xref: /linux/kernel/bpf/core.c (revision d090326860096df9dac6f27cff76d3f8df44d4f1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <uapi/linux/btf.h>
21 #include <linux/filter.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/prandom.h>
25 #include <linux/bpf.h>
26 #include <linux/btf.h>
27 #include <linux/objtool.h>
28 #include <linux/overflow.h>
29 #include <linux/rbtree_latch.h>
30 #include <linux/kallsyms.h>
31 #include <linux/rcupdate.h>
32 #include <linux/perf_event.h>
33 #include <linux/extable.h>
34 #include <linux/log2.h>
35 #include <linux/bpf_verifier.h>
36 #include <linux/nodemask.h>
37 #include <linux/nospec.h>
38 #include <linux/bpf_mem_alloc.h>
39 #include <linux/memcontrol.h>
40 #include <linux/execmem.h>
41 
42 #include <asm/barrier.h>
43 #include <linux/unaligned.h>
44 
45 /* Registers */
46 #define BPF_R0	regs[BPF_REG_0]
47 #define BPF_R1	regs[BPF_REG_1]
48 #define BPF_R2	regs[BPF_REG_2]
49 #define BPF_R3	regs[BPF_REG_3]
50 #define BPF_R4	regs[BPF_REG_4]
51 #define BPF_R5	regs[BPF_REG_5]
52 #define BPF_R6	regs[BPF_REG_6]
53 #define BPF_R7	regs[BPF_REG_7]
54 #define BPF_R8	regs[BPF_REG_8]
55 #define BPF_R9	regs[BPF_REG_9]
56 #define BPF_R10	regs[BPF_REG_10]
57 
58 /* Named registers */
59 #define DST	regs[insn->dst_reg]
60 #define SRC	regs[insn->src_reg]
61 #define FP	regs[BPF_REG_FP]
62 #define AX	regs[BPF_REG_AX]
63 #define ARG1	regs[BPF_REG_ARG1]
64 #define CTX	regs[BPF_REG_CTX]
65 #define OFF	insn->off
66 #define IMM	insn->imm
67 
68 struct bpf_mem_alloc bpf_global_ma;
69 bool bpf_global_ma_set;
70 
71 /* No hurry in this branch
72  *
73  * Exported for the bpf jit load helper.
74  */
75 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
76 {
77 	u8 *ptr = NULL;
78 
79 	if (k >= SKF_NET_OFF) {
80 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
81 	} else if (k >= SKF_LL_OFF) {
82 		if (unlikely(!skb_mac_header_was_set(skb)))
83 			return NULL;
84 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
85 	}
86 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
87 		return ptr;
88 
89 	return NULL;
90 }
91 
92 /* tell bpf programs that include vmlinux.h kernel's PAGE_SIZE */
93 enum page_size_enum {
94 	__PAGE_SIZE = PAGE_SIZE
95 };
96 
97 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
98 {
99 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
100 	struct bpf_prog_aux *aux;
101 	struct bpf_prog *fp;
102 
103 	size = round_up(size, __PAGE_SIZE);
104 	fp = __vmalloc(size, gfp_flags);
105 	if (fp == NULL)
106 		return NULL;
107 
108 	aux = kzalloc(sizeof(*aux), bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
109 	if (aux == NULL) {
110 		vfree(fp);
111 		return NULL;
112 	}
113 	fp->active = alloc_percpu_gfp(int, bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
114 	if (!fp->active) {
115 		vfree(fp);
116 		kfree(aux);
117 		return NULL;
118 	}
119 
120 	fp->pages = size / PAGE_SIZE;
121 	fp->aux = aux;
122 	fp->aux->prog = fp;
123 	fp->jit_requested = ebpf_jit_enabled();
124 	fp->blinding_requested = bpf_jit_blinding_enabled(fp);
125 #ifdef CONFIG_CGROUP_BPF
126 	aux->cgroup_atype = CGROUP_BPF_ATTACH_TYPE_INVALID;
127 #endif
128 
129 	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
130 #ifdef CONFIG_FINEIBT
131 	INIT_LIST_HEAD_RCU(&fp->aux->ksym_prefix.lnode);
132 #endif
133 	mutex_init(&fp->aux->used_maps_mutex);
134 	mutex_init(&fp->aux->ext_mutex);
135 	mutex_init(&fp->aux->dst_mutex);
136 
137 #ifdef CONFIG_BPF_SYSCALL
138 	bpf_prog_stream_init(fp);
139 #endif
140 
141 	return fp;
142 }
143 
144 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
145 {
146 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
147 	struct bpf_prog *prog;
148 	int cpu;
149 
150 	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
151 	if (!prog)
152 		return NULL;
153 
154 	prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
155 	if (!prog->stats) {
156 		free_percpu(prog->active);
157 		kfree(prog->aux);
158 		vfree(prog);
159 		return NULL;
160 	}
161 
162 	for_each_possible_cpu(cpu) {
163 		struct bpf_prog_stats *pstats;
164 
165 		pstats = per_cpu_ptr(prog->stats, cpu);
166 		u64_stats_init(&pstats->syncp);
167 	}
168 	return prog;
169 }
170 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
171 
172 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
173 {
174 	if (!prog->aux->nr_linfo || !prog->jit_requested)
175 		return 0;
176 
177 	prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
178 					  sizeof(*prog->aux->jited_linfo),
179 					  bpf_memcg_flags(GFP_KERNEL | __GFP_NOWARN));
180 	if (!prog->aux->jited_linfo)
181 		return -ENOMEM;
182 
183 	return 0;
184 }
185 
186 void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
187 {
188 	if (prog->aux->jited_linfo &&
189 	    (!prog->jited || !prog->aux->jited_linfo[0])) {
190 		kvfree(prog->aux->jited_linfo);
191 		prog->aux->jited_linfo = NULL;
192 	}
193 
194 	kfree(prog->aux->kfunc_tab);
195 	prog->aux->kfunc_tab = NULL;
196 }
197 
198 /* The jit engine is responsible to provide an array
199  * for insn_off to the jited_off mapping (insn_to_jit_off).
200  *
201  * The idx to this array is the insn_off.  Hence, the insn_off
202  * here is relative to the prog itself instead of the main prog.
203  * This array has one entry for each xlated bpf insn.
204  *
205  * jited_off is the byte off to the end of the jited insn.
206  *
207  * Hence, with
208  * insn_start:
209  *      The first bpf insn off of the prog.  The insn off
210  *      here is relative to the main prog.
211  *      e.g. if prog is a subprog, insn_start > 0
212  * linfo_idx:
213  *      The prog's idx to prog->aux->linfo and jited_linfo
214  *
215  * jited_linfo[linfo_idx] = prog->bpf_func
216  *
217  * For i > linfo_idx,
218  *
219  * jited_linfo[i] = prog->bpf_func +
220  *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
221  */
222 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
223 			       const u32 *insn_to_jit_off)
224 {
225 	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
226 	const struct bpf_line_info *linfo;
227 	void **jited_linfo;
228 
229 	if (!prog->aux->jited_linfo || prog->aux->func_idx > prog->aux->func_cnt)
230 		/* Userspace did not provide linfo */
231 		return;
232 
233 	linfo_idx = prog->aux->linfo_idx;
234 	linfo = &prog->aux->linfo[linfo_idx];
235 	insn_start = linfo[0].insn_off;
236 	insn_end = insn_start + prog->len;
237 
238 	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
239 	jited_linfo[0] = prog->bpf_func;
240 
241 	nr_linfo = prog->aux->nr_linfo - linfo_idx;
242 
243 	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
244 		/* The verifier ensures that linfo[i].insn_off is
245 		 * strictly increasing
246 		 */
247 		jited_linfo[i] = prog->bpf_func +
248 			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
249 }
250 
251 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
252 				  gfp_t gfp_extra_flags)
253 {
254 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
255 	struct bpf_prog *fp;
256 	u32 pages;
257 
258 	size = round_up(size, PAGE_SIZE);
259 	pages = size / PAGE_SIZE;
260 	if (pages <= fp_old->pages)
261 		return fp_old;
262 
263 	fp = __vmalloc(size, gfp_flags);
264 	if (fp) {
265 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
266 		fp->pages = pages;
267 		fp->aux->prog = fp;
268 
269 		/* We keep fp->aux from fp_old around in the new
270 		 * reallocated structure.
271 		 */
272 		fp_old->aux = NULL;
273 		fp_old->stats = NULL;
274 		fp_old->active = NULL;
275 		__bpf_prog_free(fp_old);
276 	}
277 
278 	return fp;
279 }
280 
281 void __bpf_prog_free(struct bpf_prog *fp)
282 {
283 	if (fp->aux) {
284 		mutex_destroy(&fp->aux->used_maps_mutex);
285 		mutex_destroy(&fp->aux->dst_mutex);
286 		kfree(fp->aux->poke_tab);
287 		kfree(fp->aux);
288 	}
289 	free_percpu(fp->stats);
290 	free_percpu(fp->active);
291 	vfree(fp);
292 }
293 
294 int bpf_prog_calc_tag(struct bpf_prog *fp)
295 {
296 	const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
297 	u32 raw_size = bpf_prog_tag_scratch_size(fp);
298 	u32 digest[SHA1_DIGEST_WORDS];
299 	u32 ws[SHA1_WORKSPACE_WORDS];
300 	u32 i, bsize, psize, blocks;
301 	struct bpf_insn *dst;
302 	bool was_ld_map;
303 	u8 *raw, *todo;
304 	__be32 *result;
305 	__be64 *bits;
306 
307 	raw = vmalloc(raw_size);
308 	if (!raw)
309 		return -ENOMEM;
310 
311 	sha1_init(digest);
312 	memset(ws, 0, sizeof(ws));
313 
314 	/* We need to take out the map fd for the digest calculation
315 	 * since they are unstable from user space side.
316 	 */
317 	dst = (void *)raw;
318 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
319 		dst[i] = fp->insnsi[i];
320 		if (!was_ld_map &&
321 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
322 		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
323 		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
324 			was_ld_map = true;
325 			dst[i].imm = 0;
326 		} else if (was_ld_map &&
327 			   dst[i].code == 0 &&
328 			   dst[i].dst_reg == 0 &&
329 			   dst[i].src_reg == 0 &&
330 			   dst[i].off == 0) {
331 			was_ld_map = false;
332 			dst[i].imm = 0;
333 		} else {
334 			was_ld_map = false;
335 		}
336 	}
337 
338 	psize = bpf_prog_insn_size(fp);
339 	memset(&raw[psize], 0, raw_size - psize);
340 	raw[psize++] = 0x80;
341 
342 	bsize  = round_up(psize, SHA1_BLOCK_SIZE);
343 	blocks = bsize / SHA1_BLOCK_SIZE;
344 	todo   = raw;
345 	if (bsize - psize >= sizeof(__be64)) {
346 		bits = (__be64 *)(todo + bsize - sizeof(__be64));
347 	} else {
348 		bits = (__be64 *)(todo + bsize + bits_offset);
349 		blocks++;
350 	}
351 	*bits = cpu_to_be64((psize - 1) << 3);
352 
353 	while (blocks--) {
354 		sha1_transform(digest, todo, ws);
355 		todo += SHA1_BLOCK_SIZE;
356 	}
357 
358 	result = (__force __be32 *)digest;
359 	for (i = 0; i < SHA1_DIGEST_WORDS; i++)
360 		result[i] = cpu_to_be32(digest[i]);
361 	memcpy(fp->tag, result, sizeof(fp->tag));
362 
363 	vfree(raw);
364 	return 0;
365 }
366 
367 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
368 				s32 end_new, s32 curr, const bool probe_pass)
369 {
370 	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
371 	s32 delta = end_new - end_old;
372 	s64 imm = insn->imm;
373 
374 	if (curr < pos && curr + imm + 1 >= end_old)
375 		imm += delta;
376 	else if (curr >= end_new && curr + imm + 1 < end_new)
377 		imm -= delta;
378 	if (imm < imm_min || imm > imm_max)
379 		return -ERANGE;
380 	if (!probe_pass)
381 		insn->imm = imm;
382 	return 0;
383 }
384 
385 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
386 				s32 end_new, s32 curr, const bool probe_pass)
387 {
388 	s64 off_min, off_max, off;
389 	s32 delta = end_new - end_old;
390 
391 	if (insn->code == (BPF_JMP32 | BPF_JA)) {
392 		off = insn->imm;
393 		off_min = S32_MIN;
394 		off_max = S32_MAX;
395 	} else {
396 		off = insn->off;
397 		off_min = S16_MIN;
398 		off_max = S16_MAX;
399 	}
400 
401 	if (curr < pos && curr + off + 1 >= end_old)
402 		off += delta;
403 	else if (curr >= end_new && curr + off + 1 < end_new)
404 		off -= delta;
405 	if (off < off_min || off > off_max)
406 		return -ERANGE;
407 	if (!probe_pass) {
408 		if (insn->code == (BPF_JMP32 | BPF_JA))
409 			insn->imm = off;
410 		else
411 			insn->off = off;
412 	}
413 	return 0;
414 }
415 
416 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
417 			    s32 end_new, const bool probe_pass)
418 {
419 	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
420 	struct bpf_insn *insn = prog->insnsi;
421 	int ret = 0;
422 
423 	for (i = 0; i < insn_cnt; i++, insn++) {
424 		u8 code;
425 
426 		/* In the probing pass we still operate on the original,
427 		 * unpatched image in order to check overflows before we
428 		 * do any other adjustments. Therefore skip the patchlet.
429 		 */
430 		if (probe_pass && i == pos) {
431 			i = end_new;
432 			insn = prog->insnsi + end_old;
433 		}
434 		if (bpf_pseudo_func(insn)) {
435 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
436 						   end_new, i, probe_pass);
437 			if (ret)
438 				return ret;
439 			continue;
440 		}
441 		code = insn->code;
442 		if ((BPF_CLASS(code) != BPF_JMP &&
443 		     BPF_CLASS(code) != BPF_JMP32) ||
444 		    BPF_OP(code) == BPF_EXIT)
445 			continue;
446 		/* Adjust offset of jmps if we cross patch boundaries. */
447 		if (BPF_OP(code) == BPF_CALL) {
448 			if (insn->src_reg != BPF_PSEUDO_CALL)
449 				continue;
450 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
451 						   end_new, i, probe_pass);
452 		} else {
453 			ret = bpf_adj_delta_to_off(insn, pos, end_old,
454 						   end_new, i, probe_pass);
455 		}
456 		if (ret)
457 			break;
458 	}
459 
460 	return ret;
461 }
462 
463 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
464 {
465 	struct bpf_line_info *linfo;
466 	u32 i, nr_linfo;
467 
468 	nr_linfo = prog->aux->nr_linfo;
469 	if (!nr_linfo || !delta)
470 		return;
471 
472 	linfo = prog->aux->linfo;
473 
474 	for (i = 0; i < nr_linfo; i++)
475 		if (off < linfo[i].insn_off)
476 			break;
477 
478 	/* Push all off < linfo[i].insn_off by delta */
479 	for (; i < nr_linfo; i++)
480 		linfo[i].insn_off += delta;
481 }
482 
483 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
484 				       const struct bpf_insn *patch, u32 len)
485 {
486 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
487 	const u32 cnt_max = S16_MAX;
488 	struct bpf_prog *prog_adj;
489 	int err;
490 
491 	/* Since our patchlet doesn't expand the image, we're done. */
492 	if (insn_delta == 0) {
493 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
494 		return prog;
495 	}
496 
497 	insn_adj_cnt = prog->len + insn_delta;
498 
499 	/* Reject anything that would potentially let the insn->off
500 	 * target overflow when we have excessive program expansions.
501 	 * We need to probe here before we do any reallocation where
502 	 * we afterwards may not fail anymore.
503 	 */
504 	if (insn_adj_cnt > cnt_max &&
505 	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
506 		return ERR_PTR(err);
507 
508 	/* Several new instructions need to be inserted. Make room
509 	 * for them. Likely, there's no need for a new allocation as
510 	 * last page could have large enough tailroom.
511 	 */
512 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
513 				    GFP_USER);
514 	if (!prog_adj)
515 		return ERR_PTR(-ENOMEM);
516 
517 	prog_adj->len = insn_adj_cnt;
518 
519 	/* Patching happens in 3 steps:
520 	 *
521 	 * 1) Move over tail of insnsi from next instruction onwards,
522 	 *    so we can patch the single target insn with one or more
523 	 *    new ones (patching is always from 1 to n insns, n > 0).
524 	 * 2) Inject new instructions at the target location.
525 	 * 3) Adjust branch offsets if necessary.
526 	 */
527 	insn_rest = insn_adj_cnt - off - len;
528 
529 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
530 		sizeof(*patch) * insn_rest);
531 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
532 
533 	/* We are guaranteed to not fail at this point, otherwise
534 	 * the ship has sailed to reverse to the original state. An
535 	 * overflow cannot happen at this point.
536 	 */
537 	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
538 
539 	bpf_adj_linfo(prog_adj, off, insn_delta);
540 
541 	return prog_adj;
542 }
543 
544 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
545 {
546 	int err;
547 
548 	/* Branch offsets can't overflow when program is shrinking, no need
549 	 * to call bpf_adj_branches(..., true) here
550 	 */
551 	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
552 		sizeof(struct bpf_insn) * (prog->len - off - cnt));
553 	prog->len -= cnt;
554 
555 	err = bpf_adj_branches(prog, off, off + cnt, off, false);
556 	WARN_ON_ONCE(err);
557 	return err;
558 }
559 
560 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
561 {
562 	int i;
563 
564 	for (i = 0; i < fp->aux->real_func_cnt; i++)
565 		bpf_prog_kallsyms_del(fp->aux->func[i]);
566 }
567 
568 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
569 {
570 	bpf_prog_kallsyms_del_subprogs(fp);
571 	bpf_prog_kallsyms_del(fp);
572 }
573 
574 #ifdef CONFIG_BPF_JIT
575 /* All BPF JIT sysctl knobs here. */
576 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
577 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
578 int bpf_jit_harden   __read_mostly;
579 long bpf_jit_limit   __read_mostly;
580 long bpf_jit_limit_max __read_mostly;
581 
582 static void
583 bpf_prog_ksym_set_addr(struct bpf_prog *prog)
584 {
585 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
586 
587 	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
588 	prog->aux->ksym.end   = prog->aux->ksym.start + prog->jited_len;
589 }
590 
591 static void
592 bpf_prog_ksym_set_name(struct bpf_prog *prog)
593 {
594 	char *sym = prog->aux->ksym.name;
595 	const char *end = sym + KSYM_NAME_LEN;
596 	const struct btf_type *type;
597 	const char *func_name;
598 
599 	BUILD_BUG_ON(sizeof("bpf_prog_") +
600 		     sizeof(prog->tag) * 2 +
601 		     /* name has been null terminated.
602 		      * We should need +1 for the '_' preceding
603 		      * the name.  However, the null character
604 		      * is double counted between the name and the
605 		      * sizeof("bpf_prog_") above, so we omit
606 		      * the +1 here.
607 		      */
608 		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
609 
610 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
611 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
612 
613 	/* prog->aux->name will be ignored if full btf name is available */
614 	if (prog->aux->func_info_cnt && prog->aux->func_idx < prog->aux->func_info_cnt) {
615 		type = btf_type_by_id(prog->aux->btf,
616 				      prog->aux->func_info[prog->aux->func_idx].type_id);
617 		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
618 		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
619 		return;
620 	}
621 
622 	if (prog->aux->name[0])
623 		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
624 	else
625 		*sym = 0;
626 }
627 
628 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
629 {
630 	return container_of(n, struct bpf_ksym, tnode)->start;
631 }
632 
633 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
634 					  struct latch_tree_node *b)
635 {
636 	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
637 }
638 
639 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
640 {
641 	unsigned long val = (unsigned long)key;
642 	const struct bpf_ksym *ksym;
643 
644 	ksym = container_of(n, struct bpf_ksym, tnode);
645 
646 	if (val < ksym->start)
647 		return -1;
648 	/* Ensure that we detect return addresses as part of the program, when
649 	 * the final instruction is a call for a program part of the stack
650 	 * trace. Therefore, do val > ksym->end instead of val >= ksym->end.
651 	 */
652 	if (val > ksym->end)
653 		return  1;
654 
655 	return 0;
656 }
657 
658 static const struct latch_tree_ops bpf_tree_ops = {
659 	.less	= bpf_tree_less,
660 	.comp	= bpf_tree_comp,
661 };
662 
663 static DEFINE_SPINLOCK(bpf_lock);
664 static LIST_HEAD(bpf_kallsyms);
665 static struct latch_tree_root bpf_tree __cacheline_aligned;
666 
667 void bpf_ksym_add(struct bpf_ksym *ksym)
668 {
669 	spin_lock_bh(&bpf_lock);
670 	WARN_ON_ONCE(!list_empty(&ksym->lnode));
671 	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
672 	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
673 	spin_unlock_bh(&bpf_lock);
674 }
675 
676 static void __bpf_ksym_del(struct bpf_ksym *ksym)
677 {
678 	if (list_empty(&ksym->lnode))
679 		return;
680 
681 	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
682 	list_del_rcu(&ksym->lnode);
683 }
684 
685 void bpf_ksym_del(struct bpf_ksym *ksym)
686 {
687 	spin_lock_bh(&bpf_lock);
688 	__bpf_ksym_del(ksym);
689 	spin_unlock_bh(&bpf_lock);
690 }
691 
692 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
693 {
694 	return fp->jited && !bpf_prog_was_classic(fp);
695 }
696 
697 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
698 {
699 	if (!bpf_prog_kallsyms_candidate(fp) ||
700 	    !bpf_token_capable(fp->aux->token, CAP_BPF))
701 		return;
702 
703 	bpf_prog_ksym_set_addr(fp);
704 	bpf_prog_ksym_set_name(fp);
705 	fp->aux->ksym.prog = true;
706 
707 	bpf_ksym_add(&fp->aux->ksym);
708 
709 #ifdef CONFIG_FINEIBT
710 	/*
711 	 * When FineIBT, code in the __cfi_foo() symbols can get executed
712 	 * and hence unwinder needs help.
713 	 */
714 	if (cfi_mode != CFI_FINEIBT)
715 		return;
716 
717 	snprintf(fp->aux->ksym_prefix.name, KSYM_NAME_LEN,
718 		 "__cfi_%s", fp->aux->ksym.name);
719 
720 	fp->aux->ksym_prefix.start = (unsigned long) fp->bpf_func - 16;
721 	fp->aux->ksym_prefix.end   = (unsigned long) fp->bpf_func;
722 
723 	bpf_ksym_add(&fp->aux->ksym_prefix);
724 #endif
725 }
726 
727 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
728 {
729 	if (!bpf_prog_kallsyms_candidate(fp))
730 		return;
731 
732 	bpf_ksym_del(&fp->aux->ksym);
733 #ifdef CONFIG_FINEIBT
734 	if (cfi_mode != CFI_FINEIBT)
735 		return;
736 	bpf_ksym_del(&fp->aux->ksym_prefix);
737 #endif
738 }
739 
740 static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
741 {
742 	struct latch_tree_node *n;
743 
744 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
745 	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
746 }
747 
748 int __bpf_address_lookup(unsigned long addr, unsigned long *size,
749 				 unsigned long *off, char *sym)
750 {
751 	struct bpf_ksym *ksym;
752 	int ret = 0;
753 
754 	rcu_read_lock();
755 	ksym = bpf_ksym_find(addr);
756 	if (ksym) {
757 		unsigned long symbol_start = ksym->start;
758 		unsigned long symbol_end = ksym->end;
759 
760 		ret = strscpy(sym, ksym->name, KSYM_NAME_LEN);
761 
762 		if (size)
763 			*size = symbol_end - symbol_start;
764 		if (off)
765 			*off  = addr - symbol_start;
766 	}
767 	rcu_read_unlock();
768 
769 	return ret;
770 }
771 
772 bool is_bpf_text_address(unsigned long addr)
773 {
774 	bool ret;
775 
776 	rcu_read_lock();
777 	ret = bpf_ksym_find(addr) != NULL;
778 	rcu_read_unlock();
779 
780 	return ret;
781 }
782 
783 struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
784 {
785 	struct bpf_ksym *ksym;
786 
787 	WARN_ON_ONCE(!rcu_read_lock_held());
788 	ksym = bpf_ksym_find(addr);
789 
790 	return ksym && ksym->prog ?
791 	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
792 	       NULL;
793 }
794 
795 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
796 {
797 	const struct exception_table_entry *e = NULL;
798 	struct bpf_prog *prog;
799 
800 	rcu_read_lock();
801 	prog = bpf_prog_ksym_find(addr);
802 	if (!prog)
803 		goto out;
804 	if (!prog->aux->num_exentries)
805 		goto out;
806 
807 	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
808 out:
809 	rcu_read_unlock();
810 	return e;
811 }
812 
813 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
814 		    char *sym)
815 {
816 	struct bpf_ksym *ksym;
817 	unsigned int it = 0;
818 	int ret = -ERANGE;
819 
820 	if (!bpf_jit_kallsyms_enabled())
821 		return ret;
822 
823 	rcu_read_lock();
824 	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
825 		if (it++ != symnum)
826 			continue;
827 
828 		strscpy(sym, ksym->name, KSYM_NAME_LEN);
829 
830 		*value = ksym->start;
831 		*type  = BPF_SYM_ELF_TYPE;
832 
833 		ret = 0;
834 		break;
835 	}
836 	rcu_read_unlock();
837 
838 	return ret;
839 }
840 
841 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
842 				struct bpf_jit_poke_descriptor *poke)
843 {
844 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
845 	static const u32 poke_tab_max = 1024;
846 	u32 slot = prog->aux->size_poke_tab;
847 	u32 size = slot + 1;
848 
849 	if (size > poke_tab_max)
850 		return -ENOSPC;
851 	if (poke->tailcall_target || poke->tailcall_target_stable ||
852 	    poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
853 		return -EINVAL;
854 
855 	switch (poke->reason) {
856 	case BPF_POKE_REASON_TAIL_CALL:
857 		if (!poke->tail_call.map)
858 			return -EINVAL;
859 		break;
860 	default:
861 		return -EINVAL;
862 	}
863 
864 	tab = krealloc_array(tab, size, sizeof(*poke), GFP_KERNEL);
865 	if (!tab)
866 		return -ENOMEM;
867 
868 	memcpy(&tab[slot], poke, sizeof(*poke));
869 	prog->aux->size_poke_tab = size;
870 	prog->aux->poke_tab = tab;
871 
872 	return slot;
873 }
874 
875 /*
876  * BPF program pack allocator.
877  *
878  * Most BPF programs are pretty small. Allocating a hole page for each
879  * program is sometime a waste. Many small bpf program also adds pressure
880  * to instruction TLB. To solve this issue, we introduce a BPF program pack
881  * allocator. The prog_pack allocator uses HPAGE_PMD_SIZE page (2MB on x86)
882  * to host BPF programs.
883  */
884 #define BPF_PROG_CHUNK_SHIFT	6
885 #define BPF_PROG_CHUNK_SIZE	(1 << BPF_PROG_CHUNK_SHIFT)
886 #define BPF_PROG_CHUNK_MASK	(~(BPF_PROG_CHUNK_SIZE - 1))
887 
888 struct bpf_prog_pack {
889 	struct list_head list;
890 	void *ptr;
891 	unsigned long bitmap[];
892 };
893 
894 void bpf_jit_fill_hole_with_zero(void *area, unsigned int size)
895 {
896 	memset(area, 0, size);
897 }
898 
899 #define BPF_PROG_SIZE_TO_NBITS(size)	(round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE)
900 
901 static DEFINE_MUTEX(pack_mutex);
902 static LIST_HEAD(pack_list);
903 
904 /* PMD_SIZE is not available in some special config, e.g. ARCH=arm with
905  * CONFIG_MMU=n. Use PAGE_SIZE in these cases.
906  */
907 #ifdef PMD_SIZE
908 /* PMD_SIZE is really big for some archs. It doesn't make sense to
909  * reserve too much memory in one allocation. Hardcode BPF_PROG_PACK_SIZE to
910  * 2MiB * num_possible_nodes(). On most architectures PMD_SIZE will be
911  * greater than or equal to 2MB.
912  */
913 #define BPF_PROG_PACK_SIZE (SZ_2M * num_possible_nodes())
914 #else
915 #define BPF_PROG_PACK_SIZE PAGE_SIZE
916 #endif
917 
918 #define BPF_PROG_CHUNK_COUNT (BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE)
919 
920 static struct bpf_prog_pack *alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)
921 {
922 	struct bpf_prog_pack *pack;
923 	int err;
924 
925 	pack = kzalloc(struct_size(pack, bitmap, BITS_TO_LONGS(BPF_PROG_CHUNK_COUNT)),
926 		       GFP_KERNEL);
927 	if (!pack)
928 		return NULL;
929 	pack->ptr = bpf_jit_alloc_exec(BPF_PROG_PACK_SIZE);
930 	if (!pack->ptr)
931 		goto out;
932 	bpf_fill_ill_insns(pack->ptr, BPF_PROG_PACK_SIZE);
933 	bitmap_zero(pack->bitmap, BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE);
934 
935 	set_vm_flush_reset_perms(pack->ptr);
936 	err = set_memory_rox((unsigned long)pack->ptr,
937 			     BPF_PROG_PACK_SIZE / PAGE_SIZE);
938 	if (err)
939 		goto out;
940 	list_add_tail(&pack->list, &pack_list);
941 	return pack;
942 
943 out:
944 	bpf_jit_free_exec(pack->ptr);
945 	kfree(pack);
946 	return NULL;
947 }
948 
949 void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns)
950 {
951 	unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size);
952 	struct bpf_prog_pack *pack;
953 	unsigned long pos;
954 	void *ptr = NULL;
955 
956 	mutex_lock(&pack_mutex);
957 	if (size > BPF_PROG_PACK_SIZE) {
958 		size = round_up(size, PAGE_SIZE);
959 		ptr = bpf_jit_alloc_exec(size);
960 		if (ptr) {
961 			int err;
962 
963 			bpf_fill_ill_insns(ptr, size);
964 			set_vm_flush_reset_perms(ptr);
965 			err = set_memory_rox((unsigned long)ptr,
966 					     size / PAGE_SIZE);
967 			if (err) {
968 				bpf_jit_free_exec(ptr);
969 				ptr = NULL;
970 			}
971 		}
972 		goto out;
973 	}
974 	list_for_each_entry(pack, &pack_list, list) {
975 		pos = bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
976 						 nbits, 0);
977 		if (pos < BPF_PROG_CHUNK_COUNT)
978 			goto found_free_area;
979 	}
980 
981 	pack = alloc_new_pack(bpf_fill_ill_insns);
982 	if (!pack)
983 		goto out;
984 
985 	pos = 0;
986 
987 found_free_area:
988 	bitmap_set(pack->bitmap, pos, nbits);
989 	ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT);
990 
991 out:
992 	mutex_unlock(&pack_mutex);
993 	return ptr;
994 }
995 
996 void bpf_prog_pack_free(void *ptr, u32 size)
997 {
998 	struct bpf_prog_pack *pack = NULL, *tmp;
999 	unsigned int nbits;
1000 	unsigned long pos;
1001 
1002 	mutex_lock(&pack_mutex);
1003 	if (size > BPF_PROG_PACK_SIZE) {
1004 		bpf_jit_free_exec(ptr);
1005 		goto out;
1006 	}
1007 
1008 	list_for_each_entry(tmp, &pack_list, list) {
1009 		if (ptr >= tmp->ptr && (tmp->ptr + BPF_PROG_PACK_SIZE) > ptr) {
1010 			pack = tmp;
1011 			break;
1012 		}
1013 	}
1014 
1015 	if (WARN_ONCE(!pack, "bpf_prog_pack bug\n"))
1016 		goto out;
1017 
1018 	nbits = BPF_PROG_SIZE_TO_NBITS(size);
1019 	pos = ((unsigned long)ptr - (unsigned long)pack->ptr) >> BPF_PROG_CHUNK_SHIFT;
1020 
1021 	WARN_ONCE(bpf_arch_text_invalidate(ptr, size),
1022 		  "bpf_prog_pack bug: missing bpf_arch_text_invalidate?\n");
1023 
1024 	bitmap_clear(pack->bitmap, pos, nbits);
1025 	if (bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
1026 				       BPF_PROG_CHUNK_COUNT, 0) == 0) {
1027 		list_del(&pack->list);
1028 		bpf_jit_free_exec(pack->ptr);
1029 		kfree(pack);
1030 	}
1031 out:
1032 	mutex_unlock(&pack_mutex);
1033 }
1034 
1035 static atomic_long_t bpf_jit_current;
1036 
1037 /* Can be overridden by an arch's JIT compiler if it has a custom,
1038  * dedicated BPF backend memory area, or if neither of the two
1039  * below apply.
1040  */
1041 u64 __weak bpf_jit_alloc_exec_limit(void)
1042 {
1043 #if defined(MODULES_VADDR)
1044 	return MODULES_END - MODULES_VADDR;
1045 #else
1046 	return VMALLOC_END - VMALLOC_START;
1047 #endif
1048 }
1049 
1050 static int __init bpf_jit_charge_init(void)
1051 {
1052 	/* Only used as heuristic here to derive limit. */
1053 	bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
1054 	bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 1,
1055 					    PAGE_SIZE), LONG_MAX);
1056 	return 0;
1057 }
1058 pure_initcall(bpf_jit_charge_init);
1059 
1060 int bpf_jit_charge_modmem(u32 size)
1061 {
1062 	if (atomic_long_add_return(size, &bpf_jit_current) > READ_ONCE(bpf_jit_limit)) {
1063 		if (!bpf_capable()) {
1064 			atomic_long_sub(size, &bpf_jit_current);
1065 			return -EPERM;
1066 		}
1067 	}
1068 
1069 	return 0;
1070 }
1071 
1072 void bpf_jit_uncharge_modmem(u32 size)
1073 {
1074 	atomic_long_sub(size, &bpf_jit_current);
1075 }
1076 
1077 void *__weak bpf_jit_alloc_exec(unsigned long size)
1078 {
1079 	return execmem_alloc(EXECMEM_BPF, size);
1080 }
1081 
1082 void __weak bpf_jit_free_exec(void *addr)
1083 {
1084 	execmem_free(addr);
1085 }
1086 
1087 struct bpf_binary_header *
1088 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1089 		     unsigned int alignment,
1090 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
1091 {
1092 	struct bpf_binary_header *hdr;
1093 	u32 size, hole, start;
1094 
1095 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1096 		     alignment > BPF_IMAGE_ALIGNMENT);
1097 
1098 	/* Most of BPF filters are really small, but if some of them
1099 	 * fill a page, allow at least 128 extra bytes to insert a
1100 	 * random section of illegal instructions.
1101 	 */
1102 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
1103 
1104 	if (bpf_jit_charge_modmem(size))
1105 		return NULL;
1106 	hdr = bpf_jit_alloc_exec(size);
1107 	if (!hdr) {
1108 		bpf_jit_uncharge_modmem(size);
1109 		return NULL;
1110 	}
1111 
1112 	/* Fill space with illegal/arch-dep instructions. */
1113 	bpf_fill_ill_insns(hdr, size);
1114 
1115 	hdr->size = size;
1116 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
1117 		     PAGE_SIZE - sizeof(*hdr));
1118 	start = get_random_u32_below(hole) & ~(alignment - 1);
1119 
1120 	/* Leave a random number of instructions before BPF code. */
1121 	*image_ptr = &hdr->image[start];
1122 
1123 	return hdr;
1124 }
1125 
1126 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
1127 {
1128 	u32 size = hdr->size;
1129 
1130 	bpf_jit_free_exec(hdr);
1131 	bpf_jit_uncharge_modmem(size);
1132 }
1133 
1134 /* Allocate jit binary from bpf_prog_pack allocator.
1135  * Since the allocated memory is RO+X, the JIT engine cannot write directly
1136  * to the memory. To solve this problem, a RW buffer is also allocated at
1137  * as the same time. The JIT engine should calculate offsets based on the
1138  * RO memory address, but write JITed program to the RW buffer. Once the
1139  * JIT engine finishes, it calls bpf_jit_binary_pack_finalize, which copies
1140  * the JITed program to the RO memory.
1141  */
1142 struct bpf_binary_header *
1143 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **image_ptr,
1144 			  unsigned int alignment,
1145 			  struct bpf_binary_header **rw_header,
1146 			  u8 **rw_image,
1147 			  bpf_jit_fill_hole_t bpf_fill_ill_insns)
1148 {
1149 	struct bpf_binary_header *ro_header;
1150 	u32 size, hole, start;
1151 
1152 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1153 		     alignment > BPF_IMAGE_ALIGNMENT);
1154 
1155 	/* add 16 bytes for a random section of illegal instructions */
1156 	size = round_up(proglen + sizeof(*ro_header) + 16, BPF_PROG_CHUNK_SIZE);
1157 
1158 	if (bpf_jit_charge_modmem(size))
1159 		return NULL;
1160 	ro_header = bpf_prog_pack_alloc(size, bpf_fill_ill_insns);
1161 	if (!ro_header) {
1162 		bpf_jit_uncharge_modmem(size);
1163 		return NULL;
1164 	}
1165 
1166 	*rw_header = kvmalloc(size, GFP_KERNEL);
1167 	if (!*rw_header) {
1168 		bpf_prog_pack_free(ro_header, size);
1169 		bpf_jit_uncharge_modmem(size);
1170 		return NULL;
1171 	}
1172 
1173 	/* Fill space with illegal/arch-dep instructions. */
1174 	bpf_fill_ill_insns(*rw_header, size);
1175 	(*rw_header)->size = size;
1176 
1177 	hole = min_t(unsigned int, size - (proglen + sizeof(*ro_header)),
1178 		     BPF_PROG_CHUNK_SIZE - sizeof(*ro_header));
1179 	start = get_random_u32_below(hole) & ~(alignment - 1);
1180 
1181 	*image_ptr = &ro_header->image[start];
1182 	*rw_image = &(*rw_header)->image[start];
1183 
1184 	return ro_header;
1185 }
1186 
1187 /* Copy JITed text from rw_header to its final location, the ro_header. */
1188 int bpf_jit_binary_pack_finalize(struct bpf_binary_header *ro_header,
1189 				 struct bpf_binary_header *rw_header)
1190 {
1191 	void *ptr;
1192 
1193 	ptr = bpf_arch_text_copy(ro_header, rw_header, rw_header->size);
1194 
1195 	kvfree(rw_header);
1196 
1197 	if (IS_ERR(ptr)) {
1198 		bpf_prog_pack_free(ro_header, ro_header->size);
1199 		return PTR_ERR(ptr);
1200 	}
1201 	return 0;
1202 }
1203 
1204 /* bpf_jit_binary_pack_free is called in two different scenarios:
1205  *   1) when the program is freed after;
1206  *   2) when the JIT engine fails (before bpf_jit_binary_pack_finalize).
1207  * For case 2), we need to free both the RO memory and the RW buffer.
1208  *
1209  * bpf_jit_binary_pack_free requires proper ro_header->size. However,
1210  * bpf_jit_binary_pack_alloc does not set it. Therefore, ro_header->size
1211  * must be set with either bpf_jit_binary_pack_finalize (normal path) or
1212  * bpf_arch_text_copy (when jit fails).
1213  */
1214 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1215 			      struct bpf_binary_header *rw_header)
1216 {
1217 	u32 size = ro_header->size;
1218 
1219 	bpf_prog_pack_free(ro_header, size);
1220 	kvfree(rw_header);
1221 	bpf_jit_uncharge_modmem(size);
1222 }
1223 
1224 struct bpf_binary_header *
1225 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp)
1226 {
1227 	unsigned long real_start = (unsigned long)fp->bpf_func;
1228 	unsigned long addr;
1229 
1230 	addr = real_start & BPF_PROG_CHUNK_MASK;
1231 	return (void *)addr;
1232 }
1233 
1234 static inline struct bpf_binary_header *
1235 bpf_jit_binary_hdr(const struct bpf_prog *fp)
1236 {
1237 	unsigned long real_start = (unsigned long)fp->bpf_func;
1238 	unsigned long addr;
1239 
1240 	addr = real_start & PAGE_MASK;
1241 	return (void *)addr;
1242 }
1243 
1244 /* This symbol is only overridden by archs that have different
1245  * requirements than the usual eBPF JITs, f.e. when they only
1246  * implement cBPF JIT, do not set images read-only, etc.
1247  */
1248 void __weak bpf_jit_free(struct bpf_prog *fp)
1249 {
1250 	if (fp->jited) {
1251 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
1252 
1253 		bpf_jit_binary_free(hdr);
1254 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
1255 	}
1256 
1257 	bpf_prog_unlock_free(fp);
1258 }
1259 
1260 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1261 			  const struct bpf_insn *insn, bool extra_pass,
1262 			  u64 *func_addr, bool *func_addr_fixed)
1263 {
1264 	s16 off = insn->off;
1265 	s32 imm = insn->imm;
1266 	u8 *addr;
1267 	int err;
1268 
1269 	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
1270 	if (!*func_addr_fixed) {
1271 		/* Place-holder address till the last pass has collected
1272 		 * all addresses for JITed subprograms in which case we
1273 		 * can pick them up from prog->aux.
1274 		 */
1275 		if (!extra_pass)
1276 			addr = NULL;
1277 		else if (prog->aux->func &&
1278 			 off >= 0 && off < prog->aux->real_func_cnt)
1279 			addr = (u8 *)prog->aux->func[off]->bpf_func;
1280 		else
1281 			return -EINVAL;
1282 	} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
1283 		   bpf_jit_supports_far_kfunc_call()) {
1284 		err = bpf_get_kfunc_addr(prog, insn->imm, insn->off, &addr);
1285 		if (err)
1286 			return err;
1287 	} else {
1288 		/* Address of a BPF helper call. Since part of the core
1289 		 * kernel, it's always at a fixed location. __bpf_call_base
1290 		 * and the helper with imm relative to it are both in core
1291 		 * kernel.
1292 		 */
1293 		addr = (u8 *)__bpf_call_base + imm;
1294 	}
1295 
1296 	*func_addr = (unsigned long)addr;
1297 	return 0;
1298 }
1299 
1300 static int bpf_jit_blind_insn(const struct bpf_insn *from,
1301 			      const struct bpf_insn *aux,
1302 			      struct bpf_insn *to_buff,
1303 			      bool emit_zext)
1304 {
1305 	struct bpf_insn *to = to_buff;
1306 	u32 imm_rnd = get_random_u32();
1307 	s16 off;
1308 
1309 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
1310 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
1311 
1312 	/* Constraints on AX register:
1313 	 *
1314 	 * AX register is inaccessible from user space. It is mapped in
1315 	 * all JITs, and used here for constant blinding rewrites. It is
1316 	 * typically "stateless" meaning its contents are only valid within
1317 	 * the executed instruction, but not across several instructions.
1318 	 * There are a few exceptions however which are further detailed
1319 	 * below.
1320 	 *
1321 	 * Constant blinding is only used by JITs, not in the interpreter.
1322 	 * The interpreter uses AX in some occasions as a local temporary
1323 	 * register e.g. in DIV or MOD instructions.
1324 	 *
1325 	 * In restricted circumstances, the verifier can also use the AX
1326 	 * register for rewrites as long as they do not interfere with
1327 	 * the above cases!
1328 	 */
1329 	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
1330 		goto out;
1331 
1332 	if (from->imm == 0 &&
1333 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
1334 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
1335 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
1336 		goto out;
1337 	}
1338 
1339 	switch (from->code) {
1340 	case BPF_ALU | BPF_ADD | BPF_K:
1341 	case BPF_ALU | BPF_SUB | BPF_K:
1342 	case BPF_ALU | BPF_AND | BPF_K:
1343 	case BPF_ALU | BPF_OR  | BPF_K:
1344 	case BPF_ALU | BPF_XOR | BPF_K:
1345 	case BPF_ALU | BPF_MUL | BPF_K:
1346 	case BPF_ALU | BPF_MOV | BPF_K:
1347 	case BPF_ALU | BPF_DIV | BPF_K:
1348 	case BPF_ALU | BPF_MOD | BPF_K:
1349 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1350 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1351 		*to++ = BPF_ALU32_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1352 		break;
1353 
1354 	case BPF_ALU64 | BPF_ADD | BPF_K:
1355 	case BPF_ALU64 | BPF_SUB | BPF_K:
1356 	case BPF_ALU64 | BPF_AND | BPF_K:
1357 	case BPF_ALU64 | BPF_OR  | BPF_K:
1358 	case BPF_ALU64 | BPF_XOR | BPF_K:
1359 	case BPF_ALU64 | BPF_MUL | BPF_K:
1360 	case BPF_ALU64 | BPF_MOV | BPF_K:
1361 	case BPF_ALU64 | BPF_DIV | BPF_K:
1362 	case BPF_ALU64 | BPF_MOD | BPF_K:
1363 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1364 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1365 		*to++ = BPF_ALU64_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1366 		break;
1367 
1368 	case BPF_JMP | BPF_JEQ  | BPF_K:
1369 	case BPF_JMP | BPF_JNE  | BPF_K:
1370 	case BPF_JMP | BPF_JGT  | BPF_K:
1371 	case BPF_JMP | BPF_JLT  | BPF_K:
1372 	case BPF_JMP | BPF_JGE  | BPF_K:
1373 	case BPF_JMP | BPF_JLE  | BPF_K:
1374 	case BPF_JMP | BPF_JSGT | BPF_K:
1375 	case BPF_JMP | BPF_JSLT | BPF_K:
1376 	case BPF_JMP | BPF_JSGE | BPF_K:
1377 	case BPF_JMP | BPF_JSLE | BPF_K:
1378 	case BPF_JMP | BPF_JSET | BPF_K:
1379 		/* Accommodate for extra offset in case of a backjump. */
1380 		off = from->off;
1381 		if (off < 0)
1382 			off -= 2;
1383 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1384 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1385 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1386 		break;
1387 
1388 	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1389 	case BPF_JMP32 | BPF_JNE  | BPF_K:
1390 	case BPF_JMP32 | BPF_JGT  | BPF_K:
1391 	case BPF_JMP32 | BPF_JLT  | BPF_K:
1392 	case BPF_JMP32 | BPF_JGE  | BPF_K:
1393 	case BPF_JMP32 | BPF_JLE  | BPF_K:
1394 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1395 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1396 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1397 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1398 	case BPF_JMP32 | BPF_JSET | BPF_K:
1399 		/* Accommodate for extra offset in case of a backjump. */
1400 		off = from->off;
1401 		if (off < 0)
1402 			off -= 2;
1403 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1404 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1405 		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1406 				      off);
1407 		break;
1408 
1409 	case BPF_LD | BPF_IMM | BPF_DW:
1410 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1411 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1412 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1413 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1414 		break;
1415 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1416 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1417 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1418 		if (emit_zext)
1419 			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1420 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1421 		break;
1422 
1423 	case BPF_ST | BPF_MEM | BPF_DW:
1424 	case BPF_ST | BPF_MEM | BPF_W:
1425 	case BPF_ST | BPF_MEM | BPF_H:
1426 	case BPF_ST | BPF_MEM | BPF_B:
1427 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1428 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1429 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1430 		break;
1431 	}
1432 out:
1433 	return to - to_buff;
1434 }
1435 
1436 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1437 					      gfp_t gfp_extra_flags)
1438 {
1439 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1440 	struct bpf_prog *fp;
1441 
1442 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1443 	if (fp != NULL) {
1444 		/* aux->prog still points to the fp_other one, so
1445 		 * when promoting the clone to the real program,
1446 		 * this still needs to be adapted.
1447 		 */
1448 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1449 	}
1450 
1451 	return fp;
1452 }
1453 
1454 static void bpf_prog_clone_free(struct bpf_prog *fp)
1455 {
1456 	/* aux was stolen by the other clone, so we cannot free
1457 	 * it from this path! It will be freed eventually by the
1458 	 * other program on release.
1459 	 *
1460 	 * At this point, we don't need a deferred release since
1461 	 * clone is guaranteed to not be locked.
1462 	 */
1463 	fp->aux = NULL;
1464 	fp->stats = NULL;
1465 	fp->active = NULL;
1466 	__bpf_prog_free(fp);
1467 }
1468 
1469 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1470 {
1471 	/* We have to repoint aux->prog to self, as we don't
1472 	 * know whether fp here is the clone or the original.
1473 	 */
1474 	fp->aux->prog = fp;
1475 	bpf_prog_clone_free(fp_other);
1476 }
1477 
1478 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1479 {
1480 	struct bpf_insn insn_buff[16], aux[2];
1481 	struct bpf_prog *clone, *tmp;
1482 	int insn_delta, insn_cnt;
1483 	struct bpf_insn *insn;
1484 	int i, rewritten;
1485 
1486 	if (!prog->blinding_requested || prog->blinded)
1487 		return prog;
1488 
1489 	clone = bpf_prog_clone_create(prog, GFP_USER);
1490 	if (!clone)
1491 		return ERR_PTR(-ENOMEM);
1492 
1493 	insn_cnt = clone->len;
1494 	insn = clone->insnsi;
1495 
1496 	for (i = 0; i < insn_cnt; i++, insn++) {
1497 		if (bpf_pseudo_func(insn)) {
1498 			/* ld_imm64 with an address of bpf subprog is not
1499 			 * a user controlled constant. Don't randomize it,
1500 			 * since it will conflict with jit_subprogs() logic.
1501 			 */
1502 			insn++;
1503 			i++;
1504 			continue;
1505 		}
1506 
1507 		/* We temporarily need to hold the original ld64 insn
1508 		 * so that we can still access the first part in the
1509 		 * second blinding run.
1510 		 */
1511 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1512 		    insn[1].code == 0)
1513 			memcpy(aux, insn, sizeof(aux));
1514 
1515 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1516 						clone->aux->verifier_zext);
1517 		if (!rewritten)
1518 			continue;
1519 
1520 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1521 		if (IS_ERR(tmp)) {
1522 			/* Patching may have repointed aux->prog during
1523 			 * realloc from the original one, so we need to
1524 			 * fix it up here on error.
1525 			 */
1526 			bpf_jit_prog_release_other(prog, clone);
1527 			return tmp;
1528 		}
1529 
1530 		clone = tmp;
1531 		insn_delta = rewritten - 1;
1532 
1533 		/* Walk new program and skip insns we just inserted. */
1534 		insn = clone->insnsi + i + insn_delta;
1535 		insn_cnt += insn_delta;
1536 		i        += insn_delta;
1537 	}
1538 
1539 	clone->blinded = 1;
1540 	return clone;
1541 }
1542 #endif /* CONFIG_BPF_JIT */
1543 
1544 /* Base function for offset calculation. Needs to go into .text section,
1545  * therefore keeping it non-static as well; will also be used by JITs
1546  * anyway later on, so do not let the compiler omit it. This also needs
1547  * to go into kallsyms for correlation from e.g. bpftool, so naming
1548  * must not change.
1549  */
1550 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1551 {
1552 	return 0;
1553 }
1554 EXPORT_SYMBOL_GPL(__bpf_call_base);
1555 
1556 /* All UAPI available opcodes. */
1557 #define BPF_INSN_MAP(INSN_2, INSN_3)		\
1558 	/* 32 bit ALU operations. */		\
1559 	/*   Register based. */			\
1560 	INSN_3(ALU, ADD,  X),			\
1561 	INSN_3(ALU, SUB,  X),			\
1562 	INSN_3(ALU, AND,  X),			\
1563 	INSN_3(ALU, OR,   X),			\
1564 	INSN_3(ALU, LSH,  X),			\
1565 	INSN_3(ALU, RSH,  X),			\
1566 	INSN_3(ALU, XOR,  X),			\
1567 	INSN_3(ALU, MUL,  X),			\
1568 	INSN_3(ALU, MOV,  X),			\
1569 	INSN_3(ALU, ARSH, X),			\
1570 	INSN_3(ALU, DIV,  X),			\
1571 	INSN_3(ALU, MOD,  X),			\
1572 	INSN_2(ALU, NEG),			\
1573 	INSN_3(ALU, END, TO_BE),		\
1574 	INSN_3(ALU, END, TO_LE),		\
1575 	/*   Immediate based. */		\
1576 	INSN_3(ALU, ADD,  K),			\
1577 	INSN_3(ALU, SUB,  K),			\
1578 	INSN_3(ALU, AND,  K),			\
1579 	INSN_3(ALU, OR,   K),			\
1580 	INSN_3(ALU, LSH,  K),			\
1581 	INSN_3(ALU, RSH,  K),			\
1582 	INSN_3(ALU, XOR,  K),			\
1583 	INSN_3(ALU, MUL,  K),			\
1584 	INSN_3(ALU, MOV,  K),			\
1585 	INSN_3(ALU, ARSH, K),			\
1586 	INSN_3(ALU, DIV,  K),			\
1587 	INSN_3(ALU, MOD,  K),			\
1588 	/* 64 bit ALU operations. */		\
1589 	/*   Register based. */			\
1590 	INSN_3(ALU64, ADD,  X),			\
1591 	INSN_3(ALU64, SUB,  X),			\
1592 	INSN_3(ALU64, AND,  X),			\
1593 	INSN_3(ALU64, OR,   X),			\
1594 	INSN_3(ALU64, LSH,  X),			\
1595 	INSN_3(ALU64, RSH,  X),			\
1596 	INSN_3(ALU64, XOR,  X),			\
1597 	INSN_3(ALU64, MUL,  X),			\
1598 	INSN_3(ALU64, MOV,  X),			\
1599 	INSN_3(ALU64, ARSH, X),			\
1600 	INSN_3(ALU64, DIV,  X),			\
1601 	INSN_3(ALU64, MOD,  X),			\
1602 	INSN_2(ALU64, NEG),			\
1603 	INSN_3(ALU64, END, TO_LE),		\
1604 	/*   Immediate based. */		\
1605 	INSN_3(ALU64, ADD,  K),			\
1606 	INSN_3(ALU64, SUB,  K),			\
1607 	INSN_3(ALU64, AND,  K),			\
1608 	INSN_3(ALU64, OR,   K),			\
1609 	INSN_3(ALU64, LSH,  K),			\
1610 	INSN_3(ALU64, RSH,  K),			\
1611 	INSN_3(ALU64, XOR,  K),			\
1612 	INSN_3(ALU64, MUL,  K),			\
1613 	INSN_3(ALU64, MOV,  K),			\
1614 	INSN_3(ALU64, ARSH, K),			\
1615 	INSN_3(ALU64, DIV,  K),			\
1616 	INSN_3(ALU64, MOD,  K),			\
1617 	/* Call instruction. */			\
1618 	INSN_2(JMP, CALL),			\
1619 	/* Exit instruction. */			\
1620 	INSN_2(JMP, EXIT),			\
1621 	/* 32-bit Jump instructions. */		\
1622 	/*   Register based. */			\
1623 	INSN_3(JMP32, JEQ,  X),			\
1624 	INSN_3(JMP32, JNE,  X),			\
1625 	INSN_3(JMP32, JGT,  X),			\
1626 	INSN_3(JMP32, JLT,  X),			\
1627 	INSN_3(JMP32, JGE,  X),			\
1628 	INSN_3(JMP32, JLE,  X),			\
1629 	INSN_3(JMP32, JSGT, X),			\
1630 	INSN_3(JMP32, JSLT, X),			\
1631 	INSN_3(JMP32, JSGE, X),			\
1632 	INSN_3(JMP32, JSLE, X),			\
1633 	INSN_3(JMP32, JSET, X),			\
1634 	/*   Immediate based. */		\
1635 	INSN_3(JMP32, JEQ,  K),			\
1636 	INSN_3(JMP32, JNE,  K),			\
1637 	INSN_3(JMP32, JGT,  K),			\
1638 	INSN_3(JMP32, JLT,  K),			\
1639 	INSN_3(JMP32, JGE,  K),			\
1640 	INSN_3(JMP32, JLE,  K),			\
1641 	INSN_3(JMP32, JSGT, K),			\
1642 	INSN_3(JMP32, JSLT, K),			\
1643 	INSN_3(JMP32, JSGE, K),			\
1644 	INSN_3(JMP32, JSLE, K),			\
1645 	INSN_3(JMP32, JSET, K),			\
1646 	/* Jump instructions. */		\
1647 	/*   Register based. */			\
1648 	INSN_3(JMP, JEQ,  X),			\
1649 	INSN_3(JMP, JNE,  X),			\
1650 	INSN_3(JMP, JGT,  X),			\
1651 	INSN_3(JMP, JLT,  X),			\
1652 	INSN_3(JMP, JGE,  X),			\
1653 	INSN_3(JMP, JLE,  X),			\
1654 	INSN_3(JMP, JSGT, X),			\
1655 	INSN_3(JMP, JSLT, X),			\
1656 	INSN_3(JMP, JSGE, X),			\
1657 	INSN_3(JMP, JSLE, X),			\
1658 	INSN_3(JMP, JSET, X),			\
1659 	/*   Immediate based. */		\
1660 	INSN_3(JMP, JEQ,  K),			\
1661 	INSN_3(JMP, JNE,  K),			\
1662 	INSN_3(JMP, JGT,  K),			\
1663 	INSN_3(JMP, JLT,  K),			\
1664 	INSN_3(JMP, JGE,  K),			\
1665 	INSN_3(JMP, JLE,  K),			\
1666 	INSN_3(JMP, JSGT, K),			\
1667 	INSN_3(JMP, JSLT, K),			\
1668 	INSN_3(JMP, JSGE, K),			\
1669 	INSN_3(JMP, JSLE, K),			\
1670 	INSN_3(JMP, JSET, K),			\
1671 	INSN_2(JMP, JA),			\
1672 	INSN_2(JMP32, JA),			\
1673 	/* Atomic operations. */		\
1674 	INSN_3(STX, ATOMIC, B),			\
1675 	INSN_3(STX, ATOMIC, H),			\
1676 	INSN_3(STX, ATOMIC, W),			\
1677 	INSN_3(STX, ATOMIC, DW),		\
1678 	/* Store instructions. */		\
1679 	/*   Register based. */			\
1680 	INSN_3(STX, MEM,  B),			\
1681 	INSN_3(STX, MEM,  H),			\
1682 	INSN_3(STX, MEM,  W),			\
1683 	INSN_3(STX, MEM,  DW),			\
1684 	/*   Immediate based. */		\
1685 	INSN_3(ST, MEM, B),			\
1686 	INSN_3(ST, MEM, H),			\
1687 	INSN_3(ST, MEM, W),			\
1688 	INSN_3(ST, MEM, DW),			\
1689 	/* Load instructions. */		\
1690 	/*   Register based. */			\
1691 	INSN_3(LDX, MEM, B),			\
1692 	INSN_3(LDX, MEM, H),			\
1693 	INSN_3(LDX, MEM, W),			\
1694 	INSN_3(LDX, MEM, DW),			\
1695 	INSN_3(LDX, MEMSX, B),			\
1696 	INSN_3(LDX, MEMSX, H),			\
1697 	INSN_3(LDX, MEMSX, W),			\
1698 	/*   Immediate based. */		\
1699 	INSN_3(LD, IMM, DW)
1700 
1701 bool bpf_opcode_in_insntable(u8 code)
1702 {
1703 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1704 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1705 	static const bool public_insntable[256] = {
1706 		[0 ... 255] = false,
1707 		/* Now overwrite non-defaults ... */
1708 		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1709 		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1710 		[BPF_LD | BPF_ABS | BPF_B] = true,
1711 		[BPF_LD | BPF_ABS | BPF_H] = true,
1712 		[BPF_LD | BPF_ABS | BPF_W] = true,
1713 		[BPF_LD | BPF_IND | BPF_B] = true,
1714 		[BPF_LD | BPF_IND | BPF_H] = true,
1715 		[BPF_LD | BPF_IND | BPF_W] = true,
1716 		[BPF_JMP | BPF_JCOND] = true,
1717 	};
1718 #undef BPF_INSN_3_TBL
1719 #undef BPF_INSN_2_TBL
1720 	return public_insntable[code];
1721 }
1722 
1723 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1724 /**
1725  *	___bpf_prog_run - run eBPF program on a given context
1726  *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1727  *	@insn: is the array of eBPF instructions
1728  *
1729  * Decode and execute eBPF instructions.
1730  *
1731  * Return: whatever value is in %BPF_R0 at program exit
1732  */
1733 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
1734 {
1735 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1736 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1737 	static const void * const jumptable[256] __annotate_jump_table = {
1738 		[0 ... 255] = &&default_label,
1739 		/* Now overwrite non-defaults ... */
1740 		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1741 		/* Non-UAPI available opcodes. */
1742 		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1743 		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1744 		[BPF_ST  | BPF_NOSPEC] = &&ST_NOSPEC,
1745 		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1746 		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1747 		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1748 		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1749 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_B] = &&LDX_PROBE_MEMSX_B,
1750 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_H] = &&LDX_PROBE_MEMSX_H,
1751 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_W] = &&LDX_PROBE_MEMSX_W,
1752 	};
1753 #undef BPF_INSN_3_LBL
1754 #undef BPF_INSN_2_LBL
1755 	u32 tail_call_cnt = 0;
1756 
1757 #define CONT	 ({ insn++; goto select_insn; })
1758 #define CONT_JMP ({ insn++; goto select_insn; })
1759 
1760 select_insn:
1761 	goto *jumptable[insn->code];
1762 
1763 	/* Explicitly mask the register-based shift amounts with 63 or 31
1764 	 * to avoid undefined behavior. Normally this won't affect the
1765 	 * generated code, for example, in case of native 64 bit archs such
1766 	 * as x86-64 or arm64, the compiler is optimizing the AND away for
1767 	 * the interpreter. In case of JITs, each of the JIT backends compiles
1768 	 * the BPF shift operations to machine instructions which produce
1769 	 * implementation-defined results in such a case; the resulting
1770 	 * contents of the register may be arbitrary, but program behaviour
1771 	 * as a whole remains defined. In other words, in case of JIT backends,
1772 	 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1773 	 */
1774 	/* ALU (shifts) */
1775 #define SHT(OPCODE, OP)					\
1776 	ALU64_##OPCODE##_X:				\
1777 		DST = DST OP (SRC & 63);		\
1778 		CONT;					\
1779 	ALU_##OPCODE##_X:				\
1780 		DST = (u32) DST OP ((u32) SRC & 31);	\
1781 		CONT;					\
1782 	ALU64_##OPCODE##_K:				\
1783 		DST = DST OP IMM;			\
1784 		CONT;					\
1785 	ALU_##OPCODE##_K:				\
1786 		DST = (u32) DST OP (u32) IMM;		\
1787 		CONT;
1788 	/* ALU (rest) */
1789 #define ALU(OPCODE, OP)					\
1790 	ALU64_##OPCODE##_X:				\
1791 		DST = DST OP SRC;			\
1792 		CONT;					\
1793 	ALU_##OPCODE##_X:				\
1794 		DST = (u32) DST OP (u32) SRC;		\
1795 		CONT;					\
1796 	ALU64_##OPCODE##_K:				\
1797 		DST = DST OP IMM;			\
1798 		CONT;					\
1799 	ALU_##OPCODE##_K:				\
1800 		DST = (u32) DST OP (u32) IMM;		\
1801 		CONT;
1802 	ALU(ADD,  +)
1803 	ALU(SUB,  -)
1804 	ALU(AND,  &)
1805 	ALU(OR,   |)
1806 	ALU(XOR,  ^)
1807 	ALU(MUL,  *)
1808 	SHT(LSH, <<)
1809 	SHT(RSH, >>)
1810 #undef SHT
1811 #undef ALU
1812 	ALU_NEG:
1813 		DST = (u32) -DST;
1814 		CONT;
1815 	ALU64_NEG:
1816 		DST = -DST;
1817 		CONT;
1818 	ALU_MOV_X:
1819 		switch (OFF) {
1820 		case 0:
1821 			DST = (u32) SRC;
1822 			break;
1823 		case 8:
1824 			DST = (u32)(s8) SRC;
1825 			break;
1826 		case 16:
1827 			DST = (u32)(s16) SRC;
1828 			break;
1829 		}
1830 		CONT;
1831 	ALU_MOV_K:
1832 		DST = (u32) IMM;
1833 		CONT;
1834 	ALU64_MOV_X:
1835 		switch (OFF) {
1836 		case 0:
1837 			DST = SRC;
1838 			break;
1839 		case 8:
1840 			DST = (s8) SRC;
1841 			break;
1842 		case 16:
1843 			DST = (s16) SRC;
1844 			break;
1845 		case 32:
1846 			DST = (s32) SRC;
1847 			break;
1848 		}
1849 		CONT;
1850 	ALU64_MOV_K:
1851 		DST = IMM;
1852 		CONT;
1853 	LD_IMM_DW:
1854 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1855 		insn++;
1856 		CONT;
1857 	ALU_ARSH_X:
1858 		DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1859 		CONT;
1860 	ALU_ARSH_K:
1861 		DST = (u64) (u32) (((s32) DST) >> IMM);
1862 		CONT;
1863 	ALU64_ARSH_X:
1864 		(*(s64 *) &DST) >>= (SRC & 63);
1865 		CONT;
1866 	ALU64_ARSH_K:
1867 		(*(s64 *) &DST) >>= IMM;
1868 		CONT;
1869 	ALU64_MOD_X:
1870 		switch (OFF) {
1871 		case 0:
1872 			div64_u64_rem(DST, SRC, &AX);
1873 			DST = AX;
1874 			break;
1875 		case 1:
1876 			AX = div64_s64(DST, SRC);
1877 			DST = DST - AX * SRC;
1878 			break;
1879 		}
1880 		CONT;
1881 	ALU_MOD_X:
1882 		switch (OFF) {
1883 		case 0:
1884 			AX = (u32) DST;
1885 			DST = do_div(AX, (u32) SRC);
1886 			break;
1887 		case 1:
1888 			AX = abs((s32)DST);
1889 			AX = do_div(AX, abs((s32)SRC));
1890 			if ((s32)DST < 0)
1891 				DST = (u32)-AX;
1892 			else
1893 				DST = (u32)AX;
1894 			break;
1895 		}
1896 		CONT;
1897 	ALU64_MOD_K:
1898 		switch (OFF) {
1899 		case 0:
1900 			div64_u64_rem(DST, IMM, &AX);
1901 			DST = AX;
1902 			break;
1903 		case 1:
1904 			AX = div64_s64(DST, IMM);
1905 			DST = DST - AX * IMM;
1906 			break;
1907 		}
1908 		CONT;
1909 	ALU_MOD_K:
1910 		switch (OFF) {
1911 		case 0:
1912 			AX = (u32) DST;
1913 			DST = do_div(AX, (u32) IMM);
1914 			break;
1915 		case 1:
1916 			AX = abs((s32)DST);
1917 			AX = do_div(AX, abs((s32)IMM));
1918 			if ((s32)DST < 0)
1919 				DST = (u32)-AX;
1920 			else
1921 				DST = (u32)AX;
1922 			break;
1923 		}
1924 		CONT;
1925 	ALU64_DIV_X:
1926 		switch (OFF) {
1927 		case 0:
1928 			DST = div64_u64(DST, SRC);
1929 			break;
1930 		case 1:
1931 			DST = div64_s64(DST, SRC);
1932 			break;
1933 		}
1934 		CONT;
1935 	ALU_DIV_X:
1936 		switch (OFF) {
1937 		case 0:
1938 			AX = (u32) DST;
1939 			do_div(AX, (u32) SRC);
1940 			DST = (u32) AX;
1941 			break;
1942 		case 1:
1943 			AX = abs((s32)DST);
1944 			do_div(AX, abs((s32)SRC));
1945 			if (((s32)DST < 0) == ((s32)SRC < 0))
1946 				DST = (u32)AX;
1947 			else
1948 				DST = (u32)-AX;
1949 			break;
1950 		}
1951 		CONT;
1952 	ALU64_DIV_K:
1953 		switch (OFF) {
1954 		case 0:
1955 			DST = div64_u64(DST, IMM);
1956 			break;
1957 		case 1:
1958 			DST = div64_s64(DST, IMM);
1959 			break;
1960 		}
1961 		CONT;
1962 	ALU_DIV_K:
1963 		switch (OFF) {
1964 		case 0:
1965 			AX = (u32) DST;
1966 			do_div(AX, (u32) IMM);
1967 			DST = (u32) AX;
1968 			break;
1969 		case 1:
1970 			AX = abs((s32)DST);
1971 			do_div(AX, abs((s32)IMM));
1972 			if (((s32)DST < 0) == ((s32)IMM < 0))
1973 				DST = (u32)AX;
1974 			else
1975 				DST = (u32)-AX;
1976 			break;
1977 		}
1978 		CONT;
1979 	ALU_END_TO_BE:
1980 		switch (IMM) {
1981 		case 16:
1982 			DST = (__force u16) cpu_to_be16(DST);
1983 			break;
1984 		case 32:
1985 			DST = (__force u32) cpu_to_be32(DST);
1986 			break;
1987 		case 64:
1988 			DST = (__force u64) cpu_to_be64(DST);
1989 			break;
1990 		}
1991 		CONT;
1992 	ALU_END_TO_LE:
1993 		switch (IMM) {
1994 		case 16:
1995 			DST = (__force u16) cpu_to_le16(DST);
1996 			break;
1997 		case 32:
1998 			DST = (__force u32) cpu_to_le32(DST);
1999 			break;
2000 		case 64:
2001 			DST = (__force u64) cpu_to_le64(DST);
2002 			break;
2003 		}
2004 		CONT;
2005 	ALU64_END_TO_LE:
2006 		switch (IMM) {
2007 		case 16:
2008 			DST = (__force u16) __swab16(DST);
2009 			break;
2010 		case 32:
2011 			DST = (__force u32) __swab32(DST);
2012 			break;
2013 		case 64:
2014 			DST = (__force u64) __swab64(DST);
2015 			break;
2016 		}
2017 		CONT;
2018 
2019 	/* CALL */
2020 	JMP_CALL:
2021 		/* Function call scratches BPF_R1-BPF_R5 registers,
2022 		 * preserves BPF_R6-BPF_R9, and stores return value
2023 		 * into BPF_R0.
2024 		 */
2025 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
2026 						       BPF_R4, BPF_R5);
2027 		CONT;
2028 
2029 	JMP_CALL_ARGS:
2030 		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
2031 							    BPF_R3, BPF_R4,
2032 							    BPF_R5,
2033 							    insn + insn->off + 1);
2034 		CONT;
2035 
2036 	JMP_TAIL_CALL: {
2037 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
2038 		struct bpf_array *array = container_of(map, struct bpf_array, map);
2039 		struct bpf_prog *prog;
2040 		u32 index = BPF_R3;
2041 
2042 		if (unlikely(index >= array->map.max_entries))
2043 			goto out;
2044 
2045 		if (unlikely(tail_call_cnt >= MAX_TAIL_CALL_CNT))
2046 			goto out;
2047 
2048 		tail_call_cnt++;
2049 
2050 		prog = READ_ONCE(array->ptrs[index]);
2051 		if (!prog)
2052 			goto out;
2053 
2054 		/* ARG1 at this point is guaranteed to point to CTX from
2055 		 * the verifier side due to the fact that the tail call is
2056 		 * handled like a helper, that is, bpf_tail_call_proto,
2057 		 * where arg1_type is ARG_PTR_TO_CTX.
2058 		 */
2059 		insn = prog->insnsi;
2060 		goto select_insn;
2061 out:
2062 		CONT;
2063 	}
2064 	JMP_JA:
2065 		insn += insn->off;
2066 		CONT;
2067 	JMP32_JA:
2068 		insn += insn->imm;
2069 		CONT;
2070 	JMP_EXIT:
2071 		return BPF_R0;
2072 	/* JMP */
2073 #define COND_JMP(SIGN, OPCODE, CMP_OP)				\
2074 	JMP_##OPCODE##_X:					\
2075 		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
2076 			insn += insn->off;			\
2077 			CONT_JMP;				\
2078 		}						\
2079 		CONT;						\
2080 	JMP32_##OPCODE##_X:					\
2081 		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
2082 			insn += insn->off;			\
2083 			CONT_JMP;				\
2084 		}						\
2085 		CONT;						\
2086 	JMP_##OPCODE##_K:					\
2087 		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
2088 			insn += insn->off;			\
2089 			CONT_JMP;				\
2090 		}						\
2091 		CONT;						\
2092 	JMP32_##OPCODE##_K:					\
2093 		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
2094 			insn += insn->off;			\
2095 			CONT_JMP;				\
2096 		}						\
2097 		CONT;
2098 	COND_JMP(u, JEQ, ==)
2099 	COND_JMP(u, JNE, !=)
2100 	COND_JMP(u, JGT, >)
2101 	COND_JMP(u, JLT, <)
2102 	COND_JMP(u, JGE, >=)
2103 	COND_JMP(u, JLE, <=)
2104 	COND_JMP(u, JSET, &)
2105 	COND_JMP(s, JSGT, >)
2106 	COND_JMP(s, JSLT, <)
2107 	COND_JMP(s, JSGE, >=)
2108 	COND_JMP(s, JSLE, <=)
2109 #undef COND_JMP
2110 	/* ST, STX and LDX*/
2111 	ST_NOSPEC:
2112 		/* Speculation barrier for mitigating Speculative Store Bypass,
2113 		 * Bounds-Check Bypass and Type Confusion. In case of arm64, we
2114 		 * rely on the firmware mitigation as controlled via the ssbd
2115 		 * kernel parameter. Whenever the mitigation is enabled, it
2116 		 * works for all of the kernel code with no need to provide any
2117 		 * additional instructions here. In case of x86, we use 'lfence'
2118 		 * insn for mitigation. We reuse preexisting logic from Spectre
2119 		 * v1 mitigation that happens to produce the required code on
2120 		 * x86 for v4 as well.
2121 		 */
2122 		barrier_nospec();
2123 		CONT;
2124 #define LDST(SIZEOP, SIZE)						\
2125 	STX_MEM_##SIZEOP:						\
2126 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
2127 		CONT;							\
2128 	ST_MEM_##SIZEOP:						\
2129 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
2130 		CONT;							\
2131 	LDX_MEM_##SIZEOP:						\
2132 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
2133 		CONT;							\
2134 	LDX_PROBE_MEM_##SIZEOP:						\
2135 		bpf_probe_read_kernel_common(&DST, sizeof(SIZE),	\
2136 			      (const void *)(long) (SRC + insn->off));	\
2137 		DST = *((SIZE *)&DST);					\
2138 		CONT;
2139 
2140 	LDST(B,   u8)
2141 	LDST(H,  u16)
2142 	LDST(W,  u32)
2143 	LDST(DW, u64)
2144 #undef LDST
2145 
2146 #define LDSX(SIZEOP, SIZE)						\
2147 	LDX_MEMSX_##SIZEOP:						\
2148 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
2149 		CONT;							\
2150 	LDX_PROBE_MEMSX_##SIZEOP:					\
2151 		bpf_probe_read_kernel_common(&DST, sizeof(SIZE),		\
2152 				      (const void *)(long) (SRC + insn->off));	\
2153 		DST = *((SIZE *)&DST);					\
2154 		CONT;
2155 
2156 	LDSX(B,   s8)
2157 	LDSX(H,  s16)
2158 	LDSX(W,  s32)
2159 #undef LDSX
2160 
2161 #define ATOMIC_ALU_OP(BOP, KOP)						\
2162 		case BOP:						\
2163 			if (BPF_SIZE(insn->code) == BPF_W)		\
2164 				atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
2165 					     (DST + insn->off));	\
2166 			else if (BPF_SIZE(insn->code) == BPF_DW)	\
2167 				atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
2168 					       (DST + insn->off));	\
2169 			else						\
2170 				goto default_label;			\
2171 			break;						\
2172 		case BOP | BPF_FETCH:					\
2173 			if (BPF_SIZE(insn->code) == BPF_W)		\
2174 				SRC = (u32) atomic_fetch_##KOP(		\
2175 					(u32) SRC,			\
2176 					(atomic_t *)(unsigned long) (DST + insn->off)); \
2177 			else if (BPF_SIZE(insn->code) == BPF_DW)	\
2178 				SRC = (u64) atomic64_fetch_##KOP(	\
2179 					(u64) SRC,			\
2180 					(atomic64_t *)(unsigned long) (DST + insn->off)); \
2181 			else						\
2182 				goto default_label;			\
2183 			break;
2184 
2185 	STX_ATOMIC_DW:
2186 	STX_ATOMIC_W:
2187 	STX_ATOMIC_H:
2188 	STX_ATOMIC_B:
2189 		switch (IMM) {
2190 		/* Atomic read-modify-write instructions support only W and DW
2191 		 * size modifiers.
2192 		 */
2193 		ATOMIC_ALU_OP(BPF_ADD, add)
2194 		ATOMIC_ALU_OP(BPF_AND, and)
2195 		ATOMIC_ALU_OP(BPF_OR, or)
2196 		ATOMIC_ALU_OP(BPF_XOR, xor)
2197 #undef ATOMIC_ALU_OP
2198 
2199 		case BPF_XCHG:
2200 			if (BPF_SIZE(insn->code) == BPF_W)
2201 				SRC = (u32) atomic_xchg(
2202 					(atomic_t *)(unsigned long) (DST + insn->off),
2203 					(u32) SRC);
2204 			else if (BPF_SIZE(insn->code) == BPF_DW)
2205 				SRC = (u64) atomic64_xchg(
2206 					(atomic64_t *)(unsigned long) (DST + insn->off),
2207 					(u64) SRC);
2208 			else
2209 				goto default_label;
2210 			break;
2211 		case BPF_CMPXCHG:
2212 			if (BPF_SIZE(insn->code) == BPF_W)
2213 				BPF_R0 = (u32) atomic_cmpxchg(
2214 					(atomic_t *)(unsigned long) (DST + insn->off),
2215 					(u32) BPF_R0, (u32) SRC);
2216 			else if (BPF_SIZE(insn->code) == BPF_DW)
2217 				BPF_R0 = (u64) atomic64_cmpxchg(
2218 					(atomic64_t *)(unsigned long) (DST + insn->off),
2219 					(u64) BPF_R0, (u64) SRC);
2220 			else
2221 				goto default_label;
2222 			break;
2223 		/* Atomic load and store instructions support all size
2224 		 * modifiers.
2225 		 */
2226 		case BPF_LOAD_ACQ:
2227 			switch (BPF_SIZE(insn->code)) {
2228 #define LOAD_ACQUIRE(SIZEOP, SIZE)				\
2229 			case BPF_##SIZEOP:			\
2230 				DST = (SIZE)smp_load_acquire(	\
2231 					(SIZE *)(unsigned long)(SRC + insn->off));	\
2232 				break;
2233 			LOAD_ACQUIRE(B,   u8)
2234 			LOAD_ACQUIRE(H,  u16)
2235 			LOAD_ACQUIRE(W,  u32)
2236 #ifdef CONFIG_64BIT
2237 			LOAD_ACQUIRE(DW, u64)
2238 #endif
2239 #undef LOAD_ACQUIRE
2240 			default:
2241 				goto default_label;
2242 			}
2243 			break;
2244 		case BPF_STORE_REL:
2245 			switch (BPF_SIZE(insn->code)) {
2246 #define STORE_RELEASE(SIZEOP, SIZE)			\
2247 			case BPF_##SIZEOP:		\
2248 				smp_store_release(	\
2249 					(SIZE *)(unsigned long)(DST + insn->off), (SIZE)SRC);	\
2250 				break;
2251 			STORE_RELEASE(B,   u8)
2252 			STORE_RELEASE(H,  u16)
2253 			STORE_RELEASE(W,  u32)
2254 #ifdef CONFIG_64BIT
2255 			STORE_RELEASE(DW, u64)
2256 #endif
2257 #undef STORE_RELEASE
2258 			default:
2259 				goto default_label;
2260 			}
2261 			break;
2262 
2263 		default:
2264 			goto default_label;
2265 		}
2266 		CONT;
2267 
2268 	default_label:
2269 		/* If we ever reach this, we have a bug somewhere. Die hard here
2270 		 * instead of just returning 0; we could be somewhere in a subprog,
2271 		 * so execution could continue otherwise which we do /not/ want.
2272 		 *
2273 		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
2274 		 */
2275 		pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
2276 			insn->code, insn->imm);
2277 		BUG_ON(1);
2278 		return 0;
2279 }
2280 
2281 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
2282 #define DEFINE_BPF_PROG_RUN(stack_size) \
2283 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
2284 { \
2285 	u64 stack[stack_size / sizeof(u64)]; \
2286 	u64 regs[MAX_BPF_EXT_REG] = {}; \
2287 \
2288 	kmsan_unpoison_memory(stack, sizeof(stack)); \
2289 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2290 	ARG1 = (u64) (unsigned long) ctx; \
2291 	return ___bpf_prog_run(regs, insn); \
2292 }
2293 
2294 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
2295 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
2296 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
2297 				      const struct bpf_insn *insn) \
2298 { \
2299 	u64 stack[stack_size / sizeof(u64)]; \
2300 	u64 regs[MAX_BPF_EXT_REG]; \
2301 \
2302 	kmsan_unpoison_memory(stack, sizeof(stack)); \
2303 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2304 	BPF_R1 = r1; \
2305 	BPF_R2 = r2; \
2306 	BPF_R3 = r3; \
2307 	BPF_R4 = r4; \
2308 	BPF_R5 = r5; \
2309 	return ___bpf_prog_run(regs, insn); \
2310 }
2311 
2312 #define EVAL1(FN, X) FN(X)
2313 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
2314 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
2315 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
2316 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
2317 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
2318 
2319 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
2320 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
2321 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
2322 
2323 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
2324 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
2325 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
2326 
2327 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
2328 
2329 static unsigned int (*interpreters[])(const void *ctx,
2330 				      const struct bpf_insn *insn) = {
2331 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2332 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2333 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2334 };
2335 #undef PROG_NAME_LIST
2336 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
2337 static __maybe_unused
2338 u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
2339 			   const struct bpf_insn *insn) = {
2340 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2341 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2342 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2343 };
2344 #undef PROG_NAME_LIST
2345 
2346 #ifdef CONFIG_BPF_SYSCALL
2347 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
2348 {
2349 	stack_depth = max_t(u32, stack_depth, 1);
2350 	insn->off = (s16) insn->imm;
2351 	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
2352 		__bpf_call_base_args;
2353 	insn->code = BPF_JMP | BPF_CALL_ARGS;
2354 }
2355 #endif
2356 #endif
2357 
2358 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
2359 					 const struct bpf_insn *insn)
2360 {
2361 	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
2362 	 * is not working properly, or interpreter is being used when
2363 	 * prog->jit_requested is not 0, so warn about it!
2364 	 */
2365 	WARN_ON_ONCE(1);
2366 	return 0;
2367 }
2368 
2369 static bool __bpf_prog_map_compatible(struct bpf_map *map,
2370 				      const struct bpf_prog *fp)
2371 {
2372 	enum bpf_prog_type prog_type = resolve_prog_type(fp);
2373 	bool ret;
2374 	struct bpf_prog_aux *aux = fp->aux;
2375 
2376 	if (fp->kprobe_override)
2377 		return false;
2378 
2379 	spin_lock(&map->owner.lock);
2380 	if (!map->owner.type) {
2381 		/* There's no owner yet where we could check for
2382 		 * compatibility.
2383 		 */
2384 		map->owner.type  = prog_type;
2385 		map->owner.jited = fp->jited;
2386 		map->owner.xdp_has_frags = aux->xdp_has_frags;
2387 		map->owner.attach_func_proto = aux->attach_func_proto;
2388 		ret = true;
2389 	} else {
2390 		ret = map->owner.type  == prog_type &&
2391 		      map->owner.jited == fp->jited &&
2392 		      map->owner.xdp_has_frags == aux->xdp_has_frags;
2393 		if (ret &&
2394 		    map->owner.attach_func_proto != aux->attach_func_proto) {
2395 			switch (prog_type) {
2396 			case BPF_PROG_TYPE_TRACING:
2397 			case BPF_PROG_TYPE_LSM:
2398 			case BPF_PROG_TYPE_EXT:
2399 			case BPF_PROG_TYPE_STRUCT_OPS:
2400 				ret = false;
2401 				break;
2402 			default:
2403 				break;
2404 			}
2405 		}
2406 	}
2407 	spin_unlock(&map->owner.lock);
2408 
2409 	return ret;
2410 }
2411 
2412 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp)
2413 {
2414 	/* XDP programs inserted into maps are not guaranteed to run on
2415 	 * a particular netdev (and can run outside driver context entirely
2416 	 * in the case of devmap and cpumap). Until device checks
2417 	 * are implemented, prohibit adding dev-bound programs to program maps.
2418 	 */
2419 	if (bpf_prog_is_dev_bound(fp->aux))
2420 		return false;
2421 
2422 	return __bpf_prog_map_compatible(map, fp);
2423 }
2424 
2425 static int bpf_check_tail_call(const struct bpf_prog *fp)
2426 {
2427 	struct bpf_prog_aux *aux = fp->aux;
2428 	int i, ret = 0;
2429 
2430 	mutex_lock(&aux->used_maps_mutex);
2431 	for (i = 0; i < aux->used_map_cnt; i++) {
2432 		struct bpf_map *map = aux->used_maps[i];
2433 
2434 		if (!map_type_contains_progs(map))
2435 			continue;
2436 
2437 		if (!__bpf_prog_map_compatible(map, fp)) {
2438 			ret = -EINVAL;
2439 			goto out;
2440 		}
2441 	}
2442 
2443 out:
2444 	mutex_unlock(&aux->used_maps_mutex);
2445 	return ret;
2446 }
2447 
2448 static void bpf_prog_select_func(struct bpf_prog *fp)
2449 {
2450 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2451 	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
2452 	u32 idx = (round_up(stack_depth, 32) / 32) - 1;
2453 
2454 	/* may_goto may cause stack size > 512, leading to idx out-of-bounds.
2455 	 * But for non-JITed programs, we don't need bpf_func, so no bounds
2456 	 * check needed.
2457 	 */
2458 	if (!fp->jit_requested &&
2459 	    !WARN_ON_ONCE(idx >= ARRAY_SIZE(interpreters))) {
2460 		fp->bpf_func = interpreters[idx];
2461 	} else {
2462 		fp->bpf_func = __bpf_prog_ret0_warn;
2463 	}
2464 #else
2465 	fp->bpf_func = __bpf_prog_ret0_warn;
2466 #endif
2467 }
2468 
2469 /**
2470  *	bpf_prog_select_runtime - select exec runtime for BPF program
2471  *	@fp: bpf_prog populated with BPF program
2472  *	@err: pointer to error variable
2473  *
2474  * Try to JIT eBPF program, if JIT is not available, use interpreter.
2475  * The BPF program will be executed via bpf_prog_run() function.
2476  *
2477  * Return: the &fp argument along with &err set to 0 for success or
2478  * a negative errno code on failure
2479  */
2480 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
2481 {
2482 	/* In case of BPF to BPF calls, verifier did all the prep
2483 	 * work with regards to JITing, etc.
2484 	 */
2485 	bool jit_needed = fp->jit_requested;
2486 
2487 	if (fp->bpf_func)
2488 		goto finalize;
2489 
2490 	if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
2491 	    bpf_prog_has_kfunc_call(fp))
2492 		jit_needed = true;
2493 
2494 	bpf_prog_select_func(fp);
2495 
2496 	/* eBPF JITs can rewrite the program in case constant
2497 	 * blinding is active. However, in case of error during
2498 	 * blinding, bpf_int_jit_compile() must always return a
2499 	 * valid program, which in this case would simply not
2500 	 * be JITed, but falls back to the interpreter.
2501 	 */
2502 	if (!bpf_prog_is_offloaded(fp->aux)) {
2503 		*err = bpf_prog_alloc_jited_linfo(fp);
2504 		if (*err)
2505 			return fp;
2506 
2507 		fp = bpf_int_jit_compile(fp);
2508 		bpf_prog_jit_attempt_done(fp);
2509 		if (!fp->jited && jit_needed) {
2510 			*err = -ENOTSUPP;
2511 			return fp;
2512 		}
2513 	} else {
2514 		*err = bpf_prog_offload_compile(fp);
2515 		if (*err)
2516 			return fp;
2517 	}
2518 
2519 finalize:
2520 	*err = bpf_prog_lock_ro(fp);
2521 	if (*err)
2522 		return fp;
2523 
2524 	/* The tail call compatibility check can only be done at
2525 	 * this late stage as we need to determine, if we deal
2526 	 * with JITed or non JITed program concatenations and not
2527 	 * all eBPF JITs might immediately support all features.
2528 	 */
2529 	*err = bpf_check_tail_call(fp);
2530 
2531 	return fp;
2532 }
2533 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
2534 
2535 static unsigned int __bpf_prog_ret1(const void *ctx,
2536 				    const struct bpf_insn *insn)
2537 {
2538 	return 1;
2539 }
2540 
2541 static struct bpf_prog_dummy {
2542 	struct bpf_prog prog;
2543 } dummy_bpf_prog = {
2544 	.prog = {
2545 		.bpf_func = __bpf_prog_ret1,
2546 	},
2547 };
2548 
2549 struct bpf_empty_prog_array bpf_empty_prog_array = {
2550 	.null_prog = NULL,
2551 };
2552 EXPORT_SYMBOL(bpf_empty_prog_array);
2553 
2554 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
2555 {
2556 	struct bpf_prog_array *p;
2557 
2558 	if (prog_cnt)
2559 		p = kzalloc(struct_size(p, items, prog_cnt + 1), flags);
2560 	else
2561 		p = &bpf_empty_prog_array.hdr;
2562 
2563 	return p;
2564 }
2565 
2566 void bpf_prog_array_free(struct bpf_prog_array *progs)
2567 {
2568 	if (!progs || progs == &bpf_empty_prog_array.hdr)
2569 		return;
2570 	kfree_rcu(progs, rcu);
2571 }
2572 
2573 static void __bpf_prog_array_free_sleepable_cb(struct rcu_head *rcu)
2574 {
2575 	struct bpf_prog_array *progs;
2576 
2577 	/* If RCU Tasks Trace grace period implies RCU grace period, there is
2578 	 * no need to call kfree_rcu(), just call kfree() directly.
2579 	 */
2580 	progs = container_of(rcu, struct bpf_prog_array, rcu);
2581 	if (rcu_trace_implies_rcu_gp())
2582 		kfree(progs);
2583 	else
2584 		kfree_rcu(progs, rcu);
2585 }
2586 
2587 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs)
2588 {
2589 	if (!progs || progs == &bpf_empty_prog_array.hdr)
2590 		return;
2591 	call_rcu_tasks_trace(&progs->rcu, __bpf_prog_array_free_sleepable_cb);
2592 }
2593 
2594 int bpf_prog_array_length(struct bpf_prog_array *array)
2595 {
2596 	struct bpf_prog_array_item *item;
2597 	u32 cnt = 0;
2598 
2599 	for (item = array->items; item->prog; item++)
2600 		if (item->prog != &dummy_bpf_prog.prog)
2601 			cnt++;
2602 	return cnt;
2603 }
2604 
2605 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
2606 {
2607 	struct bpf_prog_array_item *item;
2608 
2609 	for (item = array->items; item->prog; item++)
2610 		if (item->prog != &dummy_bpf_prog.prog)
2611 			return false;
2612 	return true;
2613 }
2614 
2615 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
2616 				     u32 *prog_ids,
2617 				     u32 request_cnt)
2618 {
2619 	struct bpf_prog_array_item *item;
2620 	int i = 0;
2621 
2622 	for (item = array->items; item->prog; item++) {
2623 		if (item->prog == &dummy_bpf_prog.prog)
2624 			continue;
2625 		prog_ids[i] = item->prog->aux->id;
2626 		if (++i == request_cnt) {
2627 			item++;
2628 			break;
2629 		}
2630 	}
2631 
2632 	return !!(item->prog);
2633 }
2634 
2635 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
2636 				__u32 __user *prog_ids, u32 cnt)
2637 {
2638 	unsigned long err = 0;
2639 	bool nospc;
2640 	u32 *ids;
2641 
2642 	/* users of this function are doing:
2643 	 * cnt = bpf_prog_array_length();
2644 	 * if (cnt > 0)
2645 	 *     bpf_prog_array_copy_to_user(..., cnt);
2646 	 * so below kcalloc doesn't need extra cnt > 0 check.
2647 	 */
2648 	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
2649 	if (!ids)
2650 		return -ENOMEM;
2651 	nospc = bpf_prog_array_copy_core(array, ids, cnt);
2652 	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2653 	kfree(ids);
2654 	if (err)
2655 		return -EFAULT;
2656 	if (nospc)
2657 		return -ENOSPC;
2658 	return 0;
2659 }
2660 
2661 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2662 				struct bpf_prog *old_prog)
2663 {
2664 	struct bpf_prog_array_item *item;
2665 
2666 	for (item = array->items; item->prog; item++)
2667 		if (item->prog == old_prog) {
2668 			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2669 			break;
2670 		}
2671 }
2672 
2673 /**
2674  * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2675  *                                   index into the program array with
2676  *                                   a dummy no-op program.
2677  * @array: a bpf_prog_array
2678  * @index: the index of the program to replace
2679  *
2680  * Skips over dummy programs, by not counting them, when calculating
2681  * the position of the program to replace.
2682  *
2683  * Return:
2684  * * 0		- Success
2685  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2686  * * -ENOENT	- Index out of range
2687  */
2688 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2689 {
2690 	return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2691 }
2692 
2693 /**
2694  * bpf_prog_array_update_at() - Updates the program at the given index
2695  *                              into the program array.
2696  * @array: a bpf_prog_array
2697  * @index: the index of the program to update
2698  * @prog: the program to insert into the array
2699  *
2700  * Skips over dummy programs, by not counting them, when calculating
2701  * the position of the program to update.
2702  *
2703  * Return:
2704  * * 0		- Success
2705  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2706  * * -ENOENT	- Index out of range
2707  */
2708 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2709 			     struct bpf_prog *prog)
2710 {
2711 	struct bpf_prog_array_item *item;
2712 
2713 	if (unlikely(index < 0))
2714 		return -EINVAL;
2715 
2716 	for (item = array->items; item->prog; item++) {
2717 		if (item->prog == &dummy_bpf_prog.prog)
2718 			continue;
2719 		if (!index) {
2720 			WRITE_ONCE(item->prog, prog);
2721 			return 0;
2722 		}
2723 		index--;
2724 	}
2725 	return -ENOENT;
2726 }
2727 
2728 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2729 			struct bpf_prog *exclude_prog,
2730 			struct bpf_prog *include_prog,
2731 			u64 bpf_cookie,
2732 			struct bpf_prog_array **new_array)
2733 {
2734 	int new_prog_cnt, carry_prog_cnt = 0;
2735 	struct bpf_prog_array_item *existing, *new;
2736 	struct bpf_prog_array *array;
2737 	bool found_exclude = false;
2738 
2739 	/* Figure out how many existing progs we need to carry over to
2740 	 * the new array.
2741 	 */
2742 	if (old_array) {
2743 		existing = old_array->items;
2744 		for (; existing->prog; existing++) {
2745 			if (existing->prog == exclude_prog) {
2746 				found_exclude = true;
2747 				continue;
2748 			}
2749 			if (existing->prog != &dummy_bpf_prog.prog)
2750 				carry_prog_cnt++;
2751 			if (existing->prog == include_prog)
2752 				return -EEXIST;
2753 		}
2754 	}
2755 
2756 	if (exclude_prog && !found_exclude)
2757 		return -ENOENT;
2758 
2759 	/* How many progs (not NULL) will be in the new array? */
2760 	new_prog_cnt = carry_prog_cnt;
2761 	if (include_prog)
2762 		new_prog_cnt += 1;
2763 
2764 	/* Do we have any prog (not NULL) in the new array? */
2765 	if (!new_prog_cnt) {
2766 		*new_array = NULL;
2767 		return 0;
2768 	}
2769 
2770 	/* +1 as the end of prog_array is marked with NULL */
2771 	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2772 	if (!array)
2773 		return -ENOMEM;
2774 	new = array->items;
2775 
2776 	/* Fill in the new prog array */
2777 	if (carry_prog_cnt) {
2778 		existing = old_array->items;
2779 		for (; existing->prog; existing++) {
2780 			if (existing->prog == exclude_prog ||
2781 			    existing->prog == &dummy_bpf_prog.prog)
2782 				continue;
2783 
2784 			new->prog = existing->prog;
2785 			new->bpf_cookie = existing->bpf_cookie;
2786 			new++;
2787 		}
2788 	}
2789 	if (include_prog) {
2790 		new->prog = include_prog;
2791 		new->bpf_cookie = bpf_cookie;
2792 		new++;
2793 	}
2794 	new->prog = NULL;
2795 	*new_array = array;
2796 	return 0;
2797 }
2798 
2799 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2800 			     u32 *prog_ids, u32 request_cnt,
2801 			     u32 *prog_cnt)
2802 {
2803 	u32 cnt = 0;
2804 
2805 	if (array)
2806 		cnt = bpf_prog_array_length(array);
2807 
2808 	*prog_cnt = cnt;
2809 
2810 	/* return early if user requested only program count or nothing to copy */
2811 	if (!request_cnt || !cnt)
2812 		return 0;
2813 
2814 	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2815 	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2816 								     : 0;
2817 }
2818 
2819 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2820 			  struct bpf_map **used_maps, u32 len)
2821 {
2822 	struct bpf_map *map;
2823 	bool sleepable;
2824 	u32 i;
2825 
2826 	sleepable = aux->prog->sleepable;
2827 	for (i = 0; i < len; i++) {
2828 		map = used_maps[i];
2829 		if (map->ops->map_poke_untrack)
2830 			map->ops->map_poke_untrack(map, aux);
2831 		if (sleepable)
2832 			atomic64_dec(&map->sleepable_refcnt);
2833 		bpf_map_put(map);
2834 	}
2835 }
2836 
2837 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2838 {
2839 	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2840 	kfree(aux->used_maps);
2841 }
2842 
2843 void __bpf_free_used_btfs(struct btf_mod_pair *used_btfs, u32 len)
2844 {
2845 #ifdef CONFIG_BPF_SYSCALL
2846 	struct btf_mod_pair *btf_mod;
2847 	u32 i;
2848 
2849 	for (i = 0; i < len; i++) {
2850 		btf_mod = &used_btfs[i];
2851 		if (btf_mod->module)
2852 			module_put(btf_mod->module);
2853 		btf_put(btf_mod->btf);
2854 	}
2855 #endif
2856 }
2857 
2858 static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2859 {
2860 	__bpf_free_used_btfs(aux->used_btfs, aux->used_btf_cnt);
2861 	kfree(aux->used_btfs);
2862 }
2863 
2864 static void bpf_prog_free_deferred(struct work_struct *work)
2865 {
2866 	struct bpf_prog_aux *aux;
2867 	int i;
2868 
2869 	aux = container_of(work, struct bpf_prog_aux, work);
2870 #ifdef CONFIG_BPF_SYSCALL
2871 	bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab);
2872 	bpf_prog_stream_free(aux->prog);
2873 #endif
2874 #ifdef CONFIG_CGROUP_BPF
2875 	if (aux->cgroup_atype != CGROUP_BPF_ATTACH_TYPE_INVALID)
2876 		bpf_cgroup_atype_put(aux->cgroup_atype);
2877 #endif
2878 	bpf_free_used_maps(aux);
2879 	bpf_free_used_btfs(aux);
2880 	if (bpf_prog_is_dev_bound(aux))
2881 		bpf_prog_dev_bound_destroy(aux->prog);
2882 #ifdef CONFIG_PERF_EVENTS
2883 	if (aux->prog->has_callchain_buf)
2884 		put_callchain_buffers();
2885 #endif
2886 	if (aux->dst_trampoline)
2887 		bpf_trampoline_put(aux->dst_trampoline);
2888 	for (i = 0; i < aux->real_func_cnt; i++) {
2889 		/* We can just unlink the subprog poke descriptor table as
2890 		 * it was originally linked to the main program and is also
2891 		 * released along with it.
2892 		 */
2893 		aux->func[i]->aux->poke_tab = NULL;
2894 		bpf_jit_free(aux->func[i]);
2895 	}
2896 	if (aux->real_func_cnt) {
2897 		kfree(aux->func);
2898 		bpf_prog_unlock_free(aux->prog);
2899 	} else {
2900 		bpf_jit_free(aux->prog);
2901 	}
2902 }
2903 
2904 void bpf_prog_free(struct bpf_prog *fp)
2905 {
2906 	struct bpf_prog_aux *aux = fp->aux;
2907 
2908 	if (aux->dst_prog)
2909 		bpf_prog_put(aux->dst_prog);
2910 	bpf_token_put(aux->token);
2911 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2912 	schedule_work(&aux->work);
2913 }
2914 EXPORT_SYMBOL_GPL(bpf_prog_free);
2915 
2916 /* RNG for unprivileged user space with separated state from prandom_u32(). */
2917 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2918 
2919 void bpf_user_rnd_init_once(void)
2920 {
2921 	prandom_init_once(&bpf_user_rnd_state);
2922 }
2923 
2924 BPF_CALL_0(bpf_user_rnd_u32)
2925 {
2926 	/* Should someone ever have the rather unwise idea to use some
2927 	 * of the registers passed into this function, then note that
2928 	 * this function is called from native eBPF and classic-to-eBPF
2929 	 * transformations. Register assignments from both sides are
2930 	 * different, f.e. classic always sets fn(ctx, A, X) here.
2931 	 */
2932 	struct rnd_state *state;
2933 	u32 res;
2934 
2935 	state = &get_cpu_var(bpf_user_rnd_state);
2936 	res = prandom_u32_state(state);
2937 	put_cpu_var(bpf_user_rnd_state);
2938 
2939 	return res;
2940 }
2941 
2942 BPF_CALL_0(bpf_get_raw_cpu_id)
2943 {
2944 	return raw_smp_processor_id();
2945 }
2946 
2947 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2948 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2949 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2950 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2951 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2952 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2953 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2954 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto __weak;
2955 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2956 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2957 const struct bpf_func_proto bpf_jiffies64_proto __weak;
2958 
2959 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2960 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2961 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2962 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2963 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2964 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
2965 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto __weak;
2966 
2967 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2968 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2969 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2970 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2971 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2972 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2973 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2974 const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2975 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2976 const struct bpf_func_proto bpf_set_retval_proto __weak;
2977 const struct bpf_func_proto bpf_get_retval_proto __weak;
2978 
2979 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2980 {
2981 	return NULL;
2982 }
2983 
2984 const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void)
2985 {
2986 	return NULL;
2987 }
2988 
2989 const struct bpf_func_proto * __weak bpf_get_perf_event_read_value_proto(void)
2990 {
2991 	return NULL;
2992 }
2993 
2994 u64 __weak
2995 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2996 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2997 {
2998 	return -ENOTSUPP;
2999 }
3000 EXPORT_SYMBOL_GPL(bpf_event_output);
3001 
3002 /* Always built-in helper functions. */
3003 const struct bpf_func_proto bpf_tail_call_proto = {
3004 	.func		= NULL,
3005 	.gpl_only	= false,
3006 	.ret_type	= RET_VOID,
3007 	.arg1_type	= ARG_PTR_TO_CTX,
3008 	.arg2_type	= ARG_CONST_MAP_PTR,
3009 	.arg3_type	= ARG_ANYTHING,
3010 };
3011 
3012 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
3013  * It is encouraged to implement bpf_int_jit_compile() instead, so that
3014  * eBPF and implicitly also cBPF can get JITed!
3015  */
3016 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
3017 {
3018 	return prog;
3019 }
3020 
3021 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
3022  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
3023  */
3024 void __weak bpf_jit_compile(struct bpf_prog *prog)
3025 {
3026 }
3027 
3028 bool __weak bpf_helper_changes_pkt_data(enum bpf_func_id func_id)
3029 {
3030 	return false;
3031 }
3032 
3033 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
3034  * analysis code and wants explicit zero extension inserted by verifier.
3035  * Otherwise, return FALSE.
3036  *
3037  * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
3038  * you don't override this. JITs that don't want these extra insns can detect
3039  * them using insn_is_zext.
3040  */
3041 bool __weak bpf_jit_needs_zext(void)
3042 {
3043 	return false;
3044 }
3045 
3046 /* By default, enable the verifier's mitigations against Spectre v1 and v4 for
3047  * all archs. The value returned must not change at runtime as there is
3048  * currently no support for reloading programs that were loaded without
3049  * mitigations.
3050  */
3051 bool __weak bpf_jit_bypass_spec_v1(void)
3052 {
3053 	return false;
3054 }
3055 
3056 bool __weak bpf_jit_bypass_spec_v4(void)
3057 {
3058 	return false;
3059 }
3060 
3061 /* Return true if the JIT inlines the call to the helper corresponding to
3062  * the imm.
3063  *
3064  * The verifier will not patch the insn->imm for the call to the helper if
3065  * this returns true.
3066  */
3067 bool __weak bpf_jit_inlines_helper_call(s32 imm)
3068 {
3069 	return false;
3070 }
3071 
3072 /* Return TRUE if the JIT backend supports mixing bpf2bpf and tailcalls. */
3073 bool __weak bpf_jit_supports_subprog_tailcalls(void)
3074 {
3075 	return false;
3076 }
3077 
3078 bool __weak bpf_jit_supports_percpu_insn(void)
3079 {
3080 	return false;
3081 }
3082 
3083 bool __weak bpf_jit_supports_kfunc_call(void)
3084 {
3085 	return false;
3086 }
3087 
3088 bool __weak bpf_jit_supports_far_kfunc_call(void)
3089 {
3090 	return false;
3091 }
3092 
3093 bool __weak bpf_jit_supports_arena(void)
3094 {
3095 	return false;
3096 }
3097 
3098 bool __weak bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena)
3099 {
3100 	return false;
3101 }
3102 
3103 u64 __weak bpf_arch_uaddress_limit(void)
3104 {
3105 #if defined(CONFIG_64BIT) && defined(CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE)
3106 	return TASK_SIZE;
3107 #else
3108 	return 0;
3109 #endif
3110 }
3111 
3112 /* Return TRUE if the JIT backend satisfies the following two conditions:
3113  * 1) JIT backend supports atomic_xchg() on pointer-sized words.
3114  * 2) Under the specific arch, the implementation of xchg() is the same
3115  *    as atomic_xchg() on pointer-sized words.
3116  */
3117 bool __weak bpf_jit_supports_ptr_xchg(void)
3118 {
3119 	return false;
3120 }
3121 
3122 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
3123  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
3124  */
3125 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
3126 			 int len)
3127 {
3128 	return -EFAULT;
3129 }
3130 
3131 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
3132 			      void *addr1, void *addr2)
3133 {
3134 	return -ENOTSUPP;
3135 }
3136 
3137 void * __weak bpf_arch_text_copy(void *dst, void *src, size_t len)
3138 {
3139 	return ERR_PTR(-ENOTSUPP);
3140 }
3141 
3142 int __weak bpf_arch_text_invalidate(void *dst, size_t len)
3143 {
3144 	return -ENOTSUPP;
3145 }
3146 
3147 bool __weak bpf_jit_supports_exceptions(void)
3148 {
3149 	return false;
3150 }
3151 
3152 bool __weak bpf_jit_supports_private_stack(void)
3153 {
3154 	return false;
3155 }
3156 
3157 void __weak arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie)
3158 {
3159 }
3160 
3161 bool __weak bpf_jit_supports_timed_may_goto(void)
3162 {
3163 	return false;
3164 }
3165 
3166 u64 __weak arch_bpf_timed_may_goto(void)
3167 {
3168 	return 0;
3169 }
3170 
3171 u64 bpf_check_timed_may_goto(struct bpf_timed_may_goto *p)
3172 {
3173 	u64 time = ktime_get_mono_fast_ns();
3174 
3175 	/* Populate the timestamp for this stack frame, and refresh count. */
3176 	if (!p->timestamp) {
3177 		p->timestamp = time;
3178 		return BPF_MAX_TIMED_LOOPS;
3179 	}
3180 	/* Check if we've exhausted our time slice, and zero count. */
3181 	if (time - p->timestamp >= (NSEC_PER_SEC / 4))
3182 		return 0;
3183 	/* Refresh the count for the stack frame. */
3184 	return BPF_MAX_TIMED_LOOPS;
3185 }
3186 
3187 /* for configs without MMU or 32-bit */
3188 __weak const struct bpf_map_ops arena_map_ops;
3189 __weak u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena)
3190 {
3191 	return 0;
3192 }
3193 __weak u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena)
3194 {
3195 	return 0;
3196 }
3197 
3198 #ifdef CONFIG_BPF_SYSCALL
3199 static int __init bpf_global_ma_init(void)
3200 {
3201 	int ret;
3202 
3203 	ret = bpf_mem_alloc_init(&bpf_global_ma, 0, false);
3204 	bpf_global_ma_set = !ret;
3205 	return ret;
3206 }
3207 late_initcall(bpf_global_ma_init);
3208 #endif
3209 
3210 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
3211 EXPORT_SYMBOL(bpf_stats_enabled_key);
3212 
3213 /* All definitions of tracepoints related to BPF. */
3214 #define CREATE_TRACE_POINTS
3215 #include <linux/bpf_trace.h>
3216 
3217 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
3218 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
3219 
3220 #ifdef CONFIG_BPF_SYSCALL
3221 
3222 int bpf_prog_get_file_line(struct bpf_prog *prog, unsigned long ip, const char **filep,
3223 			   const char **linep, int *nump)
3224 {
3225 	int idx = -1, insn_start, insn_end, len;
3226 	struct bpf_line_info *linfo;
3227 	void **jited_linfo;
3228 	struct btf *btf;
3229 
3230 	btf = prog->aux->btf;
3231 	linfo = prog->aux->linfo;
3232 	jited_linfo = prog->aux->jited_linfo;
3233 
3234 	if (!btf || !linfo || !jited_linfo)
3235 		return -EINVAL;
3236 	len = prog->aux->func ? prog->aux->func[prog->aux->func_idx]->len : prog->len;
3237 
3238 	linfo = &prog->aux->linfo[prog->aux->linfo_idx];
3239 	jited_linfo = &prog->aux->jited_linfo[prog->aux->linfo_idx];
3240 
3241 	insn_start = linfo[0].insn_off;
3242 	insn_end = insn_start + len;
3243 
3244 	for (int i = 0; i < prog->aux->nr_linfo &&
3245 	     linfo[i].insn_off >= insn_start && linfo[i].insn_off < insn_end; i++) {
3246 		if (jited_linfo[i] >= (void *)ip)
3247 			break;
3248 		idx = i;
3249 	}
3250 
3251 	if (idx == -1)
3252 		return -ENOENT;
3253 
3254 	/* Get base component of the file path. */
3255 	*filep = btf_name_by_offset(btf, linfo[idx].file_name_off);
3256 	*filep = kbasename(*filep);
3257 	/* Obtain the source line, and strip whitespace in prefix. */
3258 	*linep = btf_name_by_offset(btf, linfo[idx].line_off);
3259 	while (isspace(**linep))
3260 		*linep += 1;
3261 	*nump = BPF_LINE_INFO_LINE_NUM(linfo[idx].line_col);
3262 	return 0;
3263 }
3264 
3265 #endif
3266