1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * User-space Probes (UProbes) 4 * 5 * Copyright (C) IBM Corporation, 2008-2012 6 * Authors: 7 * Srikar Dronamraju 8 * Jim Keniston 9 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra 10 */ 11 12 #include <linux/kernel.h> 13 #include <linux/highmem.h> 14 #include <linux/pagemap.h> /* read_mapping_page */ 15 #include <linux/slab.h> 16 #include <linux/sched.h> 17 #include <linux/sched/mm.h> 18 #include <linux/export.h> 19 #include <linux/rmap.h> /* anon_vma_prepare */ 20 #include <linux/mmu_notifier.h> 21 #include <linux/swap.h> /* folio_free_swap */ 22 #include <linux/ptrace.h> /* user_enable_single_step */ 23 #include <linux/kdebug.h> /* notifier mechanism */ 24 #include <linux/percpu-rwsem.h> 25 #include <linux/task_work.h> 26 #include <linux/shmem_fs.h> 27 #include <linux/khugepaged.h> 28 #include <linux/rcupdate_trace.h> 29 #include <linux/workqueue.h> 30 #include <linux/srcu.h> 31 #include <linux/oom.h> /* check_stable_address_space */ 32 #include <linux/pagewalk.h> 33 34 #include <linux/uprobes.h> 35 36 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES) 37 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE 38 39 static struct rb_root uprobes_tree = RB_ROOT; 40 /* 41 * allows us to skip the uprobe_mmap if there are no uprobe events active 42 * at this time. Probably a fine grained per inode count is better? 43 */ 44 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree) 45 46 static DEFINE_RWLOCK(uprobes_treelock); /* serialize rbtree access */ 47 static seqcount_rwlock_t uprobes_seqcount = SEQCNT_RWLOCK_ZERO(uprobes_seqcount, &uprobes_treelock); 48 49 #define UPROBES_HASH_SZ 13 50 /* serialize uprobe->pending_list */ 51 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ]; 52 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) 53 54 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem); 55 56 /* Covers return_instance's uprobe lifetime. */ 57 DEFINE_STATIC_SRCU(uretprobes_srcu); 58 59 /* Have a copy of original instruction */ 60 #define UPROBE_COPY_INSN 0 61 62 struct uprobe { 63 struct rb_node rb_node; /* node in the rb tree */ 64 refcount_t ref; 65 struct rw_semaphore register_rwsem; 66 struct rw_semaphore consumer_rwsem; 67 struct list_head pending_list; 68 struct list_head consumers; 69 struct inode *inode; /* Also hold a ref to inode */ 70 union { 71 struct rcu_head rcu; 72 struct work_struct work; 73 }; 74 loff_t offset; 75 loff_t ref_ctr_offset; 76 unsigned long flags; /* "unsigned long" so bitops work */ 77 78 /* 79 * The generic code assumes that it has two members of unknown type 80 * owned by the arch-specific code: 81 * 82 * insn - copy_insn() saves the original instruction here for 83 * arch_uprobe_analyze_insn(). 84 * 85 * ixol - potentially modified instruction to execute out of 86 * line, copied to xol_area by xol_get_insn_slot(). 87 */ 88 struct arch_uprobe arch; 89 }; 90 91 struct delayed_uprobe { 92 struct list_head list; 93 struct uprobe *uprobe; 94 struct mm_struct *mm; 95 }; 96 97 static DEFINE_MUTEX(delayed_uprobe_lock); 98 static LIST_HEAD(delayed_uprobe_list); 99 100 /* 101 * Execute out of line area: anonymous executable mapping installed 102 * by the probed task to execute the copy of the original instruction 103 * mangled by set_swbp(). 104 * 105 * On a breakpoint hit, thread contests for a slot. It frees the 106 * slot after singlestep. Currently a fixed number of slots are 107 * allocated. 108 */ 109 struct xol_area { 110 wait_queue_head_t wq; /* if all slots are busy */ 111 unsigned long *bitmap; /* 0 = free slot */ 112 113 struct page *page; 114 /* 115 * We keep the vma's vm_start rather than a pointer to the vma 116 * itself. The probed process or a naughty kernel module could make 117 * the vma go away, and we must handle that reasonably gracefully. 118 */ 119 unsigned long vaddr; /* Page(s) of instruction slots */ 120 }; 121 122 static void uprobe_warn(struct task_struct *t, const char *msg) 123 { 124 pr_warn("uprobe: %s:%d failed to %s\n", current->comm, current->pid, msg); 125 } 126 127 /* 128 * valid_vma: Verify if the specified vma is an executable vma 129 * Relax restrictions while unregistering: vm_flags might have 130 * changed after breakpoint was inserted. 131 * - is_register: indicates if we are in register context. 132 * - Return 1 if the specified virtual address is in an 133 * executable vma. 134 */ 135 static bool valid_vma(struct vm_area_struct *vma, bool is_register) 136 { 137 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE; 138 139 if (is_register) 140 flags |= VM_WRITE; 141 142 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC; 143 } 144 145 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset) 146 { 147 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 148 } 149 150 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr) 151 { 152 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start); 153 } 154 155 /** 156 * is_swbp_insn - check if instruction is breakpoint instruction. 157 * @insn: instruction to be checked. 158 * Default implementation of is_swbp_insn 159 * Returns true if @insn is a breakpoint instruction. 160 */ 161 bool __weak is_swbp_insn(uprobe_opcode_t *insn) 162 { 163 return *insn == UPROBE_SWBP_INSN; 164 } 165 166 /** 167 * is_trap_insn - check if instruction is breakpoint instruction. 168 * @insn: instruction to be checked. 169 * Default implementation of is_trap_insn 170 * Returns true if @insn is a breakpoint instruction. 171 * 172 * This function is needed for the case where an architecture has multiple 173 * trap instructions (like powerpc). 174 */ 175 bool __weak is_trap_insn(uprobe_opcode_t *insn) 176 { 177 return is_swbp_insn(insn); 178 } 179 180 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len) 181 { 182 void *kaddr = kmap_atomic(page); 183 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len); 184 kunmap_atomic(kaddr); 185 } 186 187 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len) 188 { 189 void *kaddr = kmap_atomic(page); 190 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len); 191 kunmap_atomic(kaddr); 192 } 193 194 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode) 195 { 196 uprobe_opcode_t old_opcode; 197 bool is_swbp; 198 199 /* 200 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here. 201 * We do not check if it is any other 'trap variant' which could 202 * be conditional trap instruction such as the one powerpc supports. 203 * 204 * The logic is that we do not care if the underlying instruction 205 * is a trap variant; uprobes always wins over any other (gdb) 206 * breakpoint. 207 */ 208 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE); 209 is_swbp = is_swbp_insn(&old_opcode); 210 211 if (is_swbp_insn(new_opcode)) { 212 if (is_swbp) /* register: already installed? */ 213 return 0; 214 } else { 215 if (!is_swbp) /* unregister: was it changed by us? */ 216 return 0; 217 } 218 219 return 1; 220 } 221 222 static struct delayed_uprobe * 223 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm) 224 { 225 struct delayed_uprobe *du; 226 227 list_for_each_entry(du, &delayed_uprobe_list, list) 228 if (du->uprobe == uprobe && du->mm == mm) 229 return du; 230 return NULL; 231 } 232 233 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm) 234 { 235 struct delayed_uprobe *du; 236 237 if (delayed_uprobe_check(uprobe, mm)) 238 return 0; 239 240 du = kzalloc(sizeof(*du), GFP_KERNEL); 241 if (!du) 242 return -ENOMEM; 243 244 du->uprobe = uprobe; 245 du->mm = mm; 246 list_add(&du->list, &delayed_uprobe_list); 247 return 0; 248 } 249 250 static void delayed_uprobe_delete(struct delayed_uprobe *du) 251 { 252 if (WARN_ON(!du)) 253 return; 254 list_del(&du->list); 255 kfree(du); 256 } 257 258 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm) 259 { 260 struct list_head *pos, *q; 261 struct delayed_uprobe *du; 262 263 if (!uprobe && !mm) 264 return; 265 266 list_for_each_safe(pos, q, &delayed_uprobe_list) { 267 du = list_entry(pos, struct delayed_uprobe, list); 268 269 if (uprobe && du->uprobe != uprobe) 270 continue; 271 if (mm && du->mm != mm) 272 continue; 273 274 delayed_uprobe_delete(du); 275 } 276 } 277 278 static bool valid_ref_ctr_vma(struct uprobe *uprobe, 279 struct vm_area_struct *vma) 280 { 281 unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset); 282 283 return uprobe->ref_ctr_offset && 284 vma->vm_file && 285 file_inode(vma->vm_file) == uprobe->inode && 286 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE && 287 vma->vm_start <= vaddr && 288 vma->vm_end > vaddr; 289 } 290 291 static struct vm_area_struct * 292 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm) 293 { 294 VMA_ITERATOR(vmi, mm, 0); 295 struct vm_area_struct *tmp; 296 297 for_each_vma(vmi, tmp) 298 if (valid_ref_ctr_vma(uprobe, tmp)) 299 return tmp; 300 301 return NULL; 302 } 303 304 static int 305 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d) 306 { 307 void *kaddr; 308 struct page *page; 309 int ret; 310 short *ptr; 311 312 if (!vaddr || !d) 313 return -EINVAL; 314 315 ret = get_user_pages_remote(mm, vaddr, 1, 316 FOLL_WRITE, &page, NULL); 317 if (unlikely(ret <= 0)) { 318 /* 319 * We are asking for 1 page. If get_user_pages_remote() fails, 320 * it may return 0, in that case we have to return error. 321 */ 322 return ret == 0 ? -EBUSY : ret; 323 } 324 325 kaddr = kmap_atomic(page); 326 ptr = kaddr + (vaddr & ~PAGE_MASK); 327 328 if (unlikely(*ptr + d < 0)) { 329 pr_warn("ref_ctr going negative. vaddr: 0x%lx, " 330 "curr val: %d, delta: %d\n", vaddr, *ptr, d); 331 ret = -EINVAL; 332 goto out; 333 } 334 335 *ptr += d; 336 ret = 0; 337 out: 338 kunmap_atomic(kaddr); 339 put_page(page); 340 return ret; 341 } 342 343 static void update_ref_ctr_warn(struct uprobe *uprobe, 344 struct mm_struct *mm, short d) 345 { 346 pr_warn("ref_ctr %s failed for inode: 0x%lx offset: " 347 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%p\n", 348 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino, 349 (unsigned long long) uprobe->offset, 350 (unsigned long long) uprobe->ref_ctr_offset, mm); 351 } 352 353 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm, 354 short d) 355 { 356 struct vm_area_struct *rc_vma; 357 unsigned long rc_vaddr; 358 int ret = 0; 359 360 rc_vma = find_ref_ctr_vma(uprobe, mm); 361 362 if (rc_vma) { 363 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset); 364 ret = __update_ref_ctr(mm, rc_vaddr, d); 365 if (ret) 366 update_ref_ctr_warn(uprobe, mm, d); 367 368 if (d > 0) 369 return ret; 370 } 371 372 mutex_lock(&delayed_uprobe_lock); 373 if (d > 0) 374 ret = delayed_uprobe_add(uprobe, mm); 375 else 376 delayed_uprobe_remove(uprobe, mm); 377 mutex_unlock(&delayed_uprobe_lock); 378 379 return ret; 380 } 381 382 static bool orig_page_is_identical(struct vm_area_struct *vma, 383 unsigned long vaddr, struct page *page, bool *pmd_mappable) 384 { 385 const pgoff_t index = vaddr_to_offset(vma, vaddr) >> PAGE_SHIFT; 386 struct folio *orig_folio = filemap_get_folio(vma->vm_file->f_mapping, 387 index); 388 struct page *orig_page; 389 bool identical; 390 391 if (IS_ERR(orig_folio)) 392 return false; 393 orig_page = folio_file_page(orig_folio, index); 394 395 *pmd_mappable = folio_test_pmd_mappable(orig_folio); 396 identical = folio_test_uptodate(orig_folio) && 397 pages_identical(page, orig_page); 398 folio_put(orig_folio); 399 return identical; 400 } 401 402 static int __uprobe_write_opcode(struct vm_area_struct *vma, 403 struct folio_walk *fw, struct folio *folio, 404 unsigned long opcode_vaddr, uprobe_opcode_t opcode) 405 { 406 const unsigned long vaddr = opcode_vaddr & PAGE_MASK; 407 const bool is_register = !!is_swbp_insn(&opcode); 408 bool pmd_mappable; 409 410 /* For now, we'll only handle PTE-mapped folios. */ 411 if (fw->level != FW_LEVEL_PTE) 412 return -EFAULT; 413 414 /* 415 * See can_follow_write_pte(): we'd actually prefer a writable PTE here, 416 * but the VMA might not be writable. 417 */ 418 if (!pte_write(fw->pte)) { 419 if (!PageAnonExclusive(fw->page)) 420 return -EFAULT; 421 if (unlikely(userfaultfd_pte_wp(vma, fw->pte))) 422 return -EFAULT; 423 /* SOFTDIRTY is handled via pte_mkdirty() below. */ 424 } 425 426 /* 427 * We'll temporarily unmap the page and flush the TLB, such that we can 428 * modify the page atomically. 429 */ 430 flush_cache_page(vma, vaddr, pte_pfn(fw->pte)); 431 fw->pte = ptep_clear_flush(vma, vaddr, fw->ptep); 432 copy_to_page(fw->page, opcode_vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 433 434 /* 435 * When unregistering, we may only zap a PTE if uffd is disabled and 436 * there are no unexpected folio references ... 437 */ 438 if (is_register || userfaultfd_missing(vma) || 439 (folio_ref_count(folio) != folio_mapcount(folio) + 1 + 440 folio_test_swapcache(folio) * folio_nr_pages(folio))) 441 goto remap; 442 443 /* 444 * ... and the mapped page is identical to the original page that 445 * would get faulted in on next access. 446 */ 447 if (!orig_page_is_identical(vma, vaddr, fw->page, &pmd_mappable)) 448 goto remap; 449 450 dec_mm_counter(vma->vm_mm, MM_ANONPAGES); 451 folio_remove_rmap_pte(folio, fw->page, vma); 452 if (!folio_mapped(folio) && folio_test_swapcache(folio) && 453 folio_trylock(folio)) { 454 folio_free_swap(folio); 455 folio_unlock(folio); 456 } 457 folio_put(folio); 458 459 return pmd_mappable; 460 remap: 461 /* 462 * Make sure that our copy_to_page() changes become visible before the 463 * set_pte_at() write. 464 */ 465 smp_wmb(); 466 /* We modified the page. Make sure to mark the PTE dirty. */ 467 set_pte_at(vma->vm_mm, vaddr, fw->ptep, pte_mkdirty(fw->pte)); 468 return 0; 469 } 470 471 /* 472 * NOTE: 473 * Expect the breakpoint instruction to be the smallest size instruction for 474 * the architecture. If an arch has variable length instruction and the 475 * breakpoint instruction is not of the smallest length instruction 476 * supported by that architecture then we need to modify is_trap_at_addr and 477 * uprobe_write_opcode accordingly. This would never be a problem for archs 478 * that have fixed length instructions. 479 * 480 * uprobe_write_opcode - write the opcode at a given virtual address. 481 * @auprobe: arch specific probepoint information. 482 * @vma: the probed virtual memory area. 483 * @opcode_vaddr: the virtual address to store the opcode. 484 * @opcode: opcode to be written at @opcode_vaddr. 485 * 486 * Called with mm->mmap_lock held for read or write. 487 * Return 0 (success) or a negative errno. 488 */ 489 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct vm_area_struct *vma, 490 const unsigned long opcode_vaddr, uprobe_opcode_t opcode) 491 { 492 const unsigned long vaddr = opcode_vaddr & PAGE_MASK; 493 struct mm_struct *mm = vma->vm_mm; 494 struct uprobe *uprobe; 495 int ret, is_register, ref_ctr_updated = 0; 496 unsigned int gup_flags = FOLL_FORCE; 497 struct mmu_notifier_range range; 498 struct folio_walk fw; 499 struct folio *folio; 500 struct page *page; 501 502 is_register = is_swbp_insn(&opcode); 503 uprobe = container_of(auprobe, struct uprobe, arch); 504 505 if (WARN_ON_ONCE(!is_cow_mapping(vma->vm_flags))) 506 return -EINVAL; 507 508 /* 509 * When registering, we have to break COW to get an exclusive anonymous 510 * page that we can safely modify. Use FOLL_WRITE to trigger a write 511 * fault if required. When unregistering, we might be lucky and the 512 * anon page is already gone. So defer write faults until really 513 * required. Use FOLL_SPLIT_PMD, because __uprobe_write_opcode() 514 * cannot deal with PMDs yet. 515 */ 516 if (is_register) 517 gup_flags |= FOLL_WRITE | FOLL_SPLIT_PMD; 518 519 retry: 520 ret = get_user_pages_remote(mm, vaddr, 1, gup_flags, &page, NULL); 521 if (ret <= 0) 522 goto out; 523 folio = page_folio(page); 524 525 ret = verify_opcode(page, opcode_vaddr, &opcode); 526 if (ret <= 0) { 527 folio_put(folio); 528 goto out; 529 } 530 531 /* We are going to replace instruction, update ref_ctr. */ 532 if (!ref_ctr_updated && uprobe->ref_ctr_offset) { 533 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1); 534 if (ret) { 535 folio_put(folio); 536 goto out; 537 } 538 539 ref_ctr_updated = 1; 540 } 541 542 ret = 0; 543 if (unlikely(!folio_test_anon(folio))) { 544 VM_WARN_ON_ONCE(is_register); 545 folio_put(folio); 546 goto out; 547 } 548 549 if (!is_register) { 550 /* 551 * In the common case, we'll be able to zap the page when 552 * unregistering. So trigger MMU notifiers now, as we won't 553 * be able to do it under PTL. 554 */ 555 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 556 vaddr, vaddr + PAGE_SIZE); 557 mmu_notifier_invalidate_range_start(&range); 558 } 559 560 ret = -EAGAIN; 561 /* Walk the page tables again, to perform the actual update. */ 562 if (folio_walk_start(&fw, vma, vaddr, 0)) { 563 if (fw.page == page) 564 ret = __uprobe_write_opcode(vma, &fw, folio, opcode_vaddr, opcode); 565 folio_walk_end(&fw, vma); 566 } 567 568 if (!is_register) 569 mmu_notifier_invalidate_range_end(&range); 570 571 folio_put(folio); 572 switch (ret) { 573 case -EFAULT: 574 gup_flags |= FOLL_WRITE | FOLL_SPLIT_PMD; 575 fallthrough; 576 case -EAGAIN: 577 goto retry; 578 default: 579 break; 580 } 581 582 out: 583 /* Revert back reference counter if instruction update failed. */ 584 if (ret < 0 && is_register && ref_ctr_updated) 585 update_ref_ctr(uprobe, mm, -1); 586 587 /* try collapse pmd for compound page */ 588 if (ret > 0) 589 collapse_pte_mapped_thp(mm, vaddr, false); 590 591 return ret < 0 ? ret : 0; 592 } 593 594 /** 595 * set_swbp - store breakpoint at a given address. 596 * @auprobe: arch specific probepoint information. 597 * @vma: the probed virtual memory area. 598 * @vaddr: the virtual address to insert the opcode. 599 * 600 * For mm @mm, store the breakpoint instruction at @vaddr. 601 * Return 0 (success) or a negative errno. 602 */ 603 int __weak set_swbp(struct arch_uprobe *auprobe, struct vm_area_struct *vma, 604 unsigned long vaddr) 605 { 606 return uprobe_write_opcode(auprobe, vma, vaddr, UPROBE_SWBP_INSN); 607 } 608 609 /** 610 * set_orig_insn - Restore the original instruction. 611 * @vma: the probed virtual memory area. 612 * @auprobe: arch specific probepoint information. 613 * @vaddr: the virtual address to insert the opcode. 614 * 615 * For mm @mm, restore the original opcode (opcode) at @vaddr. 616 * Return 0 (success) or a negative errno. 617 */ 618 int __weak set_orig_insn(struct arch_uprobe *auprobe, 619 struct vm_area_struct *vma, unsigned long vaddr) 620 { 621 return uprobe_write_opcode(auprobe, vma, vaddr, 622 *(uprobe_opcode_t *)&auprobe->insn); 623 } 624 625 /* uprobe should have guaranteed positive refcount */ 626 static struct uprobe *get_uprobe(struct uprobe *uprobe) 627 { 628 refcount_inc(&uprobe->ref); 629 return uprobe; 630 } 631 632 /* 633 * uprobe should have guaranteed lifetime, which can be either of: 634 * - caller already has refcount taken (and wants an extra one); 635 * - uprobe is RCU protected and won't be freed until after grace period; 636 * - we are holding uprobes_treelock (for read or write, doesn't matter). 637 */ 638 static struct uprobe *try_get_uprobe(struct uprobe *uprobe) 639 { 640 if (refcount_inc_not_zero(&uprobe->ref)) 641 return uprobe; 642 return NULL; 643 } 644 645 static inline bool uprobe_is_active(struct uprobe *uprobe) 646 { 647 return !RB_EMPTY_NODE(&uprobe->rb_node); 648 } 649 650 static void uprobe_free_rcu_tasks_trace(struct rcu_head *rcu) 651 { 652 struct uprobe *uprobe = container_of(rcu, struct uprobe, rcu); 653 654 kfree(uprobe); 655 } 656 657 static void uprobe_free_srcu(struct rcu_head *rcu) 658 { 659 struct uprobe *uprobe = container_of(rcu, struct uprobe, rcu); 660 661 call_rcu_tasks_trace(&uprobe->rcu, uprobe_free_rcu_tasks_trace); 662 } 663 664 static void uprobe_free_deferred(struct work_struct *work) 665 { 666 struct uprobe *uprobe = container_of(work, struct uprobe, work); 667 668 write_lock(&uprobes_treelock); 669 670 if (uprobe_is_active(uprobe)) { 671 write_seqcount_begin(&uprobes_seqcount); 672 rb_erase(&uprobe->rb_node, &uprobes_tree); 673 write_seqcount_end(&uprobes_seqcount); 674 } 675 676 write_unlock(&uprobes_treelock); 677 678 /* 679 * If application munmap(exec_vma) before uprobe_unregister() 680 * gets called, we don't get a chance to remove uprobe from 681 * delayed_uprobe_list from remove_breakpoint(). Do it here. 682 */ 683 mutex_lock(&delayed_uprobe_lock); 684 delayed_uprobe_remove(uprobe, NULL); 685 mutex_unlock(&delayed_uprobe_lock); 686 687 /* start srcu -> rcu_tasks_trace -> kfree chain */ 688 call_srcu(&uretprobes_srcu, &uprobe->rcu, uprobe_free_srcu); 689 } 690 691 static void put_uprobe(struct uprobe *uprobe) 692 { 693 if (!refcount_dec_and_test(&uprobe->ref)) 694 return; 695 696 INIT_WORK(&uprobe->work, uprobe_free_deferred); 697 schedule_work(&uprobe->work); 698 } 699 700 /* Initialize hprobe as SRCU-protected "leased" uprobe */ 701 static void hprobe_init_leased(struct hprobe *hprobe, struct uprobe *uprobe, int srcu_idx) 702 { 703 WARN_ON(!uprobe); 704 hprobe->state = HPROBE_LEASED; 705 hprobe->uprobe = uprobe; 706 hprobe->srcu_idx = srcu_idx; 707 } 708 709 /* Initialize hprobe as refcounted ("stable") uprobe (uprobe can be NULL). */ 710 static void hprobe_init_stable(struct hprobe *hprobe, struct uprobe *uprobe) 711 { 712 hprobe->state = uprobe ? HPROBE_STABLE : HPROBE_GONE; 713 hprobe->uprobe = uprobe; 714 hprobe->srcu_idx = -1; 715 } 716 717 /* 718 * hprobe_consume() fetches hprobe's underlying uprobe and detects whether 719 * uprobe is SRCU protected or is refcounted. hprobe_consume() can be 720 * used only once for a given hprobe. 721 * 722 * Caller has to call hprobe_finalize() and pass previous hprobe_state, so 723 * that hprobe_finalize() can perform SRCU unlock or put uprobe, whichever 724 * is appropriate. 725 */ 726 static inline struct uprobe *hprobe_consume(struct hprobe *hprobe, enum hprobe_state *hstate) 727 { 728 *hstate = xchg(&hprobe->state, HPROBE_CONSUMED); 729 switch (*hstate) { 730 case HPROBE_LEASED: 731 case HPROBE_STABLE: 732 return hprobe->uprobe; 733 case HPROBE_GONE: /* uprobe is NULL, no SRCU */ 734 case HPROBE_CONSUMED: /* uprobe was finalized already, do nothing */ 735 return NULL; 736 default: 737 WARN(1, "hprobe invalid state %d", *hstate); 738 return NULL; 739 } 740 } 741 742 /* 743 * Reset hprobe state and, if hprobe was LEASED, release SRCU lock. 744 * hprobe_finalize() can only be used from current context after 745 * hprobe_consume() call (which determines uprobe and hstate value). 746 */ 747 static void hprobe_finalize(struct hprobe *hprobe, enum hprobe_state hstate) 748 { 749 switch (hstate) { 750 case HPROBE_LEASED: 751 __srcu_read_unlock(&uretprobes_srcu, hprobe->srcu_idx); 752 break; 753 case HPROBE_STABLE: 754 put_uprobe(hprobe->uprobe); 755 break; 756 case HPROBE_GONE: 757 case HPROBE_CONSUMED: 758 break; 759 default: 760 WARN(1, "hprobe invalid state %d", hstate); 761 break; 762 } 763 } 764 765 /* 766 * Attempt to switch (atomically) uprobe from being SRCU protected (LEASED) 767 * to refcounted (STABLE) state. Competes with hprobe_consume(); only one of 768 * them can win the race to perform SRCU unlocking. Whoever wins must perform 769 * SRCU unlock. 770 * 771 * Returns underlying valid uprobe or NULL, if there was no underlying uprobe 772 * to begin with or we failed to bump its refcount and it's going away. 773 * 774 * Returned non-NULL uprobe can be still safely used within an ongoing SRCU 775 * locked region. If `get` is true, it's guaranteed that non-NULL uprobe has 776 * an extra refcount for caller to assume and use. Otherwise, it's not 777 * guaranteed that returned uprobe has a positive refcount, so caller has to 778 * attempt try_get_uprobe(), if it needs to preserve uprobe beyond current 779 * SRCU lock region. See dup_utask(). 780 */ 781 static struct uprobe *hprobe_expire(struct hprobe *hprobe, bool get) 782 { 783 enum hprobe_state hstate; 784 785 /* 786 * Caller should guarantee that return_instance is not going to be 787 * freed from under us. This can be achieved either through holding 788 * rcu_read_lock() or by owning return_instance in the first place. 789 * 790 * Underlying uprobe is itself protected from reuse by SRCU, so ensure 791 * SRCU lock is held properly. 792 */ 793 lockdep_assert(srcu_read_lock_held(&uretprobes_srcu)); 794 795 hstate = READ_ONCE(hprobe->state); 796 switch (hstate) { 797 case HPROBE_STABLE: 798 /* uprobe has positive refcount, bump refcount, if necessary */ 799 return get ? get_uprobe(hprobe->uprobe) : hprobe->uprobe; 800 case HPROBE_GONE: 801 /* 802 * SRCU was unlocked earlier and we didn't manage to take 803 * uprobe refcnt, so it's effectively NULL 804 */ 805 return NULL; 806 case HPROBE_CONSUMED: 807 /* 808 * uprobe was consumed, so it's effectively NULL as far as 809 * uretprobe processing logic is concerned 810 */ 811 return NULL; 812 case HPROBE_LEASED: { 813 struct uprobe *uprobe = try_get_uprobe(hprobe->uprobe); 814 /* 815 * Try to switch hprobe state, guarding against 816 * hprobe_consume() or another hprobe_expire() racing with us. 817 * Note, if we failed to get uprobe refcount, we use special 818 * HPROBE_GONE state to signal that hprobe->uprobe shouldn't 819 * be used as it will be freed after SRCU is unlocked. 820 */ 821 if (try_cmpxchg(&hprobe->state, &hstate, uprobe ? HPROBE_STABLE : HPROBE_GONE)) { 822 /* We won the race, we are the ones to unlock SRCU */ 823 __srcu_read_unlock(&uretprobes_srcu, hprobe->srcu_idx); 824 return get ? get_uprobe(uprobe) : uprobe; 825 } 826 827 /* 828 * We lost the race, undo refcount bump (if it ever happened), 829 * unless caller would like an extra refcount anyways. 830 */ 831 if (uprobe && !get) 832 put_uprobe(uprobe); 833 /* 834 * Even if hprobe_consume() or another hprobe_expire() wins 835 * the state update race and unlocks SRCU from under us, we 836 * still have a guarantee that underyling uprobe won't be 837 * freed due to ongoing caller's SRCU lock region, so we can 838 * return it regardless. Also, if `get` was true, we also have 839 * an extra ref for the caller to own. This is used in dup_utask(). 840 */ 841 return uprobe; 842 } 843 default: 844 WARN(1, "unknown hprobe state %d", hstate); 845 return NULL; 846 } 847 } 848 849 static __always_inline 850 int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset, 851 const struct uprobe *r) 852 { 853 if (l_inode < r->inode) 854 return -1; 855 856 if (l_inode > r->inode) 857 return 1; 858 859 if (l_offset < r->offset) 860 return -1; 861 862 if (l_offset > r->offset) 863 return 1; 864 865 return 0; 866 } 867 868 #define __node_2_uprobe(node) \ 869 rb_entry((node), struct uprobe, rb_node) 870 871 struct __uprobe_key { 872 struct inode *inode; 873 loff_t offset; 874 }; 875 876 static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b) 877 { 878 const struct __uprobe_key *a = key; 879 return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b)); 880 } 881 882 static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b) 883 { 884 struct uprobe *u = __node_2_uprobe(a); 885 return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b)); 886 } 887 888 /* 889 * Assumes being inside RCU protected region. 890 * No refcount is taken on returned uprobe. 891 */ 892 static struct uprobe *find_uprobe_rcu(struct inode *inode, loff_t offset) 893 { 894 struct __uprobe_key key = { 895 .inode = inode, 896 .offset = offset, 897 }; 898 struct rb_node *node; 899 unsigned int seq; 900 901 lockdep_assert(rcu_read_lock_trace_held()); 902 903 do { 904 seq = read_seqcount_begin(&uprobes_seqcount); 905 node = rb_find_rcu(&key, &uprobes_tree, __uprobe_cmp_key); 906 /* 907 * Lockless RB-tree lookups can result only in false negatives. 908 * If the element is found, it is correct and can be returned 909 * under RCU protection. If we find nothing, we need to 910 * validate that seqcount didn't change. If it did, we have to 911 * try again as we might have missed the element (false 912 * negative). If seqcount is unchanged, search truly failed. 913 */ 914 if (node) 915 return __node_2_uprobe(node); 916 } while (read_seqcount_retry(&uprobes_seqcount, seq)); 917 918 return NULL; 919 } 920 921 /* 922 * Attempt to insert a new uprobe into uprobes_tree. 923 * 924 * If uprobe already exists (for given inode+offset), we just increment 925 * refcount of previously existing uprobe. 926 * 927 * If not, a provided new instance of uprobe is inserted into the tree (with 928 * assumed initial refcount == 1). 929 * 930 * In any case, we return a uprobe instance that ends up being in uprobes_tree. 931 * Caller has to clean up new uprobe instance, if it ended up not being 932 * inserted into the tree. 933 * 934 * We assume that uprobes_treelock is held for writing. 935 */ 936 static struct uprobe *__insert_uprobe(struct uprobe *uprobe) 937 { 938 struct rb_node *node; 939 again: 940 node = rb_find_add_rcu(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp); 941 if (node) { 942 struct uprobe *u = __node_2_uprobe(node); 943 944 if (!try_get_uprobe(u)) { 945 rb_erase(node, &uprobes_tree); 946 RB_CLEAR_NODE(&u->rb_node); 947 goto again; 948 } 949 950 return u; 951 } 952 953 return uprobe; 954 } 955 956 /* 957 * Acquire uprobes_treelock and insert uprobe into uprobes_tree 958 * (or reuse existing one, see __insert_uprobe() comments above). 959 */ 960 static struct uprobe *insert_uprobe(struct uprobe *uprobe) 961 { 962 struct uprobe *u; 963 964 write_lock(&uprobes_treelock); 965 write_seqcount_begin(&uprobes_seqcount); 966 u = __insert_uprobe(uprobe); 967 write_seqcount_end(&uprobes_seqcount); 968 write_unlock(&uprobes_treelock); 969 970 return u; 971 } 972 973 static void 974 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe) 975 { 976 pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx " 977 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n", 978 uprobe->inode->i_ino, (unsigned long long) uprobe->offset, 979 (unsigned long long) cur_uprobe->ref_ctr_offset, 980 (unsigned long long) uprobe->ref_ctr_offset); 981 } 982 983 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset, 984 loff_t ref_ctr_offset) 985 { 986 struct uprobe *uprobe, *cur_uprobe; 987 988 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL); 989 if (!uprobe) 990 return ERR_PTR(-ENOMEM); 991 992 uprobe->inode = inode; 993 uprobe->offset = offset; 994 uprobe->ref_ctr_offset = ref_ctr_offset; 995 INIT_LIST_HEAD(&uprobe->consumers); 996 init_rwsem(&uprobe->register_rwsem); 997 init_rwsem(&uprobe->consumer_rwsem); 998 RB_CLEAR_NODE(&uprobe->rb_node); 999 refcount_set(&uprobe->ref, 1); 1000 1001 /* add to uprobes_tree, sorted on inode:offset */ 1002 cur_uprobe = insert_uprobe(uprobe); 1003 /* a uprobe exists for this inode:offset combination */ 1004 if (cur_uprobe != uprobe) { 1005 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) { 1006 ref_ctr_mismatch_warn(cur_uprobe, uprobe); 1007 put_uprobe(cur_uprobe); 1008 kfree(uprobe); 1009 return ERR_PTR(-EINVAL); 1010 } 1011 kfree(uprobe); 1012 uprobe = cur_uprobe; 1013 } 1014 1015 return uprobe; 1016 } 1017 1018 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc) 1019 { 1020 static atomic64_t id; 1021 1022 down_write(&uprobe->consumer_rwsem); 1023 list_add_rcu(&uc->cons_node, &uprobe->consumers); 1024 uc->id = (__u64) atomic64_inc_return(&id); 1025 up_write(&uprobe->consumer_rwsem); 1026 } 1027 1028 /* 1029 * For uprobe @uprobe, delete the consumer @uc. 1030 * Should never be called with consumer that's not part of @uprobe->consumers. 1031 */ 1032 static void consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc) 1033 { 1034 down_write(&uprobe->consumer_rwsem); 1035 list_del_rcu(&uc->cons_node); 1036 up_write(&uprobe->consumer_rwsem); 1037 } 1038 1039 static int __copy_insn(struct address_space *mapping, struct file *filp, 1040 void *insn, int nbytes, loff_t offset) 1041 { 1042 struct page *page; 1043 /* 1044 * Ensure that the page that has the original instruction is populated 1045 * and in page-cache. If ->read_folio == NULL it must be shmem_mapping(), 1046 * see uprobe_register(). 1047 */ 1048 if (mapping->a_ops->read_folio) 1049 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp); 1050 else 1051 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT); 1052 if (IS_ERR(page)) 1053 return PTR_ERR(page); 1054 1055 copy_from_page(page, offset, insn, nbytes); 1056 put_page(page); 1057 1058 return 0; 1059 } 1060 1061 static int copy_insn(struct uprobe *uprobe, struct file *filp) 1062 { 1063 struct address_space *mapping = uprobe->inode->i_mapping; 1064 loff_t offs = uprobe->offset; 1065 void *insn = &uprobe->arch.insn; 1066 int size = sizeof(uprobe->arch.insn); 1067 int len, err = -EIO; 1068 1069 /* Copy only available bytes, -EIO if nothing was read */ 1070 do { 1071 if (offs >= i_size_read(uprobe->inode)) 1072 break; 1073 1074 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK)); 1075 err = __copy_insn(mapping, filp, insn, len, offs); 1076 if (err) 1077 break; 1078 1079 insn += len; 1080 offs += len; 1081 size -= len; 1082 } while (size); 1083 1084 return err; 1085 } 1086 1087 static int prepare_uprobe(struct uprobe *uprobe, struct file *file, 1088 struct mm_struct *mm, unsigned long vaddr) 1089 { 1090 int ret = 0; 1091 1092 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 1093 return ret; 1094 1095 /* TODO: move this into _register, until then we abuse this sem. */ 1096 down_write(&uprobe->consumer_rwsem); 1097 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 1098 goto out; 1099 1100 ret = copy_insn(uprobe, file); 1101 if (ret) 1102 goto out; 1103 1104 ret = -ENOTSUPP; 1105 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn)) 1106 goto out; 1107 1108 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr); 1109 if (ret) 1110 goto out; 1111 1112 smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */ 1113 set_bit(UPROBE_COPY_INSN, &uprobe->flags); 1114 1115 out: 1116 up_write(&uprobe->consumer_rwsem); 1117 1118 return ret; 1119 } 1120 1121 static inline bool consumer_filter(struct uprobe_consumer *uc, struct mm_struct *mm) 1122 { 1123 return !uc->filter || uc->filter(uc, mm); 1124 } 1125 1126 static bool filter_chain(struct uprobe *uprobe, struct mm_struct *mm) 1127 { 1128 struct uprobe_consumer *uc; 1129 bool ret = false; 1130 1131 down_read(&uprobe->consumer_rwsem); 1132 list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) { 1133 ret = consumer_filter(uc, mm); 1134 if (ret) 1135 break; 1136 } 1137 up_read(&uprobe->consumer_rwsem); 1138 1139 return ret; 1140 } 1141 1142 static int install_breakpoint(struct uprobe *uprobe, struct vm_area_struct *vma, 1143 unsigned long vaddr) 1144 { 1145 struct mm_struct *mm = vma->vm_mm; 1146 bool first_uprobe; 1147 int ret; 1148 1149 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr); 1150 if (ret) 1151 return ret; 1152 1153 /* 1154 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(), 1155 * the task can hit this breakpoint right after __replace_page(). 1156 */ 1157 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags); 1158 if (first_uprobe) 1159 set_bit(MMF_HAS_UPROBES, &mm->flags); 1160 1161 ret = set_swbp(&uprobe->arch, vma, vaddr); 1162 if (!ret) 1163 clear_bit(MMF_RECALC_UPROBES, &mm->flags); 1164 else if (first_uprobe) 1165 clear_bit(MMF_HAS_UPROBES, &mm->flags); 1166 1167 return ret; 1168 } 1169 1170 static int remove_breakpoint(struct uprobe *uprobe, struct vm_area_struct *vma, 1171 unsigned long vaddr) 1172 { 1173 struct mm_struct *mm = vma->vm_mm; 1174 1175 set_bit(MMF_RECALC_UPROBES, &mm->flags); 1176 return set_orig_insn(&uprobe->arch, vma, vaddr); 1177 } 1178 1179 struct map_info { 1180 struct map_info *next; 1181 struct mm_struct *mm; 1182 unsigned long vaddr; 1183 }; 1184 1185 static inline struct map_info *free_map_info(struct map_info *info) 1186 { 1187 struct map_info *next = info->next; 1188 kfree(info); 1189 return next; 1190 } 1191 1192 static struct map_info * 1193 build_map_info(struct address_space *mapping, loff_t offset, bool is_register) 1194 { 1195 unsigned long pgoff = offset >> PAGE_SHIFT; 1196 struct vm_area_struct *vma; 1197 struct map_info *curr = NULL; 1198 struct map_info *prev = NULL; 1199 struct map_info *info; 1200 int more = 0; 1201 1202 again: 1203 i_mmap_lock_read(mapping); 1204 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1205 if (!valid_vma(vma, is_register)) 1206 continue; 1207 1208 if (!prev && !more) { 1209 /* 1210 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through 1211 * reclaim. This is optimistic, no harm done if it fails. 1212 */ 1213 prev = kmalloc(sizeof(struct map_info), 1214 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN); 1215 if (prev) 1216 prev->next = NULL; 1217 } 1218 if (!prev) { 1219 more++; 1220 continue; 1221 } 1222 1223 if (!mmget_not_zero(vma->vm_mm)) 1224 continue; 1225 1226 info = prev; 1227 prev = prev->next; 1228 info->next = curr; 1229 curr = info; 1230 1231 info->mm = vma->vm_mm; 1232 info->vaddr = offset_to_vaddr(vma, offset); 1233 } 1234 i_mmap_unlock_read(mapping); 1235 1236 if (!more) 1237 goto out; 1238 1239 prev = curr; 1240 while (curr) { 1241 mmput(curr->mm); 1242 curr = curr->next; 1243 } 1244 1245 do { 1246 info = kmalloc(sizeof(struct map_info), GFP_KERNEL); 1247 if (!info) { 1248 curr = ERR_PTR(-ENOMEM); 1249 goto out; 1250 } 1251 info->next = prev; 1252 prev = info; 1253 } while (--more); 1254 1255 goto again; 1256 out: 1257 while (prev) 1258 prev = free_map_info(prev); 1259 return curr; 1260 } 1261 1262 static int 1263 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new) 1264 { 1265 bool is_register = !!new; 1266 struct map_info *info; 1267 int err = 0; 1268 1269 percpu_down_write(&dup_mmap_sem); 1270 info = build_map_info(uprobe->inode->i_mapping, 1271 uprobe->offset, is_register); 1272 if (IS_ERR(info)) { 1273 err = PTR_ERR(info); 1274 goto out; 1275 } 1276 1277 while (info) { 1278 struct mm_struct *mm = info->mm; 1279 struct vm_area_struct *vma; 1280 1281 if (err && is_register) 1282 goto free; 1283 /* 1284 * We take mmap_lock for writing to avoid the race with 1285 * find_active_uprobe_rcu() which takes mmap_lock for reading. 1286 * Thus this install_breakpoint() can not make 1287 * is_trap_at_addr() true right after find_uprobe_rcu() 1288 * returns NULL in find_active_uprobe_rcu(). 1289 */ 1290 mmap_write_lock(mm); 1291 if (check_stable_address_space(mm)) 1292 goto unlock; 1293 1294 vma = find_vma(mm, info->vaddr); 1295 if (!vma || !valid_vma(vma, is_register) || 1296 file_inode(vma->vm_file) != uprobe->inode) 1297 goto unlock; 1298 1299 if (vma->vm_start > info->vaddr || 1300 vaddr_to_offset(vma, info->vaddr) != uprobe->offset) 1301 goto unlock; 1302 1303 if (is_register) { 1304 /* consult only the "caller", new consumer. */ 1305 if (consumer_filter(new, mm)) 1306 err = install_breakpoint(uprobe, vma, info->vaddr); 1307 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) { 1308 if (!filter_chain(uprobe, mm)) 1309 err |= remove_breakpoint(uprobe, vma, info->vaddr); 1310 } 1311 1312 unlock: 1313 mmap_write_unlock(mm); 1314 free: 1315 mmput(mm); 1316 info = free_map_info(info); 1317 } 1318 out: 1319 percpu_up_write(&dup_mmap_sem); 1320 return err; 1321 } 1322 1323 /** 1324 * uprobe_unregister_nosync - unregister an already registered probe. 1325 * @uprobe: uprobe to remove 1326 * @uc: identify which probe if multiple probes are colocated. 1327 */ 1328 void uprobe_unregister_nosync(struct uprobe *uprobe, struct uprobe_consumer *uc) 1329 { 1330 int err; 1331 1332 down_write(&uprobe->register_rwsem); 1333 consumer_del(uprobe, uc); 1334 err = register_for_each_vma(uprobe, NULL); 1335 up_write(&uprobe->register_rwsem); 1336 1337 /* TODO : cant unregister? schedule a worker thread */ 1338 if (unlikely(err)) { 1339 uprobe_warn(current, "unregister, leaking uprobe"); 1340 return; 1341 } 1342 1343 put_uprobe(uprobe); 1344 } 1345 EXPORT_SYMBOL_GPL(uprobe_unregister_nosync); 1346 1347 void uprobe_unregister_sync(void) 1348 { 1349 /* 1350 * Now that handler_chain() and handle_uretprobe_chain() iterate over 1351 * uprobe->consumers list under RCU protection without holding 1352 * uprobe->register_rwsem, we need to wait for RCU grace period to 1353 * make sure that we can't call into just unregistered 1354 * uprobe_consumer's callbacks anymore. If we don't do that, fast and 1355 * unlucky enough caller can free consumer's memory and cause 1356 * handler_chain() or handle_uretprobe_chain() to do an use-after-free. 1357 */ 1358 synchronize_rcu_tasks_trace(); 1359 synchronize_srcu(&uretprobes_srcu); 1360 } 1361 EXPORT_SYMBOL_GPL(uprobe_unregister_sync); 1362 1363 /** 1364 * uprobe_register - register a probe 1365 * @inode: the file in which the probe has to be placed. 1366 * @offset: offset from the start of the file. 1367 * @ref_ctr_offset: offset of SDT marker / reference counter 1368 * @uc: information on howto handle the probe.. 1369 * 1370 * Apart from the access refcount, uprobe_register() takes a creation 1371 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting 1372 * inserted into the rbtree (i.e first consumer for a @inode:@offset 1373 * tuple). Creation refcount stops uprobe_unregister from freeing the 1374 * @uprobe even before the register operation is complete. Creation 1375 * refcount is released when the last @uc for the @uprobe 1376 * unregisters. Caller of uprobe_register() is required to keep @inode 1377 * (and the containing mount) referenced. 1378 * 1379 * Return: pointer to the new uprobe on success or an ERR_PTR on failure. 1380 */ 1381 struct uprobe *uprobe_register(struct inode *inode, 1382 loff_t offset, loff_t ref_ctr_offset, 1383 struct uprobe_consumer *uc) 1384 { 1385 struct uprobe *uprobe; 1386 int ret; 1387 1388 /* Uprobe must have at least one set consumer */ 1389 if (!uc->handler && !uc->ret_handler) 1390 return ERR_PTR(-EINVAL); 1391 1392 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */ 1393 if (!inode->i_mapping->a_ops->read_folio && 1394 !shmem_mapping(inode->i_mapping)) 1395 return ERR_PTR(-EIO); 1396 /* Racy, just to catch the obvious mistakes */ 1397 if (offset > i_size_read(inode)) 1398 return ERR_PTR(-EINVAL); 1399 1400 /* 1401 * This ensures that copy_from_page(), copy_to_page() and 1402 * __update_ref_ctr() can't cross page boundary. 1403 */ 1404 if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE)) 1405 return ERR_PTR(-EINVAL); 1406 if (!IS_ALIGNED(ref_ctr_offset, sizeof(short))) 1407 return ERR_PTR(-EINVAL); 1408 1409 uprobe = alloc_uprobe(inode, offset, ref_ctr_offset); 1410 if (IS_ERR(uprobe)) 1411 return uprobe; 1412 1413 down_write(&uprobe->register_rwsem); 1414 consumer_add(uprobe, uc); 1415 ret = register_for_each_vma(uprobe, uc); 1416 up_write(&uprobe->register_rwsem); 1417 1418 if (ret) { 1419 uprobe_unregister_nosync(uprobe, uc); 1420 /* 1421 * Registration might have partially succeeded, so we can have 1422 * this consumer being called right at this time. We need to 1423 * sync here. It's ok, it's unlikely slow path. 1424 */ 1425 uprobe_unregister_sync(); 1426 return ERR_PTR(ret); 1427 } 1428 1429 return uprobe; 1430 } 1431 EXPORT_SYMBOL_GPL(uprobe_register); 1432 1433 /** 1434 * uprobe_apply - add or remove the breakpoints according to @uc->filter 1435 * @uprobe: uprobe which "owns" the breakpoint 1436 * @uc: consumer which wants to add more or remove some breakpoints 1437 * @add: add or remove the breakpoints 1438 * Return: 0 on success or negative error code. 1439 */ 1440 int uprobe_apply(struct uprobe *uprobe, struct uprobe_consumer *uc, bool add) 1441 { 1442 struct uprobe_consumer *con; 1443 int ret = -ENOENT; 1444 1445 down_write(&uprobe->register_rwsem); 1446 1447 rcu_read_lock_trace(); 1448 list_for_each_entry_rcu(con, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) { 1449 if (con == uc) { 1450 ret = register_for_each_vma(uprobe, add ? uc : NULL); 1451 break; 1452 } 1453 } 1454 rcu_read_unlock_trace(); 1455 1456 up_write(&uprobe->register_rwsem); 1457 1458 return ret; 1459 } 1460 1461 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm) 1462 { 1463 VMA_ITERATOR(vmi, mm, 0); 1464 struct vm_area_struct *vma; 1465 int err = 0; 1466 1467 mmap_read_lock(mm); 1468 for_each_vma(vmi, vma) { 1469 unsigned long vaddr; 1470 loff_t offset; 1471 1472 if (!valid_vma(vma, false) || 1473 file_inode(vma->vm_file) != uprobe->inode) 1474 continue; 1475 1476 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT; 1477 if (uprobe->offset < offset || 1478 uprobe->offset >= offset + vma->vm_end - vma->vm_start) 1479 continue; 1480 1481 vaddr = offset_to_vaddr(vma, uprobe->offset); 1482 err |= remove_breakpoint(uprobe, vma, vaddr); 1483 } 1484 mmap_read_unlock(mm); 1485 1486 return err; 1487 } 1488 1489 static struct rb_node * 1490 find_node_in_range(struct inode *inode, loff_t min, loff_t max) 1491 { 1492 struct rb_node *n = uprobes_tree.rb_node; 1493 1494 while (n) { 1495 struct uprobe *u = rb_entry(n, struct uprobe, rb_node); 1496 1497 if (inode < u->inode) { 1498 n = n->rb_left; 1499 } else if (inode > u->inode) { 1500 n = n->rb_right; 1501 } else { 1502 if (max < u->offset) 1503 n = n->rb_left; 1504 else if (min > u->offset) 1505 n = n->rb_right; 1506 else 1507 break; 1508 } 1509 } 1510 1511 return n; 1512 } 1513 1514 /* 1515 * For a given range in vma, build a list of probes that need to be inserted. 1516 */ 1517 static void build_probe_list(struct inode *inode, 1518 struct vm_area_struct *vma, 1519 unsigned long start, unsigned long end, 1520 struct list_head *head) 1521 { 1522 loff_t min, max; 1523 struct rb_node *n, *t; 1524 struct uprobe *u; 1525 1526 INIT_LIST_HEAD(head); 1527 min = vaddr_to_offset(vma, start); 1528 max = min + (end - start) - 1; 1529 1530 read_lock(&uprobes_treelock); 1531 n = find_node_in_range(inode, min, max); 1532 if (n) { 1533 for (t = n; t; t = rb_prev(t)) { 1534 u = rb_entry(t, struct uprobe, rb_node); 1535 if (u->inode != inode || u->offset < min) 1536 break; 1537 /* if uprobe went away, it's safe to ignore it */ 1538 if (try_get_uprobe(u)) 1539 list_add(&u->pending_list, head); 1540 } 1541 for (t = n; (t = rb_next(t)); ) { 1542 u = rb_entry(t, struct uprobe, rb_node); 1543 if (u->inode != inode || u->offset > max) 1544 break; 1545 /* if uprobe went away, it's safe to ignore it */ 1546 if (try_get_uprobe(u)) 1547 list_add(&u->pending_list, head); 1548 } 1549 } 1550 read_unlock(&uprobes_treelock); 1551 } 1552 1553 /* @vma contains reference counter, not the probed instruction. */ 1554 static int delayed_ref_ctr_inc(struct vm_area_struct *vma) 1555 { 1556 struct list_head *pos, *q; 1557 struct delayed_uprobe *du; 1558 unsigned long vaddr; 1559 int ret = 0, err = 0; 1560 1561 mutex_lock(&delayed_uprobe_lock); 1562 list_for_each_safe(pos, q, &delayed_uprobe_list) { 1563 du = list_entry(pos, struct delayed_uprobe, list); 1564 1565 if (du->mm != vma->vm_mm || 1566 !valid_ref_ctr_vma(du->uprobe, vma)) 1567 continue; 1568 1569 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset); 1570 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1); 1571 if (ret) { 1572 update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1); 1573 if (!err) 1574 err = ret; 1575 } 1576 delayed_uprobe_delete(du); 1577 } 1578 mutex_unlock(&delayed_uprobe_lock); 1579 return err; 1580 } 1581 1582 /* 1583 * Called from mmap_region/vma_merge with mm->mmap_lock acquired. 1584 * 1585 * Currently we ignore all errors and always return 0, the callers 1586 * can't handle the failure anyway. 1587 */ 1588 int uprobe_mmap(struct vm_area_struct *vma) 1589 { 1590 struct list_head tmp_list; 1591 struct uprobe *uprobe, *u; 1592 struct inode *inode; 1593 1594 if (no_uprobe_events()) 1595 return 0; 1596 1597 if (vma->vm_file && 1598 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE && 1599 test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags)) 1600 delayed_ref_ctr_inc(vma); 1601 1602 if (!valid_vma(vma, true)) 1603 return 0; 1604 1605 inode = file_inode(vma->vm_file); 1606 if (!inode) 1607 return 0; 1608 1609 mutex_lock(uprobes_mmap_hash(inode)); 1610 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list); 1611 /* 1612 * We can race with uprobe_unregister(), this uprobe can be already 1613 * removed. But in this case filter_chain() must return false, all 1614 * consumers have gone away. 1615 */ 1616 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) { 1617 if (!fatal_signal_pending(current) && 1618 filter_chain(uprobe, vma->vm_mm)) { 1619 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset); 1620 install_breakpoint(uprobe, vma, vaddr); 1621 } 1622 put_uprobe(uprobe); 1623 } 1624 mutex_unlock(uprobes_mmap_hash(inode)); 1625 1626 return 0; 1627 } 1628 1629 static bool 1630 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1631 { 1632 loff_t min, max; 1633 struct inode *inode; 1634 struct rb_node *n; 1635 1636 inode = file_inode(vma->vm_file); 1637 1638 min = vaddr_to_offset(vma, start); 1639 max = min + (end - start) - 1; 1640 1641 read_lock(&uprobes_treelock); 1642 n = find_node_in_range(inode, min, max); 1643 read_unlock(&uprobes_treelock); 1644 1645 return !!n; 1646 } 1647 1648 /* 1649 * Called in context of a munmap of a vma. 1650 */ 1651 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1652 { 1653 if (no_uprobe_events() || !valid_vma(vma, false)) 1654 return; 1655 1656 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */ 1657 return; 1658 1659 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) || 1660 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags)) 1661 return; 1662 1663 if (vma_has_uprobes(vma, start, end)) 1664 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags); 1665 } 1666 1667 static vm_fault_t xol_fault(const struct vm_special_mapping *sm, 1668 struct vm_area_struct *vma, struct vm_fault *vmf) 1669 { 1670 struct xol_area *area = vma->vm_mm->uprobes_state.xol_area; 1671 1672 vmf->page = area->page; 1673 get_page(vmf->page); 1674 return 0; 1675 } 1676 1677 static int xol_mremap(const struct vm_special_mapping *sm, struct vm_area_struct *new_vma) 1678 { 1679 return -EPERM; 1680 } 1681 1682 static const struct vm_special_mapping xol_mapping = { 1683 .name = "[uprobes]", 1684 .fault = xol_fault, 1685 .mremap = xol_mremap, 1686 }; 1687 1688 /* Slot allocation for XOL */ 1689 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area) 1690 { 1691 struct vm_area_struct *vma; 1692 int ret; 1693 1694 if (mmap_write_lock_killable(mm)) 1695 return -EINTR; 1696 1697 if (mm->uprobes_state.xol_area) { 1698 ret = -EALREADY; 1699 goto fail; 1700 } 1701 1702 if (!area->vaddr) { 1703 /* Try to map as high as possible, this is only a hint. */ 1704 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, 1705 PAGE_SIZE, 0, 0); 1706 if (IS_ERR_VALUE(area->vaddr)) { 1707 ret = area->vaddr; 1708 goto fail; 1709 } 1710 } 1711 1712 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE, 1713 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO| 1714 VM_SEALED_SYSMAP, 1715 &xol_mapping); 1716 if (IS_ERR(vma)) { 1717 ret = PTR_ERR(vma); 1718 goto fail; 1719 } 1720 1721 ret = 0; 1722 /* pairs with get_xol_area() */ 1723 smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */ 1724 fail: 1725 mmap_write_unlock(mm); 1726 1727 return ret; 1728 } 1729 1730 void * __weak arch_uprobe_trampoline(unsigned long *psize) 1731 { 1732 static uprobe_opcode_t insn = UPROBE_SWBP_INSN; 1733 1734 *psize = UPROBE_SWBP_INSN_SIZE; 1735 return &insn; 1736 } 1737 1738 static struct xol_area *__create_xol_area(unsigned long vaddr) 1739 { 1740 struct mm_struct *mm = current->mm; 1741 unsigned long insns_size; 1742 struct xol_area *area; 1743 void *insns; 1744 1745 area = kzalloc(sizeof(*area), GFP_KERNEL); 1746 if (unlikely(!area)) 1747 goto out; 1748 1749 area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long), 1750 GFP_KERNEL); 1751 if (!area->bitmap) 1752 goto free_area; 1753 1754 area->page = alloc_page(GFP_HIGHUSER | __GFP_ZERO); 1755 if (!area->page) 1756 goto free_bitmap; 1757 1758 area->vaddr = vaddr; 1759 init_waitqueue_head(&area->wq); 1760 /* Reserve the 1st slot for get_trampoline_vaddr() */ 1761 set_bit(0, area->bitmap); 1762 insns = arch_uprobe_trampoline(&insns_size); 1763 arch_uprobe_copy_ixol(area->page, 0, insns, insns_size); 1764 1765 if (!xol_add_vma(mm, area)) 1766 return area; 1767 1768 __free_page(area->page); 1769 free_bitmap: 1770 kfree(area->bitmap); 1771 free_area: 1772 kfree(area); 1773 out: 1774 return NULL; 1775 } 1776 1777 /* 1778 * get_xol_area - Allocate process's xol_area if necessary. 1779 * This area will be used for storing instructions for execution out of line. 1780 * 1781 * Returns the allocated area or NULL. 1782 */ 1783 static struct xol_area *get_xol_area(void) 1784 { 1785 struct mm_struct *mm = current->mm; 1786 struct xol_area *area; 1787 1788 if (!mm->uprobes_state.xol_area) 1789 __create_xol_area(0); 1790 1791 /* Pairs with xol_add_vma() smp_store_release() */ 1792 area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */ 1793 return area; 1794 } 1795 1796 /* 1797 * uprobe_clear_state - Free the area allocated for slots. 1798 */ 1799 void uprobe_clear_state(struct mm_struct *mm) 1800 { 1801 struct xol_area *area = mm->uprobes_state.xol_area; 1802 1803 mutex_lock(&delayed_uprobe_lock); 1804 delayed_uprobe_remove(NULL, mm); 1805 mutex_unlock(&delayed_uprobe_lock); 1806 1807 if (!area) 1808 return; 1809 1810 put_page(area->page); 1811 kfree(area->bitmap); 1812 kfree(area); 1813 } 1814 1815 void uprobe_start_dup_mmap(void) 1816 { 1817 percpu_down_read(&dup_mmap_sem); 1818 } 1819 1820 void uprobe_end_dup_mmap(void) 1821 { 1822 percpu_up_read(&dup_mmap_sem); 1823 } 1824 1825 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm) 1826 { 1827 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) { 1828 set_bit(MMF_HAS_UPROBES, &newmm->flags); 1829 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */ 1830 set_bit(MMF_RECALC_UPROBES, &newmm->flags); 1831 } 1832 } 1833 1834 static unsigned long xol_get_slot_nr(struct xol_area *area) 1835 { 1836 unsigned long slot_nr; 1837 1838 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE); 1839 if (slot_nr < UINSNS_PER_PAGE) { 1840 if (!test_and_set_bit(slot_nr, area->bitmap)) 1841 return slot_nr; 1842 } 1843 1844 return UINSNS_PER_PAGE; 1845 } 1846 1847 /* 1848 * xol_get_insn_slot - allocate a slot for xol. 1849 */ 1850 static bool xol_get_insn_slot(struct uprobe *uprobe, struct uprobe_task *utask) 1851 { 1852 struct xol_area *area = get_xol_area(); 1853 unsigned long slot_nr; 1854 1855 if (!area) 1856 return false; 1857 1858 wait_event(area->wq, (slot_nr = xol_get_slot_nr(area)) < UINSNS_PER_PAGE); 1859 1860 utask->xol_vaddr = area->vaddr + slot_nr * UPROBE_XOL_SLOT_BYTES; 1861 arch_uprobe_copy_ixol(area->page, utask->xol_vaddr, 1862 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol)); 1863 return true; 1864 } 1865 1866 /* 1867 * xol_free_insn_slot - free the slot allocated by xol_get_insn_slot() 1868 */ 1869 static void xol_free_insn_slot(struct uprobe_task *utask) 1870 { 1871 struct xol_area *area = current->mm->uprobes_state.xol_area; 1872 unsigned long offset = utask->xol_vaddr - area->vaddr; 1873 unsigned int slot_nr; 1874 1875 utask->xol_vaddr = 0; 1876 /* xol_vaddr must fit into [area->vaddr, area->vaddr + PAGE_SIZE) */ 1877 if (WARN_ON_ONCE(offset >= PAGE_SIZE)) 1878 return; 1879 1880 slot_nr = offset / UPROBE_XOL_SLOT_BYTES; 1881 clear_bit(slot_nr, area->bitmap); 1882 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */ 1883 if (waitqueue_active(&area->wq)) 1884 wake_up(&area->wq); 1885 } 1886 1887 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr, 1888 void *src, unsigned long len) 1889 { 1890 /* Initialize the slot */ 1891 copy_to_page(page, vaddr, src, len); 1892 1893 /* 1894 * We probably need flush_icache_user_page() but it needs vma. 1895 * This should work on most of architectures by default. If 1896 * architecture needs to do something different it can define 1897 * its own version of the function. 1898 */ 1899 flush_dcache_page(page); 1900 } 1901 1902 /** 1903 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs 1904 * @regs: Reflects the saved state of the task after it has hit a breakpoint 1905 * instruction. 1906 * Return the address of the breakpoint instruction. 1907 */ 1908 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs) 1909 { 1910 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE; 1911 } 1912 1913 unsigned long uprobe_get_trap_addr(struct pt_regs *regs) 1914 { 1915 struct uprobe_task *utask = current->utask; 1916 1917 if (unlikely(utask && utask->active_uprobe)) 1918 return utask->vaddr; 1919 1920 return instruction_pointer(regs); 1921 } 1922 1923 static void ri_pool_push(struct uprobe_task *utask, struct return_instance *ri) 1924 { 1925 ri->cons_cnt = 0; 1926 ri->next = utask->ri_pool; 1927 utask->ri_pool = ri; 1928 } 1929 1930 static struct return_instance *ri_pool_pop(struct uprobe_task *utask) 1931 { 1932 struct return_instance *ri = utask->ri_pool; 1933 1934 if (likely(ri)) 1935 utask->ri_pool = ri->next; 1936 1937 return ri; 1938 } 1939 1940 static void ri_free(struct return_instance *ri) 1941 { 1942 kfree(ri->extra_consumers); 1943 kfree_rcu(ri, rcu); 1944 } 1945 1946 static void free_ret_instance(struct uprobe_task *utask, 1947 struct return_instance *ri, bool cleanup_hprobe) 1948 { 1949 unsigned seq; 1950 1951 if (cleanup_hprobe) { 1952 enum hprobe_state hstate; 1953 1954 (void)hprobe_consume(&ri->hprobe, &hstate); 1955 hprobe_finalize(&ri->hprobe, hstate); 1956 } 1957 1958 /* 1959 * At this point return_instance is unlinked from utask's 1960 * return_instances list and this has become visible to ri_timer(). 1961 * If seqcount now indicates that ri_timer's return instance 1962 * processing loop isn't active, we can return ri into the pool of 1963 * to-be-reused return instances for future uretprobes. If ri_timer() 1964 * happens to be running right now, though, we fallback to safety and 1965 * just perform RCU-delated freeing of ri. 1966 * Admittedly, this is a rather simple use of seqcount, but it nicely 1967 * abstracts away all the necessary memory barriers, so we use 1968 * a well-supported kernel primitive here. 1969 */ 1970 if (raw_seqcount_try_begin(&utask->ri_seqcount, seq)) { 1971 /* immediate reuse of ri without RCU GP is OK */ 1972 ri_pool_push(utask, ri); 1973 } else { 1974 /* we might be racing with ri_timer(), so play it safe */ 1975 ri_free(ri); 1976 } 1977 } 1978 1979 /* 1980 * Called with no locks held. 1981 * Called in context of an exiting or an exec-ing thread. 1982 */ 1983 void uprobe_free_utask(struct task_struct *t) 1984 { 1985 struct uprobe_task *utask = t->utask; 1986 struct return_instance *ri, *ri_next; 1987 1988 if (!utask) 1989 return; 1990 1991 t->utask = NULL; 1992 WARN_ON_ONCE(utask->active_uprobe || utask->xol_vaddr); 1993 1994 timer_delete_sync(&utask->ri_timer); 1995 1996 ri = utask->return_instances; 1997 while (ri) { 1998 ri_next = ri->next; 1999 free_ret_instance(utask, ri, true /* cleanup_hprobe */); 2000 ri = ri_next; 2001 } 2002 2003 /* free_ret_instance() above might add to ri_pool, so this loop should come last */ 2004 ri = utask->ri_pool; 2005 while (ri) { 2006 ri_next = ri->next; 2007 ri_free(ri); 2008 ri = ri_next; 2009 } 2010 2011 kfree(utask); 2012 } 2013 2014 #define RI_TIMER_PERIOD (HZ / 10) /* 100 ms */ 2015 2016 #define for_each_ret_instance_rcu(pos, head) \ 2017 for (pos = rcu_dereference_raw(head); pos; pos = rcu_dereference_raw(pos->next)) 2018 2019 static void ri_timer(struct timer_list *timer) 2020 { 2021 struct uprobe_task *utask = container_of(timer, struct uprobe_task, ri_timer); 2022 struct return_instance *ri; 2023 2024 /* SRCU protects uprobe from reuse for the cmpxchg() inside hprobe_expire(). */ 2025 guard(srcu)(&uretprobes_srcu); 2026 /* RCU protects return_instance from freeing. */ 2027 guard(rcu)(); 2028 2029 /* 2030 * See free_ret_instance() for notes on seqcount use. 2031 * We also employ raw API variants to avoid lockdep false-positive 2032 * warning complaining about enabled preemption. The timer can only be 2033 * invoked once for a uprobe_task. Therefore there can only be one 2034 * writer. The reader does not require an even sequence count to make 2035 * progress, so it is OK to remain preemptible on PREEMPT_RT. 2036 */ 2037 raw_write_seqcount_begin(&utask->ri_seqcount); 2038 2039 for_each_ret_instance_rcu(ri, utask->return_instances) 2040 hprobe_expire(&ri->hprobe, false); 2041 2042 raw_write_seqcount_end(&utask->ri_seqcount); 2043 } 2044 2045 static struct uprobe_task *alloc_utask(void) 2046 { 2047 struct uprobe_task *utask; 2048 2049 utask = kzalloc(sizeof(*utask), GFP_KERNEL); 2050 if (!utask) 2051 return NULL; 2052 2053 timer_setup(&utask->ri_timer, ri_timer, 0); 2054 seqcount_init(&utask->ri_seqcount); 2055 2056 return utask; 2057 } 2058 2059 /* 2060 * Allocate a uprobe_task object for the task if necessary. 2061 * Called when the thread hits a breakpoint. 2062 * 2063 * Returns: 2064 * - pointer to new uprobe_task on success 2065 * - NULL otherwise 2066 */ 2067 static struct uprobe_task *get_utask(void) 2068 { 2069 if (!current->utask) 2070 current->utask = alloc_utask(); 2071 return current->utask; 2072 } 2073 2074 static struct return_instance *alloc_return_instance(struct uprobe_task *utask) 2075 { 2076 struct return_instance *ri; 2077 2078 ri = ri_pool_pop(utask); 2079 if (ri) 2080 return ri; 2081 2082 ri = kzalloc(sizeof(*ri), GFP_KERNEL); 2083 if (!ri) 2084 return ZERO_SIZE_PTR; 2085 2086 return ri; 2087 } 2088 2089 static struct return_instance *dup_return_instance(struct return_instance *old) 2090 { 2091 struct return_instance *ri; 2092 2093 ri = kmemdup(old, sizeof(*ri), GFP_KERNEL); 2094 if (!ri) 2095 return NULL; 2096 2097 if (unlikely(old->cons_cnt > 1)) { 2098 ri->extra_consumers = kmemdup(old->extra_consumers, 2099 sizeof(ri->extra_consumers[0]) * (old->cons_cnt - 1), 2100 GFP_KERNEL); 2101 if (!ri->extra_consumers) { 2102 kfree(ri); 2103 return NULL; 2104 } 2105 } 2106 2107 return ri; 2108 } 2109 2110 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask) 2111 { 2112 struct uprobe_task *n_utask; 2113 struct return_instance **p, *o, *n; 2114 struct uprobe *uprobe; 2115 2116 n_utask = alloc_utask(); 2117 if (!n_utask) 2118 return -ENOMEM; 2119 t->utask = n_utask; 2120 2121 /* protect uprobes from freeing, we'll need try_get_uprobe() them */ 2122 guard(srcu)(&uretprobes_srcu); 2123 2124 p = &n_utask->return_instances; 2125 for (o = o_utask->return_instances; o; o = o->next) { 2126 n = dup_return_instance(o); 2127 if (!n) 2128 return -ENOMEM; 2129 2130 /* if uprobe is non-NULL, we'll have an extra refcount for uprobe */ 2131 uprobe = hprobe_expire(&o->hprobe, true); 2132 2133 /* 2134 * New utask will have stable properly refcounted uprobe or 2135 * NULL. Even if we failed to get refcounted uprobe, we still 2136 * need to preserve full set of return_instances for proper 2137 * uretprobe handling and nesting in forked task. 2138 */ 2139 hprobe_init_stable(&n->hprobe, uprobe); 2140 2141 n->next = NULL; 2142 rcu_assign_pointer(*p, n); 2143 p = &n->next; 2144 2145 n_utask->depth++; 2146 } 2147 2148 return 0; 2149 } 2150 2151 static void dup_xol_work(struct callback_head *work) 2152 { 2153 if (current->flags & PF_EXITING) 2154 return; 2155 2156 if (!__create_xol_area(current->utask->dup_xol_addr) && 2157 !fatal_signal_pending(current)) 2158 uprobe_warn(current, "dup xol area"); 2159 } 2160 2161 /* 2162 * Called in context of a new clone/fork from copy_process. 2163 */ 2164 void uprobe_copy_process(struct task_struct *t, unsigned long flags) 2165 { 2166 struct uprobe_task *utask = current->utask; 2167 struct mm_struct *mm = current->mm; 2168 struct xol_area *area; 2169 2170 t->utask = NULL; 2171 2172 if (!utask || !utask->return_instances) 2173 return; 2174 2175 if (mm == t->mm && !(flags & CLONE_VFORK)) 2176 return; 2177 2178 if (dup_utask(t, utask)) 2179 return uprobe_warn(t, "dup ret instances"); 2180 2181 /* The task can fork() after dup_xol_work() fails */ 2182 area = mm->uprobes_state.xol_area; 2183 if (!area) 2184 return uprobe_warn(t, "dup xol area"); 2185 2186 if (mm == t->mm) 2187 return; 2188 2189 t->utask->dup_xol_addr = area->vaddr; 2190 init_task_work(&t->utask->dup_xol_work, dup_xol_work); 2191 task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME); 2192 } 2193 2194 /* 2195 * Current area->vaddr notion assume the trampoline address is always 2196 * equal area->vaddr. 2197 * 2198 * Returns -1 in case the xol_area is not allocated. 2199 */ 2200 unsigned long uprobe_get_trampoline_vaddr(void) 2201 { 2202 unsigned long trampoline_vaddr = UPROBE_NO_TRAMPOLINE_VADDR; 2203 struct xol_area *area; 2204 2205 /* Pairs with xol_add_vma() smp_store_release() */ 2206 area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */ 2207 if (area) 2208 trampoline_vaddr = area->vaddr; 2209 2210 return trampoline_vaddr; 2211 } 2212 2213 static void cleanup_return_instances(struct uprobe_task *utask, bool chained, 2214 struct pt_regs *regs) 2215 { 2216 struct return_instance *ri = utask->return_instances, *ri_next; 2217 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL; 2218 2219 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) { 2220 ri_next = ri->next; 2221 rcu_assign_pointer(utask->return_instances, ri_next); 2222 utask->depth--; 2223 2224 free_ret_instance(utask, ri, true /* cleanup_hprobe */); 2225 ri = ri_next; 2226 } 2227 } 2228 2229 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs, 2230 struct return_instance *ri) 2231 { 2232 struct uprobe_task *utask = current->utask; 2233 unsigned long orig_ret_vaddr, trampoline_vaddr; 2234 bool chained; 2235 int srcu_idx; 2236 2237 if (!get_xol_area()) 2238 goto free; 2239 2240 if (utask->depth >= MAX_URETPROBE_DEPTH) { 2241 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to" 2242 " nestedness limit pid/tgid=%d/%d\n", 2243 current->pid, current->tgid); 2244 goto free; 2245 } 2246 2247 trampoline_vaddr = uprobe_get_trampoline_vaddr(); 2248 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs); 2249 if (orig_ret_vaddr == -1) 2250 goto free; 2251 2252 /* drop the entries invalidated by longjmp() */ 2253 chained = (orig_ret_vaddr == trampoline_vaddr); 2254 cleanup_return_instances(utask, chained, regs); 2255 2256 /* 2257 * We don't want to keep trampoline address in stack, rather keep the 2258 * original return address of first caller thru all the consequent 2259 * instances. This also makes breakpoint unwrapping easier. 2260 */ 2261 if (chained) { 2262 if (!utask->return_instances) { 2263 /* 2264 * This situation is not possible. Likely we have an 2265 * attack from user-space. 2266 */ 2267 uprobe_warn(current, "handle tail call"); 2268 goto free; 2269 } 2270 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr; 2271 } 2272 2273 /* __srcu_read_lock() because SRCU lock survives switch to user space */ 2274 srcu_idx = __srcu_read_lock(&uretprobes_srcu); 2275 2276 ri->func = instruction_pointer(regs); 2277 ri->stack = user_stack_pointer(regs); 2278 ri->orig_ret_vaddr = orig_ret_vaddr; 2279 ri->chained = chained; 2280 2281 utask->depth++; 2282 2283 hprobe_init_leased(&ri->hprobe, uprobe, srcu_idx); 2284 ri->next = utask->return_instances; 2285 rcu_assign_pointer(utask->return_instances, ri); 2286 2287 mod_timer(&utask->ri_timer, jiffies + RI_TIMER_PERIOD); 2288 2289 return; 2290 free: 2291 ri_free(ri); 2292 } 2293 2294 /* Prepare to single-step probed instruction out of line. */ 2295 static int 2296 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr) 2297 { 2298 struct uprobe_task *utask = current->utask; 2299 int err; 2300 2301 if (!try_get_uprobe(uprobe)) 2302 return -EINVAL; 2303 2304 if (!xol_get_insn_slot(uprobe, utask)) { 2305 err = -ENOMEM; 2306 goto err_out; 2307 } 2308 2309 utask->vaddr = bp_vaddr; 2310 err = arch_uprobe_pre_xol(&uprobe->arch, regs); 2311 if (unlikely(err)) { 2312 xol_free_insn_slot(utask); 2313 goto err_out; 2314 } 2315 2316 utask->active_uprobe = uprobe; 2317 utask->state = UTASK_SSTEP; 2318 return 0; 2319 err_out: 2320 put_uprobe(uprobe); 2321 return err; 2322 } 2323 2324 /* 2325 * If we are singlestepping, then ensure this thread is not connected to 2326 * non-fatal signals until completion of singlestep. When xol insn itself 2327 * triggers the signal, restart the original insn even if the task is 2328 * already SIGKILL'ed (since coredump should report the correct ip). This 2329 * is even more important if the task has a handler for SIGSEGV/etc, The 2330 * _same_ instruction should be repeated again after return from the signal 2331 * handler, and SSTEP can never finish in this case. 2332 */ 2333 bool uprobe_deny_signal(void) 2334 { 2335 struct task_struct *t = current; 2336 struct uprobe_task *utask = t->utask; 2337 2338 if (likely(!utask || !utask->active_uprobe)) 2339 return false; 2340 2341 WARN_ON_ONCE(utask->state != UTASK_SSTEP); 2342 2343 if (task_sigpending(t)) { 2344 utask->signal_denied = true; 2345 clear_tsk_thread_flag(t, TIF_SIGPENDING); 2346 2347 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) { 2348 utask->state = UTASK_SSTEP_TRAPPED; 2349 set_tsk_thread_flag(t, TIF_UPROBE); 2350 } 2351 } 2352 2353 return true; 2354 } 2355 2356 static void mmf_recalc_uprobes(struct mm_struct *mm) 2357 { 2358 VMA_ITERATOR(vmi, mm, 0); 2359 struct vm_area_struct *vma; 2360 2361 for_each_vma(vmi, vma) { 2362 if (!valid_vma(vma, false)) 2363 continue; 2364 /* 2365 * This is not strictly accurate, we can race with 2366 * uprobe_unregister() and see the already removed 2367 * uprobe if delete_uprobe() was not yet called. 2368 * Or this uprobe can be filtered out. 2369 */ 2370 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end)) 2371 return; 2372 } 2373 2374 clear_bit(MMF_HAS_UPROBES, &mm->flags); 2375 } 2376 2377 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr) 2378 { 2379 struct page *page; 2380 uprobe_opcode_t opcode; 2381 int result; 2382 2383 if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE))) 2384 return -EINVAL; 2385 2386 pagefault_disable(); 2387 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr); 2388 pagefault_enable(); 2389 2390 if (likely(result == 0)) 2391 goto out; 2392 2393 result = get_user_pages(vaddr, 1, FOLL_FORCE, &page); 2394 if (result < 0) 2395 return result; 2396 2397 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 2398 put_page(page); 2399 out: 2400 /* This needs to return true for any variant of the trap insn */ 2401 return is_trap_insn(&opcode); 2402 } 2403 2404 static struct uprobe *find_active_uprobe_speculative(unsigned long bp_vaddr) 2405 { 2406 struct mm_struct *mm = current->mm; 2407 struct uprobe *uprobe = NULL; 2408 struct vm_area_struct *vma; 2409 struct file *vm_file; 2410 loff_t offset; 2411 unsigned int seq; 2412 2413 guard(rcu)(); 2414 2415 if (!mmap_lock_speculate_try_begin(mm, &seq)) 2416 return NULL; 2417 2418 vma = vma_lookup(mm, bp_vaddr); 2419 if (!vma) 2420 return NULL; 2421 2422 /* 2423 * vm_file memory can be reused for another instance of struct file, 2424 * but can't be freed from under us, so it's safe to read fields from 2425 * it, even if the values are some garbage values; ultimately 2426 * find_uprobe_rcu() + mmap_lock_speculation_end() check will ensure 2427 * that whatever we speculatively found is correct 2428 */ 2429 vm_file = READ_ONCE(vma->vm_file); 2430 if (!vm_file) 2431 return NULL; 2432 2433 offset = (loff_t)(vma->vm_pgoff << PAGE_SHIFT) + (bp_vaddr - vma->vm_start); 2434 uprobe = find_uprobe_rcu(vm_file->f_inode, offset); 2435 if (!uprobe) 2436 return NULL; 2437 2438 /* now double check that nothing about MM changed */ 2439 if (mmap_lock_speculate_retry(mm, seq)) 2440 return NULL; 2441 2442 return uprobe; 2443 } 2444 2445 /* assumes being inside RCU protected region */ 2446 static struct uprobe *find_active_uprobe_rcu(unsigned long bp_vaddr, int *is_swbp) 2447 { 2448 struct mm_struct *mm = current->mm; 2449 struct uprobe *uprobe = NULL; 2450 struct vm_area_struct *vma; 2451 2452 uprobe = find_active_uprobe_speculative(bp_vaddr); 2453 if (uprobe) 2454 return uprobe; 2455 2456 mmap_read_lock(mm); 2457 vma = vma_lookup(mm, bp_vaddr); 2458 if (vma) { 2459 if (vma->vm_file) { 2460 struct inode *inode = file_inode(vma->vm_file); 2461 loff_t offset = vaddr_to_offset(vma, bp_vaddr); 2462 2463 uprobe = find_uprobe_rcu(inode, offset); 2464 } 2465 2466 if (!uprobe) 2467 *is_swbp = is_trap_at_addr(mm, bp_vaddr); 2468 } else { 2469 *is_swbp = -EFAULT; 2470 } 2471 2472 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags)) 2473 mmf_recalc_uprobes(mm); 2474 mmap_read_unlock(mm); 2475 2476 return uprobe; 2477 } 2478 2479 static struct return_instance *push_consumer(struct return_instance *ri, __u64 id, __u64 cookie) 2480 { 2481 struct return_consumer *ric; 2482 2483 if (unlikely(ri == ZERO_SIZE_PTR)) 2484 return ri; 2485 2486 if (unlikely(ri->cons_cnt > 0)) { 2487 ric = krealloc(ri->extra_consumers, sizeof(*ric) * ri->cons_cnt, GFP_KERNEL); 2488 if (!ric) { 2489 ri_free(ri); 2490 return ZERO_SIZE_PTR; 2491 } 2492 ri->extra_consumers = ric; 2493 } 2494 2495 ric = likely(ri->cons_cnt == 0) ? &ri->consumer : &ri->extra_consumers[ri->cons_cnt - 1]; 2496 ric->id = id; 2497 ric->cookie = cookie; 2498 2499 ri->cons_cnt++; 2500 return ri; 2501 } 2502 2503 static struct return_consumer * 2504 return_consumer_find(struct return_instance *ri, int *iter, int id) 2505 { 2506 struct return_consumer *ric; 2507 int idx; 2508 2509 for (idx = *iter; idx < ri->cons_cnt; idx++) 2510 { 2511 ric = likely(idx == 0) ? &ri->consumer : &ri->extra_consumers[idx - 1]; 2512 if (ric->id == id) { 2513 *iter = idx + 1; 2514 return ric; 2515 } 2516 } 2517 2518 return NULL; 2519 } 2520 2521 static bool ignore_ret_handler(int rc) 2522 { 2523 return rc == UPROBE_HANDLER_REMOVE || rc == UPROBE_HANDLER_IGNORE; 2524 } 2525 2526 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs) 2527 { 2528 struct uprobe_consumer *uc; 2529 bool has_consumers = false, remove = true; 2530 struct return_instance *ri = NULL; 2531 struct uprobe_task *utask = current->utask; 2532 2533 utask->auprobe = &uprobe->arch; 2534 2535 list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) { 2536 bool session = uc->handler && uc->ret_handler; 2537 __u64 cookie = 0; 2538 int rc = 0; 2539 2540 if (uc->handler) { 2541 rc = uc->handler(uc, regs, &cookie); 2542 WARN(rc < 0 || rc > 2, 2543 "bad rc=0x%x from %ps()\n", rc, uc->handler); 2544 } 2545 2546 remove &= rc == UPROBE_HANDLER_REMOVE; 2547 has_consumers = true; 2548 2549 if (!uc->ret_handler || ignore_ret_handler(rc)) 2550 continue; 2551 2552 if (!ri) 2553 ri = alloc_return_instance(utask); 2554 2555 if (session) 2556 ri = push_consumer(ri, uc->id, cookie); 2557 } 2558 utask->auprobe = NULL; 2559 2560 if (!ZERO_OR_NULL_PTR(ri)) 2561 prepare_uretprobe(uprobe, regs, ri); 2562 2563 if (remove && has_consumers) { 2564 down_read(&uprobe->register_rwsem); 2565 2566 /* re-check that removal is still required, this time under lock */ 2567 if (!filter_chain(uprobe, current->mm)) { 2568 WARN_ON(!uprobe_is_active(uprobe)); 2569 unapply_uprobe(uprobe, current->mm); 2570 } 2571 2572 up_read(&uprobe->register_rwsem); 2573 } 2574 } 2575 2576 static void 2577 handle_uretprobe_chain(struct return_instance *ri, struct uprobe *uprobe, struct pt_regs *regs) 2578 { 2579 struct return_consumer *ric; 2580 struct uprobe_consumer *uc; 2581 int ric_idx = 0; 2582 2583 /* all consumers unsubscribed meanwhile */ 2584 if (unlikely(!uprobe)) 2585 return; 2586 2587 rcu_read_lock_trace(); 2588 list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) { 2589 bool session = uc->handler && uc->ret_handler; 2590 2591 if (uc->ret_handler) { 2592 ric = return_consumer_find(ri, &ric_idx, uc->id); 2593 if (!session || ric) 2594 uc->ret_handler(uc, ri->func, regs, ric ? &ric->cookie : NULL); 2595 } 2596 } 2597 rcu_read_unlock_trace(); 2598 } 2599 2600 static struct return_instance *find_next_ret_chain(struct return_instance *ri) 2601 { 2602 bool chained; 2603 2604 do { 2605 chained = ri->chained; 2606 ri = ri->next; /* can't be NULL if chained */ 2607 } while (chained); 2608 2609 return ri; 2610 } 2611 2612 void uprobe_handle_trampoline(struct pt_regs *regs) 2613 { 2614 struct uprobe_task *utask; 2615 struct return_instance *ri, *ri_next, *next_chain; 2616 struct uprobe *uprobe; 2617 enum hprobe_state hstate; 2618 bool valid; 2619 2620 utask = current->utask; 2621 if (!utask) 2622 goto sigill; 2623 2624 ri = utask->return_instances; 2625 if (!ri) 2626 goto sigill; 2627 2628 do { 2629 /* 2630 * We should throw out the frames invalidated by longjmp(). 2631 * If this chain is valid, then the next one should be alive 2632 * or NULL; the latter case means that nobody but ri->func 2633 * could hit this trampoline on return. TODO: sigaltstack(). 2634 */ 2635 next_chain = find_next_ret_chain(ri); 2636 valid = !next_chain || arch_uretprobe_is_alive(next_chain, RP_CHECK_RET, regs); 2637 2638 instruction_pointer_set(regs, ri->orig_ret_vaddr); 2639 do { 2640 /* pop current instance from the stack of pending return instances, 2641 * as it's not pending anymore: we just fixed up original 2642 * instruction pointer in regs and are about to call handlers; 2643 * this allows fixup_uretprobe_trampoline_entries() to properly fix up 2644 * captured stack traces from uretprobe handlers, in which pending 2645 * trampoline addresses on the stack are replaced with correct 2646 * original return addresses 2647 */ 2648 ri_next = ri->next; 2649 rcu_assign_pointer(utask->return_instances, ri_next); 2650 utask->depth--; 2651 2652 uprobe = hprobe_consume(&ri->hprobe, &hstate); 2653 if (valid) 2654 handle_uretprobe_chain(ri, uprobe, regs); 2655 hprobe_finalize(&ri->hprobe, hstate); 2656 2657 /* We already took care of hprobe, no need to waste more time on that. */ 2658 free_ret_instance(utask, ri, false /* !cleanup_hprobe */); 2659 ri = ri_next; 2660 } while (ri != next_chain); 2661 } while (!valid); 2662 2663 return; 2664 2665 sigill: 2666 uprobe_warn(current, "handle uretprobe, sending SIGILL."); 2667 force_sig(SIGILL); 2668 } 2669 2670 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs) 2671 { 2672 return false; 2673 } 2674 2675 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx, 2676 struct pt_regs *regs) 2677 { 2678 return true; 2679 } 2680 2681 /* 2682 * Run handler and ask thread to singlestep. 2683 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps. 2684 */ 2685 static void handle_swbp(struct pt_regs *regs) 2686 { 2687 struct uprobe *uprobe; 2688 unsigned long bp_vaddr; 2689 int is_swbp; 2690 2691 bp_vaddr = uprobe_get_swbp_addr(regs); 2692 if (bp_vaddr == uprobe_get_trampoline_vaddr()) 2693 return uprobe_handle_trampoline(regs); 2694 2695 rcu_read_lock_trace(); 2696 2697 uprobe = find_active_uprobe_rcu(bp_vaddr, &is_swbp); 2698 if (!uprobe) { 2699 if (is_swbp > 0) { 2700 /* No matching uprobe; signal SIGTRAP. */ 2701 force_sig(SIGTRAP); 2702 } else { 2703 /* 2704 * Either we raced with uprobe_unregister() or we can't 2705 * access this memory. The latter is only possible if 2706 * another thread plays with our ->mm. In both cases 2707 * we can simply restart. If this vma was unmapped we 2708 * can pretend this insn was not executed yet and get 2709 * the (correct) SIGSEGV after restart. 2710 */ 2711 instruction_pointer_set(regs, bp_vaddr); 2712 } 2713 goto out; 2714 } 2715 2716 /* change it in advance for ->handler() and restart */ 2717 instruction_pointer_set(regs, bp_vaddr); 2718 2719 /* 2720 * TODO: move copy_insn/etc into _register and remove this hack. 2721 * After we hit the bp, _unregister + _register can install the 2722 * new and not-yet-analyzed uprobe at the same address, restart. 2723 */ 2724 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags))) 2725 goto out; 2726 2727 /* 2728 * Pairs with the smp_wmb() in prepare_uprobe(). 2729 * 2730 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then 2731 * we must also see the stores to &uprobe->arch performed by the 2732 * prepare_uprobe() call. 2733 */ 2734 smp_rmb(); 2735 2736 /* Tracing handlers use ->utask to communicate with fetch methods */ 2737 if (!get_utask()) 2738 goto out; 2739 2740 if (arch_uprobe_ignore(&uprobe->arch, regs)) 2741 goto out; 2742 2743 handler_chain(uprobe, regs); 2744 2745 if (arch_uprobe_skip_sstep(&uprobe->arch, regs)) 2746 goto out; 2747 2748 if (pre_ssout(uprobe, regs, bp_vaddr)) 2749 goto out; 2750 2751 out: 2752 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */ 2753 rcu_read_unlock_trace(); 2754 } 2755 2756 /* 2757 * Perform required fix-ups and disable singlestep. 2758 * Allow pending signals to take effect. 2759 */ 2760 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs) 2761 { 2762 struct uprobe *uprobe; 2763 int err = 0; 2764 2765 uprobe = utask->active_uprobe; 2766 if (utask->state == UTASK_SSTEP_ACK) 2767 err = arch_uprobe_post_xol(&uprobe->arch, regs); 2768 else if (utask->state == UTASK_SSTEP_TRAPPED) 2769 arch_uprobe_abort_xol(&uprobe->arch, regs); 2770 else 2771 WARN_ON_ONCE(1); 2772 2773 put_uprobe(uprobe); 2774 utask->active_uprobe = NULL; 2775 utask->state = UTASK_RUNNING; 2776 xol_free_insn_slot(utask); 2777 2778 if (utask->signal_denied) { 2779 set_thread_flag(TIF_SIGPENDING); 2780 utask->signal_denied = false; 2781 } 2782 2783 if (unlikely(err)) { 2784 uprobe_warn(current, "execute the probed insn, sending SIGILL."); 2785 force_sig(SIGILL); 2786 } 2787 } 2788 2789 /* 2790 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and 2791 * allows the thread to return from interrupt. After that handle_swbp() 2792 * sets utask->active_uprobe. 2793 * 2794 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag 2795 * and allows the thread to return from interrupt. 2796 * 2797 * While returning to userspace, thread notices the TIF_UPROBE flag and calls 2798 * uprobe_notify_resume(). 2799 */ 2800 void uprobe_notify_resume(struct pt_regs *regs) 2801 { 2802 struct uprobe_task *utask; 2803 2804 clear_thread_flag(TIF_UPROBE); 2805 2806 utask = current->utask; 2807 if (utask && utask->active_uprobe) 2808 handle_singlestep(utask, regs); 2809 else 2810 handle_swbp(regs); 2811 } 2812 2813 /* 2814 * uprobe_pre_sstep_notifier gets called from interrupt context as part of 2815 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit. 2816 */ 2817 int uprobe_pre_sstep_notifier(struct pt_regs *regs) 2818 { 2819 if (!current->mm) 2820 return 0; 2821 2822 if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) && 2823 (!current->utask || !current->utask->return_instances)) 2824 return 0; 2825 2826 set_thread_flag(TIF_UPROBE); 2827 return 1; 2828 } 2829 2830 /* 2831 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier 2832 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep. 2833 */ 2834 int uprobe_post_sstep_notifier(struct pt_regs *regs) 2835 { 2836 struct uprobe_task *utask = current->utask; 2837 2838 if (!current->mm || !utask || !utask->active_uprobe) 2839 /* task is currently not uprobed */ 2840 return 0; 2841 2842 utask->state = UTASK_SSTEP_ACK; 2843 set_thread_flag(TIF_UPROBE); 2844 return 1; 2845 } 2846 2847 static struct notifier_block uprobe_exception_nb = { 2848 .notifier_call = arch_uprobe_exception_notify, 2849 .priority = INT_MAX-1, /* notified after kprobes, kgdb */ 2850 }; 2851 2852 void __init uprobes_init(void) 2853 { 2854 int i; 2855 2856 for (i = 0; i < UPROBES_HASH_SZ; i++) 2857 mutex_init(&uprobes_mmap_mutex[i]); 2858 2859 BUG_ON(register_die_notifier(&uprobe_exception_nb)); 2860 } 2861