1 /* 2 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * The above copyright notice and this permission notice (including the 14 * next paragraph) shall be included in all copies or substantial portions 15 * of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 20 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR 21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 24 * 25 */ 26 27 #ifndef _UAPI_I915_DRM_H_ 28 #define _UAPI_I915_DRM_H_ 29 30 #include "drm.h" 31 32 #if defined(__cplusplus) 33 extern "C" { 34 #endif 35 36 /* Please note that modifications to all structs defined here are 37 * subject to backwards-compatibility constraints. 38 */ 39 40 /** 41 * DOC: uevents generated by i915 on it's device node 42 * 43 * I915_L3_PARITY_UEVENT - Generated when the driver receives a parity mismatch 44 * event from the gpu l3 cache. Additional information supplied is ROW, 45 * BANK, SUBBANK, SLICE of the affected cacheline. Userspace should keep 46 * track of these events and if a specific cache-line seems to have a 47 * persistent error remap it with the l3 remapping tool supplied in 48 * intel-gpu-tools. The value supplied with the event is always 1. 49 * 50 * I915_ERROR_UEVENT - Generated upon error detection, currently only via 51 * hangcheck. The error detection event is a good indicator of when things 52 * began to go badly. The value supplied with the event is a 1 upon error 53 * detection, and a 0 upon reset completion, signifying no more error 54 * exists. NOTE: Disabling hangcheck or reset via module parameter will 55 * cause the related events to not be seen. 56 * 57 * I915_RESET_UEVENT - Event is generated just before an attempt to reset the 58 * GPU. The value supplied with the event is always 1. NOTE: Disable 59 * reset via module parameter will cause this event to not be seen. 60 */ 61 #define I915_L3_PARITY_UEVENT "L3_PARITY_ERROR" 62 #define I915_ERROR_UEVENT "ERROR" 63 #define I915_RESET_UEVENT "RESET" 64 65 /** 66 * struct i915_user_extension - Base class for defining a chain of extensions 67 * 68 * Many interfaces need to grow over time. In most cases we can simply 69 * extend the struct and have userspace pass in more data. Another option, 70 * as demonstrated by Vulkan's approach to providing extensions for forward 71 * and backward compatibility, is to use a list of optional structs to 72 * provide those extra details. 73 * 74 * The key advantage to using an extension chain is that it allows us to 75 * redefine the interface more easily than an ever growing struct of 76 * increasing complexity, and for large parts of that interface to be 77 * entirely optional. The downside is more pointer chasing; chasing across 78 * the __user boundary with pointers encapsulated inside u64. 79 * 80 * Example chaining: 81 * 82 * .. code-block:: C 83 * 84 * struct i915_user_extension ext3 { 85 * .next_extension = 0, // end 86 * .name = ..., 87 * }; 88 * struct i915_user_extension ext2 { 89 * .next_extension = (uintptr_t)&ext3, 90 * .name = ..., 91 * }; 92 * struct i915_user_extension ext1 { 93 * .next_extension = (uintptr_t)&ext2, 94 * .name = ..., 95 * }; 96 * 97 * Typically the struct i915_user_extension would be embedded in some uAPI 98 * struct, and in this case we would feed it the head of the chain(i.e ext1), 99 * which would then apply all of the above extensions. 100 * 101 */ 102 struct i915_user_extension { 103 /** 104 * @next_extension: 105 * 106 * Pointer to the next struct i915_user_extension, or zero if the end. 107 */ 108 __u64 next_extension; 109 /** 110 * @name: Name of the extension. 111 * 112 * Note that the name here is just some integer. 113 * 114 * Also note that the name space for this is not global for the whole 115 * driver, but rather its scope/meaning is limited to the specific piece 116 * of uAPI which has embedded the struct i915_user_extension. 117 */ 118 __u32 name; 119 /** 120 * @flags: MBZ 121 * 122 * All undefined bits must be zero. 123 */ 124 __u32 flags; 125 /** 126 * @rsvd: MBZ 127 * 128 * Reserved for future use; must be zero. 129 */ 130 __u32 rsvd[4]; 131 }; 132 133 /* 134 * MOCS indexes used for GPU surfaces, defining the cacheability of the 135 * surface data and the coherency for this data wrt. CPU vs. GPU accesses. 136 */ 137 enum i915_mocs_table_index { 138 /* 139 * Not cached anywhere, coherency between CPU and GPU accesses is 140 * guaranteed. 141 */ 142 I915_MOCS_UNCACHED, 143 /* 144 * Cacheability and coherency controlled by the kernel automatically 145 * based on the DRM_I915_GEM_SET_CACHING IOCTL setting and the current 146 * usage of the surface (used for display scanout or not). 147 */ 148 I915_MOCS_PTE, 149 /* 150 * Cached in all GPU caches available on the platform. 151 * Coherency between CPU and GPU accesses to the surface is not 152 * guaranteed without extra synchronization. 153 */ 154 I915_MOCS_CACHED, 155 }; 156 157 /* 158 * Different engines serve different roles, and there may be more than one 159 * engine serving each role. enum drm_i915_gem_engine_class provides a 160 * classification of the role of the engine, which may be used when requesting 161 * operations to be performed on a certain subset of engines, or for providing 162 * information about that group. 163 */ 164 enum drm_i915_gem_engine_class { 165 I915_ENGINE_CLASS_RENDER = 0, 166 I915_ENGINE_CLASS_COPY = 1, 167 I915_ENGINE_CLASS_VIDEO = 2, 168 I915_ENGINE_CLASS_VIDEO_ENHANCE = 3, 169 170 /* should be kept compact */ 171 172 I915_ENGINE_CLASS_INVALID = -1 173 }; 174 175 /* 176 * There may be more than one engine fulfilling any role within the system. 177 * Each engine of a class is given a unique instance number and therefore 178 * any engine can be specified by its class:instance tuplet. APIs that allow 179 * access to any engine in the system will use struct i915_engine_class_instance 180 * for this identification. 181 */ 182 struct i915_engine_class_instance { 183 __u16 engine_class; /* see enum drm_i915_gem_engine_class */ 184 __u16 engine_instance; 185 #define I915_ENGINE_CLASS_INVALID_NONE -1 186 #define I915_ENGINE_CLASS_INVALID_VIRTUAL -2 187 }; 188 189 /** 190 * DOC: perf_events exposed by i915 through /sys/bus/event_sources/drivers/i915 191 * 192 */ 193 194 enum drm_i915_pmu_engine_sample { 195 I915_SAMPLE_BUSY = 0, 196 I915_SAMPLE_WAIT = 1, 197 I915_SAMPLE_SEMA = 2 198 }; 199 200 #define I915_PMU_SAMPLE_BITS (4) 201 #define I915_PMU_SAMPLE_MASK (0xf) 202 #define I915_PMU_SAMPLE_INSTANCE_BITS (8) 203 #define I915_PMU_CLASS_SHIFT \ 204 (I915_PMU_SAMPLE_BITS + I915_PMU_SAMPLE_INSTANCE_BITS) 205 206 #define __I915_PMU_ENGINE(class, instance, sample) \ 207 ((class) << I915_PMU_CLASS_SHIFT | \ 208 (instance) << I915_PMU_SAMPLE_BITS | \ 209 (sample)) 210 211 #define I915_PMU_ENGINE_BUSY(class, instance) \ 212 __I915_PMU_ENGINE(class, instance, I915_SAMPLE_BUSY) 213 214 #define I915_PMU_ENGINE_WAIT(class, instance) \ 215 __I915_PMU_ENGINE(class, instance, I915_SAMPLE_WAIT) 216 217 #define I915_PMU_ENGINE_SEMA(class, instance) \ 218 __I915_PMU_ENGINE(class, instance, I915_SAMPLE_SEMA) 219 220 #define __I915_PMU_OTHER(x) (__I915_PMU_ENGINE(0xff, 0xff, 0xf) + 1 + (x)) 221 222 #define I915_PMU_ACTUAL_FREQUENCY __I915_PMU_OTHER(0) 223 #define I915_PMU_REQUESTED_FREQUENCY __I915_PMU_OTHER(1) 224 #define I915_PMU_INTERRUPTS __I915_PMU_OTHER(2) 225 #define I915_PMU_RC6_RESIDENCY __I915_PMU_OTHER(3) 226 #define I915_PMU_SOFTWARE_GT_AWAKE_TIME __I915_PMU_OTHER(4) 227 228 #define I915_PMU_LAST /* Deprecated - do not use */ I915_PMU_RC6_RESIDENCY 229 230 /* Each region is a minimum of 16k, and there are at most 255 of them. 231 */ 232 #define I915_NR_TEX_REGIONS 255 /* table size 2k - maximum due to use 233 * of chars for next/prev indices */ 234 #define I915_LOG_MIN_TEX_REGION_SIZE 14 235 236 typedef struct _drm_i915_init { 237 enum { 238 I915_INIT_DMA = 0x01, 239 I915_CLEANUP_DMA = 0x02, 240 I915_RESUME_DMA = 0x03 241 } func; 242 unsigned int mmio_offset; 243 int sarea_priv_offset; 244 unsigned int ring_start; 245 unsigned int ring_end; 246 unsigned int ring_size; 247 unsigned int front_offset; 248 unsigned int back_offset; 249 unsigned int depth_offset; 250 unsigned int w; 251 unsigned int h; 252 unsigned int pitch; 253 unsigned int pitch_bits; 254 unsigned int back_pitch; 255 unsigned int depth_pitch; 256 unsigned int cpp; 257 unsigned int chipset; 258 } drm_i915_init_t; 259 260 typedef struct _drm_i915_sarea { 261 struct drm_tex_region texList[I915_NR_TEX_REGIONS + 1]; 262 int last_upload; /* last time texture was uploaded */ 263 int last_enqueue; /* last time a buffer was enqueued */ 264 int last_dispatch; /* age of the most recently dispatched buffer */ 265 int ctxOwner; /* last context to upload state */ 266 int texAge; 267 int pf_enabled; /* is pageflipping allowed? */ 268 int pf_active; 269 int pf_current_page; /* which buffer is being displayed? */ 270 int perf_boxes; /* performance boxes to be displayed */ 271 int width, height; /* screen size in pixels */ 272 273 drm_handle_t front_handle; 274 int front_offset; 275 int front_size; 276 277 drm_handle_t back_handle; 278 int back_offset; 279 int back_size; 280 281 drm_handle_t depth_handle; 282 int depth_offset; 283 int depth_size; 284 285 drm_handle_t tex_handle; 286 int tex_offset; 287 int tex_size; 288 int log_tex_granularity; 289 int pitch; 290 int rotation; /* 0, 90, 180 or 270 */ 291 int rotated_offset; 292 int rotated_size; 293 int rotated_pitch; 294 int virtualX, virtualY; 295 296 unsigned int front_tiled; 297 unsigned int back_tiled; 298 unsigned int depth_tiled; 299 unsigned int rotated_tiled; 300 unsigned int rotated2_tiled; 301 302 int pipeA_x; 303 int pipeA_y; 304 int pipeA_w; 305 int pipeA_h; 306 int pipeB_x; 307 int pipeB_y; 308 int pipeB_w; 309 int pipeB_h; 310 311 /* fill out some space for old userspace triple buffer */ 312 drm_handle_t unused_handle; 313 __u32 unused1, unused2, unused3; 314 315 /* buffer object handles for static buffers. May change 316 * over the lifetime of the client. 317 */ 318 __u32 front_bo_handle; 319 __u32 back_bo_handle; 320 __u32 unused_bo_handle; 321 __u32 depth_bo_handle; 322 323 } drm_i915_sarea_t; 324 325 /* due to userspace building against these headers we need some compat here */ 326 #define planeA_x pipeA_x 327 #define planeA_y pipeA_y 328 #define planeA_w pipeA_w 329 #define planeA_h pipeA_h 330 #define planeB_x pipeB_x 331 #define planeB_y pipeB_y 332 #define planeB_w pipeB_w 333 #define planeB_h pipeB_h 334 335 /* Flags for perf_boxes 336 */ 337 #define I915_BOX_RING_EMPTY 0x1 338 #define I915_BOX_FLIP 0x2 339 #define I915_BOX_WAIT 0x4 340 #define I915_BOX_TEXTURE_LOAD 0x8 341 #define I915_BOX_LOST_CONTEXT 0x10 342 343 /* 344 * i915 specific ioctls. 345 * 346 * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie 347 * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset 348 * against DRM_COMMAND_BASE and should be between [0x0, 0x60). 349 */ 350 #define DRM_I915_INIT 0x00 351 #define DRM_I915_FLUSH 0x01 352 #define DRM_I915_FLIP 0x02 353 #define DRM_I915_BATCHBUFFER 0x03 354 #define DRM_I915_IRQ_EMIT 0x04 355 #define DRM_I915_IRQ_WAIT 0x05 356 #define DRM_I915_GETPARAM 0x06 357 #define DRM_I915_SETPARAM 0x07 358 #define DRM_I915_ALLOC 0x08 359 #define DRM_I915_FREE 0x09 360 #define DRM_I915_INIT_HEAP 0x0a 361 #define DRM_I915_CMDBUFFER 0x0b 362 #define DRM_I915_DESTROY_HEAP 0x0c 363 #define DRM_I915_SET_VBLANK_PIPE 0x0d 364 #define DRM_I915_GET_VBLANK_PIPE 0x0e 365 #define DRM_I915_VBLANK_SWAP 0x0f 366 #define DRM_I915_HWS_ADDR 0x11 367 #define DRM_I915_GEM_INIT 0x13 368 #define DRM_I915_GEM_EXECBUFFER 0x14 369 #define DRM_I915_GEM_PIN 0x15 370 #define DRM_I915_GEM_UNPIN 0x16 371 #define DRM_I915_GEM_BUSY 0x17 372 #define DRM_I915_GEM_THROTTLE 0x18 373 #define DRM_I915_GEM_ENTERVT 0x19 374 #define DRM_I915_GEM_LEAVEVT 0x1a 375 #define DRM_I915_GEM_CREATE 0x1b 376 #define DRM_I915_GEM_PREAD 0x1c 377 #define DRM_I915_GEM_PWRITE 0x1d 378 #define DRM_I915_GEM_MMAP 0x1e 379 #define DRM_I915_GEM_SET_DOMAIN 0x1f 380 #define DRM_I915_GEM_SW_FINISH 0x20 381 #define DRM_I915_GEM_SET_TILING 0x21 382 #define DRM_I915_GEM_GET_TILING 0x22 383 #define DRM_I915_GEM_GET_APERTURE 0x23 384 #define DRM_I915_GEM_MMAP_GTT 0x24 385 #define DRM_I915_GET_PIPE_FROM_CRTC_ID 0x25 386 #define DRM_I915_GEM_MADVISE 0x26 387 #define DRM_I915_OVERLAY_PUT_IMAGE 0x27 388 #define DRM_I915_OVERLAY_ATTRS 0x28 389 #define DRM_I915_GEM_EXECBUFFER2 0x29 390 #define DRM_I915_GEM_EXECBUFFER2_WR DRM_I915_GEM_EXECBUFFER2 391 #define DRM_I915_GET_SPRITE_COLORKEY 0x2a 392 #define DRM_I915_SET_SPRITE_COLORKEY 0x2b 393 #define DRM_I915_GEM_WAIT 0x2c 394 #define DRM_I915_GEM_CONTEXT_CREATE 0x2d 395 #define DRM_I915_GEM_CONTEXT_DESTROY 0x2e 396 #define DRM_I915_GEM_SET_CACHING 0x2f 397 #define DRM_I915_GEM_GET_CACHING 0x30 398 #define DRM_I915_REG_READ 0x31 399 #define DRM_I915_GET_RESET_STATS 0x32 400 #define DRM_I915_GEM_USERPTR 0x33 401 #define DRM_I915_GEM_CONTEXT_GETPARAM 0x34 402 #define DRM_I915_GEM_CONTEXT_SETPARAM 0x35 403 #define DRM_I915_PERF_OPEN 0x36 404 #define DRM_I915_PERF_ADD_CONFIG 0x37 405 #define DRM_I915_PERF_REMOVE_CONFIG 0x38 406 #define DRM_I915_QUERY 0x39 407 #define DRM_I915_GEM_VM_CREATE 0x3a 408 #define DRM_I915_GEM_VM_DESTROY 0x3b 409 #define DRM_I915_GEM_CREATE_EXT 0x3c 410 /* Must be kept compact -- no holes */ 411 412 #define DRM_IOCTL_I915_INIT DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT, drm_i915_init_t) 413 #define DRM_IOCTL_I915_FLUSH DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLUSH) 414 #define DRM_IOCTL_I915_FLIP DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLIP) 415 #define DRM_IOCTL_I915_BATCHBUFFER DRM_IOW( DRM_COMMAND_BASE + DRM_I915_BATCHBUFFER, drm_i915_batchbuffer_t) 416 #define DRM_IOCTL_I915_IRQ_EMIT DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_IRQ_EMIT, drm_i915_irq_emit_t) 417 #define DRM_IOCTL_I915_IRQ_WAIT DRM_IOW( DRM_COMMAND_BASE + DRM_I915_IRQ_WAIT, drm_i915_irq_wait_t) 418 #define DRM_IOCTL_I915_GETPARAM DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GETPARAM, drm_i915_getparam_t) 419 #define DRM_IOCTL_I915_SETPARAM DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SETPARAM, drm_i915_setparam_t) 420 #define DRM_IOCTL_I915_ALLOC DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_ALLOC, drm_i915_mem_alloc_t) 421 #define DRM_IOCTL_I915_FREE DRM_IOW( DRM_COMMAND_BASE + DRM_I915_FREE, drm_i915_mem_free_t) 422 #define DRM_IOCTL_I915_INIT_HEAP DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT_HEAP, drm_i915_mem_init_heap_t) 423 #define DRM_IOCTL_I915_CMDBUFFER DRM_IOW( DRM_COMMAND_BASE + DRM_I915_CMDBUFFER, drm_i915_cmdbuffer_t) 424 #define DRM_IOCTL_I915_DESTROY_HEAP DRM_IOW( DRM_COMMAND_BASE + DRM_I915_DESTROY_HEAP, drm_i915_mem_destroy_heap_t) 425 #define DRM_IOCTL_I915_SET_VBLANK_PIPE DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SET_VBLANK_PIPE, drm_i915_vblank_pipe_t) 426 #define DRM_IOCTL_I915_GET_VBLANK_PIPE DRM_IOR( DRM_COMMAND_BASE + DRM_I915_GET_VBLANK_PIPE, drm_i915_vblank_pipe_t) 427 #define DRM_IOCTL_I915_VBLANK_SWAP DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_VBLANK_SWAP, drm_i915_vblank_swap_t) 428 #define DRM_IOCTL_I915_HWS_ADDR DRM_IOW(DRM_COMMAND_BASE + DRM_I915_HWS_ADDR, struct drm_i915_gem_init) 429 #define DRM_IOCTL_I915_GEM_INIT DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_INIT, struct drm_i915_gem_init) 430 #define DRM_IOCTL_I915_GEM_EXECBUFFER DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER, struct drm_i915_gem_execbuffer) 431 #define DRM_IOCTL_I915_GEM_EXECBUFFER2 DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2, struct drm_i915_gem_execbuffer2) 432 #define DRM_IOCTL_I915_GEM_EXECBUFFER2_WR DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2_WR, struct drm_i915_gem_execbuffer2) 433 #define DRM_IOCTL_I915_GEM_PIN DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_PIN, struct drm_i915_gem_pin) 434 #define DRM_IOCTL_I915_GEM_UNPIN DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_UNPIN, struct drm_i915_gem_unpin) 435 #define DRM_IOCTL_I915_GEM_BUSY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_BUSY, struct drm_i915_gem_busy) 436 #define DRM_IOCTL_I915_GEM_SET_CACHING DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_SET_CACHING, struct drm_i915_gem_caching) 437 #define DRM_IOCTL_I915_GEM_GET_CACHING DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_GET_CACHING, struct drm_i915_gem_caching) 438 #define DRM_IOCTL_I915_GEM_THROTTLE DRM_IO ( DRM_COMMAND_BASE + DRM_I915_GEM_THROTTLE) 439 #define DRM_IOCTL_I915_GEM_ENTERVT DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_ENTERVT) 440 #define DRM_IOCTL_I915_GEM_LEAVEVT DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_LEAVEVT) 441 #define DRM_IOCTL_I915_GEM_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE, struct drm_i915_gem_create) 442 #define DRM_IOCTL_I915_GEM_CREATE_EXT DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE_EXT, struct drm_i915_gem_create_ext) 443 #define DRM_IOCTL_I915_GEM_PREAD DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PREAD, struct drm_i915_gem_pread) 444 #define DRM_IOCTL_I915_GEM_PWRITE DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PWRITE, struct drm_i915_gem_pwrite) 445 #define DRM_IOCTL_I915_GEM_MMAP DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP, struct drm_i915_gem_mmap) 446 #define DRM_IOCTL_I915_GEM_MMAP_GTT DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_gtt) 447 #define DRM_IOCTL_I915_GEM_MMAP_OFFSET DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_offset) 448 #define DRM_IOCTL_I915_GEM_SET_DOMAIN DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SET_DOMAIN, struct drm_i915_gem_set_domain) 449 #define DRM_IOCTL_I915_GEM_SW_FINISH DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SW_FINISH, struct drm_i915_gem_sw_finish) 450 #define DRM_IOCTL_I915_GEM_SET_TILING DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_SET_TILING, struct drm_i915_gem_set_tiling) 451 #define DRM_IOCTL_I915_GEM_GET_TILING DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_TILING, struct drm_i915_gem_get_tiling) 452 #define DRM_IOCTL_I915_GEM_GET_APERTURE DRM_IOR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_APERTURE, struct drm_i915_gem_get_aperture) 453 #define DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_PIPE_FROM_CRTC_ID, struct drm_i915_get_pipe_from_crtc_id) 454 #define DRM_IOCTL_I915_GEM_MADVISE DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MADVISE, struct drm_i915_gem_madvise) 455 #define DRM_IOCTL_I915_OVERLAY_PUT_IMAGE DRM_IOW(DRM_COMMAND_BASE + DRM_I915_OVERLAY_PUT_IMAGE, struct drm_intel_overlay_put_image) 456 #define DRM_IOCTL_I915_OVERLAY_ATTRS DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_OVERLAY_ATTRS, struct drm_intel_overlay_attrs) 457 #define DRM_IOCTL_I915_SET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_SET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey) 458 #define DRM_IOCTL_I915_GET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey) 459 #define DRM_IOCTL_I915_GEM_WAIT DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_WAIT, struct drm_i915_gem_wait) 460 #define DRM_IOCTL_I915_GEM_CONTEXT_CREATE DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create) 461 #define DRM_IOCTL_I915_GEM_CONTEXT_CREATE_EXT DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create_ext) 462 #define DRM_IOCTL_I915_GEM_CONTEXT_DESTROY DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_DESTROY, struct drm_i915_gem_context_destroy) 463 #define DRM_IOCTL_I915_REG_READ DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_REG_READ, struct drm_i915_reg_read) 464 #define DRM_IOCTL_I915_GET_RESET_STATS DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GET_RESET_STATS, struct drm_i915_reset_stats) 465 #define DRM_IOCTL_I915_GEM_USERPTR DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_USERPTR, struct drm_i915_gem_userptr) 466 #define DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_GETPARAM, struct drm_i915_gem_context_param) 467 #define DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_SETPARAM, struct drm_i915_gem_context_param) 468 #define DRM_IOCTL_I915_PERF_OPEN DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_OPEN, struct drm_i915_perf_open_param) 469 #define DRM_IOCTL_I915_PERF_ADD_CONFIG DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_ADD_CONFIG, struct drm_i915_perf_oa_config) 470 #define DRM_IOCTL_I915_PERF_REMOVE_CONFIG DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_REMOVE_CONFIG, __u64) 471 #define DRM_IOCTL_I915_QUERY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_QUERY, struct drm_i915_query) 472 #define DRM_IOCTL_I915_GEM_VM_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_VM_CREATE, struct drm_i915_gem_vm_control) 473 #define DRM_IOCTL_I915_GEM_VM_DESTROY DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_VM_DESTROY, struct drm_i915_gem_vm_control) 474 475 /* Allow drivers to submit batchbuffers directly to hardware, relying 476 * on the security mechanisms provided by hardware. 477 */ 478 typedef struct drm_i915_batchbuffer { 479 int start; /* agp offset */ 480 int used; /* nr bytes in use */ 481 int DR1; /* hw flags for GFX_OP_DRAWRECT_INFO */ 482 int DR4; /* window origin for GFX_OP_DRAWRECT_INFO */ 483 int num_cliprects; /* mulitpass with multiple cliprects? */ 484 struct drm_clip_rect __user *cliprects; /* pointer to userspace cliprects */ 485 } drm_i915_batchbuffer_t; 486 487 /* As above, but pass a pointer to userspace buffer which can be 488 * validated by the kernel prior to sending to hardware. 489 */ 490 typedef struct _drm_i915_cmdbuffer { 491 char __user *buf; /* pointer to userspace command buffer */ 492 int sz; /* nr bytes in buf */ 493 int DR1; /* hw flags for GFX_OP_DRAWRECT_INFO */ 494 int DR4; /* window origin for GFX_OP_DRAWRECT_INFO */ 495 int num_cliprects; /* mulitpass with multiple cliprects? */ 496 struct drm_clip_rect __user *cliprects; /* pointer to userspace cliprects */ 497 } drm_i915_cmdbuffer_t; 498 499 /* Userspace can request & wait on irq's: 500 */ 501 typedef struct drm_i915_irq_emit { 502 int __user *irq_seq; 503 } drm_i915_irq_emit_t; 504 505 typedef struct drm_i915_irq_wait { 506 int irq_seq; 507 } drm_i915_irq_wait_t; 508 509 /* 510 * Different modes of per-process Graphics Translation Table, 511 * see I915_PARAM_HAS_ALIASING_PPGTT 512 */ 513 #define I915_GEM_PPGTT_NONE 0 514 #define I915_GEM_PPGTT_ALIASING 1 515 #define I915_GEM_PPGTT_FULL 2 516 517 /* Ioctl to query kernel params: 518 */ 519 #define I915_PARAM_IRQ_ACTIVE 1 520 #define I915_PARAM_ALLOW_BATCHBUFFER 2 521 #define I915_PARAM_LAST_DISPATCH 3 522 #define I915_PARAM_CHIPSET_ID 4 523 #define I915_PARAM_HAS_GEM 5 524 #define I915_PARAM_NUM_FENCES_AVAIL 6 525 #define I915_PARAM_HAS_OVERLAY 7 526 #define I915_PARAM_HAS_PAGEFLIPPING 8 527 #define I915_PARAM_HAS_EXECBUF2 9 528 #define I915_PARAM_HAS_BSD 10 529 #define I915_PARAM_HAS_BLT 11 530 #define I915_PARAM_HAS_RELAXED_FENCING 12 531 #define I915_PARAM_HAS_COHERENT_RINGS 13 532 #define I915_PARAM_HAS_EXEC_CONSTANTS 14 533 #define I915_PARAM_HAS_RELAXED_DELTA 15 534 #define I915_PARAM_HAS_GEN7_SOL_RESET 16 535 #define I915_PARAM_HAS_LLC 17 536 #define I915_PARAM_HAS_ALIASING_PPGTT 18 537 #define I915_PARAM_HAS_WAIT_TIMEOUT 19 538 #define I915_PARAM_HAS_SEMAPHORES 20 539 #define I915_PARAM_HAS_PRIME_VMAP_FLUSH 21 540 #define I915_PARAM_HAS_VEBOX 22 541 #define I915_PARAM_HAS_SECURE_BATCHES 23 542 #define I915_PARAM_HAS_PINNED_BATCHES 24 543 #define I915_PARAM_HAS_EXEC_NO_RELOC 25 544 #define I915_PARAM_HAS_EXEC_HANDLE_LUT 26 545 #define I915_PARAM_HAS_WT 27 546 #define I915_PARAM_CMD_PARSER_VERSION 28 547 #define I915_PARAM_HAS_COHERENT_PHYS_GTT 29 548 #define I915_PARAM_MMAP_VERSION 30 549 #define I915_PARAM_HAS_BSD2 31 550 #define I915_PARAM_REVISION 32 551 #define I915_PARAM_SUBSLICE_TOTAL 33 552 #define I915_PARAM_EU_TOTAL 34 553 #define I915_PARAM_HAS_GPU_RESET 35 554 #define I915_PARAM_HAS_RESOURCE_STREAMER 36 555 #define I915_PARAM_HAS_EXEC_SOFTPIN 37 556 #define I915_PARAM_HAS_POOLED_EU 38 557 #define I915_PARAM_MIN_EU_IN_POOL 39 558 #define I915_PARAM_MMAP_GTT_VERSION 40 559 560 /* 561 * Query whether DRM_I915_GEM_EXECBUFFER2 supports user defined execution 562 * priorities and the driver will attempt to execute batches in priority order. 563 * The param returns a capability bitmask, nonzero implies that the scheduler 564 * is enabled, with different features present according to the mask. 565 * 566 * The initial priority for each batch is supplied by the context and is 567 * controlled via I915_CONTEXT_PARAM_PRIORITY. 568 */ 569 #define I915_PARAM_HAS_SCHEDULER 41 570 #define I915_SCHEDULER_CAP_ENABLED (1ul << 0) 571 #define I915_SCHEDULER_CAP_PRIORITY (1ul << 1) 572 #define I915_SCHEDULER_CAP_PREEMPTION (1ul << 2) 573 #define I915_SCHEDULER_CAP_SEMAPHORES (1ul << 3) 574 #define I915_SCHEDULER_CAP_ENGINE_BUSY_STATS (1ul << 4) 575 576 #define I915_PARAM_HUC_STATUS 42 577 578 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to opt-out of 579 * synchronisation with implicit fencing on individual objects. 580 * See EXEC_OBJECT_ASYNC. 581 */ 582 #define I915_PARAM_HAS_EXEC_ASYNC 43 583 584 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports explicit fence support - 585 * both being able to pass in a sync_file fd to wait upon before executing, 586 * and being able to return a new sync_file fd that is signaled when the 587 * current request is complete. See I915_EXEC_FENCE_IN and I915_EXEC_FENCE_OUT. 588 */ 589 #define I915_PARAM_HAS_EXEC_FENCE 44 590 591 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to capture 592 * user specified bufffers for post-mortem debugging of GPU hangs. See 593 * EXEC_OBJECT_CAPTURE. 594 */ 595 #define I915_PARAM_HAS_EXEC_CAPTURE 45 596 597 #define I915_PARAM_SLICE_MASK 46 598 599 /* Assuming it's uniform for each slice, this queries the mask of subslices 600 * per-slice for this system. 601 */ 602 #define I915_PARAM_SUBSLICE_MASK 47 603 604 /* 605 * Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying the batch buffer 606 * as the first execobject as opposed to the last. See I915_EXEC_BATCH_FIRST. 607 */ 608 #define I915_PARAM_HAS_EXEC_BATCH_FIRST 48 609 610 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of 611 * drm_i915_gem_exec_fence structures. See I915_EXEC_FENCE_ARRAY. 612 */ 613 #define I915_PARAM_HAS_EXEC_FENCE_ARRAY 49 614 615 /* 616 * Query whether every context (both per-file default and user created) is 617 * isolated (insofar as HW supports). If this parameter is not true, then 618 * freshly created contexts may inherit values from an existing context, 619 * rather than default HW values. If true, it also ensures (insofar as HW 620 * supports) that all state set by this context will not leak to any other 621 * context. 622 * 623 * As not every engine across every gen support contexts, the returned 624 * value reports the support of context isolation for individual engines by 625 * returning a bitmask of each engine class set to true if that class supports 626 * isolation. 627 */ 628 #define I915_PARAM_HAS_CONTEXT_ISOLATION 50 629 630 /* Frequency of the command streamer timestamps given by the *_TIMESTAMP 631 * registers. This used to be fixed per platform but from CNL onwards, this 632 * might vary depending on the parts. 633 */ 634 #define I915_PARAM_CS_TIMESTAMP_FREQUENCY 51 635 636 /* 637 * Once upon a time we supposed that writes through the GGTT would be 638 * immediately in physical memory (once flushed out of the CPU path). However, 639 * on a few different processors and chipsets, this is not necessarily the case 640 * as the writes appear to be buffered internally. Thus a read of the backing 641 * storage (physical memory) via a different path (with different physical tags 642 * to the indirect write via the GGTT) will see stale values from before 643 * the GGTT write. Inside the kernel, we can for the most part keep track of 644 * the different read/write domains in use (e.g. set-domain), but the assumption 645 * of coherency is baked into the ABI, hence reporting its true state in this 646 * parameter. 647 * 648 * Reports true when writes via mmap_gtt are immediately visible following an 649 * lfence to flush the WCB. 650 * 651 * Reports false when writes via mmap_gtt are indeterminately delayed in an in 652 * internal buffer and are _not_ immediately visible to third parties accessing 653 * directly via mmap_cpu/mmap_wc. Use of mmap_gtt as part of an IPC 654 * communications channel when reporting false is strongly disadvised. 655 */ 656 #define I915_PARAM_MMAP_GTT_COHERENT 52 657 658 /* 659 * Query whether DRM_I915_GEM_EXECBUFFER2 supports coordination of parallel 660 * execution through use of explicit fence support. 661 * See I915_EXEC_FENCE_OUT and I915_EXEC_FENCE_SUBMIT. 662 */ 663 #define I915_PARAM_HAS_EXEC_SUBMIT_FENCE 53 664 665 /* 666 * Revision of the i915-perf uAPI. The value returned helps determine what 667 * i915-perf features are available. See drm_i915_perf_property_id. 668 */ 669 #define I915_PARAM_PERF_REVISION 54 670 671 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of 672 * timeline syncobj through drm_i915_gem_execbuffer_ext_timeline_fences. See 673 * I915_EXEC_USE_EXTENSIONS. 674 */ 675 #define I915_PARAM_HAS_EXEC_TIMELINE_FENCES 55 676 677 /* Must be kept compact -- no holes and well documented */ 678 679 typedef struct drm_i915_getparam { 680 __s32 param; 681 /* 682 * WARNING: Using pointers instead of fixed-size u64 means we need to write 683 * compat32 code. Don't repeat this mistake. 684 */ 685 int __user *value; 686 } drm_i915_getparam_t; 687 688 /* Ioctl to set kernel params: 689 */ 690 #define I915_SETPARAM_USE_MI_BATCHBUFFER_START 1 691 #define I915_SETPARAM_TEX_LRU_LOG_GRANULARITY 2 692 #define I915_SETPARAM_ALLOW_BATCHBUFFER 3 693 #define I915_SETPARAM_NUM_USED_FENCES 4 694 /* Must be kept compact -- no holes */ 695 696 typedef struct drm_i915_setparam { 697 int param; 698 int value; 699 } drm_i915_setparam_t; 700 701 /* A memory manager for regions of shared memory: 702 */ 703 #define I915_MEM_REGION_AGP 1 704 705 typedef struct drm_i915_mem_alloc { 706 int region; 707 int alignment; 708 int size; 709 int __user *region_offset; /* offset from start of fb or agp */ 710 } drm_i915_mem_alloc_t; 711 712 typedef struct drm_i915_mem_free { 713 int region; 714 int region_offset; 715 } drm_i915_mem_free_t; 716 717 typedef struct drm_i915_mem_init_heap { 718 int region; 719 int size; 720 int start; 721 } drm_i915_mem_init_heap_t; 722 723 /* Allow memory manager to be torn down and re-initialized (eg on 724 * rotate): 725 */ 726 typedef struct drm_i915_mem_destroy_heap { 727 int region; 728 } drm_i915_mem_destroy_heap_t; 729 730 /* Allow X server to configure which pipes to monitor for vblank signals 731 */ 732 #define DRM_I915_VBLANK_PIPE_A 1 733 #define DRM_I915_VBLANK_PIPE_B 2 734 735 typedef struct drm_i915_vblank_pipe { 736 int pipe; 737 } drm_i915_vblank_pipe_t; 738 739 /* Schedule buffer swap at given vertical blank: 740 */ 741 typedef struct drm_i915_vblank_swap { 742 drm_drawable_t drawable; 743 enum drm_vblank_seq_type seqtype; 744 unsigned int sequence; 745 } drm_i915_vblank_swap_t; 746 747 typedef struct drm_i915_hws_addr { 748 __u64 addr; 749 } drm_i915_hws_addr_t; 750 751 struct drm_i915_gem_init { 752 /** 753 * Beginning offset in the GTT to be managed by the DRM memory 754 * manager. 755 */ 756 __u64 gtt_start; 757 /** 758 * Ending offset in the GTT to be managed by the DRM memory 759 * manager. 760 */ 761 __u64 gtt_end; 762 }; 763 764 struct drm_i915_gem_create { 765 /** 766 * Requested size for the object. 767 * 768 * The (page-aligned) allocated size for the object will be returned. 769 */ 770 __u64 size; 771 /** 772 * Returned handle for the object. 773 * 774 * Object handles are nonzero. 775 */ 776 __u32 handle; 777 __u32 pad; 778 }; 779 780 struct drm_i915_gem_pread { 781 /** Handle for the object being read. */ 782 __u32 handle; 783 __u32 pad; 784 /** Offset into the object to read from */ 785 __u64 offset; 786 /** Length of data to read */ 787 __u64 size; 788 /** 789 * Pointer to write the data into. 790 * 791 * This is a fixed-size type for 32/64 compatibility. 792 */ 793 __u64 data_ptr; 794 }; 795 796 struct drm_i915_gem_pwrite { 797 /** Handle for the object being written to. */ 798 __u32 handle; 799 __u32 pad; 800 /** Offset into the object to write to */ 801 __u64 offset; 802 /** Length of data to write */ 803 __u64 size; 804 /** 805 * Pointer to read the data from. 806 * 807 * This is a fixed-size type for 32/64 compatibility. 808 */ 809 __u64 data_ptr; 810 }; 811 812 struct drm_i915_gem_mmap { 813 /** Handle for the object being mapped. */ 814 __u32 handle; 815 __u32 pad; 816 /** Offset in the object to map. */ 817 __u64 offset; 818 /** 819 * Length of data to map. 820 * 821 * The value will be page-aligned. 822 */ 823 __u64 size; 824 /** 825 * Returned pointer the data was mapped at. 826 * 827 * This is a fixed-size type for 32/64 compatibility. 828 */ 829 __u64 addr_ptr; 830 831 /** 832 * Flags for extended behaviour. 833 * 834 * Added in version 2. 835 */ 836 __u64 flags; 837 #define I915_MMAP_WC 0x1 838 }; 839 840 struct drm_i915_gem_mmap_gtt { 841 /** Handle for the object being mapped. */ 842 __u32 handle; 843 __u32 pad; 844 /** 845 * Fake offset to use for subsequent mmap call 846 * 847 * This is a fixed-size type for 32/64 compatibility. 848 */ 849 __u64 offset; 850 }; 851 852 struct drm_i915_gem_mmap_offset { 853 /** Handle for the object being mapped. */ 854 __u32 handle; 855 __u32 pad; 856 /** 857 * Fake offset to use for subsequent mmap call 858 * 859 * This is a fixed-size type for 32/64 compatibility. 860 */ 861 __u64 offset; 862 863 /** 864 * Flags for extended behaviour. 865 * 866 * It is mandatory that one of the MMAP_OFFSET types 867 * (GTT, WC, WB, UC, etc) should be included. 868 */ 869 __u64 flags; 870 #define I915_MMAP_OFFSET_GTT 0 871 #define I915_MMAP_OFFSET_WC 1 872 #define I915_MMAP_OFFSET_WB 2 873 #define I915_MMAP_OFFSET_UC 3 874 875 /* 876 * Zero-terminated chain of extensions. 877 * 878 * No current extensions defined; mbz. 879 */ 880 __u64 extensions; 881 }; 882 883 struct drm_i915_gem_set_domain { 884 /** Handle for the object */ 885 __u32 handle; 886 887 /** New read domains */ 888 __u32 read_domains; 889 890 /** New write domain */ 891 __u32 write_domain; 892 }; 893 894 struct drm_i915_gem_sw_finish { 895 /** Handle for the object */ 896 __u32 handle; 897 }; 898 899 struct drm_i915_gem_relocation_entry { 900 /** 901 * Handle of the buffer being pointed to by this relocation entry. 902 * 903 * It's appealing to make this be an index into the mm_validate_entry 904 * list to refer to the buffer, but this allows the driver to create 905 * a relocation list for state buffers and not re-write it per 906 * exec using the buffer. 907 */ 908 __u32 target_handle; 909 910 /** 911 * Value to be added to the offset of the target buffer to make up 912 * the relocation entry. 913 */ 914 __u32 delta; 915 916 /** Offset in the buffer the relocation entry will be written into */ 917 __u64 offset; 918 919 /** 920 * Offset value of the target buffer that the relocation entry was last 921 * written as. 922 * 923 * If the buffer has the same offset as last time, we can skip syncing 924 * and writing the relocation. This value is written back out by 925 * the execbuffer ioctl when the relocation is written. 926 */ 927 __u64 presumed_offset; 928 929 /** 930 * Target memory domains read by this operation. 931 */ 932 __u32 read_domains; 933 934 /** 935 * Target memory domains written by this operation. 936 * 937 * Note that only one domain may be written by the whole 938 * execbuffer operation, so that where there are conflicts, 939 * the application will get -EINVAL back. 940 */ 941 __u32 write_domain; 942 }; 943 944 /** @{ 945 * Intel memory domains 946 * 947 * Most of these just align with the various caches in 948 * the system and are used to flush and invalidate as 949 * objects end up cached in different domains. 950 */ 951 /** CPU cache */ 952 #define I915_GEM_DOMAIN_CPU 0x00000001 953 /** Render cache, used by 2D and 3D drawing */ 954 #define I915_GEM_DOMAIN_RENDER 0x00000002 955 /** Sampler cache, used by texture engine */ 956 #define I915_GEM_DOMAIN_SAMPLER 0x00000004 957 /** Command queue, used to load batch buffers */ 958 #define I915_GEM_DOMAIN_COMMAND 0x00000008 959 /** Instruction cache, used by shader programs */ 960 #define I915_GEM_DOMAIN_INSTRUCTION 0x00000010 961 /** Vertex address cache */ 962 #define I915_GEM_DOMAIN_VERTEX 0x00000020 963 /** GTT domain - aperture and scanout */ 964 #define I915_GEM_DOMAIN_GTT 0x00000040 965 /** WC domain - uncached access */ 966 #define I915_GEM_DOMAIN_WC 0x00000080 967 /** @} */ 968 969 struct drm_i915_gem_exec_object { 970 /** 971 * User's handle for a buffer to be bound into the GTT for this 972 * operation. 973 */ 974 __u32 handle; 975 976 /** Number of relocations to be performed on this buffer */ 977 __u32 relocation_count; 978 /** 979 * Pointer to array of struct drm_i915_gem_relocation_entry containing 980 * the relocations to be performed in this buffer. 981 */ 982 __u64 relocs_ptr; 983 984 /** Required alignment in graphics aperture */ 985 __u64 alignment; 986 987 /** 988 * Returned value of the updated offset of the object, for future 989 * presumed_offset writes. 990 */ 991 __u64 offset; 992 }; 993 994 /* DRM_IOCTL_I915_GEM_EXECBUFFER was removed in Linux 5.13 */ 995 struct drm_i915_gem_execbuffer { 996 /** 997 * List of buffers to be validated with their relocations to be 998 * performend on them. 999 * 1000 * This is a pointer to an array of struct drm_i915_gem_validate_entry. 1001 * 1002 * These buffers must be listed in an order such that all relocations 1003 * a buffer is performing refer to buffers that have already appeared 1004 * in the validate list. 1005 */ 1006 __u64 buffers_ptr; 1007 __u32 buffer_count; 1008 1009 /** Offset in the batchbuffer to start execution from. */ 1010 __u32 batch_start_offset; 1011 /** Bytes used in batchbuffer from batch_start_offset */ 1012 __u32 batch_len; 1013 __u32 DR1; 1014 __u32 DR4; 1015 __u32 num_cliprects; 1016 /** This is a struct drm_clip_rect *cliprects */ 1017 __u64 cliprects_ptr; 1018 }; 1019 1020 struct drm_i915_gem_exec_object2 { 1021 /** 1022 * User's handle for a buffer to be bound into the GTT for this 1023 * operation. 1024 */ 1025 __u32 handle; 1026 1027 /** Number of relocations to be performed on this buffer */ 1028 __u32 relocation_count; 1029 /** 1030 * Pointer to array of struct drm_i915_gem_relocation_entry containing 1031 * the relocations to be performed in this buffer. 1032 */ 1033 __u64 relocs_ptr; 1034 1035 /** Required alignment in graphics aperture */ 1036 __u64 alignment; 1037 1038 /** 1039 * When the EXEC_OBJECT_PINNED flag is specified this is populated by 1040 * the user with the GTT offset at which this object will be pinned. 1041 * When the I915_EXEC_NO_RELOC flag is specified this must contain the 1042 * presumed_offset of the object. 1043 * During execbuffer2 the kernel populates it with the value of the 1044 * current GTT offset of the object, for future presumed_offset writes. 1045 */ 1046 __u64 offset; 1047 1048 #define EXEC_OBJECT_NEEDS_FENCE (1<<0) 1049 #define EXEC_OBJECT_NEEDS_GTT (1<<1) 1050 #define EXEC_OBJECT_WRITE (1<<2) 1051 #define EXEC_OBJECT_SUPPORTS_48B_ADDRESS (1<<3) 1052 #define EXEC_OBJECT_PINNED (1<<4) 1053 #define EXEC_OBJECT_PAD_TO_SIZE (1<<5) 1054 /* The kernel implicitly tracks GPU activity on all GEM objects, and 1055 * synchronises operations with outstanding rendering. This includes 1056 * rendering on other devices if exported via dma-buf. However, sometimes 1057 * this tracking is too coarse and the user knows better. For example, 1058 * if the object is split into non-overlapping ranges shared between different 1059 * clients or engines (i.e. suballocating objects), the implicit tracking 1060 * by kernel assumes that each operation affects the whole object rather 1061 * than an individual range, causing needless synchronisation between clients. 1062 * The kernel will also forgo any CPU cache flushes prior to rendering from 1063 * the object as the client is expected to be also handling such domain 1064 * tracking. 1065 * 1066 * The kernel maintains the implicit tracking in order to manage resources 1067 * used by the GPU - this flag only disables the synchronisation prior to 1068 * rendering with this object in this execbuf. 1069 * 1070 * Opting out of implicit synhronisation requires the user to do its own 1071 * explicit tracking to avoid rendering corruption. See, for example, 1072 * I915_PARAM_HAS_EXEC_FENCE to order execbufs and execute them asynchronously. 1073 */ 1074 #define EXEC_OBJECT_ASYNC (1<<6) 1075 /* Request that the contents of this execobject be copied into the error 1076 * state upon a GPU hang involving this batch for post-mortem debugging. 1077 * These buffers are recorded in no particular order as "user" in 1078 * /sys/class/drm/cardN/error. Query I915_PARAM_HAS_EXEC_CAPTURE to see 1079 * if the kernel supports this flag. 1080 */ 1081 #define EXEC_OBJECT_CAPTURE (1<<7) 1082 /* All remaining bits are MBZ and RESERVED FOR FUTURE USE */ 1083 #define __EXEC_OBJECT_UNKNOWN_FLAGS -(EXEC_OBJECT_CAPTURE<<1) 1084 __u64 flags; 1085 1086 union { 1087 __u64 rsvd1; 1088 __u64 pad_to_size; 1089 }; 1090 __u64 rsvd2; 1091 }; 1092 1093 struct drm_i915_gem_exec_fence { 1094 /** 1095 * User's handle for a drm_syncobj to wait on or signal. 1096 */ 1097 __u32 handle; 1098 1099 #define I915_EXEC_FENCE_WAIT (1<<0) 1100 #define I915_EXEC_FENCE_SIGNAL (1<<1) 1101 #define __I915_EXEC_FENCE_UNKNOWN_FLAGS (-(I915_EXEC_FENCE_SIGNAL << 1)) 1102 __u32 flags; 1103 }; 1104 1105 /* 1106 * See drm_i915_gem_execbuffer_ext_timeline_fences. 1107 */ 1108 #define DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES 0 1109 1110 /* 1111 * This structure describes an array of drm_syncobj and associated points for 1112 * timeline variants of drm_syncobj. It is invalid to append this structure to 1113 * the execbuf if I915_EXEC_FENCE_ARRAY is set. 1114 */ 1115 struct drm_i915_gem_execbuffer_ext_timeline_fences { 1116 struct i915_user_extension base; 1117 1118 /** 1119 * Number of element in the handles_ptr & value_ptr arrays. 1120 */ 1121 __u64 fence_count; 1122 1123 /** 1124 * Pointer to an array of struct drm_i915_gem_exec_fence of length 1125 * fence_count. 1126 */ 1127 __u64 handles_ptr; 1128 1129 /** 1130 * Pointer to an array of u64 values of length fence_count. Values 1131 * must be 0 for a binary drm_syncobj. A Value of 0 for a timeline 1132 * drm_syncobj is invalid as it turns a drm_syncobj into a binary one. 1133 */ 1134 __u64 values_ptr; 1135 }; 1136 1137 struct drm_i915_gem_execbuffer2 { 1138 /** 1139 * List of gem_exec_object2 structs 1140 */ 1141 __u64 buffers_ptr; 1142 __u32 buffer_count; 1143 1144 /** Offset in the batchbuffer to start execution from. */ 1145 __u32 batch_start_offset; 1146 /** Bytes used in batchbuffer from batch_start_offset */ 1147 __u32 batch_len; 1148 __u32 DR1; 1149 __u32 DR4; 1150 __u32 num_cliprects; 1151 /** 1152 * This is a struct drm_clip_rect *cliprects if I915_EXEC_FENCE_ARRAY 1153 * & I915_EXEC_USE_EXTENSIONS are not set. 1154 * 1155 * If I915_EXEC_FENCE_ARRAY is set, then this is a pointer to an array 1156 * of struct drm_i915_gem_exec_fence and num_cliprects is the length 1157 * of the array. 1158 * 1159 * If I915_EXEC_USE_EXTENSIONS is set, then this is a pointer to a 1160 * single struct i915_user_extension and num_cliprects is 0. 1161 */ 1162 __u64 cliprects_ptr; 1163 #define I915_EXEC_RING_MASK (0x3f) 1164 #define I915_EXEC_DEFAULT (0<<0) 1165 #define I915_EXEC_RENDER (1<<0) 1166 #define I915_EXEC_BSD (2<<0) 1167 #define I915_EXEC_BLT (3<<0) 1168 #define I915_EXEC_VEBOX (4<<0) 1169 1170 /* Used for switching the constants addressing mode on gen4+ RENDER ring. 1171 * Gen6+ only supports relative addressing to dynamic state (default) and 1172 * absolute addressing. 1173 * 1174 * These flags are ignored for the BSD and BLT rings. 1175 */ 1176 #define I915_EXEC_CONSTANTS_MASK (3<<6) 1177 #define I915_EXEC_CONSTANTS_REL_GENERAL (0<<6) /* default */ 1178 #define I915_EXEC_CONSTANTS_ABSOLUTE (1<<6) 1179 #define I915_EXEC_CONSTANTS_REL_SURFACE (2<<6) /* gen4/5 only */ 1180 __u64 flags; 1181 __u64 rsvd1; /* now used for context info */ 1182 __u64 rsvd2; 1183 }; 1184 1185 /** Resets the SO write offset registers for transform feedback on gen7. */ 1186 #define I915_EXEC_GEN7_SOL_RESET (1<<8) 1187 1188 /** Request a privileged ("secure") batch buffer. Note only available for 1189 * DRM_ROOT_ONLY | DRM_MASTER processes. 1190 */ 1191 #define I915_EXEC_SECURE (1<<9) 1192 1193 /** Inform the kernel that the batch is and will always be pinned. This 1194 * negates the requirement for a workaround to be performed to avoid 1195 * an incoherent CS (such as can be found on 830/845). If this flag is 1196 * not passed, the kernel will endeavour to make sure the batch is 1197 * coherent with the CS before execution. If this flag is passed, 1198 * userspace assumes the responsibility for ensuring the same. 1199 */ 1200 #define I915_EXEC_IS_PINNED (1<<10) 1201 1202 /** Provide a hint to the kernel that the command stream and auxiliary 1203 * state buffers already holds the correct presumed addresses and so the 1204 * relocation process may be skipped if no buffers need to be moved in 1205 * preparation for the execbuffer. 1206 */ 1207 #define I915_EXEC_NO_RELOC (1<<11) 1208 1209 /** Use the reloc.handle as an index into the exec object array rather 1210 * than as the per-file handle. 1211 */ 1212 #define I915_EXEC_HANDLE_LUT (1<<12) 1213 1214 /** Used for switching BSD rings on the platforms with two BSD rings */ 1215 #define I915_EXEC_BSD_SHIFT (13) 1216 #define I915_EXEC_BSD_MASK (3 << I915_EXEC_BSD_SHIFT) 1217 /* default ping-pong mode */ 1218 #define I915_EXEC_BSD_DEFAULT (0 << I915_EXEC_BSD_SHIFT) 1219 #define I915_EXEC_BSD_RING1 (1 << I915_EXEC_BSD_SHIFT) 1220 #define I915_EXEC_BSD_RING2 (2 << I915_EXEC_BSD_SHIFT) 1221 1222 /** Tell the kernel that the batchbuffer is processed by 1223 * the resource streamer. 1224 */ 1225 #define I915_EXEC_RESOURCE_STREAMER (1<<15) 1226 1227 /* Setting I915_EXEC_FENCE_IN implies that lower_32_bits(rsvd2) represent 1228 * a sync_file fd to wait upon (in a nonblocking manner) prior to executing 1229 * the batch. 1230 * 1231 * Returns -EINVAL if the sync_file fd cannot be found. 1232 */ 1233 #define I915_EXEC_FENCE_IN (1<<16) 1234 1235 /* Setting I915_EXEC_FENCE_OUT causes the ioctl to return a sync_file fd 1236 * in the upper_32_bits(rsvd2) upon success. Ownership of the fd is given 1237 * to the caller, and it should be close() after use. (The fd is a regular 1238 * file descriptor and will be cleaned up on process termination. It holds 1239 * a reference to the request, but nothing else.) 1240 * 1241 * The sync_file fd can be combined with other sync_file and passed either 1242 * to execbuf using I915_EXEC_FENCE_IN, to atomic KMS ioctls (so that a flip 1243 * will only occur after this request completes), or to other devices. 1244 * 1245 * Using I915_EXEC_FENCE_OUT requires use of 1246 * DRM_IOCTL_I915_GEM_EXECBUFFER2_WR ioctl so that the result is written 1247 * back to userspace. Failure to do so will cause the out-fence to always 1248 * be reported as zero, and the real fence fd to be leaked. 1249 */ 1250 #define I915_EXEC_FENCE_OUT (1<<17) 1251 1252 /* 1253 * Traditionally the execbuf ioctl has only considered the final element in 1254 * the execobject[] to be the executable batch. Often though, the client 1255 * will known the batch object prior to construction and being able to place 1256 * it into the execobject[] array first can simplify the relocation tracking. 1257 * Setting I915_EXEC_BATCH_FIRST tells execbuf to use element 0 of the 1258 * execobject[] as the * batch instead (the default is to use the last 1259 * element). 1260 */ 1261 #define I915_EXEC_BATCH_FIRST (1<<18) 1262 1263 /* Setting I915_FENCE_ARRAY implies that num_cliprects and cliprects_ptr 1264 * define an array of i915_gem_exec_fence structures which specify a set of 1265 * dma fences to wait upon or signal. 1266 */ 1267 #define I915_EXEC_FENCE_ARRAY (1<<19) 1268 1269 /* 1270 * Setting I915_EXEC_FENCE_SUBMIT implies that lower_32_bits(rsvd2) represent 1271 * a sync_file fd to wait upon (in a nonblocking manner) prior to executing 1272 * the batch. 1273 * 1274 * Returns -EINVAL if the sync_file fd cannot be found. 1275 */ 1276 #define I915_EXEC_FENCE_SUBMIT (1 << 20) 1277 1278 /* 1279 * Setting I915_EXEC_USE_EXTENSIONS implies that 1280 * drm_i915_gem_execbuffer2.cliprects_ptr is treated as a pointer to an linked 1281 * list of i915_user_extension. Each i915_user_extension node is the base of a 1282 * larger structure. The list of supported structures are listed in the 1283 * drm_i915_gem_execbuffer_ext enum. 1284 */ 1285 #define I915_EXEC_USE_EXTENSIONS (1 << 21) 1286 1287 #define __I915_EXEC_UNKNOWN_FLAGS (-(I915_EXEC_USE_EXTENSIONS << 1)) 1288 1289 #define I915_EXEC_CONTEXT_ID_MASK (0xffffffff) 1290 #define i915_execbuffer2_set_context_id(eb2, context) \ 1291 (eb2).rsvd1 = context & I915_EXEC_CONTEXT_ID_MASK 1292 #define i915_execbuffer2_get_context_id(eb2) \ 1293 ((eb2).rsvd1 & I915_EXEC_CONTEXT_ID_MASK) 1294 1295 struct drm_i915_gem_pin { 1296 /** Handle of the buffer to be pinned. */ 1297 __u32 handle; 1298 __u32 pad; 1299 1300 /** alignment required within the aperture */ 1301 __u64 alignment; 1302 1303 /** Returned GTT offset of the buffer. */ 1304 __u64 offset; 1305 }; 1306 1307 struct drm_i915_gem_unpin { 1308 /** Handle of the buffer to be unpinned. */ 1309 __u32 handle; 1310 __u32 pad; 1311 }; 1312 1313 struct drm_i915_gem_busy { 1314 /** Handle of the buffer to check for busy */ 1315 __u32 handle; 1316 1317 /** Return busy status 1318 * 1319 * A return of 0 implies that the object is idle (after 1320 * having flushed any pending activity), and a non-zero return that 1321 * the object is still in-flight on the GPU. (The GPU has not yet 1322 * signaled completion for all pending requests that reference the 1323 * object.) An object is guaranteed to become idle eventually (so 1324 * long as no new GPU commands are executed upon it). Due to the 1325 * asynchronous nature of the hardware, an object reported 1326 * as busy may become idle before the ioctl is completed. 1327 * 1328 * Furthermore, if the object is busy, which engine is busy is only 1329 * provided as a guide and only indirectly by reporting its class 1330 * (there may be more than one engine in each class). There are race 1331 * conditions which prevent the report of which engines are busy from 1332 * being always accurate. However, the converse is not true. If the 1333 * object is idle, the result of the ioctl, that all engines are idle, 1334 * is accurate. 1335 * 1336 * The returned dword is split into two fields to indicate both 1337 * the engine classess on which the object is being read, and the 1338 * engine class on which it is currently being written (if any). 1339 * 1340 * The low word (bits 0:15) indicate if the object is being written 1341 * to by any engine (there can only be one, as the GEM implicit 1342 * synchronisation rules force writes to be serialised). Only the 1343 * engine class (offset by 1, I915_ENGINE_CLASS_RENDER is reported as 1344 * 1 not 0 etc) for the last write is reported. 1345 * 1346 * The high word (bits 16:31) are a bitmask of which engines classes 1347 * are currently reading from the object. Multiple engines may be 1348 * reading from the object simultaneously. 1349 * 1350 * The value of each engine class is the same as specified in the 1351 * I915_CONTEXT_PARAM_ENGINES context parameter and via perf, i.e. 1352 * I915_ENGINE_CLASS_RENDER, I915_ENGINE_CLASS_COPY, etc. 1353 * Some hardware may have parallel execution engines, e.g. multiple 1354 * media engines, which are mapped to the same class identifier and so 1355 * are not separately reported for busyness. 1356 * 1357 * Caveat emptor: 1358 * Only the boolean result of this query is reliable; that is whether 1359 * the object is idle or busy. The report of which engines are busy 1360 * should be only used as a heuristic. 1361 */ 1362 __u32 busy; 1363 }; 1364 1365 /** 1366 * I915_CACHING_NONE 1367 * 1368 * GPU access is not coherent with cpu caches. Default for machines without an 1369 * LLC. 1370 */ 1371 #define I915_CACHING_NONE 0 1372 /** 1373 * I915_CACHING_CACHED 1374 * 1375 * GPU access is coherent with cpu caches and furthermore the data is cached in 1376 * last-level caches shared between cpu cores and the gpu GT. Default on 1377 * machines with HAS_LLC. 1378 */ 1379 #define I915_CACHING_CACHED 1 1380 /** 1381 * I915_CACHING_DISPLAY 1382 * 1383 * Special GPU caching mode which is coherent with the scanout engines. 1384 * Transparently falls back to I915_CACHING_NONE on platforms where no special 1385 * cache mode (like write-through or gfdt flushing) is available. The kernel 1386 * automatically sets this mode when using a buffer as a scanout target. 1387 * Userspace can manually set this mode to avoid a costly stall and clflush in 1388 * the hotpath of drawing the first frame. 1389 */ 1390 #define I915_CACHING_DISPLAY 2 1391 1392 struct drm_i915_gem_caching { 1393 /** 1394 * Handle of the buffer to set/get the caching level of. */ 1395 __u32 handle; 1396 1397 /** 1398 * Cacheing level to apply or return value 1399 * 1400 * bits0-15 are for generic caching control (i.e. the above defined 1401 * values). bits16-31 are reserved for platform-specific variations 1402 * (e.g. l3$ caching on gen7). */ 1403 __u32 caching; 1404 }; 1405 1406 #define I915_TILING_NONE 0 1407 #define I915_TILING_X 1 1408 #define I915_TILING_Y 2 1409 #define I915_TILING_LAST I915_TILING_Y 1410 1411 #define I915_BIT_6_SWIZZLE_NONE 0 1412 #define I915_BIT_6_SWIZZLE_9 1 1413 #define I915_BIT_6_SWIZZLE_9_10 2 1414 #define I915_BIT_6_SWIZZLE_9_11 3 1415 #define I915_BIT_6_SWIZZLE_9_10_11 4 1416 /* Not seen by userland */ 1417 #define I915_BIT_6_SWIZZLE_UNKNOWN 5 1418 /* Seen by userland. */ 1419 #define I915_BIT_6_SWIZZLE_9_17 6 1420 #define I915_BIT_6_SWIZZLE_9_10_17 7 1421 1422 struct drm_i915_gem_set_tiling { 1423 /** Handle of the buffer to have its tiling state updated */ 1424 __u32 handle; 1425 1426 /** 1427 * Tiling mode for the object (I915_TILING_NONE, I915_TILING_X, 1428 * I915_TILING_Y). 1429 * 1430 * This value is to be set on request, and will be updated by the 1431 * kernel on successful return with the actual chosen tiling layout. 1432 * 1433 * The tiling mode may be demoted to I915_TILING_NONE when the system 1434 * has bit 6 swizzling that can't be managed correctly by GEM. 1435 * 1436 * Buffer contents become undefined when changing tiling_mode. 1437 */ 1438 __u32 tiling_mode; 1439 1440 /** 1441 * Stride in bytes for the object when in I915_TILING_X or 1442 * I915_TILING_Y. 1443 */ 1444 __u32 stride; 1445 1446 /** 1447 * Returned address bit 6 swizzling required for CPU access through 1448 * mmap mapping. 1449 */ 1450 __u32 swizzle_mode; 1451 }; 1452 1453 struct drm_i915_gem_get_tiling { 1454 /** Handle of the buffer to get tiling state for. */ 1455 __u32 handle; 1456 1457 /** 1458 * Current tiling mode for the object (I915_TILING_NONE, I915_TILING_X, 1459 * I915_TILING_Y). 1460 */ 1461 __u32 tiling_mode; 1462 1463 /** 1464 * Returned address bit 6 swizzling required for CPU access through 1465 * mmap mapping. 1466 */ 1467 __u32 swizzle_mode; 1468 1469 /** 1470 * Returned address bit 6 swizzling required for CPU access through 1471 * mmap mapping whilst bound. 1472 */ 1473 __u32 phys_swizzle_mode; 1474 }; 1475 1476 struct drm_i915_gem_get_aperture { 1477 /** Total size of the aperture used by i915_gem_execbuffer, in bytes */ 1478 __u64 aper_size; 1479 1480 /** 1481 * Available space in the aperture used by i915_gem_execbuffer, in 1482 * bytes 1483 */ 1484 __u64 aper_available_size; 1485 }; 1486 1487 struct drm_i915_get_pipe_from_crtc_id { 1488 /** ID of CRTC being requested **/ 1489 __u32 crtc_id; 1490 1491 /** pipe of requested CRTC **/ 1492 __u32 pipe; 1493 }; 1494 1495 #define I915_MADV_WILLNEED 0 1496 #define I915_MADV_DONTNEED 1 1497 #define __I915_MADV_PURGED 2 /* internal state */ 1498 1499 struct drm_i915_gem_madvise { 1500 /** Handle of the buffer to change the backing store advice */ 1501 __u32 handle; 1502 1503 /* Advice: either the buffer will be needed again in the near future, 1504 * or wont be and could be discarded under memory pressure. 1505 */ 1506 __u32 madv; 1507 1508 /** Whether the backing store still exists. */ 1509 __u32 retained; 1510 }; 1511 1512 /* flags */ 1513 #define I915_OVERLAY_TYPE_MASK 0xff 1514 #define I915_OVERLAY_YUV_PLANAR 0x01 1515 #define I915_OVERLAY_YUV_PACKED 0x02 1516 #define I915_OVERLAY_RGB 0x03 1517 1518 #define I915_OVERLAY_DEPTH_MASK 0xff00 1519 #define I915_OVERLAY_RGB24 0x1000 1520 #define I915_OVERLAY_RGB16 0x2000 1521 #define I915_OVERLAY_RGB15 0x3000 1522 #define I915_OVERLAY_YUV422 0x0100 1523 #define I915_OVERLAY_YUV411 0x0200 1524 #define I915_OVERLAY_YUV420 0x0300 1525 #define I915_OVERLAY_YUV410 0x0400 1526 1527 #define I915_OVERLAY_SWAP_MASK 0xff0000 1528 #define I915_OVERLAY_NO_SWAP 0x000000 1529 #define I915_OVERLAY_UV_SWAP 0x010000 1530 #define I915_OVERLAY_Y_SWAP 0x020000 1531 #define I915_OVERLAY_Y_AND_UV_SWAP 0x030000 1532 1533 #define I915_OVERLAY_FLAGS_MASK 0xff000000 1534 #define I915_OVERLAY_ENABLE 0x01000000 1535 1536 struct drm_intel_overlay_put_image { 1537 /* various flags and src format description */ 1538 __u32 flags; 1539 /* source picture description */ 1540 __u32 bo_handle; 1541 /* stride values and offsets are in bytes, buffer relative */ 1542 __u16 stride_Y; /* stride for packed formats */ 1543 __u16 stride_UV; 1544 __u32 offset_Y; /* offset for packet formats */ 1545 __u32 offset_U; 1546 __u32 offset_V; 1547 /* in pixels */ 1548 __u16 src_width; 1549 __u16 src_height; 1550 /* to compensate the scaling factors for partially covered surfaces */ 1551 __u16 src_scan_width; 1552 __u16 src_scan_height; 1553 /* output crtc description */ 1554 __u32 crtc_id; 1555 __u16 dst_x; 1556 __u16 dst_y; 1557 __u16 dst_width; 1558 __u16 dst_height; 1559 }; 1560 1561 /* flags */ 1562 #define I915_OVERLAY_UPDATE_ATTRS (1<<0) 1563 #define I915_OVERLAY_UPDATE_GAMMA (1<<1) 1564 #define I915_OVERLAY_DISABLE_DEST_COLORKEY (1<<2) 1565 struct drm_intel_overlay_attrs { 1566 __u32 flags; 1567 __u32 color_key; 1568 __s32 brightness; 1569 __u32 contrast; 1570 __u32 saturation; 1571 __u32 gamma0; 1572 __u32 gamma1; 1573 __u32 gamma2; 1574 __u32 gamma3; 1575 __u32 gamma4; 1576 __u32 gamma5; 1577 }; 1578 1579 /* 1580 * Intel sprite handling 1581 * 1582 * Color keying works with a min/mask/max tuple. Both source and destination 1583 * color keying is allowed. 1584 * 1585 * Source keying: 1586 * Sprite pixels within the min & max values, masked against the color channels 1587 * specified in the mask field, will be transparent. All other pixels will 1588 * be displayed on top of the primary plane. For RGB surfaces, only the min 1589 * and mask fields will be used; ranged compares are not allowed. 1590 * 1591 * Destination keying: 1592 * Primary plane pixels that match the min value, masked against the color 1593 * channels specified in the mask field, will be replaced by corresponding 1594 * pixels from the sprite plane. 1595 * 1596 * Note that source & destination keying are exclusive; only one can be 1597 * active on a given plane. 1598 */ 1599 1600 #define I915_SET_COLORKEY_NONE (1<<0) /* Deprecated. Instead set 1601 * flags==0 to disable colorkeying. 1602 */ 1603 #define I915_SET_COLORKEY_DESTINATION (1<<1) 1604 #define I915_SET_COLORKEY_SOURCE (1<<2) 1605 struct drm_intel_sprite_colorkey { 1606 __u32 plane_id; 1607 __u32 min_value; 1608 __u32 channel_mask; 1609 __u32 max_value; 1610 __u32 flags; 1611 }; 1612 1613 struct drm_i915_gem_wait { 1614 /** Handle of BO we shall wait on */ 1615 __u32 bo_handle; 1616 __u32 flags; 1617 /** Number of nanoseconds to wait, Returns time remaining. */ 1618 __s64 timeout_ns; 1619 }; 1620 1621 struct drm_i915_gem_context_create { 1622 __u32 ctx_id; /* output: id of new context*/ 1623 __u32 pad; 1624 }; 1625 1626 struct drm_i915_gem_context_create_ext { 1627 __u32 ctx_id; /* output: id of new context*/ 1628 __u32 flags; 1629 #define I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS (1u << 0) 1630 #define I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE (1u << 1) 1631 #define I915_CONTEXT_CREATE_FLAGS_UNKNOWN \ 1632 (-(I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE << 1)) 1633 __u64 extensions; 1634 }; 1635 1636 struct drm_i915_gem_context_param { 1637 __u32 ctx_id; 1638 __u32 size; 1639 __u64 param; 1640 #define I915_CONTEXT_PARAM_BAN_PERIOD 0x1 1641 #define I915_CONTEXT_PARAM_NO_ZEROMAP 0x2 1642 #define I915_CONTEXT_PARAM_GTT_SIZE 0x3 1643 #define I915_CONTEXT_PARAM_NO_ERROR_CAPTURE 0x4 1644 #define I915_CONTEXT_PARAM_BANNABLE 0x5 1645 #define I915_CONTEXT_PARAM_PRIORITY 0x6 1646 #define I915_CONTEXT_MAX_USER_PRIORITY 1023 /* inclusive */ 1647 #define I915_CONTEXT_DEFAULT_PRIORITY 0 1648 #define I915_CONTEXT_MIN_USER_PRIORITY -1023 /* inclusive */ 1649 /* 1650 * When using the following param, value should be a pointer to 1651 * drm_i915_gem_context_param_sseu. 1652 */ 1653 #define I915_CONTEXT_PARAM_SSEU 0x7 1654 1655 /* 1656 * Not all clients may want to attempt automatic recover of a context after 1657 * a hang (for example, some clients may only submit very small incremental 1658 * batches relying on known logical state of previous batches which will never 1659 * recover correctly and each attempt will hang), and so would prefer that 1660 * the context is forever banned instead. 1661 * 1662 * If set to false (0), after a reset, subsequent (and in flight) rendering 1663 * from this context is discarded, and the client will need to create a new 1664 * context to use instead. 1665 * 1666 * If set to true (1), the kernel will automatically attempt to recover the 1667 * context by skipping the hanging batch and executing the next batch starting 1668 * from the default context state (discarding the incomplete logical context 1669 * state lost due to the reset). 1670 * 1671 * On creation, all new contexts are marked as recoverable. 1672 */ 1673 #define I915_CONTEXT_PARAM_RECOVERABLE 0x8 1674 1675 /* 1676 * The id of the associated virtual memory address space (ppGTT) of 1677 * this context. Can be retrieved and passed to another context 1678 * (on the same fd) for both to use the same ppGTT and so share 1679 * address layouts, and avoid reloading the page tables on context 1680 * switches between themselves. 1681 * 1682 * See DRM_I915_GEM_VM_CREATE and DRM_I915_GEM_VM_DESTROY. 1683 */ 1684 #define I915_CONTEXT_PARAM_VM 0x9 1685 1686 /* 1687 * I915_CONTEXT_PARAM_ENGINES: 1688 * 1689 * Bind this context to operate on this subset of available engines. Henceforth, 1690 * the I915_EXEC_RING selector for DRM_IOCTL_I915_GEM_EXECBUFFER2 operates as 1691 * an index into this array of engines; I915_EXEC_DEFAULT selecting engine[0] 1692 * and upwards. Slots 0...N are filled in using the specified (class, instance). 1693 * Use 1694 * engine_class: I915_ENGINE_CLASS_INVALID, 1695 * engine_instance: I915_ENGINE_CLASS_INVALID_NONE 1696 * to specify a gap in the array that can be filled in later, e.g. by a 1697 * virtual engine used for load balancing. 1698 * 1699 * Setting the number of engines bound to the context to 0, by passing a zero 1700 * sized argument, will revert back to default settings. 1701 * 1702 * See struct i915_context_param_engines. 1703 * 1704 * Extensions: 1705 * i915_context_engines_load_balance (I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE) 1706 * i915_context_engines_bond (I915_CONTEXT_ENGINES_EXT_BOND) 1707 */ 1708 #define I915_CONTEXT_PARAM_ENGINES 0xa 1709 1710 /* 1711 * I915_CONTEXT_PARAM_PERSISTENCE: 1712 * 1713 * Allow the context and active rendering to survive the process until 1714 * completion. Persistence allows fire-and-forget clients to queue up a 1715 * bunch of work, hand the output over to a display server and then quit. 1716 * If the context is marked as not persistent, upon closing (either via 1717 * an explicit DRM_I915_GEM_CONTEXT_DESTROY or implicitly from file closure 1718 * or process termination), the context and any outstanding requests will be 1719 * cancelled (and exported fences for cancelled requests marked as -EIO). 1720 * 1721 * By default, new contexts allow persistence. 1722 */ 1723 #define I915_CONTEXT_PARAM_PERSISTENCE 0xb 1724 1725 /* This API has been removed. On the off chance someone somewhere has 1726 * attempted to use it, never re-use this context param number. 1727 */ 1728 #define I915_CONTEXT_PARAM_RINGSIZE 0xc 1729 /* Must be kept compact -- no holes and well documented */ 1730 1731 __u64 value; 1732 }; 1733 1734 /* 1735 * Context SSEU programming 1736 * 1737 * It may be necessary for either functional or performance reason to configure 1738 * a context to run with a reduced number of SSEU (where SSEU stands for Slice/ 1739 * Sub-slice/EU). 1740 * 1741 * This is done by configuring SSEU configuration using the below 1742 * @struct drm_i915_gem_context_param_sseu for every supported engine which 1743 * userspace intends to use. 1744 * 1745 * Not all GPUs or engines support this functionality in which case an error 1746 * code -ENODEV will be returned. 1747 * 1748 * Also, flexibility of possible SSEU configuration permutations varies between 1749 * GPU generations and software imposed limitations. Requesting such a 1750 * combination will return an error code of -EINVAL. 1751 * 1752 * NOTE: When perf/OA is active the context's SSEU configuration is ignored in 1753 * favour of a single global setting. 1754 */ 1755 struct drm_i915_gem_context_param_sseu { 1756 /* 1757 * Engine class & instance to be configured or queried. 1758 */ 1759 struct i915_engine_class_instance engine; 1760 1761 /* 1762 * Unknown flags must be cleared to zero. 1763 */ 1764 __u32 flags; 1765 #define I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX (1u << 0) 1766 1767 /* 1768 * Mask of slices to enable for the context. Valid values are a subset 1769 * of the bitmask value returned for I915_PARAM_SLICE_MASK. 1770 */ 1771 __u64 slice_mask; 1772 1773 /* 1774 * Mask of subslices to enable for the context. Valid values are a 1775 * subset of the bitmask value return by I915_PARAM_SUBSLICE_MASK. 1776 */ 1777 __u64 subslice_mask; 1778 1779 /* 1780 * Minimum/Maximum number of EUs to enable per subslice for the 1781 * context. min_eus_per_subslice must be inferior or equal to 1782 * max_eus_per_subslice. 1783 */ 1784 __u16 min_eus_per_subslice; 1785 __u16 max_eus_per_subslice; 1786 1787 /* 1788 * Unused for now. Must be cleared to zero. 1789 */ 1790 __u32 rsvd; 1791 }; 1792 1793 /** 1794 * DOC: Virtual Engine uAPI 1795 * 1796 * Virtual engine is a concept where userspace is able to configure a set of 1797 * physical engines, submit a batch buffer, and let the driver execute it on any 1798 * engine from the set as it sees fit. 1799 * 1800 * This is primarily useful on parts which have multiple instances of a same 1801 * class engine, like for example GT3+ Skylake parts with their two VCS engines. 1802 * 1803 * For instance userspace can enumerate all engines of a certain class using the 1804 * previously described `Engine Discovery uAPI`_. After that userspace can 1805 * create a GEM context with a placeholder slot for the virtual engine (using 1806 * `I915_ENGINE_CLASS_INVALID` and `I915_ENGINE_CLASS_INVALID_NONE` for class 1807 * and instance respectively) and finally using the 1808 * `I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE` extension place a virtual engine in 1809 * the same reserved slot. 1810 * 1811 * Example of creating a virtual engine and submitting a batch buffer to it: 1812 * 1813 * .. code-block:: C 1814 * 1815 * I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(virtual, 2) = { 1816 * .base.name = I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE, 1817 * .engine_index = 0, // Place this virtual engine into engine map slot 0 1818 * .num_siblings = 2, 1819 * .engines = { { I915_ENGINE_CLASS_VIDEO, 0 }, 1820 * { I915_ENGINE_CLASS_VIDEO, 1 }, }, 1821 * }; 1822 * I915_DEFINE_CONTEXT_PARAM_ENGINES(engines, 1) = { 1823 * .engines = { { I915_ENGINE_CLASS_INVALID, 1824 * I915_ENGINE_CLASS_INVALID_NONE } }, 1825 * .extensions = to_user_pointer(&virtual), // Chains after load_balance extension 1826 * }; 1827 * struct drm_i915_gem_context_create_ext_setparam p_engines = { 1828 * .base = { 1829 * .name = I915_CONTEXT_CREATE_EXT_SETPARAM, 1830 * }, 1831 * .param = { 1832 * .param = I915_CONTEXT_PARAM_ENGINES, 1833 * .value = to_user_pointer(&engines), 1834 * .size = sizeof(engines), 1835 * }, 1836 * }; 1837 * struct drm_i915_gem_context_create_ext create = { 1838 * .flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS, 1839 * .extensions = to_user_pointer(&p_engines); 1840 * }; 1841 * 1842 * ctx_id = gem_context_create_ext(drm_fd, &create); 1843 * 1844 * // Now we have created a GEM context with its engine map containing a 1845 * // single virtual engine. Submissions to this slot can go either to 1846 * // vcs0 or vcs1, depending on the load balancing algorithm used inside 1847 * // the driver. The load balancing is dynamic from one batch buffer to 1848 * // another and transparent to userspace. 1849 * 1850 * ... 1851 * execbuf.rsvd1 = ctx_id; 1852 * execbuf.flags = 0; // Submits to index 0 which is the virtual engine 1853 * gem_execbuf(drm_fd, &execbuf); 1854 */ 1855 1856 /* 1857 * i915_context_engines_load_balance: 1858 * 1859 * Enable load balancing across this set of engines. 1860 * 1861 * Into the I915_EXEC_DEFAULT slot [0], a virtual engine is created that when 1862 * used will proxy the execbuffer request onto one of the set of engines 1863 * in such a way as to distribute the load evenly across the set. 1864 * 1865 * The set of engines must be compatible (e.g. the same HW class) as they 1866 * will share the same logical GPU context and ring. 1867 * 1868 * To intermix rendering with the virtual engine and direct rendering onto 1869 * the backing engines (bypassing the load balancing proxy), the context must 1870 * be defined to use a single timeline for all engines. 1871 */ 1872 struct i915_context_engines_load_balance { 1873 struct i915_user_extension base; 1874 1875 __u16 engine_index; 1876 __u16 num_siblings; 1877 __u32 flags; /* all undefined flags must be zero */ 1878 1879 __u64 mbz64; /* reserved for future use; must be zero */ 1880 1881 struct i915_engine_class_instance engines[0]; 1882 } __attribute__((packed)); 1883 1884 #define I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(name__, N__) struct { \ 1885 struct i915_user_extension base; \ 1886 __u16 engine_index; \ 1887 __u16 num_siblings; \ 1888 __u32 flags; \ 1889 __u64 mbz64; \ 1890 struct i915_engine_class_instance engines[N__]; \ 1891 } __attribute__((packed)) name__ 1892 1893 /* 1894 * i915_context_engines_bond: 1895 * 1896 * Constructed bonded pairs for execution within a virtual engine. 1897 * 1898 * All engines are equal, but some are more equal than others. Given 1899 * the distribution of resources in the HW, it may be preferable to run 1900 * a request on a given subset of engines in parallel to a request on a 1901 * specific engine. We enable this selection of engines within a virtual 1902 * engine by specifying bonding pairs, for any given master engine we will 1903 * only execute on one of the corresponding siblings within the virtual engine. 1904 * 1905 * To execute a request in parallel on the master engine and a sibling requires 1906 * coordination with a I915_EXEC_FENCE_SUBMIT. 1907 */ 1908 struct i915_context_engines_bond { 1909 struct i915_user_extension base; 1910 1911 struct i915_engine_class_instance master; 1912 1913 __u16 virtual_index; /* index of virtual engine in ctx->engines[] */ 1914 __u16 num_bonds; 1915 1916 __u64 flags; /* all undefined flags must be zero */ 1917 __u64 mbz64[4]; /* reserved for future use; must be zero */ 1918 1919 struct i915_engine_class_instance engines[0]; 1920 } __attribute__((packed)); 1921 1922 #define I915_DEFINE_CONTEXT_ENGINES_BOND(name__, N__) struct { \ 1923 struct i915_user_extension base; \ 1924 struct i915_engine_class_instance master; \ 1925 __u16 virtual_index; \ 1926 __u16 num_bonds; \ 1927 __u64 flags; \ 1928 __u64 mbz64[4]; \ 1929 struct i915_engine_class_instance engines[N__]; \ 1930 } __attribute__((packed)) name__ 1931 1932 /** 1933 * DOC: Context Engine Map uAPI 1934 * 1935 * Context engine map is a new way of addressing engines when submitting batch- 1936 * buffers, replacing the existing way of using identifiers like `I915_EXEC_BLT` 1937 * inside the flags field of `struct drm_i915_gem_execbuffer2`. 1938 * 1939 * To use it created GEM contexts need to be configured with a list of engines 1940 * the user is intending to submit to. This is accomplished using the 1941 * `I915_CONTEXT_PARAM_ENGINES` parameter and `struct 1942 * i915_context_param_engines`. 1943 * 1944 * For such contexts the `I915_EXEC_RING_MASK` field becomes an index into the 1945 * configured map. 1946 * 1947 * Example of creating such context and submitting against it: 1948 * 1949 * .. code-block:: C 1950 * 1951 * I915_DEFINE_CONTEXT_PARAM_ENGINES(engines, 2) = { 1952 * .engines = { { I915_ENGINE_CLASS_RENDER, 0 }, 1953 * { I915_ENGINE_CLASS_COPY, 0 } } 1954 * }; 1955 * struct drm_i915_gem_context_create_ext_setparam p_engines = { 1956 * .base = { 1957 * .name = I915_CONTEXT_CREATE_EXT_SETPARAM, 1958 * }, 1959 * .param = { 1960 * .param = I915_CONTEXT_PARAM_ENGINES, 1961 * .value = to_user_pointer(&engines), 1962 * .size = sizeof(engines), 1963 * }, 1964 * }; 1965 * struct drm_i915_gem_context_create_ext create = { 1966 * .flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS, 1967 * .extensions = to_user_pointer(&p_engines); 1968 * }; 1969 * 1970 * ctx_id = gem_context_create_ext(drm_fd, &create); 1971 * 1972 * // We have now created a GEM context with two engines in the map: 1973 * // Index 0 points to rcs0 while index 1 points to bcs0. Other engines 1974 * // will not be accessible from this context. 1975 * 1976 * ... 1977 * execbuf.rsvd1 = ctx_id; 1978 * execbuf.flags = 0; // Submits to index 0, which is rcs0 for this context 1979 * gem_execbuf(drm_fd, &execbuf); 1980 * 1981 * ... 1982 * execbuf.rsvd1 = ctx_id; 1983 * execbuf.flags = 1; // Submits to index 0, which is bcs0 for this context 1984 * gem_execbuf(drm_fd, &execbuf); 1985 */ 1986 1987 struct i915_context_param_engines { 1988 __u64 extensions; /* linked chain of extension blocks, 0 terminates */ 1989 #define I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE 0 /* see i915_context_engines_load_balance */ 1990 #define I915_CONTEXT_ENGINES_EXT_BOND 1 /* see i915_context_engines_bond */ 1991 struct i915_engine_class_instance engines[0]; 1992 } __attribute__((packed)); 1993 1994 #define I915_DEFINE_CONTEXT_PARAM_ENGINES(name__, N__) struct { \ 1995 __u64 extensions; \ 1996 struct i915_engine_class_instance engines[N__]; \ 1997 } __attribute__((packed)) name__ 1998 1999 struct drm_i915_gem_context_create_ext_setparam { 2000 #define I915_CONTEXT_CREATE_EXT_SETPARAM 0 2001 struct i915_user_extension base; 2002 struct drm_i915_gem_context_param param; 2003 }; 2004 2005 struct drm_i915_gem_context_create_ext_clone { 2006 #define I915_CONTEXT_CREATE_EXT_CLONE 1 2007 struct i915_user_extension base; 2008 __u32 clone_id; 2009 __u32 flags; 2010 #define I915_CONTEXT_CLONE_ENGINES (1u << 0) 2011 #define I915_CONTEXT_CLONE_FLAGS (1u << 1) 2012 #define I915_CONTEXT_CLONE_SCHEDATTR (1u << 2) 2013 #define I915_CONTEXT_CLONE_SSEU (1u << 3) 2014 #define I915_CONTEXT_CLONE_TIMELINE (1u << 4) 2015 #define I915_CONTEXT_CLONE_VM (1u << 5) 2016 #define I915_CONTEXT_CLONE_UNKNOWN -(I915_CONTEXT_CLONE_VM << 1) 2017 __u64 rsvd; 2018 }; 2019 2020 struct drm_i915_gem_context_destroy { 2021 __u32 ctx_id; 2022 __u32 pad; 2023 }; 2024 2025 /* 2026 * DRM_I915_GEM_VM_CREATE - 2027 * 2028 * Create a new virtual memory address space (ppGTT) for use within a context 2029 * on the same file. Extensions can be provided to configure exactly how the 2030 * address space is setup upon creation. 2031 * 2032 * The id of new VM (bound to the fd) for use with I915_CONTEXT_PARAM_VM is 2033 * returned in the outparam @id. 2034 * 2035 * No flags are defined, with all bits reserved and must be zero. 2036 * 2037 * An extension chain maybe provided, starting with @extensions, and terminated 2038 * by the @next_extension being 0. Currently, no extensions are defined. 2039 * 2040 * DRM_I915_GEM_VM_DESTROY - 2041 * 2042 * Destroys a previously created VM id, specified in @id. 2043 * 2044 * No extensions or flags are allowed currently, and so must be zero. 2045 */ 2046 struct drm_i915_gem_vm_control { 2047 __u64 extensions; 2048 __u32 flags; 2049 __u32 vm_id; 2050 }; 2051 2052 struct drm_i915_reg_read { 2053 /* 2054 * Register offset. 2055 * For 64bit wide registers where the upper 32bits don't immediately 2056 * follow the lower 32bits, the offset of the lower 32bits must 2057 * be specified 2058 */ 2059 __u64 offset; 2060 #define I915_REG_READ_8B_WA (1ul << 0) 2061 2062 __u64 val; /* Return value */ 2063 }; 2064 2065 /* Known registers: 2066 * 2067 * Render engine timestamp - 0x2358 + 64bit - gen7+ 2068 * - Note this register returns an invalid value if using the default 2069 * single instruction 8byte read, in order to workaround that pass 2070 * flag I915_REG_READ_8B_WA in offset field. 2071 * 2072 */ 2073 2074 struct drm_i915_reset_stats { 2075 __u32 ctx_id; 2076 __u32 flags; 2077 2078 /* All resets since boot/module reload, for all contexts */ 2079 __u32 reset_count; 2080 2081 /* Number of batches lost when active in GPU, for this context */ 2082 __u32 batch_active; 2083 2084 /* Number of batches lost pending for execution, for this context */ 2085 __u32 batch_pending; 2086 2087 __u32 pad; 2088 }; 2089 2090 struct drm_i915_gem_userptr { 2091 __u64 user_ptr; 2092 __u64 user_size; 2093 __u32 flags; 2094 #define I915_USERPTR_READ_ONLY 0x1 2095 #define I915_USERPTR_UNSYNCHRONIZED 0x80000000 2096 /** 2097 * Returned handle for the object. 2098 * 2099 * Object handles are nonzero. 2100 */ 2101 __u32 handle; 2102 }; 2103 2104 enum drm_i915_oa_format { 2105 I915_OA_FORMAT_A13 = 1, /* HSW only */ 2106 I915_OA_FORMAT_A29, /* HSW only */ 2107 I915_OA_FORMAT_A13_B8_C8, /* HSW only */ 2108 I915_OA_FORMAT_B4_C8, /* HSW only */ 2109 I915_OA_FORMAT_A45_B8_C8, /* HSW only */ 2110 I915_OA_FORMAT_B4_C8_A16, /* HSW only */ 2111 I915_OA_FORMAT_C4_B8, /* HSW+ */ 2112 2113 /* Gen8+ */ 2114 I915_OA_FORMAT_A12, 2115 I915_OA_FORMAT_A12_B8_C8, 2116 I915_OA_FORMAT_A32u40_A4u32_B8_C8, 2117 2118 I915_OA_FORMAT_MAX /* non-ABI */ 2119 }; 2120 2121 enum drm_i915_perf_property_id { 2122 /** 2123 * Open the stream for a specific context handle (as used with 2124 * execbuffer2). A stream opened for a specific context this way 2125 * won't typically require root privileges. 2126 * 2127 * This property is available in perf revision 1. 2128 */ 2129 DRM_I915_PERF_PROP_CTX_HANDLE = 1, 2130 2131 /** 2132 * A value of 1 requests the inclusion of raw OA unit reports as 2133 * part of stream samples. 2134 * 2135 * This property is available in perf revision 1. 2136 */ 2137 DRM_I915_PERF_PROP_SAMPLE_OA, 2138 2139 /** 2140 * The value specifies which set of OA unit metrics should be 2141 * configured, defining the contents of any OA unit reports. 2142 * 2143 * This property is available in perf revision 1. 2144 */ 2145 DRM_I915_PERF_PROP_OA_METRICS_SET, 2146 2147 /** 2148 * The value specifies the size and layout of OA unit reports. 2149 * 2150 * This property is available in perf revision 1. 2151 */ 2152 DRM_I915_PERF_PROP_OA_FORMAT, 2153 2154 /** 2155 * Specifying this property implicitly requests periodic OA unit 2156 * sampling and (at least on Haswell) the sampling frequency is derived 2157 * from this exponent as follows: 2158 * 2159 * 80ns * 2^(period_exponent + 1) 2160 * 2161 * This property is available in perf revision 1. 2162 */ 2163 DRM_I915_PERF_PROP_OA_EXPONENT, 2164 2165 /** 2166 * Specifying this property is only valid when specify a context to 2167 * filter with DRM_I915_PERF_PROP_CTX_HANDLE. Specifying this property 2168 * will hold preemption of the particular context we want to gather 2169 * performance data about. The execbuf2 submissions must include a 2170 * drm_i915_gem_execbuffer_ext_perf parameter for this to apply. 2171 * 2172 * This property is available in perf revision 3. 2173 */ 2174 DRM_I915_PERF_PROP_HOLD_PREEMPTION, 2175 2176 /** 2177 * Specifying this pins all contexts to the specified SSEU power 2178 * configuration for the duration of the recording. 2179 * 2180 * This parameter's value is a pointer to a struct 2181 * drm_i915_gem_context_param_sseu. 2182 * 2183 * This property is available in perf revision 4. 2184 */ 2185 DRM_I915_PERF_PROP_GLOBAL_SSEU, 2186 2187 /** 2188 * This optional parameter specifies the timer interval in nanoseconds 2189 * at which the i915 driver will check the OA buffer for available data. 2190 * Minimum allowed value is 100 microseconds. A default value is used by 2191 * the driver if this parameter is not specified. Note that larger timer 2192 * values will reduce cpu consumption during OA perf captures. However, 2193 * excessively large values would potentially result in OA buffer 2194 * overwrites as captures reach end of the OA buffer. 2195 * 2196 * This property is available in perf revision 5. 2197 */ 2198 DRM_I915_PERF_PROP_POLL_OA_PERIOD, 2199 2200 DRM_I915_PERF_PROP_MAX /* non-ABI */ 2201 }; 2202 2203 struct drm_i915_perf_open_param { 2204 __u32 flags; 2205 #define I915_PERF_FLAG_FD_CLOEXEC (1<<0) 2206 #define I915_PERF_FLAG_FD_NONBLOCK (1<<1) 2207 #define I915_PERF_FLAG_DISABLED (1<<2) 2208 2209 /** The number of u64 (id, value) pairs */ 2210 __u32 num_properties; 2211 2212 /** 2213 * Pointer to array of u64 (id, value) pairs configuring the stream 2214 * to open. 2215 */ 2216 __u64 properties_ptr; 2217 }; 2218 2219 /* 2220 * Enable data capture for a stream that was either opened in a disabled state 2221 * via I915_PERF_FLAG_DISABLED or was later disabled via 2222 * I915_PERF_IOCTL_DISABLE. 2223 * 2224 * It is intended to be cheaper to disable and enable a stream than it may be 2225 * to close and re-open a stream with the same configuration. 2226 * 2227 * It's undefined whether any pending data for the stream will be lost. 2228 * 2229 * This ioctl is available in perf revision 1. 2230 */ 2231 #define I915_PERF_IOCTL_ENABLE _IO('i', 0x0) 2232 2233 /* 2234 * Disable data capture for a stream. 2235 * 2236 * It is an error to try and read a stream that is disabled. 2237 * 2238 * This ioctl is available in perf revision 1. 2239 */ 2240 #define I915_PERF_IOCTL_DISABLE _IO('i', 0x1) 2241 2242 /* 2243 * Change metrics_set captured by a stream. 2244 * 2245 * If the stream is bound to a specific context, the configuration change 2246 * will performed inline with that context such that it takes effect before 2247 * the next execbuf submission. 2248 * 2249 * Returns the previously bound metrics set id, or a negative error code. 2250 * 2251 * This ioctl is available in perf revision 2. 2252 */ 2253 #define I915_PERF_IOCTL_CONFIG _IO('i', 0x2) 2254 2255 /* 2256 * Common to all i915 perf records 2257 */ 2258 struct drm_i915_perf_record_header { 2259 __u32 type; 2260 __u16 pad; 2261 __u16 size; 2262 }; 2263 2264 enum drm_i915_perf_record_type { 2265 2266 /** 2267 * Samples are the work horse record type whose contents are extensible 2268 * and defined when opening an i915 perf stream based on the given 2269 * properties. 2270 * 2271 * Boolean properties following the naming convention 2272 * DRM_I915_PERF_SAMPLE_xyz_PROP request the inclusion of 'xyz' data in 2273 * every sample. 2274 * 2275 * The order of these sample properties given by userspace has no 2276 * affect on the ordering of data within a sample. The order is 2277 * documented here. 2278 * 2279 * struct { 2280 * struct drm_i915_perf_record_header header; 2281 * 2282 * { u32 oa_report[]; } && DRM_I915_PERF_PROP_SAMPLE_OA 2283 * }; 2284 */ 2285 DRM_I915_PERF_RECORD_SAMPLE = 1, 2286 2287 /* 2288 * Indicates that one or more OA reports were not written by the 2289 * hardware. This can happen for example if an MI_REPORT_PERF_COUNT 2290 * command collides with periodic sampling - which would be more likely 2291 * at higher sampling frequencies. 2292 */ 2293 DRM_I915_PERF_RECORD_OA_REPORT_LOST = 2, 2294 2295 /** 2296 * An error occurred that resulted in all pending OA reports being lost. 2297 */ 2298 DRM_I915_PERF_RECORD_OA_BUFFER_LOST = 3, 2299 2300 DRM_I915_PERF_RECORD_MAX /* non-ABI */ 2301 }; 2302 2303 /* 2304 * Structure to upload perf dynamic configuration into the kernel. 2305 */ 2306 struct drm_i915_perf_oa_config { 2307 /** String formatted like "%08x-%04x-%04x-%04x-%012x" */ 2308 char uuid[36]; 2309 2310 __u32 n_mux_regs; 2311 __u32 n_boolean_regs; 2312 __u32 n_flex_regs; 2313 2314 /* 2315 * These fields are pointers to tuples of u32 values (register address, 2316 * value). For example the expected length of the buffer pointed by 2317 * mux_regs_ptr is (2 * sizeof(u32) * n_mux_regs). 2318 */ 2319 __u64 mux_regs_ptr; 2320 __u64 boolean_regs_ptr; 2321 __u64 flex_regs_ptr; 2322 }; 2323 2324 /** 2325 * struct drm_i915_query_item - An individual query for the kernel to process. 2326 * 2327 * The behaviour is determined by the @query_id. Note that exactly what 2328 * @data_ptr is also depends on the specific @query_id. 2329 */ 2330 struct drm_i915_query_item { 2331 /** @query_id: The id for this query */ 2332 __u64 query_id; 2333 #define DRM_I915_QUERY_TOPOLOGY_INFO 1 2334 #define DRM_I915_QUERY_ENGINE_INFO 2 2335 #define DRM_I915_QUERY_PERF_CONFIG 3 2336 #define DRM_I915_QUERY_MEMORY_REGIONS 4 2337 /* Must be kept compact -- no holes and well documented */ 2338 2339 /** 2340 * @length: 2341 * 2342 * When set to zero by userspace, this is filled with the size of the 2343 * data to be written at the @data_ptr pointer. The kernel sets this 2344 * value to a negative value to signal an error on a particular query 2345 * item. 2346 */ 2347 __s32 length; 2348 2349 /** 2350 * @flags: 2351 * 2352 * When query_id == DRM_I915_QUERY_TOPOLOGY_INFO, must be 0. 2353 * 2354 * When query_id == DRM_I915_QUERY_PERF_CONFIG, must be one of the 2355 * following: 2356 * 2357 * - DRM_I915_QUERY_PERF_CONFIG_LIST 2358 * - DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID 2359 * - DRM_I915_QUERY_PERF_CONFIG_FOR_UUID 2360 */ 2361 __u32 flags; 2362 #define DRM_I915_QUERY_PERF_CONFIG_LIST 1 2363 #define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID 2 2364 #define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID 3 2365 2366 /** 2367 * @data_ptr: 2368 * 2369 * Data will be written at the location pointed by @data_ptr when the 2370 * value of @length matches the length of the data to be written by the 2371 * kernel. 2372 */ 2373 __u64 data_ptr; 2374 }; 2375 2376 /** 2377 * struct drm_i915_query - Supply an array of struct drm_i915_query_item for the 2378 * kernel to fill out. 2379 * 2380 * Note that this is generally a two step process for each struct 2381 * drm_i915_query_item in the array: 2382 * 2383 * 1. Call the DRM_IOCTL_I915_QUERY, giving it our array of struct 2384 * drm_i915_query_item, with &drm_i915_query_item.length set to zero. The 2385 * kernel will then fill in the size, in bytes, which tells userspace how 2386 * memory it needs to allocate for the blob(say for an array of properties). 2387 * 2388 * 2. Next we call DRM_IOCTL_I915_QUERY again, this time with the 2389 * &drm_i915_query_item.data_ptr equal to our newly allocated blob. Note that 2390 * the &drm_i915_query_item.length should still be the same as what the 2391 * kernel previously set. At this point the kernel can fill in the blob. 2392 * 2393 * Note that for some query items it can make sense for userspace to just pass 2394 * in a buffer/blob equal to or larger than the required size. In this case only 2395 * a single ioctl call is needed. For some smaller query items this can work 2396 * quite well. 2397 * 2398 */ 2399 struct drm_i915_query { 2400 /** @num_items: The number of elements in the @items_ptr array */ 2401 __u32 num_items; 2402 2403 /** 2404 * @flags: Unused for now. Must be cleared to zero. 2405 */ 2406 __u32 flags; 2407 2408 /** 2409 * @items_ptr: 2410 * 2411 * Pointer to an array of struct drm_i915_query_item. The number of 2412 * array elements is @num_items. 2413 */ 2414 __u64 items_ptr; 2415 }; 2416 2417 /* 2418 * Data written by the kernel with query DRM_I915_QUERY_TOPOLOGY_INFO : 2419 * 2420 * data: contains the 3 pieces of information : 2421 * 2422 * - the slice mask with one bit per slice telling whether a slice is 2423 * available. The availability of slice X can be queried with the following 2424 * formula : 2425 * 2426 * (data[X / 8] >> (X % 8)) & 1 2427 * 2428 * - the subslice mask for each slice with one bit per subslice telling 2429 * whether a subslice is available. Gen12 has dual-subslices, which are 2430 * similar to two gen11 subslices. For gen12, this array represents dual- 2431 * subslices. The availability of subslice Y in slice X can be queried 2432 * with the following formula : 2433 * 2434 * (data[subslice_offset + 2435 * X * subslice_stride + 2436 * Y / 8] >> (Y % 8)) & 1 2437 * 2438 * - the EU mask for each subslice in each slice with one bit per EU telling 2439 * whether an EU is available. The availability of EU Z in subslice Y in 2440 * slice X can be queried with the following formula : 2441 * 2442 * (data[eu_offset + 2443 * (X * max_subslices + Y) * eu_stride + 2444 * Z / 8] >> (Z % 8)) & 1 2445 */ 2446 struct drm_i915_query_topology_info { 2447 /* 2448 * Unused for now. Must be cleared to zero. 2449 */ 2450 __u16 flags; 2451 2452 __u16 max_slices; 2453 __u16 max_subslices; 2454 __u16 max_eus_per_subslice; 2455 2456 /* 2457 * Offset in data[] at which the subslice masks are stored. 2458 */ 2459 __u16 subslice_offset; 2460 2461 /* 2462 * Stride at which each of the subslice masks for each slice are 2463 * stored. 2464 */ 2465 __u16 subslice_stride; 2466 2467 /* 2468 * Offset in data[] at which the EU masks are stored. 2469 */ 2470 __u16 eu_offset; 2471 2472 /* 2473 * Stride at which each of the EU masks for each subslice are stored. 2474 */ 2475 __u16 eu_stride; 2476 2477 __u8 data[]; 2478 }; 2479 2480 /** 2481 * DOC: Engine Discovery uAPI 2482 * 2483 * Engine discovery uAPI is a way of enumerating physical engines present in a 2484 * GPU associated with an open i915 DRM file descriptor. This supersedes the old 2485 * way of using `DRM_IOCTL_I915_GETPARAM` and engine identifiers like 2486 * `I915_PARAM_HAS_BLT`. 2487 * 2488 * The need for this interface came starting with Icelake and newer GPUs, which 2489 * started to establish a pattern of having multiple engines of a same class, 2490 * where not all instances were always completely functionally equivalent. 2491 * 2492 * Entry point for this uapi is `DRM_IOCTL_I915_QUERY` with the 2493 * `DRM_I915_QUERY_ENGINE_INFO` as the queried item id. 2494 * 2495 * Example for getting the list of engines: 2496 * 2497 * .. code-block:: C 2498 * 2499 * struct drm_i915_query_engine_info *info; 2500 * struct drm_i915_query_item item = { 2501 * .query_id = DRM_I915_QUERY_ENGINE_INFO; 2502 * }; 2503 * struct drm_i915_query query = { 2504 * .num_items = 1, 2505 * .items_ptr = (uintptr_t)&item, 2506 * }; 2507 * int err, i; 2508 * 2509 * // First query the size of the blob we need, this needs to be large 2510 * // enough to hold our array of engines. The kernel will fill out the 2511 * // item.length for us, which is the number of bytes we need. 2512 * // 2513 * // Alternatively a large buffer can be allocated straight away enabling 2514 * // querying in one pass, in which case item.length should contain the 2515 * // length of the provided buffer. 2516 * err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query); 2517 * if (err) ... 2518 * 2519 * info = calloc(1, item.length); 2520 * // Now that we allocated the required number of bytes, we call the ioctl 2521 * // again, this time with the data_ptr pointing to our newly allocated 2522 * // blob, which the kernel can then populate with info on all engines. 2523 * item.data_ptr = (uintptr_t)&info, 2524 * 2525 * err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query); 2526 * if (err) ... 2527 * 2528 * // We can now access each engine in the array 2529 * for (i = 0; i < info->num_engines; i++) { 2530 * struct drm_i915_engine_info einfo = info->engines[i]; 2531 * u16 class = einfo.engine.class; 2532 * u16 instance = einfo.engine.instance; 2533 * .... 2534 * } 2535 * 2536 * free(info); 2537 * 2538 * Each of the enumerated engines, apart from being defined by its class and 2539 * instance (see `struct i915_engine_class_instance`), also can have flags and 2540 * capabilities defined as documented in i915_drm.h. 2541 * 2542 * For instance video engines which support HEVC encoding will have the 2543 * `I915_VIDEO_CLASS_CAPABILITY_HEVC` capability bit set. 2544 * 2545 * Engine discovery only fully comes to its own when combined with the new way 2546 * of addressing engines when submitting batch buffers using contexts with 2547 * engine maps configured. 2548 */ 2549 2550 /** 2551 * struct drm_i915_engine_info 2552 * 2553 * Describes one engine and it's capabilities as known to the driver. 2554 */ 2555 struct drm_i915_engine_info { 2556 /** @engine: Engine class and instance. */ 2557 struct i915_engine_class_instance engine; 2558 2559 /** @rsvd0: Reserved field. */ 2560 __u32 rsvd0; 2561 2562 /** @flags: Engine flags. */ 2563 __u64 flags; 2564 2565 /** @capabilities: Capabilities of this engine. */ 2566 __u64 capabilities; 2567 #define I915_VIDEO_CLASS_CAPABILITY_HEVC (1 << 0) 2568 #define I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC (1 << 1) 2569 2570 /** @rsvd1: Reserved fields. */ 2571 __u64 rsvd1[4]; 2572 }; 2573 2574 /** 2575 * struct drm_i915_query_engine_info 2576 * 2577 * Engine info query enumerates all engines known to the driver by filling in 2578 * an array of struct drm_i915_engine_info structures. 2579 */ 2580 struct drm_i915_query_engine_info { 2581 /** @num_engines: Number of struct drm_i915_engine_info structs following. */ 2582 __u32 num_engines; 2583 2584 /** @rsvd: MBZ */ 2585 __u32 rsvd[3]; 2586 2587 /** @engines: Marker for drm_i915_engine_info structures. */ 2588 struct drm_i915_engine_info engines[]; 2589 }; 2590 2591 /* 2592 * Data written by the kernel with query DRM_I915_QUERY_PERF_CONFIG. 2593 */ 2594 struct drm_i915_query_perf_config { 2595 union { 2596 /* 2597 * When query_item.flags == DRM_I915_QUERY_PERF_CONFIG_LIST, i915 sets 2598 * this fields to the number of configurations available. 2599 */ 2600 __u64 n_configs; 2601 2602 /* 2603 * When query_id == DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID, 2604 * i915 will use the value in this field as configuration 2605 * identifier to decide what data to write into config_ptr. 2606 */ 2607 __u64 config; 2608 2609 /* 2610 * When query_id == DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID, 2611 * i915 will use the value in this field as configuration 2612 * identifier to decide what data to write into config_ptr. 2613 * 2614 * String formatted like "%08x-%04x-%04x-%04x-%012x" 2615 */ 2616 char uuid[36]; 2617 }; 2618 2619 /* 2620 * Unused for now. Must be cleared to zero. 2621 */ 2622 __u32 flags; 2623 2624 /* 2625 * When query_item.flags == DRM_I915_QUERY_PERF_CONFIG_LIST, i915 will 2626 * write an array of __u64 of configuration identifiers. 2627 * 2628 * When query_item.flags == DRM_I915_QUERY_PERF_CONFIG_DATA, i915 will 2629 * write a struct drm_i915_perf_oa_config. If the following fields of 2630 * drm_i915_perf_oa_config are set not set to 0, i915 will write into 2631 * the associated pointers the values of submitted when the 2632 * configuration was created : 2633 * 2634 * - n_mux_regs 2635 * - n_boolean_regs 2636 * - n_flex_regs 2637 */ 2638 __u8 data[]; 2639 }; 2640 2641 /** 2642 * enum drm_i915_gem_memory_class - Supported memory classes 2643 */ 2644 enum drm_i915_gem_memory_class { 2645 /** @I915_MEMORY_CLASS_SYSTEM: System memory */ 2646 I915_MEMORY_CLASS_SYSTEM = 0, 2647 /** @I915_MEMORY_CLASS_DEVICE: Device local-memory */ 2648 I915_MEMORY_CLASS_DEVICE, 2649 }; 2650 2651 /** 2652 * struct drm_i915_gem_memory_class_instance - Identify particular memory region 2653 */ 2654 struct drm_i915_gem_memory_class_instance { 2655 /** @memory_class: See enum drm_i915_gem_memory_class */ 2656 __u16 memory_class; 2657 2658 /** @memory_instance: Which instance */ 2659 __u16 memory_instance; 2660 }; 2661 2662 /** 2663 * struct drm_i915_memory_region_info - Describes one region as known to the 2664 * driver. 2665 * 2666 * Note that we reserve some stuff here for potential future work. As an example 2667 * we might want expose the capabilities for a given region, which could include 2668 * things like if the region is CPU mappable/accessible, what are the supported 2669 * mapping types etc. 2670 * 2671 * Note that to extend struct drm_i915_memory_region_info and struct 2672 * drm_i915_query_memory_regions in the future the plan is to do the following: 2673 * 2674 * .. code-block:: C 2675 * 2676 * struct drm_i915_memory_region_info { 2677 * struct drm_i915_gem_memory_class_instance region; 2678 * union { 2679 * __u32 rsvd0; 2680 * __u32 new_thing1; 2681 * }; 2682 * ... 2683 * union { 2684 * __u64 rsvd1[8]; 2685 * struct { 2686 * __u64 new_thing2; 2687 * __u64 new_thing3; 2688 * ... 2689 * }; 2690 * }; 2691 * }; 2692 * 2693 * With this things should remain source compatible between versions for 2694 * userspace, even as we add new fields. 2695 * 2696 * Note this is using both struct drm_i915_query_item and struct drm_i915_query. 2697 * For this new query we are adding the new query id DRM_I915_QUERY_MEMORY_REGIONS 2698 * at &drm_i915_query_item.query_id. 2699 */ 2700 struct drm_i915_memory_region_info { 2701 /** @region: The class:instance pair encoding */ 2702 struct drm_i915_gem_memory_class_instance region; 2703 2704 /** @rsvd0: MBZ */ 2705 __u32 rsvd0; 2706 2707 /** @probed_size: Memory probed by the driver (-1 = unknown) */ 2708 __u64 probed_size; 2709 2710 /** @unallocated_size: Estimate of memory remaining (-1 = unknown) */ 2711 __u64 unallocated_size; 2712 2713 /** @rsvd1: MBZ */ 2714 __u64 rsvd1[8]; 2715 }; 2716 2717 /** 2718 * struct drm_i915_query_memory_regions 2719 * 2720 * The region info query enumerates all regions known to the driver by filling 2721 * in an array of struct drm_i915_memory_region_info structures. 2722 * 2723 * Example for getting the list of supported regions: 2724 * 2725 * .. code-block:: C 2726 * 2727 * struct drm_i915_query_memory_regions *info; 2728 * struct drm_i915_query_item item = { 2729 * .query_id = DRM_I915_QUERY_MEMORY_REGIONS; 2730 * }; 2731 * struct drm_i915_query query = { 2732 * .num_items = 1, 2733 * .items_ptr = (uintptr_t)&item, 2734 * }; 2735 * int err, i; 2736 * 2737 * // First query the size of the blob we need, this needs to be large 2738 * // enough to hold our array of regions. The kernel will fill out the 2739 * // item.length for us, which is the number of bytes we need. 2740 * err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query); 2741 * if (err) ... 2742 * 2743 * info = calloc(1, item.length); 2744 * // Now that we allocated the required number of bytes, we call the ioctl 2745 * // again, this time with the data_ptr pointing to our newly allocated 2746 * // blob, which the kernel can then populate with the all the region info. 2747 * item.data_ptr = (uintptr_t)&info, 2748 * 2749 * err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query); 2750 * if (err) ... 2751 * 2752 * // We can now access each region in the array 2753 * for (i = 0; i < info->num_regions; i++) { 2754 * struct drm_i915_memory_region_info mr = info->regions[i]; 2755 * u16 class = mr.region.class; 2756 * u16 instance = mr.region.instance; 2757 * 2758 * .... 2759 * } 2760 * 2761 * free(info); 2762 */ 2763 struct drm_i915_query_memory_regions { 2764 /** @num_regions: Number of supported regions */ 2765 __u32 num_regions; 2766 2767 /** @rsvd: MBZ */ 2768 __u32 rsvd[3]; 2769 2770 /** @regions: Info about each supported region */ 2771 struct drm_i915_memory_region_info regions[]; 2772 }; 2773 2774 /** 2775 * struct drm_i915_gem_create_ext - Existing gem_create behaviour, with added 2776 * extension support using struct i915_user_extension. 2777 * 2778 * Note that in the future we want to have our buffer flags here, at least for 2779 * the stuff that is immutable. Previously we would have two ioctls, one to 2780 * create the object with gem_create, and another to apply various parameters, 2781 * however this creates some ambiguity for the params which are considered 2782 * immutable. Also in general we're phasing out the various SET/GET ioctls. 2783 */ 2784 struct drm_i915_gem_create_ext { 2785 /** 2786 * @size: Requested size for the object. 2787 * 2788 * The (page-aligned) allocated size for the object will be returned. 2789 * 2790 * Note that for some devices we have might have further minimum 2791 * page-size restrictions(larger than 4K), like for device local-memory. 2792 * However in general the final size here should always reflect any 2793 * rounding up, if for example using the I915_GEM_CREATE_EXT_MEMORY_REGIONS 2794 * extension to place the object in device local-memory. 2795 */ 2796 __u64 size; 2797 /** 2798 * @handle: Returned handle for the object. 2799 * 2800 * Object handles are nonzero. 2801 */ 2802 __u32 handle; 2803 /** @flags: MBZ */ 2804 __u32 flags; 2805 /** 2806 * @extensions: The chain of extensions to apply to this object. 2807 * 2808 * This will be useful in the future when we need to support several 2809 * different extensions, and we need to apply more than one when 2810 * creating the object. See struct i915_user_extension. 2811 * 2812 * If we don't supply any extensions then we get the same old gem_create 2813 * behaviour. 2814 * 2815 * For I915_GEM_CREATE_EXT_MEMORY_REGIONS usage see 2816 * struct drm_i915_gem_create_ext_memory_regions. 2817 */ 2818 #define I915_GEM_CREATE_EXT_MEMORY_REGIONS 0 2819 __u64 extensions; 2820 }; 2821 2822 /** 2823 * struct drm_i915_gem_create_ext_memory_regions - The 2824 * I915_GEM_CREATE_EXT_MEMORY_REGIONS extension. 2825 * 2826 * Set the object with the desired set of placements/regions in priority 2827 * order. Each entry must be unique and supported by the device. 2828 * 2829 * This is provided as an array of struct drm_i915_gem_memory_class_instance, or 2830 * an equivalent layout of class:instance pair encodings. See struct 2831 * drm_i915_query_memory_regions and DRM_I915_QUERY_MEMORY_REGIONS for how to 2832 * query the supported regions for a device. 2833 * 2834 * As an example, on discrete devices, if we wish to set the placement as 2835 * device local-memory we can do something like: 2836 * 2837 * .. code-block:: C 2838 * 2839 * struct drm_i915_gem_memory_class_instance region_lmem = { 2840 * .memory_class = I915_MEMORY_CLASS_DEVICE, 2841 * .memory_instance = 0, 2842 * }; 2843 * struct drm_i915_gem_create_ext_memory_regions regions = { 2844 * .base = { .name = I915_GEM_CREATE_EXT_MEMORY_REGIONS }, 2845 * .regions = (uintptr_t)®ion_lmem, 2846 * .num_regions = 1, 2847 * }; 2848 * struct drm_i915_gem_create_ext create_ext = { 2849 * .size = 16 * PAGE_SIZE, 2850 * .extensions = (uintptr_t)®ions, 2851 * }; 2852 * 2853 * int err = ioctl(fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create_ext); 2854 * if (err) ... 2855 * 2856 * At which point we get the object handle in &drm_i915_gem_create_ext.handle, 2857 * along with the final object size in &drm_i915_gem_create_ext.size, which 2858 * should account for any rounding up, if required. 2859 */ 2860 struct drm_i915_gem_create_ext_memory_regions { 2861 /** @base: Extension link. See struct i915_user_extension. */ 2862 struct i915_user_extension base; 2863 2864 /** @pad: MBZ */ 2865 __u32 pad; 2866 /** @num_regions: Number of elements in the @regions array. */ 2867 __u32 num_regions; 2868 /** 2869 * @regions: The regions/placements array. 2870 * 2871 * An array of struct drm_i915_gem_memory_class_instance. 2872 */ 2873 __u64 regions; 2874 }; 2875 2876 #if defined(__cplusplus) 2877 } 2878 #endif 2879 2880 #endif /* _UAPI_I915_DRM_H_ */ 2881