirements, which 5111 * include the utilization but also the performance hints. 5112 */ 5113 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); 5114 } 5115 5116 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 5117 { 5118 int cpu = cpu_of(rq); 5119 5120 if (!sched_asym_cpucap_active()) 5121 return; 5122 5123 /* 5124 * Affinity allows us to go somewhere higher? Or are we on biggest 5125 * available CPU already? Or do we fit into this CPU ? 5126 */ 5127 if (!p || (p->nr_cpus_allowed == 1) || 5128 (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) || 5129 task_fits_cpu(p, cpu)) { 5130 5131 rq->misfit_task_load = 0; 5132 return; 5133 } 5134 5135 /* 5136 * Make sure that misfit_task_load will not be null even if 5137 * task_h_load() returns 0. 5138 */ 5139 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 5140 } 5141 5142 #else /* CONFIG_SMP */ 5143 5144 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 5145 { 5146 return !cfs_rq->nr_queued; 5147 } 5148 5149 #define UPDATE_TG 0x0 5150 #define SKIP_AGE_LOAD 0x0 5151 #define DO_ATTACH 0x0 5152 #define DO_DETACH 0x0 5153 5154 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 5155 { 5156 cfs_rq_util_change(cfs_rq, 0); 5157 } 5158 5159 static inline void remove_entity_load_avg(struct sched_entity *se) {} 5160 5161 static inline void 5162 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5163 static inline void 5164 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5165 5166 static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf) 5167 { 5168 return 0; 5169 } 5170 5171 static inline void 5172 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5173 5174 static inline void 5175 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5176 5177 static inline void 5178 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 5179 bool task_sleep) {} 5180 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 5181 5182 #endif /* CONFIG_SMP */ 5183 5184 void __setparam_fair(struct task_struct *p, const struct sched_attr *attr) 5185 { 5186 struct sched_entity *se = &p->se; 5187 5188 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 5189 if (attr->sched_runtime) { 5190 se->custom_slice = 1; 5191 se->slice = clamp_t(u64, attr->sched_runtime, 5192 NSEC_PER_MSEC/10, /* HZ=1000 * 10 */ 5193 NSEC_PER_MSEC*100); /* HZ=100 / 10 */ 5194 } else { 5195 se->custom_slice = 0; 5196 se->slice = sysctl_sched_base_slice; 5197 } 5198 } 5199 5200 static void 5201 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5202 { 5203 u64 vslice, vruntime = avg_vruntime(cfs_rq); 5204 s64 lag = 0; 5205 5206 if (!se->custom_slice) 5207 se->slice = sysctl_sched_base_slice; 5208 vslice = calc_delta_fair(se->slice, se); 5209 5210 /* 5211 * Due to how V is constructed as the weighted average of entities, 5212 * adding tasks with positive lag, or removing tasks with negative lag 5213 * will move 'time' backwards, this can screw around with the lag of 5214 * other tasks. 5215 * 5216 * EEVDF: placement strategy #1 / #2 5217 */ 5218 if (sched_feat(PLACE_LAG) && cfs_rq->nr_queued && se->vlag) { 5219 struct sched_entity *curr = cfs_rq->curr; 5220 unsigned long load; 5221 5222 lag = se->vlag; 5223 5224 /* 5225 * If we want to place a task and preserve lag, we have to 5226 * consider the effect of the new entity on the weighted 5227 * average and compensate for this, otherwise lag can quickly 5228 * evaporate. 5229 * 5230 * Lag is defined as: 5231 * 5232 * lag_i = S - s_i = w_i * (V - v_i) 5233 * 5234 * To avoid the 'w_i' term all over the place, we only track 5235 * the virtual lag: 5236 * 5237 * vl_i = V - v_i <=> v_i = V - vl_i 5238 * 5239 * And we take V to be the weighted average of all v: 5240 * 5241 * V = (\Sum w_j*v_j) / W 5242 * 5243 * Where W is: \Sum w_j 5244 * 5245 * Then, the weighted average after adding an entity with lag 5246 * vl_i is given by: 5247 * 5248 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i) 5249 * = (W*V + w_i*(V - vl_i)) / (W + w_i) 5250 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i) 5251 * = (V*(W + w_i) - w_i*l) / (W + w_i) 5252 * = V - w_i*vl_i / (W + w_i) 5253 * 5254 * And the actual lag after adding an entity with vl_i is: 5255 * 5256 * vl'_i = V' - v_i 5257 * = V - w_i*vl_i / (W + w_i) - (V - vl_i) 5258 * = vl_i - w_i*vl_i / (W + w_i) 5259 * 5260 * Which is strictly less than vl_i. So in order to preserve lag 5261 * we should inflate the lag before placement such that the 5262 * effective lag after placement comes out right. 5263 * 5264 * As such, invert the above relation for vl'_i to get the vl_i 5265 * we need to use such that the lag after placement is the lag 5266 * we computed before dequeue. 5267 * 5268 * vl'_i = vl_i - w_i*vl_i / (W + w_i) 5269 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) 5270 * 5271 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i 5272 * = W*vl_i 5273 * 5274 * vl_i = (W + w_i)*vl'_i / W 5275 */ 5276 load = cfs_rq->avg_load; 5277 if (curr && curr->on_rq) 5278 load += scale_load_down(curr->load.weight); 5279 5280 lag *= load + scale_load_down(se->load.weight); 5281 if (WARN_ON_ONCE(!load)) 5282 load = 1; 5283 lag = div_s64(lag, load); 5284 } 5285 5286 se->vruntime = vruntime - lag; 5287 5288 if (se->rel_deadline) { 5289 se->deadline += se->vruntime; 5290 se->rel_deadline = 0; 5291 return; 5292 } 5293 5294 /* 5295 * When joining the competition; the existing tasks will be, 5296 * on average, halfway through their slice, as such start tasks 5297 * off with half a slice to ease into the competition. 5298 */ 5299 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL)) 5300 vslice /= 2; 5301 5302 /* 5303 * EEVDF: vd_i = ve_i + r_i/w_i 5304 */ 5305 se->deadline = se->vruntime + vslice; 5306 } 5307 5308 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 5309 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq); 5310 5311 static void 5312 requeue_delayed_entity(struct sched_entity *se); 5313 5314 static void 5315 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5316 { 5317 bool curr = cfs_rq->curr == se; 5318 5319 /* 5320 * If we're the current task, we must renormalise before calling 5321 * update_curr(). 5322 */ 5323 if (curr) 5324 place_entity(cfs_rq, se, flags); 5325 5326 update_curr(cfs_rq); 5327 5328 /* 5329 * When enqueuing a sched_entity, we must: 5330 * - Update loads to have both entity and cfs_rq synced with now. 5331 * - For group_entity, update its runnable_weight to reflect the new 5332 * h_nr_runnable of its group cfs_rq. 5333 * - For group_entity, update its weight to reflect the new share of 5334 * its group cfs_rq 5335 * - Add its new weight to cfs_rq->load.weight 5336 */ 5337 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 5338 se_update_runnable(se); 5339 /* 5340 * XXX update_load_avg() above will have attached us to the pelt sum; 5341 * but update_cfs_group() here will re-adjust the weight and have to 5342 * undo/redo all that. Seems wasteful. 5343 */ 5344 update_cfs_group(se); 5345 5346 /* 5347 * XXX now that the entity has been re-weighted, and it's lag adjusted, 5348 * we can place the entity. 5349 */ 5350 if (!curr) 5351 place_entity(cfs_rq, se, flags); 5352 5353 account_entity_enqueue(cfs_rq, se); 5354 5355 /* Entity has migrated, no longer consider this task hot */ 5356 if (flags & ENQUEUE_MIGRATED) 5357 se->exec_start = 0; 5358 5359 check_schedstat_required(); 5360 update_stats_enqueue_fair(cfs_rq, se, flags); 5361 if (!curr) 5362 __enqueue_entity(cfs_rq, se); 5363 se->on_rq = 1; 5364 5365 if (cfs_rq->nr_queued == 1) { 5366 check_enqueue_throttle(cfs_rq); 5367 if (!throttled_hierarchy(cfs_rq)) { 5368 list_add_leaf_cfs_rq(cfs_rq); 5369 } else { 5370 #ifdef CONFIG_CFS_BANDWIDTH 5371 struct rq *rq = rq_of(cfs_rq); 5372 5373 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock) 5374 cfs_rq->throttled_clock = rq_clock(rq); 5375 if (!cfs_rq->throttled_clock_self) 5376 cfs_rq->throttled_clock_self = rq_clock(rq); 5377 #endif 5378 } 5379 } 5380 } 5381 5382 static void __clear_buddies_next(struct sched_entity *se) 5383 { 5384 for_each_sched_entity(se) { 5385 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5386 if (cfs_rq->next != se) 5387 break; 5388 5389 cfs_rq->next = NULL; 5390 } 5391 } 5392 5393 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 5394 { 5395 if (cfs_rq->next == se) 5396 __clear_buddies_next(se); 5397 } 5398 5399 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5400 5401 static void set_delayed(struct sched_entity *se) 5402 { 5403 se->sched_delayed = 1; 5404 5405 /* 5406 * Delayed se of cfs_rq have no tasks queued on them. 5407 * Do not adjust h_nr_runnable since dequeue_entities() 5408 * will account it for blocked tasks. 5409 */ 5410 if (!entity_is_task(se)) 5411 return; 5412 5413 for_each_sched_entity(se) { 5414 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5415 5416 cfs_rq->h_nr_runnable--; 5417 if (cfs_rq_throttled(cfs_rq)) 5418 break; 5419 } 5420 } 5421 5422 static void clear_delayed(struct sched_entity *se) 5423 { 5424 se->sched_delayed = 0; 5425 5426 /* 5427 * Delayed se of cfs_rq have no tasks queued on them. 5428 * Do not adjust h_nr_runnable since a dequeue has 5429 * already accounted for it or an enqueue of a task 5430 * below it will account for it in enqueue_task_fair(). 5431 */ 5432 if (!entity_is_task(se)) 5433 return; 5434 5435 for_each_sched_entity(se) { 5436 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5437 5438 cfs_rq->h_nr_runnable++; 5439 if (cfs_rq_throttled(cfs_rq)) 5440 break; 5441 } 5442 } 5443 5444 static inline void finish_delayed_dequeue_entity(struct sched_entity *se) 5445 { 5446 clear_delayed(se); 5447 if (sched_feat(DELAY_ZERO) && se->vlag > 0) 5448 se->vlag = 0; 5449 } 5450 5451 static bool 5452 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5453 { 5454 bool sleep = flags & DEQUEUE_SLEEP; 5455 int action = UPDATE_TG; 5456 5457 update_curr(cfs_rq); 5458 clear_buddies(cfs_rq, se); 5459 5460 if (flags & DEQUEUE_DELAYED) { 5461 WARN_ON_ONCE(!se->sched_delayed); 5462 } else { 5463 bool delay = sleep; 5464 /* 5465 * DELAY_DEQUEUE relies on spurious wakeups, special task 5466 * states must not suffer spurious wakeups, excempt them. 5467 */ 5468 if (flags & DEQUEUE_SPECIAL) 5469 delay = false; 5470 5471 WARN_ON_ONCE(delay && se->sched_delayed); 5472 5473 if (sched_feat(DELAY_DEQUEUE) && delay && 5474 !entity_eligible(cfs_rq, se)) { 5475 update_load_avg(cfs_rq, se, 0); 5476 set_delayed(se); 5477 return false; 5478 } 5479 } 5480 5481 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 5482 action |= DO_DETACH; 5483 5484 /* 5485 * When dequeuing a sched_entity, we must: 5486 * - Update loads to have both entity and cfs_rq synced with now. 5487 * - For group_entity, update its runnable_weight to reflect the new 5488 * h_nr_runnable of its group cfs_rq. 5489 * - Subtract its previous weight from cfs_rq->load.weight. 5490 * - For group entity, update its weight to reflect the new share 5491 * of its group cfs_rq. 5492 */ 5493 update_load_avg(cfs_rq, se, action); 5494 se_update_runnable(se); 5495 5496 update_stats_dequeue_fair(cfs_rq, se, flags); 5497 5498 update_entity_lag(cfs_rq, se); 5499 if (sched_feat(PLACE_REL_DEADLINE) && !sleep) { 5500 se->deadline -= se->vruntime; 5501 se->rel_deadline = 1; 5502 } 5503 5504 if (se != cfs_rq->curr) 5505 __dequeue_entity(cfs_rq, se); 5506 se->on_rq = 0; 5507 account_entity_dequeue(cfs_rq, se); 5508 5509 /* return excess runtime on last dequeue */ 5510 return_cfs_rq_runtime(cfs_rq); 5511 5512 update_cfs_group(se); 5513 5514 /* 5515 * Now advance min_vruntime if @se was the entity holding it back, 5516 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 5517 * put back on, and if we advance min_vruntime, we'll be placed back 5518 * further than we started -- i.e. we'll be penalized. 5519 */ 5520 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 5521 update_min_vruntime(cfs_rq); 5522 5523 if (flags & DEQUEUE_DELAYED) 5524 finish_delayed_dequeue_entity(se); 5525 5526 if (cfs_rq->nr_queued == 0) 5527 update_idle_cfs_rq_clock_pelt(cfs_rq); 5528 5529 return true; 5530 } 5531 5532 static void 5533 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 5534 { 5535 clear_buddies(cfs_rq, se); 5536 5537 /* 'current' is not kept within the tree. */ 5538 if (se->on_rq) { 5539 /* 5540 * Any task has to be enqueued before it get to execute on 5541 * a CPU. So account for the time it spent waiting on the 5542 * runqueue. 5543 */ 5544 update_stats_wait_end_fair(cfs_rq, se); 5545 __dequeue_entity(cfs_rq, se); 5546 update_load_avg(cfs_rq, se, UPDATE_TG); 5547 5548 set_protect_slice(se); 5549 } 5550 5551 update_stats_curr_start(cfs_rq, se); 5552 WARN_ON_ONCE(cfs_rq->curr); 5553 cfs_rq->curr = se; 5554 5555 /* 5556 * Track our maximum slice length, if the CPU's load is at 5557 * least twice that of our own weight (i.e. don't track it 5558 * when there are only lesser-weight tasks around): 5559 */ 5560 if (schedstat_enabled() && 5561 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 5562 struct sched_statistics *stats; 5563 5564 stats = __schedstats_from_se(se); 5565 __schedstat_set(stats->slice_max, 5566 max((u64)stats->slice_max, 5567 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 5568 } 5569 5570 se->prev_sum_exec_runtime = se->sum_exec_runtime; 5571 } 5572 5573 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags); 5574 5575 /* 5576 * Pick the next process, keeping these things in mind, in this order: 5577 * 1) keep things fair between processes/task groups 5578 * 2) pick the "next" process, since someone really wants that to run 5579 * 3) pick the "last" process, for cache locality 5580 * 4) do not run the "skip" process, if something else is available 5581 */ 5582 static struct sched_entity * 5583 pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq) 5584 { 5585 struct sched_entity *se; 5586 5587 /* 5588 * Picking the ->next buddy will affect latency but not fairness. 5589 */ 5590 if (sched_feat(PICK_BUDDY) && 5591 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) { 5592 /* ->next will never be delayed */ 5593 WARN_ON_ONCE(cfs_rq->next->sched_delayed); 5594 return cfs_rq->next; 5595 } 5596 5597 se = pick_eevdf(cfs_rq); 5598 if (se->sched_delayed) { 5599 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 5600 /* 5601 * Must not reference @se again, see __block_task(). 5602 */ 5603 return NULL; 5604 } 5605 return se; 5606 } 5607 5608 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5609 5610 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 5611 { 5612 /* 5613 * If still on the runqueue then deactivate_task() 5614 * was not called and update_curr() has to be done: 5615 */ 5616 if (prev->on_rq) 5617 update_curr(cfs_rq); 5618 5619 /* throttle cfs_rqs exceeding runtime */ 5620 check_cfs_rq_runtime(cfs_rq); 5621 5622 if (prev->on_rq) { 5623 update_stats_wait_start_fair(cfs_rq, prev); 5624 /* Put 'current' back into the tree. */ 5625 __enqueue_entity(cfs_rq, prev); 5626 /* in !on_rq case, update occurred at dequeue */ 5627 update_load_avg(cfs_rq, prev, 0); 5628 } 5629 WARN_ON_ONCE(cfs_rq->curr != prev); 5630 cfs_rq->curr = NULL; 5631 } 5632 5633 static void 5634 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 5635 { 5636 /* 5637 * Update run-time statistics of the 'current'. 5638 */ 5639 update_curr(cfs_rq); 5640 5641 /* 5642 * Ensure that runnable average is periodically updated. 5643 */ 5644 update_load_avg(cfs_rq, curr, UPDATE_TG); 5645 update_cfs_group(curr); 5646 5647 #ifdef CONFIG_SCHED_HRTICK 5648 /* 5649 * queued ticks are scheduled to match the slice, so don't bother 5650 * validating it and just reschedule. 5651 */ 5652 if (queued) { 5653 resched_curr_lazy(rq_of(cfs_rq)); 5654 return; 5655 } 5656 #endif 5657 } 5658 5659 5660 /************************************************** 5661 * CFS bandwidth control machinery 5662 */ 5663 5664 #ifdef CONFIG_CFS_BANDWIDTH 5665 5666 #ifdef CONFIG_JUMP_LABEL 5667 static struct static_key __cfs_bandwidth_used; 5668 5669 static inline bool cfs_bandwidth_used(void) 5670 { 5671 return static_key_false(&__cfs_bandwidth_used); 5672 } 5673 5674 void cfs_bandwidth_usage_inc(void) 5675 { 5676 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 5677 } 5678 5679 void cfs_bandwidth_usage_dec(void) 5680 { 5681 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 5682 } 5683 #else /* CONFIG_JUMP_LABEL */ 5684 static bool cfs_bandwidth_used(void) 5685 { 5686 return true; 5687 } 5688 5689 void cfs_bandwidth_usage_inc(void) {} 5690 void cfs_bandwidth_usage_dec(void) {} 5691 #endif /* CONFIG_JUMP_LABEL */ 5692 5693 /* 5694 * default period for cfs group bandwidth. 5695 * default: 0.1s, units: nanoseconds 5696 */ 5697 static inline u64 default_cfs_period(void) 5698 { 5699 return 100000000ULL; 5700 } 5701 5702 static inline u64 sched_cfs_bandwidth_slice(void) 5703 { 5704 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 5705 } 5706 5707 /* 5708 * Replenish runtime according to assigned quota. We use sched_clock_cpu 5709 * directly instead of rq->clock to avoid adding additional synchronization 5710 * around rq->lock. 5711 * 5712 * requires cfs_b->lock 5713 */ 5714 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 5715 { 5716 s64 runtime; 5717 5718 if (unlikely(cfs_b->quota == RUNTIME_INF)) 5719 return; 5720 5721 cfs_b->runtime += cfs_b->quota; 5722 runtime = cfs_b->runtime_snap - cfs_b->runtime; 5723 if (runtime > 0) { 5724 cfs_b->burst_time += runtime; 5725 cfs_b->nr_burst++; 5726 } 5727 5728 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 5729 cfs_b->runtime_snap = cfs_b->runtime; 5730 } 5731 5732 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5733 { 5734 return &tg->cfs_bandwidth; 5735 } 5736 5737 /* returns 0 on failure to allocate runtime */ 5738 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 5739 struct cfs_rq *cfs_rq, u64 target_runtime) 5740 { 5741 u64 min_amount, amount = 0; 5742 5743 lockdep_assert_held(&cfs_b->lock); 5744 5745 /* note: this is a positive sum as runtime_remaining <= 0 */ 5746 min_amount = target_runtime - cfs_rq->runtime_remaining; 5747 5748 if (cfs_b->quota == RUNTIME_INF) 5749 amount = min_amount; 5750 else { 5751 start_cfs_bandwidth(cfs_b); 5752 5753 if (cfs_b->runtime > 0) { 5754 amount = min(cfs_b->runtime, min_amount); 5755 cfs_b->runtime -= amount; 5756 cfs_b->idle = 0; 5757 } 5758 } 5759 5760 cfs_rq->runtime_remaining += amount; 5761 5762 return cfs_rq->runtime_remaining > 0; 5763 } 5764 5765 /* returns 0 on failure to allocate runtime */ 5766 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5767 { 5768 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5769 int ret; 5770 5771 raw_spin_lock(&cfs_b->lock); 5772 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 5773 raw_spin_unlock(&cfs_b->lock); 5774 5775 return ret; 5776 } 5777 5778 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5779 { 5780 /* dock delta_exec before expiring quota (as it could span periods) */ 5781 cfs_rq->runtime_remaining -= delta_exec; 5782 5783 if (likely(cfs_rq->runtime_remaining > 0)) 5784 return; 5785 5786 if (cfs_rq->throttled) 5787 return; 5788 /* 5789 * if we're unable to extend our runtime we resched so that the active 5790 * hierarchy can be throttled 5791 */ 5792 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 5793 resched_curr(rq_of(cfs_rq)); 5794 } 5795 5796 static __always_inline 5797 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5798 { 5799 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 5800 return; 5801 5802 __account_cfs_rq_runtime(cfs_rq, delta_exec); 5803 } 5804 5805 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5806 { 5807 return cfs_bandwidth_used() && cfs_rq->throttled; 5808 } 5809 5810 /* check whether cfs_rq, or any parent, is throttled */ 5811 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5812 { 5813 return cfs_bandwidth_used() && cfs_rq->throttle_count; 5814 } 5815 5816 /* 5817 * Ensure that neither of the group entities corresponding to src_cpu or 5818 * dest_cpu are members of a throttled hierarchy when performing group 5819 * load-balance operations. 5820 */ 5821 static inline int throttled_lb_pair(struct task_group *tg, 5822 int src_cpu, int dest_cpu) 5823 { 5824 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 5825 5826 src_cfs_rq = tg->cfs_rq[src_cpu]; 5827 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 5828 5829 return throttled_hierarchy(src_cfs_rq) || 5830 throttled_hierarchy(dest_cfs_rq); 5831 } 5832 5833 static int tg_unthrottle_up(struct task_group *tg, void *data) 5834 { 5835 struct rq *rq = data; 5836 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5837 5838 cfs_rq->throttle_count--; 5839 if (!cfs_rq->throttle_count) { 5840 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5841 cfs_rq->throttled_clock_pelt; 5842 5843 /* Add cfs_rq with load or one or more already running entities to the list */ 5844 if (!cfs_rq_is_decayed(cfs_rq)) 5845 list_add_leaf_cfs_rq(cfs_rq); 5846 5847 if (cfs_rq->throttled_clock_self) { 5848 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self; 5849 5850 cfs_rq->throttled_clock_self = 0; 5851 5852 if (WARN_ON_ONCE((s64)delta < 0)) 5853 delta = 0; 5854 5855 cfs_rq->throttled_clock_self_time += delta; 5856 } 5857 } 5858 5859 return 0; 5860 } 5861 5862 static int tg_throttle_down(struct task_group *tg, void *data) 5863 { 5864 struct rq *rq = data; 5865 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5866 5867 /* group is entering throttled state, stop time */ 5868 if (!cfs_rq->throttle_count) { 5869 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5870 list_del_leaf_cfs_rq(cfs_rq); 5871 5872 WARN_ON_ONCE(cfs_rq->throttled_clock_self); 5873 if (cfs_rq->nr_queued) 5874 cfs_rq->throttled_clock_self = rq_clock(rq); 5875 } 5876 cfs_rq->throttle_count++; 5877 5878 return 0; 5879 } 5880 5881 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 5882 { 5883 struct rq *rq = rq_of(cfs_rq); 5884 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5885 struct sched_entity *se; 5886 long queued_delta, runnable_delta, idle_delta, dequeue = 1; 5887 long rq_h_nr_queued = rq->cfs.h_nr_queued; 5888 5889 raw_spin_lock(&cfs_b->lock); 5890 /* This will start the period timer if necessary */ 5891 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 5892 /* 5893 * We have raced with bandwidth becoming available, and if we 5894 * actually throttled the timer might not unthrottle us for an 5895 * entire period. We additionally needed to make sure that any 5896 * subsequent check_cfs_rq_runtime calls agree not to throttle 5897 * us, as we may commit to do cfs put_prev+pick_next, so we ask 5898 * for 1ns of runtime rather than just check cfs_b. 5899 */ 5900 dequeue = 0; 5901 } else { 5902 list_add_tail_rcu(&cfs_rq->throttled_list, 5903 &cfs_b->throttled_cfs_rq); 5904 } 5905 raw_spin_unlock(&cfs_b->lock); 5906 5907 if (!dequeue) 5908 return false; /* Throttle no longer required. */ 5909 5910 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 5911 5912 /* freeze hierarchy runnable averages while throttled */ 5913 rcu_read_lock(); 5914 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5915 rcu_read_unlock(); 5916 5917 queued_delta = cfs_rq->h_nr_queued; 5918 runnable_delta = cfs_rq->h_nr_runnable; 5919 idle_delta = cfs_rq->h_nr_idle; 5920 for_each_sched_entity(se) { 5921 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5922 int flags; 5923 5924 /* throttled entity or throttle-on-deactivate */ 5925 if (!se->on_rq) 5926 goto done; 5927 5928 /* 5929 * Abuse SPECIAL to avoid delayed dequeue in this instance. 5930 * This avoids teaching dequeue_entities() about throttled 5931 * entities and keeps things relatively simple. 5932 */ 5933 flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL; 5934 if (se->sched_delayed) 5935 flags |= DEQUEUE_DELAYED; 5936 dequeue_entity(qcfs_rq, se, flags); 5937 5938 if (cfs_rq_is_idle(group_cfs_rq(se))) 5939 idle_delta = cfs_rq->h_nr_queued; 5940 5941 qcfs_rq->h_nr_queued -= queued_delta; 5942 qcfs_rq->h_nr_runnable -= runnable_delta; 5943 qcfs_rq->h_nr_idle -= idle_delta; 5944 5945 if (qcfs_rq->load.weight) { 5946 /* Avoid re-evaluating load for this entity: */ 5947 se = parent_entity(se); 5948 break; 5949 } 5950 } 5951 5952 for_each_sched_entity(se) { 5953 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5954 /* throttled entity or throttle-on-deactivate */ 5955 if (!se->on_rq) 5956 goto done; 5957 5958 update_load_avg(qcfs_rq, se, 0); 5959 se_update_runnable(se); 5960 5961 if (cfs_rq_is_idle(group_cfs_rq(se))) 5962 idle_delta = cfs_rq->h_nr_queued; 5963 5964 qcfs_rq->h_nr_queued -= queued_delta; 5965 qcfs_rq->h_nr_runnable -= runnable_delta; 5966 qcfs_rq->h_nr_idle -= idle_delta; 5967 } 5968 5969 /* At this point se is NULL and we are at root level*/ 5970 sub_nr_running(rq, queued_delta); 5971 5972 /* Stop the fair server if throttling resulted in no runnable tasks */ 5973 if (rq_h_nr_queued && !rq->cfs.h_nr_queued) 5974 dl_server_stop(&rq->fair_server); 5975 done: 5976 /* 5977 * Note: distribution will already see us throttled via the 5978 * throttled-list. rq->lock protects completion. 5979 */ 5980 cfs_rq->throttled = 1; 5981 WARN_ON_ONCE(cfs_rq->throttled_clock); 5982 if (cfs_rq->nr_queued) 5983 cfs_rq->throttled_clock = rq_clock(rq); 5984 return true; 5985 } 5986 5987 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 5988 { 5989 struct rq *rq = rq_of(cfs_rq); 5990 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5991 struct sched_entity *se; 5992 long queued_delta, runnable_delta, idle_delta; 5993 long rq_h_nr_queued = rq->cfs.h_nr_queued; 5994 5995 se = cfs_rq->tg->se[cpu_of(rq)]; 5996 5997 cfs_rq->throttled = 0; 5998 5999 update_rq_clock(rq); 6000 6001 raw_spin_lock(&cfs_b->lock); 6002 if (cfs_rq->throttled_clock) { 6003 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 6004 cfs_rq->throttled_clock = 0; 6005 } 6006 list_del_rcu(&cfs_rq->throttled_list); 6007 raw_spin_unlock(&cfs_b->lock); 6008 6009 /* update hierarchical throttle state */ 6010 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 6011 6012 if (!cfs_rq->load.weight) { 6013 if (!cfs_rq->on_list) 6014 return; 6015 /* 6016 * Nothing to run but something to decay (on_list)? 6017 * Complete the branch. 6018 */ 6019 for_each_sched_entity(se) { 6020 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 6021 break; 6022 } 6023 goto unthrottle_throttle; 6024 } 6025 6026 queued_delta = cfs_rq->h_nr_queued; 6027 runnable_delta = cfs_rq->h_nr_runnable; 6028 idle_delta = cfs_rq->h_nr_idle; 6029 for_each_sched_entity(se) { 6030 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 6031 6032 /* Handle any unfinished DELAY_DEQUEUE business first. */ 6033 if (se->sched_delayed) { 6034 int flags = DEQUEUE_SLEEP | DEQUEUE_DELAYED; 6035 6036 dequeue_entity(qcfs_rq, se, flags); 6037 } else if (se->on_rq) 6038 break; 6039 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 6040 6041 if (cfs_rq_is_idle(group_cfs_rq(se))) 6042 idle_delta = cfs_rq->h_nr_queued; 6043 6044 qcfs_rq->h_nr_queued += queued_delta; 6045 qcfs_rq->h_nr_runnable += runnable_delta; 6046 qcfs_rq->h_nr_idle += idle_delta; 6047 6048 /* end evaluation on encountering a throttled cfs_rq */ 6049 if (cfs_rq_throttled(qcfs_rq)) 6050 goto unthrottle_throttle; 6051 } 6052 6053 for_each_sched_entity(se) { 6054 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 6055 6056 update_load_avg(qcfs_rq, se, UPDATE_TG); 6057 se_update_runnable(se); 6058 6059 if (cfs_rq_is_idle(group_cfs_rq(se))) 6060 idle_delta = cfs_rq->h_nr_queued; 6061 6062 qcfs_rq->h_nr_queued += queued_delta; 6063 qcfs_rq->h_nr_runnable += runnable_delta; 6064 qcfs_rq->h_nr_idle += idle_delta; 6065 6066 /* end evaluation on encountering a throttled cfs_rq */ 6067 if (cfs_rq_throttled(qcfs_rq)) 6068 goto unthrottle_throttle; 6069 } 6070 6071 /* Start the fair server if un-throttling resulted in new runnable tasks */ 6072 if (!rq_h_nr_queued && rq->cfs.h_nr_queued) 6073 dl_server_start(&rq->fair_server); 6074 6075 /* At this point se is NULL and we are at root level*/ 6076 add_nr_running(rq, queued_delta); 6077 6078 unthrottle_throttle: 6079 assert_list_leaf_cfs_rq(rq); 6080 6081 /* Determine whether we need to wake up potentially idle CPU: */ 6082 if (rq->curr == rq->idle && rq->cfs.nr_queued) 6083 resched_curr(rq); 6084 } 6085 6086 #ifdef CONFIG_SMP 6087 static void __cfsb_csd_unthrottle(void *arg) 6088 { 6089 struct cfs_rq *cursor, *tmp; 6090 struct rq *rq = arg; 6091 struct rq_flags rf; 6092 6093 rq_lock(rq, &rf); 6094 6095 /* 6096 * Iterating over the list can trigger several call to 6097 * update_rq_clock() in unthrottle_cfs_rq(). 6098 * Do it once and skip the potential next ones. 6099 */ 6100 update_rq_clock(rq); 6101 rq_clock_start_loop_update(rq); 6102 6103 /* 6104 * Since we hold rq lock we're safe from concurrent manipulation of 6105 * the CSD list. However, this RCU critical section annotates the 6106 * fact that we pair with sched_free_group_rcu(), so that we cannot 6107 * race with group being freed in the window between removing it 6108 * from the list and advancing to the next entry in the list. 6109 */ 6110 rcu_read_lock(); 6111 6112 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, 6113 throttled_csd_list) { 6114 list_del_init(&cursor->throttled_csd_list); 6115 6116 if (cfs_rq_throttled(cursor)) 6117 unthrottle_cfs_rq(cursor); 6118 } 6119 6120 rcu_read_unlock(); 6121 6122 rq_clock_stop_loop_update(rq); 6123 rq_unlock(rq, &rf); 6124 } 6125 6126 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6127 { 6128 struct rq *rq = rq_of(cfs_rq); 6129 bool first; 6130 6131 if (rq == this_rq()) { 6132 unthrottle_cfs_rq(cfs_rq); 6133 return; 6134 } 6135 6136 /* Already enqueued */ 6137 if (WARN_ON_ONCE(!list_empty(&cfs_rq->throttled_csd_list))) 6138 return; 6139 6140 first = list_empty(&rq->cfsb_csd_list); 6141 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); 6142 if (first) 6143 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); 6144 } 6145 #else 6146 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6147 { 6148 unthrottle_cfs_rq(cfs_rq); 6149 } 6150 #endif 6151 6152 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6153 { 6154 lockdep_assert_rq_held(rq_of(cfs_rq)); 6155 6156 if (WARN_ON_ONCE(!cfs_rq_throttled(cfs_rq) || 6157 cfs_rq->runtime_remaining <= 0)) 6158 return; 6159 6160 __unthrottle_cfs_rq_async(cfs_rq); 6161 } 6162 6163 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 6164 { 6165 int this_cpu = smp_processor_id(); 6166 u64 runtime, remaining = 1; 6167 bool throttled = false; 6168 struct cfs_rq *cfs_rq, *tmp; 6169 struct rq_flags rf; 6170 struct rq *rq; 6171 LIST_HEAD(local_unthrottle); 6172 6173 rcu_read_lock(); 6174 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 6175 throttled_list) { 6176 rq = rq_of(cfs_rq); 6177 6178 if (!remaining) { 6179 throttled = true; 6180 break; 6181 } 6182 6183 rq_lock_irqsave(rq, &rf); 6184 if (!cfs_rq_throttled(cfs_rq)) 6185 goto next; 6186 6187 /* Already queued for async unthrottle */ 6188 if (!list_empty(&cfs_rq->throttled_csd_list)) 6189 goto next; 6190 6191 /* By the above checks, this should never be true */ 6192 WARN_ON_ONCE(cfs_rq->runtime_remaining > 0); 6193 6194 raw_spin_lock(&cfs_b->lock); 6195 runtime = -cfs_rq->runtime_remaining + 1; 6196 if (runtime > cfs_b->runtime) 6197 runtime = cfs_b->runtime; 6198 cfs_b->runtime -= runtime; 6199 remaining = cfs_b->runtime; 6200 raw_spin_unlock(&cfs_b->lock); 6201 6202 cfs_rq->runtime_remaining += runtime; 6203 6204 /* we check whether we're throttled above */ 6205 if (cfs_rq->runtime_remaining > 0) { 6206 if (cpu_of(rq) != this_cpu) { 6207 unthrottle_cfs_rq_async(cfs_rq); 6208 } else { 6209 /* 6210 * We currently only expect to be unthrottling 6211 * a single cfs_rq locally. 6212 */ 6213 WARN_ON_ONCE(!list_empty(&local_unthrottle)); 6214 list_add_tail(&cfs_rq->throttled_csd_list, 6215 &local_unthrottle); 6216 } 6217 } else { 6218 throttled = true; 6219 } 6220 6221 next: 6222 rq_unlock_irqrestore(rq, &rf); 6223 } 6224 6225 list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle, 6226 throttled_csd_list) { 6227 struct rq *rq = rq_of(cfs_rq); 6228 6229 rq_lock_irqsave(rq, &rf); 6230 6231 list_del_init(&cfs_rq->throttled_csd_list); 6232 6233 if (cfs_rq_throttled(cfs_rq)) 6234 unthrottle_cfs_rq(cfs_rq); 6235 6236 rq_unlock_irqrestore(rq, &rf); 6237 } 6238 WARN_ON_ONCE(!list_empty(&local_unthrottle)); 6239 6240 rcu_read_unlock(); 6241 6242 return throttled; 6243 } 6244 6245 /* 6246 * Responsible for refilling a task_group's bandwidth and unthrottling its 6247 * cfs_rqs as appropriate. If there has been no activity within the last 6248 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 6249 * used to track this state. 6250 */ 6251 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 6252 { 6253 int throttled; 6254 6255 /* no need to continue the timer with no bandwidth constraint */ 6256 if (cfs_b->quota == RUNTIME_INF) 6257 goto out_deactivate; 6258 6259 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 6260 cfs_b->nr_periods += overrun; 6261 6262 /* Refill extra burst quota even if cfs_b->idle */ 6263 __refill_cfs_bandwidth_runtime(cfs_b); 6264 6265 /* 6266 * idle depends on !throttled (for the case of a large deficit), and if 6267 * we're going inactive then everything else can be deferred 6268 */ 6269 if (cfs_b->idle && !throttled) 6270 goto out_deactivate; 6271 6272 if (!throttled) { 6273 /* mark as potentially idle for the upcoming period */ 6274 cfs_b->idle = 1; 6275 return 0; 6276 } 6277 6278 /* account preceding periods in which throttling occurred */ 6279 cfs_b->nr_throttled += overrun; 6280 6281 /* 6282 * This check is repeated as we release cfs_b->lock while we unthrottle. 6283 */ 6284 while (throttled && cfs_b->runtime > 0) { 6285 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6286 /* we can't nest cfs_b->lock while distributing bandwidth */ 6287 throttled = distribute_cfs_runtime(cfs_b); 6288 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6289 } 6290 6291 /* 6292 * While we are ensured activity in the period following an 6293 * unthrottle, this also covers the case in which the new bandwidth is 6294 * insufficient to cover the existing bandwidth deficit. (Forcing the 6295 * timer to remain active while there are any throttled entities.) 6296 */ 6297 cfs_b->idle = 0; 6298 6299 return 0; 6300 6301 out_deactivate: 6302 return 1; 6303 } 6304 6305 /* a cfs_rq won't donate quota below this amount */ 6306 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 6307 /* minimum remaining period time to redistribute slack quota */ 6308 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 6309 /* how long we wait to gather additional slack before distributing */ 6310 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 6311 6312 /* 6313 * Are we near the end of the current quota period? 6314 * 6315 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 6316 * hrtimer base being cleared by hrtimer_start. In the case of 6317 * migrate_hrtimers, base is never cleared, so we are fine. 6318 */ 6319 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 6320 { 6321 struct hrtimer *refresh_timer = &cfs_b->period_timer; 6322 s64 remaining; 6323 6324 /* if the call-back is running a quota refresh is already occurring */ 6325 if (hrtimer_callback_running(refresh_timer)) 6326 return 1; 6327 6328 /* is a quota refresh about to occur? */ 6329 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 6330 if (remaining < (s64)min_expire) 6331 return 1; 6332 6333 return 0; 6334 } 6335 6336 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 6337 { 6338 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 6339 6340 /* if there's a quota refresh soon don't bother with slack */ 6341 if (runtime_refresh_within(cfs_b, min_left)) 6342 return; 6343 6344 /* don't push forwards an existing deferred unthrottle */ 6345 if (cfs_b->slack_started) 6346 return; 6347 cfs_b->slack_started = true; 6348 6349 hrtimer_start(&cfs_b->slack_timer, 6350 ns_to_ktime(cfs_bandwidth_slack_period), 6351 HRTIMER_MODE_REL); 6352 } 6353 6354 /* we know any runtime found here is valid as update_curr() precedes return */ 6355 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6356 { 6357 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 6358 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 6359 6360 if (slack_runtime <= 0) 6361 return; 6362 6363 raw_spin_lock(&cfs_b->lock); 6364 if (cfs_b->quota != RUNTIME_INF) { 6365 cfs_b->runtime += slack_runtime; 6366 6367 /* we are under rq->lock, defer unthrottling using a timer */ 6368 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 6369 !list_empty(&cfs_b->throttled_cfs_rq)) 6370 start_cfs_slack_bandwidth(cfs_b); 6371 } 6372 raw_spin_unlock(&cfs_b->lock); 6373 6374 /* even if it's not valid for return we don't want to try again */ 6375 cfs_rq->runtime_remaining -= slack_runtime; 6376 } 6377 6378 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6379 { 6380 if (!cfs_bandwidth_used()) 6381 return; 6382 6383 if (!cfs_rq->runtime_enabled || cfs_rq->nr_queued) 6384 return; 6385 6386 __return_cfs_rq_runtime(cfs_rq); 6387 } 6388 6389 /* 6390 * This is done with a timer (instead of inline with bandwidth return) since 6391 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 6392 */ 6393 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 6394 { 6395 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 6396 unsigned long flags; 6397 6398 /* confirm we're still not at a refresh boundary */ 6399 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6400 cfs_b->slack_started = false; 6401 6402 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 6403 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6404 return; 6405 } 6406 6407 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 6408 runtime = cfs_b->runtime; 6409 6410 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6411 6412 if (!runtime) 6413 return; 6414 6415 distribute_cfs_runtime(cfs_b); 6416 } 6417 6418 /* 6419 * When a group wakes up we want to make sure that its quota is not already 6420 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 6421 * runtime as update_curr() throttling can not trigger until it's on-rq. 6422 */ 6423 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 6424 { 6425 if (!cfs_bandwidth_used()) 6426 return; 6427 6428 /* an active group must be handled by the update_curr()->put() path */ 6429 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 6430 return; 6431 6432 /* ensure the group is not already throttled */ 6433 if (cfs_rq_throttled(cfs_rq)) 6434 return; 6435 6436 /* update runtime allocation */ 6437 account_cfs_rq_runtime(cfs_rq, 0); 6438 if (cfs_rq->runtime_remaining <= 0) 6439 throttle_cfs_rq(cfs_rq); 6440 } 6441 6442 static void sync_throttle(struct task_group *tg, int cpu) 6443 { 6444 struct cfs_rq *pcfs_rq, *cfs_rq; 6445 6446 if (!cfs_bandwidth_used()) 6447 return; 6448 6449 if (!tg->parent) 6450 return; 6451 6452 cfs_rq = tg->cfs_rq[cpu]; 6453 pcfs_rq = tg->parent->cfs_rq[cpu]; 6454 6455 cfs_rq->throttle_count = pcfs_rq->throttle_count; 6456 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 6457 } 6458 6459 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 6460 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6461 { 6462 if (!cfs_bandwidth_used()) 6463 return false; 6464 6465 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 6466 return false; 6467 6468 /* 6469 * it's possible for a throttled entity to be forced into a running 6470 * state (e.g. set_curr_task), in this case we're finished. 6471 */ 6472 if (cfs_rq_throttled(cfs_rq)) 6473 return true; 6474 6475 return throttle_cfs_rq(cfs_rq); 6476 } 6477 6478 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 6479 { 6480 struct cfs_bandwidth *cfs_b = 6481 container_of(timer, struct cfs_bandwidth, slack_timer); 6482 6483 do_sched_cfs_slack_timer(cfs_b); 6484 6485 return HRTIMER_NORESTART; 6486 } 6487 6488 extern const u64 max_cfs_quota_period; 6489 6490 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 6491 { 6492 struct cfs_bandwidth *cfs_b = 6493 container_of(timer, struct cfs_bandwidth, period_timer); 6494 unsigned long flags; 6495 int overrun; 6496 int idle = 0; 6497 int count = 0; 6498 6499 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6500 for (;;) { 6501 overrun = hrtimer_forward_now(timer, cfs_b->period); 6502 if (!overrun) 6503 break; 6504 6505 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 6506 6507 if (++count > 3) { 6508 u64 new, old = ktime_to_ns(cfs_b->period); 6509 6510 /* 6511 * Grow period by a factor of 2 to avoid losing precision. 6512 * Precision loss in the quota/period ratio can cause __cfs_schedulable 6513 * to fail. 6514 */ 6515 new = old * 2; 6516 if (new < max_cfs_quota_period) { 6517 cfs_b->period = ns_to_ktime(new); 6518 cfs_b->quota *= 2; 6519 cfs_b->burst *= 2; 6520 6521 pr_warn_ratelimited( 6522 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6523 smp_processor_id(), 6524 div_u64(new, NSEC_PER_USEC), 6525 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6526 } else { 6527 pr_warn_ratelimited( 6528 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6529 smp_processor_id(), 6530 div_u64(old, NSEC_PER_USEC), 6531 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6532 } 6533 6534 /* reset count so we don't come right back in here */ 6535 count = 0; 6536 } 6537 } 6538 if (idle) 6539 cfs_b->period_active = 0; 6540 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6541 6542 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 6543 } 6544 6545 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) 6546 { 6547 raw_spin_lock_init(&cfs_b->lock); 6548 cfs_b->runtime = 0; 6549 cfs_b->quota = RUNTIME_INF; 6550 cfs_b->period = ns_to_ktime(default_cfs_period()); 6551 cfs_b->burst = 0; 6552 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF; 6553 6554 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 6555 hrtimer_setup(&cfs_b->period_timer, sched_cfs_period_timer, CLOCK_MONOTONIC, 6556 HRTIMER_MODE_ABS_PINNED); 6557 6558 /* Add a random offset so that timers interleave */ 6559 hrtimer_set_expires(&cfs_b->period_timer, 6560 get_random_u32_below(cfs_b->period)); 6561 hrtimer_setup(&cfs_b->slack_timer, sched_cfs_slack_timer, CLOCK_MONOTONIC, 6562 HRTIMER_MODE_REL); 6563 cfs_b->slack_started = false; 6564 } 6565 6566 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6567 { 6568 cfs_rq->runtime_enabled = 0; 6569 INIT_LIST_HEAD(&cfs_rq->throttled_list); 6570 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); 6571 } 6572 6573 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6574 { 6575 lockdep_assert_held(&cfs_b->lock); 6576 6577 if (cfs_b->period_active) 6578 return; 6579 6580 cfs_b->period_active = 1; 6581 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 6582 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 6583 } 6584 6585 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6586 { 6587 int __maybe_unused i; 6588 6589 /* init_cfs_bandwidth() was not called */ 6590 if (!cfs_b->throttled_cfs_rq.next) 6591 return; 6592 6593 hrtimer_cancel(&cfs_b->period_timer); 6594 hrtimer_cancel(&cfs_b->slack_timer); 6595 6596 /* 6597 * It is possible that we still have some cfs_rq's pending on a CSD 6598 * list, though this race is very rare. In order for this to occur, we 6599 * must have raced with the last task leaving the group while there 6600 * exist throttled cfs_rq(s), and the period_timer must have queued the 6601 * CSD item but the remote cpu has not yet processed it. To handle this, 6602 * we can simply flush all pending CSD work inline here. We're 6603 * guaranteed at this point that no additional cfs_rq of this group can 6604 * join a CSD list. 6605 */ 6606 #ifdef CONFIG_SMP 6607 for_each_possible_cpu(i) { 6608 struct rq *rq = cpu_rq(i); 6609 unsigned long flags; 6610 6611 if (list_empty(&rq->cfsb_csd_list)) 6612 continue; 6613 6614 local_irq_save(flags); 6615 __cfsb_csd_unthrottle(rq); 6616 local_irq_restore(flags); 6617 } 6618 #endif 6619 } 6620 6621 /* 6622 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 6623 * 6624 * The race is harmless, since modifying bandwidth settings of unhooked group 6625 * bits doesn't do much. 6626 */ 6627 6628 /* cpu online callback */ 6629 static void __maybe_unused update_runtime_enabled(struct rq *rq) 6630 { 6631 struct task_group *tg; 6632 6633 lockdep_assert_rq_held(rq); 6634 6635 rcu_read_lock(); 6636 list_for_each_entry_rcu(tg, &task_groups, list) { 6637 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6638 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6639 6640 raw_spin_lock(&cfs_b->lock); 6641 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 6642 raw_spin_unlock(&cfs_b->lock); 6643 } 6644 rcu_read_unlock(); 6645 } 6646 6647 /* cpu offline callback */ 6648 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 6649 { 6650 struct task_group *tg; 6651 6652 lockdep_assert_rq_held(rq); 6653 6654 // Do not unthrottle for an active CPU 6655 if (cpumask_test_cpu(cpu_of(rq), cpu_active_mask)) 6656 return; 6657 6658 /* 6659 * The rq clock has already been updated in the 6660 * set_rq_offline(), so we should skip updating 6661 * the rq clock again in unthrottle_cfs_rq(). 6662 */ 6663 rq_clock_start_loop_update(rq); 6664 6665 rcu_read_lock(); 6666 list_for_each_entry_rcu(tg, &task_groups, list) { 6667 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6668 6669 if (!cfs_rq->runtime_enabled) 6670 continue; 6671 6672 /* 6673 * Offline rq is schedulable till CPU is completely disabled 6674 * in take_cpu_down(), so we prevent new cfs throttling here. 6675 */ 6676 cfs_rq->runtime_enabled = 0; 6677 6678 if (!cfs_rq_throttled(cfs_rq)) 6679 continue; 6680 6681 /* 6682 * clock_task is not advancing so we just need to make sure 6683 * there's some valid quota amount 6684 */ 6685 cfs_rq->runtime_remaining = 1; 6686 unthrottle_cfs_rq(cfs_rq); 6687 } 6688 rcu_read_unlock(); 6689 6690 rq_clock_stop_loop_update(rq); 6691 } 6692 6693 bool cfs_task_bw_constrained(struct task_struct *p) 6694 { 6695 struct cfs_rq *cfs_rq = task_cfs_rq(p); 6696 6697 if (!cfs_bandwidth_used()) 6698 return false; 6699 6700 if (cfs_rq->runtime_enabled || 6701 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF) 6702 return true; 6703 6704 return false; 6705 } 6706 6707 #ifdef CONFIG_NO_HZ_FULL 6708 /* called from pick_next_task_fair() */ 6709 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) 6710 { 6711 int cpu = cpu_of(rq); 6712 6713 if (!cfs_bandwidth_used()) 6714 return; 6715 6716 if (!tick_nohz_full_cpu(cpu)) 6717 return; 6718 6719 if (rq->nr_running != 1) 6720 return; 6721 6722 /* 6723 * We know there is only one task runnable and we've just picked it. The 6724 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will 6725 * be otherwise able to stop the tick. Just need to check if we are using 6726 * bandwidth control. 6727 */ 6728 if (cfs_task_bw_constrained(p)) 6729 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 6730 } 6731 #endif 6732 6733 #else /* CONFIG_CFS_BANDWIDTH */ 6734 6735 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 6736 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 6737 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 6738 static inline void sync_throttle(struct task_group *tg, int cpu) {} 6739 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6740 6741 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 6742 { 6743 return 0; 6744 } 6745 6746 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 6747 { 6748 return 0; 6749 } 6750 6751 static inline int throttled_lb_pair(struct task_group *tg, 6752 int src_cpu, int dest_cpu) 6753 { 6754 return 0; 6755 } 6756 6757 #ifdef CONFIG_FAIR_GROUP_SCHED 6758 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {} 6759 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6760 #endif 6761 6762 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 6763 { 6764 return NULL; 6765 } 6766 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6767 static inline void update_runtime_enabled(struct rq *rq) {} 6768 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 6769 #ifdef CONFIG_CGROUP_SCHED 6770 bool cfs_task_bw_constrained(struct task_struct *p) 6771 { 6772 return false; 6773 } 6774 #endif 6775 #endif /* CONFIG_CFS_BANDWIDTH */ 6776 6777 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL) 6778 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {} 6779 #endif 6780 6781 /************************************************** 6782 * CFS operations on tasks: 6783 */ 6784 6785 #ifdef CONFIG_SCHED_HRTICK 6786 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 6787 { 6788 struct sched_entity *se = &p->se; 6789 6790 WARN_ON_ONCE(task_rq(p) != rq); 6791 6792 if (rq->cfs.h_nr_queued > 1) { 6793 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 6794 u64 slice = se->slice; 6795 s64 delta = slice - ran; 6796 6797 if (delta < 0) { 6798 if (task_current_donor(rq, p)) 6799 resched_curr(rq); 6800 return; 6801 } 6802 hrtick_start(rq, delta); 6803 } 6804 } 6805 6806 /* 6807 * called from enqueue/dequeue and updates the hrtick when the 6808 * current task is from our class and nr_running is low enough 6809 * to matter. 6810 */ 6811 static void hrtick_update(struct rq *rq) 6812 { 6813 struct task_struct *donor = rq->donor; 6814 6815 if (!hrtick_enabled_fair(rq) || donor->sched_class != &fair_sched_class) 6816 return; 6817 6818 hrtick_start_fair(rq, donor); 6819 } 6820 #else /* !CONFIG_SCHED_HRTICK */ 6821 static inline void 6822 hrtick_start_fair(struct rq *rq, struct task_struct *p) 6823 { 6824 } 6825 6826 static inline void hrtick_update(struct rq *rq) 6827 { 6828 } 6829 #endif 6830 6831 #ifdef CONFIG_SMP 6832 static inline bool cpu_overutilized(int cpu) 6833 { 6834 unsigned long rq_util_min, rq_util_max; 6835 6836 if (!sched_energy_enabled()) 6837 return false; 6838 6839 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 6840 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 6841 6842 /* Return true only if the utilization doesn't fit CPU's capacity */ 6843 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); 6844 } 6845 6846 /* 6847 * overutilized value make sense only if EAS is enabled 6848 */ 6849 static inline bool is_rd_overutilized(struct root_domain *rd) 6850 { 6851 return !sched_energy_enabled() || READ_ONCE(rd->overutilized); 6852 } 6853 6854 static inline void set_rd_overutilized(struct root_domain *rd, bool flag) 6855 { 6856 if (!sched_energy_enabled()) 6857 return; 6858 6859 WRITE_ONCE(rd->overutilized, flag); 6860 trace_sched_overutilized_tp(rd, flag); 6861 } 6862 6863 static inline void check_update_overutilized_status(struct rq *rq) 6864 { 6865 /* 6866 * overutilized field is used for load balancing decisions only 6867 * if energy aware scheduler is being used 6868 */ 6869 6870 if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu)) 6871 set_rd_overutilized(rq->rd, 1); 6872 } 6873 #else 6874 static inline void check_update_overutilized_status(struct rq *rq) { } 6875 #endif 6876 6877 /* Runqueue only has SCHED_IDLE tasks enqueued */ 6878 static int sched_idle_rq(struct rq *rq) 6879 { 6880 return unlikely(rq->nr_running == rq->cfs.h_nr_idle && 6881 rq->nr_running); 6882 } 6883 6884 #ifdef CONFIG_SMP 6885 static int sched_idle_cpu(int cpu) 6886 { 6887 return sched_idle_rq(cpu_rq(cpu)); 6888 } 6889 #endif 6890 6891 static void 6892 requeue_delayed_entity(struct sched_entity *se) 6893 { 6894 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6895 6896 /* 6897 * se->sched_delayed should imply: se->on_rq == 1. 6898 * Because a delayed entity is one that is still on 6899 * the runqueue competing until elegibility. 6900 */ 6901 WARN_ON_ONCE(!se->sched_delayed); 6902 WARN_ON_ONCE(!se->on_rq); 6903 6904 if (sched_feat(DELAY_ZERO)) { 6905 update_entity_lag(cfs_rq, se); 6906 if (se->vlag > 0) { 6907 cfs_rq->nr_queued--; 6908 if (se != cfs_rq->curr) 6909 __dequeue_entity(cfs_rq, se); 6910 se->vlag = 0; 6911 place_entity(cfs_rq, se, 0); 6912 if (se != cfs_rq->curr) 6913 __enqueue_entity(cfs_rq, se); 6914 cfs_rq->nr_queued++; 6915 } 6916 } 6917 6918 update_load_avg(cfs_rq, se, 0); 6919 clear_delayed(se); 6920 } 6921 6922 /* 6923 * The enqueue_task method is called before nr_running is 6924 * increased. Here we update the fair scheduling stats and 6925 * then put the task into the rbtree: 6926 */ 6927 static void 6928 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6929 { 6930 struct cfs_rq *cfs_rq; 6931 struct sched_entity *se = &p->se; 6932 int h_nr_idle = task_has_idle_policy(p); 6933 int h_nr_runnable = 1; 6934 int task_new = !(flags & ENQUEUE_WAKEUP); 6935 int rq_h_nr_queued = rq->cfs.h_nr_queued; 6936 u64 slice = 0; 6937 6938 /* 6939 * The code below (indirectly) updates schedutil which looks at 6940 * the cfs_rq utilization to select a frequency. 6941 * Let's add the task's estimated utilization to the cfs_rq's 6942 * estimated utilization, before we update schedutil. 6943 */ 6944 if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & ENQUEUE_RESTORE)))) 6945 util_est_enqueue(&rq->cfs, p); 6946 6947 if (flags & ENQUEUE_DELAYED) { 6948 requeue_delayed_entity(se); 6949 return; 6950 } 6951 6952 /* 6953 * If in_iowait is set, the code below may not trigger any cpufreq 6954 * utilization updates, so do it here explicitly with the IOWAIT flag 6955 * passed. 6956 */ 6957 if (p->in_iowait) 6958 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 6959 6960 if (task_new && se->sched_delayed) 6961 h_nr_runnable = 0; 6962 6963 for_each_sched_entity(se) { 6964 if (se->on_rq) { 6965 if (se->sched_delayed) 6966 requeue_delayed_entity(se); 6967 break; 6968 } 6969 cfs_rq = cfs_rq_of(se); 6970 6971 /* 6972 * Basically set the slice of group entries to the min_slice of 6973 * their respective cfs_rq. This ensures the group can service 6974 * its entities in the desired time-frame. 6975 */ 6976 if (slice) { 6977 se->slice = slice; 6978 se->custom_slice = 1; 6979 } 6980 enqueue_entity(cfs_rq, se, flags); 6981 slice = cfs_rq_min_slice(cfs_rq); 6982 6983 cfs_rq->h_nr_runnable += h_nr_runnable; 6984 cfs_rq->h_nr_queued++; 6985 cfs_rq->h_nr_idle += h_nr_idle; 6986 6987 if (cfs_rq_is_idle(cfs_rq)) 6988 h_nr_idle = 1; 6989 6990 /* end evaluation on encountering a throttled cfs_rq */ 6991 if (cfs_rq_throttled(cfs_rq)) 6992 goto enqueue_throttle; 6993 6994 flags = ENQUEUE_WAKEUP; 6995 } 6996 6997 for_each_sched_entity(se) { 6998 cfs_rq = cfs_rq_of(se); 6999 7000 update_load_avg(cfs_rq, se, UPDATE_TG); 7001 se_update_runnable(se); 7002 update_cfs_group(se); 7003 7004 se->slice = slice; 7005 if (se != cfs_rq->curr) 7006 min_vruntime_cb_propagate(&se->run_node, NULL); 7007 slice = cfs_rq_min_slice(cfs_rq); 7008 7009 cfs_rq->h_nr_runnable += h_nr_runnable; 7010 cfs_rq->h_nr_queued++; 7011 cfs_rq->h_nr_idle += h_nr_idle; 7012 7013 if (cfs_rq_is_idle(cfs_rq)) 7014 h_nr_idle = 1; 7015 7016 /* end evaluation on encountering a throttled cfs_rq */ 7017 if (cfs_rq_throttled(cfs_rq)) 7018 goto enqueue_throttle; 7019 } 7020 7021 if (!rq_h_nr_queued && rq->cfs.h_nr_queued) { 7022 /* Account for idle runtime */ 7023 if (!rq->nr_running) 7024 dl_server_update_idle_time(rq, rq->curr); 7025 dl_server_start(&rq->fair_server); 7026 } 7027 7028 /* At this point se is NULL and we are at root level*/ 7029 add_nr_running(rq, 1); 7030 7031 /* 7032 * Since new tasks are assigned an initial util_avg equal to 7033 * half of the spare capacity of their CPU, tiny tasks have the 7034 * ability to cross the overutilized threshold, which will 7035 * result in the load balancer ruining all the task placement 7036 * done by EAS. As a way to mitigate that effect, do not account 7037 * for the first enqueue operation of new tasks during the 7038 * overutilized flag detection. 7039 * 7040 * A better way of solving this problem would be to wait for 7041 * the PELT signals of tasks to converge before taking them 7042 * into account, but that is not straightforward to implement, 7043 * and the following generally works well enough in practice. 7044 */ 7045 if (!task_new) 7046 check_update_overutilized_status(rq); 7047 7048 enqueue_throttle: 7049 assert_list_leaf_cfs_rq(rq); 7050 7051 hrtick_update(rq); 7052 } 7053 7054 static void set_next_buddy(struct sched_entity *se); 7055 7056 /* 7057 * Basically dequeue_task_fair(), except it can deal with dequeue_entity() 7058 * failing half-way through and resume the dequeue later. 7059 * 7060 * Returns: 7061 * -1 - dequeue delayed 7062 * 0 - dequeue throttled 7063 * 1 - dequeue complete 7064 */ 7065 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags) 7066 { 7067 bool was_sched_idle = sched_idle_rq(rq); 7068 int rq_h_nr_queued = rq->cfs.h_nr_queued; 7069 bool task_sleep = flags & DEQUEUE_SLEEP; 7070 bool task_delayed = flags & DEQUEUE_DELAYED; 7071 struct task_struct *p = NULL; 7072 int h_nr_idle = 0; 7073 int h_nr_queued = 0; 7074 int h_nr_runnable = 0; 7075 struct cfs_rq *cfs_rq; 7076 u64 slice = 0; 7077 7078 if (entity_is_task(se)) { 7079 p = task_of(se); 7080 h_nr_queued = 1; 7081 h_nr_idle = task_has_idle_policy(p); 7082 if (task_sleep || task_delayed || !se->sched_delayed) 7083 h_nr_runnable = 1; 7084 } else { 7085 cfs_rq = group_cfs_rq(se); 7086 slice = cfs_rq_min_slice(cfs_rq); 7087 } 7088 7089 for_each_sched_entity(se) { 7090 cfs_rq = cfs_rq_of(se); 7091 7092 if (!dequeue_entity(cfs_rq, se, flags)) { 7093 if (p && &p->se == se) 7094 return -1; 7095 7096 break; 7097 } 7098 7099 cfs_rq->h_nr_runnable -= h_nr_runnable; 7100 cfs_rq->h_nr_queued -= h_nr_queued; 7101 cfs_rq->h_nr_idle -= h_nr_idle; 7102 7103 if (cfs_rq_is_idle(cfs_rq)) 7104 h_nr_idle = h_nr_queued; 7105 7106 /* end evaluation on encountering a throttled cfs_rq */ 7107 if (cfs_rq_throttled(cfs_rq)) 7108 return 0; 7109 7110 /* Don't dequeue parent if it has other entities besides us */ 7111 if (cfs_rq->load.weight) { 7112 slice = cfs_rq_min_slice(cfs_rq); 7113 7114 /* Avoid re-evaluating load for this entity: */ 7115 se = parent_entity(se); 7116 /* 7117 * Bias pick_next to pick a task from this cfs_rq, as 7118 * p is sleeping when it is within its sched_slice. 7119 */ 7120 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 7121 set_next_buddy(se); 7122 break; 7123 } 7124 flags |= DEQUEUE_SLEEP; 7125 flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL); 7126 } 7127 7128 for_each_sched_entity(se) { 7129 cfs_rq = cfs_rq_of(se); 7130 7131 update_load_avg(cfs_rq, se, UPDATE_TG); 7132 se_update_runnable(se); 7133 update_cfs_group(se); 7134 7135 se->slice = slice; 7136 if (se != cfs_rq->curr) 7137 min_vruntime_cb_propagate(&se->run_node, NULL); 7138 slice = cfs_rq_min_slice(cfs_rq); 7139 7140 cfs_rq->h_nr_runnable -= h_nr_runnable; 7141 cfs_rq->h_nr_queued -= h_nr_queued; 7142 cfs_rq->h_nr_idle -= h_nr_idle; 7143 7144 if (cfs_rq_is_idle(cfs_rq)) 7145 h_nr_idle = h_nr_queued; 7146 7147 /* end evaluation on encountering a throttled cfs_rq */ 7148 if (cfs_rq_throttled(cfs_rq)) 7149 return 0; 7150 } 7151 7152 sub_nr_running(rq, h_nr_queued); 7153 7154 if (rq_h_nr_queued && !rq->cfs.h_nr_queued) 7155 dl_server_stop(&rq->fair_server); 7156 7157 /* balance early to pull high priority tasks */ 7158 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 7159 rq->next_balance = jiffies; 7160 7161 if (p && task_delayed) { 7162 WARN_ON_ONCE(!task_sleep); 7163 WARN_ON_ONCE(p->on_rq != 1); 7164 7165 /* Fix-up what dequeue_task_fair() skipped */ 7166 hrtick_update(rq); 7167 7168 /* 7169 * Fix-up what block_task() skipped. 7170 * 7171 * Must be last, @p might not be valid after this. 7172 */ 7173 __block_task(rq, p); 7174 } 7175 7176 return 1; 7177 } 7178 7179 /* 7180 * The dequeue_task method is called before nr_running is 7181 * decreased. We remove the task from the rbtree and 7182 * update the fair scheduling stats: 7183 */ 7184 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 7185 { 7186 if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & DEQUEUE_SAVE)))) 7187 util_est_dequeue(&rq->cfs, p); 7188 7189 util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP); 7190 if (dequeue_entities(rq, &p->se, flags) < 0) 7191 return false; 7192 7193 /* 7194 * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED). 7195 */ 7196 7197 hrtick_update(rq); 7198 return true; 7199 } 7200 7201 #ifdef CONFIG_SMP 7202 7203 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */ 7204 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 7205 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 7206 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask); 7207 7208 #ifdef CONFIG_NO_HZ_COMMON 7209 7210 static struct { 7211 cpumask_var_t idle_cpus_mask; 7212 atomic_t nr_cpus; 7213 int has_blocked; /* Idle CPUS has blocked load */ 7214 int needs_update; /* Newly idle CPUs need their next_balance collated */ 7215 unsigned long next_balance; /* in jiffy units */ 7216 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 7217 } nohz ____cacheline_aligned; 7218 7219 #endif /* CONFIG_NO_HZ_COMMON */ 7220 7221 static unsigned long cpu_load(struct rq *rq) 7222 { 7223 return cfs_rq_load_avg(&rq->cfs); 7224 } 7225 7226 /* 7227 * cpu_load_without - compute CPU load without any contributions from *p 7228 * @cpu: the CPU which load is requested 7229 * @p: the task which load should be discounted 7230 * 7231 * The load of a CPU is defined by the load of tasks currently enqueued on that 7232 * CPU as well as tasks which are currently sleeping after an execution on that 7233 * CPU. 7234 * 7235 * This method returns the load of the specified CPU by discounting the load of 7236 * the specified task, whenever the task is currently contributing to the CPU 7237 * load. 7238 */ 7239 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 7240 { 7241 struct cfs_rq *cfs_rq; 7242 unsigned int load; 7243 7244 /* Task has no contribution or is new */ 7245 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7246 return cpu_load(rq); 7247 7248 cfs_rq = &rq->cfs; 7249 load = READ_ONCE(cfs_rq->avg.load_avg); 7250 7251 /* Discount task's util from CPU's util */ 7252 lsub_positive(&load, task_h_load(p)); 7253 7254 return load; 7255 } 7256 7257 static unsigned long cpu_runnable(struct rq *rq) 7258 { 7259 return cfs_rq_runnable_avg(&rq->cfs); 7260 } 7261 7262 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 7263 { 7264 struct cfs_rq *cfs_rq; 7265 unsigned int runnable; 7266 7267 /* Task has no contribution or is new */ 7268 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7269 return cpu_runnable(rq); 7270 7271 cfs_rq = &rq->cfs; 7272 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7273 7274 /* Discount task's runnable from CPU's runnable */ 7275 lsub_positive(&runnable, p->se.avg.runnable_avg); 7276 7277 return runnable; 7278 } 7279 7280 static unsigned long capacity_of(int cpu) 7281 { 7282 return cpu_rq(cpu)->cpu_capacity; 7283 } 7284 7285 static void record_wakee(struct task_struct *p) 7286 { 7287 /* 7288 * Only decay a single time; tasks that have less then 1 wakeup per 7289 * jiffy will not have built up many flips. 7290 */ 7291 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 7292 current->wakee_flips >>= 1; 7293 current->wakee_flip_decay_ts = jiffies; 7294 } 7295 7296 if (current->last_wakee != p) { 7297 current->last_wakee = p; 7298 current->wakee_flips++; 7299 } 7300 } 7301 7302 /* 7303 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 7304 * 7305 * A waker of many should wake a different task than the one last awakened 7306 * at a frequency roughly N times higher than one of its wakees. 7307 * 7308 * In order to determine whether we should let the load spread vs consolidating 7309 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 7310 * partner, and a factor of lls_size higher frequency in the other. 7311 * 7312 * With both conditions met, we can be relatively sure that the relationship is 7313 * non-monogamous, with partner count exceeding socket size. 7314 * 7315 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 7316 * whatever is irrelevant, spread criteria is apparent partner count exceeds 7317 * socket size. 7318 */ 7319 static int wake_wide(struct task_struct *p) 7320 { 7321 unsigned int master = current->wakee_flips; 7322 unsigned int slave = p->wakee_flips; 7323 int factor = __this_cpu_read(sd_llc_size); 7324 7325 if (master < slave) 7326 swap(master, slave); 7327 if (slave < factor || master < slave * factor) 7328 return 0; 7329 return 1; 7330 } 7331 7332 /* 7333 * The purpose of wake_affine() is to quickly determine on which CPU we can run 7334 * soonest. For the purpose of speed we only consider the waking and previous 7335 * CPU. 7336 * 7337 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 7338 * cache-affine and is (or will be) idle. 7339 * 7340 * wake_affine_weight() - considers the weight to reflect the average 7341 * scheduling latency of the CPUs. This seems to work 7342 * for the overloaded case. 7343 */ 7344 static int 7345 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 7346 { 7347 /* 7348 * If this_cpu is idle, it implies the wakeup is from interrupt 7349 * context. Only allow the move if cache is shared. Otherwise an 7350 * interrupt intensive workload could force all tasks onto one 7351 * node depending on the IO topology or IRQ affinity settings. 7352 * 7353 * If the prev_cpu is idle and cache affine then avoid a migration. 7354 * There is no guarantee that the cache hot data from an interrupt 7355 * is more important than cache hot data on the prev_cpu and from 7356 * a cpufreq perspective, it's better to have higher utilisation 7357 * on one CPU. 7358 */ 7359 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 7360 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 7361 7362 if (sync && cpu_rq(this_cpu)->nr_running == 1) 7363 return this_cpu; 7364 7365 if (available_idle_cpu(prev_cpu)) 7366 return prev_cpu; 7367 7368 return nr_cpumask_bits; 7369 } 7370 7371 static int 7372 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 7373 int this_cpu, int prev_cpu, int sync) 7374 { 7375 s64 this_eff_load, prev_eff_load; 7376 unsigned long task_load; 7377 7378 this_eff_load = cpu_load(cpu_rq(this_cpu)); 7379 7380 if (sync) { 7381 unsigned long current_load = task_h_load(current); 7382 7383 if (current_load > this_eff_load) 7384 return this_cpu; 7385 7386 this_eff_load -= current_load; 7387 } 7388 7389 task_load = task_h_load(p); 7390 7391 this_eff_load += task_load; 7392 if (sched_feat(WA_BIAS)) 7393 this_eff_load *= 100; 7394 this_eff_load *= capacity_of(prev_cpu); 7395 7396 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 7397 prev_eff_load -= task_load; 7398 if (sched_feat(WA_BIAS)) 7399 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 7400 prev_eff_load *= capacity_of(this_cpu); 7401 7402 /* 7403 * If sync, adjust the weight of prev_eff_load such that if 7404 * prev_eff == this_eff that select_idle_sibling() will consider 7405 * stacking the wakee on top of the waker if no other CPU is 7406 * idle. 7407 */ 7408 if (sync) 7409 prev_eff_load += 1; 7410 7411 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 7412 } 7413 7414 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 7415 int this_cpu, int prev_cpu, int sync) 7416 { 7417 int target = nr_cpumask_bits; 7418 7419 if (sched_feat(WA_IDLE)) 7420 target = wake_affine_idle(this_cpu, prev_cpu, sync); 7421 7422 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 7423 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 7424 7425 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 7426 if (target != this_cpu) 7427 return prev_cpu; 7428 7429 schedstat_inc(sd->ttwu_move_affine); 7430 schedstat_inc(p->stats.nr_wakeups_affine); 7431 return target; 7432 } 7433 7434 static struct sched_group * 7435 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 7436 7437 /* 7438 * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group. 7439 */ 7440 static int 7441 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 7442 { 7443 unsigned long load, min_load = ULONG_MAX; 7444 unsigned int min_exit_latency = UINT_MAX; 7445 u64 latest_idle_timestamp = 0; 7446 int least_loaded_cpu = this_cpu; 7447 int shallowest_idle_cpu = -1; 7448 int i; 7449 7450 /* Check if we have any choice: */ 7451 if (group->group_weight == 1) 7452 return cpumask_first(sched_group_span(group)); 7453 7454 /* Traverse only the allowed CPUs */ 7455 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 7456 struct rq *rq = cpu_rq(i); 7457 7458 if (!sched_core_cookie_match(rq, p)) 7459 continue; 7460 7461 if (sched_idle_cpu(i)) 7462 return i; 7463 7464 if (available_idle_cpu(i)) { 7465 struct cpuidle_state *idle = idle_get_state(rq); 7466 if (idle && idle->exit_latency < min_exit_latency) { 7467 /* 7468 * We give priority to a CPU whose idle state 7469 * has the smallest exit latency irrespective 7470 * of any idle timestamp. 7471 */ 7472 min_exit_latency = idle->exit_latency; 7473 latest_idle_timestamp = rq->idle_stamp; 7474 shallowest_idle_cpu = i; 7475 } else if ((!idle || idle->exit_latency == min_exit_latency) && 7476 rq->idle_stamp > latest_idle_timestamp) { 7477 /* 7478 * If equal or no active idle state, then 7479 * the most recently idled CPU might have 7480 * a warmer cache. 7481 */ 7482 latest_idle_timestamp = rq->idle_stamp; 7483 shallowest_idle_cpu = i; 7484 } 7485 } else if (shallowest_idle_cpu == -1) { 7486 load = cpu_load(cpu_rq(i)); 7487 if (load < min_load) { 7488 min_load = load; 7489 least_loaded_cpu = i; 7490 } 7491 } 7492 } 7493 7494 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 7495 } 7496 7497 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p, 7498 int cpu, int prev_cpu, int sd_flag) 7499 { 7500 int new_cpu = cpu; 7501 7502 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 7503 return prev_cpu; 7504 7505 /* 7506 * We need task's util for cpu_util_without, sync it up to 7507 * prev_cpu's last_update_time. 7508 */ 7509 if (!(sd_flag & SD_BALANCE_FORK)) 7510 sync_entity_load_avg(&p->se); 7511 7512 while (sd) { 7513 struct sched_group *group; 7514 struct sched_domain *tmp; 7515 int weight; 7516 7517 if (!(sd->flags & sd_flag)) { 7518 sd = sd->child; 7519 continue; 7520 } 7521 7522 group = sched_balance_find_dst_group(sd, p, cpu); 7523 if (!group) { 7524 sd = sd->child; 7525 continue; 7526 } 7527 7528 new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu); 7529 if (new_cpu == cpu) { 7530 /* Now try balancing at a lower domain level of 'cpu': */ 7531 sd = sd->child; 7532 continue; 7533 } 7534 7535 /* Now try balancing at a lower domain level of 'new_cpu': */ 7536 cpu = new_cpu; 7537 weight = sd->span_weight; 7538 sd = NULL; 7539 for_each_domain(cpu, tmp) { 7540 if (weight <= tmp->span_weight) 7541 break; 7542 if (tmp->flags & sd_flag) 7543 sd = tmp; 7544 } 7545 } 7546 7547 return new_cpu; 7548 } 7549 7550 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 7551 { 7552 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 7553 sched_cpu_cookie_match(cpu_rq(cpu), p)) 7554 return cpu; 7555 7556 return -1; 7557 } 7558 7559 #ifdef CONFIG_SCHED_SMT 7560 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 7561 EXPORT_SYMBOL_GPL(sched_smt_present); 7562 7563 static inline void set_idle_cores(int cpu, int val) 7564 { 7565 struct sched_domain_shared *sds; 7566 7567 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7568 if (sds) 7569 WRITE_ONCE(sds->has_idle_cores, val); 7570 } 7571 7572 static inline bool test_idle_cores(int cpu) 7573 { 7574 struct sched_domain_shared *sds; 7575 7576 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7577 if (sds) 7578 return READ_ONCE(sds->has_idle_cores); 7579 7580 return false; 7581 } 7582 7583 /* 7584 * Scans the local SMT mask to see if the entire core is idle, and records this 7585 * information in sd_llc_shared->has_idle_cores. 7586 * 7587 * Since SMT siblings share all cache levels, inspecting this limited remote 7588 * state should be fairly cheap. 7589 */ 7590 void __update_idle_core(struct rq *rq) 7591 { 7592 int core = cpu_of(rq); 7593 int cpu; 7594 7595 rcu_read_lock(); 7596 if (test_idle_cores(core)) 7597 goto unlock; 7598 7599 for_each_cpu(cpu, cpu_smt_mask(core)) { 7600 if (cpu == core) 7601 continue; 7602 7603 if (!available_idle_cpu(cpu)) 7604 goto unlock; 7605 } 7606 7607 set_idle_cores(core, 1); 7608 unlock: 7609 rcu_read_unlock(); 7610 } 7611 7612 /* 7613 * Scan the entire LLC domain for idle cores; this dynamically switches off if 7614 * there are no idle cores left in the system; tracked through 7615 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 7616 */ 7617 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7618 { 7619 bool idle = true; 7620 int cpu; 7621 7622 for_each_cpu(cpu, cpu_smt_mask(core)) { 7623 if (!available_idle_cpu(cpu)) { 7624 idle = false; 7625 if (*idle_cpu == -1) { 7626 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) { 7627 *idle_cpu = cpu; 7628 break; 7629 } 7630 continue; 7631 } 7632 break; 7633 } 7634 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus)) 7635 *idle_cpu = cpu; 7636 } 7637 7638 if (idle) 7639 return core; 7640 7641 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 7642 return -1; 7643 } 7644 7645 /* 7646 * Scan the local SMT mask for idle CPUs. 7647 */ 7648 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7649 { 7650 int cpu; 7651 7652 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 7653 if (cpu == target) 7654 continue; 7655 /* 7656 * Check if the CPU is in the LLC scheduling domain of @target. 7657 * Due to isolcpus, there is no guarantee that all the siblings are in the domain. 7658 */ 7659 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7660 continue; 7661 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 7662 return cpu; 7663 } 7664 7665 return -1; 7666 } 7667 7668 #else /* CONFIG_SCHED_SMT */ 7669 7670 static inline void set_idle_cores(int cpu, int val) 7671 { 7672 } 7673 7674 static inline bool test_idle_cores(int cpu) 7675 { 7676 return false; 7677 } 7678 7679 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7680 { 7681 return __select_idle_cpu(core, p); 7682 } 7683 7684 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7685 { 7686 return -1; 7687 } 7688 7689 #endif /* CONFIG_SCHED_SMT */ 7690 7691 /* 7692 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 7693 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 7694 * average idle time for this rq (as found in rq->avg_idle). 7695 */ 7696 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 7697 { 7698 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7699 int i, cpu, idle_cpu = -1, nr = INT_MAX; 7700 struct sched_domain_shared *sd_share; 7701 7702 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7703 7704 if (sched_feat(SIS_UTIL)) { 7705 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 7706 if (sd_share) { 7707 /* because !--nr is the condition to stop scan */ 7708 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 7709 /* overloaded LLC is unlikely to have idle cpu/core */ 7710 if (nr == 1) 7711 return -1; 7712 } 7713 } 7714 7715 if (static_branch_unlikely(&sched_cluster_active)) { 7716 struct sched_group *sg = sd->groups; 7717 7718 if (sg->flags & SD_CLUSTER) { 7719 for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) { 7720 if (!cpumask_test_cpu(cpu, cpus)) 7721 continue; 7722 7723 if (has_idle_core) { 7724 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7725 if ((unsigned int)i < nr_cpumask_bits) 7726 return i; 7727 } else { 7728 if (--nr <= 0) 7729 return -1; 7730 idle_cpu = __select_idle_cpu(cpu, p); 7731 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7732 return idle_cpu; 7733 } 7734 } 7735 cpumask_andnot(cpus, cpus, sched_group_span(sg)); 7736 } 7737 } 7738 7739 for_each_cpu_wrap(cpu, cpus, target + 1) { 7740 if (has_idle_core) { 7741 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7742 if ((unsigned int)i < nr_cpumask_bits) 7743 return i; 7744 7745 } else { 7746 if (--nr <= 0) 7747 return -1; 7748 idle_cpu = __select_idle_cpu(cpu, p); 7749 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7750 break; 7751 } 7752 } 7753 7754 if (has_idle_core) 7755 set_idle_cores(target, false); 7756 7757 return idle_cpu; 7758 } 7759 7760 /* 7761 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 7762 * the task fits. If no CPU is big enough, but there are idle ones, try to 7763 * maximize capacity. 7764 */ 7765 static int 7766 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 7767 { 7768 unsigned long task_util, util_min, util_max, best_cap = 0; 7769 int fits, best_fits = 0; 7770 int cpu, best_cpu = -1; 7771 struct cpumask *cpus; 7772 7773 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7774 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7775 7776 task_util = task_util_est(p); 7777 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7778 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7779 7780 for_each_cpu_wrap(cpu, cpus, target) { 7781 unsigned long cpu_cap = capacity_of(cpu); 7782 7783 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 7784 continue; 7785 7786 fits = util_fits_cpu(task_util, util_min, util_max, cpu); 7787 7788 /* This CPU fits with all requirements */ 7789 if (fits > 0) 7790 return cpu; 7791 /* 7792 * Only the min performance hint (i.e. uclamp_min) doesn't fit. 7793 * Look for the CPU with best capacity. 7794 */ 7795 else if (fits < 0) 7796 cpu_cap = get_actual_cpu_capacity(cpu); 7797 7798 /* 7799 * First, select CPU which fits better (-1 being better than 0). 7800 * Then, select the one with best capacity at same level. 7801 */ 7802 if ((fits < best_fits) || 7803 ((fits == best_fits) && (cpu_cap > best_cap))) { 7804 best_cap = cpu_cap; 7805 best_cpu = cpu; 7806 best_fits = fits; 7807 } 7808 } 7809 7810 return best_cpu; 7811 } 7812 7813 static inline bool asym_fits_cpu(unsigned long util, 7814 unsigned long util_min, 7815 unsigned long util_max, 7816 int cpu) 7817 { 7818 if (sched_asym_cpucap_active()) 7819 /* 7820 * Return true only if the cpu fully fits the task requirements 7821 * which include the utilization and the performance hints. 7822 */ 7823 return (util_fits_cpu(util, util_min, util_max, cpu) > 0); 7824 7825 return true; 7826 } 7827 7828 /* 7829 * Try and locate an idle core/thread in the LLC cache domain. 7830 */ 7831 static int select_idle_sibling(struct task_struct *p, int prev, int target) 7832 { 7833 bool has_idle_core = false; 7834 struct sched_domain *sd; 7835 unsigned long task_util, util_min, util_max; 7836 int i, recent_used_cpu, prev_aff = -1; 7837 7838 /* 7839 * On asymmetric system, update task utilization because we will check 7840 * that the task fits with CPU's capacity. 7841 */ 7842 if (sched_asym_cpucap_active()) { 7843 sync_entity_load_avg(&p->se); 7844 task_util = task_util_est(p); 7845 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7846 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7847 } 7848 7849 /* 7850 * per-cpu select_rq_mask usage 7851 */ 7852 lockdep_assert_irqs_disabled(); 7853 7854 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 7855 asym_fits_cpu(task_util, util_min, util_max, target)) 7856 return target; 7857 7858 /* 7859 * If the previous CPU is cache affine and idle, don't be stupid: 7860 */ 7861 if (prev != target && cpus_share_cache(prev, target) && 7862 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 7863 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7864 7865 if (!static_branch_unlikely(&sched_cluster_active) || 7866 cpus_share_resources(prev, target)) 7867 return prev; 7868 7869 prev_aff = prev; 7870 } 7871 7872 /* 7873 * Allow a per-cpu kthread to stack with the wakee if the 7874 * kworker thread and the tasks previous CPUs are the same. 7875 * The assumption is that the wakee queued work for the 7876 * per-cpu kthread that is now complete and the wakeup is 7877 * essentially a sync wakeup. An obvious example of this 7878 * pattern is IO completions. 7879 */ 7880 if (is_per_cpu_kthread(current) && 7881 in_task() && 7882 prev == smp_processor_id() && 7883 this_rq()->nr_running <= 1 && 7884 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7885 return prev; 7886 } 7887 7888 /* Check a recently used CPU as a potential idle candidate: */ 7889 recent_used_cpu = p->recent_used_cpu; 7890 p->recent_used_cpu = prev; 7891 if (recent_used_cpu != prev && 7892 recent_used_cpu != target && 7893 cpus_share_cache(recent_used_cpu, target) && 7894 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 7895 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) && 7896 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { 7897 7898 if (!static_branch_unlikely(&sched_cluster_active) || 7899 cpus_share_resources(recent_used_cpu, target)) 7900 return recent_used_cpu; 7901 7902 } else { 7903 recent_used_cpu = -1; 7904 } 7905 7906 /* 7907 * For asymmetric CPU capacity systems, our domain of interest is 7908 * sd_asym_cpucapacity rather than sd_llc. 7909 */ 7910 if (sched_asym_cpucap_active()) { 7911 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 7912 /* 7913 * On an asymmetric CPU capacity system where an exclusive 7914 * cpuset defines a symmetric island (i.e. one unique 7915 * capacity_orig value through the cpuset), the key will be set 7916 * but the CPUs within that cpuset will not have a domain with 7917 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 7918 * capacity path. 7919 */ 7920 if (sd) { 7921 i = select_idle_capacity(p, sd, target); 7922 return ((unsigned)i < nr_cpumask_bits) ? i : target; 7923 } 7924 } 7925 7926 sd = rcu_dereference(per_cpu(sd_llc, target)); 7927 if (!sd) 7928 return target; 7929 7930 if (sched_smt_active()) { 7931 has_idle_core = test_idle_cores(target); 7932 7933 if (!has_idle_core && cpus_share_cache(prev, target)) { 7934 i = select_idle_smt(p, sd, prev); 7935 if ((unsigned int)i < nr_cpumask_bits) 7936 return i; 7937 } 7938 } 7939 7940 i = select_idle_cpu(p, sd, has_idle_core, target); 7941 if ((unsigned)i < nr_cpumask_bits) 7942 return i; 7943 7944 /* 7945 * For cluster machines which have lower sharing cache like L2 or 7946 * LLC Tag, we tend to find an idle CPU in the target's cluster 7947 * first. But prev_cpu or recent_used_cpu may also be a good candidate, 7948 * use them if possible when no idle CPU found in select_idle_cpu(). 7949 */ 7950 if ((unsigned int)prev_aff < nr_cpumask_bits) 7951 return prev_aff; 7952 if ((unsigned int)recent_used_cpu < nr_cpumask_bits) 7953 return recent_used_cpu; 7954 7955 return target; 7956 } 7957 7958 /** 7959 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks. 7960 * @cpu: the CPU to get the utilization for 7961 * @p: task for which the CPU utilization should be predicted or NULL 7962 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL 7963 * @boost: 1 to enable boosting, otherwise 0 7964 * 7965 * The unit of the return value must be the same as the one of CPU capacity 7966 * so that CPU utilization can be compared with CPU capacity. 7967 * 7968 * CPU utilization is the sum of running time of runnable tasks plus the 7969 * recent utilization of currently non-runnable tasks on that CPU. 7970 * It represents the amount of CPU capacity currently used by CFS tasks in 7971 * the range [0..max CPU capacity] with max CPU capacity being the CPU 7972 * capacity at f_max. 7973 * 7974 * The estimated CPU utilization is defined as the maximum between CPU 7975 * utilization and sum of the estimated utilization of the currently 7976 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 7977 * previously-executed tasks, which helps better deduce how busy a CPU will 7978 * be when a long-sleeping task wakes up. The contribution to CPU utilization 7979 * of such a task would be significantly decayed at this point of time. 7980 * 7981 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization). 7982 * CPU contention for CFS tasks can be detected by CPU runnable > CPU 7983 * utilization. Boosting is implemented in cpu_util() so that internal 7984 * users (e.g. EAS) can use it next to external users (e.g. schedutil), 7985 * latter via cpu_util_cfs_boost(). 7986 * 7987 * CPU utilization can be higher than the current CPU capacity 7988 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 7989 * of rounding errors as well as task migrations or wakeups of new tasks. 7990 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 7991 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 7992 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 7993 * capacity. CPU utilization is allowed to overshoot current CPU capacity 7994 * though since this is useful for predicting the CPU capacity required 7995 * after task migrations (scheduler-driven DVFS). 7996 * 7997 * Return: (Boosted) (estimated) utilization for the specified CPU. 7998 */ 7999 static unsigned long 8000 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost) 8001 { 8002 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 8003 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 8004 unsigned long runnable; 8005 8006 if (boost) { 8007 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 8008 util = max(util, runnable); 8009 } 8010 8011 /* 8012 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 8013 * contribution. If @p migrates from another CPU to @cpu add its 8014 * contribution. In all the other cases @cpu is not impacted by the 8015 * migration so its util_avg is already correct. 8016 */ 8017 if (p && task_cpu(p) == cpu && dst_cpu != cpu) 8018 lsub_positive(&util, task_util(p)); 8019 else if (p && task_cpu(p) != cpu && dst_cpu == cpu) 8020 util += task_util(p); 8021 8022 if (sched_feat(UTIL_EST)) { 8023 unsigned long util_est; 8024 8025 util_est = READ_ONCE(cfs_rq->avg.util_est); 8026 8027 /* 8028 * During wake-up @p isn't enqueued yet and doesn't contribute 8029 * to any cpu_rq(cpu)->cfs.avg.util_est. 8030 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 8031 * has been enqueued. 8032 * 8033 * During exec (@dst_cpu = -1) @p is enqueued and does 8034 * contribute to cpu_rq(cpu)->cfs.util_est. 8035 * Remove it to "simulate" cpu_util without @p's contribution. 8036 * 8037 * Despite the task_on_rq_queued(@p) check there is still a 8038 * small window for a possible race when an exec 8039 * select_task_rq_fair() races with LB's detach_task(). 8040 * 8041 * detach_task() 8042 * deactivate_task() 8043 * p->on_rq = TASK_ON_RQ_MIGRATING; 8044 * -------------------------------- A 8045 * dequeue_task() \ 8046 * dequeue_task_fair() + Race Time 8047 * util_est_dequeue() / 8048 * -------------------------------- B 8049 * 8050 * The additional check "current == p" is required to further 8051 * reduce the race window. 8052 */ 8053 if (dst_cpu == cpu) 8054 util_est += _task_util_est(p); 8055 else if (p && unlikely(task_on_rq_queued(p) || current == p)) 8056 lsub_positive(&util_est, _task_util_est(p)); 8057 8058 util = max(util, util_est); 8059 } 8060 8061 return min(util, arch_scale_cpu_capacity(cpu)); 8062 } 8063 8064 unsigned long cpu_util_cfs(int cpu) 8065 { 8066 return cpu_util(cpu, NULL, -1, 0); 8067 } 8068 8069 unsigned long cpu_util_cfs_boost(int cpu) 8070 { 8071 return cpu_util(cpu, NULL, -1, 1); 8072 } 8073 8074 /* 8075 * cpu_util_without: compute cpu utilization without any contributions from *p 8076 * @cpu: the CPU which utilization is requested 8077 * @p: the task which utilization should be discounted 8078 * 8079 * The utilization of a CPU is defined by the utilization of tasks currently 8080 * enqueued on that CPU as well as tasks which are currently sleeping after an 8081 * execution on that CPU. 8082 * 8083 * This method returns the utilization of the specified CPU by discounting the 8084 * utilization of the specified task, whenever the task is currently 8085 * contributing to the CPU utilization. 8086 */ 8087 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 8088 { 8089 /* Task has no contribution or is new */ 8090 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 8091 p = NULL; 8092 8093 return cpu_util(cpu, p, -1, 0); 8094 } 8095 8096 /* 8097 * This function computes an effective utilization for the given CPU, to be 8098 * used for frequency selection given the linear relation: f = u * f_max. 8099 * 8100 * The scheduler tracks the following metrics: 8101 * 8102 * cpu_util_{cfs,rt,dl,irq}() 8103 * cpu_bw_dl() 8104 * 8105 * Where the cfs,rt and dl util numbers are tracked with the same metric and 8106 * synchronized windows and are thus directly comparable. 8107 * 8108 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 8109 * which excludes things like IRQ and steal-time. These latter are then accrued 8110 * in the IRQ utilization. 8111 * 8112 * The DL bandwidth number OTOH is not a measured metric but a value computed 8113 * based on the task model parameters and gives the minimal utilization 8114 * required to meet deadlines. 8115 */ 8116 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 8117 unsigned long *min, 8118 unsigned long *max) 8119 { 8120 unsigned long util, irq, scale; 8121 struct rq *rq = cpu_rq(cpu); 8122 8123 scale = arch_scale_cpu_capacity(cpu); 8124 8125 /* 8126 * Early check to see if IRQ/steal time saturates the CPU, can be 8127 * because of inaccuracies in how we track these -- see 8128 * update_irq_load_avg(). 8129 */ 8130 irq = cpu_util_irq(rq); 8131 if (unlikely(irq >= scale)) { 8132 if (min) 8133 *min = scale; 8134 if (max) 8135 *max = scale; 8136 return scale; 8137 } 8138 8139 if (min) { 8140 /* 8141 * The minimum utilization returns the highest level between: 8142 * - the computed DL bandwidth needed with the IRQ pressure which 8143 * steals time to the deadline task. 8144 * - The minimum performance requirement for CFS and/or RT. 8145 */ 8146 *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN)); 8147 8148 /* 8149 * When an RT task is runnable and uclamp is not used, we must 8150 * ensure that the task will run at maximum compute capacity. 8151 */ 8152 if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt)) 8153 *min = max(*min, scale); 8154 } 8155 8156 /* 8157 * Because the time spend on RT/DL tasks is visible as 'lost' time to 8158 * CFS tasks and we use the same metric to track the effective 8159 * utilization (PELT windows are synchronized) we can directly add them 8160 * to obtain the CPU's actual utilization. 8161 */ 8162 util = util_cfs + cpu_util_rt(rq); 8163 util += cpu_util_dl(rq); 8164 8165 /* 8166 * The maximum hint is a soft bandwidth requirement, which can be lower 8167 * than the actual utilization because of uclamp_max requirements. 8168 */ 8169 if (max) 8170 *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX)); 8171 8172 if (util >= scale) 8173 return scale; 8174 8175 /* 8176 * There is still idle time; further improve the number by using the 8177 * IRQ metric. Because IRQ/steal time is hidden from the task clock we 8178 * need to scale the task numbers: 8179 * 8180 * max - irq 8181 * U' = irq + --------- * U 8182 * max 8183 */ 8184 util = scale_irq_capacity(util, irq, scale); 8185 util += irq; 8186 8187 return min(scale, util); 8188 } 8189 8190 unsigned long sched_cpu_util(int cpu) 8191 { 8192 return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL); 8193 } 8194 8195 /* 8196 * energy_env - Utilization landscape for energy estimation. 8197 * @task_busy_time: Utilization contribution by the task for which we test the 8198 * placement. Given by eenv_task_busy_time(). 8199 * @pd_busy_time: Utilization of the whole perf domain without the task 8200 * contribution. Given by eenv_pd_busy_time(). 8201 * @cpu_cap: Maximum CPU capacity for the perf domain. 8202 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 8203 */ 8204 struct energy_env { 8205 unsigned long task_busy_time; 8206 unsigned long pd_busy_time; 8207 unsigned long cpu_cap; 8208 unsigned long pd_cap; 8209 }; 8210 8211 /* 8212 * Compute the task busy time for compute_energy(). This time cannot be 8213 * injected directly into effective_cpu_util() because of the IRQ scaling. 8214 * The latter only makes sense with the most recent CPUs where the task has 8215 * run. 8216 */ 8217 static inline void eenv_task_busy_time(struct energy_env *eenv, 8218 struct task_struct *p, int prev_cpu) 8219 { 8220 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 8221 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 8222 8223 if (unlikely(irq >= max_cap)) 8224 busy_time = max_cap; 8225 else 8226 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 8227 8228 eenv->task_busy_time = busy_time; 8229 } 8230 8231 /* 8232 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 8233 * utilization for each @pd_cpus, it however doesn't take into account 8234 * clamping since the ratio (utilization / cpu_capacity) is already enough to 8235 * scale the EM reported power consumption at the (eventually clamped) 8236 * cpu_capacity. 8237 * 8238 * The contribution of the task @p for which we want to estimate the 8239 * energy cost is removed (by cpu_util()) and must be calculated 8240 * separately (see eenv_task_busy_time). This ensures: 8241 * 8242 * - A stable PD utilization, no matter which CPU of that PD we want to place 8243 * the task on. 8244 * 8245 * - A fair comparison between CPUs as the task contribution (task_util()) 8246 * will always be the same no matter which CPU utilization we rely on 8247 * (util_avg or util_est). 8248 * 8249 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 8250 * exceed @eenv->pd_cap. 8251 */ 8252 static inline void eenv_pd_busy_time(struct energy_env *eenv, 8253 struct cpumask *pd_cpus, 8254 struct task_struct *p) 8255 { 8256 unsigned long busy_time = 0; 8257 int cpu; 8258 8259 for_each_cpu(cpu, pd_cpus) { 8260 unsigned long util = cpu_util(cpu, p, -1, 0); 8261 8262 busy_time += effective_cpu_util(cpu, util, NULL, NULL); 8263 } 8264 8265 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 8266 } 8267 8268 /* 8269 * Compute the maximum utilization for compute_energy() when the task @p 8270 * is placed on the cpu @dst_cpu. 8271 * 8272 * Returns the maximum utilization among @eenv->cpus. This utilization can't 8273 * exceed @eenv->cpu_cap. 8274 */ 8275 static inline unsigned long 8276 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 8277 struct task_struct *p, int dst_cpu) 8278 { 8279 unsigned long max_util = 0; 8280 int cpu; 8281 8282 for_each_cpu(cpu, pd_cpus) { 8283 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 8284 unsigned long util = cpu_util(cpu, p, dst_cpu, 1); 8285 unsigned long eff_util, min, max; 8286 8287 /* 8288 * Performance domain frequency: utilization clamping 8289 * must be considered since it affects the selection 8290 * of the performance domain frequency. 8291 * NOTE: in case RT tasks are running, by default the min 8292 * utilization can be max OPP. 8293 */ 8294 eff_util = effective_cpu_util(cpu, util, &min, &max); 8295 8296 /* Task's uclamp can modify min and max value */ 8297 if (tsk && uclamp_is_used()) { 8298 min = max(min, uclamp_eff_value(p, UCLAMP_MIN)); 8299 8300 /* 8301 * If there is no active max uclamp constraint, 8302 * directly use task's one, otherwise keep max. 8303 */ 8304 if (uclamp_rq_is_idle(cpu_rq(cpu))) 8305 max = uclamp_eff_value(p, UCLAMP_MAX); 8306 else 8307 max = max(max, uclamp_eff_value(p, UCLAMP_MAX)); 8308 } 8309 8310 eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max); 8311 max_util = max(max_util, eff_util); 8312 } 8313 8314 return min(max_util, eenv->cpu_cap); 8315 } 8316 8317 /* 8318 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 8319 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 8320 * contribution is ignored. 8321 */ 8322 static inline unsigned long 8323 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 8324 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 8325 { 8326 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 8327 unsigned long busy_time = eenv->pd_busy_time; 8328 unsigned long energy; 8329 8330 if (dst_cpu >= 0) 8331 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 8332 8333 energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 8334 8335 trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time); 8336 8337 return energy; 8338 } 8339 8340 /* 8341 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 8342 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 8343 * spare capacity in each performance domain and uses it as a potential 8344 * candidate to execute the task. Then, it uses the Energy Model to figure 8345 * out which of the CPU candidates is the most energy-efficient. 8346 * 8347 * The rationale for this heuristic is as follows. In a performance domain, 8348 * all the most energy efficient CPU candidates (according to the Energy 8349 * Model) are those for which we'll request a low frequency. When there are 8350 * several CPUs for which the frequency request will be the same, we don't 8351 * have enough data to break the tie between them, because the Energy Model 8352 * only includes active power costs. With this model, if we assume that 8353 * frequency requests follow utilization (e.g. using schedutil), the CPU with 8354 * the maximum spare capacity in a performance domain is guaranteed to be among 8355 * the best candidates of the performance domain. 8356 * 8357 * In practice, it could be preferable from an energy standpoint to pack 8358 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 8359 * but that could also hurt our chances to go cluster idle, and we have no 8360 * ways to tell with the current Energy Model if this is actually a good 8361 * idea or not. So, find_energy_efficient_cpu() basically favors 8362 * cluster-packing, and spreading inside a cluster. That should at least be 8363 * a good thing for latency, and this is consistent with the idea that most 8364 * of the energy savings of EAS come from the asymmetry of the system, and 8365 * not so much from breaking the tie between identical CPUs. That's also the 8366 * reason why EAS is enabled in the topology code only for systems where 8367 * SD_ASYM_CPUCAPACITY is set. 8368 * 8369 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 8370 * they don't have any useful utilization data yet and it's not possible to 8371 * forecast their impact on energy consumption. Consequently, they will be 8372 * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out 8373 * to be energy-inefficient in some use-cases. The alternative would be to 8374 * bias new tasks towards specific types of CPUs first, or to try to infer 8375 * their util_avg from the parent task, but those heuristics could hurt 8376 * other use-cases too. So, until someone finds a better way to solve this, 8377 * let's keep things simple by re-using the existing slow path. 8378 */ 8379 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 8380 { 8381 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 8382 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 8383 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; 8384 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; 8385 struct root_domain *rd = this_rq()->rd; 8386 int cpu, best_energy_cpu, target = -1; 8387 int prev_fits = -1, best_fits = -1; 8388 unsigned long best_actual_cap = 0; 8389 unsigned long prev_actual_cap = 0; 8390 struct sched_domain *sd; 8391 struct perf_domain *pd; 8392 struct energy_env eenv; 8393 8394 rcu_read_lock(); 8395 pd = rcu_dereference(rd->pd); 8396 if (!pd) 8397 goto unlock; 8398 8399 /* 8400 * Energy-aware wake-up happens on the lowest sched_domain starting 8401 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 8402 */ 8403 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 8404 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 8405 sd = sd->parent; 8406 if (!sd) 8407 goto unlock; 8408 8409 target = prev_cpu; 8410 8411 sync_entity_load_avg(&p->se); 8412 if (!task_util_est(p) && p_util_min == 0) 8413 goto unlock; 8414 8415 eenv_task_busy_time(&eenv, p, prev_cpu); 8416 8417 for (; pd; pd = pd->next) { 8418 unsigned long util_min = p_util_min, util_max = p_util_max; 8419 unsigned long cpu_cap, cpu_actual_cap, util; 8420 long prev_spare_cap = -1, max_spare_cap = -1; 8421 unsigned long rq_util_min, rq_util_max; 8422 unsigned long cur_delta, base_energy; 8423 int max_spare_cap_cpu = -1; 8424 int fits, max_fits = -1; 8425 8426 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 8427 8428 if (cpumask_empty(cpus)) 8429 continue; 8430 8431 /* Account external pressure for the energy estimation */ 8432 cpu = cpumask_first(cpus); 8433 cpu_actual_cap = get_actual_cpu_capacity(cpu); 8434 8435 eenv.cpu_cap = cpu_actual_cap; 8436 eenv.pd_cap = 0; 8437 8438 for_each_cpu(cpu, cpus) { 8439 struct rq *rq = cpu_rq(cpu); 8440 8441 eenv.pd_cap += cpu_actual_cap; 8442 8443 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 8444 continue; 8445 8446 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 8447 continue; 8448 8449 util = cpu_util(cpu, p, cpu, 0); 8450 cpu_cap = capacity_of(cpu); 8451 8452 /* 8453 * Skip CPUs that cannot satisfy the capacity request. 8454 * IOW, placing the task there would make the CPU 8455 * overutilized. Take uclamp into account to see how 8456 * much capacity we can get out of the CPU; this is 8457 * aligned with sched_cpu_util(). 8458 */ 8459 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { 8460 /* 8461 * Open code uclamp_rq_util_with() except for 8462 * the clamp() part. I.e.: apply max aggregation 8463 * only. util_fits_cpu() logic requires to 8464 * operate on non clamped util but must use the 8465 * max-aggregated uclamp_{min, max}. 8466 */ 8467 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN); 8468 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX); 8469 8470 util_min = max(rq_util_min, p_util_min); 8471 util_max = max(rq_util_max, p_util_max); 8472 } 8473 8474 fits = util_fits_cpu(util, util_min, util_max, cpu); 8475 if (!fits) 8476 continue; 8477 8478 lsub_positive(&cpu_cap, util); 8479 8480 if (cpu == prev_cpu) { 8481 /* Always use prev_cpu as a candidate. */ 8482 prev_spare_cap = cpu_cap; 8483 prev_fits = fits; 8484 } else if ((fits > max_fits) || 8485 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) { 8486 /* 8487 * Find the CPU with the maximum spare capacity 8488 * among the remaining CPUs in the performance 8489 * domain. 8490 */ 8491 max_spare_cap = cpu_cap; 8492 max_spare_cap_cpu = cpu; 8493 max_fits = fits; 8494 } 8495 } 8496 8497 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0) 8498 continue; 8499 8500 eenv_pd_busy_time(&eenv, cpus, p); 8501 /* Compute the 'base' energy of the pd, without @p */ 8502 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 8503 8504 /* Evaluate the energy impact of using prev_cpu. */ 8505 if (prev_spare_cap > -1) { 8506 prev_delta = compute_energy(&eenv, pd, cpus, p, 8507 prev_cpu); 8508 /* CPU utilization has changed */ 8509 if (prev_delta < base_energy) 8510 goto unlock; 8511 prev_delta -= base_energy; 8512 prev_actual_cap = cpu_actual_cap; 8513 best_delta = min(best_delta, prev_delta); 8514 } 8515 8516 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 8517 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { 8518 /* Current best energy cpu fits better */ 8519 if (max_fits < best_fits) 8520 continue; 8521 8522 /* 8523 * Both don't fit performance hint (i.e. uclamp_min) 8524 * but best energy cpu has better capacity. 8525 */ 8526 if ((max_fits < 0) && 8527 (cpu_actual_cap <= best_actual_cap)) 8528 continue; 8529 8530 cur_delta = compute_energy(&eenv, pd, cpus, p, 8531 max_spare_cap_cpu); 8532 /* CPU utilization has changed */ 8533 if (cur_delta < base_energy) 8534 goto unlock; 8535 cur_delta -= base_energy; 8536 8537 /* 8538 * Both fit for the task but best energy cpu has lower 8539 * energy impact. 8540 */ 8541 if ((max_fits > 0) && (best_fits > 0) && 8542 (cur_delta >= best_delta)) 8543 continue; 8544 8545 best_delta = cur_delta; 8546 best_energy_cpu = max_spare_cap_cpu; 8547 best_fits = max_fits; 8548 best_actual_cap = cpu_actual_cap; 8549 } 8550 } 8551 rcu_read_unlock(); 8552 8553 if ((best_fits > prev_fits) || 8554 ((best_fits > 0) && (best_delta < prev_delta)) || 8555 ((best_fits < 0) && (best_actual_cap > prev_actual_cap))) 8556 target = best_energy_cpu; 8557 8558 return target; 8559 8560 unlock: 8561 rcu_read_unlock(); 8562 8563 return target; 8564 } 8565 8566 /* 8567 * select_task_rq_fair: Select target runqueue for the waking task in domains 8568 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 8569 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 8570 * 8571 * Balances load by selecting the idlest CPU in the idlest group, or under 8572 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 8573 * 8574 * Returns the target CPU number. 8575 */ 8576 static int 8577 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 8578 { 8579 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 8580 struct sched_domain *tmp, *sd = NULL; 8581 int cpu = smp_processor_id(); 8582 int new_cpu = prev_cpu; 8583 int want_affine = 0; 8584 /* SD_flags and WF_flags share the first nibble */ 8585 int sd_flag = wake_flags & 0xF; 8586 8587 /* 8588 * required for stable ->cpus_allowed 8589 */ 8590 lockdep_assert_held(&p->pi_lock); 8591 if (wake_flags & WF_TTWU) { 8592 record_wakee(p); 8593 8594 if ((wake_flags & WF_CURRENT_CPU) && 8595 cpumask_test_cpu(cpu, p->cpus_ptr)) 8596 return cpu; 8597 8598 if (!is_rd_overutilized(this_rq()->rd)) { 8599 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 8600 if (new_cpu >= 0) 8601 return new_cpu; 8602 new_cpu = prev_cpu; 8603 } 8604 8605 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 8606 } 8607 8608 rcu_read_lock(); 8609 for_each_domain(cpu, tmp) { 8610 /* 8611 * If both 'cpu' and 'prev_cpu' are part of this domain, 8612 * cpu is a valid SD_WAKE_AFFINE target. 8613 */ 8614 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 8615 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 8616 if (cpu != prev_cpu) 8617 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 8618 8619 sd = NULL; /* Prefer wake_affine over balance flags */ 8620 break; 8621 } 8622 8623 /* 8624 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 8625 * usually do not have SD_BALANCE_WAKE set. That means wakeup 8626 * will usually go to the fast path. 8627 */ 8628 if (tmp->flags & sd_flag) 8629 sd = tmp; 8630 else if (!want_affine) 8631 break; 8632 } 8633 8634 if (unlikely(sd)) { 8635 /* Slow path */ 8636 new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag); 8637 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 8638 /* Fast path */ 8639 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 8640 } 8641 rcu_read_unlock(); 8642 8643 return new_cpu; 8644 } 8645 8646 /* 8647 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 8648 * cfs_rq_of(p) references at time of call are still valid and identify the 8649 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 8650 */ 8651 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 8652 { 8653 struct sched_entity *se = &p->se; 8654 8655 if (!task_on_rq_migrating(p)) { 8656 remove_entity_load_avg(se); 8657 8658 /* 8659 * Here, the task's PELT values have been updated according to 8660 * the current rq's clock. But if that clock hasn't been 8661 * updated in a while, a substantial idle time will be missed, 8662 * leading to an inflation after wake-up on the new rq. 8663 * 8664 * Estimate the missing time from the cfs_rq last_update_time 8665 * and update sched_avg to improve the PELT continuity after 8666 * migration. 8667 */ 8668 migrate_se_pelt_lag(se); 8669 } 8670 8671 /* Tell new CPU we are migrated */ 8672 se->avg.last_update_time = 0; 8673 8674 update_scan_period(p, new_cpu); 8675 } 8676 8677 static void task_dead_fair(struct task_struct *p) 8678 { 8679 struct sched_entity *se = &p->se; 8680 8681 if (se->sched_delayed) { 8682 struct rq_flags rf; 8683 struct rq *rq; 8684 8685 rq = task_rq_lock(p, &rf); 8686 if (se->sched_delayed) { 8687 update_rq_clock(rq); 8688 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 8689 } 8690 task_rq_unlock(rq, p, &rf); 8691 } 8692 8693 remove_entity_load_avg(se); 8694 } 8695 8696 /* 8697 * Set the max capacity the task is allowed to run at for misfit detection. 8698 */ 8699 static void set_task_max_allowed_capacity(struct task_struct *p) 8700 { 8701 struct asym_cap_data *entry; 8702 8703 if (!sched_asym_cpucap_active()) 8704 return; 8705 8706 rcu_read_lock(); 8707 list_for_each_entry_rcu(entry, &asym_cap_list, link) { 8708 cpumask_t *cpumask; 8709 8710 cpumask = cpu_capacity_span(entry); 8711 if (!cpumask_intersects(p->cpus_ptr, cpumask)) 8712 continue; 8713 8714 p->max_allowed_capacity = entry->capacity; 8715 break; 8716 } 8717 rcu_read_unlock(); 8718 } 8719 8720 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx) 8721 { 8722 set_cpus_allowed_common(p, ctx); 8723 set_task_max_allowed_capacity(p); 8724 } 8725 8726 static int 8727 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8728 { 8729 if (sched_fair_runnable(rq)) 8730 return 1; 8731 8732 return sched_balance_newidle(rq, rf) != 0; 8733 } 8734 #else 8735 static inline void set_task_max_allowed_capacity(struct task_struct *p) {} 8736 #endif /* CONFIG_SMP */ 8737 8738 static void set_next_buddy(struct sched_entity *se) 8739 { 8740 for_each_sched_entity(se) { 8741 if (WARN_ON_ONCE(!se->on_rq)) 8742 return; 8743 if (se_is_idle(se)) 8744 return; 8745 cfs_rq_of(se)->next = se; 8746 } 8747 } 8748 8749 /* 8750 * Preempt the current task with a newly woken task if needed: 8751 */ 8752 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags) 8753 { 8754 struct task_struct *donor = rq->donor; 8755 struct sched_entity *se = &donor->se, *pse = &p->se; 8756 struct cfs_rq *cfs_rq = task_cfs_rq(donor); 8757 int cse_is_idle, pse_is_idle; 8758 8759 if (unlikely(se == pse)) 8760 return; 8761 8762 /* 8763 * This is possible from callers such as attach_tasks(), in which we 8764 * unconditionally wakeup_preempt() after an enqueue (which may have 8765 * lead to a throttle). This both saves work and prevents false 8766 * next-buddy nomination below. 8767 */ 8768 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 8769 return; 8770 8771 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK) && !pse->sched_delayed) { 8772 set_next_buddy(pse); 8773 } 8774 8775 /* 8776 * We can come here with TIF_NEED_RESCHED already set from new task 8777 * wake up path. 8778 * 8779 * Note: this also catches the edge-case of curr being in a throttled 8780 * group (e.g. via set_curr_task), since update_curr() (in the 8781 * enqueue of curr) will have resulted in resched being set. This 8782 * prevents us from potentially nominating it as a false LAST_BUDDY 8783 * below. 8784 */ 8785 if (test_tsk_need_resched(rq->curr)) 8786 return; 8787 8788 if (!sched_feat(WAKEUP_PREEMPTION)) 8789 return; 8790 8791 find_matching_se(&se, &pse); 8792 WARN_ON_ONCE(!pse); 8793 8794 cse_is_idle = se_is_idle(se); 8795 pse_is_idle = se_is_idle(pse); 8796 8797 /* 8798 * Preempt an idle entity in favor of a non-idle entity (and don't preempt 8799 * in the inverse case). 8800 */ 8801 if (cse_is_idle && !pse_is_idle) { 8802 /* 8803 * When non-idle entity preempt an idle entity, 8804 * don't give idle entity slice protection. 8805 */ 8806 cancel_protect_slice(se); 8807 goto preempt; 8808 } 8809 8810 if (cse_is_idle != pse_is_idle) 8811 return; 8812 8813 /* 8814 * BATCH and IDLE tasks do not preempt others. 8815 */ 8816 if (unlikely(!normal_policy(p->policy))) 8817 return; 8818 8819 cfs_rq = cfs_rq_of(se); 8820 update_curr(cfs_rq); 8821 /* 8822 * If @p has a shorter slice than current and @p is eligible, override 8823 * current's slice protection in order to allow preemption. 8824 * 8825 * Note that even if @p does not turn out to be the most eligible 8826 * task at this moment, current's slice protection will be lost. 8827 */ 8828 if (do_preempt_short(cfs_rq, pse, se)) 8829 cancel_protect_slice(se); 8830 8831 /* 8832 * If @p has become the most eligible task, force preemption. 8833 */ 8834 if (pick_eevdf(cfs_rq) == pse) 8835 goto preempt; 8836 8837 return; 8838 8839 preempt: 8840 resched_curr_lazy(rq); 8841 } 8842 8843 static struct task_struct *pick_task_fair(struct rq *rq) 8844 { 8845 struct sched_entity *se; 8846 struct cfs_rq *cfs_rq; 8847 8848 again: 8849 cfs_rq = &rq->cfs; 8850 if (!cfs_rq->nr_queued) 8851 return NULL; 8852 8853 do { 8854 /* Might not have done put_prev_entity() */ 8855 if (cfs_rq->curr && cfs_rq->curr->on_rq) 8856 update_curr(cfs_rq); 8857 8858 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 8859 goto again; 8860 8861 se = pick_next_entity(rq, cfs_rq); 8862 if (!se) 8863 goto again; 8864 cfs_rq = group_cfs_rq(se); 8865 } while (cfs_rq); 8866 8867 return task_of(se); 8868 } 8869 8870 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); 8871 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); 8872 8873 struct task_struct * 8874 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8875 { 8876 struct sched_entity *se; 8877 struct task_struct *p; 8878 int new_tasks; 8879 8880 again: 8881 p = pick_task_fair(rq); 8882 if (!p) 8883 goto idle; 8884 se = &p->se; 8885 8886 #ifdef CONFIG_FAIR_GROUP_SCHED 8887 if (prev->sched_class != &fair_sched_class) 8888 goto simple; 8889 8890 __put_prev_set_next_dl_server(rq, prev, p); 8891 8892 /* 8893 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 8894 * likely that a next task is from the same cgroup as the current. 8895 * 8896 * Therefore attempt to avoid putting and setting the entire cgroup 8897 * hierarchy, only change the part that actually changes. 8898 * 8899 * Since we haven't yet done put_prev_entity and if the selected task 8900 * is a different task than we started out with, try and touch the 8901 * least amount of cfs_rqs. 8902 */ 8903 if (prev != p) { 8904 struct sched_entity *pse = &prev->se; 8905 struct cfs_rq *cfs_rq; 8906 8907 while (!(cfs_rq = is_same_group(se, pse))) { 8908 int se_depth = se->depth; 8909 int pse_depth = pse->depth; 8910 8911 if (se_depth <= pse_depth) { 8912 put_prev_entity(cfs_rq_of(pse), pse); 8913 pse = parent_entity(pse); 8914 } 8915 if (se_depth >= pse_depth) { 8916 set_next_entity(cfs_rq_of(se), se); 8917 se = parent_entity(se); 8918 } 8919 } 8920 8921 put_prev_entity(cfs_rq, pse); 8922 set_next_entity(cfs_rq, se); 8923 8924 __set_next_task_fair(rq, p, true); 8925 } 8926 8927 return p; 8928 8929 simple: 8930 #endif 8931 put_prev_set_next_task(rq, prev, p); 8932 return p; 8933 8934 idle: 8935 if (!rf) 8936 return NULL; 8937 8938 new_tasks = sched_balance_newidle(rq, rf); 8939 8940 /* 8941 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is 8942 * possible for any higher priority task to appear. In that case we 8943 * must re-start the pick_next_entity() loop. 8944 */ 8945 if (new_tasks < 0) 8946 return RETRY_TASK; 8947 8948 if (new_tasks > 0) 8949 goto again; 8950 8951 /* 8952 * rq is about to be idle, check if we need to update the 8953 * lost_idle_time of clock_pelt 8954 */ 8955 update_idle_rq_clock_pelt(rq); 8956 8957 return NULL; 8958 } 8959 8960 static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev) 8961 { 8962 return pick_next_task_fair(rq, prev, NULL); 8963 } 8964 8965 static bool fair_server_has_tasks(struct sched_dl_entity *dl_se) 8966 { 8967 return !!dl_se->rq->cfs.nr_queued; 8968 } 8969 8970 static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se) 8971 { 8972 return pick_task_fair(dl_se->rq); 8973 } 8974 8975 void fair_server_init(struct rq *rq) 8976 { 8977 struct sched_dl_entity *dl_se = &rq->fair_server; 8978 8979 init_dl_entity(dl_se); 8980 8981 dl_server_init(dl_se, rq, fair_server_has_tasks, fair_server_pick_task); 8982 } 8983 8984 /* 8985 * Account for a descheduled task: 8986 */ 8987 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next) 8988 { 8989 struct sched_entity *se = &prev->se; 8990 struct cfs_rq *cfs_rq; 8991 8992 for_each_sched_entity(se) { 8993 cfs_rq = cfs_rq_of(se); 8994 put_prev_entity(cfs_rq, se); 8995 } 8996 } 8997 8998 /* 8999 * sched_yield() is very simple 9000 */ 9001 static void yield_task_fair(struct rq *rq) 9002 { 9003 struct task_struct *curr = rq->curr; 9004 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 9005 struct sched_entity *se = &curr->se; 9006 9007 /* 9008 * Are we the only task in the tree? 9009 */ 9010 if (unlikely(rq->nr_running == 1)) 9011 return; 9012 9013 clear_buddies(cfs_rq, se); 9014 9015 update_rq_clock(rq); 9016 /* 9017 * Update run-time statistics of the 'current'. 9018 */ 9019 update_curr(cfs_rq); 9020 /* 9021 * Tell update_rq_clock() that we've just updated, 9022 * so we don't do microscopic update in schedule() 9023 * and double the fastpath cost. 9024 */ 9025 rq_clock_skip_update(rq); 9026 9027 se->deadline += calc_delta_fair(se->slice, se); 9028 } 9029 9030 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 9031 { 9032 struct sched_entity *se = &p->se; 9033 9034 /* throttled hierarchies are not runnable */ 9035 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 9036 return false; 9037 9038 /* Tell the scheduler that we'd really like se to run next. */ 9039 set_next_buddy(se); 9040 9041 yield_task_fair(rq); 9042 9043 return true; 9044 } 9045 9046 #ifdef CONFIG_SMP 9047 /************************************************** 9048 * Fair scheduling class load-balancing methods. 9049 * 9050 * BASICS 9051 * 9052 * The purpose of load-balancing is to achieve the same basic fairness the 9053 * per-CPU scheduler provides, namely provide a proportional amount of compute 9054 * time to each task. This is expressed in the following equation: 9055 * 9056 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 9057 * 9058 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 9059 * W_i,0 is defined as: 9060 * 9061 * W_i,0 = \Sum_j w_i,j (2) 9062 * 9063 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 9064 * is derived from the nice value as per sched_prio_to_weight[]. 9065 * 9066 * The weight average is an exponential decay average of the instantaneous 9067 * weight: 9068 * 9069 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 9070 * 9071 * C_i is the compute capacity of CPU i, typically it is the 9072 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 9073 * can also include other factors [XXX]. 9074 * 9075 * To achieve this balance we define a measure of imbalance which follows 9076 * directly from (1): 9077 * 9078 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 9079 * 9080 * We them move tasks around to minimize the imbalance. In the continuous 9081 * function space it is obvious this converges, in the discrete case we get 9082 * a few fun cases generally called infeasible weight scenarios. 9083 * 9084 * [XXX expand on: 9085 * - infeasible weights; 9086 * - local vs global optima in the discrete case. ] 9087 * 9088 * 9089 * SCHED DOMAINS 9090 * 9091 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 9092 * for all i,j solution, we create a tree of CPUs that follows the hardware 9093 * topology where each level pairs two lower groups (or better). This results 9094 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 9095 * tree to only the first of the previous level and we decrease the frequency 9096 * of load-balance at each level inversely proportional to the number of CPUs in 9097 * the groups. 9098 * 9099 * This yields: 9100 * 9101 * log_2 n 1 n 9102 * \Sum { --- * --- * 2^i } = O(n) (5) 9103 * i = 0 2^i 2^i 9104 * `- size of each group 9105 * | | `- number of CPUs doing load-balance 9106 * | `- freq 9107 * `- sum over all levels 9108 * 9109 * Coupled with a limit on how many tasks we can migrate every balance pass, 9110 * this makes (5) the runtime complexity of the balancer. 9111 * 9112 * An important property here is that each CPU is still (indirectly) connected 9113 * to every other CPU in at most O(log n) steps: 9114 * 9115 * The adjacency matrix of the resulting graph is given by: 9116 * 9117 * log_2 n 9118 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 9119 * k = 0 9120 * 9121 * And you'll find that: 9122 * 9123 * A^(log_2 n)_i,j != 0 for all i,j (7) 9124 * 9125 * Showing there's indeed a path between every CPU in at most O(log n) steps. 9126 * The task movement gives a factor of O(m), giving a convergence complexity 9127 * of: 9128 * 9129 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 9130 * 9131 * 9132 * WORK CONSERVING 9133 * 9134 * In order to avoid CPUs going idle while there's still work to do, new idle 9135 * balancing is more aggressive and has the newly idle CPU iterate up the domain 9136 * tree itself instead of relying on other CPUs to bring it work. 9137 * 9138 * This adds some complexity to both (5) and (8) but it reduces the total idle 9139 * time. 9140 * 9141 * [XXX more?] 9142 * 9143 * 9144 * CGROUPS 9145 * 9146 * Cgroups make a horror show out of (2), instead of a simple sum we get: 9147 * 9148 * s_k,i 9149 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 9150 * S_k 9151 * 9152 * Where 9153 * 9154 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 9155 * 9156 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 9157 * 9158 * The big problem is S_k, its a global sum needed to compute a local (W_i) 9159 * property. 9160 * 9161 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 9162 * rewrite all of this once again.] 9163 */ 9164 9165 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 9166 9167 enum fbq_type { regular, remote, all }; 9168 9169 /* 9170 * 'group_type' describes the group of CPUs at the moment of load balancing. 9171 * 9172 * The enum is ordered by pulling priority, with the group with lowest priority 9173 * first so the group_type can simply be compared when selecting the busiest 9174 * group. See update_sd_pick_busiest(). 9175 */ 9176 enum group_type { 9177 /* The group has spare capacity that can be used to run more tasks. */ 9178 group_has_spare = 0, 9179 /* 9180 * The group is fully used and the tasks don't compete for more CPU 9181 * cycles. Nevertheless, some tasks might wait before running. 9182 */ 9183 group_fully_busy, 9184 /* 9185 * One task doesn't fit with CPU's capacity and must be migrated to a 9186 * more powerful CPU. 9187 */ 9188 group_misfit_task, 9189 /* 9190 * Balance SMT group that's fully busy. Can benefit from migration 9191 * a task on SMT with busy sibling to another CPU on idle core. 9192 */ 9193 group_smt_balance, 9194 /* 9195 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 9196 * and the task should be migrated to it instead of running on the 9197 * current CPU. 9198 */ 9199 group_asym_packing, 9200 /* 9201 * The tasks' affinity constraints previously prevented the scheduler 9202 * from balancing the load across the system. 9203 */ 9204 group_imbalanced, 9205 /* 9206 * The CPU is overloaded and can't provide expected CPU cycles to all 9207 * tasks. 9208 */ 9209 group_overloaded 9210 }; 9211 9212 enum migration_type { 9213 migrate_load = 0, 9214 migrate_util, 9215 migrate_task, 9216 migrate_misfit 9217 }; 9218 9219 #define LBF_ALL_PINNED 0x01 9220 #define LBF_NEED_BREAK 0x02 9221 #define LBF_DST_PINNED 0x04 9222 #define LBF_SOME_PINNED 0x08 9223 #define LBF_ACTIVE_LB 0x10 9224 9225 struct lb_env { 9226 struct sched_domain *sd; 9227 9228 struct rq *src_rq; 9229 int src_cpu; 9230 9231 int dst_cpu; 9232 struct rq *dst_rq; 9233 9234 struct cpumask *dst_grpmask; 9235 int new_dst_cpu; 9236 enum cpu_idle_type idle; 9237 long imbalance; 9238 /* The set of CPUs under consideration for load-balancing */ 9239 struct cpumask *cpus; 9240 9241 unsigned int flags; 9242 9243 unsigned int loop; 9244 unsigned int loop_break; 9245 unsigned int loop_max; 9246 9247 enum fbq_type fbq_type; 9248 enum migration_type migration_type; 9249 struct list_head tasks; 9250 }; 9251 9252 /* 9253 * Is this task likely cache-hot: 9254 */ 9255 static int task_hot(struct task_struct *p, struct lb_env *env) 9256 { 9257 s64 delta; 9258 9259 lockdep_assert_rq_held(env->src_rq); 9260 9261 if (p->sched_class != &fair_sched_class) 9262 return 0; 9263 9264 if (unlikely(task_has_idle_policy(p))) 9265 return 0; 9266 9267 /* SMT siblings share cache */ 9268 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 9269 return 0; 9270 9271 /* 9272 * Buddy candidates are cache hot: 9273 */ 9274 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 9275 (&p->se == cfs_rq_of(&p->se)->next)) 9276 return 1; 9277 9278 if (sysctl_sched_migration_cost == -1) 9279 return 1; 9280 9281 /* 9282 * Don't migrate task if the task's cookie does not match 9283 * with the destination CPU's core cookie. 9284 */ 9285 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 9286 return 1; 9287 9288 if (sysctl_sched_migration_cost == 0) 9289 return 0; 9290 9291 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 9292 9293 return delta < (s64)sysctl_sched_migration_cost; 9294 } 9295 9296 #ifdef CONFIG_NUMA_BALANCING 9297 /* 9298 * Returns a positive value, if task migration degrades locality. 9299 * Returns 0, if task migration is not affected by locality. 9300 * Returns a negative value, if task migration improves locality i.e migration preferred. 9301 */ 9302 static long migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 9303 { 9304 struct numa_group *numa_group = rcu_dereference(p->numa_group); 9305 unsigned long src_weight, dst_weight; 9306 int src_nid, dst_nid, dist; 9307 9308 if (!static_branch_likely(&sched_numa_balancing)) 9309 return 0; 9310 9311 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 9312 return 0; 9313 9314 src_nid = cpu_to_node(env->src_cpu); 9315 dst_nid = cpu_to_node(env->dst_cpu); 9316 9317 if (src_nid == dst_nid) 9318 return 0; 9319 9320 /* Migrating away from the preferred node is always bad. */ 9321 if (src_nid == p->numa_preferred_nid) { 9322 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 9323 return 1; 9324 else 9325 return 0; 9326 } 9327 9328 /* Encourage migration to the preferred node. */ 9329 if (dst_nid == p->numa_preferred_nid) 9330 return -1; 9331 9332 /* Leaving a core idle is often worse than degrading locality. */ 9333 if (env->idle == CPU_IDLE) 9334 return 0; 9335 9336 dist = node_distance(src_nid, dst_nid); 9337 if (numa_group) { 9338 src_weight = group_weight(p, src_nid, dist); 9339 dst_weight = group_weight(p, dst_nid, dist); 9340 } else { 9341 src_weight = task_weight(p, src_nid, dist); 9342 dst_weight = task_weight(p, dst_nid, dist); 9343 } 9344 9345 return src_weight - dst_weight; 9346 } 9347 9348 #else 9349 static inline long migrate_degrades_locality(struct task_struct *p, 9350 struct lb_env *env) 9351 { 9352 return 0; 9353 } 9354 #endif 9355 9356 /* 9357 * Check whether the task is ineligible on the destination cpu 9358 * 9359 * When the PLACE_LAG scheduling feature is enabled and 9360 * dst_cfs_rq->nr_queued is greater than 1, if the task 9361 * is ineligible, it will also be ineligible when 9362 * it is migrated to the destination cpu. 9363 */ 9364 static inline int task_is_ineligible_on_dst_cpu(struct task_struct *p, int dest_cpu) 9365 { 9366 struct cfs_rq *dst_cfs_rq; 9367 9368 #ifdef CONFIG_FAIR_GROUP_SCHED 9369 dst_cfs_rq = task_group(p)->cfs_rq[dest_cpu]; 9370 #else 9371 dst_cfs_rq = &cpu_rq(dest_cpu)->cfs; 9372 #endif 9373 if (sched_feat(PLACE_LAG) && dst_cfs_rq->nr_queued && 9374 !entity_eligible(task_cfs_rq(p), &p->se)) 9375 return 1; 9376 9377 return 0; 9378 } 9379 9380 /* 9381 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 9382 */ 9383 static 9384 int can_migrate_task(struct task_struct *p, struct lb_env *env) 9385 { 9386 long degrades, hot; 9387 9388 lockdep_assert_rq_held(env->src_rq); 9389 if (p->sched_task_hot) 9390 p->sched_task_hot = 0; 9391 9392 /* 9393 * We do not migrate tasks that are: 9394 * 1) delayed dequeued unless we migrate load, or 9395 * 2) throttled_lb_pair, or 9396 * 3) cannot be migrated to this CPU due to cpus_ptr, or 9397 * 4) running (obviously), or 9398 * 5) are cache-hot on their current CPU. 9399 */ 9400 if ((p->se.sched_delayed) && (env->migration_type != migrate_load)) 9401 return 0; 9402 9403 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 9404 return 0; 9405 9406 /* 9407 * We want to prioritize the migration of eligible tasks. 9408 * For ineligible tasks we soft-limit them and only allow 9409 * them to migrate when nr_balance_failed is non-zero to 9410 * avoid load-balancing trying very hard to balance the load. 9411 */ 9412 if (!env->sd->nr_balance_failed && 9413 task_is_ineligible_on_dst_cpu(p, env->dst_cpu)) 9414 return 0; 9415 9416 /* Disregard percpu kthreads; they are where they need to be. */ 9417 if (kthread_is_per_cpu(p)) 9418 return 0; 9419 9420 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 9421 int cpu; 9422 9423 schedstat_inc(p->stats.nr_failed_migrations_affine); 9424 9425 env->flags |= LBF_SOME_PINNED; 9426 9427 /* 9428 * Remember if this task can be migrated to any other CPU in 9429 * our sched_group. We may want to revisit it if we couldn't 9430 * meet load balance goals by pulling other tasks on src_cpu. 9431 * 9432 * Avoid computing new_dst_cpu 9433 * - for NEWLY_IDLE 9434 * - if we have already computed one in current iteration 9435 * - if it's an active balance 9436 */ 9437 if (env->idle == CPU_NEWLY_IDLE || 9438 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 9439 return 0; 9440 9441 /* Prevent to re-select dst_cpu via env's CPUs: */ 9442 cpu = cpumask_first_and_and(env->dst_grpmask, env->cpus, p->cpus_ptr); 9443 9444 if (cpu < nr_cpu_ids) { 9445 env->flags |= LBF_DST_PINNED; 9446 env->new_dst_cpu = cpu; 9447 } 9448 9449 return 0; 9450 } 9451 9452 /* Record that we found at least one task that could run on dst_cpu */ 9453 env->flags &= ~LBF_ALL_PINNED; 9454 9455 if (task_on_cpu(env->src_rq, p)) { 9456 schedstat_inc(p->stats.nr_failed_migrations_running); 9457 return 0; 9458 } 9459 9460 /* 9461 * Aggressive migration if: 9462 * 1) active balance 9463 * 2) destination numa is preferred 9464 * 3) task is cache cold, or 9465 * 4) too many balance attempts have failed. 9466 */ 9467 if (env->flags & LBF_ACTIVE_LB) 9468 return 1; 9469 9470 degrades = migrate_degrades_locality(p, env); 9471 if (!degrades) 9472 hot = task_hot(p, env); 9473 else 9474 hot = degrades > 0; 9475 9476 if (!hot || env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 9477 if (hot) 9478 p->sched_task_hot = 1; 9479 return 1; 9480 } 9481 9482 schedstat_inc(p->stats.nr_failed_migrations_hot); 9483 return 0; 9484 } 9485 9486 /* 9487 * detach_task() -- detach the task for the migration specified in env 9488 */ 9489 static void detach_task(struct task_struct *p, struct lb_env *env) 9490 { 9491 lockdep_assert_rq_held(env->src_rq); 9492 9493 if (p->sched_task_hot) { 9494 p->sched_task_hot = 0; 9495 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 9496 schedstat_inc(p->stats.nr_forced_migrations); 9497 } 9498 9499 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 9500 set_task_cpu(p, env->dst_cpu); 9501 } 9502 9503 /* 9504 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 9505 * part of active balancing operations within "domain". 9506 * 9507 * Returns a task if successful and NULL otherwise. 9508 */ 9509 static struct task_struct *detach_one_task(struct lb_env *env) 9510 { 9511 struct task_struct *p; 9512 9513 lockdep_assert_rq_held(env->src_rq); 9514 9515 list_for_each_entry_reverse(p, 9516 &env->src_rq->cfs_tasks, se.group_node) { 9517 if (!can_migrate_task(p, env)) 9518 continue; 9519 9520 detach_task(p, env); 9521 9522 /* 9523 * Right now, this is only the second place where 9524 * lb_gained[env->idle] is updated (other is detach_tasks) 9525 * so we can safely collect stats here rather than 9526 * inside detach_tasks(). 9527 */ 9528 schedstat_inc(env->sd->lb_gained[env->idle]); 9529 return p; 9530 } 9531 return NULL; 9532 } 9533 9534 /* 9535 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 9536 * busiest_rq, as part of a balancing operation within domain "sd". 9537 * 9538 * Returns number of detached tasks if successful and 0 otherwise. 9539 */ 9540 static int detach_tasks(struct lb_env *env) 9541 { 9542 struct list_head *tasks = &env->src_rq->cfs_tasks; 9543 unsigned long util, load; 9544 struct task_struct *p; 9545 int detached = 0; 9546 9547 lockdep_assert_rq_held(env->src_rq); 9548 9549 /* 9550 * Source run queue has been emptied by another CPU, clear 9551 * LBF_ALL_PINNED flag as we will not test any task. 9552 */ 9553 if (env->src_rq->nr_running <= 1) { 9554 env->flags &= ~LBF_ALL_PINNED; 9555 return 0; 9556 } 9557 9558 if (env->imbalance <= 0) 9559 return 0; 9560 9561 while (!list_empty(tasks)) { 9562 /* 9563 * We don't want to steal all, otherwise we may be treated likewise, 9564 * which could at worst lead to a livelock crash. 9565 */ 9566 if (env->idle && env->src_rq->nr_running <= 1) 9567 break; 9568 9569 env->loop++; 9570 /* We've more or less seen every task there is, call it quits */ 9571 if (env->loop > env->loop_max) 9572 break; 9573 9574 /* take a breather every nr_migrate tasks */ 9575 if (env->loop > env->loop_break) { 9576 env->loop_break += SCHED_NR_MIGRATE_BREAK; 9577 env->flags |= LBF_NEED_BREAK; 9578 break; 9579 } 9580 9581 p = list_last_entry(tasks, struct task_struct, se.group_node); 9582 9583 if (!can_migrate_task(p, env)) 9584 goto next; 9585 9586 switch (env->migration_type) { 9587 case migrate_load: 9588 /* 9589 * Depending of the number of CPUs and tasks and the 9590 * cgroup hierarchy, task_h_load() can return a null 9591 * value. Make sure that env->imbalance decreases 9592 * otherwise detach_tasks() will stop only after 9593 * detaching up to loop_max tasks. 9594 */ 9595 load = max_t(unsigned long, task_h_load(p), 1); 9596 9597 if (sched_feat(LB_MIN) && 9598 load < 16 && !env->sd->nr_balance_failed) 9599 goto next; 9600 9601 /* 9602 * Make sure that we don't migrate too much load. 9603 * Nevertheless, let relax the constraint if 9604 * scheduler fails to find a good waiting task to 9605 * migrate. 9606 */ 9607 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 9608 goto next; 9609 9610 env->imbalance -= load; 9611 break; 9612 9613 case migrate_util: 9614 util = task_util_est(p); 9615 9616 if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance) 9617 goto next; 9618 9619 env->imbalance -= util; 9620 break; 9621 9622 case migrate_task: 9623 env->imbalance--; 9624 break; 9625 9626 case migrate_misfit: 9627 /* This is not a misfit task */ 9628 if (task_fits_cpu(p, env->src_cpu)) 9629 goto next; 9630 9631 env->imbalance = 0; 9632 break; 9633 } 9634 9635 detach_task(p, env); 9636 list_add(&p->se.group_node, &env->tasks); 9637 9638 detached++; 9639 9640 #ifdef CONFIG_PREEMPTION 9641 /* 9642 * NEWIDLE balancing is a source of latency, so preemptible 9643 * kernels will stop after the first task is detached to minimize 9644 * the critical section. 9645 */ 9646 if (env->idle == CPU_NEWLY_IDLE) 9647 break; 9648 #endif 9649 9650 /* 9651 * We only want to steal up to the prescribed amount of 9652 * load/util/tasks. 9653 */ 9654 if (env->imbalance <= 0) 9655 break; 9656 9657 continue; 9658 next: 9659 if (p->sched_task_hot) 9660 schedstat_inc(p->stats.nr_failed_migrations_hot); 9661 9662 list_move(&p->se.group_node, tasks); 9663 } 9664 9665 /* 9666 * Right now, this is one of only two places we collect this stat 9667 * so we can safely collect detach_one_task() stats here rather 9668 * than inside detach_one_task(). 9669 */ 9670 schedstat_add(env->sd->lb_gained[env->idle], detached); 9671 9672 return detached; 9673 } 9674 9675 /* 9676 * attach_task() -- attach the task detached by detach_task() to its new rq. 9677 */ 9678 static void attach_task(struct rq *rq, struct task_struct *p) 9679 { 9680 lockdep_assert_rq_held(rq); 9681 9682 WARN_ON_ONCE(task_rq(p) != rq); 9683 activate_task(rq, p, ENQUEUE_NOCLOCK); 9684 wakeup_preempt(rq, p, 0); 9685 } 9686 9687 /* 9688 * attach_one_task() -- attaches the task returned from detach_one_task() to 9689 * its new rq. 9690 */ 9691 static void attach_one_task(struct rq *rq, struct task_struct *p) 9692 { 9693 struct rq_flags rf; 9694 9695 rq_lock(rq, &rf); 9696 update_rq_clock(rq); 9697 attach_task(rq, p); 9698 rq_unlock(rq, &rf); 9699 } 9700 9701 /* 9702 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 9703 * new rq. 9704 */ 9705 static void attach_tasks(struct lb_env *env) 9706 { 9707 struct list_head *tasks = &env->tasks; 9708 struct task_struct *p; 9709 struct rq_flags rf; 9710 9711 rq_lock(env->dst_rq, &rf); 9712 update_rq_clock(env->dst_rq); 9713 9714 while (!list_empty(tasks)) { 9715 p = list_first_entry(tasks, struct task_struct, se.group_node); 9716 list_del_init(&p->se.group_node); 9717 9718 attach_task(env->dst_rq, p); 9719 } 9720 9721 rq_unlock(env->dst_rq, &rf); 9722 } 9723 9724 #ifdef CONFIG_NO_HZ_COMMON 9725 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 9726 { 9727 if (cfs_rq->avg.load_avg) 9728 return true; 9729 9730 if (cfs_rq->avg.util_avg) 9731 return true; 9732 9733 return false; 9734 } 9735 9736 static inline bool others_have_blocked(struct rq *rq) 9737 { 9738 if (cpu_util_rt(rq)) 9739 return true; 9740 9741 if (cpu_util_dl(rq)) 9742 return true; 9743 9744 if (hw_load_avg(rq)) 9745 return true; 9746 9747 if (cpu_util_irq(rq)) 9748 return true; 9749 9750 return false; 9751 } 9752 9753 static inline void update_blocked_load_tick(struct rq *rq) 9754 { 9755 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 9756 } 9757 9758 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 9759 { 9760 if (!has_blocked) 9761 rq->has_blocked_load = 0; 9762 } 9763 #else 9764 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 9765 static inline bool others_have_blocked(struct rq *rq) { return false; } 9766 static inline void update_blocked_load_tick(struct rq *rq) {} 9767 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 9768 #endif 9769 9770 static bool __update_blocked_others(struct rq *rq, bool *done) 9771 { 9772 bool updated; 9773 9774 /* 9775 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 9776 * DL and IRQ signals have been updated before updating CFS. 9777 */ 9778 updated = update_other_load_avgs(rq); 9779 9780 if (others_have_blocked(rq)) 9781 *done = false; 9782 9783 return updated; 9784 } 9785 9786 #ifdef CONFIG_FAIR_GROUP_SCHED 9787 9788 static bool __update_blocked_fair(struct rq *rq, bool *done) 9789 { 9790 struct cfs_rq *cfs_rq, *pos; 9791 bool decayed = false; 9792 int cpu = cpu_of(rq); 9793 9794 /* 9795 * Iterates the task_group tree in a bottom up fashion, see 9796 * list_add_leaf_cfs_rq() for details. 9797 */ 9798 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 9799 struct sched_entity *se; 9800 9801 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 9802 update_tg_load_avg(cfs_rq); 9803 9804 if (cfs_rq->nr_queued == 0) 9805 update_idle_cfs_rq_clock_pelt(cfs_rq); 9806 9807 if (cfs_rq == &rq->cfs) 9808 decayed = true; 9809 } 9810 9811 /* Propagate pending load changes to the parent, if any: */ 9812 se = cfs_rq->tg->se[cpu]; 9813 if (se && !skip_blocked_update(se)) 9814 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 9815 9816 /* 9817 * There can be a lot of idle CPU cgroups. Don't let fully 9818 * decayed cfs_rqs linger on the list. 9819 */ 9820 if (cfs_rq_is_decayed(cfs_rq)) 9821 list_del_leaf_cfs_rq(cfs_rq); 9822 9823 /* Don't need periodic decay once load/util_avg are null */ 9824 if (cfs_rq_has_blocked(cfs_rq)) 9825 *done = false; 9826 } 9827 9828 return decayed; 9829 } 9830 9831 /* 9832 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 9833 * This needs to be done in a top-down fashion because the load of a child 9834 * group is a fraction of its parents load. 9835 */ 9836 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 9837 { 9838 struct rq *rq = rq_of(cfs_rq); 9839 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 9840 unsigned long now = jiffies; 9841 unsigned long load; 9842 9843 if (cfs_rq->last_h_load_update == now) 9844 return; 9845 9846 WRITE_ONCE(cfs_rq->h_load_next, NULL); 9847 for_each_sched_entity(se) { 9848 cfs_rq = cfs_rq_of(se); 9849 WRITE_ONCE(cfs_rq->h_load_next, se); 9850 if (cfs_rq->last_h_load_update == now) 9851 break; 9852 } 9853 9854 if (!se) { 9855 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 9856 cfs_rq->last_h_load_update = now; 9857 } 9858 9859 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 9860 load = cfs_rq->h_load; 9861 load = div64_ul(load * se->avg.load_avg, 9862 cfs_rq_load_avg(cfs_rq) + 1); 9863 cfs_rq = group_cfs_rq(se); 9864 cfs_rq->h_load = load; 9865 cfs_rq->last_h_load_update = now; 9866 } 9867 } 9868 9869 static unsigned long task_h_load(struct task_struct *p) 9870 { 9871 struct cfs_rq *cfs_rq = task_cfs_rq(p); 9872 9873 update_cfs_rq_h_load(cfs_rq); 9874 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 9875 cfs_rq_load_avg(cfs_rq) + 1); 9876 } 9877 #else 9878 static bool __update_blocked_fair(struct rq *rq, bool *done) 9879 { 9880 struct cfs_rq *cfs_rq = &rq->cfs; 9881 bool decayed; 9882 9883 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 9884 if (cfs_rq_has_blocked(cfs_rq)) 9885 *done = false; 9886 9887 return decayed; 9888 } 9889 9890 static unsigned long task_h_load(struct task_struct *p) 9891 { 9892 return p->se.avg.load_avg; 9893 } 9894 #endif 9895 9896 static void sched_balance_update_blocked_averages(int cpu) 9897 { 9898 bool decayed = false, done = true; 9899 struct rq *rq = cpu_rq(cpu); 9900 struct rq_flags rf; 9901 9902 rq_lock_irqsave(rq, &rf); 9903 update_blocked_load_tick(rq); 9904 update_rq_clock(rq); 9905 9906 decayed |= __update_blocked_others(rq, &done); 9907 decayed |= __update_blocked_fair(rq, &done); 9908 9909 update_blocked_load_status(rq, !done); 9910 if (decayed) 9911 cpufreq_update_util(rq, 0); 9912 rq_unlock_irqrestore(rq, &rf); 9913 } 9914 9915 /********** Helpers for sched_balance_find_src_group ************************/ 9916 9917 /* 9918 * sg_lb_stats - stats of a sched_group required for load-balancing: 9919 */ 9920 struct sg_lb_stats { 9921 unsigned long avg_load; /* Avg load over the CPUs of the group */ 9922 unsigned long group_load; /* Total load over the CPUs of the group */ 9923 unsigned long group_capacity; /* Capacity over the CPUs of the group */ 9924 unsigned long group_util; /* Total utilization over the CPUs of the group */ 9925 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 9926 unsigned int sum_nr_running; /* Nr of all tasks running in the group */ 9927 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 9928 unsigned int idle_cpus; /* Nr of idle CPUs in the group */ 9929 unsigned int group_weight; 9930 enum group_type group_type; 9931 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 9932 unsigned int group_smt_balance; /* Task on busy SMT be moved */ 9933 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 9934 #ifdef CONFIG_NUMA_BALANCING 9935 unsigned int nr_numa_running; 9936 unsigned int nr_preferred_running; 9937 #endif 9938 }; 9939 9940 /* 9941 * sd_lb_stats - stats of a sched_domain required for load-balancing: 9942 */ 9943 struct sd_lb_stats { 9944 struct sched_group *busiest; /* Busiest group in this sd */ 9945 struct sched_group *local; /* Local group in this sd */ 9946 unsigned long total_load; /* Total load of all groups in sd */ 9947 unsigned long total_capacity; /* Total capacity of all groups in sd */ 9948 unsigned long avg_load; /* Average load across all groups in sd */ 9949 unsigned int prefer_sibling; /* Tasks should go to sibling first */ 9950 9951 struct sg_lb_stats busiest_stat; /* Statistics of the busiest group */ 9952 struct sg_lb_stats local_stat; /* Statistics of the local group */ 9953 }; 9954 9955 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 9956 { 9957 /* 9958 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 9959 * local_stat because update_sg_lb_stats() does a full clear/assignment. 9960 * We must however set busiest_stat::group_type and 9961 * busiest_stat::idle_cpus to the worst busiest group because 9962 * update_sd_pick_busiest() reads these before assignment. 9963 */ 9964 *sds = (struct sd_lb_stats){ 9965 .busiest = NULL, 9966 .local = NULL, 9967 .total_load = 0UL, 9968 .total_capacity = 0UL, 9969 .busiest_stat = { 9970 .idle_cpus = UINT_MAX, 9971 .group_type = group_has_spare, 9972 }, 9973 }; 9974 } 9975 9976 static unsigned long scale_rt_capacity(int cpu) 9977 { 9978 unsigned long max = get_actual_cpu_capacity(cpu); 9979 struct rq *rq = cpu_rq(cpu); 9980 unsigned long used, free; 9981 unsigned long irq; 9982 9983 irq = cpu_util_irq(rq); 9984 9985 if (unlikely(irq >= max)) 9986 return 1; 9987 9988 /* 9989 * avg_rt.util_avg and avg_dl.util_avg track binary signals 9990 * (running and not running) with weights 0 and 1024 respectively. 9991 */ 9992 used = cpu_util_rt(rq); 9993 used += cpu_util_dl(rq); 9994 9995 if (unlikely(used >= max)) 9996 return 1; 9997 9998 free = max - used; 9999 10000 return scale_irq_capacity(free, irq, max); 10001 } 10002 10003 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 10004 { 10005 unsigned long capacity = scale_rt_capacity(cpu); 10006 struct sched_group *sdg = sd->groups; 10007 10008 if (!capacity) 10009 capacity = 1; 10010 10011 cpu_rq(cpu)->cpu_capacity = capacity; 10012 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 10013 10014 sdg->sgc->capacity = capacity; 10015 sdg->sgc->min_capacity = capacity; 10016 sdg->sgc->max_capacity = capacity; 10017 } 10018 10019 void update_group_capacity(struct sched_domain *sd, int cpu) 10020 { 10021 struct sched_domain *child = sd->child; 10022 struct sched_group *group, *sdg = sd->groups; 10023 unsigned long capacity, min_capacity, max_capacity; 10024 unsigned long interval; 10025 10026 interval = msecs_to_jiffies(sd->balance_interval); 10027 interval = clamp(interval, 1UL, max_load_balance_interval); 10028 sdg->sgc->next_update = jiffies + interval; 10029 10030 if (!child) { 10031 update_cpu_capacity(sd, cpu); 10032 return; 10033 } 10034 10035 capacity = 0; 10036 min_capacity = ULONG_MAX; 10037 max_capacity = 0; 10038 10039 if (child->flags & SD_OVERLAP) { 10040 /* 10041 * SD_OVERLAP domains cannot assume that child groups 10042 * span the current group. 10043 */ 10044 10045 for_each_cpu(cpu, sched_group_span(sdg)) { 10046 unsigned long cpu_cap = capacity_of(cpu); 10047 10048 capacity += cpu_cap; 10049 min_capacity = min(cpu_cap, min_capacity); 10050 max_capacity = max(cpu_cap, max_capacity); 10051 } 10052 } else { 10053 /* 10054 * !SD_OVERLAP domains can assume that child groups 10055 * span the current group. 10056 */ 10057 10058 group = child->groups; 10059 do { 10060 struct sched_group_capacity *sgc = group->sgc; 10061 10062 capacity += sgc->capacity; 10063 min_capacity = min(sgc->min_capacity, min_capacity); 10064 max_capacity = max(sgc->max_capacity, max_capacity); 10065 group = group->next; 10066 } while (group != child->groups); 10067 } 10068 10069 sdg->sgc->capacity = capacity; 10070 sdg->sgc->min_capacity = min_capacity; 10071 sdg->sgc->max_capacity = max_capacity; 10072 } 10073 10074 /* 10075 * Check whether the capacity of the rq has been noticeably reduced by side 10076 * activity. The imbalance_pct is used for the threshold. 10077 * Return true is the capacity is reduced 10078 */ 10079 static inline int 10080 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 10081 { 10082 return ((rq->cpu_capacity * sd->imbalance_pct) < 10083 (arch_scale_cpu_capacity(cpu_of(rq)) * 100)); 10084 } 10085 10086 /* Check if the rq has a misfit task */ 10087 static inline bool check_misfit_status(struct rq *rq) 10088 { 10089 return rq->misfit_task_load; 10090 } 10091 10092 /* 10093 * Group imbalance indicates (and tries to solve) the problem where balancing 10094 * groups is inadequate due to ->cpus_ptr constraints. 10095 * 10096 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 10097 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 10098 * Something like: 10099 * 10100 * { 0 1 2 3 } { 4 5 6 7 } 10101 * * * * * 10102 * 10103 * If we were to balance group-wise we'd place two tasks in the first group and 10104 * two tasks in the second group. Clearly this is undesired as it will overload 10105 * cpu 3 and leave one of the CPUs in the second group unused. 10106 * 10107 * The current solution to this issue is detecting the skew in the first group 10108 * by noticing the lower domain failed to reach balance and had difficulty 10109 * moving tasks due to affinity constraints. 10110 * 10111 * When this is so detected; this group becomes a candidate for busiest; see 10112 * update_sd_pick_busiest(). And calculate_imbalance() and 10113 * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it 10114 * to create an effective group imbalance. 10115 * 10116 * This is a somewhat tricky proposition since the next run might not find the 10117 * group imbalance and decide the groups need to be balanced again. A most 10118 * subtle and fragile situation. 10119 */ 10120 10121 static inline int sg_imbalanced(struct sched_group *group) 10122 { 10123 return group->sgc->imbalance; 10124 } 10125 10126 /* 10127 * group_has_capacity returns true if the group has spare capacity that could 10128 * be used by some tasks. 10129 * We consider that a group has spare capacity if the number of task is 10130 * smaller than the number of CPUs or if the utilization is lower than the 10131 * available capacity for CFS tasks. 10132 * For the latter, we use a threshold to stabilize the state, to take into 10133 * account the variance of the tasks' load and to return true if the available 10134 * capacity in meaningful for the load balancer. 10135 * As an example, an available capacity of 1% can appear but it doesn't make 10136 * any benefit for the load balance. 10137 */ 10138 static inline bool 10139 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 10140 { 10141 if (sgs->sum_nr_running < sgs->group_weight) 10142 return true; 10143 10144 if ((sgs->group_capacity * imbalance_pct) < 10145 (sgs->group_runnable * 100)) 10146 return false; 10147 10148 if ((sgs->group_capacity * 100) > 10149 (sgs->group_util * imbalance_pct)) 10150 return true; 10151 10152 return false; 10153 } 10154 10155 /* 10156 * group_is_overloaded returns true if the group has more tasks than it can 10157 * handle. 10158 * group_is_overloaded is not equals to !group_has_capacity because a group 10159 * with the exact right number of tasks, has no more spare capacity but is not 10160 * overloaded so both group_has_capacity and group_is_overloaded return 10161 * false. 10162 */ 10163 static inline bool 10164 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 10165 { 10166 if (sgs->sum_nr_running <= sgs->group_weight) 10167 return false; 10168 10169 if ((sgs->group_capacity * 100) < 10170 (sgs->group_util * imbalance_pct)) 10171 return true; 10172 10173 if ((sgs->group_capacity * imbalance_pct) < 10174 (sgs->group_runnable * 100)) 10175 return true; 10176 10177 return false; 10178 } 10179 10180 static inline enum 10181 group_type group_classify(unsigned int imbalance_pct, 10182 struct sched_group *group, 10183 struct sg_lb_stats *sgs) 10184 { 10185 if (group_is_overloaded(imbalance_pct, sgs)) 10186 return group_overloaded; 10187 10188 if (sg_imbalanced(group)) 10189 return group_imbalanced; 10190 10191 if (sgs->group_asym_packing) 10192 return group_asym_packing; 10193 10194 if (sgs->group_smt_balance) 10195 return group_smt_balance; 10196 10197 if (sgs->group_misfit_task_load) 10198 return group_misfit_task; 10199 10200 if (!group_has_capacity(imbalance_pct, sgs)) 10201 return group_fully_busy; 10202 10203 return group_has_spare; 10204 } 10205 10206 /** 10207 * sched_use_asym_prio - Check whether asym_packing priority must be used 10208 * @sd: The scheduling domain of the load balancing 10209 * @cpu: A CPU 10210 * 10211 * Always use CPU priority when balancing load between SMT siblings. When 10212 * balancing load between cores, it is not sufficient that @cpu is idle. Only 10213 * use CPU priority if the whole core is idle. 10214 * 10215 * Returns: True if the priority of @cpu must be followed. False otherwise. 10216 */ 10217 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu) 10218 { 10219 if (!(sd->flags & SD_ASYM_PACKING)) 10220 return false; 10221 10222 if (!sched_smt_active()) 10223 return true; 10224 10225 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu); 10226 } 10227 10228 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu) 10229 { 10230 /* 10231 * First check if @dst_cpu can do asym_packing load balance. Only do it 10232 * if it has higher priority than @src_cpu. 10233 */ 10234 return sched_use_asym_prio(sd, dst_cpu) && 10235 sched_asym_prefer(dst_cpu, src_cpu); 10236 } 10237 10238 /** 10239 * sched_group_asym - Check if the destination CPU can do asym_packing balance 10240 * @env: The load balancing environment 10241 * @sgs: Load-balancing statistics of the candidate busiest group 10242 * @group: The candidate busiest group 10243 * 10244 * @env::dst_cpu can do asym_packing if it has higher priority than the 10245 * preferred CPU of @group. 10246 * 10247 * Return: true if @env::dst_cpu can do with asym_packing load balance. False 10248 * otherwise. 10249 */ 10250 static inline bool 10251 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group) 10252 { 10253 /* 10254 * CPU priorities do not make sense for SMT cores with more than one 10255 * busy sibling. 10256 */ 10257 if ((group->flags & SD_SHARE_CPUCAPACITY) && 10258 (sgs->group_weight - sgs->idle_cpus != 1)) 10259 return false; 10260 10261 return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu); 10262 } 10263 10264 /* One group has more than one SMT CPU while the other group does not */ 10265 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1, 10266 struct sched_group *sg2) 10267 { 10268 if (!sg1 || !sg2) 10269 return false; 10270 10271 return (sg1->flags & SD_SHARE_CPUCAPACITY) != 10272 (sg2->flags & SD_SHARE_CPUCAPACITY); 10273 } 10274 10275 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs, 10276 struct sched_group *group) 10277 { 10278 if (!env->idle) 10279 return false; 10280 10281 /* 10282 * For SMT source group, it is better to move a task 10283 * to a CPU that doesn't have multiple tasks sharing its CPU capacity. 10284 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY 10285 * will not be on. 10286 */ 10287 if (group->flags & SD_SHARE_CPUCAPACITY && 10288 sgs->sum_h_nr_running > 1) 10289 return true; 10290 10291 return false; 10292 } 10293 10294 static inline long sibling_imbalance(struct lb_env *env, 10295 struct sd_lb_stats *sds, 10296 struct sg_lb_stats *busiest, 10297 struct sg_lb_stats *local) 10298 { 10299 int ncores_busiest, ncores_local; 10300 long imbalance; 10301 10302 if (!env->idle || !busiest->sum_nr_running) 10303 return 0; 10304 10305 ncores_busiest = sds->busiest->cores; 10306 ncores_local = sds->local->cores; 10307 10308 if (ncores_busiest == ncores_local) { 10309 imbalance = busiest->sum_nr_running; 10310 lsub_positive(&imbalance, local->sum_nr_running); 10311 return imbalance; 10312 } 10313 10314 /* Balance such that nr_running/ncores ratio are same on both groups */ 10315 imbalance = ncores_local * busiest->sum_nr_running; 10316 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running); 10317 /* Normalize imbalance and do rounding on normalization */ 10318 imbalance = 2 * imbalance + ncores_local + ncores_busiest; 10319 imbalance /= ncores_local + ncores_busiest; 10320 10321 /* Take advantage of resource in an empty sched group */ 10322 if (imbalance <= 1 && local->sum_nr_running == 0 && 10323 busiest->sum_nr_running > 1) 10324 imbalance = 2; 10325 10326 return imbalance; 10327 } 10328 10329 static inline bool 10330 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 10331 { 10332 /* 10333 * When there is more than 1 task, the group_overloaded case already 10334 * takes care of cpu with reduced capacity 10335 */ 10336 if (rq->cfs.h_nr_runnable != 1) 10337 return false; 10338 10339 return check_cpu_capacity(rq, sd); 10340 } 10341 10342 /** 10343 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 10344 * @env: The load balancing environment. 10345 * @sds: Load-balancing data with statistics of the local group. 10346 * @group: sched_group whose statistics are to be updated. 10347 * @sgs: variable to hold the statistics for this group. 10348 * @sg_overloaded: sched_group is overloaded 10349 * @sg_overutilized: sched_group is overutilized 10350 */ 10351 static inline void update_sg_lb_stats(struct lb_env *env, 10352 struct sd_lb_stats *sds, 10353 struct sched_group *group, 10354 struct sg_lb_stats *sgs, 10355 bool *sg_overloaded, 10356 bool *sg_overutilized) 10357 { 10358 int i, nr_running, local_group, sd_flags = env->sd->flags; 10359 bool balancing_at_rd = !env->sd->parent; 10360 10361 memset(sgs, 0, sizeof(*sgs)); 10362 10363 local_group = group == sds->local; 10364 10365 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 10366 struct rq *rq = cpu_rq(i); 10367 unsigned long load = cpu_load(rq); 10368 10369 sgs->group_load += load; 10370 sgs->group_util += cpu_util_cfs(i); 10371 sgs->group_runnable += cpu_runnable(rq); 10372 sgs->sum_h_nr_running += rq->cfs.h_nr_runnable; 10373 10374 nr_running = rq->nr_running; 10375 sgs->sum_nr_running += nr_running; 10376 10377 if (cpu_overutilized(i)) 10378 *sg_overutilized = 1; 10379 10380 /* 10381 * No need to call idle_cpu() if nr_running is not 0 10382 */ 10383 if (!nr_running && idle_cpu(i)) { 10384 sgs->idle_cpus++; 10385 /* Idle cpu can't have misfit task */ 10386 continue; 10387 } 10388 10389 /* Overload indicator is only updated at root domain */ 10390 if (balancing_at_rd && nr_running > 1) 10391 *sg_overloaded = 1; 10392 10393 #ifdef CONFIG_NUMA_BALANCING 10394 /* Only fbq_classify_group() uses this to classify NUMA groups */ 10395 if (sd_flags & SD_NUMA) { 10396 sgs->nr_numa_running += rq->nr_numa_running; 10397 sgs->nr_preferred_running += rq->nr_preferred_running; 10398 } 10399 #endif 10400 if (local_group) 10401 continue; 10402 10403 if (sd_flags & SD_ASYM_CPUCAPACITY) { 10404 /* Check for a misfit task on the cpu */ 10405 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 10406 sgs->group_misfit_task_load = rq->misfit_task_load; 10407 *sg_overloaded = 1; 10408 } 10409 } else if (env->idle && sched_reduced_capacity(rq, env->sd)) { 10410 /* Check for a task running on a CPU with reduced capacity */ 10411 if (sgs->group_misfit_task_load < load) 10412 sgs->group_misfit_task_load = load; 10413 } 10414 } 10415 10416 sgs->group_capacity = group->sgc->capacity; 10417 10418 sgs->group_weight = group->group_weight; 10419 10420 /* Check if dst CPU is idle and preferred to this group */ 10421 if (!local_group && env->idle && sgs->sum_h_nr_running && 10422 sched_group_asym(env, sgs, group)) 10423 sgs->group_asym_packing = 1; 10424 10425 /* Check for loaded SMT group to be balanced to dst CPU */ 10426 if (!local_group && smt_balance(env, sgs, group)) 10427 sgs->group_smt_balance = 1; 10428 10429 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 10430 10431 /* Computing avg_load makes sense only when group is overloaded */ 10432 if (sgs->group_type == group_overloaded) 10433 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10434 sgs->group_capacity; 10435 } 10436 10437 /** 10438 * update_sd_pick_busiest - return 1 on busiest group 10439 * @env: The load balancing environment. 10440 * @sds: sched_domain statistics 10441 * @sg: sched_group candidate to be checked for being the busiest 10442 * @sgs: sched_group statistics 10443 * 10444 * Determine if @sg is a busier group than the previously selected 10445 * busiest group. 10446 * 10447 * Return: %true if @sg is a busier group than the previously selected 10448 * busiest group. %false otherwise. 10449 */ 10450 static bool update_sd_pick_busiest(struct lb_env *env, 10451 struct sd_lb_stats *sds, 10452 struct sched_group *sg, 10453 struct sg_lb_stats *sgs) 10454 { 10455 struct sg_lb_stats *busiest = &sds->busiest_stat; 10456 10457 /* Make sure that there is at least one task to pull */ 10458 if (!sgs->sum_h_nr_running) 10459 return false; 10460 10461 /* 10462 * Don't try to pull misfit tasks we can't help. 10463 * We can use max_capacity here as reduction in capacity on some 10464 * CPUs in the group should either be possible to resolve 10465 * internally or be covered by avg_load imbalance (eventually). 10466 */ 10467 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10468 (sgs->group_type == group_misfit_task) && 10469 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 10470 sds->local_stat.group_type != group_has_spare)) 10471 return false; 10472 10473 if (sgs->group_type > busiest->group_type) 10474 return true; 10475 10476 if (sgs->group_type < busiest->group_type) 10477 return false; 10478 10479 /* 10480 * The candidate and the current busiest group are the same type of 10481 * group. Let check which one is the busiest according to the type. 10482 */ 10483 10484 switch (sgs->group_type) { 10485 case group_overloaded: 10486 /* Select the overloaded group with highest avg_load. */ 10487 return sgs->avg_load > busiest->avg_load; 10488 10489 case group_imbalanced: 10490 /* 10491 * Select the 1st imbalanced group as we don't have any way to 10492 * choose one more than another. 10493 */ 10494 return false; 10495 10496 case group_asym_packing: 10497 /* Prefer to move from lowest priority CPU's work */ 10498 return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu); 10499 10500 case group_misfit_task: 10501 /* 10502 * If we have more than one misfit sg go with the biggest 10503 * misfit. 10504 */ 10505 return sgs->group_misfit_task_load > busiest->group_misfit_task_load; 10506 10507 case group_smt_balance: 10508 /* 10509 * Check if we have spare CPUs on either SMT group to 10510 * choose has spare or fully busy handling. 10511 */ 10512 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0) 10513 goto has_spare; 10514 10515 fallthrough; 10516 10517 case group_fully_busy: 10518 /* 10519 * Select the fully busy group with highest avg_load. In 10520 * theory, there is no need to pull task from such kind of 10521 * group because tasks have all compute capacity that they need 10522 * but we can still improve the overall throughput by reducing 10523 * contention when accessing shared HW resources. 10524 * 10525 * XXX for now avg_load is not computed and always 0 so we 10526 * select the 1st one, except if @sg is composed of SMT 10527 * siblings. 10528 */ 10529 10530 if (sgs->avg_load < busiest->avg_load) 10531 return false; 10532 10533 if (sgs->avg_load == busiest->avg_load) { 10534 /* 10535 * SMT sched groups need more help than non-SMT groups. 10536 * If @sg happens to also be SMT, either choice is good. 10537 */ 10538 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY) 10539 return false; 10540 } 10541 10542 break; 10543 10544 case group_has_spare: 10545 /* 10546 * Do not pick sg with SMT CPUs over sg with pure CPUs, 10547 * as we do not want to pull task off SMT core with one task 10548 * and make the core idle. 10549 */ 10550 if (smt_vs_nonsmt_groups(sds->busiest, sg)) { 10551 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1) 10552 return false; 10553 else 10554 return true; 10555 } 10556 has_spare: 10557 10558 /* 10559 * Select not overloaded group with lowest number of idle CPUs 10560 * and highest number of running tasks. We could also compare 10561 * the spare capacity which is more stable but it can end up 10562 * that the group has less spare capacity but finally more idle 10563 * CPUs which means less opportunity to pull tasks. 10564 */ 10565 if (sgs->idle_cpus > busiest->idle_cpus) 10566 return false; 10567 else if ((sgs->idle_cpus == busiest->idle_cpus) && 10568 (sgs->sum_nr_running <= busiest->sum_nr_running)) 10569 return false; 10570 10571 break; 10572 } 10573 10574 /* 10575 * Candidate sg has no more than one task per CPU and has higher 10576 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 10577 * throughput. Maximize throughput, power/energy consequences are not 10578 * considered. 10579 */ 10580 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10581 (sgs->group_type <= group_fully_busy) && 10582 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 10583 return false; 10584 10585 return true; 10586 } 10587 10588 #ifdef CONFIG_NUMA_BALANCING 10589 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10590 { 10591 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 10592 return regular; 10593 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 10594 return remote; 10595 return all; 10596 } 10597 10598 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10599 { 10600 if (rq->nr_running > rq->nr_numa_running) 10601 return regular; 10602 if (rq->nr_running > rq->nr_preferred_running) 10603 return remote; 10604 return all; 10605 } 10606 #else 10607 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10608 { 10609 return all; 10610 } 10611 10612 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10613 { 10614 return regular; 10615 } 10616 #endif /* CONFIG_NUMA_BALANCING */ 10617 10618 10619 struct sg_lb_stats; 10620 10621 /* 10622 * task_running_on_cpu - return 1 if @p is running on @cpu. 10623 */ 10624 10625 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 10626 { 10627 /* Task has no contribution or is new */ 10628 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 10629 return 0; 10630 10631 if (task_on_rq_queued(p)) 10632 return 1; 10633 10634 return 0; 10635 } 10636 10637 /** 10638 * idle_cpu_without - would a given CPU be idle without p ? 10639 * @cpu: the processor on which idleness is tested. 10640 * @p: task which should be ignored. 10641 * 10642 * Return: 1 if the CPU would be idle. 0 otherwise. 10643 */ 10644 static int idle_cpu_without(int cpu, struct task_struct *p) 10645 { 10646 struct rq *rq = cpu_rq(cpu); 10647 10648 if (rq->curr != rq->idle && rq->curr != p) 10649 return 0; 10650 10651 /* 10652 * rq->nr_running can't be used but an updated version without the 10653 * impact of p on cpu must be used instead. The updated nr_running 10654 * be computed and tested before calling idle_cpu_without(). 10655 */ 10656 10657 if (rq->ttwu_pending) 10658 return 0; 10659 10660 return 1; 10661 } 10662 10663 /* 10664 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 10665 * @sd: The sched_domain level to look for idlest group. 10666 * @group: sched_group whose statistics are to be updated. 10667 * @sgs: variable to hold the statistics for this group. 10668 * @p: The task for which we look for the idlest group/CPU. 10669 */ 10670 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 10671 struct sched_group *group, 10672 struct sg_lb_stats *sgs, 10673 struct task_struct *p) 10674 { 10675 int i, nr_running; 10676 10677 memset(sgs, 0, sizeof(*sgs)); 10678 10679 /* Assume that task can't fit any CPU of the group */ 10680 if (sd->flags & SD_ASYM_CPUCAPACITY) 10681 sgs->group_misfit_task_load = 1; 10682 10683 for_each_cpu(i, sched_group_span(group)) { 10684 struct rq *rq = cpu_rq(i); 10685 unsigned int local; 10686 10687 sgs->group_load += cpu_load_without(rq, p); 10688 sgs->group_util += cpu_util_without(i, p); 10689 sgs->group_runnable += cpu_runnable_without(rq, p); 10690 local = task_running_on_cpu(i, p); 10691 sgs->sum_h_nr_running += rq->cfs.h_nr_runnable - local; 10692 10693 nr_running = rq->nr_running - local; 10694 sgs->sum_nr_running += nr_running; 10695 10696 /* 10697 * No need to call idle_cpu_without() if nr_running is not 0 10698 */ 10699 if (!nr_running && idle_cpu_without(i, p)) 10700 sgs->idle_cpus++; 10701 10702 /* Check if task fits in the CPU */ 10703 if (sd->flags & SD_ASYM_CPUCAPACITY && 10704 sgs->group_misfit_task_load && 10705 task_fits_cpu(p, i)) 10706 sgs->group_misfit_task_load = 0; 10707 10708 } 10709 10710 sgs->group_capacity = group->sgc->capacity; 10711 10712 sgs->group_weight = group->group_weight; 10713 10714 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 10715 10716 /* 10717 * Computing avg_load makes sense only when group is fully busy or 10718 * overloaded 10719 */ 10720 if (sgs->group_type == group_fully_busy || 10721 sgs->group_type == group_overloaded) 10722 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10723 sgs->group_capacity; 10724 } 10725 10726 static bool update_pick_idlest(struct sched_group *idlest, 10727 struct sg_lb_stats *idlest_sgs, 10728 struct sched_group *group, 10729 struct sg_lb_stats *sgs) 10730 { 10731 if (sgs->group_type < idlest_sgs->group_type) 10732 return true; 10733 10734 if (sgs->group_type > idlest_sgs->group_type) 10735 return false; 10736 10737 /* 10738 * The candidate and the current idlest group are the same type of 10739 * group. Let check which one is the idlest according to the type. 10740 */ 10741 10742 switch (sgs->group_type) { 10743 case group_overloaded: 10744 case group_fully_busy: 10745 /* Select the group with lowest avg_load. */ 10746 if (idlest_sgs->avg_load <= sgs->avg_load) 10747 return false; 10748 break; 10749 10750 case group_imbalanced: 10751 case group_asym_packing: 10752 case group_smt_balance: 10753 /* Those types are not used in the slow wakeup path */ 10754 return false; 10755 10756 case group_misfit_task: 10757 /* Select group with the highest max capacity */ 10758 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 10759 return false; 10760 break; 10761 10762 case group_has_spare: 10763 /* Select group with most idle CPUs */ 10764 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 10765 return false; 10766 10767 /* Select group with lowest group_util */ 10768 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 10769 idlest_sgs->group_util <= sgs->group_util) 10770 return false; 10771 10772 break; 10773 } 10774 10775 return true; 10776 } 10777 10778 /* 10779 * sched_balance_find_dst_group() finds and returns the least busy CPU group within the 10780 * domain. 10781 * 10782 * Assumes p is allowed on at least one CPU in sd. 10783 */ 10784 static struct sched_group * 10785 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 10786 { 10787 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 10788 struct sg_lb_stats local_sgs, tmp_sgs; 10789 struct sg_lb_stats *sgs; 10790 unsigned long imbalance; 10791 struct sg_lb_stats idlest_sgs = { 10792 .avg_load = UINT_MAX, 10793 .group_type = group_overloaded, 10794 }; 10795 10796 do { 10797 int local_group; 10798 10799 /* Skip over this group if it has no CPUs allowed */ 10800 if (!cpumask_intersects(sched_group_span(group), 10801 p->cpus_ptr)) 10802 continue; 10803 10804 /* Skip over this group if no cookie matched */ 10805 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 10806 continue; 10807 10808 local_group = cpumask_test_cpu(this_cpu, 10809 sched_group_span(group)); 10810 10811 if (local_group) { 10812 sgs = &local_sgs; 10813 local = group; 10814 } else { 10815 sgs = &tmp_sgs; 10816 } 10817 10818 update_sg_wakeup_stats(sd, group, sgs, p); 10819 10820 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 10821 idlest = group; 10822 idlest_sgs = *sgs; 10823 } 10824 10825 } while (group = group->next, group != sd->groups); 10826 10827 10828 /* There is no idlest group to push tasks to */ 10829 if (!idlest) 10830 return NULL; 10831 10832 /* The local group has been skipped because of CPU affinity */ 10833 if (!local) 10834 return idlest; 10835 10836 /* 10837 * If the local group is idler than the selected idlest group 10838 * don't try and push the task. 10839 */ 10840 if (local_sgs.group_type < idlest_sgs.group_type) 10841 return NULL; 10842 10843 /* 10844 * If the local group is busier than the selected idlest group 10845 * try and push the task. 10846 */ 10847 if (local_sgs.group_type > idlest_sgs.group_type) 10848 return idlest; 10849 10850 switch (local_sgs.group_type) { 10851 case group_overloaded: 10852 case group_fully_busy: 10853 10854 /* Calculate allowed imbalance based on load */ 10855 imbalance = scale_load_down(NICE_0_LOAD) * 10856 (sd->imbalance_pct-100) / 100; 10857 10858 /* 10859 * When comparing groups across NUMA domains, it's possible for 10860 * the local domain to be very lightly loaded relative to the 10861 * remote domains but "imbalance" skews the comparison making 10862 * remote CPUs look much more favourable. When considering 10863 * cross-domain, add imbalance to the load on the remote node 10864 * and consider staying local. 10865 */ 10866 10867 if ((sd->flags & SD_NUMA) && 10868 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 10869 return NULL; 10870 10871 /* 10872 * If the local group is less loaded than the selected 10873 * idlest group don't try and push any tasks. 10874 */ 10875 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 10876 return NULL; 10877 10878 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 10879 return NULL; 10880 break; 10881 10882 case group_imbalanced: 10883 case group_asym_packing: 10884 case group_smt_balance: 10885 /* Those type are not used in the slow wakeup path */ 10886 return NULL; 10887 10888 case group_misfit_task: 10889 /* Select group with the highest max capacity */ 10890 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 10891 return NULL; 10892 break; 10893 10894 case group_has_spare: 10895 #ifdef CONFIG_NUMA 10896 if (sd->flags & SD_NUMA) { 10897 int imb_numa_nr = sd->imb_numa_nr; 10898 #ifdef CONFIG_NUMA_BALANCING 10899 int idlest_cpu; 10900 /* 10901 * If there is spare capacity at NUMA, try to select 10902 * the preferred node 10903 */ 10904 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 10905 return NULL; 10906 10907 idlest_cpu = cpumask_first(sched_group_span(idlest)); 10908 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 10909 return idlest; 10910 #endif /* CONFIG_NUMA_BALANCING */ 10911 /* 10912 * Otherwise, keep the task close to the wakeup source 10913 * and improve locality if the number of running tasks 10914 * would remain below threshold where an imbalance is 10915 * allowed while accounting for the possibility the 10916 * task is pinned to a subset of CPUs. If there is a 10917 * real need of migration, periodic load balance will 10918 * take care of it. 10919 */ 10920 if (p->nr_cpus_allowed != NR_CPUS) { 10921 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 10922 10923 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 10924 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 10925 } 10926 10927 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 10928 if (!adjust_numa_imbalance(imbalance, 10929 local_sgs.sum_nr_running + 1, 10930 imb_numa_nr)) { 10931 return NULL; 10932 } 10933 } 10934 #endif /* CONFIG_NUMA */ 10935 10936 /* 10937 * Select group with highest number of idle CPUs. We could also 10938 * compare the utilization which is more stable but it can end 10939 * up that the group has less spare capacity but finally more 10940 * idle CPUs which means more opportunity to run task. 10941 */ 10942 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 10943 return NULL; 10944 break; 10945 } 10946 10947 return idlest; 10948 } 10949 10950 static void update_idle_cpu_scan(struct lb_env *env, 10951 unsigned long sum_util) 10952 { 10953 struct sched_domain_shared *sd_share; 10954 int llc_weight, pct; 10955 u64 x, y, tmp; 10956 /* 10957 * Update the number of CPUs to scan in LLC domain, which could 10958 * be used as a hint in select_idle_cpu(). The update of sd_share 10959 * could be expensive because it is within a shared cache line. 10960 * So the write of this hint only occurs during periodic load 10961 * balancing, rather than CPU_NEWLY_IDLE, because the latter 10962 * can fire way more frequently than the former. 10963 */ 10964 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 10965 return; 10966 10967 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 10968 if (env->sd->span_weight != llc_weight) 10969 return; 10970 10971 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 10972 if (!sd_share) 10973 return; 10974 10975 /* 10976 * The number of CPUs to search drops as sum_util increases, when 10977 * sum_util hits 85% or above, the scan stops. 10978 * The reason to choose 85% as the threshold is because this is the 10979 * imbalance_pct(117) when a LLC sched group is overloaded. 10980 * 10981 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 10982 * and y'= y / SCHED_CAPACITY_SCALE 10983 * 10984 * x is the ratio of sum_util compared to the CPU capacity: 10985 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 10986 * y' is the ratio of CPUs to be scanned in the LLC domain, 10987 * and the number of CPUs to scan is calculated by: 10988 * 10989 * nr_scan = llc_weight * y' [2] 10990 * 10991 * When x hits the threshold of overloaded, AKA, when 10992 * x = 100 / pct, y drops to 0. According to [1], 10993 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 10994 * 10995 * Scale x by SCHED_CAPACITY_SCALE: 10996 * x' = sum_util / llc_weight; [3] 10997 * 10998 * and finally [1] becomes: 10999 * y = SCHED_CAPACITY_SCALE - 11000 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 11001 * 11002 */ 11003 /* equation [3] */ 11004 x = sum_util; 11005 do_div(x, llc_weight); 11006 11007 /* equation [4] */ 11008 pct = env->sd->imbalance_pct; 11009 tmp = x * x * pct * pct; 11010 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 11011 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 11012 y = SCHED_CAPACITY_SCALE - tmp; 11013 11014 /* equation [2] */ 11015 y *= llc_weight; 11016 do_div(y, SCHED_CAPACITY_SCALE); 11017 if ((int)y != sd_share->nr_idle_scan) 11018 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 11019 } 11020 11021 /** 11022 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 11023 * @env: The load balancing environment. 11024 * @sds: variable to hold the statistics for this sched_domain. 11025 */ 11026 11027 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 11028 { 11029 struct sched_group *sg = env->sd->groups; 11030 struct sg_lb_stats *local = &sds->local_stat; 11031 struct sg_lb_stats tmp_sgs; 11032 unsigned long sum_util = 0; 11033 bool sg_overloaded = 0, sg_overutilized = 0; 11034 11035 do { 11036 struct sg_lb_stats *sgs = &tmp_sgs; 11037 int local_group; 11038 11039 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 11040 if (local_group) { 11041 sds->local = sg; 11042 sgs = local; 11043 11044 if (env->idle != CPU_NEWLY_IDLE || 11045 time_after_eq(jiffies, sg->sgc->next_update)) 11046 update_group_capacity(env->sd, env->dst_cpu); 11047 } 11048 11049 update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized); 11050 11051 if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) { 11052 sds->busiest = sg; 11053 sds->busiest_stat = *sgs; 11054 } 11055 11056 /* Now, start updating sd_lb_stats */ 11057 sds->total_load += sgs->group_load; 11058 sds->total_capacity += sgs->group_capacity; 11059 11060 sum_util += sgs->group_util; 11061 sg = sg->next; 11062 } while (sg != env->sd->groups); 11063 11064 /* 11065 * Indicate that the child domain of the busiest group prefers tasks 11066 * go to a child's sibling domains first. NB the flags of a sched group 11067 * are those of the child domain. 11068 */ 11069 if (sds->busiest) 11070 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING); 11071 11072 11073 if (env->sd->flags & SD_NUMA) 11074 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 11075 11076 if (!env->sd->parent) { 11077 /* update overload indicator if we are at root domain */ 11078 set_rd_overloaded(env->dst_rq->rd, sg_overloaded); 11079 11080 /* Update over-utilization (tipping point, U >= 0) indicator */ 11081 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 11082 } else if (sg_overutilized) { 11083 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 11084 } 11085 11086 update_idle_cpu_scan(env, sum_util); 11087 } 11088 11089 /** 11090 * calculate_imbalance - Calculate the amount of imbalance present within the 11091 * groups of a given sched_domain during load balance. 11092 * @env: load balance environment 11093 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 11094 */ 11095 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 11096 { 11097 struct sg_lb_stats *local, *busiest; 11098 11099 local = &sds->local_stat; 11100 busiest = &sds->busiest_stat; 11101 11102 if (busiest->group_type == group_misfit_task) { 11103 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 11104 /* Set imbalance to allow misfit tasks to be balanced. */ 11105 env->migration_type = migrate_misfit; 11106 env->imbalance = 1; 11107 } else { 11108 /* 11109 * Set load imbalance to allow moving task from cpu 11110 * with reduced capacity. 11111 */ 11112 env->migration_type = migrate_load; 11113 env->imbalance = busiest->group_misfit_task_load; 11114 } 11115 return; 11116 } 11117 11118 if (busiest->group_type == group_asym_packing) { 11119 /* 11120 * In case of asym capacity, we will try to migrate all load to 11121 * the preferred CPU. 11122 */ 11123 env->migration_type = migrate_task; 11124 env->imbalance = busiest->sum_h_nr_running; 11125 return; 11126 } 11127 11128 if (busiest->group_type == group_smt_balance) { 11129 /* Reduce number of tasks sharing CPU capacity */ 11130 env->migration_type = migrate_task; 11131 env->imbalance = 1; 11132 return; 11133 } 11134 11135 if (busiest->group_type == group_imbalanced) { 11136 /* 11137 * In the group_imb case we cannot rely on group-wide averages 11138 * to ensure CPU-load equilibrium, try to move any task to fix 11139 * the imbalance. The next load balance will take care of 11140 * balancing back the system. 11141 */ 11142 env->migration_type = migrate_task; 11143 env->imbalance = 1; 11144 return; 11145 } 11146 11147 /* 11148 * Try to use spare capacity of local group without overloading it or 11149 * emptying busiest. 11150 */ 11151 if (local->group_type == group_has_spare) { 11152 if ((busiest->group_type > group_fully_busy) && 11153 !(env->sd->flags & SD_SHARE_LLC)) { 11154 /* 11155 * If busiest is overloaded, try to fill spare 11156 * capacity. This might end up creating spare capacity 11157 * in busiest or busiest still being overloaded but 11158 * there is no simple way to directly compute the 11159 * amount of load to migrate in order to balance the 11160 * system. 11161 */ 11162 env->migration_type = migrate_util; 11163 env->imbalance = max(local->group_capacity, local->group_util) - 11164 local->group_util; 11165 11166 /* 11167 * In some cases, the group's utilization is max or even 11168 * higher than capacity because of migrations but the 11169 * local CPU is (newly) idle. There is at least one 11170 * waiting task in this overloaded busiest group. Let's 11171 * try to pull it. 11172 */ 11173 if (env->idle && env->imbalance == 0) { 11174 env->migration_type = migrate_task; 11175 env->imbalance = 1; 11176 } 11177 11178 return; 11179 } 11180 11181 if (busiest->group_weight == 1 || sds->prefer_sibling) { 11182 /* 11183 * When prefer sibling, evenly spread running tasks on 11184 * groups. 11185 */ 11186 env->migration_type = migrate_task; 11187 env->imbalance = sibling_imbalance(env, sds, busiest, local); 11188 } else { 11189 11190 /* 11191 * If there is no overload, we just want to even the number of 11192 * idle CPUs. 11193 */ 11194 env->migration_type = migrate_task; 11195 env->imbalance = max_t(long, 0, 11196 (local->idle_cpus - busiest->idle_cpus)); 11197 } 11198 11199 #ifdef CONFIG_NUMA 11200 /* Consider allowing a small imbalance between NUMA groups */ 11201 if (env->sd->flags & SD_NUMA) { 11202 env->imbalance = adjust_numa_imbalance(env->imbalance, 11203 local->sum_nr_running + 1, 11204 env->sd->imb_numa_nr); 11205 } 11206 #endif 11207 11208 /* Number of tasks to move to restore balance */ 11209 env->imbalance >>= 1; 11210 11211 return; 11212 } 11213 11214 /* 11215 * Local is fully busy but has to take more load to relieve the 11216 * busiest group 11217 */ 11218 if (local->group_type < group_overloaded) { 11219 /* 11220 * Local will become overloaded so the avg_load metrics are 11221 * finally needed. 11222 */ 11223 11224 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 11225 local->group_capacity; 11226 11227 /* 11228 * If the local group is more loaded than the selected 11229 * busiest group don't try to pull any tasks. 11230 */ 11231 if (local->avg_load >= busiest->avg_load) { 11232 env->imbalance = 0; 11233 return; 11234 } 11235 11236 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 11237 sds->total_capacity; 11238 11239 /* 11240 * If the local group is more loaded than the average system 11241 * load, don't try to pull any tasks. 11242 */ 11243 if (local->avg_load >= sds->avg_load) { 11244 env->imbalance = 0; 11245 return; 11246 } 11247 11248 } 11249 11250 /* 11251 * Both group are or will become overloaded and we're trying to get all 11252 * the CPUs to the average_load, so we don't want to push ourselves 11253 * above the average load, nor do we wish to reduce the max loaded CPU 11254 * below the average load. At the same time, we also don't want to 11255 * reduce the group load below the group capacity. Thus we look for 11256 * the minimum possible imbalance. 11257 */ 11258 env->migration_type = migrate_load; 11259 env->imbalance = min( 11260 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 11261 (sds->avg_load - local->avg_load) * local->group_capacity 11262 ) / SCHED_CAPACITY_SCALE; 11263 } 11264 11265 /******* sched_balance_find_src_group() helpers end here *********************/ 11266 11267 /* 11268 * Decision matrix according to the local and busiest group type: 11269 * 11270 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 11271 * has_spare nr_idle balanced N/A N/A balanced balanced 11272 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 11273 * misfit_task force N/A N/A N/A N/A N/A 11274 * asym_packing force force N/A N/A force force 11275 * imbalanced force force N/A N/A force force 11276 * overloaded force force N/A N/A force avg_load 11277 * 11278 * N/A : Not Applicable because already filtered while updating 11279 * statistics. 11280 * balanced : The system is balanced for these 2 groups. 11281 * force : Calculate the imbalance as load migration is probably needed. 11282 * avg_load : Only if imbalance is significant enough. 11283 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 11284 * different in groups. 11285 */ 11286 11287 /** 11288 * sched_balance_find_src_group - Returns the busiest group within the sched_domain 11289 * if there is an imbalance. 11290 * @env: The load balancing environment. 11291 * 11292 * Also calculates the amount of runnable load which should be moved 11293 * to restore balance. 11294 * 11295 * Return: - The busiest group if imbalance exists. 11296 */ 11297 static struct sched_group *sched_balance_find_src_group(struct lb_env *env) 11298 { 11299 struct sg_lb_stats *local, *busiest; 11300 struct sd_lb_stats sds; 11301 11302 init_sd_lb_stats(&sds); 11303 11304 /* 11305 * Compute the various statistics relevant for load balancing at 11306 * this level. 11307 */ 11308 update_sd_lb_stats(env, &sds); 11309 11310 /* There is no busy sibling group to pull tasks from */ 11311 if (!sds.busiest) 11312 goto out_balanced; 11313 11314 busiest = &sds.busiest_stat; 11315 11316 /* Misfit tasks should be dealt with regardless of the avg load */ 11317 if (busiest->group_type == group_misfit_task) 11318 goto force_balance; 11319 11320 if (!is_rd_overutilized(env->dst_rq->rd) && 11321 rcu_dereference(env->dst_rq->rd->pd)) 11322 goto out_balanced; 11323 11324 /* ASYM feature bypasses nice load balance check */ 11325 if (busiest->group_type == group_asym_packing) 11326 goto force_balance; 11327 11328 /* 11329 * If the busiest group is imbalanced the below checks don't 11330 * work because they assume all things are equal, which typically 11331 * isn't true due to cpus_ptr constraints and the like. 11332 */ 11333 if (busiest->group_type == group_imbalanced) 11334 goto force_balance; 11335 11336 local = &sds.local_stat; 11337 /* 11338 * If the local group is busier than the selected busiest group 11339 * don't try and pull any tasks. 11340 */ 11341 if (local->group_type > busiest->group_type) 11342 goto out_balanced; 11343 11344 /* 11345 * When groups are overloaded, use the avg_load to ensure fairness 11346 * between tasks. 11347 */ 11348 if (local->group_type == group_overloaded) { 11349 /* 11350 * If the local group is more loaded than the selected 11351 * busiest group don't try to pull any tasks. 11352 */ 11353 if (local->avg_load >= busiest->avg_load) 11354 goto out_balanced; 11355 11356 /* XXX broken for overlapping NUMA groups */ 11357 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 11358 sds.total_capacity; 11359 11360 /* 11361 * Don't pull any tasks if this group is already above the 11362 * domain average load. 11363 */ 11364 if (local->avg_load >= sds.avg_load) 11365 goto out_balanced; 11366 11367 /* 11368 * If the busiest group is more loaded, use imbalance_pct to be 11369 * conservative. 11370 */ 11371 if (100 * busiest->avg_load <= 11372 env->sd->imbalance_pct * local->avg_load) 11373 goto out_balanced; 11374 } 11375 11376 /* 11377 * Try to move all excess tasks to a sibling domain of the busiest 11378 * group's child domain. 11379 */ 11380 if (sds.prefer_sibling && local->group_type == group_has_spare && 11381 sibling_imbalance(env, &sds, busiest, local) > 1) 11382 goto force_balance; 11383 11384 if (busiest->group_type != group_overloaded) { 11385 if (!env->idle) { 11386 /* 11387 * If the busiest group is not overloaded (and as a 11388 * result the local one too) but this CPU is already 11389 * busy, let another idle CPU try to pull task. 11390 */ 11391 goto out_balanced; 11392 } 11393 11394 if (busiest->group_type == group_smt_balance && 11395 smt_vs_nonsmt_groups(sds.local, sds.busiest)) { 11396 /* Let non SMT CPU pull from SMT CPU sharing with sibling */ 11397 goto force_balance; 11398 } 11399 11400 if (busiest->group_weight > 1 && 11401 local->idle_cpus <= (busiest->idle_cpus + 1)) { 11402 /* 11403 * If the busiest group is not overloaded 11404 * and there is no imbalance between this and busiest 11405 * group wrt idle CPUs, it is balanced. The imbalance 11406 * becomes significant if the diff is greater than 1 11407 * otherwise we might end up to just move the imbalance 11408 * on another group. Of course this applies only if 11409 * there is more than 1 CPU per group. 11410 */ 11411 goto out_balanced; 11412 } 11413 11414 if (busiest->sum_h_nr_running == 1) { 11415 /* 11416 * busiest doesn't have any tasks waiting to run 11417 */ 11418 goto out_balanced; 11419 } 11420 } 11421 11422 force_balance: 11423 /* Looks like there is an imbalance. Compute it */ 11424 calculate_imbalance(env, &sds); 11425 return env->imbalance ? sds.busiest : NULL; 11426 11427 out_balanced: 11428 env->imbalance = 0; 11429 return NULL; 11430 } 11431 11432 /* 11433 * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group. 11434 */ 11435 static struct rq *sched_balance_find_src_rq(struct lb_env *env, 11436 struct sched_group *group) 11437 { 11438 struct rq *busiest = NULL, *rq; 11439 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 11440 unsigned int busiest_nr = 0; 11441 int i; 11442 11443 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 11444 unsigned long capacity, load, util; 11445 unsigned int nr_running; 11446 enum fbq_type rt; 11447 11448 rq = cpu_rq(i); 11449 rt = fbq_classify_rq(rq); 11450 11451 /* 11452 * We classify groups/runqueues into three groups: 11453 * - regular: there are !numa tasks 11454 * - remote: there are numa tasks that run on the 'wrong' node 11455 * - all: there is no distinction 11456 * 11457 * In order to avoid migrating ideally placed numa tasks, 11458 * ignore those when there's better options. 11459 * 11460 * If we ignore the actual busiest queue to migrate another 11461 * task, the next balance pass can still reduce the busiest 11462 * queue by moving tasks around inside the node. 11463 * 11464 * If we cannot move enough load due to this classification 11465 * the next pass will adjust the group classification and 11466 * allow migration of more tasks. 11467 * 11468 * Both cases only affect the total convergence complexity. 11469 */ 11470 if (rt > env->fbq_type) 11471 continue; 11472 11473 nr_running = rq->cfs.h_nr_runnable; 11474 if (!nr_running) 11475 continue; 11476 11477 capacity = capacity_of(i); 11478 11479 /* 11480 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 11481 * eventually lead to active_balancing high->low capacity. 11482 * Higher per-CPU capacity is considered better than balancing 11483 * average load. 11484 */ 11485 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 11486 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 11487 nr_running == 1) 11488 continue; 11489 11490 /* 11491 * Make sure we only pull tasks from a CPU of lower priority 11492 * when balancing between SMT siblings. 11493 * 11494 * If balancing between cores, let lower priority CPUs help 11495 * SMT cores with more than one busy sibling. 11496 */ 11497 if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1) 11498 continue; 11499 11500 switch (env->migration_type) { 11501 case migrate_load: 11502 /* 11503 * When comparing with load imbalance, use cpu_load() 11504 * which is not scaled with the CPU capacity. 11505 */ 11506 load = cpu_load(rq); 11507 11508 if (nr_running == 1 && load > env->imbalance && 11509 !check_cpu_capacity(rq, env->sd)) 11510 break; 11511 11512 /* 11513 * For the load comparisons with the other CPUs, 11514 * consider the cpu_load() scaled with the CPU 11515 * capacity, so that the load can be moved away 11516 * from the CPU that is potentially running at a 11517 * lower capacity. 11518 * 11519 * Thus we're looking for max(load_i / capacity_i), 11520 * crosswise multiplication to rid ourselves of the 11521 * division works out to: 11522 * load_i * capacity_j > load_j * capacity_i; 11523 * where j is our previous maximum. 11524 */ 11525 if (load * busiest_capacity > busiest_load * capacity) { 11526 busiest_load = load; 11527 busiest_capacity = capacity; 11528 busiest = rq; 11529 } 11530 break; 11531 11532 case migrate_util: 11533 util = cpu_util_cfs_boost(i); 11534 11535 /* 11536 * Don't try to pull utilization from a CPU with one 11537 * running task. Whatever its utilization, we will fail 11538 * detach the task. 11539 */ 11540 if (nr_running <= 1) 11541 continue; 11542 11543 if (busiest_util < util) { 11544 busiest_util = util; 11545 busiest = rq; 11546 } 11547 break; 11548 11549 case migrate_task: 11550 if (busiest_nr < nr_running) { 11551 busiest_nr = nr_running; 11552 busiest = rq; 11553 } 11554 break; 11555 11556 case migrate_misfit: 11557 /* 11558 * For ASYM_CPUCAPACITY domains with misfit tasks we 11559 * simply seek the "biggest" misfit task. 11560 */ 11561 if (rq->misfit_task_load > busiest_load) { 11562 busiest_load = rq->misfit_task_load; 11563 busiest = rq; 11564 } 11565 11566 break; 11567 11568 } 11569 } 11570 11571 return busiest; 11572 } 11573 11574 /* 11575 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 11576 * so long as it is large enough. 11577 */ 11578 #define MAX_PINNED_INTERVAL 512 11579 11580 static inline bool 11581 asym_active_balance(struct lb_env *env) 11582 { 11583 /* 11584 * ASYM_PACKING needs to force migrate tasks from busy but lower 11585 * priority CPUs in order to pack all tasks in the highest priority 11586 * CPUs. When done between cores, do it only if the whole core if the 11587 * whole core is idle. 11588 * 11589 * If @env::src_cpu is an SMT core with busy siblings, let 11590 * the lower priority @env::dst_cpu help it. Do not follow 11591 * CPU priority. 11592 */ 11593 return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) && 11594 (sched_asym_prefer(env->dst_cpu, env->src_cpu) || 11595 !sched_use_asym_prio(env->sd, env->src_cpu)); 11596 } 11597 11598 static inline bool 11599 imbalanced_active_balance(struct lb_env *env) 11600 { 11601 struct sched_domain *sd = env->sd; 11602 11603 /* 11604 * The imbalanced case includes the case of pinned tasks preventing a fair 11605 * distribution of the load on the system but also the even distribution of the 11606 * threads on a system with spare capacity 11607 */ 11608 if ((env->migration_type == migrate_task) && 11609 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 11610 return 1; 11611 11612 return 0; 11613 } 11614 11615 static int need_active_balance(struct lb_env *env) 11616 { 11617 struct sched_domain *sd = env->sd; 11618 11619 if (asym_active_balance(env)) 11620 return 1; 11621 11622 if (imbalanced_active_balance(env)) 11623 return 1; 11624 11625 /* 11626 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 11627 * It's worth migrating the task if the src_cpu's capacity is reduced 11628 * because of other sched_class or IRQs if more capacity stays 11629 * available on dst_cpu. 11630 */ 11631 if (env->idle && 11632 (env->src_rq->cfs.h_nr_runnable == 1)) { 11633 if ((check_cpu_capacity(env->src_rq, sd)) && 11634 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 11635 return 1; 11636 } 11637 11638 if (env->migration_type == migrate_misfit) 11639 return 1; 11640 11641 return 0; 11642 } 11643 11644 static int active_load_balance_cpu_stop(void *data); 11645 11646 static int should_we_balance(struct lb_env *env) 11647 { 11648 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask); 11649 struct sched_group *sg = env->sd->groups; 11650 int cpu, idle_smt = -1; 11651 11652 /* 11653 * Ensure the balancing environment is consistent; can happen 11654 * when the softirq triggers 'during' hotplug. 11655 */ 11656 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 11657 return 0; 11658 11659 /* 11660 * In the newly idle case, we will allow all the CPUs 11661 * to do the newly idle load balance. 11662 * 11663 * However, we bail out if we already have tasks or a wakeup pending, 11664 * to optimize wakeup latency. 11665 */ 11666 if (env->idle == CPU_NEWLY_IDLE) { 11667 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 11668 return 0; 11669 return 1; 11670 } 11671 11672 cpumask_copy(swb_cpus, group_balance_mask(sg)); 11673 /* Try to find first idle CPU */ 11674 for_each_cpu_and(cpu, swb_cpus, env->cpus) { 11675 if (!idle_cpu(cpu)) 11676 continue; 11677 11678 /* 11679 * Don't balance to idle SMT in busy core right away when 11680 * balancing cores, but remember the first idle SMT CPU for 11681 * later consideration. Find CPU on an idle core first. 11682 */ 11683 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) { 11684 if (idle_smt == -1) 11685 idle_smt = cpu; 11686 /* 11687 * If the core is not idle, and first SMT sibling which is 11688 * idle has been found, then its not needed to check other 11689 * SMT siblings for idleness: 11690 */ 11691 #ifdef CONFIG_SCHED_SMT 11692 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu)); 11693 #endif 11694 continue; 11695 } 11696 11697 /* 11698 * Are we the first idle core in a non-SMT domain or higher, 11699 * or the first idle CPU in a SMT domain? 11700 */ 11701 return cpu == env->dst_cpu; 11702 } 11703 11704 /* Are we the first idle CPU with busy siblings? */ 11705 if (idle_smt != -1) 11706 return idle_smt == env->dst_cpu; 11707 11708 /* Are we the first CPU of this group ? */ 11709 return group_balance_cpu(sg) == env->dst_cpu; 11710 } 11711 11712 static void update_lb_imbalance_stat(struct lb_env *env, struct sched_domain *sd, 11713 enum cpu_idle_type idle) 11714 { 11715 if (!schedstat_enabled()) 11716 return; 11717 11718 switch (env->migration_type) { 11719 case migrate_load: 11720 __schedstat_add(sd->lb_imbalance_load[idle], env->imbalance); 11721 break; 11722 case migrate_util: 11723 __schedstat_add(sd->lb_imbalance_util[idle], env->imbalance); 11724 break; 11725 case migrate_task: 11726 __schedstat_add(sd->lb_imbalance_task[idle], env->imbalance); 11727 break; 11728 case migrate_misfit: 11729 __schedstat_add(sd->lb_imbalance_misfit[idle], env->imbalance); 11730 break; 11731 } 11732 } 11733 11734 /* 11735 * Check this_cpu to ensure it is balanced within domain. Attempt to move 11736 * tasks if there is an imbalance. 11737 */ 11738 static int sched_balance_rq(int this_cpu, struct rq *this_rq, 11739 struct sched_domain *sd, enum cpu_idle_type idle, 11740 int *continue_balancing) 11741 { 11742 int ld_moved, cur_ld_moved, active_balance = 0; 11743 struct sched_domain *sd_parent = sd->parent; 11744 struct sched_group *group; 11745 struct rq *busiest; 11746 struct rq_flags rf; 11747 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 11748 struct lb_env env = { 11749 .sd = sd, 11750 .dst_cpu = this_cpu, 11751 .dst_rq = this_rq, 11752 .dst_grpmask = group_balance_mask(sd->groups), 11753 .idle = idle, 11754 .loop_break = SCHED_NR_MIGRATE_BREAK, 11755 .cpus = cpus, 11756 .fbq_type = all, 11757 .tasks = LIST_HEAD_INIT(env.tasks), 11758 }; 11759 11760 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 11761 11762 schedstat_inc(sd->lb_count[idle]); 11763 11764 redo: 11765 if (!should_we_balance(&env)) { 11766 *continue_balancing = 0; 11767 goto out_balanced; 11768 } 11769 11770 group = sched_balance_find_src_group(&env); 11771 if (!group) { 11772 schedstat_inc(sd->lb_nobusyg[idle]); 11773 goto out_balanced; 11774 } 11775 11776 busiest = sched_balance_find_src_rq(&env, group); 11777 if (!busiest) { 11778 schedstat_inc(sd->lb_nobusyq[idle]); 11779 goto out_balanced; 11780 } 11781 11782 WARN_ON_ONCE(busiest == env.dst_rq); 11783 11784 update_lb_imbalance_stat(&env, sd, idle); 11785 11786 env.src_cpu = busiest->cpu; 11787 env.src_rq = busiest; 11788 11789 ld_moved = 0; 11790 /* Clear this flag as soon as we find a pullable task */ 11791 env.flags |= LBF_ALL_PINNED; 11792 if (busiest->nr_running > 1) { 11793 /* 11794 * Attempt to move tasks. If sched_balance_find_src_group has found 11795 * an imbalance but busiest->nr_running <= 1, the group is 11796 * still unbalanced. ld_moved simply stays zero, so it is 11797 * correctly treated as an imbalance. 11798 */ 11799 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 11800 11801 more_balance: 11802 rq_lock_irqsave(busiest, &rf); 11803 update_rq_clock(busiest); 11804 11805 /* 11806 * cur_ld_moved - load moved in current iteration 11807 * ld_moved - cumulative load moved across iterations 11808 */ 11809 cur_ld_moved = detach_tasks(&env); 11810 11811 /* 11812 * We've detached some tasks from busiest_rq. Every 11813 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 11814 * unlock busiest->lock, and we are able to be sure 11815 * that nobody can manipulate the tasks in parallel. 11816 * See task_rq_lock() family for the details. 11817 */ 11818 11819 rq_unlock(busiest, &rf); 11820 11821 if (cur_ld_moved) { 11822 attach_tasks(&env); 11823 ld_moved += cur_ld_moved; 11824 } 11825 11826 local_irq_restore(rf.flags); 11827 11828 if (env.flags & LBF_NEED_BREAK) { 11829 env.flags &= ~LBF_NEED_BREAK; 11830 goto more_balance; 11831 } 11832 11833 /* 11834 * Revisit (affine) tasks on src_cpu that couldn't be moved to 11835 * us and move them to an alternate dst_cpu in our sched_group 11836 * where they can run. The upper limit on how many times we 11837 * iterate on same src_cpu is dependent on number of CPUs in our 11838 * sched_group. 11839 * 11840 * This changes load balance semantics a bit on who can move 11841 * load to a given_cpu. In addition to the given_cpu itself 11842 * (or a ilb_cpu acting on its behalf where given_cpu is 11843 * nohz-idle), we now have balance_cpu in a position to move 11844 * load to given_cpu. In rare situations, this may cause 11845 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 11846 * _independently_ and at _same_ time to move some load to 11847 * given_cpu) causing excess load to be moved to given_cpu. 11848 * This however should not happen so much in practice and 11849 * moreover subsequent load balance cycles should correct the 11850 * excess load moved. 11851 */ 11852 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 11853 11854 /* Prevent to re-select dst_cpu via env's CPUs */ 11855 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 11856 11857 env.dst_rq = cpu_rq(env.new_dst_cpu); 11858 env.dst_cpu = env.new_dst_cpu; 11859 env.flags &= ~LBF_DST_PINNED; 11860 env.loop = 0; 11861 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11862 11863 /* 11864 * Go back to "more_balance" rather than "redo" since we 11865 * need to continue with same src_cpu. 11866 */ 11867 goto more_balance; 11868 } 11869 11870 /* 11871 * We failed to reach balance because of affinity. 11872 */ 11873 if (sd_parent) { 11874 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11875 11876 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 11877 *group_imbalance = 1; 11878 } 11879 11880 /* All tasks on this runqueue were pinned by CPU affinity */ 11881 if (unlikely(env.flags & LBF_ALL_PINNED)) { 11882 __cpumask_clear_cpu(cpu_of(busiest), cpus); 11883 /* 11884 * Attempting to continue load balancing at the current 11885 * sched_domain level only makes sense if there are 11886 * active CPUs remaining as possible busiest CPUs to 11887 * pull load from which are not contained within the 11888 * destination group that is receiving any migrated 11889 * load. 11890 */ 11891 if (!cpumask_subset(cpus, env.dst_grpmask)) { 11892 env.loop = 0; 11893 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11894 goto redo; 11895 } 11896 goto out_all_pinned; 11897 } 11898 } 11899 11900 if (!ld_moved) { 11901 schedstat_inc(sd->lb_failed[idle]); 11902 /* 11903 * Increment the failure counter only on periodic balance. 11904 * We do not want newidle balance, which can be very 11905 * frequent, pollute the failure counter causing 11906 * excessive cache_hot migrations and active balances. 11907 * 11908 * Similarly for migration_misfit which is not related to 11909 * load/util migration, don't pollute nr_balance_failed. 11910 */ 11911 if (idle != CPU_NEWLY_IDLE && 11912 env.migration_type != migrate_misfit) 11913 sd->nr_balance_failed++; 11914 11915 if (need_active_balance(&env)) { 11916 unsigned long flags; 11917 11918 raw_spin_rq_lock_irqsave(busiest, flags); 11919 11920 /* 11921 * Don't kick the active_load_balance_cpu_stop, 11922 * if the curr task on busiest CPU can't be 11923 * moved to this_cpu: 11924 */ 11925 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 11926 raw_spin_rq_unlock_irqrestore(busiest, flags); 11927 goto out_one_pinned; 11928 } 11929 11930 /* Record that we found at least one task that could run on this_cpu */ 11931 env.flags &= ~LBF_ALL_PINNED; 11932 11933 /* 11934 * ->active_balance synchronizes accesses to 11935 * ->active_balance_work. Once set, it's cleared 11936 * only after active load balance is finished. 11937 */ 11938 if (!busiest->active_balance) { 11939 busiest->active_balance = 1; 11940 busiest->push_cpu = this_cpu; 11941 active_balance = 1; 11942 } 11943 11944 preempt_disable(); 11945 raw_spin_rq_unlock_irqrestore(busiest, flags); 11946 if (active_balance) { 11947 stop_one_cpu_nowait(cpu_of(busiest), 11948 active_load_balance_cpu_stop, busiest, 11949 &busiest->active_balance_work); 11950 } 11951 preempt_enable(); 11952 } 11953 } else { 11954 sd->nr_balance_failed = 0; 11955 } 11956 11957 if (likely(!active_balance) || need_active_balance(&env)) { 11958 /* We were unbalanced, so reset the balancing interval */ 11959 sd->balance_interval = sd->min_interval; 11960 } 11961 11962 goto out; 11963 11964 out_balanced: 11965 /* 11966 * We reach balance although we may have faced some affinity 11967 * constraints. Clear the imbalance flag only if other tasks got 11968 * a chance to move and fix the imbalance. 11969 */ 11970 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 11971 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11972 11973 if (*group_imbalance) 11974 *group_imbalance = 0; 11975 } 11976 11977 out_all_pinned: 11978 /* 11979 * We reach balance because all tasks are pinned at this level so 11980 * we can't migrate them. Let the imbalance flag set so parent level 11981 * can try to migrate them. 11982 */ 11983 schedstat_inc(sd->lb_balanced[idle]); 11984 11985 sd->nr_balance_failed = 0; 11986 11987 out_one_pinned: 11988 ld_moved = 0; 11989 11990 /* 11991 * sched_balance_newidle() disregards balance intervals, so we could 11992 * repeatedly reach this code, which would lead to balance_interval 11993 * skyrocketing in a short amount of time. Skip the balance_interval 11994 * increase logic to avoid that. 11995 * 11996 * Similarly misfit migration which is not necessarily an indication of 11997 * the system being busy and requires lb to backoff to let it settle 11998 * down. 11999 */ 12000 if (env.idle == CPU_NEWLY_IDLE || 12001 env.migration_type == migrate_misfit) 12002 goto out; 12003 12004 /* tune up the balancing interval */ 12005 if ((env.flags & LBF_ALL_PINNED && 12006 sd->balance_interval < MAX_PINNED_INTERVAL) || 12007 sd->balance_interval < sd->max_interval) 12008 sd->balance_interval *= 2; 12009 out: 12010 return ld_moved; 12011 } 12012 12013 static inline unsigned long 12014 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 12015 { 12016 unsigned long interval = sd->balance_interval; 12017 12018 if (cpu_busy) 12019 interval *= sd->busy_factor; 12020 12021 /* scale ms to jiffies */ 12022 interval = msecs_to_jiffies(interval); 12023 12024 /* 12025 * Reduce likelihood of busy balancing at higher domains racing with 12026 * balancing at lower domains by preventing their balancing periods 12027 * from being multiples of each other. 12028 */ 12029 if (cpu_busy) 12030 interval -= 1; 12031 12032 interval = clamp(interval, 1UL, max_load_balance_interval); 12033 12034 return interval; 12035 } 12036 12037 static inline void 12038 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 12039 { 12040 unsigned long interval, next; 12041 12042 /* used by idle balance, so cpu_busy = 0 */ 12043 interval = get_sd_balance_interval(sd, 0); 12044 next = sd->last_balance + interval; 12045 12046 if (time_after(*next_balance, next)) 12047 *next_balance = next; 12048 } 12049 12050 /* 12051 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 12052 * running tasks off the busiest CPU onto idle CPUs. It requires at 12053 * least 1 task to be running on each physical CPU where possible, and 12054 * avoids physical / logical imbalances. 12055 */ 12056 static int active_load_balance_cpu_stop(void *data) 12057 { 12058 struct rq *busiest_rq = data; 12059 int busiest_cpu = cpu_of(busiest_rq); 12060 int target_cpu = busiest_rq->push_cpu; 12061 struct rq *target_rq = cpu_rq(target_cpu); 12062 struct sched_domain *sd; 12063 struct task_struct *p = NULL; 12064 struct rq_flags rf; 12065 12066 rq_lock_irq(busiest_rq, &rf); 12067 /* 12068 * Between queueing the stop-work and running it is a hole in which 12069 * CPUs can become inactive. We should not move tasks from or to 12070 * inactive CPUs. 12071 */ 12072 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 12073 goto out_unlock; 12074 12075 /* Make sure the requested CPU hasn't gone down in the meantime: */ 12076 if (unlikely(busiest_cpu != smp_processor_id() || 12077 !busiest_rq->active_balance)) 12078 goto out_unlock; 12079 12080 /* Is there any task to move? */ 12081 if (busiest_rq->nr_running <= 1) 12082 goto out_unlock; 12083 12084 /* 12085 * This condition is "impossible", if it occurs 12086 * we need to fix it. Originally reported by 12087 * Bjorn Helgaas on a 128-CPU setup. 12088 */ 12089 WARN_ON_ONCE(busiest_rq == target_rq); 12090 12091 /* Search for an sd spanning us and the target CPU. */ 12092 rcu_read_lock(); 12093 for_each_domain(target_cpu, sd) { 12094 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 12095 break; 12096 } 12097 12098 if (likely(sd)) { 12099 struct lb_env env = { 12100 .sd = sd, 12101 .dst_cpu = target_cpu, 12102 .dst_rq = target_rq, 12103 .src_cpu = busiest_rq->cpu, 12104 .src_rq = busiest_rq, 12105 .idle = CPU_IDLE, 12106 .flags = LBF_ACTIVE_LB, 12107 }; 12108 12109 schedstat_inc(sd->alb_count); 12110 update_rq_clock(busiest_rq); 12111 12112 p = detach_one_task(&env); 12113 if (p) { 12114 schedstat_inc(sd->alb_pushed); 12115 /* Active balancing done, reset the failure counter. */ 12116 sd->nr_balance_failed = 0; 12117 } else { 12118 schedstat_inc(sd->alb_failed); 12119 } 12120 } 12121 rcu_read_unlock(); 12122 out_unlock: 12123 busiest_rq->active_balance = 0; 12124 rq_unlock(busiest_rq, &rf); 12125 12126 if (p) 12127 attach_one_task(target_rq, p); 12128 12129 local_irq_enable(); 12130 12131 return 0; 12132 } 12133 12134 /* 12135 * This flag serializes load-balancing passes over large domains 12136 * (above the NODE topology level) - only one load-balancing instance 12137 * may run at a time, to reduce overhead on very large systems with 12138 * lots of CPUs and large NUMA distances. 12139 * 12140 * - Note that load-balancing passes triggered while another one 12141 * is executing are skipped and not re-tried. 12142 * 12143 * - Also note that this does not serialize rebalance_domains() 12144 * execution, as non-SD_SERIALIZE domains will still be 12145 * load-balanced in parallel. 12146 */ 12147 static atomic_t sched_balance_running = ATOMIC_INIT(0); 12148 12149 /* 12150 * Scale the max sched_balance_rq interval with the number of CPUs in the system. 12151 * This trades load-balance latency on larger machines for less cross talk. 12152 */ 12153 void update_max_interval(void) 12154 { 12155 max_load_balance_interval = HZ*num_online_cpus()/10; 12156 } 12157 12158 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 12159 { 12160 if (cost > sd->max_newidle_lb_cost) { 12161 /* 12162 * Track max cost of a domain to make sure to not delay the 12163 * next wakeup on the CPU. 12164 */ 12165 sd->max_newidle_lb_cost = cost; 12166 sd->last_decay_max_lb_cost = jiffies; 12167 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 12168 /* 12169 * Decay the newidle max times by ~1% per second to ensure that 12170 * it is not outdated and the current max cost is actually 12171 * shorter. 12172 */ 12173 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 12174 sd->last_decay_max_lb_cost = jiffies; 12175 12176 return true; 12177 } 12178 12179 return false; 12180 } 12181 12182 /* 12183 * It checks each scheduling domain to see if it is due to be balanced, 12184 * and initiates a balancing operation if so. 12185 * 12186 * Balancing parameters are set up in init_sched_domains. 12187 */ 12188 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle) 12189 { 12190 int continue_balancing = 1; 12191 int cpu = rq->cpu; 12192 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 12193 unsigned long interval; 12194 struct sched_domain *sd; 12195 /* Earliest time when we have to do rebalance again */ 12196 unsigned long next_balance = jiffies + 60*HZ; 12197 int update_next_balance = 0; 12198 int need_serialize, need_decay = 0; 12199 u64 max_cost = 0; 12200 12201 rcu_read_lock(); 12202 for_each_domain(cpu, sd) { 12203 /* 12204 * Decay the newidle max times here because this is a regular 12205 * visit to all the domains. 12206 */ 12207 need_decay = update_newidle_cost(sd, 0); 12208 max_cost += sd->max_newidle_lb_cost; 12209 12210 /* 12211 * Stop the load balance at this level. There is another 12212 * CPU in our sched group which is doing load balancing more 12213 * actively. 12214 */ 12215 if (!continue_balancing) { 12216 if (need_decay) 12217 continue; 12218 break; 12219 } 12220 12221 interval = get_sd_balance_interval(sd, busy); 12222 12223 need_serialize = sd->flags & SD_SERIALIZE; 12224 if (need_serialize) { 12225 if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1)) 12226 goto out; 12227 } 12228 12229 if (time_after_eq(jiffies, sd->last_balance + interval)) { 12230 if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) { 12231 /* 12232 * The LBF_DST_PINNED logic could have changed 12233 * env->dst_cpu, so we can't know our idle 12234 * state even if we migrated tasks. Update it. 12235 */ 12236 idle = idle_cpu(cpu); 12237 busy = !idle && !sched_idle_cpu(cpu); 12238 } 12239 sd->last_balance = jiffies; 12240 interval = get_sd_balance_interval(sd, busy); 12241 } 12242 if (need_serialize) 12243 atomic_set_release(&sched_balance_running, 0); 12244 out: 12245 if (time_after(next_balance, sd->last_balance + interval)) { 12246 next_balance = sd->last_balance + interval; 12247 update_next_balance = 1; 12248 } 12249 } 12250 if (need_decay) { 12251 /* 12252 * Ensure the rq-wide value also decays but keep it at a 12253 * reasonable floor to avoid funnies with rq->avg_idle. 12254 */ 12255 rq->max_idle_balance_cost = 12256 max((u64)sysctl_sched_migration_cost, max_cost); 12257 } 12258 rcu_read_unlock(); 12259 12260 /* 12261 * next_balance will be updated only when there is a need. 12262 * When the cpu is attached to null domain for ex, it will not be 12263 * updated. 12264 */ 12265 if (likely(update_next_balance)) 12266 rq->next_balance = next_balance; 12267 12268 } 12269 12270 static inline int on_null_domain(struct rq *rq) 12271 { 12272 return unlikely(!rcu_dereference_sched(rq->sd)); 12273 } 12274 12275 #ifdef CONFIG_NO_HZ_COMMON 12276 /* 12277 * NOHZ idle load balancing (ILB) details: 12278 * 12279 * - When one of the busy CPUs notices that there may be an idle rebalancing 12280 * needed, they will kick the idle load balancer, which then does idle 12281 * load balancing for all the idle CPUs. 12282 */ 12283 static inline int find_new_ilb(void) 12284 { 12285 const struct cpumask *hk_mask; 12286 int ilb_cpu; 12287 12288 hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE); 12289 12290 for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) { 12291 12292 if (ilb_cpu == smp_processor_id()) 12293 continue; 12294 12295 if (idle_cpu(ilb_cpu)) 12296 return ilb_cpu; 12297 } 12298 12299 return -1; 12300 } 12301 12302 /* 12303 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU 12304 * SMP function call (IPI). 12305 * 12306 * We pick the first idle CPU in the HK_TYPE_KERNEL_NOISE housekeeping set 12307 * (if there is one). 12308 */ 12309 static void kick_ilb(unsigned int flags) 12310 { 12311 int ilb_cpu; 12312 12313 /* 12314 * Increase nohz.next_balance only when if full ilb is triggered but 12315 * not if we only update stats. 12316 */ 12317 if (flags & NOHZ_BALANCE_KICK) 12318 nohz.next_balance = jiffies+1; 12319 12320 ilb_cpu = find_new_ilb(); 12321 if (ilb_cpu < 0) 12322 return; 12323 12324 /* 12325 * Don't bother if no new NOHZ balance work items for ilb_cpu, 12326 * i.e. all bits in flags are already set in ilb_cpu. 12327 */ 12328 if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags) 12329 return; 12330 12331 /* 12332 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 12333 * the first flag owns it; cleared by nohz_csd_func(). 12334 */ 12335 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 12336 if (flags & NOHZ_KICK_MASK) 12337 return; 12338 12339 /* 12340 * This way we generate an IPI on the target CPU which 12341 * is idle, and the softirq performing NOHZ idle load balancing 12342 * will be run before returning from the IPI. 12343 */ 12344 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 12345 } 12346 12347 /* 12348 * Current decision point for kicking the idle load balancer in the presence 12349 * of idle CPUs in the system. 12350 */ 12351 static void nohz_balancer_kick(struct rq *rq) 12352 { 12353 unsigned long now = jiffies; 12354 struct sched_domain_shared *sds; 12355 struct sched_domain *sd; 12356 int nr_busy, i, cpu = rq->cpu; 12357 unsigned int flags = 0; 12358 12359 if (unlikely(rq->idle_balance)) 12360 return; 12361 12362 /* 12363 * We may be recently in ticked or tickless idle mode. At the first 12364 * busy tick after returning from idle, we will update the busy stats. 12365 */ 12366 nohz_balance_exit_idle(rq); 12367 12368 /* 12369 * None are in tickless mode and hence no need for NOHZ idle load 12370 * balancing: 12371 */ 12372 if (likely(!atomic_read(&nohz.nr_cpus))) 12373 return; 12374 12375 if (READ_ONCE(nohz.has_blocked) && 12376 time_after(now, READ_ONCE(nohz.next_blocked))) 12377 flags = NOHZ_STATS_KICK; 12378 12379 if (time_before(now, nohz.next_balance)) 12380 goto out; 12381 12382 if (rq->nr_running >= 2) { 12383 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12384 goto out; 12385 } 12386 12387 rcu_read_lock(); 12388 12389 sd = rcu_dereference(rq->sd); 12390 if (sd) { 12391 /* 12392 * If there's a runnable CFS task and the current CPU has reduced 12393 * capacity, kick the ILB to see if there's a better CPU to run on: 12394 */ 12395 if (rq->cfs.h_nr_runnable >= 1 && check_cpu_capacity(rq, sd)) { 12396 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12397 goto unlock; 12398 } 12399 } 12400 12401 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 12402 if (sd) { 12403 /* 12404 * When ASYM_PACKING; see if there's a more preferred CPU 12405 * currently idle; in which case, kick the ILB to move tasks 12406 * around. 12407 * 12408 * When balancing between cores, all the SMT siblings of the 12409 * preferred CPU must be idle. 12410 */ 12411 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 12412 if (sched_asym(sd, i, cpu)) { 12413 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12414 goto unlock; 12415 } 12416 } 12417 } 12418 12419 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 12420 if (sd) { 12421 /* 12422 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 12423 * to run the misfit task on. 12424 */ 12425 if (check_misfit_status(rq)) { 12426 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12427 goto unlock; 12428 } 12429 12430 /* 12431 * For asymmetric systems, we do not want to nicely balance 12432 * cache use, instead we want to embrace asymmetry and only 12433 * ensure tasks have enough CPU capacity. 12434 * 12435 * Skip the LLC logic because it's not relevant in that case. 12436 */ 12437 goto unlock; 12438 } 12439 12440 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 12441 if (sds) { 12442 /* 12443 * If there is an imbalance between LLC domains (IOW we could 12444 * increase the overall cache utilization), we need a less-loaded LLC 12445 * domain to pull some load from. Likewise, we may need to spread 12446 * load within the current LLC domain (e.g. packed SMT cores but 12447 * other CPUs are idle). We can't really know from here how busy 12448 * the others are - so just get a NOHZ balance going if it looks 12449 * like this LLC domain has tasks we could move. 12450 */ 12451 nr_busy = atomic_read(&sds->nr_busy_cpus); 12452 if (nr_busy > 1) { 12453 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12454 goto unlock; 12455 } 12456 } 12457 unlock: 12458 rcu_read_unlock(); 12459 out: 12460 if (READ_ONCE(nohz.needs_update)) 12461 flags |= NOHZ_NEXT_KICK; 12462 12463 if (flags) 12464 kick_ilb(flags); 12465 } 12466 12467 static void set_cpu_sd_state_busy(int cpu) 12468 { 12469 struct sched_domain *sd; 12470 12471 rcu_read_lock(); 12472 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12473 12474 if (!sd || !sd->nohz_idle) 12475 goto unlock; 12476 sd->nohz_idle = 0; 12477 12478 atomic_inc(&sd->shared->nr_busy_cpus); 12479 unlock: 12480 rcu_read_unlock(); 12481 } 12482 12483 void nohz_balance_exit_idle(struct rq *rq) 12484 { 12485 WARN_ON_ONCE(rq != this_rq()); 12486 12487 if (likely(!rq->nohz_tick_stopped)) 12488 return; 12489 12490 rq->nohz_tick_stopped = 0; 12491 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 12492 atomic_dec(&nohz.nr_cpus); 12493 12494 set_cpu_sd_state_busy(rq->cpu); 12495 } 12496 12497 static void set_cpu_sd_state_idle(int cpu) 12498 { 12499 struct sched_domain *sd; 12500 12501 rcu_read_lock(); 12502 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12503 12504 if (!sd || sd->nohz_idle) 12505 goto unlock; 12506 sd->nohz_idle = 1; 12507 12508 atomic_dec(&sd->shared->nr_busy_cpus); 12509 unlock: 12510 rcu_read_unlock(); 12511 } 12512 12513 /* 12514 * This routine will record that the CPU is going idle with tick stopped. 12515 * This info will be used in performing idle load balancing in the future. 12516 */ 12517 void nohz_balance_enter_idle(int cpu) 12518 { 12519 struct rq *rq = cpu_rq(cpu); 12520 12521 WARN_ON_ONCE(cpu != smp_processor_id()); 12522 12523 /* If this CPU is going down, then nothing needs to be done: */ 12524 if (!cpu_active(cpu)) 12525 return; 12526 12527 /* 12528 * Can be set safely without rq->lock held 12529 * If a clear happens, it will have evaluated last additions because 12530 * rq->lock is held during the check and the clear 12531 */ 12532 rq->has_blocked_load = 1; 12533 12534 /* 12535 * The tick is still stopped but load could have been added in the 12536 * meantime. We set the nohz.has_blocked flag to trig a check of the 12537 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 12538 * of nohz.has_blocked can only happen after checking the new load 12539 */ 12540 if (rq->nohz_tick_stopped) 12541 goto out; 12542 12543 /* If we're a completely isolated CPU, we don't play: */ 12544 if (on_null_domain(rq)) 12545 return; 12546 12547 rq->nohz_tick_stopped = 1; 12548 12549 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 12550 atomic_inc(&nohz.nr_cpus); 12551 12552 /* 12553 * Ensures that if nohz_idle_balance() fails to observe our 12554 * @idle_cpus_mask store, it must observe the @has_blocked 12555 * and @needs_update stores. 12556 */ 12557 smp_mb__after_atomic(); 12558 12559 set_cpu_sd_state_idle(cpu); 12560 12561 WRITE_ONCE(nohz.needs_update, 1); 12562 out: 12563 /* 12564 * Each time a cpu enter idle, we assume that it has blocked load and 12565 * enable the periodic update of the load of idle CPUs 12566 */ 12567 WRITE_ONCE(nohz.has_blocked, 1); 12568 } 12569 12570 static bool update_nohz_stats(struct rq *rq) 12571 { 12572 unsigned int cpu = rq->cpu; 12573 12574 if (!rq->has_blocked_load) 12575 return false; 12576 12577 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 12578 return false; 12579 12580 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 12581 return true; 12582 12583 sched_balance_update_blocked_averages(cpu); 12584 12585 return rq->has_blocked_load; 12586 } 12587 12588 /* 12589 * Internal function that runs load balance for all idle CPUs. The load balance 12590 * can be a simple update of blocked load or a complete load balance with 12591 * tasks movement depending of flags. 12592 */ 12593 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 12594 { 12595 /* Earliest time when we have to do rebalance again */ 12596 unsigned long now = jiffies; 12597 unsigned long next_balance = now + 60*HZ; 12598 bool has_blocked_load = false; 12599 int update_next_balance = 0; 12600 int this_cpu = this_rq->cpu; 12601 int balance_cpu; 12602 struct rq *rq; 12603 12604 WARN_ON_ONCE((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 12605 12606 /* 12607 * We assume there will be no idle load after this update and clear 12608 * the has_blocked flag. If a cpu enters idle in the mean time, it will 12609 * set the has_blocked flag and trigger another update of idle load. 12610 * Because a cpu that becomes idle, is added to idle_cpus_mask before 12611 * setting the flag, we are sure to not clear the state and not 12612 * check the load of an idle cpu. 12613 * 12614 * Same applies to idle_cpus_mask vs needs_update. 12615 */ 12616 if (flags & NOHZ_STATS_KICK) 12617 WRITE_ONCE(nohz.has_blocked, 0); 12618 if (flags & NOHZ_NEXT_KICK) 12619 WRITE_ONCE(nohz.needs_update, 0); 12620 12621 /* 12622 * Ensures that if we miss the CPU, we must see the has_blocked 12623 * store from nohz_balance_enter_idle(). 12624 */ 12625 smp_mb(); 12626 12627 /* 12628 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 12629 * chance for other idle cpu to pull load. 12630 */ 12631 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 12632 if (!idle_cpu(balance_cpu)) 12633 continue; 12634 12635 /* 12636 * If this CPU gets work to do, stop the load balancing 12637 * work being done for other CPUs. Next load 12638 * balancing owner will pick it up. 12639 */ 12640 if (!idle_cpu(this_cpu) && need_resched()) { 12641 if (flags & NOHZ_STATS_KICK) 12642 has_blocked_load = true; 12643 if (flags & NOHZ_NEXT_KICK) 12644 WRITE_ONCE(nohz.needs_update, 1); 12645 goto abort; 12646 } 12647 12648 rq = cpu_rq(balance_cpu); 12649 12650 if (flags & NOHZ_STATS_KICK) 12651 has_blocked_load |= update_nohz_stats(rq); 12652 12653 /* 12654 * If time for next balance is due, 12655 * do the balance. 12656 */ 12657 if (time_after_eq(jiffies, rq->next_balance)) { 12658 struct rq_flags rf; 12659 12660 rq_lock_irqsave(rq, &rf); 12661 update_rq_clock(rq); 12662 rq_unlock_irqrestore(rq, &rf); 12663 12664 if (flags & NOHZ_BALANCE_KICK) 12665 sched_balance_domains(rq, CPU_IDLE); 12666 } 12667 12668 if (time_after(next_balance, rq->next_balance)) { 12669 next_balance = rq->next_balance; 12670 update_next_balance = 1; 12671 } 12672 } 12673 12674 /* 12675 * next_balance will be updated only when there is a need. 12676 * When the CPU is attached to null domain for ex, it will not be 12677 * updated. 12678 */ 12679 if (likely(update_next_balance)) 12680 nohz.next_balance = next_balance; 12681 12682 if (flags & NOHZ_STATS_KICK) 12683 WRITE_ONCE(nohz.next_blocked, 12684 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 12685 12686 abort: 12687 /* There is still blocked load, enable periodic update */ 12688 if (has_blocked_load) 12689 WRITE_ONCE(nohz.has_blocked, 1); 12690 } 12691 12692 /* 12693 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 12694 * rebalancing for all the CPUs for whom scheduler ticks are stopped. 12695 */ 12696 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12697 { 12698 unsigned int flags = this_rq->nohz_idle_balance; 12699 12700 if (!flags) 12701 return false; 12702 12703 this_rq->nohz_idle_balance = 0; 12704 12705 if (idle != CPU_IDLE) 12706 return false; 12707 12708 _nohz_idle_balance(this_rq, flags); 12709 12710 return true; 12711 } 12712 12713 /* 12714 * Check if we need to directly run the ILB for updating blocked load before 12715 * entering idle state. Here we run ILB directly without issuing IPIs. 12716 * 12717 * Note that when this function is called, the tick may not yet be stopped on 12718 * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and 12719 * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates 12720 * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle 12721 * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is 12722 * called from this function on (this) CPU that's not yet in the mask. That's 12723 * OK because the goal of nohz_run_idle_balance() is to run ILB only for 12724 * updating the blocked load of already idle CPUs without waking up one of 12725 * those idle CPUs and outside the preempt disable / IRQ off phase of the local 12726 * cpu about to enter idle, because it can take a long time. 12727 */ 12728 void nohz_run_idle_balance(int cpu) 12729 { 12730 unsigned int flags; 12731 12732 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 12733 12734 /* 12735 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 12736 * (i.e. NOHZ_STATS_KICK set) and will do the same. 12737 */ 12738 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 12739 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 12740 } 12741 12742 static void nohz_newidle_balance(struct rq *this_rq) 12743 { 12744 int this_cpu = this_rq->cpu; 12745 12746 /* Will wake up very soon. No time for doing anything else*/ 12747 if (this_rq->avg_idle < sysctl_sched_migration_cost) 12748 return; 12749 12750 /* Don't need to update blocked load of idle CPUs*/ 12751 if (!READ_ONCE(nohz.has_blocked) || 12752 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 12753 return; 12754 12755 /* 12756 * Set the need to trigger ILB in order to update blocked load 12757 * before entering idle state. 12758 */ 12759 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 12760 } 12761 12762 #else /* !CONFIG_NO_HZ_COMMON */ 12763 static inline void nohz_balancer_kick(struct rq *rq) { } 12764 12765 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12766 { 12767 return false; 12768 } 12769 12770 static inline void nohz_newidle_balance(struct rq *this_rq) { } 12771 #endif /* CONFIG_NO_HZ_COMMON */ 12772 12773 /* 12774 * sched_balance_newidle is called by schedule() if this_cpu is about to become 12775 * idle. Attempts to pull tasks from other CPUs. 12776 * 12777 * Returns: 12778 * < 0 - we released the lock and there are !fair tasks present 12779 * 0 - failed, no new tasks 12780 * > 0 - success, new (fair) tasks present 12781 */ 12782 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf) 12783 { 12784 unsigned long next_balance = jiffies + HZ; 12785 int this_cpu = this_rq->cpu; 12786 int continue_balancing = 1; 12787 u64 t0, t1, curr_cost = 0; 12788 struct sched_domain *sd; 12789 int pulled_task = 0; 12790 12791 update_misfit_status(NULL, this_rq); 12792 12793 /* 12794 * There is a task waiting to run. No need to search for one. 12795 * Return 0; the task will be enqueued when switching to idle. 12796 */ 12797 if (this_rq->ttwu_pending) 12798 return 0; 12799 12800 /* 12801 * We must set idle_stamp _before_ calling sched_balance_rq() 12802 * for CPU_NEWLY_IDLE, such that we measure the this duration 12803 * as idle time. 12804 */ 12805 this_rq->idle_stamp = rq_clock(this_rq); 12806 12807 /* 12808 * Do not pull tasks towards !active CPUs... 12809 */ 12810 if (!cpu_active(this_cpu)) 12811 return 0; 12812 12813 /* 12814 * This is OK, because current is on_cpu, which avoids it being picked 12815 * for load-balance and preemption/IRQs are still disabled avoiding 12816 * further scheduler activity on it and we're being very careful to 12817 * re-start the picking loop. 12818 */ 12819 rq_unpin_lock(this_rq, rf); 12820 12821 rcu_read_lock(); 12822 sd = rcu_dereference_check_sched_domain(this_rq->sd); 12823 12824 if (!get_rd_overloaded(this_rq->rd) || 12825 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 12826 12827 if (sd) 12828 update_next_balance(sd, &next_balance); 12829 rcu_read_unlock(); 12830 12831 goto out; 12832 } 12833 rcu_read_unlock(); 12834 12835 raw_spin_rq_unlock(this_rq); 12836 12837 t0 = sched_clock_cpu(this_cpu); 12838 sched_balance_update_blocked_averages(this_cpu); 12839 12840 rcu_read_lock(); 12841 for_each_domain(this_cpu, sd) { 12842 u64 domain_cost; 12843 12844 update_next_balance(sd, &next_balance); 12845 12846 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 12847 break; 12848 12849 if (sd->flags & SD_BALANCE_NEWIDLE) { 12850 12851 pulled_task = sched_balance_rq(this_cpu, this_rq, 12852 sd, CPU_NEWLY_IDLE, 12853 &continue_balancing); 12854 12855 t1 = sched_clock_cpu(this_cpu); 12856 domain_cost = t1 - t0; 12857 update_newidle_cost(sd, domain_cost); 12858 12859 curr_cost += domain_cost; 12860 t0 = t1; 12861 } 12862 12863 /* 12864 * Stop searching for tasks to pull if there are 12865 * now runnable tasks on this rq. 12866 */ 12867 if (pulled_task || !continue_balancing) 12868 break; 12869 } 12870 rcu_read_unlock(); 12871 12872 raw_spin_rq_lock(this_rq); 12873 12874 if (curr_cost > this_rq->max_idle_balance_cost) 12875 this_rq->max_idle_balance_cost = curr_cost; 12876 12877 /* 12878 * While browsing the domains, we released the rq lock, a task could 12879 * have been enqueued in the meantime. Since we're not going idle, 12880 * pretend we pulled a task. 12881 */ 12882 if (this_rq->cfs.h_nr_queued && !pulled_task) 12883 pulled_task = 1; 12884 12885 /* Is there a task of a high priority class? */ 12886 if (this_rq->nr_running != this_rq->cfs.h_nr_queued) 12887 pulled_task = -1; 12888 12889 out: 12890 /* Move the next balance forward */ 12891 if (time_after(this_rq->next_balance, next_balance)) 12892 this_rq->next_balance = next_balance; 12893 12894 if (pulled_task) 12895 this_rq->idle_stamp = 0; 12896 else 12897 nohz_newidle_balance(this_rq); 12898 12899 rq_repin_lock(this_rq, rf); 12900 12901 return pulled_task; 12902 } 12903 12904 /* 12905 * This softirq handler is triggered via SCHED_SOFTIRQ from two places: 12906 * 12907 * - directly from the local sched_tick() for periodic load balancing 12908 * 12909 * - indirectly from a remote sched_tick() for NOHZ idle balancing 12910 * through the SMP cross-call nohz_csd_func() 12911 */ 12912 static __latent_entropy void sched_balance_softirq(void) 12913 { 12914 struct rq *this_rq = this_rq(); 12915 enum cpu_idle_type idle = this_rq->idle_balance; 12916 /* 12917 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the 12918 * balancing on behalf of the other idle CPUs whose ticks are 12919 * stopped. Do nohz_idle_balance *before* sched_balance_domains to 12920 * give the idle CPUs a chance to load balance. Else we may 12921 * load balance only within the local sched_domain hierarchy 12922 * and abort nohz_idle_balance altogether if we pull some load. 12923 */ 12924 if (nohz_idle_balance(this_rq, idle)) 12925 return; 12926 12927 /* normal load balance */ 12928 sched_balance_update_blocked_averages(this_rq->cpu); 12929 sched_balance_domains(this_rq, idle); 12930 } 12931 12932 /* 12933 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 12934 */ 12935 void sched_balance_trigger(struct rq *rq) 12936 { 12937 /* 12938 * Don't need to rebalance while attached to NULL domain or 12939 * runqueue CPU is not active 12940 */ 12941 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 12942 return; 12943 12944 if (time_after_eq(jiffies, rq->next_balance)) 12945 raise_softirq(SCHED_SOFTIRQ); 12946 12947 nohz_balancer_kick(rq); 12948 } 12949 12950 static void rq_online_fair(struct rq *rq) 12951 { 12952 update_sysctl(); 12953 12954 update_runtime_enabled(rq); 12955 } 12956 12957 static void rq_offline_fair(struct rq *rq) 12958 { 12959 update_sysctl(); 12960 12961 /* Ensure any throttled groups are reachable by pick_next_task */ 12962 unthrottle_offline_cfs_rqs(rq); 12963 12964 /* Ensure that we remove rq contribution to group share: */ 12965 clear_tg_offline_cfs_rqs(rq); 12966 } 12967 12968 #endif /* CONFIG_SMP */ 12969 12970 #ifdef CONFIG_SCHED_CORE 12971 static inline bool 12972 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 12973 { 12974 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 12975 u64 slice = se->slice; 12976 12977 return (rtime * min_nr_tasks > slice); 12978 } 12979 12980 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 12981 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 12982 { 12983 if (!sched_core_enabled(rq)) 12984 return; 12985 12986 /* 12987 * If runqueue has only one task which used up its slice and 12988 * if the sibling is forced idle, then trigger schedule to 12989 * give forced idle task a chance. 12990 * 12991 * sched_slice() considers only this active rq and it gets the 12992 * whole slice. But during force idle, we have siblings acting 12993 * like a single runqueue and hence we need to consider runnable 12994 * tasks on this CPU and the forced idle CPU. Ideally, we should 12995 * go through the forced idle rq, but that would be a perf hit. 12996 * We can assume that the forced idle CPU has at least 12997 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 12998 * if we need to give up the CPU. 12999 */ 13000 if (rq->core->core_forceidle_count && rq->cfs.nr_queued == 1 && 13001 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 13002 resched_curr(rq); 13003 } 13004 13005 /* 13006 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 13007 */ 13008 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, 13009 bool forceidle) 13010 { 13011 for_each_sched_entity(se) { 13012 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13013 13014 if (forceidle) { 13015 if (cfs_rq->forceidle_seq == fi_seq) 13016 break; 13017 cfs_rq->forceidle_seq = fi_seq; 13018 } 13019 13020 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 13021 } 13022 } 13023 13024 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 13025 { 13026 struct sched_entity *se = &p->se; 13027 13028 if (p->sched_class != &fair_sched_class) 13029 return; 13030 13031 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 13032 } 13033 13034 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, 13035 bool in_fi) 13036 { 13037 struct rq *rq = task_rq(a); 13038 const struct sched_entity *sea = &a->se; 13039 const struct sched_entity *seb = &b->se; 13040 struct cfs_rq *cfs_rqa; 13041 struct cfs_rq *cfs_rqb; 13042 s64 delta; 13043 13044 WARN_ON_ONCE(task_rq(b)->core != rq->core); 13045 13046 #ifdef CONFIG_FAIR_GROUP_SCHED 13047 /* 13048 * Find an se in the hierarchy for tasks a and b, such that the se's 13049 * are immediate siblings. 13050 */ 13051 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 13052 int sea_depth = sea->depth; 13053 int seb_depth = seb->depth; 13054 13055 if (sea_depth >= seb_depth) 13056 sea = parent_entity(sea); 13057 if (sea_depth <= seb_depth) 13058 seb = parent_entity(seb); 13059 } 13060 13061 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 13062 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 13063 13064 cfs_rqa = sea->cfs_rq; 13065 cfs_rqb = seb->cfs_rq; 13066 #else 13067 cfs_rqa = &task_rq(a)->cfs; 13068 cfs_rqb = &task_rq(b)->cfs; 13069 #endif 13070 13071 /* 13072 * Find delta after normalizing se's vruntime with its cfs_rq's 13073 * min_vruntime_fi, which would have been updated in prior calls 13074 * to se_fi_update(). 13075 */ 13076 delta = (s64)(sea->vruntime - seb->vruntime) + 13077 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 13078 13079 return delta > 0; 13080 } 13081 13082 static int task_is_throttled_fair(struct task_struct *p, int cpu) 13083 { 13084 struct cfs_rq *cfs_rq; 13085 13086 #ifdef CONFIG_FAIR_GROUP_SCHED 13087 cfs_rq = task_group(p)->cfs_rq[cpu]; 13088 #else 13089 cfs_rq = &cpu_rq(cpu)->cfs; 13090 #endif 13091 return throttled_hierarchy(cfs_rq); 13092 } 13093 #else 13094 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 13095 #endif 13096 13097 /* 13098 * scheduler tick hitting a task of our scheduling class. 13099 * 13100 * NOTE: This function can be called remotely by the tick offload that 13101 * goes along full dynticks. Therefore no local assumption can be made 13102 * and everything must be accessed through the @rq and @curr passed in 13103 * parameters. 13104 */ 13105 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 13106 { 13107 struct cfs_rq *cfs_rq; 13108 struct sched_entity *se = &curr->se; 13109 13110 for_each_sched_entity(se) { 13111 cfs_rq = cfs_rq_of(se); 13112 entity_tick(cfs_rq, se, queued); 13113 } 13114 13115 if (static_branch_unlikely(&sched_numa_balancing)) 13116 task_tick_numa(rq, curr); 13117 13118 update_misfit_status(curr, rq); 13119 check_update_overutilized_status(task_rq(curr)); 13120 13121 task_tick_core(rq, curr); 13122 } 13123 13124 /* 13125 * called on fork with the child task as argument from the parent's context 13126 * - child not yet on the tasklist 13127 * - preemption disabled 13128 */ 13129 static void task_fork_fair(struct task_struct *p) 13130 { 13131 set_task_max_allowed_capacity(p); 13132 } 13133 13134 /* 13135 * Priority of the task has changed. Check to see if we preempt 13136 * the current task. 13137 */ 13138 static void 13139 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 13140 { 13141 if (!task_on_rq_queued(p)) 13142 return; 13143 13144 if (rq->cfs.nr_queued == 1) 13145 return; 13146 13147 /* 13148 * Reschedule if we are currently running on this runqueue and 13149 * our priority decreased, or if we are not currently running on 13150 * this runqueue and our priority is higher than the current's 13151 */ 13152 if (task_current_donor(rq, p)) { 13153 if (p->prio > oldprio) 13154 resched_curr(rq); 13155 } else 13156 wakeup_preempt(rq, p, 0); 13157 } 13158 13159 #ifdef CONFIG_FAIR_GROUP_SCHED 13160 /* 13161 * Propagate the changes of the sched_entity across the tg tree to make it 13162 * visible to the root 13163 */ 13164 static void propagate_entity_cfs_rq(struct sched_entity *se) 13165 { 13166 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13167 13168 if (cfs_rq_throttled(cfs_rq)) 13169 return; 13170 13171 if (!throttled_hierarchy(cfs_rq)) 13172 list_add_leaf_cfs_rq(cfs_rq); 13173 13174 /* Start to propagate at parent */ 13175 se = se->parent; 13176 13177 for_each_sched_entity(se) { 13178 cfs_rq = cfs_rq_of(se); 13179 13180 update_load_avg(cfs_rq, se, UPDATE_TG); 13181 13182 if (cfs_rq_throttled(cfs_rq)) 13183 break; 13184 13185 if (!throttled_hierarchy(cfs_rq)) 13186 list_add_leaf_cfs_rq(cfs_rq); 13187 } 13188 } 13189 #else 13190 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 13191 #endif 13192 13193 static void detach_entity_cfs_rq(struct sched_entity *se) 13194 { 13195 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13196 13197 #ifdef CONFIG_SMP 13198 /* 13199 * In case the task sched_avg hasn't been attached: 13200 * - A forked task which hasn't been woken up by wake_up_new_task(). 13201 * - A task which has been woken up by try_to_wake_up() but is 13202 * waiting for actually being woken up by sched_ttwu_pending(). 13203 */ 13204 if (!se->avg.last_update_time) 13205 return; 13206 #endif 13207 13208 /* Catch up with the cfs_rq and remove our load when we leave */ 13209 update_load_avg(cfs_rq, se, 0); 13210 detach_entity_load_avg(cfs_rq, se); 13211 update_tg_load_avg(cfs_rq); 13212 propagate_entity_cfs_rq(se); 13213 } 13214 13215 static void attach_entity_cfs_rq(struct sched_entity *se) 13216 { 13217 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13218 13219 /* Synchronize entity with its cfs_rq */ 13220 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 13221 attach_entity_load_avg(cfs_rq, se); 13222 update_tg_load_avg(cfs_rq); 13223 propagate_entity_cfs_rq(se); 13224 } 13225 13226 static void detach_task_cfs_rq(struct task_struct *p) 13227 { 13228 struct sched_entity *se = &p->se; 13229 13230 detach_entity_cfs_rq(se); 13231 } 13232 13233 static void attach_task_cfs_rq(struct task_struct *p) 13234 { 13235 struct sched_entity *se = &p->se; 13236 13237 attach_entity_cfs_rq(se); 13238 } 13239 13240 static void switched_from_fair(struct rq *rq, struct task_struct *p) 13241 { 13242 detach_task_cfs_rq(p); 13243 } 13244 13245 static void switched_to_fair(struct rq *rq, struct task_struct *p) 13246 { 13247 WARN_ON_ONCE(p->se.sched_delayed); 13248 13249 attach_task_cfs_rq(p); 13250 13251 set_task_max_allowed_capacity(p); 13252 13253 if (task_on_rq_queued(p)) { 13254 /* 13255 * We were most likely switched from sched_rt, so 13256 * kick off the schedule if running, otherwise just see 13257 * if we can still preempt the current task. 13258 */ 13259 if (task_current_donor(rq, p)) 13260 resched_curr(rq); 13261 else 13262 wakeup_preempt(rq, p, 0); 13263 } 13264 } 13265 13266 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 13267 { 13268 struct sched_entity *se = &p->se; 13269 13270 #ifdef CONFIG_SMP 13271 if (task_on_rq_queued(p)) { 13272 /* 13273 * Move the next running task to the front of the list, so our 13274 * cfs_tasks list becomes MRU one. 13275 */ 13276 list_move(&se->group_node, &rq->cfs_tasks); 13277 } 13278 #endif 13279 if (!first) 13280 return; 13281 13282 WARN_ON_ONCE(se->sched_delayed); 13283 13284 if (hrtick_enabled_fair(rq)) 13285 hrtick_start_fair(rq, p); 13286 13287 update_misfit_status(p, rq); 13288 sched_fair_update_stop_tick(rq, p); 13289 } 13290 13291 /* 13292 * Account for a task changing its policy or group. 13293 * 13294 * This routine is mostly called to set cfs_rq->curr field when a task 13295 * migrates between groups/classes. 13296 */ 13297 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 13298 { 13299 struct sched_entity *se = &p->se; 13300 13301 for_each_sched_entity(se) { 13302 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13303 13304 set_next_entity(cfs_rq, se); 13305 /* ensure bandwidth has been allocated on our new cfs_rq */ 13306 account_cfs_rq_runtime(cfs_rq, 0); 13307 } 13308 13309 __set_next_task_fair(rq, p, first); 13310 } 13311 13312 void init_cfs_rq(struct cfs_rq *cfs_rq) 13313 { 13314 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 13315 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 13316 #ifdef CONFIG_SMP 13317 raw_spin_lock_init(&cfs_rq->removed.lock); 13318 #endif 13319 } 13320 13321 #ifdef CONFIG_FAIR_GROUP_SCHED 13322 static void task_change_group_fair(struct task_struct *p) 13323 { 13324 /* 13325 * We couldn't detach or attach a forked task which 13326 * hasn't been woken up by wake_up_new_task(). 13327 */ 13328 if (READ_ONCE(p->__state) == TASK_NEW) 13329 return; 13330 13331 detach_task_cfs_rq(p); 13332 13333 #ifdef CONFIG_SMP 13334 /* Tell se's cfs_rq has been changed -- migrated */ 13335 p->se.avg.last_update_time = 0; 13336 #endif 13337 set_task_rq(p, task_cpu(p)); 13338 attach_task_cfs_rq(p); 13339 } 13340 13341 void free_fair_sched_group(struct task_group *tg) 13342 { 13343 int i; 13344 13345 for_each_possible_cpu(i) { 13346 if (tg->cfs_rq) 13347 kfree(tg->cfs_rq[i]); 13348 if (tg->se) 13349 kfree(tg->se[i]); 13350 } 13351 13352 kfree(tg->cfs_rq); 13353 kfree(tg->se); 13354 } 13355 13356 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 13357 { 13358 struct sched_entity *se; 13359 struct cfs_rq *cfs_rq; 13360 int i; 13361 13362 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 13363 if (!tg->cfs_rq) 13364 goto err; 13365 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 13366 if (!tg->se) 13367 goto err; 13368 13369 tg->shares = NICE_0_LOAD; 13370 13371 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent)); 13372 13373 for_each_possible_cpu(i) { 13374 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 13375 GFP_KERNEL, cpu_to_node(i)); 13376 if (!cfs_rq) 13377 goto err; 13378 13379 se = kzalloc_node(sizeof(struct sched_entity_stats), 13380 GFP_KERNEL, cpu_to_node(i)); 13381 if (!se) 13382 goto err_free_rq; 13383 13384 init_cfs_rq(cfs_rq); 13385 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 13386 init_entity_runnable_average(se); 13387 } 13388 13389 return 1; 13390 13391 err_free_rq: 13392 kfree(cfs_rq); 13393 err: 13394 return 0; 13395 } 13396 13397 void online_fair_sched_group(struct task_group *tg) 13398 { 13399 struct sched_entity *se; 13400 struct rq_flags rf; 13401 struct rq *rq; 13402 int i; 13403 13404 for_each_possible_cpu(i) { 13405 rq = cpu_rq(i); 13406 se = tg->se[i]; 13407 rq_lock_irq(rq, &rf); 13408 update_rq_clock(rq); 13409 attach_entity_cfs_rq(se); 13410 sync_throttle(tg, i); 13411 rq_unlock_irq(rq, &rf); 13412 } 13413 } 13414 13415 void unregister_fair_sched_group(struct task_group *tg) 13416 { 13417 int cpu; 13418 13419 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 13420 13421 for_each_possible_cpu(cpu) { 13422 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu]; 13423 struct sched_entity *se = tg->se[cpu]; 13424 struct rq *rq = cpu_rq(cpu); 13425 13426 if (se) { 13427 if (se->sched_delayed) { 13428 guard(rq_lock_irqsave)(rq); 13429 if (se->sched_delayed) { 13430 update_rq_clock(rq); 13431 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 13432 } 13433 list_del_leaf_cfs_rq(cfs_rq); 13434 } 13435 remove_entity_load_avg(se); 13436 } 13437 13438 /* 13439 * Only empty task groups can be destroyed; so we can speculatively 13440 * check on_list without danger of it being re-added. 13441 */ 13442 if (cfs_rq->on_list) { 13443 guard(rq_lock_irqsave)(rq); 13444 list_del_leaf_cfs_rq(cfs_rq); 13445 } 13446 } 13447 } 13448 13449 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 13450 struct sched_entity *se, int cpu, 13451 struct sched_entity *parent) 13452 { 13453 struct rq *rq = cpu_rq(cpu); 13454 13455 cfs_rq->tg = tg; 13456 cfs_rq->rq = rq; 13457 init_cfs_rq_runtime(cfs_rq); 13458 13459 tg->cfs_rq[cpu] = cfs_rq; 13460 tg->se[cpu] = se; 13461 13462 /* se could be NULL for root_task_group */ 13463 if (!se) 13464 return; 13465 13466 if (!parent) { 13467 se->cfs_rq = &rq->cfs; 13468 se->depth = 0; 13469 } else { 13470 se->cfs_rq = parent->my_q; 13471 se->depth = parent->depth + 1; 13472 } 13473 13474 se->my_q = cfs_rq; 13475 /* guarantee group entities always have weight */ 13476 update_load_set(&se->load, NICE_0_LOAD); 13477 se->parent = parent; 13478 } 13479 13480 static DEFINE_MUTEX(shares_mutex); 13481 13482 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 13483 { 13484 int i; 13485 13486 lockdep_assert_held(&shares_mutex); 13487 13488 /* 13489 * We can't change the weight of the root cgroup. 13490 */ 13491 if (!tg->se[0]) 13492 return -EINVAL; 13493 13494 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 13495 13496 if (tg->shares == shares) 13497 return 0; 13498 13499 tg->shares = shares; 13500 for_each_possible_cpu(i) { 13501 struct rq *rq = cpu_rq(i); 13502 struct sched_entity *se = tg->se[i]; 13503 struct rq_flags rf; 13504 13505 /* Propagate contribution to hierarchy */ 13506 rq_lock_irqsave(rq, &rf); 13507 update_rq_clock(rq); 13508 for_each_sched_entity(se) { 13509 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 13510 update_cfs_group(se); 13511 } 13512 rq_unlock_irqrestore(rq, &rf); 13513 } 13514 13515 return 0; 13516 } 13517 13518 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 13519 { 13520 int ret; 13521 13522 mutex_lock(&shares_mutex); 13523 if (tg_is_idle(tg)) 13524 ret = -EINVAL; 13525 else 13526 ret = __sched_group_set_shares(tg, shares); 13527 mutex_unlock(&shares_mutex); 13528 13529 return ret; 13530 } 13531 13532 int sched_group_set_idle(struct task_group *tg, long idle) 13533 { 13534 int i; 13535 13536 if (tg == &root_task_group) 13537 return -EINVAL; 13538 13539 if (idle < 0 || idle > 1) 13540 return -EINVAL; 13541 13542 mutex_lock(&shares_mutex); 13543 13544 if (tg->idle == idle) { 13545 mutex_unlock(&shares_mutex); 13546 return 0; 13547 } 13548 13549 tg->idle = idle; 13550 13551 for_each_possible_cpu(i) { 13552 struct rq *rq = cpu_rq(i); 13553 struct sched_entity *se = tg->se[i]; 13554 struct cfs_rq *grp_cfs_rq = tg->cfs_rq[i]; 13555 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 13556 long idle_task_delta; 13557 struct rq_flags rf; 13558 13559 rq_lock_irqsave(rq, &rf); 13560 13561 grp_cfs_rq->idle = idle; 13562 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 13563 goto next_cpu; 13564 13565 idle_task_delta = grp_cfs_rq->h_nr_queued - 13566 grp_cfs_rq->h_nr_idle; 13567 if (!cfs_rq_is_idle(grp_cfs_rq)) 13568 idle_task_delta *= -1; 13569 13570 for_each_sched_entity(se) { 13571 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13572 13573 if (!se->on_rq) 13574 break; 13575 13576 cfs_rq->h_nr_idle += idle_task_delta; 13577 13578 /* Already accounted at parent level and above. */ 13579 if (cfs_rq_is_idle(cfs_rq)) 13580 break; 13581 } 13582 13583 next_cpu: 13584 rq_unlock_irqrestore(rq, &rf); 13585 } 13586 13587 /* Idle groups have minimum weight. */ 13588 if (tg_is_idle(tg)) 13589 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 13590 else 13591 __sched_group_set_shares(tg, NICE_0_LOAD); 13592 13593 mutex_unlock(&shares_mutex); 13594 return 0; 13595 } 13596 13597 #endif /* CONFIG_FAIR_GROUP_SCHED */ 13598 13599 13600 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 13601 { 13602 struct sched_entity *se = &task->se; 13603 unsigned int rr_interval = 0; 13604 13605 /* 13606 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 13607 * idle runqueue: 13608 */ 13609 if (rq->cfs.load.weight) 13610 rr_interval = NS_TO_JIFFIES(se->slice); 13611 13612 return rr_interval; 13613 } 13614 13615 /* 13616 * All the scheduling class methods: 13617 */ 13618 DEFINE_SCHED_CLASS(fair) = { 13619 13620 .enqueue_task = enqueue_task_fair, 13621 .dequeue_task = dequeue_task_fair, 13622 .yield_task = yield_task_fair, 13623 .yield_to_task = yield_to_task_fair, 13624 13625 .wakeup_preempt = check_preempt_wakeup_fair, 13626 13627 .pick_task = pick_task_fair, 13628 .pick_next_task = __pick_next_task_fair, 13629 .put_prev_task = put_prev_task_fair, 13630 .set_next_task = set_next_task_fair, 13631 13632 #ifdef CONFIG_SMP 13633 .balance = balance_fair, 13634 .select_task_rq = select_task_rq_fair, 13635 .migrate_task_rq = migrate_task_rq_fair, 13636 13637 .rq_online = rq_online_fair, 13638 .rq_offline = rq_offline_fair, 13639 13640 .task_dead = task_dead_fair, 13641 .set_cpus_allowed = set_cpus_allowed_fair, 13642 #endif 13643 13644 .task_tick = task_tick_fair, 13645 .task_fork = task_fork_fair, 13646 13647 .reweight_task = reweight_task_fair, 13648 .prio_changed = prio_changed_fair, 13649 .switched_from = switched_from_fair, 13650 .switched_to = switched_to_fair, 13651 13652 .get_rr_interval = get_rr_interval_fair, 13653 13654 .update_curr = update_curr_fair, 13655 13656 #ifdef CONFIG_FAIR_GROUP_SCHED 13657 .task_change_group = task_change_group_fair, 13658 #endif 13659 13660 #ifdef CONFIG_SCHED_CORE 13661 .task_is_throttled = task_is_throttled_fair, 13662 #endif 13663 13664 #ifdef CONFIG_UCLAMP_TASK 13665 .uclamp_enabled = 1, 13666 #endif 13667 }; 13668 13669 void print_cfs_stats(struct seq_file *m, int cpu) 13670 { 13671 struct cfs_rq *cfs_rq, *pos; 13672 13673 rcu_read_lock(); 13674 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 13675 print_cfs_rq(m, cpu, cfs_rq); 13676 rcu_read_unlock(); 13677 } 13678 13679 #ifdef CONFIG_NUMA_BALANCING 13680 void show_numa_stats(struct task_struct *p, struct seq_file *m) 13681 { 13682 int node; 13683 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 13684 struct numa_group *ng; 13685 13686 rcu_read_lock(); 13687 ng = rcu_dereference(p->numa_group); 13688 for_each_online_node(node) { 13689 if (p->numa_faults) { 13690 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 13691 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 13692 } 13693 if (ng) { 13694 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 13695 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 13696 } 13697 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 13698 } 13699 rcu_read_unlock(); 13700 } 13701 #endif /* CONFIG_NUMA_BALANCING */ 13702 13703 __init void init_sched_fair_class(void) 13704 { 13705 #ifdef CONFIG_SMP 13706 int i; 13707 13708 for_each_possible_cpu(i) { 13709 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 13710 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 13711 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i), 13712 GFP_KERNEL, cpu_to_node(i)); 13713 13714 #ifdef CONFIG_CFS_BANDWIDTH 13715 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); 13716 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); 13717 #endif 13718 } 13719 13720 open_softirq(SCHED_SOFTIRQ, sched_balance_softirq); 13721 13722 #ifdef CONFIG_NO_HZ_COMMON 13723 nohz.next_balance = jiffies; 13724 nohz.next_blocked = jiffies; 13725 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 13726 #endif 13727 #endif /* SMP */ 13728 13729 } 13730