xref: /linux/include/uapi/drm/i915_drm.h (revision aef7b67a79564f6cff488aff7f4b89438ca80b23)
1 /*
2  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the
14  * next paragraph) shall be included in all copies or substantial portions
15  * of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
20  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
21  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24  *
25  */
26 
27 #ifndef _UAPI_I915_DRM_H_
28 #define _UAPI_I915_DRM_H_
29 
30 #include "drm.h"
31 
32 #if defined(__cplusplus)
33 extern "C" {
34 #endif
35 
36 /* Please note that modifications to all structs defined here are
37  * subject to backwards-compatibility constraints.
38  */
39 
40 /**
41  * DOC: uevents generated by i915 on it's device node
42  *
43  * I915_L3_PARITY_UEVENT - Generated when the driver receives a parity mismatch
44  *	event from the gpu l3 cache. Additional information supplied is ROW,
45  *	BANK, SUBBANK, SLICE of the affected cacheline. Userspace should keep
46  *	track of these events and if a specific cache-line seems to have a
47  *	persistent error remap it with the l3 remapping tool supplied in
48  *	intel-gpu-tools.  The value supplied with the event is always 1.
49  *
50  * I915_ERROR_UEVENT - Generated upon error detection, currently only via
51  *	hangcheck. The error detection event is a good indicator of when things
52  *	began to go badly. The value supplied with the event is a 1 upon error
53  *	detection, and a 0 upon reset completion, signifying no more error
54  *	exists. NOTE: Disabling hangcheck or reset via module parameter will
55  *	cause the related events to not be seen.
56  *
57  * I915_RESET_UEVENT - Event is generated just before an attempt to reset the
58  *	GPU. The value supplied with the event is always 1. NOTE: Disable
59  *	reset via module parameter will cause this event to not be seen.
60  */
61 #define I915_L3_PARITY_UEVENT		"L3_PARITY_ERROR"
62 #define I915_ERROR_UEVENT		"ERROR"
63 #define I915_RESET_UEVENT		"RESET"
64 
65 /**
66  * struct i915_user_extension - Base class for defining a chain of extensions
67  *
68  * Many interfaces need to grow over time. In most cases we can simply
69  * extend the struct and have userspace pass in more data. Another option,
70  * as demonstrated by Vulkan's approach to providing extensions for forward
71  * and backward compatibility, is to use a list of optional structs to
72  * provide those extra details.
73  *
74  * The key advantage to using an extension chain is that it allows us to
75  * redefine the interface more easily than an ever growing struct of
76  * increasing complexity, and for large parts of that interface to be
77  * entirely optional. The downside is more pointer chasing; chasing across
78  * the __user boundary with pointers encapsulated inside u64.
79  *
80  * Example chaining:
81  *
82  * .. code-block:: C
83  *
84  *	struct i915_user_extension ext3 {
85  *		.next_extension = 0, // end
86  *		.name = ...,
87  *	};
88  *	struct i915_user_extension ext2 {
89  *		.next_extension = (uintptr_t)&ext3,
90  *		.name = ...,
91  *	};
92  *	struct i915_user_extension ext1 {
93  *		.next_extension = (uintptr_t)&ext2,
94  *		.name = ...,
95  *	};
96  *
97  * Typically the struct i915_user_extension would be embedded in some uAPI
98  * struct, and in this case we would feed it the head of the chain(i.e ext1),
99  * which would then apply all of the above extensions.
100  *
101  */
102 struct i915_user_extension {
103 	/**
104 	 * @next_extension:
105 	 *
106 	 * Pointer to the next struct i915_user_extension, or zero if the end.
107 	 */
108 	__u64 next_extension;
109 	/**
110 	 * @name: Name of the extension.
111 	 *
112 	 * Note that the name here is just some integer.
113 	 *
114 	 * Also note that the name space for this is not global for the whole
115 	 * driver, but rather its scope/meaning is limited to the specific piece
116 	 * of uAPI which has embedded the struct i915_user_extension.
117 	 */
118 	__u32 name;
119 	/**
120 	 * @flags: MBZ
121 	 *
122 	 * All undefined bits must be zero.
123 	 */
124 	__u32 flags;
125 	/**
126 	 * @rsvd: MBZ
127 	 *
128 	 * Reserved for future use; must be zero.
129 	 */
130 	__u32 rsvd[4];
131 };
132 
133 /*
134  * MOCS indexes used for GPU surfaces, defining the cacheability of the
135  * surface data and the coherency for this data wrt. CPU vs. GPU accesses.
136  */
137 enum i915_mocs_table_index {
138 	/*
139 	 * Not cached anywhere, coherency between CPU and GPU accesses is
140 	 * guaranteed.
141 	 */
142 	I915_MOCS_UNCACHED,
143 	/*
144 	 * Cacheability and coherency controlled by the kernel automatically
145 	 * based on the DRM_I915_GEM_SET_CACHING IOCTL setting and the current
146 	 * usage of the surface (used for display scanout or not).
147 	 */
148 	I915_MOCS_PTE,
149 	/*
150 	 * Cached in all GPU caches available on the platform.
151 	 * Coherency between CPU and GPU accesses to the surface is not
152 	 * guaranteed without extra synchronization.
153 	 */
154 	I915_MOCS_CACHED,
155 };
156 
157 /*
158  * Different engines serve different roles, and there may be more than one
159  * engine serving each role. enum drm_i915_gem_engine_class provides a
160  * classification of the role of the engine, which may be used when requesting
161  * operations to be performed on a certain subset of engines, or for providing
162  * information about that group.
163  */
164 enum drm_i915_gem_engine_class {
165 	I915_ENGINE_CLASS_RENDER	= 0,
166 	I915_ENGINE_CLASS_COPY		= 1,
167 	I915_ENGINE_CLASS_VIDEO		= 2,
168 	I915_ENGINE_CLASS_VIDEO_ENHANCE	= 3,
169 
170 	/* should be kept compact */
171 
172 	I915_ENGINE_CLASS_INVALID	= -1
173 };
174 
175 /*
176  * There may be more than one engine fulfilling any role within the system.
177  * Each engine of a class is given a unique instance number and therefore
178  * any engine can be specified by its class:instance tuplet. APIs that allow
179  * access to any engine in the system will use struct i915_engine_class_instance
180  * for this identification.
181  */
182 struct i915_engine_class_instance {
183 	__u16 engine_class; /* see enum drm_i915_gem_engine_class */
184 	__u16 engine_instance;
185 #define I915_ENGINE_CLASS_INVALID_NONE -1
186 #define I915_ENGINE_CLASS_INVALID_VIRTUAL -2
187 };
188 
189 /**
190  * DOC: perf_events exposed by i915 through /sys/bus/event_sources/drivers/i915
191  *
192  */
193 
194 enum drm_i915_pmu_engine_sample {
195 	I915_SAMPLE_BUSY = 0,
196 	I915_SAMPLE_WAIT = 1,
197 	I915_SAMPLE_SEMA = 2
198 };
199 
200 #define I915_PMU_SAMPLE_BITS (4)
201 #define I915_PMU_SAMPLE_MASK (0xf)
202 #define I915_PMU_SAMPLE_INSTANCE_BITS (8)
203 #define I915_PMU_CLASS_SHIFT \
204 	(I915_PMU_SAMPLE_BITS + I915_PMU_SAMPLE_INSTANCE_BITS)
205 
206 #define __I915_PMU_ENGINE(class, instance, sample) \
207 	((class) << I915_PMU_CLASS_SHIFT | \
208 	(instance) << I915_PMU_SAMPLE_BITS | \
209 	(sample))
210 
211 #define I915_PMU_ENGINE_BUSY(class, instance) \
212 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_BUSY)
213 
214 #define I915_PMU_ENGINE_WAIT(class, instance) \
215 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_WAIT)
216 
217 #define I915_PMU_ENGINE_SEMA(class, instance) \
218 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_SEMA)
219 
220 #define __I915_PMU_OTHER(x) (__I915_PMU_ENGINE(0xff, 0xff, 0xf) + 1 + (x))
221 
222 #define I915_PMU_ACTUAL_FREQUENCY	__I915_PMU_OTHER(0)
223 #define I915_PMU_REQUESTED_FREQUENCY	__I915_PMU_OTHER(1)
224 #define I915_PMU_INTERRUPTS		__I915_PMU_OTHER(2)
225 #define I915_PMU_RC6_RESIDENCY		__I915_PMU_OTHER(3)
226 #define I915_PMU_SOFTWARE_GT_AWAKE_TIME	__I915_PMU_OTHER(4)
227 
228 #define I915_PMU_LAST /* Deprecated - do not use */ I915_PMU_RC6_RESIDENCY
229 
230 /* Each region is a minimum of 16k, and there are at most 255 of them.
231  */
232 #define I915_NR_TEX_REGIONS 255	/* table size 2k - maximum due to use
233 				 * of chars for next/prev indices */
234 #define I915_LOG_MIN_TEX_REGION_SIZE 14
235 
236 typedef struct _drm_i915_init {
237 	enum {
238 		I915_INIT_DMA = 0x01,
239 		I915_CLEANUP_DMA = 0x02,
240 		I915_RESUME_DMA = 0x03
241 	} func;
242 	unsigned int mmio_offset;
243 	int sarea_priv_offset;
244 	unsigned int ring_start;
245 	unsigned int ring_end;
246 	unsigned int ring_size;
247 	unsigned int front_offset;
248 	unsigned int back_offset;
249 	unsigned int depth_offset;
250 	unsigned int w;
251 	unsigned int h;
252 	unsigned int pitch;
253 	unsigned int pitch_bits;
254 	unsigned int back_pitch;
255 	unsigned int depth_pitch;
256 	unsigned int cpp;
257 	unsigned int chipset;
258 } drm_i915_init_t;
259 
260 typedef struct _drm_i915_sarea {
261 	struct drm_tex_region texList[I915_NR_TEX_REGIONS + 1];
262 	int last_upload;	/* last time texture was uploaded */
263 	int last_enqueue;	/* last time a buffer was enqueued */
264 	int last_dispatch;	/* age of the most recently dispatched buffer */
265 	int ctxOwner;		/* last context to upload state */
266 	int texAge;
267 	int pf_enabled;		/* is pageflipping allowed? */
268 	int pf_active;
269 	int pf_current_page;	/* which buffer is being displayed? */
270 	int perf_boxes;		/* performance boxes to be displayed */
271 	int width, height;      /* screen size in pixels */
272 
273 	drm_handle_t front_handle;
274 	int front_offset;
275 	int front_size;
276 
277 	drm_handle_t back_handle;
278 	int back_offset;
279 	int back_size;
280 
281 	drm_handle_t depth_handle;
282 	int depth_offset;
283 	int depth_size;
284 
285 	drm_handle_t tex_handle;
286 	int tex_offset;
287 	int tex_size;
288 	int log_tex_granularity;
289 	int pitch;
290 	int rotation;           /* 0, 90, 180 or 270 */
291 	int rotated_offset;
292 	int rotated_size;
293 	int rotated_pitch;
294 	int virtualX, virtualY;
295 
296 	unsigned int front_tiled;
297 	unsigned int back_tiled;
298 	unsigned int depth_tiled;
299 	unsigned int rotated_tiled;
300 	unsigned int rotated2_tiled;
301 
302 	int pipeA_x;
303 	int pipeA_y;
304 	int pipeA_w;
305 	int pipeA_h;
306 	int pipeB_x;
307 	int pipeB_y;
308 	int pipeB_w;
309 	int pipeB_h;
310 
311 	/* fill out some space for old userspace triple buffer */
312 	drm_handle_t unused_handle;
313 	__u32 unused1, unused2, unused3;
314 
315 	/* buffer object handles for static buffers. May change
316 	 * over the lifetime of the client.
317 	 */
318 	__u32 front_bo_handle;
319 	__u32 back_bo_handle;
320 	__u32 unused_bo_handle;
321 	__u32 depth_bo_handle;
322 
323 } drm_i915_sarea_t;
324 
325 /* due to userspace building against these headers we need some compat here */
326 #define planeA_x pipeA_x
327 #define planeA_y pipeA_y
328 #define planeA_w pipeA_w
329 #define planeA_h pipeA_h
330 #define planeB_x pipeB_x
331 #define planeB_y pipeB_y
332 #define planeB_w pipeB_w
333 #define planeB_h pipeB_h
334 
335 /* Flags for perf_boxes
336  */
337 #define I915_BOX_RING_EMPTY    0x1
338 #define I915_BOX_FLIP          0x2
339 #define I915_BOX_WAIT          0x4
340 #define I915_BOX_TEXTURE_LOAD  0x8
341 #define I915_BOX_LOST_CONTEXT  0x10
342 
343 /*
344  * i915 specific ioctls.
345  *
346  * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie
347  * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset
348  * against DRM_COMMAND_BASE and should be between [0x0, 0x60).
349  */
350 #define DRM_I915_INIT		0x00
351 #define DRM_I915_FLUSH		0x01
352 #define DRM_I915_FLIP		0x02
353 #define DRM_I915_BATCHBUFFER	0x03
354 #define DRM_I915_IRQ_EMIT	0x04
355 #define DRM_I915_IRQ_WAIT	0x05
356 #define DRM_I915_GETPARAM	0x06
357 #define DRM_I915_SETPARAM	0x07
358 #define DRM_I915_ALLOC		0x08
359 #define DRM_I915_FREE		0x09
360 #define DRM_I915_INIT_HEAP	0x0a
361 #define DRM_I915_CMDBUFFER	0x0b
362 #define DRM_I915_DESTROY_HEAP	0x0c
363 #define DRM_I915_SET_VBLANK_PIPE	0x0d
364 #define DRM_I915_GET_VBLANK_PIPE	0x0e
365 #define DRM_I915_VBLANK_SWAP	0x0f
366 #define DRM_I915_HWS_ADDR	0x11
367 #define DRM_I915_GEM_INIT	0x13
368 #define DRM_I915_GEM_EXECBUFFER	0x14
369 #define DRM_I915_GEM_PIN	0x15
370 #define DRM_I915_GEM_UNPIN	0x16
371 #define DRM_I915_GEM_BUSY	0x17
372 #define DRM_I915_GEM_THROTTLE	0x18
373 #define DRM_I915_GEM_ENTERVT	0x19
374 #define DRM_I915_GEM_LEAVEVT	0x1a
375 #define DRM_I915_GEM_CREATE	0x1b
376 #define DRM_I915_GEM_PREAD	0x1c
377 #define DRM_I915_GEM_PWRITE	0x1d
378 #define DRM_I915_GEM_MMAP	0x1e
379 #define DRM_I915_GEM_SET_DOMAIN	0x1f
380 #define DRM_I915_GEM_SW_FINISH	0x20
381 #define DRM_I915_GEM_SET_TILING	0x21
382 #define DRM_I915_GEM_GET_TILING	0x22
383 #define DRM_I915_GEM_GET_APERTURE 0x23
384 #define DRM_I915_GEM_MMAP_GTT	0x24
385 #define DRM_I915_GET_PIPE_FROM_CRTC_ID	0x25
386 #define DRM_I915_GEM_MADVISE	0x26
387 #define DRM_I915_OVERLAY_PUT_IMAGE	0x27
388 #define DRM_I915_OVERLAY_ATTRS	0x28
389 #define DRM_I915_GEM_EXECBUFFER2	0x29
390 #define DRM_I915_GEM_EXECBUFFER2_WR	DRM_I915_GEM_EXECBUFFER2
391 #define DRM_I915_GET_SPRITE_COLORKEY	0x2a
392 #define DRM_I915_SET_SPRITE_COLORKEY	0x2b
393 #define DRM_I915_GEM_WAIT	0x2c
394 #define DRM_I915_GEM_CONTEXT_CREATE	0x2d
395 #define DRM_I915_GEM_CONTEXT_DESTROY	0x2e
396 #define DRM_I915_GEM_SET_CACHING	0x2f
397 #define DRM_I915_GEM_GET_CACHING	0x30
398 #define DRM_I915_REG_READ		0x31
399 #define DRM_I915_GET_RESET_STATS	0x32
400 #define DRM_I915_GEM_USERPTR		0x33
401 #define DRM_I915_GEM_CONTEXT_GETPARAM	0x34
402 #define DRM_I915_GEM_CONTEXT_SETPARAM	0x35
403 #define DRM_I915_PERF_OPEN		0x36
404 #define DRM_I915_PERF_ADD_CONFIG	0x37
405 #define DRM_I915_PERF_REMOVE_CONFIG	0x38
406 #define DRM_I915_QUERY			0x39
407 #define DRM_I915_GEM_VM_CREATE		0x3a
408 #define DRM_I915_GEM_VM_DESTROY		0x3b
409 #define DRM_I915_GEM_CREATE_EXT		0x3c
410 /* Must be kept compact -- no holes */
411 
412 #define DRM_IOCTL_I915_INIT		DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT, drm_i915_init_t)
413 #define DRM_IOCTL_I915_FLUSH		DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLUSH)
414 #define DRM_IOCTL_I915_FLIP		DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLIP)
415 #define DRM_IOCTL_I915_BATCHBUFFER	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_BATCHBUFFER, drm_i915_batchbuffer_t)
416 #define DRM_IOCTL_I915_IRQ_EMIT         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_IRQ_EMIT, drm_i915_irq_emit_t)
417 #define DRM_IOCTL_I915_IRQ_WAIT         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_IRQ_WAIT, drm_i915_irq_wait_t)
418 #define DRM_IOCTL_I915_GETPARAM         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GETPARAM, drm_i915_getparam_t)
419 #define DRM_IOCTL_I915_SETPARAM         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SETPARAM, drm_i915_setparam_t)
420 #define DRM_IOCTL_I915_ALLOC            DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_ALLOC, drm_i915_mem_alloc_t)
421 #define DRM_IOCTL_I915_FREE             DRM_IOW( DRM_COMMAND_BASE + DRM_I915_FREE, drm_i915_mem_free_t)
422 #define DRM_IOCTL_I915_INIT_HEAP        DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT_HEAP, drm_i915_mem_init_heap_t)
423 #define DRM_IOCTL_I915_CMDBUFFER	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_CMDBUFFER, drm_i915_cmdbuffer_t)
424 #define DRM_IOCTL_I915_DESTROY_HEAP	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_DESTROY_HEAP, drm_i915_mem_destroy_heap_t)
425 #define DRM_IOCTL_I915_SET_VBLANK_PIPE	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
426 #define DRM_IOCTL_I915_GET_VBLANK_PIPE	DRM_IOR( DRM_COMMAND_BASE + DRM_I915_GET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
427 #define DRM_IOCTL_I915_VBLANK_SWAP	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_VBLANK_SWAP, drm_i915_vblank_swap_t)
428 #define DRM_IOCTL_I915_HWS_ADDR		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_HWS_ADDR, struct drm_i915_gem_init)
429 #define DRM_IOCTL_I915_GEM_INIT		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_INIT, struct drm_i915_gem_init)
430 #define DRM_IOCTL_I915_GEM_EXECBUFFER	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER, struct drm_i915_gem_execbuffer)
431 #define DRM_IOCTL_I915_GEM_EXECBUFFER2	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2, struct drm_i915_gem_execbuffer2)
432 #define DRM_IOCTL_I915_GEM_EXECBUFFER2_WR	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2_WR, struct drm_i915_gem_execbuffer2)
433 #define DRM_IOCTL_I915_GEM_PIN		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_PIN, struct drm_i915_gem_pin)
434 #define DRM_IOCTL_I915_GEM_UNPIN	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_UNPIN, struct drm_i915_gem_unpin)
435 #define DRM_IOCTL_I915_GEM_BUSY		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_BUSY, struct drm_i915_gem_busy)
436 #define DRM_IOCTL_I915_GEM_SET_CACHING		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_SET_CACHING, struct drm_i915_gem_caching)
437 #define DRM_IOCTL_I915_GEM_GET_CACHING		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_GET_CACHING, struct drm_i915_gem_caching)
438 #define DRM_IOCTL_I915_GEM_THROTTLE	DRM_IO ( DRM_COMMAND_BASE + DRM_I915_GEM_THROTTLE)
439 #define DRM_IOCTL_I915_GEM_ENTERVT	DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_ENTERVT)
440 #define DRM_IOCTL_I915_GEM_LEAVEVT	DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_LEAVEVT)
441 #define DRM_IOCTL_I915_GEM_CREATE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE, struct drm_i915_gem_create)
442 #define DRM_IOCTL_I915_GEM_CREATE_EXT	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE_EXT, struct drm_i915_gem_create_ext)
443 #define DRM_IOCTL_I915_GEM_PREAD	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PREAD, struct drm_i915_gem_pread)
444 #define DRM_IOCTL_I915_GEM_PWRITE	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PWRITE, struct drm_i915_gem_pwrite)
445 #define DRM_IOCTL_I915_GEM_MMAP		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP, struct drm_i915_gem_mmap)
446 #define DRM_IOCTL_I915_GEM_MMAP_GTT	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_gtt)
447 #define DRM_IOCTL_I915_GEM_MMAP_OFFSET	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_offset)
448 #define DRM_IOCTL_I915_GEM_SET_DOMAIN	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SET_DOMAIN, struct drm_i915_gem_set_domain)
449 #define DRM_IOCTL_I915_GEM_SW_FINISH	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SW_FINISH, struct drm_i915_gem_sw_finish)
450 #define DRM_IOCTL_I915_GEM_SET_TILING	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_SET_TILING, struct drm_i915_gem_set_tiling)
451 #define DRM_IOCTL_I915_GEM_GET_TILING	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_TILING, struct drm_i915_gem_get_tiling)
452 #define DRM_IOCTL_I915_GEM_GET_APERTURE	DRM_IOR  (DRM_COMMAND_BASE + DRM_I915_GEM_GET_APERTURE, struct drm_i915_gem_get_aperture)
453 #define DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_PIPE_FROM_CRTC_ID, struct drm_i915_get_pipe_from_crtc_id)
454 #define DRM_IOCTL_I915_GEM_MADVISE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MADVISE, struct drm_i915_gem_madvise)
455 #define DRM_IOCTL_I915_OVERLAY_PUT_IMAGE	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_OVERLAY_PUT_IMAGE, struct drm_intel_overlay_put_image)
456 #define DRM_IOCTL_I915_OVERLAY_ATTRS	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_OVERLAY_ATTRS, struct drm_intel_overlay_attrs)
457 #define DRM_IOCTL_I915_SET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_SET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
458 #define DRM_IOCTL_I915_GET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
459 #define DRM_IOCTL_I915_GEM_WAIT		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_WAIT, struct drm_i915_gem_wait)
460 #define DRM_IOCTL_I915_GEM_CONTEXT_CREATE	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create)
461 #define DRM_IOCTL_I915_GEM_CONTEXT_CREATE_EXT	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create_ext)
462 #define DRM_IOCTL_I915_GEM_CONTEXT_DESTROY	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_DESTROY, struct drm_i915_gem_context_destroy)
463 #define DRM_IOCTL_I915_REG_READ			DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_REG_READ, struct drm_i915_reg_read)
464 #define DRM_IOCTL_I915_GET_RESET_STATS		DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GET_RESET_STATS, struct drm_i915_reset_stats)
465 #define DRM_IOCTL_I915_GEM_USERPTR			DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_USERPTR, struct drm_i915_gem_userptr)
466 #define DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_GETPARAM, struct drm_i915_gem_context_param)
467 #define DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_SETPARAM, struct drm_i915_gem_context_param)
468 #define DRM_IOCTL_I915_PERF_OPEN	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_OPEN, struct drm_i915_perf_open_param)
469 #define DRM_IOCTL_I915_PERF_ADD_CONFIG	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_ADD_CONFIG, struct drm_i915_perf_oa_config)
470 #define DRM_IOCTL_I915_PERF_REMOVE_CONFIG	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_REMOVE_CONFIG, __u64)
471 #define DRM_IOCTL_I915_QUERY			DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_QUERY, struct drm_i915_query)
472 #define DRM_IOCTL_I915_GEM_VM_CREATE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_VM_CREATE, struct drm_i915_gem_vm_control)
473 #define DRM_IOCTL_I915_GEM_VM_DESTROY	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_VM_DESTROY, struct drm_i915_gem_vm_control)
474 
475 /* Allow drivers to submit batchbuffers directly to hardware, relying
476  * on the security mechanisms provided by hardware.
477  */
478 typedef struct drm_i915_batchbuffer {
479 	int start;		/* agp offset */
480 	int used;		/* nr bytes in use */
481 	int DR1;		/* hw flags for GFX_OP_DRAWRECT_INFO */
482 	int DR4;		/* window origin for GFX_OP_DRAWRECT_INFO */
483 	int num_cliprects;	/* mulitpass with multiple cliprects? */
484 	struct drm_clip_rect __user *cliprects;	/* pointer to userspace cliprects */
485 } drm_i915_batchbuffer_t;
486 
487 /* As above, but pass a pointer to userspace buffer which can be
488  * validated by the kernel prior to sending to hardware.
489  */
490 typedef struct _drm_i915_cmdbuffer {
491 	char __user *buf;	/* pointer to userspace command buffer */
492 	int sz;			/* nr bytes in buf */
493 	int DR1;		/* hw flags for GFX_OP_DRAWRECT_INFO */
494 	int DR4;		/* window origin for GFX_OP_DRAWRECT_INFO */
495 	int num_cliprects;	/* mulitpass with multiple cliprects? */
496 	struct drm_clip_rect __user *cliprects;	/* pointer to userspace cliprects */
497 } drm_i915_cmdbuffer_t;
498 
499 /* Userspace can request & wait on irq's:
500  */
501 typedef struct drm_i915_irq_emit {
502 	int __user *irq_seq;
503 } drm_i915_irq_emit_t;
504 
505 typedef struct drm_i915_irq_wait {
506 	int irq_seq;
507 } drm_i915_irq_wait_t;
508 
509 /*
510  * Different modes of per-process Graphics Translation Table,
511  * see I915_PARAM_HAS_ALIASING_PPGTT
512  */
513 #define I915_GEM_PPGTT_NONE	0
514 #define I915_GEM_PPGTT_ALIASING	1
515 #define I915_GEM_PPGTT_FULL	2
516 
517 /* Ioctl to query kernel params:
518  */
519 #define I915_PARAM_IRQ_ACTIVE            1
520 #define I915_PARAM_ALLOW_BATCHBUFFER     2
521 #define I915_PARAM_LAST_DISPATCH         3
522 #define I915_PARAM_CHIPSET_ID            4
523 #define I915_PARAM_HAS_GEM               5
524 #define I915_PARAM_NUM_FENCES_AVAIL      6
525 #define I915_PARAM_HAS_OVERLAY           7
526 #define I915_PARAM_HAS_PAGEFLIPPING	 8
527 #define I915_PARAM_HAS_EXECBUF2          9
528 #define I915_PARAM_HAS_BSD		 10
529 #define I915_PARAM_HAS_BLT		 11
530 #define I915_PARAM_HAS_RELAXED_FENCING	 12
531 #define I915_PARAM_HAS_COHERENT_RINGS	 13
532 #define I915_PARAM_HAS_EXEC_CONSTANTS	 14
533 #define I915_PARAM_HAS_RELAXED_DELTA	 15
534 #define I915_PARAM_HAS_GEN7_SOL_RESET	 16
535 #define I915_PARAM_HAS_LLC     	 	 17
536 #define I915_PARAM_HAS_ALIASING_PPGTT	 18
537 #define I915_PARAM_HAS_WAIT_TIMEOUT	 19
538 #define I915_PARAM_HAS_SEMAPHORES	 20
539 #define I915_PARAM_HAS_PRIME_VMAP_FLUSH	 21
540 #define I915_PARAM_HAS_VEBOX		 22
541 #define I915_PARAM_HAS_SECURE_BATCHES	 23
542 #define I915_PARAM_HAS_PINNED_BATCHES	 24
543 #define I915_PARAM_HAS_EXEC_NO_RELOC	 25
544 #define I915_PARAM_HAS_EXEC_HANDLE_LUT   26
545 #define I915_PARAM_HAS_WT     	 	 27
546 #define I915_PARAM_CMD_PARSER_VERSION	 28
547 #define I915_PARAM_HAS_COHERENT_PHYS_GTT 29
548 #define I915_PARAM_MMAP_VERSION          30
549 #define I915_PARAM_HAS_BSD2		 31
550 #define I915_PARAM_REVISION              32
551 #define I915_PARAM_SUBSLICE_TOTAL	 33
552 #define I915_PARAM_EU_TOTAL		 34
553 #define I915_PARAM_HAS_GPU_RESET	 35
554 #define I915_PARAM_HAS_RESOURCE_STREAMER 36
555 #define I915_PARAM_HAS_EXEC_SOFTPIN	 37
556 #define I915_PARAM_HAS_POOLED_EU	 38
557 #define I915_PARAM_MIN_EU_IN_POOL	 39
558 #define I915_PARAM_MMAP_GTT_VERSION	 40
559 
560 /*
561  * Query whether DRM_I915_GEM_EXECBUFFER2 supports user defined execution
562  * priorities and the driver will attempt to execute batches in priority order.
563  * The param returns a capability bitmask, nonzero implies that the scheduler
564  * is enabled, with different features present according to the mask.
565  *
566  * The initial priority for each batch is supplied by the context and is
567  * controlled via I915_CONTEXT_PARAM_PRIORITY.
568  */
569 #define I915_PARAM_HAS_SCHEDULER	 41
570 #define   I915_SCHEDULER_CAP_ENABLED	(1ul << 0)
571 #define   I915_SCHEDULER_CAP_PRIORITY	(1ul << 1)
572 #define   I915_SCHEDULER_CAP_PREEMPTION	(1ul << 2)
573 #define   I915_SCHEDULER_CAP_SEMAPHORES	(1ul << 3)
574 #define   I915_SCHEDULER_CAP_ENGINE_BUSY_STATS	(1ul << 4)
575 
576 #define I915_PARAM_HUC_STATUS		 42
577 
578 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to opt-out of
579  * synchronisation with implicit fencing on individual objects.
580  * See EXEC_OBJECT_ASYNC.
581  */
582 #define I915_PARAM_HAS_EXEC_ASYNC	 43
583 
584 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports explicit fence support -
585  * both being able to pass in a sync_file fd to wait upon before executing,
586  * and being able to return a new sync_file fd that is signaled when the
587  * current request is complete. See I915_EXEC_FENCE_IN and I915_EXEC_FENCE_OUT.
588  */
589 #define I915_PARAM_HAS_EXEC_FENCE	 44
590 
591 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to capture
592  * user specified bufffers for post-mortem debugging of GPU hangs. See
593  * EXEC_OBJECT_CAPTURE.
594  */
595 #define I915_PARAM_HAS_EXEC_CAPTURE	 45
596 
597 #define I915_PARAM_SLICE_MASK		 46
598 
599 /* Assuming it's uniform for each slice, this queries the mask of subslices
600  * per-slice for this system.
601  */
602 #define I915_PARAM_SUBSLICE_MASK	 47
603 
604 /*
605  * Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying the batch buffer
606  * as the first execobject as opposed to the last. See I915_EXEC_BATCH_FIRST.
607  */
608 #define I915_PARAM_HAS_EXEC_BATCH_FIRST	 48
609 
610 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
611  * drm_i915_gem_exec_fence structures.  See I915_EXEC_FENCE_ARRAY.
612  */
613 #define I915_PARAM_HAS_EXEC_FENCE_ARRAY  49
614 
615 /*
616  * Query whether every context (both per-file default and user created) is
617  * isolated (insofar as HW supports). If this parameter is not true, then
618  * freshly created contexts may inherit values from an existing context,
619  * rather than default HW values. If true, it also ensures (insofar as HW
620  * supports) that all state set by this context will not leak to any other
621  * context.
622  *
623  * As not every engine across every gen support contexts, the returned
624  * value reports the support of context isolation for individual engines by
625  * returning a bitmask of each engine class set to true if that class supports
626  * isolation.
627  */
628 #define I915_PARAM_HAS_CONTEXT_ISOLATION 50
629 
630 /* Frequency of the command streamer timestamps given by the *_TIMESTAMP
631  * registers. This used to be fixed per platform but from CNL onwards, this
632  * might vary depending on the parts.
633  */
634 #define I915_PARAM_CS_TIMESTAMP_FREQUENCY 51
635 
636 /*
637  * Once upon a time we supposed that writes through the GGTT would be
638  * immediately in physical memory (once flushed out of the CPU path). However,
639  * on a few different processors and chipsets, this is not necessarily the case
640  * as the writes appear to be buffered internally. Thus a read of the backing
641  * storage (physical memory) via a different path (with different physical tags
642  * to the indirect write via the GGTT) will see stale values from before
643  * the GGTT write. Inside the kernel, we can for the most part keep track of
644  * the different read/write domains in use (e.g. set-domain), but the assumption
645  * of coherency is baked into the ABI, hence reporting its true state in this
646  * parameter.
647  *
648  * Reports true when writes via mmap_gtt are immediately visible following an
649  * lfence to flush the WCB.
650  *
651  * Reports false when writes via mmap_gtt are indeterminately delayed in an in
652  * internal buffer and are _not_ immediately visible to third parties accessing
653  * directly via mmap_cpu/mmap_wc. Use of mmap_gtt as part of an IPC
654  * communications channel when reporting false is strongly disadvised.
655  */
656 #define I915_PARAM_MMAP_GTT_COHERENT	52
657 
658 /*
659  * Query whether DRM_I915_GEM_EXECBUFFER2 supports coordination of parallel
660  * execution through use of explicit fence support.
661  * See I915_EXEC_FENCE_OUT and I915_EXEC_FENCE_SUBMIT.
662  */
663 #define I915_PARAM_HAS_EXEC_SUBMIT_FENCE 53
664 
665 /*
666  * Revision of the i915-perf uAPI. The value returned helps determine what
667  * i915-perf features are available. See drm_i915_perf_property_id.
668  */
669 #define I915_PARAM_PERF_REVISION	54
670 
671 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
672  * timeline syncobj through drm_i915_gem_execbuffer_ext_timeline_fences. See
673  * I915_EXEC_USE_EXTENSIONS.
674  */
675 #define I915_PARAM_HAS_EXEC_TIMELINE_FENCES 55
676 
677 /* Must be kept compact -- no holes and well documented */
678 
679 typedef struct drm_i915_getparam {
680 	__s32 param;
681 	/*
682 	 * WARNING: Using pointers instead of fixed-size u64 means we need to write
683 	 * compat32 code. Don't repeat this mistake.
684 	 */
685 	int __user *value;
686 } drm_i915_getparam_t;
687 
688 /* Ioctl to set kernel params:
689  */
690 #define I915_SETPARAM_USE_MI_BATCHBUFFER_START            1
691 #define I915_SETPARAM_TEX_LRU_LOG_GRANULARITY             2
692 #define I915_SETPARAM_ALLOW_BATCHBUFFER                   3
693 #define I915_SETPARAM_NUM_USED_FENCES                     4
694 /* Must be kept compact -- no holes */
695 
696 typedef struct drm_i915_setparam {
697 	int param;
698 	int value;
699 } drm_i915_setparam_t;
700 
701 /* A memory manager for regions of shared memory:
702  */
703 #define I915_MEM_REGION_AGP 1
704 
705 typedef struct drm_i915_mem_alloc {
706 	int region;
707 	int alignment;
708 	int size;
709 	int __user *region_offset;	/* offset from start of fb or agp */
710 } drm_i915_mem_alloc_t;
711 
712 typedef struct drm_i915_mem_free {
713 	int region;
714 	int region_offset;
715 } drm_i915_mem_free_t;
716 
717 typedef struct drm_i915_mem_init_heap {
718 	int region;
719 	int size;
720 	int start;
721 } drm_i915_mem_init_heap_t;
722 
723 /* Allow memory manager to be torn down and re-initialized (eg on
724  * rotate):
725  */
726 typedef struct drm_i915_mem_destroy_heap {
727 	int region;
728 } drm_i915_mem_destroy_heap_t;
729 
730 /* Allow X server to configure which pipes to monitor for vblank signals
731  */
732 #define	DRM_I915_VBLANK_PIPE_A	1
733 #define	DRM_I915_VBLANK_PIPE_B	2
734 
735 typedef struct drm_i915_vblank_pipe {
736 	int pipe;
737 } drm_i915_vblank_pipe_t;
738 
739 /* Schedule buffer swap at given vertical blank:
740  */
741 typedef struct drm_i915_vblank_swap {
742 	drm_drawable_t drawable;
743 	enum drm_vblank_seq_type seqtype;
744 	unsigned int sequence;
745 } drm_i915_vblank_swap_t;
746 
747 typedef struct drm_i915_hws_addr {
748 	__u64 addr;
749 } drm_i915_hws_addr_t;
750 
751 struct drm_i915_gem_init {
752 	/**
753 	 * Beginning offset in the GTT to be managed by the DRM memory
754 	 * manager.
755 	 */
756 	__u64 gtt_start;
757 	/**
758 	 * Ending offset in the GTT to be managed by the DRM memory
759 	 * manager.
760 	 */
761 	__u64 gtt_end;
762 };
763 
764 struct drm_i915_gem_create {
765 	/**
766 	 * Requested size for the object.
767 	 *
768 	 * The (page-aligned) allocated size for the object will be returned.
769 	 */
770 	__u64 size;
771 	/**
772 	 * Returned handle for the object.
773 	 *
774 	 * Object handles are nonzero.
775 	 */
776 	__u32 handle;
777 	__u32 pad;
778 };
779 
780 struct drm_i915_gem_pread {
781 	/** Handle for the object being read. */
782 	__u32 handle;
783 	__u32 pad;
784 	/** Offset into the object to read from */
785 	__u64 offset;
786 	/** Length of data to read */
787 	__u64 size;
788 	/**
789 	 * Pointer to write the data into.
790 	 *
791 	 * This is a fixed-size type for 32/64 compatibility.
792 	 */
793 	__u64 data_ptr;
794 };
795 
796 struct drm_i915_gem_pwrite {
797 	/** Handle for the object being written to. */
798 	__u32 handle;
799 	__u32 pad;
800 	/** Offset into the object to write to */
801 	__u64 offset;
802 	/** Length of data to write */
803 	__u64 size;
804 	/**
805 	 * Pointer to read the data from.
806 	 *
807 	 * This is a fixed-size type for 32/64 compatibility.
808 	 */
809 	__u64 data_ptr;
810 };
811 
812 struct drm_i915_gem_mmap {
813 	/** Handle for the object being mapped. */
814 	__u32 handle;
815 	__u32 pad;
816 	/** Offset in the object to map. */
817 	__u64 offset;
818 	/**
819 	 * Length of data to map.
820 	 *
821 	 * The value will be page-aligned.
822 	 */
823 	__u64 size;
824 	/**
825 	 * Returned pointer the data was mapped at.
826 	 *
827 	 * This is a fixed-size type for 32/64 compatibility.
828 	 */
829 	__u64 addr_ptr;
830 
831 	/**
832 	 * Flags for extended behaviour.
833 	 *
834 	 * Added in version 2.
835 	 */
836 	__u64 flags;
837 #define I915_MMAP_WC 0x1
838 };
839 
840 struct drm_i915_gem_mmap_gtt {
841 	/** Handle for the object being mapped. */
842 	__u32 handle;
843 	__u32 pad;
844 	/**
845 	 * Fake offset to use for subsequent mmap call
846 	 *
847 	 * This is a fixed-size type for 32/64 compatibility.
848 	 */
849 	__u64 offset;
850 };
851 
852 struct drm_i915_gem_mmap_offset {
853 	/** Handle for the object being mapped. */
854 	__u32 handle;
855 	__u32 pad;
856 	/**
857 	 * Fake offset to use for subsequent mmap call
858 	 *
859 	 * This is a fixed-size type for 32/64 compatibility.
860 	 */
861 	__u64 offset;
862 
863 	/**
864 	 * Flags for extended behaviour.
865 	 *
866 	 * It is mandatory that one of the MMAP_OFFSET types
867 	 * (GTT, WC, WB, UC, etc) should be included.
868 	 */
869 	__u64 flags;
870 #define I915_MMAP_OFFSET_GTT 0
871 #define I915_MMAP_OFFSET_WC  1
872 #define I915_MMAP_OFFSET_WB  2
873 #define I915_MMAP_OFFSET_UC  3
874 
875 	/*
876 	 * Zero-terminated chain of extensions.
877 	 *
878 	 * No current extensions defined; mbz.
879 	 */
880 	__u64 extensions;
881 };
882 
883 /**
884  * struct drm_i915_gem_set_domain - Adjust the objects write or read domain, in
885  * preparation for accessing the pages via some CPU domain.
886  *
887  * Specifying a new write or read domain will flush the object out of the
888  * previous domain(if required), before then updating the objects domain
889  * tracking with the new domain.
890  *
891  * Note this might involve waiting for the object first if it is still active on
892  * the GPU.
893  *
894  * Supported values for @read_domains and @write_domain:
895  *
896  *	- I915_GEM_DOMAIN_WC: Uncached write-combined domain
897  *	- I915_GEM_DOMAIN_CPU: CPU cache domain
898  *	- I915_GEM_DOMAIN_GTT: Mappable aperture domain
899  *
900  * All other domains are rejected.
901  */
902 struct drm_i915_gem_set_domain {
903 	/** @handle: Handle for the object. */
904 	__u32 handle;
905 
906 	/** @read_domains: New read domains. */
907 	__u32 read_domains;
908 
909 	/**
910 	 * @write_domain: New write domain.
911 	 *
912 	 * Note that having something in the write domain implies it's in the
913 	 * read domain, and only that read domain.
914 	 */
915 	__u32 write_domain;
916 };
917 
918 struct drm_i915_gem_sw_finish {
919 	/** Handle for the object */
920 	__u32 handle;
921 };
922 
923 struct drm_i915_gem_relocation_entry {
924 	/**
925 	 * Handle of the buffer being pointed to by this relocation entry.
926 	 *
927 	 * It's appealing to make this be an index into the mm_validate_entry
928 	 * list to refer to the buffer, but this allows the driver to create
929 	 * a relocation list for state buffers and not re-write it per
930 	 * exec using the buffer.
931 	 */
932 	__u32 target_handle;
933 
934 	/**
935 	 * Value to be added to the offset of the target buffer to make up
936 	 * the relocation entry.
937 	 */
938 	__u32 delta;
939 
940 	/** Offset in the buffer the relocation entry will be written into */
941 	__u64 offset;
942 
943 	/**
944 	 * Offset value of the target buffer that the relocation entry was last
945 	 * written as.
946 	 *
947 	 * If the buffer has the same offset as last time, we can skip syncing
948 	 * and writing the relocation.  This value is written back out by
949 	 * the execbuffer ioctl when the relocation is written.
950 	 */
951 	__u64 presumed_offset;
952 
953 	/**
954 	 * Target memory domains read by this operation.
955 	 */
956 	__u32 read_domains;
957 
958 	/**
959 	 * Target memory domains written by this operation.
960 	 *
961 	 * Note that only one domain may be written by the whole
962 	 * execbuffer operation, so that where there are conflicts,
963 	 * the application will get -EINVAL back.
964 	 */
965 	__u32 write_domain;
966 };
967 
968 /** @{
969  * Intel memory domains
970  *
971  * Most of these just align with the various caches in
972  * the system and are used to flush and invalidate as
973  * objects end up cached in different domains.
974  */
975 /** CPU cache */
976 #define I915_GEM_DOMAIN_CPU		0x00000001
977 /** Render cache, used by 2D and 3D drawing */
978 #define I915_GEM_DOMAIN_RENDER		0x00000002
979 /** Sampler cache, used by texture engine */
980 #define I915_GEM_DOMAIN_SAMPLER		0x00000004
981 /** Command queue, used to load batch buffers */
982 #define I915_GEM_DOMAIN_COMMAND		0x00000008
983 /** Instruction cache, used by shader programs */
984 #define I915_GEM_DOMAIN_INSTRUCTION	0x00000010
985 /** Vertex address cache */
986 #define I915_GEM_DOMAIN_VERTEX		0x00000020
987 /** GTT domain - aperture and scanout */
988 #define I915_GEM_DOMAIN_GTT		0x00000040
989 /** WC domain - uncached access */
990 #define I915_GEM_DOMAIN_WC		0x00000080
991 /** @} */
992 
993 struct drm_i915_gem_exec_object {
994 	/**
995 	 * User's handle for a buffer to be bound into the GTT for this
996 	 * operation.
997 	 */
998 	__u32 handle;
999 
1000 	/** Number of relocations to be performed on this buffer */
1001 	__u32 relocation_count;
1002 	/**
1003 	 * Pointer to array of struct drm_i915_gem_relocation_entry containing
1004 	 * the relocations to be performed in this buffer.
1005 	 */
1006 	__u64 relocs_ptr;
1007 
1008 	/** Required alignment in graphics aperture */
1009 	__u64 alignment;
1010 
1011 	/**
1012 	 * Returned value of the updated offset of the object, for future
1013 	 * presumed_offset writes.
1014 	 */
1015 	__u64 offset;
1016 };
1017 
1018 /* DRM_IOCTL_I915_GEM_EXECBUFFER was removed in Linux 5.13 */
1019 struct drm_i915_gem_execbuffer {
1020 	/**
1021 	 * List of buffers to be validated with their relocations to be
1022 	 * performend on them.
1023 	 *
1024 	 * This is a pointer to an array of struct drm_i915_gem_validate_entry.
1025 	 *
1026 	 * These buffers must be listed in an order such that all relocations
1027 	 * a buffer is performing refer to buffers that have already appeared
1028 	 * in the validate list.
1029 	 */
1030 	__u64 buffers_ptr;
1031 	__u32 buffer_count;
1032 
1033 	/** Offset in the batchbuffer to start execution from. */
1034 	__u32 batch_start_offset;
1035 	/** Bytes used in batchbuffer from batch_start_offset */
1036 	__u32 batch_len;
1037 	__u32 DR1;
1038 	__u32 DR4;
1039 	__u32 num_cliprects;
1040 	/** This is a struct drm_clip_rect *cliprects */
1041 	__u64 cliprects_ptr;
1042 };
1043 
1044 struct drm_i915_gem_exec_object2 {
1045 	/**
1046 	 * User's handle for a buffer to be bound into the GTT for this
1047 	 * operation.
1048 	 */
1049 	__u32 handle;
1050 
1051 	/** Number of relocations to be performed on this buffer */
1052 	__u32 relocation_count;
1053 	/**
1054 	 * Pointer to array of struct drm_i915_gem_relocation_entry containing
1055 	 * the relocations to be performed in this buffer.
1056 	 */
1057 	__u64 relocs_ptr;
1058 
1059 	/** Required alignment in graphics aperture */
1060 	__u64 alignment;
1061 
1062 	/**
1063 	 * When the EXEC_OBJECT_PINNED flag is specified this is populated by
1064 	 * the user with the GTT offset at which this object will be pinned.
1065 	 * When the I915_EXEC_NO_RELOC flag is specified this must contain the
1066 	 * presumed_offset of the object.
1067 	 * During execbuffer2 the kernel populates it with the value of the
1068 	 * current GTT offset of the object, for future presumed_offset writes.
1069 	 */
1070 	__u64 offset;
1071 
1072 #define EXEC_OBJECT_NEEDS_FENCE		 (1<<0)
1073 #define EXEC_OBJECT_NEEDS_GTT		 (1<<1)
1074 #define EXEC_OBJECT_WRITE		 (1<<2)
1075 #define EXEC_OBJECT_SUPPORTS_48B_ADDRESS (1<<3)
1076 #define EXEC_OBJECT_PINNED		 (1<<4)
1077 #define EXEC_OBJECT_PAD_TO_SIZE		 (1<<5)
1078 /* The kernel implicitly tracks GPU activity on all GEM objects, and
1079  * synchronises operations with outstanding rendering. This includes
1080  * rendering on other devices if exported via dma-buf. However, sometimes
1081  * this tracking is too coarse and the user knows better. For example,
1082  * if the object is split into non-overlapping ranges shared between different
1083  * clients or engines (i.e. suballocating objects), the implicit tracking
1084  * by kernel assumes that each operation affects the whole object rather
1085  * than an individual range, causing needless synchronisation between clients.
1086  * The kernel will also forgo any CPU cache flushes prior to rendering from
1087  * the object as the client is expected to be also handling such domain
1088  * tracking.
1089  *
1090  * The kernel maintains the implicit tracking in order to manage resources
1091  * used by the GPU - this flag only disables the synchronisation prior to
1092  * rendering with this object in this execbuf.
1093  *
1094  * Opting out of implicit synhronisation requires the user to do its own
1095  * explicit tracking to avoid rendering corruption. See, for example,
1096  * I915_PARAM_HAS_EXEC_FENCE to order execbufs and execute them asynchronously.
1097  */
1098 #define EXEC_OBJECT_ASYNC		(1<<6)
1099 /* Request that the contents of this execobject be copied into the error
1100  * state upon a GPU hang involving this batch for post-mortem debugging.
1101  * These buffers are recorded in no particular order as "user" in
1102  * /sys/class/drm/cardN/error. Query I915_PARAM_HAS_EXEC_CAPTURE to see
1103  * if the kernel supports this flag.
1104  */
1105 #define EXEC_OBJECT_CAPTURE		(1<<7)
1106 /* All remaining bits are MBZ and RESERVED FOR FUTURE USE */
1107 #define __EXEC_OBJECT_UNKNOWN_FLAGS -(EXEC_OBJECT_CAPTURE<<1)
1108 	__u64 flags;
1109 
1110 	union {
1111 		__u64 rsvd1;
1112 		__u64 pad_to_size;
1113 	};
1114 	__u64 rsvd2;
1115 };
1116 
1117 struct drm_i915_gem_exec_fence {
1118 	/**
1119 	 * User's handle for a drm_syncobj to wait on or signal.
1120 	 */
1121 	__u32 handle;
1122 
1123 #define I915_EXEC_FENCE_WAIT            (1<<0)
1124 #define I915_EXEC_FENCE_SIGNAL          (1<<1)
1125 #define __I915_EXEC_FENCE_UNKNOWN_FLAGS (-(I915_EXEC_FENCE_SIGNAL << 1))
1126 	__u32 flags;
1127 };
1128 
1129 /*
1130  * See drm_i915_gem_execbuffer_ext_timeline_fences.
1131  */
1132 #define DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES 0
1133 
1134 /*
1135  * This structure describes an array of drm_syncobj and associated points for
1136  * timeline variants of drm_syncobj. It is invalid to append this structure to
1137  * the execbuf if I915_EXEC_FENCE_ARRAY is set.
1138  */
1139 struct drm_i915_gem_execbuffer_ext_timeline_fences {
1140 	struct i915_user_extension base;
1141 
1142 	/**
1143 	 * Number of element in the handles_ptr & value_ptr arrays.
1144 	 */
1145 	__u64 fence_count;
1146 
1147 	/**
1148 	 * Pointer to an array of struct drm_i915_gem_exec_fence of length
1149 	 * fence_count.
1150 	 */
1151 	__u64 handles_ptr;
1152 
1153 	/**
1154 	 * Pointer to an array of u64 values of length fence_count. Values
1155 	 * must be 0 for a binary drm_syncobj. A Value of 0 for a timeline
1156 	 * drm_syncobj is invalid as it turns a drm_syncobj into a binary one.
1157 	 */
1158 	__u64 values_ptr;
1159 };
1160 
1161 struct drm_i915_gem_execbuffer2 {
1162 	/**
1163 	 * List of gem_exec_object2 structs
1164 	 */
1165 	__u64 buffers_ptr;
1166 	__u32 buffer_count;
1167 
1168 	/** Offset in the batchbuffer to start execution from. */
1169 	__u32 batch_start_offset;
1170 	/** Bytes used in batchbuffer from batch_start_offset */
1171 	__u32 batch_len;
1172 	__u32 DR1;
1173 	__u32 DR4;
1174 	__u32 num_cliprects;
1175 	/**
1176 	 * This is a struct drm_clip_rect *cliprects if I915_EXEC_FENCE_ARRAY
1177 	 * & I915_EXEC_USE_EXTENSIONS are not set.
1178 	 *
1179 	 * If I915_EXEC_FENCE_ARRAY is set, then this is a pointer to an array
1180 	 * of struct drm_i915_gem_exec_fence and num_cliprects is the length
1181 	 * of the array.
1182 	 *
1183 	 * If I915_EXEC_USE_EXTENSIONS is set, then this is a pointer to a
1184 	 * single struct i915_user_extension and num_cliprects is 0.
1185 	 */
1186 	__u64 cliprects_ptr;
1187 #define I915_EXEC_RING_MASK              (0x3f)
1188 #define I915_EXEC_DEFAULT                (0<<0)
1189 #define I915_EXEC_RENDER                 (1<<0)
1190 #define I915_EXEC_BSD                    (2<<0)
1191 #define I915_EXEC_BLT                    (3<<0)
1192 #define I915_EXEC_VEBOX                  (4<<0)
1193 
1194 /* Used for switching the constants addressing mode on gen4+ RENDER ring.
1195  * Gen6+ only supports relative addressing to dynamic state (default) and
1196  * absolute addressing.
1197  *
1198  * These flags are ignored for the BSD and BLT rings.
1199  */
1200 #define I915_EXEC_CONSTANTS_MASK 	(3<<6)
1201 #define I915_EXEC_CONSTANTS_REL_GENERAL (0<<6) /* default */
1202 #define I915_EXEC_CONSTANTS_ABSOLUTE 	(1<<6)
1203 #define I915_EXEC_CONSTANTS_REL_SURFACE (2<<6) /* gen4/5 only */
1204 	__u64 flags;
1205 	__u64 rsvd1; /* now used for context info */
1206 	__u64 rsvd2;
1207 };
1208 
1209 /** Resets the SO write offset registers for transform feedback on gen7. */
1210 #define I915_EXEC_GEN7_SOL_RESET	(1<<8)
1211 
1212 /** Request a privileged ("secure") batch buffer. Note only available for
1213  * DRM_ROOT_ONLY | DRM_MASTER processes.
1214  */
1215 #define I915_EXEC_SECURE		(1<<9)
1216 
1217 /** Inform the kernel that the batch is and will always be pinned. This
1218  * negates the requirement for a workaround to be performed to avoid
1219  * an incoherent CS (such as can be found on 830/845). If this flag is
1220  * not passed, the kernel will endeavour to make sure the batch is
1221  * coherent with the CS before execution. If this flag is passed,
1222  * userspace assumes the responsibility for ensuring the same.
1223  */
1224 #define I915_EXEC_IS_PINNED		(1<<10)
1225 
1226 /** Provide a hint to the kernel that the command stream and auxiliary
1227  * state buffers already holds the correct presumed addresses and so the
1228  * relocation process may be skipped if no buffers need to be moved in
1229  * preparation for the execbuffer.
1230  */
1231 #define I915_EXEC_NO_RELOC		(1<<11)
1232 
1233 /** Use the reloc.handle as an index into the exec object array rather
1234  * than as the per-file handle.
1235  */
1236 #define I915_EXEC_HANDLE_LUT		(1<<12)
1237 
1238 /** Used for switching BSD rings on the platforms with two BSD rings */
1239 #define I915_EXEC_BSD_SHIFT	 (13)
1240 #define I915_EXEC_BSD_MASK	 (3 << I915_EXEC_BSD_SHIFT)
1241 /* default ping-pong mode */
1242 #define I915_EXEC_BSD_DEFAULT	 (0 << I915_EXEC_BSD_SHIFT)
1243 #define I915_EXEC_BSD_RING1	 (1 << I915_EXEC_BSD_SHIFT)
1244 #define I915_EXEC_BSD_RING2	 (2 << I915_EXEC_BSD_SHIFT)
1245 
1246 /** Tell the kernel that the batchbuffer is processed by
1247  *  the resource streamer.
1248  */
1249 #define I915_EXEC_RESOURCE_STREAMER     (1<<15)
1250 
1251 /* Setting I915_EXEC_FENCE_IN implies that lower_32_bits(rsvd2) represent
1252  * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1253  * the batch.
1254  *
1255  * Returns -EINVAL if the sync_file fd cannot be found.
1256  */
1257 #define I915_EXEC_FENCE_IN		(1<<16)
1258 
1259 /* Setting I915_EXEC_FENCE_OUT causes the ioctl to return a sync_file fd
1260  * in the upper_32_bits(rsvd2) upon success. Ownership of the fd is given
1261  * to the caller, and it should be close() after use. (The fd is a regular
1262  * file descriptor and will be cleaned up on process termination. It holds
1263  * a reference to the request, but nothing else.)
1264  *
1265  * The sync_file fd can be combined with other sync_file and passed either
1266  * to execbuf using I915_EXEC_FENCE_IN, to atomic KMS ioctls (so that a flip
1267  * will only occur after this request completes), or to other devices.
1268  *
1269  * Using I915_EXEC_FENCE_OUT requires use of
1270  * DRM_IOCTL_I915_GEM_EXECBUFFER2_WR ioctl so that the result is written
1271  * back to userspace. Failure to do so will cause the out-fence to always
1272  * be reported as zero, and the real fence fd to be leaked.
1273  */
1274 #define I915_EXEC_FENCE_OUT		(1<<17)
1275 
1276 /*
1277  * Traditionally the execbuf ioctl has only considered the final element in
1278  * the execobject[] to be the executable batch. Often though, the client
1279  * will known the batch object prior to construction and being able to place
1280  * it into the execobject[] array first can simplify the relocation tracking.
1281  * Setting I915_EXEC_BATCH_FIRST tells execbuf to use element 0 of the
1282  * execobject[] as the * batch instead (the default is to use the last
1283  * element).
1284  */
1285 #define I915_EXEC_BATCH_FIRST		(1<<18)
1286 
1287 /* Setting I915_FENCE_ARRAY implies that num_cliprects and cliprects_ptr
1288  * define an array of i915_gem_exec_fence structures which specify a set of
1289  * dma fences to wait upon or signal.
1290  */
1291 #define I915_EXEC_FENCE_ARRAY   (1<<19)
1292 
1293 /*
1294  * Setting I915_EXEC_FENCE_SUBMIT implies that lower_32_bits(rsvd2) represent
1295  * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1296  * the batch.
1297  *
1298  * Returns -EINVAL if the sync_file fd cannot be found.
1299  */
1300 #define I915_EXEC_FENCE_SUBMIT		(1 << 20)
1301 
1302 /*
1303  * Setting I915_EXEC_USE_EXTENSIONS implies that
1304  * drm_i915_gem_execbuffer2.cliprects_ptr is treated as a pointer to an linked
1305  * list of i915_user_extension. Each i915_user_extension node is the base of a
1306  * larger structure. The list of supported structures are listed in the
1307  * drm_i915_gem_execbuffer_ext enum.
1308  */
1309 #define I915_EXEC_USE_EXTENSIONS	(1 << 21)
1310 
1311 #define __I915_EXEC_UNKNOWN_FLAGS (-(I915_EXEC_USE_EXTENSIONS << 1))
1312 
1313 #define I915_EXEC_CONTEXT_ID_MASK	(0xffffffff)
1314 #define i915_execbuffer2_set_context_id(eb2, context) \
1315 	(eb2).rsvd1 = context & I915_EXEC_CONTEXT_ID_MASK
1316 #define i915_execbuffer2_get_context_id(eb2) \
1317 	((eb2).rsvd1 & I915_EXEC_CONTEXT_ID_MASK)
1318 
1319 struct drm_i915_gem_pin {
1320 	/** Handle of the buffer to be pinned. */
1321 	__u32 handle;
1322 	__u32 pad;
1323 
1324 	/** alignment required within the aperture */
1325 	__u64 alignment;
1326 
1327 	/** Returned GTT offset of the buffer. */
1328 	__u64 offset;
1329 };
1330 
1331 struct drm_i915_gem_unpin {
1332 	/** Handle of the buffer to be unpinned. */
1333 	__u32 handle;
1334 	__u32 pad;
1335 };
1336 
1337 struct drm_i915_gem_busy {
1338 	/** Handle of the buffer to check for busy */
1339 	__u32 handle;
1340 
1341 	/** Return busy status
1342 	 *
1343 	 * A return of 0 implies that the object is idle (after
1344 	 * having flushed any pending activity), and a non-zero return that
1345 	 * the object is still in-flight on the GPU. (The GPU has not yet
1346 	 * signaled completion for all pending requests that reference the
1347 	 * object.) An object is guaranteed to become idle eventually (so
1348 	 * long as no new GPU commands are executed upon it). Due to the
1349 	 * asynchronous nature of the hardware, an object reported
1350 	 * as busy may become idle before the ioctl is completed.
1351 	 *
1352 	 * Furthermore, if the object is busy, which engine is busy is only
1353 	 * provided as a guide and only indirectly by reporting its class
1354 	 * (there may be more than one engine in each class). There are race
1355 	 * conditions which prevent the report of which engines are busy from
1356 	 * being always accurate.  However, the converse is not true. If the
1357 	 * object is idle, the result of the ioctl, that all engines are idle,
1358 	 * is accurate.
1359 	 *
1360 	 * The returned dword is split into two fields to indicate both
1361 	 * the engine classess on which the object is being read, and the
1362 	 * engine class on which it is currently being written (if any).
1363 	 *
1364 	 * The low word (bits 0:15) indicate if the object is being written
1365 	 * to by any engine (there can only be one, as the GEM implicit
1366 	 * synchronisation rules force writes to be serialised). Only the
1367 	 * engine class (offset by 1, I915_ENGINE_CLASS_RENDER is reported as
1368 	 * 1 not 0 etc) for the last write is reported.
1369 	 *
1370 	 * The high word (bits 16:31) are a bitmask of which engines classes
1371 	 * are currently reading from the object. Multiple engines may be
1372 	 * reading from the object simultaneously.
1373 	 *
1374 	 * The value of each engine class is the same as specified in the
1375 	 * I915_CONTEXT_PARAM_ENGINES context parameter and via perf, i.e.
1376 	 * I915_ENGINE_CLASS_RENDER, I915_ENGINE_CLASS_COPY, etc.
1377 	 * Some hardware may have parallel execution engines, e.g. multiple
1378 	 * media engines, which are mapped to the same class identifier and so
1379 	 * are not separately reported for busyness.
1380 	 *
1381 	 * Caveat emptor:
1382 	 * Only the boolean result of this query is reliable; that is whether
1383 	 * the object is idle or busy. The report of which engines are busy
1384 	 * should be only used as a heuristic.
1385 	 */
1386 	__u32 busy;
1387 };
1388 
1389 /**
1390  * struct drm_i915_gem_caching - Set or get the caching for given object
1391  * handle.
1392  *
1393  * Allow userspace to control the GTT caching bits for a given object when the
1394  * object is later mapped through the ppGTT(or GGTT on older platforms lacking
1395  * ppGTT support, or if the object is used for scanout). Note that this might
1396  * require unbinding the object from the GTT first, if its current caching value
1397  * doesn't match.
1398  *
1399  * Note that this all changes on discrete platforms, starting from DG1, the
1400  * set/get caching is no longer supported, and is now rejected.  Instead the CPU
1401  * caching attributes(WB vs WC) will become an immutable creation time property
1402  * for the object, along with the GTT caching level. For now we don't expose any
1403  * new uAPI for this, instead on DG1 this is all implicit, although this largely
1404  * shouldn't matter since DG1 is coherent by default(without any way of
1405  * controlling it).
1406  *
1407  * Implicit caching rules, starting from DG1:
1408  *
1409  *     - If any of the object placements (see &drm_i915_gem_create_ext_memory_regions)
1410  *       contain I915_MEMORY_CLASS_DEVICE then the object will be allocated and
1411  *       mapped as write-combined only.
1412  *
1413  *     - Everything else is always allocated and mapped as write-back, with the
1414  *       guarantee that everything is also coherent with the GPU.
1415  *
1416  * Note that this is likely to change in the future again, where we might need
1417  * more flexibility on future devices, so making this all explicit as part of a
1418  * new &drm_i915_gem_create_ext extension is probable.
1419  *
1420  * Side note: Part of the reason for this is that changing the at-allocation-time CPU
1421  * caching attributes for the pages might be required(and is expensive) if we
1422  * need to then CPU map the pages later with different caching attributes. This
1423  * inconsistent caching behaviour, while supported on x86, is not universally
1424  * supported on other architectures. So for simplicity we opt for setting
1425  * everything at creation time, whilst also making it immutable, on discrete
1426  * platforms.
1427  */
1428 struct drm_i915_gem_caching {
1429 	/**
1430 	 * @handle: Handle of the buffer to set/get the caching level.
1431 	 */
1432 	__u32 handle;
1433 
1434 	/**
1435 	 * @caching: The GTT caching level to apply or possible return value.
1436 	 *
1437 	 * The supported @caching values:
1438 	 *
1439 	 * I915_CACHING_NONE:
1440 	 *
1441 	 * GPU access is not coherent with CPU caches.  Default for machines
1442 	 * without an LLC. This means manual flushing might be needed, if we
1443 	 * want GPU access to be coherent.
1444 	 *
1445 	 * I915_CACHING_CACHED:
1446 	 *
1447 	 * GPU access is coherent with CPU caches and furthermore the data is
1448 	 * cached in last-level caches shared between CPU cores and the GPU GT.
1449 	 *
1450 	 * I915_CACHING_DISPLAY:
1451 	 *
1452 	 * Special GPU caching mode which is coherent with the scanout engines.
1453 	 * Transparently falls back to I915_CACHING_NONE on platforms where no
1454 	 * special cache mode (like write-through or gfdt flushing) is
1455 	 * available. The kernel automatically sets this mode when using a
1456 	 * buffer as a scanout target.  Userspace can manually set this mode to
1457 	 * avoid a costly stall and clflush in the hotpath of drawing the first
1458 	 * frame.
1459 	 */
1460 #define I915_CACHING_NONE		0
1461 #define I915_CACHING_CACHED		1
1462 #define I915_CACHING_DISPLAY		2
1463 	__u32 caching;
1464 };
1465 
1466 #define I915_TILING_NONE	0
1467 #define I915_TILING_X		1
1468 #define I915_TILING_Y		2
1469 #define I915_TILING_LAST	I915_TILING_Y
1470 
1471 #define I915_BIT_6_SWIZZLE_NONE		0
1472 #define I915_BIT_6_SWIZZLE_9		1
1473 #define I915_BIT_6_SWIZZLE_9_10		2
1474 #define I915_BIT_6_SWIZZLE_9_11		3
1475 #define I915_BIT_6_SWIZZLE_9_10_11	4
1476 /* Not seen by userland */
1477 #define I915_BIT_6_SWIZZLE_UNKNOWN	5
1478 /* Seen by userland. */
1479 #define I915_BIT_6_SWIZZLE_9_17		6
1480 #define I915_BIT_6_SWIZZLE_9_10_17	7
1481 
1482 struct drm_i915_gem_set_tiling {
1483 	/** Handle of the buffer to have its tiling state updated */
1484 	__u32 handle;
1485 
1486 	/**
1487 	 * Tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1488 	 * I915_TILING_Y).
1489 	 *
1490 	 * This value is to be set on request, and will be updated by the
1491 	 * kernel on successful return with the actual chosen tiling layout.
1492 	 *
1493 	 * The tiling mode may be demoted to I915_TILING_NONE when the system
1494 	 * has bit 6 swizzling that can't be managed correctly by GEM.
1495 	 *
1496 	 * Buffer contents become undefined when changing tiling_mode.
1497 	 */
1498 	__u32 tiling_mode;
1499 
1500 	/**
1501 	 * Stride in bytes for the object when in I915_TILING_X or
1502 	 * I915_TILING_Y.
1503 	 */
1504 	__u32 stride;
1505 
1506 	/**
1507 	 * Returned address bit 6 swizzling required for CPU access through
1508 	 * mmap mapping.
1509 	 */
1510 	__u32 swizzle_mode;
1511 };
1512 
1513 struct drm_i915_gem_get_tiling {
1514 	/** Handle of the buffer to get tiling state for. */
1515 	__u32 handle;
1516 
1517 	/**
1518 	 * Current tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1519 	 * I915_TILING_Y).
1520 	 */
1521 	__u32 tiling_mode;
1522 
1523 	/**
1524 	 * Returned address bit 6 swizzling required for CPU access through
1525 	 * mmap mapping.
1526 	 */
1527 	__u32 swizzle_mode;
1528 
1529 	/**
1530 	 * Returned address bit 6 swizzling required for CPU access through
1531 	 * mmap mapping whilst bound.
1532 	 */
1533 	__u32 phys_swizzle_mode;
1534 };
1535 
1536 struct drm_i915_gem_get_aperture {
1537 	/** Total size of the aperture used by i915_gem_execbuffer, in bytes */
1538 	__u64 aper_size;
1539 
1540 	/**
1541 	 * Available space in the aperture used by i915_gem_execbuffer, in
1542 	 * bytes
1543 	 */
1544 	__u64 aper_available_size;
1545 };
1546 
1547 struct drm_i915_get_pipe_from_crtc_id {
1548 	/** ID of CRTC being requested **/
1549 	__u32 crtc_id;
1550 
1551 	/** pipe of requested CRTC **/
1552 	__u32 pipe;
1553 };
1554 
1555 #define I915_MADV_WILLNEED 0
1556 #define I915_MADV_DONTNEED 1
1557 #define __I915_MADV_PURGED 2 /* internal state */
1558 
1559 struct drm_i915_gem_madvise {
1560 	/** Handle of the buffer to change the backing store advice */
1561 	__u32 handle;
1562 
1563 	/* Advice: either the buffer will be needed again in the near future,
1564 	 *         or wont be and could be discarded under memory pressure.
1565 	 */
1566 	__u32 madv;
1567 
1568 	/** Whether the backing store still exists. */
1569 	__u32 retained;
1570 };
1571 
1572 /* flags */
1573 #define I915_OVERLAY_TYPE_MASK 		0xff
1574 #define I915_OVERLAY_YUV_PLANAR 	0x01
1575 #define I915_OVERLAY_YUV_PACKED 	0x02
1576 #define I915_OVERLAY_RGB		0x03
1577 
1578 #define I915_OVERLAY_DEPTH_MASK		0xff00
1579 #define I915_OVERLAY_RGB24		0x1000
1580 #define I915_OVERLAY_RGB16		0x2000
1581 #define I915_OVERLAY_RGB15		0x3000
1582 #define I915_OVERLAY_YUV422		0x0100
1583 #define I915_OVERLAY_YUV411		0x0200
1584 #define I915_OVERLAY_YUV420		0x0300
1585 #define I915_OVERLAY_YUV410		0x0400
1586 
1587 #define I915_OVERLAY_SWAP_MASK		0xff0000
1588 #define I915_OVERLAY_NO_SWAP		0x000000
1589 #define I915_OVERLAY_UV_SWAP		0x010000
1590 #define I915_OVERLAY_Y_SWAP		0x020000
1591 #define I915_OVERLAY_Y_AND_UV_SWAP	0x030000
1592 
1593 #define I915_OVERLAY_FLAGS_MASK		0xff000000
1594 #define I915_OVERLAY_ENABLE		0x01000000
1595 
1596 struct drm_intel_overlay_put_image {
1597 	/* various flags and src format description */
1598 	__u32 flags;
1599 	/* source picture description */
1600 	__u32 bo_handle;
1601 	/* stride values and offsets are in bytes, buffer relative */
1602 	__u16 stride_Y; /* stride for packed formats */
1603 	__u16 stride_UV;
1604 	__u32 offset_Y; /* offset for packet formats */
1605 	__u32 offset_U;
1606 	__u32 offset_V;
1607 	/* in pixels */
1608 	__u16 src_width;
1609 	__u16 src_height;
1610 	/* to compensate the scaling factors for partially covered surfaces */
1611 	__u16 src_scan_width;
1612 	__u16 src_scan_height;
1613 	/* output crtc description */
1614 	__u32 crtc_id;
1615 	__u16 dst_x;
1616 	__u16 dst_y;
1617 	__u16 dst_width;
1618 	__u16 dst_height;
1619 };
1620 
1621 /* flags */
1622 #define I915_OVERLAY_UPDATE_ATTRS	(1<<0)
1623 #define I915_OVERLAY_UPDATE_GAMMA	(1<<1)
1624 #define I915_OVERLAY_DISABLE_DEST_COLORKEY	(1<<2)
1625 struct drm_intel_overlay_attrs {
1626 	__u32 flags;
1627 	__u32 color_key;
1628 	__s32 brightness;
1629 	__u32 contrast;
1630 	__u32 saturation;
1631 	__u32 gamma0;
1632 	__u32 gamma1;
1633 	__u32 gamma2;
1634 	__u32 gamma3;
1635 	__u32 gamma4;
1636 	__u32 gamma5;
1637 };
1638 
1639 /*
1640  * Intel sprite handling
1641  *
1642  * Color keying works with a min/mask/max tuple.  Both source and destination
1643  * color keying is allowed.
1644  *
1645  * Source keying:
1646  * Sprite pixels within the min & max values, masked against the color channels
1647  * specified in the mask field, will be transparent.  All other pixels will
1648  * be displayed on top of the primary plane.  For RGB surfaces, only the min
1649  * and mask fields will be used; ranged compares are not allowed.
1650  *
1651  * Destination keying:
1652  * Primary plane pixels that match the min value, masked against the color
1653  * channels specified in the mask field, will be replaced by corresponding
1654  * pixels from the sprite plane.
1655  *
1656  * Note that source & destination keying are exclusive; only one can be
1657  * active on a given plane.
1658  */
1659 
1660 #define I915_SET_COLORKEY_NONE		(1<<0) /* Deprecated. Instead set
1661 						* flags==0 to disable colorkeying.
1662 						*/
1663 #define I915_SET_COLORKEY_DESTINATION	(1<<1)
1664 #define I915_SET_COLORKEY_SOURCE	(1<<2)
1665 struct drm_intel_sprite_colorkey {
1666 	__u32 plane_id;
1667 	__u32 min_value;
1668 	__u32 channel_mask;
1669 	__u32 max_value;
1670 	__u32 flags;
1671 };
1672 
1673 struct drm_i915_gem_wait {
1674 	/** Handle of BO we shall wait on */
1675 	__u32 bo_handle;
1676 	__u32 flags;
1677 	/** Number of nanoseconds to wait, Returns time remaining. */
1678 	__s64 timeout_ns;
1679 };
1680 
1681 struct drm_i915_gem_context_create {
1682 	__u32 ctx_id; /* output: id of new context*/
1683 	__u32 pad;
1684 };
1685 
1686 struct drm_i915_gem_context_create_ext {
1687 	__u32 ctx_id; /* output: id of new context*/
1688 	__u32 flags;
1689 #define I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS	(1u << 0)
1690 #define I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE	(1u << 1)
1691 #define I915_CONTEXT_CREATE_FLAGS_UNKNOWN \
1692 	(-(I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE << 1))
1693 	__u64 extensions;
1694 };
1695 
1696 struct drm_i915_gem_context_param {
1697 	__u32 ctx_id;
1698 	__u32 size;
1699 	__u64 param;
1700 #define I915_CONTEXT_PARAM_BAN_PERIOD	0x1
1701 /* I915_CONTEXT_PARAM_NO_ZEROMAP has been removed.  On the off chance
1702  * someone somewhere has attempted to use it, never re-use this context
1703  * param number.
1704  */
1705 #define I915_CONTEXT_PARAM_NO_ZEROMAP	0x2
1706 #define I915_CONTEXT_PARAM_GTT_SIZE	0x3
1707 #define I915_CONTEXT_PARAM_NO_ERROR_CAPTURE	0x4
1708 #define I915_CONTEXT_PARAM_BANNABLE	0x5
1709 #define I915_CONTEXT_PARAM_PRIORITY	0x6
1710 #define   I915_CONTEXT_MAX_USER_PRIORITY	1023 /* inclusive */
1711 #define   I915_CONTEXT_DEFAULT_PRIORITY		0
1712 #define   I915_CONTEXT_MIN_USER_PRIORITY	-1023 /* inclusive */
1713 	/*
1714 	 * When using the following param, value should be a pointer to
1715 	 * drm_i915_gem_context_param_sseu.
1716 	 */
1717 #define I915_CONTEXT_PARAM_SSEU		0x7
1718 
1719 /*
1720  * Not all clients may want to attempt automatic recover of a context after
1721  * a hang (for example, some clients may only submit very small incremental
1722  * batches relying on known logical state of previous batches which will never
1723  * recover correctly and each attempt will hang), and so would prefer that
1724  * the context is forever banned instead.
1725  *
1726  * If set to false (0), after a reset, subsequent (and in flight) rendering
1727  * from this context is discarded, and the client will need to create a new
1728  * context to use instead.
1729  *
1730  * If set to true (1), the kernel will automatically attempt to recover the
1731  * context by skipping the hanging batch and executing the next batch starting
1732  * from the default context state (discarding the incomplete logical context
1733  * state lost due to the reset).
1734  *
1735  * On creation, all new contexts are marked as recoverable.
1736  */
1737 #define I915_CONTEXT_PARAM_RECOVERABLE	0x8
1738 
1739 	/*
1740 	 * The id of the associated virtual memory address space (ppGTT) of
1741 	 * this context. Can be retrieved and passed to another context
1742 	 * (on the same fd) for both to use the same ppGTT and so share
1743 	 * address layouts, and avoid reloading the page tables on context
1744 	 * switches between themselves.
1745 	 *
1746 	 * See DRM_I915_GEM_VM_CREATE and DRM_I915_GEM_VM_DESTROY.
1747 	 */
1748 #define I915_CONTEXT_PARAM_VM		0x9
1749 
1750 /*
1751  * I915_CONTEXT_PARAM_ENGINES:
1752  *
1753  * Bind this context to operate on this subset of available engines. Henceforth,
1754  * the I915_EXEC_RING selector for DRM_IOCTL_I915_GEM_EXECBUFFER2 operates as
1755  * an index into this array of engines; I915_EXEC_DEFAULT selecting engine[0]
1756  * and upwards. Slots 0...N are filled in using the specified (class, instance).
1757  * Use
1758  *	engine_class: I915_ENGINE_CLASS_INVALID,
1759  *	engine_instance: I915_ENGINE_CLASS_INVALID_NONE
1760  * to specify a gap in the array that can be filled in later, e.g. by a
1761  * virtual engine used for load balancing.
1762  *
1763  * Setting the number of engines bound to the context to 0, by passing a zero
1764  * sized argument, will revert back to default settings.
1765  *
1766  * See struct i915_context_param_engines.
1767  *
1768  * Extensions:
1769  *   i915_context_engines_load_balance (I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE)
1770  *   i915_context_engines_bond (I915_CONTEXT_ENGINES_EXT_BOND)
1771  */
1772 #define I915_CONTEXT_PARAM_ENGINES	0xa
1773 
1774 /*
1775  * I915_CONTEXT_PARAM_PERSISTENCE:
1776  *
1777  * Allow the context and active rendering to survive the process until
1778  * completion. Persistence allows fire-and-forget clients to queue up a
1779  * bunch of work, hand the output over to a display server and then quit.
1780  * If the context is marked as not persistent, upon closing (either via
1781  * an explicit DRM_I915_GEM_CONTEXT_DESTROY or implicitly from file closure
1782  * or process termination), the context and any outstanding requests will be
1783  * cancelled (and exported fences for cancelled requests marked as -EIO).
1784  *
1785  * By default, new contexts allow persistence.
1786  */
1787 #define I915_CONTEXT_PARAM_PERSISTENCE	0xb
1788 
1789 /* This API has been removed.  On the off chance someone somewhere has
1790  * attempted to use it, never re-use this context param number.
1791  */
1792 #define I915_CONTEXT_PARAM_RINGSIZE	0xc
1793 /* Must be kept compact -- no holes and well documented */
1794 
1795 	__u64 value;
1796 };
1797 
1798 /*
1799  * Context SSEU programming
1800  *
1801  * It may be necessary for either functional or performance reason to configure
1802  * a context to run with a reduced number of SSEU (where SSEU stands for Slice/
1803  * Sub-slice/EU).
1804  *
1805  * This is done by configuring SSEU configuration using the below
1806  * @struct drm_i915_gem_context_param_sseu for every supported engine which
1807  * userspace intends to use.
1808  *
1809  * Not all GPUs or engines support this functionality in which case an error
1810  * code -ENODEV will be returned.
1811  *
1812  * Also, flexibility of possible SSEU configuration permutations varies between
1813  * GPU generations and software imposed limitations. Requesting such a
1814  * combination will return an error code of -EINVAL.
1815  *
1816  * NOTE: When perf/OA is active the context's SSEU configuration is ignored in
1817  * favour of a single global setting.
1818  */
1819 struct drm_i915_gem_context_param_sseu {
1820 	/*
1821 	 * Engine class & instance to be configured or queried.
1822 	 */
1823 	struct i915_engine_class_instance engine;
1824 
1825 	/*
1826 	 * Unknown flags must be cleared to zero.
1827 	 */
1828 	__u32 flags;
1829 #define I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX (1u << 0)
1830 
1831 	/*
1832 	 * Mask of slices to enable for the context. Valid values are a subset
1833 	 * of the bitmask value returned for I915_PARAM_SLICE_MASK.
1834 	 */
1835 	__u64 slice_mask;
1836 
1837 	/*
1838 	 * Mask of subslices to enable for the context. Valid values are a
1839 	 * subset of the bitmask value return by I915_PARAM_SUBSLICE_MASK.
1840 	 */
1841 	__u64 subslice_mask;
1842 
1843 	/*
1844 	 * Minimum/Maximum number of EUs to enable per subslice for the
1845 	 * context. min_eus_per_subslice must be inferior or equal to
1846 	 * max_eus_per_subslice.
1847 	 */
1848 	__u16 min_eus_per_subslice;
1849 	__u16 max_eus_per_subslice;
1850 
1851 	/*
1852 	 * Unused for now. Must be cleared to zero.
1853 	 */
1854 	__u32 rsvd;
1855 };
1856 
1857 /**
1858  * DOC: Virtual Engine uAPI
1859  *
1860  * Virtual engine is a concept where userspace is able to configure a set of
1861  * physical engines, submit a batch buffer, and let the driver execute it on any
1862  * engine from the set as it sees fit.
1863  *
1864  * This is primarily useful on parts which have multiple instances of a same
1865  * class engine, like for example GT3+ Skylake parts with their two VCS engines.
1866  *
1867  * For instance userspace can enumerate all engines of a certain class using the
1868  * previously described `Engine Discovery uAPI`_. After that userspace can
1869  * create a GEM context with a placeholder slot for the virtual engine (using
1870  * `I915_ENGINE_CLASS_INVALID` and `I915_ENGINE_CLASS_INVALID_NONE` for class
1871  * and instance respectively) and finally using the
1872  * `I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE` extension place a virtual engine in
1873  * the same reserved slot.
1874  *
1875  * Example of creating a virtual engine and submitting a batch buffer to it:
1876  *
1877  * .. code-block:: C
1878  *
1879  * 	I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(virtual, 2) = {
1880  * 		.base.name = I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE,
1881  * 		.engine_index = 0, // Place this virtual engine into engine map slot 0
1882  * 		.num_siblings = 2,
1883  * 		.engines = { { I915_ENGINE_CLASS_VIDEO, 0 },
1884  * 			     { I915_ENGINE_CLASS_VIDEO, 1 }, },
1885  * 	};
1886  * 	I915_DEFINE_CONTEXT_PARAM_ENGINES(engines, 1) = {
1887  * 		.engines = { { I915_ENGINE_CLASS_INVALID,
1888  * 			       I915_ENGINE_CLASS_INVALID_NONE } },
1889  * 		.extensions = to_user_pointer(&virtual), // Chains after load_balance extension
1890  * 	};
1891  * 	struct drm_i915_gem_context_create_ext_setparam p_engines = {
1892  * 		.base = {
1893  * 			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
1894  * 		},
1895  * 		.param = {
1896  * 			.param = I915_CONTEXT_PARAM_ENGINES,
1897  * 			.value = to_user_pointer(&engines),
1898  * 			.size = sizeof(engines),
1899  * 		},
1900  * 	};
1901  * 	struct drm_i915_gem_context_create_ext create = {
1902  * 		.flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
1903  * 		.extensions = to_user_pointer(&p_engines);
1904  * 	};
1905  *
1906  * 	ctx_id = gem_context_create_ext(drm_fd, &create);
1907  *
1908  * 	// Now we have created a GEM context with its engine map containing a
1909  * 	// single virtual engine. Submissions to this slot can go either to
1910  * 	// vcs0 or vcs1, depending on the load balancing algorithm used inside
1911  * 	// the driver. The load balancing is dynamic from one batch buffer to
1912  * 	// another and transparent to userspace.
1913  *
1914  * 	...
1915  * 	execbuf.rsvd1 = ctx_id;
1916  * 	execbuf.flags = 0; // Submits to index 0 which is the virtual engine
1917  * 	gem_execbuf(drm_fd, &execbuf);
1918  */
1919 
1920 /*
1921  * i915_context_engines_load_balance:
1922  *
1923  * Enable load balancing across this set of engines.
1924  *
1925  * Into the I915_EXEC_DEFAULT slot [0], a virtual engine is created that when
1926  * used will proxy the execbuffer request onto one of the set of engines
1927  * in such a way as to distribute the load evenly across the set.
1928  *
1929  * The set of engines must be compatible (e.g. the same HW class) as they
1930  * will share the same logical GPU context and ring.
1931  *
1932  * To intermix rendering with the virtual engine and direct rendering onto
1933  * the backing engines (bypassing the load balancing proxy), the context must
1934  * be defined to use a single timeline for all engines.
1935  */
1936 struct i915_context_engines_load_balance {
1937 	struct i915_user_extension base;
1938 
1939 	__u16 engine_index;
1940 	__u16 num_siblings;
1941 	__u32 flags; /* all undefined flags must be zero */
1942 
1943 	__u64 mbz64; /* reserved for future use; must be zero */
1944 
1945 	struct i915_engine_class_instance engines[0];
1946 } __attribute__((packed));
1947 
1948 #define I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(name__, N__) struct { \
1949 	struct i915_user_extension base; \
1950 	__u16 engine_index; \
1951 	__u16 num_siblings; \
1952 	__u32 flags; \
1953 	__u64 mbz64; \
1954 	struct i915_engine_class_instance engines[N__]; \
1955 } __attribute__((packed)) name__
1956 
1957 /*
1958  * i915_context_engines_bond:
1959  *
1960  * Constructed bonded pairs for execution within a virtual engine.
1961  *
1962  * All engines are equal, but some are more equal than others. Given
1963  * the distribution of resources in the HW, it may be preferable to run
1964  * a request on a given subset of engines in parallel to a request on a
1965  * specific engine. We enable this selection of engines within a virtual
1966  * engine by specifying bonding pairs, for any given master engine we will
1967  * only execute on one of the corresponding siblings within the virtual engine.
1968  *
1969  * To execute a request in parallel on the master engine and a sibling requires
1970  * coordination with a I915_EXEC_FENCE_SUBMIT.
1971  */
1972 struct i915_context_engines_bond {
1973 	struct i915_user_extension base;
1974 
1975 	struct i915_engine_class_instance master;
1976 
1977 	__u16 virtual_index; /* index of virtual engine in ctx->engines[] */
1978 	__u16 num_bonds;
1979 
1980 	__u64 flags; /* all undefined flags must be zero */
1981 	__u64 mbz64[4]; /* reserved for future use; must be zero */
1982 
1983 	struct i915_engine_class_instance engines[0];
1984 } __attribute__((packed));
1985 
1986 #define I915_DEFINE_CONTEXT_ENGINES_BOND(name__, N__) struct { \
1987 	struct i915_user_extension base; \
1988 	struct i915_engine_class_instance master; \
1989 	__u16 virtual_index; \
1990 	__u16 num_bonds; \
1991 	__u64 flags; \
1992 	__u64 mbz64[4]; \
1993 	struct i915_engine_class_instance engines[N__]; \
1994 } __attribute__((packed)) name__
1995 
1996 /**
1997  * DOC: Context Engine Map uAPI
1998  *
1999  * Context engine map is a new way of addressing engines when submitting batch-
2000  * buffers, replacing the existing way of using identifiers like `I915_EXEC_BLT`
2001  * inside the flags field of `struct drm_i915_gem_execbuffer2`.
2002  *
2003  * To use it created GEM contexts need to be configured with a list of engines
2004  * the user is intending to submit to. This is accomplished using the
2005  * `I915_CONTEXT_PARAM_ENGINES` parameter and `struct
2006  * i915_context_param_engines`.
2007  *
2008  * For such contexts the `I915_EXEC_RING_MASK` field becomes an index into the
2009  * configured map.
2010  *
2011  * Example of creating such context and submitting against it:
2012  *
2013  * .. code-block:: C
2014  *
2015  * 	I915_DEFINE_CONTEXT_PARAM_ENGINES(engines, 2) = {
2016  * 		.engines = { { I915_ENGINE_CLASS_RENDER, 0 },
2017  * 			     { I915_ENGINE_CLASS_COPY, 0 } }
2018  * 	};
2019  * 	struct drm_i915_gem_context_create_ext_setparam p_engines = {
2020  * 		.base = {
2021  * 			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2022  * 		},
2023  * 		.param = {
2024  * 			.param = I915_CONTEXT_PARAM_ENGINES,
2025  * 			.value = to_user_pointer(&engines),
2026  * 			.size = sizeof(engines),
2027  * 		},
2028  * 	};
2029  * 	struct drm_i915_gem_context_create_ext create = {
2030  * 		.flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
2031  * 		.extensions = to_user_pointer(&p_engines);
2032  * 	};
2033  *
2034  * 	ctx_id = gem_context_create_ext(drm_fd, &create);
2035  *
2036  * 	// We have now created a GEM context with two engines in the map:
2037  * 	// Index 0 points to rcs0 while index 1 points to bcs0. Other engines
2038  * 	// will not be accessible from this context.
2039  *
2040  * 	...
2041  * 	execbuf.rsvd1 = ctx_id;
2042  * 	execbuf.flags = 0; // Submits to index 0, which is rcs0 for this context
2043  * 	gem_execbuf(drm_fd, &execbuf);
2044  *
2045  * 	...
2046  * 	execbuf.rsvd1 = ctx_id;
2047  * 	execbuf.flags = 1; // Submits to index 0, which is bcs0 for this context
2048  * 	gem_execbuf(drm_fd, &execbuf);
2049  */
2050 
2051 struct i915_context_param_engines {
2052 	__u64 extensions; /* linked chain of extension blocks, 0 terminates */
2053 #define I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE 0 /* see i915_context_engines_load_balance */
2054 #define I915_CONTEXT_ENGINES_EXT_BOND 1 /* see i915_context_engines_bond */
2055 	struct i915_engine_class_instance engines[0];
2056 } __attribute__((packed));
2057 
2058 #define I915_DEFINE_CONTEXT_PARAM_ENGINES(name__, N__) struct { \
2059 	__u64 extensions; \
2060 	struct i915_engine_class_instance engines[N__]; \
2061 } __attribute__((packed)) name__
2062 
2063 struct drm_i915_gem_context_create_ext_setparam {
2064 #define I915_CONTEXT_CREATE_EXT_SETPARAM 0
2065 	struct i915_user_extension base;
2066 	struct drm_i915_gem_context_param param;
2067 };
2068 
2069 /* This API has been removed.  On the off chance someone somewhere has
2070  * attempted to use it, never re-use this extension number.
2071  */
2072 #define I915_CONTEXT_CREATE_EXT_CLONE 1
2073 
2074 struct drm_i915_gem_context_destroy {
2075 	__u32 ctx_id;
2076 	__u32 pad;
2077 };
2078 
2079 /*
2080  * DRM_I915_GEM_VM_CREATE -
2081  *
2082  * Create a new virtual memory address space (ppGTT) for use within a context
2083  * on the same file. Extensions can be provided to configure exactly how the
2084  * address space is setup upon creation.
2085  *
2086  * The id of new VM (bound to the fd) for use with I915_CONTEXT_PARAM_VM is
2087  * returned in the outparam @id.
2088  *
2089  * No flags are defined, with all bits reserved and must be zero.
2090  *
2091  * An extension chain maybe provided, starting with @extensions, and terminated
2092  * by the @next_extension being 0. Currently, no extensions are defined.
2093  *
2094  * DRM_I915_GEM_VM_DESTROY -
2095  *
2096  * Destroys a previously created VM id, specified in @id.
2097  *
2098  * No extensions or flags are allowed currently, and so must be zero.
2099  */
2100 struct drm_i915_gem_vm_control {
2101 	__u64 extensions;
2102 	__u32 flags;
2103 	__u32 vm_id;
2104 };
2105 
2106 struct drm_i915_reg_read {
2107 	/*
2108 	 * Register offset.
2109 	 * For 64bit wide registers where the upper 32bits don't immediately
2110 	 * follow the lower 32bits, the offset of the lower 32bits must
2111 	 * be specified
2112 	 */
2113 	__u64 offset;
2114 #define I915_REG_READ_8B_WA (1ul << 0)
2115 
2116 	__u64 val; /* Return value */
2117 };
2118 
2119 /* Known registers:
2120  *
2121  * Render engine timestamp - 0x2358 + 64bit - gen7+
2122  * - Note this register returns an invalid value if using the default
2123  *   single instruction 8byte read, in order to workaround that pass
2124  *   flag I915_REG_READ_8B_WA in offset field.
2125  *
2126  */
2127 
2128 struct drm_i915_reset_stats {
2129 	__u32 ctx_id;
2130 	__u32 flags;
2131 
2132 	/* All resets since boot/module reload, for all contexts */
2133 	__u32 reset_count;
2134 
2135 	/* Number of batches lost when active in GPU, for this context */
2136 	__u32 batch_active;
2137 
2138 	/* Number of batches lost pending for execution, for this context */
2139 	__u32 batch_pending;
2140 
2141 	__u32 pad;
2142 };
2143 
2144 /**
2145  * struct drm_i915_gem_userptr - Create GEM object from user allocated memory.
2146  *
2147  * Userptr objects have several restrictions on what ioctls can be used with the
2148  * object handle.
2149  */
2150 struct drm_i915_gem_userptr {
2151 	/**
2152 	 * @user_ptr: The pointer to the allocated memory.
2153 	 *
2154 	 * Needs to be aligned to PAGE_SIZE.
2155 	 */
2156 	__u64 user_ptr;
2157 
2158 	/**
2159 	 * @user_size:
2160 	 *
2161 	 * The size in bytes for the allocated memory. This will also become the
2162 	 * object size.
2163 	 *
2164 	 * Needs to be aligned to PAGE_SIZE, and should be at least PAGE_SIZE,
2165 	 * or larger.
2166 	 */
2167 	__u64 user_size;
2168 
2169 	/**
2170 	 * @flags:
2171 	 *
2172 	 * Supported flags:
2173 	 *
2174 	 * I915_USERPTR_READ_ONLY:
2175 	 *
2176 	 * Mark the object as readonly, this also means GPU access can only be
2177 	 * readonly. This is only supported on HW which supports readonly access
2178 	 * through the GTT. If the HW can't support readonly access, an error is
2179 	 * returned.
2180 	 *
2181 	 * I915_USERPTR_UNSYNCHRONIZED:
2182 	 *
2183 	 * NOT USED. Setting this flag will result in an error.
2184 	 */
2185 	__u32 flags;
2186 #define I915_USERPTR_READ_ONLY 0x1
2187 #define I915_USERPTR_UNSYNCHRONIZED 0x80000000
2188 	/**
2189 	 * @handle: Returned handle for the object.
2190 	 *
2191 	 * Object handles are nonzero.
2192 	 */
2193 	__u32 handle;
2194 };
2195 
2196 enum drm_i915_oa_format {
2197 	I915_OA_FORMAT_A13 = 1,	    /* HSW only */
2198 	I915_OA_FORMAT_A29,	    /* HSW only */
2199 	I915_OA_FORMAT_A13_B8_C8,   /* HSW only */
2200 	I915_OA_FORMAT_B4_C8,	    /* HSW only */
2201 	I915_OA_FORMAT_A45_B8_C8,   /* HSW only */
2202 	I915_OA_FORMAT_B4_C8_A16,   /* HSW only */
2203 	I915_OA_FORMAT_C4_B8,	    /* HSW+ */
2204 
2205 	/* Gen8+ */
2206 	I915_OA_FORMAT_A12,
2207 	I915_OA_FORMAT_A12_B8_C8,
2208 	I915_OA_FORMAT_A32u40_A4u32_B8_C8,
2209 
2210 	I915_OA_FORMAT_MAX	    /* non-ABI */
2211 };
2212 
2213 enum drm_i915_perf_property_id {
2214 	/**
2215 	 * Open the stream for a specific context handle (as used with
2216 	 * execbuffer2). A stream opened for a specific context this way
2217 	 * won't typically require root privileges.
2218 	 *
2219 	 * This property is available in perf revision 1.
2220 	 */
2221 	DRM_I915_PERF_PROP_CTX_HANDLE = 1,
2222 
2223 	/**
2224 	 * A value of 1 requests the inclusion of raw OA unit reports as
2225 	 * part of stream samples.
2226 	 *
2227 	 * This property is available in perf revision 1.
2228 	 */
2229 	DRM_I915_PERF_PROP_SAMPLE_OA,
2230 
2231 	/**
2232 	 * The value specifies which set of OA unit metrics should be
2233 	 * configured, defining the contents of any OA unit reports.
2234 	 *
2235 	 * This property is available in perf revision 1.
2236 	 */
2237 	DRM_I915_PERF_PROP_OA_METRICS_SET,
2238 
2239 	/**
2240 	 * The value specifies the size and layout of OA unit reports.
2241 	 *
2242 	 * This property is available in perf revision 1.
2243 	 */
2244 	DRM_I915_PERF_PROP_OA_FORMAT,
2245 
2246 	/**
2247 	 * Specifying this property implicitly requests periodic OA unit
2248 	 * sampling and (at least on Haswell) the sampling frequency is derived
2249 	 * from this exponent as follows:
2250 	 *
2251 	 *   80ns * 2^(period_exponent + 1)
2252 	 *
2253 	 * This property is available in perf revision 1.
2254 	 */
2255 	DRM_I915_PERF_PROP_OA_EXPONENT,
2256 
2257 	/**
2258 	 * Specifying this property is only valid when specify a context to
2259 	 * filter with DRM_I915_PERF_PROP_CTX_HANDLE. Specifying this property
2260 	 * will hold preemption of the particular context we want to gather
2261 	 * performance data about. The execbuf2 submissions must include a
2262 	 * drm_i915_gem_execbuffer_ext_perf parameter for this to apply.
2263 	 *
2264 	 * This property is available in perf revision 3.
2265 	 */
2266 	DRM_I915_PERF_PROP_HOLD_PREEMPTION,
2267 
2268 	/**
2269 	 * Specifying this pins all contexts to the specified SSEU power
2270 	 * configuration for the duration of the recording.
2271 	 *
2272 	 * This parameter's value is a pointer to a struct
2273 	 * drm_i915_gem_context_param_sseu.
2274 	 *
2275 	 * This property is available in perf revision 4.
2276 	 */
2277 	DRM_I915_PERF_PROP_GLOBAL_SSEU,
2278 
2279 	/**
2280 	 * This optional parameter specifies the timer interval in nanoseconds
2281 	 * at which the i915 driver will check the OA buffer for available data.
2282 	 * Minimum allowed value is 100 microseconds. A default value is used by
2283 	 * the driver if this parameter is not specified. Note that larger timer
2284 	 * values will reduce cpu consumption during OA perf captures. However,
2285 	 * excessively large values would potentially result in OA buffer
2286 	 * overwrites as captures reach end of the OA buffer.
2287 	 *
2288 	 * This property is available in perf revision 5.
2289 	 */
2290 	DRM_I915_PERF_PROP_POLL_OA_PERIOD,
2291 
2292 	DRM_I915_PERF_PROP_MAX /* non-ABI */
2293 };
2294 
2295 struct drm_i915_perf_open_param {
2296 	__u32 flags;
2297 #define I915_PERF_FLAG_FD_CLOEXEC	(1<<0)
2298 #define I915_PERF_FLAG_FD_NONBLOCK	(1<<1)
2299 #define I915_PERF_FLAG_DISABLED		(1<<2)
2300 
2301 	/** The number of u64 (id, value) pairs */
2302 	__u32 num_properties;
2303 
2304 	/**
2305 	 * Pointer to array of u64 (id, value) pairs configuring the stream
2306 	 * to open.
2307 	 */
2308 	__u64 properties_ptr;
2309 };
2310 
2311 /*
2312  * Enable data capture for a stream that was either opened in a disabled state
2313  * via I915_PERF_FLAG_DISABLED or was later disabled via
2314  * I915_PERF_IOCTL_DISABLE.
2315  *
2316  * It is intended to be cheaper to disable and enable a stream than it may be
2317  * to close and re-open a stream with the same configuration.
2318  *
2319  * It's undefined whether any pending data for the stream will be lost.
2320  *
2321  * This ioctl is available in perf revision 1.
2322  */
2323 #define I915_PERF_IOCTL_ENABLE	_IO('i', 0x0)
2324 
2325 /*
2326  * Disable data capture for a stream.
2327  *
2328  * It is an error to try and read a stream that is disabled.
2329  *
2330  * This ioctl is available in perf revision 1.
2331  */
2332 #define I915_PERF_IOCTL_DISABLE	_IO('i', 0x1)
2333 
2334 /*
2335  * Change metrics_set captured by a stream.
2336  *
2337  * If the stream is bound to a specific context, the configuration change
2338  * will performed inline with that context such that it takes effect before
2339  * the next execbuf submission.
2340  *
2341  * Returns the previously bound metrics set id, or a negative error code.
2342  *
2343  * This ioctl is available in perf revision 2.
2344  */
2345 #define I915_PERF_IOCTL_CONFIG	_IO('i', 0x2)
2346 
2347 /*
2348  * Common to all i915 perf records
2349  */
2350 struct drm_i915_perf_record_header {
2351 	__u32 type;
2352 	__u16 pad;
2353 	__u16 size;
2354 };
2355 
2356 enum drm_i915_perf_record_type {
2357 
2358 	/**
2359 	 * Samples are the work horse record type whose contents are extensible
2360 	 * and defined when opening an i915 perf stream based on the given
2361 	 * properties.
2362 	 *
2363 	 * Boolean properties following the naming convention
2364 	 * DRM_I915_PERF_SAMPLE_xyz_PROP request the inclusion of 'xyz' data in
2365 	 * every sample.
2366 	 *
2367 	 * The order of these sample properties given by userspace has no
2368 	 * affect on the ordering of data within a sample. The order is
2369 	 * documented here.
2370 	 *
2371 	 * struct {
2372 	 *     struct drm_i915_perf_record_header header;
2373 	 *
2374 	 *     { u32 oa_report[]; } && DRM_I915_PERF_PROP_SAMPLE_OA
2375 	 * };
2376 	 */
2377 	DRM_I915_PERF_RECORD_SAMPLE = 1,
2378 
2379 	/*
2380 	 * Indicates that one or more OA reports were not written by the
2381 	 * hardware. This can happen for example if an MI_REPORT_PERF_COUNT
2382 	 * command collides with periodic sampling - which would be more likely
2383 	 * at higher sampling frequencies.
2384 	 */
2385 	DRM_I915_PERF_RECORD_OA_REPORT_LOST = 2,
2386 
2387 	/**
2388 	 * An error occurred that resulted in all pending OA reports being lost.
2389 	 */
2390 	DRM_I915_PERF_RECORD_OA_BUFFER_LOST = 3,
2391 
2392 	DRM_I915_PERF_RECORD_MAX /* non-ABI */
2393 };
2394 
2395 /*
2396  * Structure to upload perf dynamic configuration into the kernel.
2397  */
2398 struct drm_i915_perf_oa_config {
2399 	/** String formatted like "%08x-%04x-%04x-%04x-%012x" */
2400 	char uuid[36];
2401 
2402 	__u32 n_mux_regs;
2403 	__u32 n_boolean_regs;
2404 	__u32 n_flex_regs;
2405 
2406 	/*
2407 	 * These fields are pointers to tuples of u32 values (register address,
2408 	 * value). For example the expected length of the buffer pointed by
2409 	 * mux_regs_ptr is (2 * sizeof(u32) * n_mux_regs).
2410 	 */
2411 	__u64 mux_regs_ptr;
2412 	__u64 boolean_regs_ptr;
2413 	__u64 flex_regs_ptr;
2414 };
2415 
2416 /**
2417  * struct drm_i915_query_item - An individual query for the kernel to process.
2418  *
2419  * The behaviour is determined by the @query_id. Note that exactly what
2420  * @data_ptr is also depends on the specific @query_id.
2421  */
2422 struct drm_i915_query_item {
2423 	/** @query_id: The id for this query */
2424 	__u64 query_id;
2425 #define DRM_I915_QUERY_TOPOLOGY_INFO    1
2426 #define DRM_I915_QUERY_ENGINE_INFO	2
2427 #define DRM_I915_QUERY_PERF_CONFIG      3
2428 #define DRM_I915_QUERY_MEMORY_REGIONS   4
2429 /* Must be kept compact -- no holes and well documented */
2430 
2431 	/**
2432 	 * @length:
2433 	 *
2434 	 * When set to zero by userspace, this is filled with the size of the
2435 	 * data to be written at the @data_ptr pointer. The kernel sets this
2436 	 * value to a negative value to signal an error on a particular query
2437 	 * item.
2438 	 */
2439 	__s32 length;
2440 
2441 	/**
2442 	 * @flags:
2443 	 *
2444 	 * When query_id == DRM_I915_QUERY_TOPOLOGY_INFO, must be 0.
2445 	 *
2446 	 * When query_id == DRM_I915_QUERY_PERF_CONFIG, must be one of the
2447 	 * following:
2448 	 *
2449 	 *	- DRM_I915_QUERY_PERF_CONFIG_LIST
2450 	 *      - DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID
2451 	 *      - DRM_I915_QUERY_PERF_CONFIG_FOR_UUID
2452 	 */
2453 	__u32 flags;
2454 #define DRM_I915_QUERY_PERF_CONFIG_LIST          1
2455 #define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID 2
2456 #define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID   3
2457 
2458 	/**
2459 	 * @data_ptr:
2460 	 *
2461 	 * Data will be written at the location pointed by @data_ptr when the
2462 	 * value of @length matches the length of the data to be written by the
2463 	 * kernel.
2464 	 */
2465 	__u64 data_ptr;
2466 };
2467 
2468 /**
2469  * struct drm_i915_query - Supply an array of struct drm_i915_query_item for the
2470  * kernel to fill out.
2471  *
2472  * Note that this is generally a two step process for each struct
2473  * drm_i915_query_item in the array:
2474  *
2475  * 1. Call the DRM_IOCTL_I915_QUERY, giving it our array of struct
2476  *    drm_i915_query_item, with &drm_i915_query_item.length set to zero. The
2477  *    kernel will then fill in the size, in bytes, which tells userspace how
2478  *    memory it needs to allocate for the blob(say for an array of properties).
2479  *
2480  * 2. Next we call DRM_IOCTL_I915_QUERY again, this time with the
2481  *    &drm_i915_query_item.data_ptr equal to our newly allocated blob. Note that
2482  *    the &drm_i915_query_item.length should still be the same as what the
2483  *    kernel previously set. At this point the kernel can fill in the blob.
2484  *
2485  * Note that for some query items it can make sense for userspace to just pass
2486  * in a buffer/blob equal to or larger than the required size. In this case only
2487  * a single ioctl call is needed. For some smaller query items this can work
2488  * quite well.
2489  *
2490  */
2491 struct drm_i915_query {
2492 	/** @num_items: The number of elements in the @items_ptr array */
2493 	__u32 num_items;
2494 
2495 	/**
2496 	 * @flags: Unused for now. Must be cleared to zero.
2497 	 */
2498 	__u32 flags;
2499 
2500 	/**
2501 	 * @items_ptr:
2502 	 *
2503 	 * Pointer to an array of struct drm_i915_query_item. The number of
2504 	 * array elements is @num_items.
2505 	 */
2506 	__u64 items_ptr;
2507 };
2508 
2509 /*
2510  * Data written by the kernel with query DRM_I915_QUERY_TOPOLOGY_INFO :
2511  *
2512  * data: contains the 3 pieces of information :
2513  *
2514  * - the slice mask with one bit per slice telling whether a slice is
2515  *   available. The availability of slice X can be queried with the following
2516  *   formula :
2517  *
2518  *           (data[X / 8] >> (X % 8)) & 1
2519  *
2520  * - the subslice mask for each slice with one bit per subslice telling
2521  *   whether a subslice is available. Gen12 has dual-subslices, which are
2522  *   similar to two gen11 subslices. For gen12, this array represents dual-
2523  *   subslices. The availability of subslice Y in slice X can be queried
2524  *   with the following formula :
2525  *
2526  *           (data[subslice_offset +
2527  *                 X * subslice_stride +
2528  *                 Y / 8] >> (Y % 8)) & 1
2529  *
2530  * - the EU mask for each subslice in each slice with one bit per EU telling
2531  *   whether an EU is available. The availability of EU Z in subslice Y in
2532  *   slice X can be queried with the following formula :
2533  *
2534  *           (data[eu_offset +
2535  *                 (X * max_subslices + Y) * eu_stride +
2536  *                 Z / 8] >> (Z % 8)) & 1
2537  */
2538 struct drm_i915_query_topology_info {
2539 	/*
2540 	 * Unused for now. Must be cleared to zero.
2541 	 */
2542 	__u16 flags;
2543 
2544 	__u16 max_slices;
2545 	__u16 max_subslices;
2546 	__u16 max_eus_per_subslice;
2547 
2548 	/*
2549 	 * Offset in data[] at which the subslice masks are stored.
2550 	 */
2551 	__u16 subslice_offset;
2552 
2553 	/*
2554 	 * Stride at which each of the subslice masks for each slice are
2555 	 * stored.
2556 	 */
2557 	__u16 subslice_stride;
2558 
2559 	/*
2560 	 * Offset in data[] at which the EU masks are stored.
2561 	 */
2562 	__u16 eu_offset;
2563 
2564 	/*
2565 	 * Stride at which each of the EU masks for each subslice are stored.
2566 	 */
2567 	__u16 eu_stride;
2568 
2569 	__u8 data[];
2570 };
2571 
2572 /**
2573  * DOC: Engine Discovery uAPI
2574  *
2575  * Engine discovery uAPI is a way of enumerating physical engines present in a
2576  * GPU associated with an open i915 DRM file descriptor. This supersedes the old
2577  * way of using `DRM_IOCTL_I915_GETPARAM` and engine identifiers like
2578  * `I915_PARAM_HAS_BLT`.
2579  *
2580  * The need for this interface came starting with Icelake and newer GPUs, which
2581  * started to establish a pattern of having multiple engines of a same class,
2582  * where not all instances were always completely functionally equivalent.
2583  *
2584  * Entry point for this uapi is `DRM_IOCTL_I915_QUERY` with the
2585  * `DRM_I915_QUERY_ENGINE_INFO` as the queried item id.
2586  *
2587  * Example for getting the list of engines:
2588  *
2589  * .. code-block:: C
2590  *
2591  * 	struct drm_i915_query_engine_info *info;
2592  * 	struct drm_i915_query_item item = {
2593  * 		.query_id = DRM_I915_QUERY_ENGINE_INFO;
2594  * 	};
2595  * 	struct drm_i915_query query = {
2596  * 		.num_items = 1,
2597  * 		.items_ptr = (uintptr_t)&item,
2598  * 	};
2599  * 	int err, i;
2600  *
2601  * 	// First query the size of the blob we need, this needs to be large
2602  * 	// enough to hold our array of engines. The kernel will fill out the
2603  * 	// item.length for us, which is the number of bytes we need.
2604  * 	//
2605  * 	// Alternatively a large buffer can be allocated straight away enabling
2606  * 	// querying in one pass, in which case item.length should contain the
2607  * 	// length of the provided buffer.
2608  * 	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
2609  * 	if (err) ...
2610  *
2611  * 	info = calloc(1, item.length);
2612  * 	// Now that we allocated the required number of bytes, we call the ioctl
2613  * 	// again, this time with the data_ptr pointing to our newly allocated
2614  * 	// blob, which the kernel can then populate with info on all engines.
2615  * 	item.data_ptr = (uintptr_t)&info,
2616  *
2617  * 	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
2618  * 	if (err) ...
2619  *
2620  * 	// We can now access each engine in the array
2621  * 	for (i = 0; i < info->num_engines; i++) {
2622  * 		struct drm_i915_engine_info einfo = info->engines[i];
2623  * 		u16 class = einfo.engine.class;
2624  * 		u16 instance = einfo.engine.instance;
2625  * 		....
2626  * 	}
2627  *
2628  * 	free(info);
2629  *
2630  * Each of the enumerated engines, apart from being defined by its class and
2631  * instance (see `struct i915_engine_class_instance`), also can have flags and
2632  * capabilities defined as documented in i915_drm.h.
2633  *
2634  * For instance video engines which support HEVC encoding will have the
2635  * `I915_VIDEO_CLASS_CAPABILITY_HEVC` capability bit set.
2636  *
2637  * Engine discovery only fully comes to its own when combined with the new way
2638  * of addressing engines when submitting batch buffers using contexts with
2639  * engine maps configured.
2640  */
2641 
2642 /**
2643  * struct drm_i915_engine_info
2644  *
2645  * Describes one engine and it's capabilities as known to the driver.
2646  */
2647 struct drm_i915_engine_info {
2648 	/** @engine: Engine class and instance. */
2649 	struct i915_engine_class_instance engine;
2650 
2651 	/** @rsvd0: Reserved field. */
2652 	__u32 rsvd0;
2653 
2654 	/** @flags: Engine flags. */
2655 	__u64 flags;
2656 
2657 	/** @capabilities: Capabilities of this engine. */
2658 	__u64 capabilities;
2659 #define I915_VIDEO_CLASS_CAPABILITY_HEVC		(1 << 0)
2660 #define I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC	(1 << 1)
2661 
2662 	/** @rsvd1: Reserved fields. */
2663 	__u64 rsvd1[4];
2664 };
2665 
2666 /**
2667  * struct drm_i915_query_engine_info
2668  *
2669  * Engine info query enumerates all engines known to the driver by filling in
2670  * an array of struct drm_i915_engine_info structures.
2671  */
2672 struct drm_i915_query_engine_info {
2673 	/** @num_engines: Number of struct drm_i915_engine_info structs following. */
2674 	__u32 num_engines;
2675 
2676 	/** @rsvd: MBZ */
2677 	__u32 rsvd[3];
2678 
2679 	/** @engines: Marker for drm_i915_engine_info structures. */
2680 	struct drm_i915_engine_info engines[];
2681 };
2682 
2683 /*
2684  * Data written by the kernel with query DRM_I915_QUERY_PERF_CONFIG.
2685  */
2686 struct drm_i915_query_perf_config {
2687 	union {
2688 		/*
2689 		 * When query_item.flags == DRM_I915_QUERY_PERF_CONFIG_LIST, i915 sets
2690 		 * this fields to the number of configurations available.
2691 		 */
2692 		__u64 n_configs;
2693 
2694 		/*
2695 		 * When query_id == DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID,
2696 		 * i915 will use the value in this field as configuration
2697 		 * identifier to decide what data to write into config_ptr.
2698 		 */
2699 		__u64 config;
2700 
2701 		/*
2702 		 * When query_id == DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID,
2703 		 * i915 will use the value in this field as configuration
2704 		 * identifier to decide what data to write into config_ptr.
2705 		 *
2706 		 * String formatted like "%08x-%04x-%04x-%04x-%012x"
2707 		 */
2708 		char uuid[36];
2709 	};
2710 
2711 	/*
2712 	 * Unused for now. Must be cleared to zero.
2713 	 */
2714 	__u32 flags;
2715 
2716 	/*
2717 	 * When query_item.flags == DRM_I915_QUERY_PERF_CONFIG_LIST, i915 will
2718 	 * write an array of __u64 of configuration identifiers.
2719 	 *
2720 	 * When query_item.flags == DRM_I915_QUERY_PERF_CONFIG_DATA, i915 will
2721 	 * write a struct drm_i915_perf_oa_config. If the following fields of
2722 	 * drm_i915_perf_oa_config are set not set to 0, i915 will write into
2723 	 * the associated pointers the values of submitted when the
2724 	 * configuration was created :
2725 	 *
2726 	 *         - n_mux_regs
2727 	 *         - n_boolean_regs
2728 	 *         - n_flex_regs
2729 	 */
2730 	__u8 data[];
2731 };
2732 
2733 /**
2734  * enum drm_i915_gem_memory_class - Supported memory classes
2735  */
2736 enum drm_i915_gem_memory_class {
2737 	/** @I915_MEMORY_CLASS_SYSTEM: System memory */
2738 	I915_MEMORY_CLASS_SYSTEM = 0,
2739 	/** @I915_MEMORY_CLASS_DEVICE: Device local-memory */
2740 	I915_MEMORY_CLASS_DEVICE,
2741 };
2742 
2743 /**
2744  * struct drm_i915_gem_memory_class_instance - Identify particular memory region
2745  */
2746 struct drm_i915_gem_memory_class_instance {
2747 	/** @memory_class: See enum drm_i915_gem_memory_class */
2748 	__u16 memory_class;
2749 
2750 	/** @memory_instance: Which instance */
2751 	__u16 memory_instance;
2752 };
2753 
2754 /**
2755  * struct drm_i915_memory_region_info - Describes one region as known to the
2756  * driver.
2757  *
2758  * Note that we reserve some stuff here for potential future work. As an example
2759  * we might want expose the capabilities for a given region, which could include
2760  * things like if the region is CPU mappable/accessible, what are the supported
2761  * mapping types etc.
2762  *
2763  * Note that to extend struct drm_i915_memory_region_info and struct
2764  * drm_i915_query_memory_regions in the future the plan is to do the following:
2765  *
2766  * .. code-block:: C
2767  *
2768  *	struct drm_i915_memory_region_info {
2769  *		struct drm_i915_gem_memory_class_instance region;
2770  *		union {
2771  *			__u32 rsvd0;
2772  *			__u32 new_thing1;
2773  *		};
2774  *		...
2775  *		union {
2776  *			__u64 rsvd1[8];
2777  *			struct {
2778  *				__u64 new_thing2;
2779  *				__u64 new_thing3;
2780  *				...
2781  *			};
2782  *		};
2783  *	};
2784  *
2785  * With this things should remain source compatible between versions for
2786  * userspace, even as we add new fields.
2787  *
2788  * Note this is using both struct drm_i915_query_item and struct drm_i915_query.
2789  * For this new query we are adding the new query id DRM_I915_QUERY_MEMORY_REGIONS
2790  * at &drm_i915_query_item.query_id.
2791  */
2792 struct drm_i915_memory_region_info {
2793 	/** @region: The class:instance pair encoding */
2794 	struct drm_i915_gem_memory_class_instance region;
2795 
2796 	/** @rsvd0: MBZ */
2797 	__u32 rsvd0;
2798 
2799 	/** @probed_size: Memory probed by the driver (-1 = unknown) */
2800 	__u64 probed_size;
2801 
2802 	/** @unallocated_size: Estimate of memory remaining (-1 = unknown) */
2803 	__u64 unallocated_size;
2804 
2805 	/** @rsvd1: MBZ */
2806 	__u64 rsvd1[8];
2807 };
2808 
2809 /**
2810  * struct drm_i915_query_memory_regions
2811  *
2812  * The region info query enumerates all regions known to the driver by filling
2813  * in an array of struct drm_i915_memory_region_info structures.
2814  *
2815  * Example for getting the list of supported regions:
2816  *
2817  * .. code-block:: C
2818  *
2819  *	struct drm_i915_query_memory_regions *info;
2820  *	struct drm_i915_query_item item = {
2821  *		.query_id = DRM_I915_QUERY_MEMORY_REGIONS;
2822  *	};
2823  *	struct drm_i915_query query = {
2824  *		.num_items = 1,
2825  *		.items_ptr = (uintptr_t)&item,
2826  *	};
2827  *	int err, i;
2828  *
2829  *	// First query the size of the blob we need, this needs to be large
2830  *	// enough to hold our array of regions. The kernel will fill out the
2831  *	// item.length for us, which is the number of bytes we need.
2832  *	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
2833  *	if (err) ...
2834  *
2835  *	info = calloc(1, item.length);
2836  *	// Now that we allocated the required number of bytes, we call the ioctl
2837  *	// again, this time with the data_ptr pointing to our newly allocated
2838  *	// blob, which the kernel can then populate with the all the region info.
2839  *	item.data_ptr = (uintptr_t)&info,
2840  *
2841  *	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
2842  *	if (err) ...
2843  *
2844  *	// We can now access each region in the array
2845  *	for (i = 0; i < info->num_regions; i++) {
2846  *		struct drm_i915_memory_region_info mr = info->regions[i];
2847  *		u16 class = mr.region.class;
2848  *		u16 instance = mr.region.instance;
2849  *
2850  *		....
2851  *	}
2852  *
2853  *	free(info);
2854  */
2855 struct drm_i915_query_memory_regions {
2856 	/** @num_regions: Number of supported regions */
2857 	__u32 num_regions;
2858 
2859 	/** @rsvd: MBZ */
2860 	__u32 rsvd[3];
2861 
2862 	/** @regions: Info about each supported region */
2863 	struct drm_i915_memory_region_info regions[];
2864 };
2865 
2866 /**
2867  * struct drm_i915_gem_create_ext - Existing gem_create behaviour, with added
2868  * extension support using struct i915_user_extension.
2869  *
2870  * Note that in the future we want to have our buffer flags here, at least for
2871  * the stuff that is immutable. Previously we would have two ioctls, one to
2872  * create the object with gem_create, and another to apply various parameters,
2873  * however this creates some ambiguity for the params which are considered
2874  * immutable. Also in general we're phasing out the various SET/GET ioctls.
2875  */
2876 struct drm_i915_gem_create_ext {
2877 	/**
2878 	 * @size: Requested size for the object.
2879 	 *
2880 	 * The (page-aligned) allocated size for the object will be returned.
2881 	 *
2882 	 * Note that for some devices we have might have further minimum
2883 	 * page-size restrictions(larger than 4K), like for device local-memory.
2884 	 * However in general the final size here should always reflect any
2885 	 * rounding up, if for example using the I915_GEM_CREATE_EXT_MEMORY_REGIONS
2886 	 * extension to place the object in device local-memory.
2887 	 */
2888 	__u64 size;
2889 	/**
2890 	 * @handle: Returned handle for the object.
2891 	 *
2892 	 * Object handles are nonzero.
2893 	 */
2894 	__u32 handle;
2895 	/** @flags: MBZ */
2896 	__u32 flags;
2897 	/**
2898 	 * @extensions: The chain of extensions to apply to this object.
2899 	 *
2900 	 * This will be useful in the future when we need to support several
2901 	 * different extensions, and we need to apply more than one when
2902 	 * creating the object. See struct i915_user_extension.
2903 	 *
2904 	 * If we don't supply any extensions then we get the same old gem_create
2905 	 * behaviour.
2906 	 *
2907 	 * For I915_GEM_CREATE_EXT_MEMORY_REGIONS usage see
2908 	 * struct drm_i915_gem_create_ext_memory_regions.
2909 	 */
2910 #define I915_GEM_CREATE_EXT_MEMORY_REGIONS 0
2911 	__u64 extensions;
2912 };
2913 
2914 /**
2915  * struct drm_i915_gem_create_ext_memory_regions - The
2916  * I915_GEM_CREATE_EXT_MEMORY_REGIONS extension.
2917  *
2918  * Set the object with the desired set of placements/regions in priority
2919  * order. Each entry must be unique and supported by the device.
2920  *
2921  * This is provided as an array of struct drm_i915_gem_memory_class_instance, or
2922  * an equivalent layout of class:instance pair encodings. See struct
2923  * drm_i915_query_memory_regions and DRM_I915_QUERY_MEMORY_REGIONS for how to
2924  * query the supported regions for a device.
2925  *
2926  * As an example, on discrete devices, if we wish to set the placement as
2927  * device local-memory we can do something like:
2928  *
2929  * .. code-block:: C
2930  *
2931  *	struct drm_i915_gem_memory_class_instance region_lmem = {
2932  *              .memory_class = I915_MEMORY_CLASS_DEVICE,
2933  *              .memory_instance = 0,
2934  *      };
2935  *      struct drm_i915_gem_create_ext_memory_regions regions = {
2936  *              .base = { .name = I915_GEM_CREATE_EXT_MEMORY_REGIONS },
2937  *              .regions = (uintptr_t)&region_lmem,
2938  *              .num_regions = 1,
2939  *      };
2940  *      struct drm_i915_gem_create_ext create_ext = {
2941  *              .size = 16 * PAGE_SIZE,
2942  *              .extensions = (uintptr_t)&regions,
2943  *      };
2944  *
2945  *      int err = ioctl(fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create_ext);
2946  *      if (err) ...
2947  *
2948  * At which point we get the object handle in &drm_i915_gem_create_ext.handle,
2949  * along with the final object size in &drm_i915_gem_create_ext.size, which
2950  * should account for any rounding up, if required.
2951  */
2952 struct drm_i915_gem_create_ext_memory_regions {
2953 	/** @base: Extension link. See struct i915_user_extension. */
2954 	struct i915_user_extension base;
2955 
2956 	/** @pad: MBZ */
2957 	__u32 pad;
2958 	/** @num_regions: Number of elements in the @regions array. */
2959 	__u32 num_regions;
2960 	/**
2961 	 * @regions: The regions/placements array.
2962 	 *
2963 	 * An array of struct drm_i915_gem_memory_class_instance.
2964 	 */
2965 	__u64 regions;
2966 };
2967 
2968 #if defined(__cplusplus)
2969 }
2970 #endif
2971 
2972 #endif /* _UAPI_I915_DRM_H_ */
2973