1 /* 2 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * The above copyright notice and this permission notice (including the 14 * next paragraph) shall be included in all copies or substantial portions 15 * of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 20 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR 21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 24 * 25 */ 26 27 #ifndef _UAPI_I915_DRM_H_ 28 #define _UAPI_I915_DRM_H_ 29 30 #include "drm.h" 31 32 #if defined(__cplusplus) 33 extern "C" { 34 #endif 35 36 /* Please note that modifications to all structs defined here are 37 * subject to backwards-compatibility constraints. 38 */ 39 40 /** 41 * DOC: uevents generated by i915 on it's device node 42 * 43 * I915_L3_PARITY_UEVENT - Generated when the driver receives a parity mismatch 44 * event from the gpu l3 cache. Additional information supplied is ROW, 45 * BANK, SUBBANK, SLICE of the affected cacheline. Userspace should keep 46 * track of these events and if a specific cache-line seems to have a 47 * persistent error remap it with the l3 remapping tool supplied in 48 * intel-gpu-tools. The value supplied with the event is always 1. 49 * 50 * I915_ERROR_UEVENT - Generated upon error detection, currently only via 51 * hangcheck. The error detection event is a good indicator of when things 52 * began to go badly. The value supplied with the event is a 1 upon error 53 * detection, and a 0 upon reset completion, signifying no more error 54 * exists. NOTE: Disabling hangcheck or reset via module parameter will 55 * cause the related events to not be seen. 56 * 57 * I915_RESET_UEVENT - Event is generated just before an attempt to reset the 58 * GPU. The value supplied with the event is always 1. NOTE: Disable 59 * reset via module parameter will cause this event to not be seen. 60 */ 61 #define I915_L3_PARITY_UEVENT "L3_PARITY_ERROR" 62 #define I915_ERROR_UEVENT "ERROR" 63 #define I915_RESET_UEVENT "RESET" 64 65 /** 66 * struct i915_user_extension - Base class for defining a chain of extensions 67 * 68 * Many interfaces need to grow over time. In most cases we can simply 69 * extend the struct and have userspace pass in more data. Another option, 70 * as demonstrated by Vulkan's approach to providing extensions for forward 71 * and backward compatibility, is to use a list of optional structs to 72 * provide those extra details. 73 * 74 * The key advantage to using an extension chain is that it allows us to 75 * redefine the interface more easily than an ever growing struct of 76 * increasing complexity, and for large parts of that interface to be 77 * entirely optional. The downside is more pointer chasing; chasing across 78 * the __user boundary with pointers encapsulated inside u64. 79 * 80 * Example chaining: 81 * 82 * .. code-block:: C 83 * 84 * struct i915_user_extension ext3 { 85 * .next_extension = 0, // end 86 * .name = ..., 87 * }; 88 * struct i915_user_extension ext2 { 89 * .next_extension = (uintptr_t)&ext3, 90 * .name = ..., 91 * }; 92 * struct i915_user_extension ext1 { 93 * .next_extension = (uintptr_t)&ext2, 94 * .name = ..., 95 * }; 96 * 97 * Typically the struct i915_user_extension would be embedded in some uAPI 98 * struct, and in this case we would feed it the head of the chain(i.e ext1), 99 * which would then apply all of the above extensions. 100 * 101 */ 102 struct i915_user_extension { 103 /** 104 * @next_extension: 105 * 106 * Pointer to the next struct i915_user_extension, or zero if the end. 107 */ 108 __u64 next_extension; 109 /** 110 * @name: Name of the extension. 111 * 112 * Note that the name here is just some integer. 113 * 114 * Also note that the name space for this is not global for the whole 115 * driver, but rather its scope/meaning is limited to the specific piece 116 * of uAPI which has embedded the struct i915_user_extension. 117 */ 118 __u32 name; 119 /** 120 * @flags: MBZ 121 * 122 * All undefined bits must be zero. 123 */ 124 __u32 flags; 125 /** 126 * @rsvd: MBZ 127 * 128 * Reserved for future use; must be zero. 129 */ 130 __u32 rsvd[4]; 131 }; 132 133 /* 134 * MOCS indexes used for GPU surfaces, defining the cacheability of the 135 * surface data and the coherency for this data wrt. CPU vs. GPU accesses. 136 */ 137 enum i915_mocs_table_index { 138 /* 139 * Not cached anywhere, coherency between CPU and GPU accesses is 140 * guaranteed. 141 */ 142 I915_MOCS_UNCACHED, 143 /* 144 * Cacheability and coherency controlled by the kernel automatically 145 * based on the DRM_I915_GEM_SET_CACHING IOCTL setting and the current 146 * usage of the surface (used for display scanout or not). 147 */ 148 I915_MOCS_PTE, 149 /* 150 * Cached in all GPU caches available on the platform. 151 * Coherency between CPU and GPU accesses to the surface is not 152 * guaranteed without extra synchronization. 153 */ 154 I915_MOCS_CACHED, 155 }; 156 157 /* 158 * Different engines serve different roles, and there may be more than one 159 * engine serving each role. enum drm_i915_gem_engine_class provides a 160 * classification of the role of the engine, which may be used when requesting 161 * operations to be performed on a certain subset of engines, or for providing 162 * information about that group. 163 */ 164 enum drm_i915_gem_engine_class { 165 I915_ENGINE_CLASS_RENDER = 0, 166 I915_ENGINE_CLASS_COPY = 1, 167 I915_ENGINE_CLASS_VIDEO = 2, 168 I915_ENGINE_CLASS_VIDEO_ENHANCE = 3, 169 170 /* should be kept compact */ 171 172 I915_ENGINE_CLASS_INVALID = -1 173 }; 174 175 /* 176 * There may be more than one engine fulfilling any role within the system. 177 * Each engine of a class is given a unique instance number and therefore 178 * any engine can be specified by its class:instance tuplet. APIs that allow 179 * access to any engine in the system will use struct i915_engine_class_instance 180 * for this identification. 181 */ 182 struct i915_engine_class_instance { 183 __u16 engine_class; /* see enum drm_i915_gem_engine_class */ 184 __u16 engine_instance; 185 #define I915_ENGINE_CLASS_INVALID_NONE -1 186 #define I915_ENGINE_CLASS_INVALID_VIRTUAL -2 187 }; 188 189 /** 190 * DOC: perf_events exposed by i915 through /sys/bus/event_sources/drivers/i915 191 * 192 */ 193 194 enum drm_i915_pmu_engine_sample { 195 I915_SAMPLE_BUSY = 0, 196 I915_SAMPLE_WAIT = 1, 197 I915_SAMPLE_SEMA = 2 198 }; 199 200 #define I915_PMU_SAMPLE_BITS (4) 201 #define I915_PMU_SAMPLE_MASK (0xf) 202 #define I915_PMU_SAMPLE_INSTANCE_BITS (8) 203 #define I915_PMU_CLASS_SHIFT \ 204 (I915_PMU_SAMPLE_BITS + I915_PMU_SAMPLE_INSTANCE_BITS) 205 206 #define __I915_PMU_ENGINE(class, instance, sample) \ 207 ((class) << I915_PMU_CLASS_SHIFT | \ 208 (instance) << I915_PMU_SAMPLE_BITS | \ 209 (sample)) 210 211 #define I915_PMU_ENGINE_BUSY(class, instance) \ 212 __I915_PMU_ENGINE(class, instance, I915_SAMPLE_BUSY) 213 214 #define I915_PMU_ENGINE_WAIT(class, instance) \ 215 __I915_PMU_ENGINE(class, instance, I915_SAMPLE_WAIT) 216 217 #define I915_PMU_ENGINE_SEMA(class, instance) \ 218 __I915_PMU_ENGINE(class, instance, I915_SAMPLE_SEMA) 219 220 #define __I915_PMU_OTHER(x) (__I915_PMU_ENGINE(0xff, 0xff, 0xf) + 1 + (x)) 221 222 #define I915_PMU_ACTUAL_FREQUENCY __I915_PMU_OTHER(0) 223 #define I915_PMU_REQUESTED_FREQUENCY __I915_PMU_OTHER(1) 224 #define I915_PMU_INTERRUPTS __I915_PMU_OTHER(2) 225 #define I915_PMU_RC6_RESIDENCY __I915_PMU_OTHER(3) 226 #define I915_PMU_SOFTWARE_GT_AWAKE_TIME __I915_PMU_OTHER(4) 227 228 #define I915_PMU_LAST /* Deprecated - do not use */ I915_PMU_RC6_RESIDENCY 229 230 /* Each region is a minimum of 16k, and there are at most 255 of them. 231 */ 232 #define I915_NR_TEX_REGIONS 255 /* table size 2k - maximum due to use 233 * of chars for next/prev indices */ 234 #define I915_LOG_MIN_TEX_REGION_SIZE 14 235 236 typedef struct _drm_i915_init { 237 enum { 238 I915_INIT_DMA = 0x01, 239 I915_CLEANUP_DMA = 0x02, 240 I915_RESUME_DMA = 0x03 241 } func; 242 unsigned int mmio_offset; 243 int sarea_priv_offset; 244 unsigned int ring_start; 245 unsigned int ring_end; 246 unsigned int ring_size; 247 unsigned int front_offset; 248 unsigned int back_offset; 249 unsigned int depth_offset; 250 unsigned int w; 251 unsigned int h; 252 unsigned int pitch; 253 unsigned int pitch_bits; 254 unsigned int back_pitch; 255 unsigned int depth_pitch; 256 unsigned int cpp; 257 unsigned int chipset; 258 } drm_i915_init_t; 259 260 typedef struct _drm_i915_sarea { 261 struct drm_tex_region texList[I915_NR_TEX_REGIONS + 1]; 262 int last_upload; /* last time texture was uploaded */ 263 int last_enqueue; /* last time a buffer was enqueued */ 264 int last_dispatch; /* age of the most recently dispatched buffer */ 265 int ctxOwner; /* last context to upload state */ 266 int texAge; 267 int pf_enabled; /* is pageflipping allowed? */ 268 int pf_active; 269 int pf_current_page; /* which buffer is being displayed? */ 270 int perf_boxes; /* performance boxes to be displayed */ 271 int width, height; /* screen size in pixels */ 272 273 drm_handle_t front_handle; 274 int front_offset; 275 int front_size; 276 277 drm_handle_t back_handle; 278 int back_offset; 279 int back_size; 280 281 drm_handle_t depth_handle; 282 int depth_offset; 283 int depth_size; 284 285 drm_handle_t tex_handle; 286 int tex_offset; 287 int tex_size; 288 int log_tex_granularity; 289 int pitch; 290 int rotation; /* 0, 90, 180 or 270 */ 291 int rotated_offset; 292 int rotated_size; 293 int rotated_pitch; 294 int virtualX, virtualY; 295 296 unsigned int front_tiled; 297 unsigned int back_tiled; 298 unsigned int depth_tiled; 299 unsigned int rotated_tiled; 300 unsigned int rotated2_tiled; 301 302 int pipeA_x; 303 int pipeA_y; 304 int pipeA_w; 305 int pipeA_h; 306 int pipeB_x; 307 int pipeB_y; 308 int pipeB_w; 309 int pipeB_h; 310 311 /* fill out some space for old userspace triple buffer */ 312 drm_handle_t unused_handle; 313 __u32 unused1, unused2, unused3; 314 315 /* buffer object handles for static buffers. May change 316 * over the lifetime of the client. 317 */ 318 __u32 front_bo_handle; 319 __u32 back_bo_handle; 320 __u32 unused_bo_handle; 321 __u32 depth_bo_handle; 322 323 } drm_i915_sarea_t; 324 325 /* due to userspace building against these headers we need some compat here */ 326 #define planeA_x pipeA_x 327 #define planeA_y pipeA_y 328 #define planeA_w pipeA_w 329 #define planeA_h pipeA_h 330 #define planeB_x pipeB_x 331 #define planeB_y pipeB_y 332 #define planeB_w pipeB_w 333 #define planeB_h pipeB_h 334 335 /* Flags for perf_boxes 336 */ 337 #define I915_BOX_RING_EMPTY 0x1 338 #define I915_BOX_FLIP 0x2 339 #define I915_BOX_WAIT 0x4 340 #define I915_BOX_TEXTURE_LOAD 0x8 341 #define I915_BOX_LOST_CONTEXT 0x10 342 343 /* 344 * i915 specific ioctls. 345 * 346 * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie 347 * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset 348 * against DRM_COMMAND_BASE and should be between [0x0, 0x60). 349 */ 350 #define DRM_I915_INIT 0x00 351 #define DRM_I915_FLUSH 0x01 352 #define DRM_I915_FLIP 0x02 353 #define DRM_I915_BATCHBUFFER 0x03 354 #define DRM_I915_IRQ_EMIT 0x04 355 #define DRM_I915_IRQ_WAIT 0x05 356 #define DRM_I915_GETPARAM 0x06 357 #define DRM_I915_SETPARAM 0x07 358 #define DRM_I915_ALLOC 0x08 359 #define DRM_I915_FREE 0x09 360 #define DRM_I915_INIT_HEAP 0x0a 361 #define DRM_I915_CMDBUFFER 0x0b 362 #define DRM_I915_DESTROY_HEAP 0x0c 363 #define DRM_I915_SET_VBLANK_PIPE 0x0d 364 #define DRM_I915_GET_VBLANK_PIPE 0x0e 365 #define DRM_I915_VBLANK_SWAP 0x0f 366 #define DRM_I915_HWS_ADDR 0x11 367 #define DRM_I915_GEM_INIT 0x13 368 #define DRM_I915_GEM_EXECBUFFER 0x14 369 #define DRM_I915_GEM_PIN 0x15 370 #define DRM_I915_GEM_UNPIN 0x16 371 #define DRM_I915_GEM_BUSY 0x17 372 #define DRM_I915_GEM_THROTTLE 0x18 373 #define DRM_I915_GEM_ENTERVT 0x19 374 #define DRM_I915_GEM_LEAVEVT 0x1a 375 #define DRM_I915_GEM_CREATE 0x1b 376 #define DRM_I915_GEM_PREAD 0x1c 377 #define DRM_I915_GEM_PWRITE 0x1d 378 #define DRM_I915_GEM_MMAP 0x1e 379 #define DRM_I915_GEM_SET_DOMAIN 0x1f 380 #define DRM_I915_GEM_SW_FINISH 0x20 381 #define DRM_I915_GEM_SET_TILING 0x21 382 #define DRM_I915_GEM_GET_TILING 0x22 383 #define DRM_I915_GEM_GET_APERTURE 0x23 384 #define DRM_I915_GEM_MMAP_GTT 0x24 385 #define DRM_I915_GET_PIPE_FROM_CRTC_ID 0x25 386 #define DRM_I915_GEM_MADVISE 0x26 387 #define DRM_I915_OVERLAY_PUT_IMAGE 0x27 388 #define DRM_I915_OVERLAY_ATTRS 0x28 389 #define DRM_I915_GEM_EXECBUFFER2 0x29 390 #define DRM_I915_GEM_EXECBUFFER2_WR DRM_I915_GEM_EXECBUFFER2 391 #define DRM_I915_GET_SPRITE_COLORKEY 0x2a 392 #define DRM_I915_SET_SPRITE_COLORKEY 0x2b 393 #define DRM_I915_GEM_WAIT 0x2c 394 #define DRM_I915_GEM_CONTEXT_CREATE 0x2d 395 #define DRM_I915_GEM_CONTEXT_DESTROY 0x2e 396 #define DRM_I915_GEM_SET_CACHING 0x2f 397 #define DRM_I915_GEM_GET_CACHING 0x30 398 #define DRM_I915_REG_READ 0x31 399 #define DRM_I915_GET_RESET_STATS 0x32 400 #define DRM_I915_GEM_USERPTR 0x33 401 #define DRM_I915_GEM_CONTEXT_GETPARAM 0x34 402 #define DRM_I915_GEM_CONTEXT_SETPARAM 0x35 403 #define DRM_I915_PERF_OPEN 0x36 404 #define DRM_I915_PERF_ADD_CONFIG 0x37 405 #define DRM_I915_PERF_REMOVE_CONFIG 0x38 406 #define DRM_I915_QUERY 0x39 407 #define DRM_I915_GEM_VM_CREATE 0x3a 408 #define DRM_I915_GEM_VM_DESTROY 0x3b 409 #define DRM_I915_GEM_CREATE_EXT 0x3c 410 /* Must be kept compact -- no holes */ 411 412 #define DRM_IOCTL_I915_INIT DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT, drm_i915_init_t) 413 #define DRM_IOCTL_I915_FLUSH DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLUSH) 414 #define DRM_IOCTL_I915_FLIP DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLIP) 415 #define DRM_IOCTL_I915_BATCHBUFFER DRM_IOW( DRM_COMMAND_BASE + DRM_I915_BATCHBUFFER, drm_i915_batchbuffer_t) 416 #define DRM_IOCTL_I915_IRQ_EMIT DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_IRQ_EMIT, drm_i915_irq_emit_t) 417 #define DRM_IOCTL_I915_IRQ_WAIT DRM_IOW( DRM_COMMAND_BASE + DRM_I915_IRQ_WAIT, drm_i915_irq_wait_t) 418 #define DRM_IOCTL_I915_GETPARAM DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GETPARAM, drm_i915_getparam_t) 419 #define DRM_IOCTL_I915_SETPARAM DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SETPARAM, drm_i915_setparam_t) 420 #define DRM_IOCTL_I915_ALLOC DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_ALLOC, drm_i915_mem_alloc_t) 421 #define DRM_IOCTL_I915_FREE DRM_IOW( DRM_COMMAND_BASE + DRM_I915_FREE, drm_i915_mem_free_t) 422 #define DRM_IOCTL_I915_INIT_HEAP DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT_HEAP, drm_i915_mem_init_heap_t) 423 #define DRM_IOCTL_I915_CMDBUFFER DRM_IOW( DRM_COMMAND_BASE + DRM_I915_CMDBUFFER, drm_i915_cmdbuffer_t) 424 #define DRM_IOCTL_I915_DESTROY_HEAP DRM_IOW( DRM_COMMAND_BASE + DRM_I915_DESTROY_HEAP, drm_i915_mem_destroy_heap_t) 425 #define DRM_IOCTL_I915_SET_VBLANK_PIPE DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SET_VBLANK_PIPE, drm_i915_vblank_pipe_t) 426 #define DRM_IOCTL_I915_GET_VBLANK_PIPE DRM_IOR( DRM_COMMAND_BASE + DRM_I915_GET_VBLANK_PIPE, drm_i915_vblank_pipe_t) 427 #define DRM_IOCTL_I915_VBLANK_SWAP DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_VBLANK_SWAP, drm_i915_vblank_swap_t) 428 #define DRM_IOCTL_I915_HWS_ADDR DRM_IOW(DRM_COMMAND_BASE + DRM_I915_HWS_ADDR, struct drm_i915_gem_init) 429 #define DRM_IOCTL_I915_GEM_INIT DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_INIT, struct drm_i915_gem_init) 430 #define DRM_IOCTL_I915_GEM_EXECBUFFER DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER, struct drm_i915_gem_execbuffer) 431 #define DRM_IOCTL_I915_GEM_EXECBUFFER2 DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2, struct drm_i915_gem_execbuffer2) 432 #define DRM_IOCTL_I915_GEM_EXECBUFFER2_WR DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2_WR, struct drm_i915_gem_execbuffer2) 433 #define DRM_IOCTL_I915_GEM_PIN DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_PIN, struct drm_i915_gem_pin) 434 #define DRM_IOCTL_I915_GEM_UNPIN DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_UNPIN, struct drm_i915_gem_unpin) 435 #define DRM_IOCTL_I915_GEM_BUSY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_BUSY, struct drm_i915_gem_busy) 436 #define DRM_IOCTL_I915_GEM_SET_CACHING DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_SET_CACHING, struct drm_i915_gem_caching) 437 #define DRM_IOCTL_I915_GEM_GET_CACHING DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_GET_CACHING, struct drm_i915_gem_caching) 438 #define DRM_IOCTL_I915_GEM_THROTTLE DRM_IO ( DRM_COMMAND_BASE + DRM_I915_GEM_THROTTLE) 439 #define DRM_IOCTL_I915_GEM_ENTERVT DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_ENTERVT) 440 #define DRM_IOCTL_I915_GEM_LEAVEVT DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_LEAVEVT) 441 #define DRM_IOCTL_I915_GEM_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE, struct drm_i915_gem_create) 442 #define DRM_IOCTL_I915_GEM_CREATE_EXT DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE_EXT, struct drm_i915_gem_create_ext) 443 #define DRM_IOCTL_I915_GEM_PREAD DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PREAD, struct drm_i915_gem_pread) 444 #define DRM_IOCTL_I915_GEM_PWRITE DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PWRITE, struct drm_i915_gem_pwrite) 445 #define DRM_IOCTL_I915_GEM_MMAP DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP, struct drm_i915_gem_mmap) 446 #define DRM_IOCTL_I915_GEM_MMAP_GTT DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_gtt) 447 #define DRM_IOCTL_I915_GEM_MMAP_OFFSET DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_offset) 448 #define DRM_IOCTL_I915_GEM_SET_DOMAIN DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SET_DOMAIN, struct drm_i915_gem_set_domain) 449 #define DRM_IOCTL_I915_GEM_SW_FINISH DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SW_FINISH, struct drm_i915_gem_sw_finish) 450 #define DRM_IOCTL_I915_GEM_SET_TILING DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_SET_TILING, struct drm_i915_gem_set_tiling) 451 #define DRM_IOCTL_I915_GEM_GET_TILING DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_TILING, struct drm_i915_gem_get_tiling) 452 #define DRM_IOCTL_I915_GEM_GET_APERTURE DRM_IOR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_APERTURE, struct drm_i915_gem_get_aperture) 453 #define DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_PIPE_FROM_CRTC_ID, struct drm_i915_get_pipe_from_crtc_id) 454 #define DRM_IOCTL_I915_GEM_MADVISE DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MADVISE, struct drm_i915_gem_madvise) 455 #define DRM_IOCTL_I915_OVERLAY_PUT_IMAGE DRM_IOW(DRM_COMMAND_BASE + DRM_I915_OVERLAY_PUT_IMAGE, struct drm_intel_overlay_put_image) 456 #define DRM_IOCTL_I915_OVERLAY_ATTRS DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_OVERLAY_ATTRS, struct drm_intel_overlay_attrs) 457 #define DRM_IOCTL_I915_SET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_SET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey) 458 #define DRM_IOCTL_I915_GET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey) 459 #define DRM_IOCTL_I915_GEM_WAIT DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_WAIT, struct drm_i915_gem_wait) 460 #define DRM_IOCTL_I915_GEM_CONTEXT_CREATE DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create) 461 #define DRM_IOCTL_I915_GEM_CONTEXT_CREATE_EXT DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create_ext) 462 #define DRM_IOCTL_I915_GEM_CONTEXT_DESTROY DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_DESTROY, struct drm_i915_gem_context_destroy) 463 #define DRM_IOCTL_I915_REG_READ DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_REG_READ, struct drm_i915_reg_read) 464 #define DRM_IOCTL_I915_GET_RESET_STATS DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GET_RESET_STATS, struct drm_i915_reset_stats) 465 #define DRM_IOCTL_I915_GEM_USERPTR DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_USERPTR, struct drm_i915_gem_userptr) 466 #define DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_GETPARAM, struct drm_i915_gem_context_param) 467 #define DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_SETPARAM, struct drm_i915_gem_context_param) 468 #define DRM_IOCTL_I915_PERF_OPEN DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_OPEN, struct drm_i915_perf_open_param) 469 #define DRM_IOCTL_I915_PERF_ADD_CONFIG DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_ADD_CONFIG, struct drm_i915_perf_oa_config) 470 #define DRM_IOCTL_I915_PERF_REMOVE_CONFIG DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_REMOVE_CONFIG, __u64) 471 #define DRM_IOCTL_I915_QUERY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_QUERY, struct drm_i915_query) 472 #define DRM_IOCTL_I915_GEM_VM_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_VM_CREATE, struct drm_i915_gem_vm_control) 473 #define DRM_IOCTL_I915_GEM_VM_DESTROY DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_VM_DESTROY, struct drm_i915_gem_vm_control) 474 475 /* Allow drivers to submit batchbuffers directly to hardware, relying 476 * on the security mechanisms provided by hardware. 477 */ 478 typedef struct drm_i915_batchbuffer { 479 int start; /* agp offset */ 480 int used; /* nr bytes in use */ 481 int DR1; /* hw flags for GFX_OP_DRAWRECT_INFO */ 482 int DR4; /* window origin for GFX_OP_DRAWRECT_INFO */ 483 int num_cliprects; /* mulitpass with multiple cliprects? */ 484 struct drm_clip_rect __user *cliprects; /* pointer to userspace cliprects */ 485 } drm_i915_batchbuffer_t; 486 487 /* As above, but pass a pointer to userspace buffer which can be 488 * validated by the kernel prior to sending to hardware. 489 */ 490 typedef struct _drm_i915_cmdbuffer { 491 char __user *buf; /* pointer to userspace command buffer */ 492 int sz; /* nr bytes in buf */ 493 int DR1; /* hw flags for GFX_OP_DRAWRECT_INFO */ 494 int DR4; /* window origin for GFX_OP_DRAWRECT_INFO */ 495 int num_cliprects; /* mulitpass with multiple cliprects? */ 496 struct drm_clip_rect __user *cliprects; /* pointer to userspace cliprects */ 497 } drm_i915_cmdbuffer_t; 498 499 /* Userspace can request & wait on irq's: 500 */ 501 typedef struct drm_i915_irq_emit { 502 int __user *irq_seq; 503 } drm_i915_irq_emit_t; 504 505 typedef struct drm_i915_irq_wait { 506 int irq_seq; 507 } drm_i915_irq_wait_t; 508 509 /* 510 * Different modes of per-process Graphics Translation Table, 511 * see I915_PARAM_HAS_ALIASING_PPGTT 512 */ 513 #define I915_GEM_PPGTT_NONE 0 514 #define I915_GEM_PPGTT_ALIASING 1 515 #define I915_GEM_PPGTT_FULL 2 516 517 /* Ioctl to query kernel params: 518 */ 519 #define I915_PARAM_IRQ_ACTIVE 1 520 #define I915_PARAM_ALLOW_BATCHBUFFER 2 521 #define I915_PARAM_LAST_DISPATCH 3 522 #define I915_PARAM_CHIPSET_ID 4 523 #define I915_PARAM_HAS_GEM 5 524 #define I915_PARAM_NUM_FENCES_AVAIL 6 525 #define I915_PARAM_HAS_OVERLAY 7 526 #define I915_PARAM_HAS_PAGEFLIPPING 8 527 #define I915_PARAM_HAS_EXECBUF2 9 528 #define I915_PARAM_HAS_BSD 10 529 #define I915_PARAM_HAS_BLT 11 530 #define I915_PARAM_HAS_RELAXED_FENCING 12 531 #define I915_PARAM_HAS_COHERENT_RINGS 13 532 #define I915_PARAM_HAS_EXEC_CONSTANTS 14 533 #define I915_PARAM_HAS_RELAXED_DELTA 15 534 #define I915_PARAM_HAS_GEN7_SOL_RESET 16 535 #define I915_PARAM_HAS_LLC 17 536 #define I915_PARAM_HAS_ALIASING_PPGTT 18 537 #define I915_PARAM_HAS_WAIT_TIMEOUT 19 538 #define I915_PARAM_HAS_SEMAPHORES 20 539 #define I915_PARAM_HAS_PRIME_VMAP_FLUSH 21 540 #define I915_PARAM_HAS_VEBOX 22 541 #define I915_PARAM_HAS_SECURE_BATCHES 23 542 #define I915_PARAM_HAS_PINNED_BATCHES 24 543 #define I915_PARAM_HAS_EXEC_NO_RELOC 25 544 #define I915_PARAM_HAS_EXEC_HANDLE_LUT 26 545 #define I915_PARAM_HAS_WT 27 546 #define I915_PARAM_CMD_PARSER_VERSION 28 547 #define I915_PARAM_HAS_COHERENT_PHYS_GTT 29 548 #define I915_PARAM_MMAP_VERSION 30 549 #define I915_PARAM_HAS_BSD2 31 550 #define I915_PARAM_REVISION 32 551 #define I915_PARAM_SUBSLICE_TOTAL 33 552 #define I915_PARAM_EU_TOTAL 34 553 #define I915_PARAM_HAS_GPU_RESET 35 554 #define I915_PARAM_HAS_RESOURCE_STREAMER 36 555 #define I915_PARAM_HAS_EXEC_SOFTPIN 37 556 #define I915_PARAM_HAS_POOLED_EU 38 557 #define I915_PARAM_MIN_EU_IN_POOL 39 558 #define I915_PARAM_MMAP_GTT_VERSION 40 559 560 /* 561 * Query whether DRM_I915_GEM_EXECBUFFER2 supports user defined execution 562 * priorities and the driver will attempt to execute batches in priority order. 563 * The param returns a capability bitmask, nonzero implies that the scheduler 564 * is enabled, with different features present according to the mask. 565 * 566 * The initial priority for each batch is supplied by the context and is 567 * controlled via I915_CONTEXT_PARAM_PRIORITY. 568 */ 569 #define I915_PARAM_HAS_SCHEDULER 41 570 #define I915_SCHEDULER_CAP_ENABLED (1ul << 0) 571 #define I915_SCHEDULER_CAP_PRIORITY (1ul << 1) 572 #define I915_SCHEDULER_CAP_PREEMPTION (1ul << 2) 573 #define I915_SCHEDULER_CAP_SEMAPHORES (1ul << 3) 574 #define I915_SCHEDULER_CAP_ENGINE_BUSY_STATS (1ul << 4) 575 576 #define I915_PARAM_HUC_STATUS 42 577 578 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to opt-out of 579 * synchronisation with implicit fencing on individual objects. 580 * See EXEC_OBJECT_ASYNC. 581 */ 582 #define I915_PARAM_HAS_EXEC_ASYNC 43 583 584 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports explicit fence support - 585 * both being able to pass in a sync_file fd to wait upon before executing, 586 * and being able to return a new sync_file fd that is signaled when the 587 * current request is complete. See I915_EXEC_FENCE_IN and I915_EXEC_FENCE_OUT. 588 */ 589 #define I915_PARAM_HAS_EXEC_FENCE 44 590 591 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to capture 592 * user specified bufffers for post-mortem debugging of GPU hangs. See 593 * EXEC_OBJECT_CAPTURE. 594 */ 595 #define I915_PARAM_HAS_EXEC_CAPTURE 45 596 597 #define I915_PARAM_SLICE_MASK 46 598 599 /* Assuming it's uniform for each slice, this queries the mask of subslices 600 * per-slice for this system. 601 */ 602 #define I915_PARAM_SUBSLICE_MASK 47 603 604 /* 605 * Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying the batch buffer 606 * as the first execobject as opposed to the last. See I915_EXEC_BATCH_FIRST. 607 */ 608 #define I915_PARAM_HAS_EXEC_BATCH_FIRST 48 609 610 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of 611 * drm_i915_gem_exec_fence structures. See I915_EXEC_FENCE_ARRAY. 612 */ 613 #define I915_PARAM_HAS_EXEC_FENCE_ARRAY 49 614 615 /* 616 * Query whether every context (both per-file default and user created) is 617 * isolated (insofar as HW supports). If this parameter is not true, then 618 * freshly created contexts may inherit values from an existing context, 619 * rather than default HW values. If true, it also ensures (insofar as HW 620 * supports) that all state set by this context will not leak to any other 621 * context. 622 * 623 * As not every engine across every gen support contexts, the returned 624 * value reports the support of context isolation for individual engines by 625 * returning a bitmask of each engine class set to true if that class supports 626 * isolation. 627 */ 628 #define I915_PARAM_HAS_CONTEXT_ISOLATION 50 629 630 /* Frequency of the command streamer timestamps given by the *_TIMESTAMP 631 * registers. This used to be fixed per platform but from CNL onwards, this 632 * might vary depending on the parts. 633 */ 634 #define I915_PARAM_CS_TIMESTAMP_FREQUENCY 51 635 636 /* 637 * Once upon a time we supposed that writes through the GGTT would be 638 * immediately in physical memory (once flushed out of the CPU path). However, 639 * on a few different processors and chipsets, this is not necessarily the case 640 * as the writes appear to be buffered internally. Thus a read of the backing 641 * storage (physical memory) via a different path (with different physical tags 642 * to the indirect write via the GGTT) will see stale values from before 643 * the GGTT write. Inside the kernel, we can for the most part keep track of 644 * the different read/write domains in use (e.g. set-domain), but the assumption 645 * of coherency is baked into the ABI, hence reporting its true state in this 646 * parameter. 647 * 648 * Reports true when writes via mmap_gtt are immediately visible following an 649 * lfence to flush the WCB. 650 * 651 * Reports false when writes via mmap_gtt are indeterminately delayed in an in 652 * internal buffer and are _not_ immediately visible to third parties accessing 653 * directly via mmap_cpu/mmap_wc. Use of mmap_gtt as part of an IPC 654 * communications channel when reporting false is strongly disadvised. 655 */ 656 #define I915_PARAM_MMAP_GTT_COHERENT 52 657 658 /* 659 * Query whether DRM_I915_GEM_EXECBUFFER2 supports coordination of parallel 660 * execution through use of explicit fence support. 661 * See I915_EXEC_FENCE_OUT and I915_EXEC_FENCE_SUBMIT. 662 */ 663 #define I915_PARAM_HAS_EXEC_SUBMIT_FENCE 53 664 665 /* 666 * Revision of the i915-perf uAPI. The value returned helps determine what 667 * i915-perf features are available. See drm_i915_perf_property_id. 668 */ 669 #define I915_PARAM_PERF_REVISION 54 670 671 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of 672 * timeline syncobj through drm_i915_gem_execbuffer_ext_timeline_fences. See 673 * I915_EXEC_USE_EXTENSIONS. 674 */ 675 #define I915_PARAM_HAS_EXEC_TIMELINE_FENCES 55 676 677 /* Must be kept compact -- no holes and well documented */ 678 679 typedef struct drm_i915_getparam { 680 __s32 param; 681 /* 682 * WARNING: Using pointers instead of fixed-size u64 means we need to write 683 * compat32 code. Don't repeat this mistake. 684 */ 685 int __user *value; 686 } drm_i915_getparam_t; 687 688 /* Ioctl to set kernel params: 689 */ 690 #define I915_SETPARAM_USE_MI_BATCHBUFFER_START 1 691 #define I915_SETPARAM_TEX_LRU_LOG_GRANULARITY 2 692 #define I915_SETPARAM_ALLOW_BATCHBUFFER 3 693 #define I915_SETPARAM_NUM_USED_FENCES 4 694 /* Must be kept compact -- no holes */ 695 696 typedef struct drm_i915_setparam { 697 int param; 698 int value; 699 } drm_i915_setparam_t; 700 701 /* A memory manager for regions of shared memory: 702 */ 703 #define I915_MEM_REGION_AGP 1 704 705 typedef struct drm_i915_mem_alloc { 706 int region; 707 int alignment; 708 int size; 709 int __user *region_offset; /* offset from start of fb or agp */ 710 } drm_i915_mem_alloc_t; 711 712 typedef struct drm_i915_mem_free { 713 int region; 714 int region_offset; 715 } drm_i915_mem_free_t; 716 717 typedef struct drm_i915_mem_init_heap { 718 int region; 719 int size; 720 int start; 721 } drm_i915_mem_init_heap_t; 722 723 /* Allow memory manager to be torn down and re-initialized (eg on 724 * rotate): 725 */ 726 typedef struct drm_i915_mem_destroy_heap { 727 int region; 728 } drm_i915_mem_destroy_heap_t; 729 730 /* Allow X server to configure which pipes to monitor for vblank signals 731 */ 732 #define DRM_I915_VBLANK_PIPE_A 1 733 #define DRM_I915_VBLANK_PIPE_B 2 734 735 typedef struct drm_i915_vblank_pipe { 736 int pipe; 737 } drm_i915_vblank_pipe_t; 738 739 /* Schedule buffer swap at given vertical blank: 740 */ 741 typedef struct drm_i915_vblank_swap { 742 drm_drawable_t drawable; 743 enum drm_vblank_seq_type seqtype; 744 unsigned int sequence; 745 } drm_i915_vblank_swap_t; 746 747 typedef struct drm_i915_hws_addr { 748 __u64 addr; 749 } drm_i915_hws_addr_t; 750 751 struct drm_i915_gem_init { 752 /** 753 * Beginning offset in the GTT to be managed by the DRM memory 754 * manager. 755 */ 756 __u64 gtt_start; 757 /** 758 * Ending offset in the GTT to be managed by the DRM memory 759 * manager. 760 */ 761 __u64 gtt_end; 762 }; 763 764 struct drm_i915_gem_create { 765 /** 766 * Requested size for the object. 767 * 768 * The (page-aligned) allocated size for the object will be returned. 769 */ 770 __u64 size; 771 /** 772 * Returned handle for the object. 773 * 774 * Object handles are nonzero. 775 */ 776 __u32 handle; 777 __u32 pad; 778 }; 779 780 struct drm_i915_gem_pread { 781 /** Handle for the object being read. */ 782 __u32 handle; 783 __u32 pad; 784 /** Offset into the object to read from */ 785 __u64 offset; 786 /** Length of data to read */ 787 __u64 size; 788 /** 789 * Pointer to write the data into. 790 * 791 * This is a fixed-size type for 32/64 compatibility. 792 */ 793 __u64 data_ptr; 794 }; 795 796 struct drm_i915_gem_pwrite { 797 /** Handle for the object being written to. */ 798 __u32 handle; 799 __u32 pad; 800 /** Offset into the object to write to */ 801 __u64 offset; 802 /** Length of data to write */ 803 __u64 size; 804 /** 805 * Pointer to read the data from. 806 * 807 * This is a fixed-size type for 32/64 compatibility. 808 */ 809 __u64 data_ptr; 810 }; 811 812 struct drm_i915_gem_mmap { 813 /** Handle for the object being mapped. */ 814 __u32 handle; 815 __u32 pad; 816 /** Offset in the object to map. */ 817 __u64 offset; 818 /** 819 * Length of data to map. 820 * 821 * The value will be page-aligned. 822 */ 823 __u64 size; 824 /** 825 * Returned pointer the data was mapped at. 826 * 827 * This is a fixed-size type for 32/64 compatibility. 828 */ 829 __u64 addr_ptr; 830 831 /** 832 * Flags for extended behaviour. 833 * 834 * Added in version 2. 835 */ 836 __u64 flags; 837 #define I915_MMAP_WC 0x1 838 }; 839 840 struct drm_i915_gem_mmap_gtt { 841 /** Handle for the object being mapped. */ 842 __u32 handle; 843 __u32 pad; 844 /** 845 * Fake offset to use for subsequent mmap call 846 * 847 * This is a fixed-size type for 32/64 compatibility. 848 */ 849 __u64 offset; 850 }; 851 852 struct drm_i915_gem_mmap_offset { 853 /** Handle for the object being mapped. */ 854 __u32 handle; 855 __u32 pad; 856 /** 857 * Fake offset to use for subsequent mmap call 858 * 859 * This is a fixed-size type for 32/64 compatibility. 860 */ 861 __u64 offset; 862 863 /** 864 * Flags for extended behaviour. 865 * 866 * It is mandatory that one of the MMAP_OFFSET types 867 * (GTT, WC, WB, UC, etc) should be included. 868 */ 869 __u64 flags; 870 #define I915_MMAP_OFFSET_GTT 0 871 #define I915_MMAP_OFFSET_WC 1 872 #define I915_MMAP_OFFSET_WB 2 873 #define I915_MMAP_OFFSET_UC 3 874 875 /* 876 * Zero-terminated chain of extensions. 877 * 878 * No current extensions defined; mbz. 879 */ 880 __u64 extensions; 881 }; 882 883 /** 884 * struct drm_i915_gem_set_domain - Adjust the objects write or read domain, in 885 * preparation for accessing the pages via some CPU domain. 886 * 887 * Specifying a new write or read domain will flush the object out of the 888 * previous domain(if required), before then updating the objects domain 889 * tracking with the new domain. 890 * 891 * Note this might involve waiting for the object first if it is still active on 892 * the GPU. 893 * 894 * Supported values for @read_domains and @write_domain: 895 * 896 * - I915_GEM_DOMAIN_WC: Uncached write-combined domain 897 * - I915_GEM_DOMAIN_CPU: CPU cache domain 898 * - I915_GEM_DOMAIN_GTT: Mappable aperture domain 899 * 900 * All other domains are rejected. 901 */ 902 struct drm_i915_gem_set_domain { 903 /** @handle: Handle for the object. */ 904 __u32 handle; 905 906 /** @read_domains: New read domains. */ 907 __u32 read_domains; 908 909 /** 910 * @write_domain: New write domain. 911 * 912 * Note that having something in the write domain implies it's in the 913 * read domain, and only that read domain. 914 */ 915 __u32 write_domain; 916 }; 917 918 struct drm_i915_gem_sw_finish { 919 /** Handle for the object */ 920 __u32 handle; 921 }; 922 923 struct drm_i915_gem_relocation_entry { 924 /** 925 * Handle of the buffer being pointed to by this relocation entry. 926 * 927 * It's appealing to make this be an index into the mm_validate_entry 928 * list to refer to the buffer, but this allows the driver to create 929 * a relocation list for state buffers and not re-write it per 930 * exec using the buffer. 931 */ 932 __u32 target_handle; 933 934 /** 935 * Value to be added to the offset of the target buffer to make up 936 * the relocation entry. 937 */ 938 __u32 delta; 939 940 /** Offset in the buffer the relocation entry will be written into */ 941 __u64 offset; 942 943 /** 944 * Offset value of the target buffer that the relocation entry was last 945 * written as. 946 * 947 * If the buffer has the same offset as last time, we can skip syncing 948 * and writing the relocation. This value is written back out by 949 * the execbuffer ioctl when the relocation is written. 950 */ 951 __u64 presumed_offset; 952 953 /** 954 * Target memory domains read by this operation. 955 */ 956 __u32 read_domains; 957 958 /** 959 * Target memory domains written by this operation. 960 * 961 * Note that only one domain may be written by the whole 962 * execbuffer operation, so that where there are conflicts, 963 * the application will get -EINVAL back. 964 */ 965 __u32 write_domain; 966 }; 967 968 /** @{ 969 * Intel memory domains 970 * 971 * Most of these just align with the various caches in 972 * the system and are used to flush and invalidate as 973 * objects end up cached in different domains. 974 */ 975 /** CPU cache */ 976 #define I915_GEM_DOMAIN_CPU 0x00000001 977 /** Render cache, used by 2D and 3D drawing */ 978 #define I915_GEM_DOMAIN_RENDER 0x00000002 979 /** Sampler cache, used by texture engine */ 980 #define I915_GEM_DOMAIN_SAMPLER 0x00000004 981 /** Command queue, used to load batch buffers */ 982 #define I915_GEM_DOMAIN_COMMAND 0x00000008 983 /** Instruction cache, used by shader programs */ 984 #define I915_GEM_DOMAIN_INSTRUCTION 0x00000010 985 /** Vertex address cache */ 986 #define I915_GEM_DOMAIN_VERTEX 0x00000020 987 /** GTT domain - aperture and scanout */ 988 #define I915_GEM_DOMAIN_GTT 0x00000040 989 /** WC domain - uncached access */ 990 #define I915_GEM_DOMAIN_WC 0x00000080 991 /** @} */ 992 993 struct drm_i915_gem_exec_object { 994 /** 995 * User's handle for a buffer to be bound into the GTT for this 996 * operation. 997 */ 998 __u32 handle; 999 1000 /** Number of relocations to be performed on this buffer */ 1001 __u32 relocation_count; 1002 /** 1003 * Pointer to array of struct drm_i915_gem_relocation_entry containing 1004 * the relocations to be performed in this buffer. 1005 */ 1006 __u64 relocs_ptr; 1007 1008 /** Required alignment in graphics aperture */ 1009 __u64 alignment; 1010 1011 /** 1012 * Returned value of the updated offset of the object, for future 1013 * presumed_offset writes. 1014 */ 1015 __u64 offset; 1016 }; 1017 1018 /* DRM_IOCTL_I915_GEM_EXECBUFFER was removed in Linux 5.13 */ 1019 struct drm_i915_gem_execbuffer { 1020 /** 1021 * List of buffers to be validated with their relocations to be 1022 * performend on them. 1023 * 1024 * This is a pointer to an array of struct drm_i915_gem_validate_entry. 1025 * 1026 * These buffers must be listed in an order such that all relocations 1027 * a buffer is performing refer to buffers that have already appeared 1028 * in the validate list. 1029 */ 1030 __u64 buffers_ptr; 1031 __u32 buffer_count; 1032 1033 /** Offset in the batchbuffer to start execution from. */ 1034 __u32 batch_start_offset; 1035 /** Bytes used in batchbuffer from batch_start_offset */ 1036 __u32 batch_len; 1037 __u32 DR1; 1038 __u32 DR4; 1039 __u32 num_cliprects; 1040 /** This is a struct drm_clip_rect *cliprects */ 1041 __u64 cliprects_ptr; 1042 }; 1043 1044 struct drm_i915_gem_exec_object2 { 1045 /** 1046 * User's handle for a buffer to be bound into the GTT for this 1047 * operation. 1048 */ 1049 __u32 handle; 1050 1051 /** Number of relocations to be performed on this buffer */ 1052 __u32 relocation_count; 1053 /** 1054 * Pointer to array of struct drm_i915_gem_relocation_entry containing 1055 * the relocations to be performed in this buffer. 1056 */ 1057 __u64 relocs_ptr; 1058 1059 /** Required alignment in graphics aperture */ 1060 __u64 alignment; 1061 1062 /** 1063 * When the EXEC_OBJECT_PINNED flag is specified this is populated by 1064 * the user with the GTT offset at which this object will be pinned. 1065 * When the I915_EXEC_NO_RELOC flag is specified this must contain the 1066 * presumed_offset of the object. 1067 * During execbuffer2 the kernel populates it with the value of the 1068 * current GTT offset of the object, for future presumed_offset writes. 1069 */ 1070 __u64 offset; 1071 1072 #define EXEC_OBJECT_NEEDS_FENCE (1<<0) 1073 #define EXEC_OBJECT_NEEDS_GTT (1<<1) 1074 #define EXEC_OBJECT_WRITE (1<<2) 1075 #define EXEC_OBJECT_SUPPORTS_48B_ADDRESS (1<<3) 1076 #define EXEC_OBJECT_PINNED (1<<4) 1077 #define EXEC_OBJECT_PAD_TO_SIZE (1<<5) 1078 /* The kernel implicitly tracks GPU activity on all GEM objects, and 1079 * synchronises operations with outstanding rendering. This includes 1080 * rendering on other devices if exported via dma-buf. However, sometimes 1081 * this tracking is too coarse and the user knows better. For example, 1082 * if the object is split into non-overlapping ranges shared between different 1083 * clients or engines (i.e. suballocating objects), the implicit tracking 1084 * by kernel assumes that each operation affects the whole object rather 1085 * than an individual range, causing needless synchronisation between clients. 1086 * The kernel will also forgo any CPU cache flushes prior to rendering from 1087 * the object as the client is expected to be also handling such domain 1088 * tracking. 1089 * 1090 * The kernel maintains the implicit tracking in order to manage resources 1091 * used by the GPU - this flag only disables the synchronisation prior to 1092 * rendering with this object in this execbuf. 1093 * 1094 * Opting out of implicit synhronisation requires the user to do its own 1095 * explicit tracking to avoid rendering corruption. See, for example, 1096 * I915_PARAM_HAS_EXEC_FENCE to order execbufs and execute them asynchronously. 1097 */ 1098 #define EXEC_OBJECT_ASYNC (1<<6) 1099 /* Request that the contents of this execobject be copied into the error 1100 * state upon a GPU hang involving this batch for post-mortem debugging. 1101 * These buffers are recorded in no particular order as "user" in 1102 * /sys/class/drm/cardN/error. Query I915_PARAM_HAS_EXEC_CAPTURE to see 1103 * if the kernel supports this flag. 1104 */ 1105 #define EXEC_OBJECT_CAPTURE (1<<7) 1106 /* All remaining bits are MBZ and RESERVED FOR FUTURE USE */ 1107 #define __EXEC_OBJECT_UNKNOWN_FLAGS -(EXEC_OBJECT_CAPTURE<<1) 1108 __u64 flags; 1109 1110 union { 1111 __u64 rsvd1; 1112 __u64 pad_to_size; 1113 }; 1114 __u64 rsvd2; 1115 }; 1116 1117 struct drm_i915_gem_exec_fence { 1118 /** 1119 * User's handle for a drm_syncobj to wait on or signal. 1120 */ 1121 __u32 handle; 1122 1123 #define I915_EXEC_FENCE_WAIT (1<<0) 1124 #define I915_EXEC_FENCE_SIGNAL (1<<1) 1125 #define __I915_EXEC_FENCE_UNKNOWN_FLAGS (-(I915_EXEC_FENCE_SIGNAL << 1)) 1126 __u32 flags; 1127 }; 1128 1129 /* 1130 * See drm_i915_gem_execbuffer_ext_timeline_fences. 1131 */ 1132 #define DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES 0 1133 1134 /* 1135 * This structure describes an array of drm_syncobj and associated points for 1136 * timeline variants of drm_syncobj. It is invalid to append this structure to 1137 * the execbuf if I915_EXEC_FENCE_ARRAY is set. 1138 */ 1139 struct drm_i915_gem_execbuffer_ext_timeline_fences { 1140 struct i915_user_extension base; 1141 1142 /** 1143 * Number of element in the handles_ptr & value_ptr arrays. 1144 */ 1145 __u64 fence_count; 1146 1147 /** 1148 * Pointer to an array of struct drm_i915_gem_exec_fence of length 1149 * fence_count. 1150 */ 1151 __u64 handles_ptr; 1152 1153 /** 1154 * Pointer to an array of u64 values of length fence_count. Values 1155 * must be 0 for a binary drm_syncobj. A Value of 0 for a timeline 1156 * drm_syncobj is invalid as it turns a drm_syncobj into a binary one. 1157 */ 1158 __u64 values_ptr; 1159 }; 1160 1161 struct drm_i915_gem_execbuffer2 { 1162 /** 1163 * List of gem_exec_object2 structs 1164 */ 1165 __u64 buffers_ptr; 1166 __u32 buffer_count; 1167 1168 /** Offset in the batchbuffer to start execution from. */ 1169 __u32 batch_start_offset; 1170 /** Bytes used in batchbuffer from batch_start_offset */ 1171 __u32 batch_len; 1172 __u32 DR1; 1173 __u32 DR4; 1174 __u32 num_cliprects; 1175 /** 1176 * This is a struct drm_clip_rect *cliprects if I915_EXEC_FENCE_ARRAY 1177 * & I915_EXEC_USE_EXTENSIONS are not set. 1178 * 1179 * If I915_EXEC_FENCE_ARRAY is set, then this is a pointer to an array 1180 * of struct drm_i915_gem_exec_fence and num_cliprects is the length 1181 * of the array. 1182 * 1183 * If I915_EXEC_USE_EXTENSIONS is set, then this is a pointer to a 1184 * single struct i915_user_extension and num_cliprects is 0. 1185 */ 1186 __u64 cliprects_ptr; 1187 #define I915_EXEC_RING_MASK (0x3f) 1188 #define I915_EXEC_DEFAULT (0<<0) 1189 #define I915_EXEC_RENDER (1<<0) 1190 #define I915_EXEC_BSD (2<<0) 1191 #define I915_EXEC_BLT (3<<0) 1192 #define I915_EXEC_VEBOX (4<<0) 1193 1194 /* Used for switching the constants addressing mode on gen4+ RENDER ring. 1195 * Gen6+ only supports relative addressing to dynamic state (default) and 1196 * absolute addressing. 1197 * 1198 * These flags are ignored for the BSD and BLT rings. 1199 */ 1200 #define I915_EXEC_CONSTANTS_MASK (3<<6) 1201 #define I915_EXEC_CONSTANTS_REL_GENERAL (0<<6) /* default */ 1202 #define I915_EXEC_CONSTANTS_ABSOLUTE (1<<6) 1203 #define I915_EXEC_CONSTANTS_REL_SURFACE (2<<6) /* gen4/5 only */ 1204 __u64 flags; 1205 __u64 rsvd1; /* now used for context info */ 1206 __u64 rsvd2; 1207 }; 1208 1209 /** Resets the SO write offset registers for transform feedback on gen7. */ 1210 #define I915_EXEC_GEN7_SOL_RESET (1<<8) 1211 1212 /** Request a privileged ("secure") batch buffer. Note only available for 1213 * DRM_ROOT_ONLY | DRM_MASTER processes. 1214 */ 1215 #define I915_EXEC_SECURE (1<<9) 1216 1217 /** Inform the kernel that the batch is and will always be pinned. This 1218 * negates the requirement for a workaround to be performed to avoid 1219 * an incoherent CS (such as can be found on 830/845). If this flag is 1220 * not passed, the kernel will endeavour to make sure the batch is 1221 * coherent with the CS before execution. If this flag is passed, 1222 * userspace assumes the responsibility for ensuring the same. 1223 */ 1224 #define I915_EXEC_IS_PINNED (1<<10) 1225 1226 /** Provide a hint to the kernel that the command stream and auxiliary 1227 * state buffers already holds the correct presumed addresses and so the 1228 * relocation process may be skipped if no buffers need to be moved in 1229 * preparation for the execbuffer. 1230 */ 1231 #define I915_EXEC_NO_RELOC (1<<11) 1232 1233 /** Use the reloc.handle as an index into the exec object array rather 1234 * than as the per-file handle. 1235 */ 1236 #define I915_EXEC_HANDLE_LUT (1<<12) 1237 1238 /** Used for switching BSD rings on the platforms with two BSD rings */ 1239 #define I915_EXEC_BSD_SHIFT (13) 1240 #define I915_EXEC_BSD_MASK (3 << I915_EXEC_BSD_SHIFT) 1241 /* default ping-pong mode */ 1242 #define I915_EXEC_BSD_DEFAULT (0 << I915_EXEC_BSD_SHIFT) 1243 #define I915_EXEC_BSD_RING1 (1 << I915_EXEC_BSD_SHIFT) 1244 #define I915_EXEC_BSD_RING2 (2 << I915_EXEC_BSD_SHIFT) 1245 1246 /** Tell the kernel that the batchbuffer is processed by 1247 * the resource streamer. 1248 */ 1249 #define I915_EXEC_RESOURCE_STREAMER (1<<15) 1250 1251 /* Setting I915_EXEC_FENCE_IN implies that lower_32_bits(rsvd2) represent 1252 * a sync_file fd to wait upon (in a nonblocking manner) prior to executing 1253 * the batch. 1254 * 1255 * Returns -EINVAL if the sync_file fd cannot be found. 1256 */ 1257 #define I915_EXEC_FENCE_IN (1<<16) 1258 1259 /* Setting I915_EXEC_FENCE_OUT causes the ioctl to return a sync_file fd 1260 * in the upper_32_bits(rsvd2) upon success. Ownership of the fd is given 1261 * to the caller, and it should be close() after use. (The fd is a regular 1262 * file descriptor and will be cleaned up on process termination. It holds 1263 * a reference to the request, but nothing else.) 1264 * 1265 * The sync_file fd can be combined with other sync_file and passed either 1266 * to execbuf using I915_EXEC_FENCE_IN, to atomic KMS ioctls (so that a flip 1267 * will only occur after this request completes), or to other devices. 1268 * 1269 * Using I915_EXEC_FENCE_OUT requires use of 1270 * DRM_IOCTL_I915_GEM_EXECBUFFER2_WR ioctl so that the result is written 1271 * back to userspace. Failure to do so will cause the out-fence to always 1272 * be reported as zero, and the real fence fd to be leaked. 1273 */ 1274 #define I915_EXEC_FENCE_OUT (1<<17) 1275 1276 /* 1277 * Traditionally the execbuf ioctl has only considered the final element in 1278 * the execobject[] to be the executable batch. Often though, the client 1279 * will known the batch object prior to construction and being able to place 1280 * it into the execobject[] array first can simplify the relocation tracking. 1281 * Setting I915_EXEC_BATCH_FIRST tells execbuf to use element 0 of the 1282 * execobject[] as the * batch instead (the default is to use the last 1283 * element). 1284 */ 1285 #define I915_EXEC_BATCH_FIRST (1<<18) 1286 1287 /* Setting I915_FENCE_ARRAY implies that num_cliprects and cliprects_ptr 1288 * define an array of i915_gem_exec_fence structures which specify a set of 1289 * dma fences to wait upon or signal. 1290 */ 1291 #define I915_EXEC_FENCE_ARRAY (1<<19) 1292 1293 /* 1294 * Setting I915_EXEC_FENCE_SUBMIT implies that lower_32_bits(rsvd2) represent 1295 * a sync_file fd to wait upon (in a nonblocking manner) prior to executing 1296 * the batch. 1297 * 1298 * Returns -EINVAL if the sync_file fd cannot be found. 1299 */ 1300 #define I915_EXEC_FENCE_SUBMIT (1 << 20) 1301 1302 /* 1303 * Setting I915_EXEC_USE_EXTENSIONS implies that 1304 * drm_i915_gem_execbuffer2.cliprects_ptr is treated as a pointer to an linked 1305 * list of i915_user_extension. Each i915_user_extension node is the base of a 1306 * larger structure. The list of supported structures are listed in the 1307 * drm_i915_gem_execbuffer_ext enum. 1308 */ 1309 #define I915_EXEC_USE_EXTENSIONS (1 << 21) 1310 1311 #define __I915_EXEC_UNKNOWN_FLAGS (-(I915_EXEC_USE_EXTENSIONS << 1)) 1312 1313 #define I915_EXEC_CONTEXT_ID_MASK (0xffffffff) 1314 #define i915_execbuffer2_set_context_id(eb2, context) \ 1315 (eb2).rsvd1 = context & I915_EXEC_CONTEXT_ID_MASK 1316 #define i915_execbuffer2_get_context_id(eb2) \ 1317 ((eb2).rsvd1 & I915_EXEC_CONTEXT_ID_MASK) 1318 1319 struct drm_i915_gem_pin { 1320 /** Handle of the buffer to be pinned. */ 1321 __u32 handle; 1322 __u32 pad; 1323 1324 /** alignment required within the aperture */ 1325 __u64 alignment; 1326 1327 /** Returned GTT offset of the buffer. */ 1328 __u64 offset; 1329 }; 1330 1331 struct drm_i915_gem_unpin { 1332 /** Handle of the buffer to be unpinned. */ 1333 __u32 handle; 1334 __u32 pad; 1335 }; 1336 1337 struct drm_i915_gem_busy { 1338 /** Handle of the buffer to check for busy */ 1339 __u32 handle; 1340 1341 /** Return busy status 1342 * 1343 * A return of 0 implies that the object is idle (after 1344 * having flushed any pending activity), and a non-zero return that 1345 * the object is still in-flight on the GPU. (The GPU has not yet 1346 * signaled completion for all pending requests that reference the 1347 * object.) An object is guaranteed to become idle eventually (so 1348 * long as no new GPU commands are executed upon it). Due to the 1349 * asynchronous nature of the hardware, an object reported 1350 * as busy may become idle before the ioctl is completed. 1351 * 1352 * Furthermore, if the object is busy, which engine is busy is only 1353 * provided as a guide and only indirectly by reporting its class 1354 * (there may be more than one engine in each class). There are race 1355 * conditions which prevent the report of which engines are busy from 1356 * being always accurate. However, the converse is not true. If the 1357 * object is idle, the result of the ioctl, that all engines are idle, 1358 * is accurate. 1359 * 1360 * The returned dword is split into two fields to indicate both 1361 * the engine classess on which the object is being read, and the 1362 * engine class on which it is currently being written (if any). 1363 * 1364 * The low word (bits 0:15) indicate if the object is being written 1365 * to by any engine (there can only be one, as the GEM implicit 1366 * synchronisation rules force writes to be serialised). Only the 1367 * engine class (offset by 1, I915_ENGINE_CLASS_RENDER is reported as 1368 * 1 not 0 etc) for the last write is reported. 1369 * 1370 * The high word (bits 16:31) are a bitmask of which engines classes 1371 * are currently reading from the object. Multiple engines may be 1372 * reading from the object simultaneously. 1373 * 1374 * The value of each engine class is the same as specified in the 1375 * I915_CONTEXT_PARAM_ENGINES context parameter and via perf, i.e. 1376 * I915_ENGINE_CLASS_RENDER, I915_ENGINE_CLASS_COPY, etc. 1377 * Some hardware may have parallel execution engines, e.g. multiple 1378 * media engines, which are mapped to the same class identifier and so 1379 * are not separately reported for busyness. 1380 * 1381 * Caveat emptor: 1382 * Only the boolean result of this query is reliable; that is whether 1383 * the object is idle or busy. The report of which engines are busy 1384 * should be only used as a heuristic. 1385 */ 1386 __u32 busy; 1387 }; 1388 1389 /** 1390 * struct drm_i915_gem_caching - Set or get the caching for given object 1391 * handle. 1392 * 1393 * Allow userspace to control the GTT caching bits for a given object when the 1394 * object is later mapped through the ppGTT(or GGTT on older platforms lacking 1395 * ppGTT support, or if the object is used for scanout). Note that this might 1396 * require unbinding the object from the GTT first, if its current caching value 1397 * doesn't match. 1398 * 1399 * Note that this all changes on discrete platforms, starting from DG1, the 1400 * set/get caching is no longer supported, and is now rejected. Instead the CPU 1401 * caching attributes(WB vs WC) will become an immutable creation time property 1402 * for the object, along with the GTT caching level. For now we don't expose any 1403 * new uAPI for this, instead on DG1 this is all implicit, although this largely 1404 * shouldn't matter since DG1 is coherent by default(without any way of 1405 * controlling it). 1406 * 1407 * Implicit caching rules, starting from DG1: 1408 * 1409 * - If any of the object placements (see &drm_i915_gem_create_ext_memory_regions) 1410 * contain I915_MEMORY_CLASS_DEVICE then the object will be allocated and 1411 * mapped as write-combined only. 1412 * 1413 * - Everything else is always allocated and mapped as write-back, with the 1414 * guarantee that everything is also coherent with the GPU. 1415 * 1416 * Note that this is likely to change in the future again, where we might need 1417 * more flexibility on future devices, so making this all explicit as part of a 1418 * new &drm_i915_gem_create_ext extension is probable. 1419 * 1420 * Side note: Part of the reason for this is that changing the at-allocation-time CPU 1421 * caching attributes for the pages might be required(and is expensive) if we 1422 * need to then CPU map the pages later with different caching attributes. This 1423 * inconsistent caching behaviour, while supported on x86, is not universally 1424 * supported on other architectures. So for simplicity we opt for setting 1425 * everything at creation time, whilst also making it immutable, on discrete 1426 * platforms. 1427 */ 1428 struct drm_i915_gem_caching { 1429 /** 1430 * @handle: Handle of the buffer to set/get the caching level. 1431 */ 1432 __u32 handle; 1433 1434 /** 1435 * @caching: The GTT caching level to apply or possible return value. 1436 * 1437 * The supported @caching values: 1438 * 1439 * I915_CACHING_NONE: 1440 * 1441 * GPU access is not coherent with CPU caches. Default for machines 1442 * without an LLC. This means manual flushing might be needed, if we 1443 * want GPU access to be coherent. 1444 * 1445 * I915_CACHING_CACHED: 1446 * 1447 * GPU access is coherent with CPU caches and furthermore the data is 1448 * cached in last-level caches shared between CPU cores and the GPU GT. 1449 * 1450 * I915_CACHING_DISPLAY: 1451 * 1452 * Special GPU caching mode which is coherent with the scanout engines. 1453 * Transparently falls back to I915_CACHING_NONE on platforms where no 1454 * special cache mode (like write-through or gfdt flushing) is 1455 * available. The kernel automatically sets this mode when using a 1456 * buffer as a scanout target. Userspace can manually set this mode to 1457 * avoid a costly stall and clflush in the hotpath of drawing the first 1458 * frame. 1459 */ 1460 #define I915_CACHING_NONE 0 1461 #define I915_CACHING_CACHED 1 1462 #define I915_CACHING_DISPLAY 2 1463 __u32 caching; 1464 }; 1465 1466 #define I915_TILING_NONE 0 1467 #define I915_TILING_X 1 1468 #define I915_TILING_Y 2 1469 #define I915_TILING_LAST I915_TILING_Y 1470 1471 #define I915_BIT_6_SWIZZLE_NONE 0 1472 #define I915_BIT_6_SWIZZLE_9 1 1473 #define I915_BIT_6_SWIZZLE_9_10 2 1474 #define I915_BIT_6_SWIZZLE_9_11 3 1475 #define I915_BIT_6_SWIZZLE_9_10_11 4 1476 /* Not seen by userland */ 1477 #define I915_BIT_6_SWIZZLE_UNKNOWN 5 1478 /* Seen by userland. */ 1479 #define I915_BIT_6_SWIZZLE_9_17 6 1480 #define I915_BIT_6_SWIZZLE_9_10_17 7 1481 1482 struct drm_i915_gem_set_tiling { 1483 /** Handle of the buffer to have its tiling state updated */ 1484 __u32 handle; 1485 1486 /** 1487 * Tiling mode for the object (I915_TILING_NONE, I915_TILING_X, 1488 * I915_TILING_Y). 1489 * 1490 * This value is to be set on request, and will be updated by the 1491 * kernel on successful return with the actual chosen tiling layout. 1492 * 1493 * The tiling mode may be demoted to I915_TILING_NONE when the system 1494 * has bit 6 swizzling that can't be managed correctly by GEM. 1495 * 1496 * Buffer contents become undefined when changing tiling_mode. 1497 */ 1498 __u32 tiling_mode; 1499 1500 /** 1501 * Stride in bytes for the object when in I915_TILING_X or 1502 * I915_TILING_Y. 1503 */ 1504 __u32 stride; 1505 1506 /** 1507 * Returned address bit 6 swizzling required for CPU access through 1508 * mmap mapping. 1509 */ 1510 __u32 swizzle_mode; 1511 }; 1512 1513 struct drm_i915_gem_get_tiling { 1514 /** Handle of the buffer to get tiling state for. */ 1515 __u32 handle; 1516 1517 /** 1518 * Current tiling mode for the object (I915_TILING_NONE, I915_TILING_X, 1519 * I915_TILING_Y). 1520 */ 1521 __u32 tiling_mode; 1522 1523 /** 1524 * Returned address bit 6 swizzling required for CPU access through 1525 * mmap mapping. 1526 */ 1527 __u32 swizzle_mode; 1528 1529 /** 1530 * Returned address bit 6 swizzling required for CPU access through 1531 * mmap mapping whilst bound. 1532 */ 1533 __u32 phys_swizzle_mode; 1534 }; 1535 1536 struct drm_i915_gem_get_aperture { 1537 /** Total size of the aperture used by i915_gem_execbuffer, in bytes */ 1538 __u64 aper_size; 1539 1540 /** 1541 * Available space in the aperture used by i915_gem_execbuffer, in 1542 * bytes 1543 */ 1544 __u64 aper_available_size; 1545 }; 1546 1547 struct drm_i915_get_pipe_from_crtc_id { 1548 /** ID of CRTC being requested **/ 1549 __u32 crtc_id; 1550 1551 /** pipe of requested CRTC **/ 1552 __u32 pipe; 1553 }; 1554 1555 #define I915_MADV_WILLNEED 0 1556 #define I915_MADV_DONTNEED 1 1557 #define __I915_MADV_PURGED 2 /* internal state */ 1558 1559 struct drm_i915_gem_madvise { 1560 /** Handle of the buffer to change the backing store advice */ 1561 __u32 handle; 1562 1563 /* Advice: either the buffer will be needed again in the near future, 1564 * or wont be and could be discarded under memory pressure. 1565 */ 1566 __u32 madv; 1567 1568 /** Whether the backing store still exists. */ 1569 __u32 retained; 1570 }; 1571 1572 /* flags */ 1573 #define I915_OVERLAY_TYPE_MASK 0xff 1574 #define I915_OVERLAY_YUV_PLANAR 0x01 1575 #define I915_OVERLAY_YUV_PACKED 0x02 1576 #define I915_OVERLAY_RGB 0x03 1577 1578 #define I915_OVERLAY_DEPTH_MASK 0xff00 1579 #define I915_OVERLAY_RGB24 0x1000 1580 #define I915_OVERLAY_RGB16 0x2000 1581 #define I915_OVERLAY_RGB15 0x3000 1582 #define I915_OVERLAY_YUV422 0x0100 1583 #define I915_OVERLAY_YUV411 0x0200 1584 #define I915_OVERLAY_YUV420 0x0300 1585 #define I915_OVERLAY_YUV410 0x0400 1586 1587 #define I915_OVERLAY_SWAP_MASK 0xff0000 1588 #define I915_OVERLAY_NO_SWAP 0x000000 1589 #define I915_OVERLAY_UV_SWAP 0x010000 1590 #define I915_OVERLAY_Y_SWAP 0x020000 1591 #define I915_OVERLAY_Y_AND_UV_SWAP 0x030000 1592 1593 #define I915_OVERLAY_FLAGS_MASK 0xff000000 1594 #define I915_OVERLAY_ENABLE 0x01000000 1595 1596 struct drm_intel_overlay_put_image { 1597 /* various flags and src format description */ 1598 __u32 flags; 1599 /* source picture description */ 1600 __u32 bo_handle; 1601 /* stride values and offsets are in bytes, buffer relative */ 1602 __u16 stride_Y; /* stride for packed formats */ 1603 __u16 stride_UV; 1604 __u32 offset_Y; /* offset for packet formats */ 1605 __u32 offset_U; 1606 __u32 offset_V; 1607 /* in pixels */ 1608 __u16 src_width; 1609 __u16 src_height; 1610 /* to compensate the scaling factors for partially covered surfaces */ 1611 __u16 src_scan_width; 1612 __u16 src_scan_height; 1613 /* output crtc description */ 1614 __u32 crtc_id; 1615 __u16 dst_x; 1616 __u16 dst_y; 1617 __u16 dst_width; 1618 __u16 dst_height; 1619 }; 1620 1621 /* flags */ 1622 #define I915_OVERLAY_UPDATE_ATTRS (1<<0) 1623 #define I915_OVERLAY_UPDATE_GAMMA (1<<1) 1624 #define I915_OVERLAY_DISABLE_DEST_COLORKEY (1<<2) 1625 struct drm_intel_overlay_attrs { 1626 __u32 flags; 1627 __u32 color_key; 1628 __s32 brightness; 1629 __u32 contrast; 1630 __u32 saturation; 1631 __u32 gamma0; 1632 __u32 gamma1; 1633 __u32 gamma2; 1634 __u32 gamma3; 1635 __u32 gamma4; 1636 __u32 gamma5; 1637 }; 1638 1639 /* 1640 * Intel sprite handling 1641 * 1642 * Color keying works with a min/mask/max tuple. Both source and destination 1643 * color keying is allowed. 1644 * 1645 * Source keying: 1646 * Sprite pixels within the min & max values, masked against the color channels 1647 * specified in the mask field, will be transparent. All other pixels will 1648 * be displayed on top of the primary plane. For RGB surfaces, only the min 1649 * and mask fields will be used; ranged compares are not allowed. 1650 * 1651 * Destination keying: 1652 * Primary plane pixels that match the min value, masked against the color 1653 * channels specified in the mask field, will be replaced by corresponding 1654 * pixels from the sprite plane. 1655 * 1656 * Note that source & destination keying are exclusive; only one can be 1657 * active on a given plane. 1658 */ 1659 1660 #define I915_SET_COLORKEY_NONE (1<<0) /* Deprecated. Instead set 1661 * flags==0 to disable colorkeying. 1662 */ 1663 #define I915_SET_COLORKEY_DESTINATION (1<<1) 1664 #define I915_SET_COLORKEY_SOURCE (1<<2) 1665 struct drm_intel_sprite_colorkey { 1666 __u32 plane_id; 1667 __u32 min_value; 1668 __u32 channel_mask; 1669 __u32 max_value; 1670 __u32 flags; 1671 }; 1672 1673 struct drm_i915_gem_wait { 1674 /** Handle of BO we shall wait on */ 1675 __u32 bo_handle; 1676 __u32 flags; 1677 /** Number of nanoseconds to wait, Returns time remaining. */ 1678 __s64 timeout_ns; 1679 }; 1680 1681 struct drm_i915_gem_context_create { 1682 __u32 ctx_id; /* output: id of new context*/ 1683 __u32 pad; 1684 }; 1685 1686 struct drm_i915_gem_context_create_ext { 1687 __u32 ctx_id; /* output: id of new context*/ 1688 __u32 flags; 1689 #define I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS (1u << 0) 1690 #define I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE (1u << 1) 1691 #define I915_CONTEXT_CREATE_FLAGS_UNKNOWN \ 1692 (-(I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE << 1)) 1693 __u64 extensions; 1694 }; 1695 1696 struct drm_i915_gem_context_param { 1697 __u32 ctx_id; 1698 __u32 size; 1699 __u64 param; 1700 #define I915_CONTEXT_PARAM_BAN_PERIOD 0x1 1701 /* I915_CONTEXT_PARAM_NO_ZEROMAP has been removed. On the off chance 1702 * someone somewhere has attempted to use it, never re-use this context 1703 * param number. 1704 */ 1705 #define I915_CONTEXT_PARAM_NO_ZEROMAP 0x2 1706 #define I915_CONTEXT_PARAM_GTT_SIZE 0x3 1707 #define I915_CONTEXT_PARAM_NO_ERROR_CAPTURE 0x4 1708 #define I915_CONTEXT_PARAM_BANNABLE 0x5 1709 #define I915_CONTEXT_PARAM_PRIORITY 0x6 1710 #define I915_CONTEXT_MAX_USER_PRIORITY 1023 /* inclusive */ 1711 #define I915_CONTEXT_DEFAULT_PRIORITY 0 1712 #define I915_CONTEXT_MIN_USER_PRIORITY -1023 /* inclusive */ 1713 /* 1714 * When using the following param, value should be a pointer to 1715 * drm_i915_gem_context_param_sseu. 1716 */ 1717 #define I915_CONTEXT_PARAM_SSEU 0x7 1718 1719 /* 1720 * Not all clients may want to attempt automatic recover of a context after 1721 * a hang (for example, some clients may only submit very small incremental 1722 * batches relying on known logical state of previous batches which will never 1723 * recover correctly and each attempt will hang), and so would prefer that 1724 * the context is forever banned instead. 1725 * 1726 * If set to false (0), after a reset, subsequent (and in flight) rendering 1727 * from this context is discarded, and the client will need to create a new 1728 * context to use instead. 1729 * 1730 * If set to true (1), the kernel will automatically attempt to recover the 1731 * context by skipping the hanging batch and executing the next batch starting 1732 * from the default context state (discarding the incomplete logical context 1733 * state lost due to the reset). 1734 * 1735 * On creation, all new contexts are marked as recoverable. 1736 */ 1737 #define I915_CONTEXT_PARAM_RECOVERABLE 0x8 1738 1739 /* 1740 * The id of the associated virtual memory address space (ppGTT) of 1741 * this context. Can be retrieved and passed to another context 1742 * (on the same fd) for both to use the same ppGTT and so share 1743 * address layouts, and avoid reloading the page tables on context 1744 * switches between themselves. 1745 * 1746 * See DRM_I915_GEM_VM_CREATE and DRM_I915_GEM_VM_DESTROY. 1747 */ 1748 #define I915_CONTEXT_PARAM_VM 0x9 1749 1750 /* 1751 * I915_CONTEXT_PARAM_ENGINES: 1752 * 1753 * Bind this context to operate on this subset of available engines. Henceforth, 1754 * the I915_EXEC_RING selector for DRM_IOCTL_I915_GEM_EXECBUFFER2 operates as 1755 * an index into this array of engines; I915_EXEC_DEFAULT selecting engine[0] 1756 * and upwards. Slots 0...N are filled in using the specified (class, instance). 1757 * Use 1758 * engine_class: I915_ENGINE_CLASS_INVALID, 1759 * engine_instance: I915_ENGINE_CLASS_INVALID_NONE 1760 * to specify a gap in the array that can be filled in later, e.g. by a 1761 * virtual engine used for load balancing. 1762 * 1763 * Setting the number of engines bound to the context to 0, by passing a zero 1764 * sized argument, will revert back to default settings. 1765 * 1766 * See struct i915_context_param_engines. 1767 * 1768 * Extensions: 1769 * i915_context_engines_load_balance (I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE) 1770 * i915_context_engines_bond (I915_CONTEXT_ENGINES_EXT_BOND) 1771 */ 1772 #define I915_CONTEXT_PARAM_ENGINES 0xa 1773 1774 /* 1775 * I915_CONTEXT_PARAM_PERSISTENCE: 1776 * 1777 * Allow the context and active rendering to survive the process until 1778 * completion. Persistence allows fire-and-forget clients to queue up a 1779 * bunch of work, hand the output over to a display server and then quit. 1780 * If the context is marked as not persistent, upon closing (either via 1781 * an explicit DRM_I915_GEM_CONTEXT_DESTROY or implicitly from file closure 1782 * or process termination), the context and any outstanding requests will be 1783 * cancelled (and exported fences for cancelled requests marked as -EIO). 1784 * 1785 * By default, new contexts allow persistence. 1786 */ 1787 #define I915_CONTEXT_PARAM_PERSISTENCE 0xb 1788 1789 /* This API has been removed. On the off chance someone somewhere has 1790 * attempted to use it, never re-use this context param number. 1791 */ 1792 #define I915_CONTEXT_PARAM_RINGSIZE 0xc 1793 /* Must be kept compact -- no holes and well documented */ 1794 1795 __u64 value; 1796 }; 1797 1798 /* 1799 * Context SSEU programming 1800 * 1801 * It may be necessary for either functional or performance reason to configure 1802 * a context to run with a reduced number of SSEU (where SSEU stands for Slice/ 1803 * Sub-slice/EU). 1804 * 1805 * This is done by configuring SSEU configuration using the below 1806 * @struct drm_i915_gem_context_param_sseu for every supported engine which 1807 * userspace intends to use. 1808 * 1809 * Not all GPUs or engines support this functionality in which case an error 1810 * code -ENODEV will be returned. 1811 * 1812 * Also, flexibility of possible SSEU configuration permutations varies between 1813 * GPU generations and software imposed limitations. Requesting such a 1814 * combination will return an error code of -EINVAL. 1815 * 1816 * NOTE: When perf/OA is active the context's SSEU configuration is ignored in 1817 * favour of a single global setting. 1818 */ 1819 struct drm_i915_gem_context_param_sseu { 1820 /* 1821 * Engine class & instance to be configured or queried. 1822 */ 1823 struct i915_engine_class_instance engine; 1824 1825 /* 1826 * Unknown flags must be cleared to zero. 1827 */ 1828 __u32 flags; 1829 #define I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX (1u << 0) 1830 1831 /* 1832 * Mask of slices to enable for the context. Valid values are a subset 1833 * of the bitmask value returned for I915_PARAM_SLICE_MASK. 1834 */ 1835 __u64 slice_mask; 1836 1837 /* 1838 * Mask of subslices to enable for the context. Valid values are a 1839 * subset of the bitmask value return by I915_PARAM_SUBSLICE_MASK. 1840 */ 1841 __u64 subslice_mask; 1842 1843 /* 1844 * Minimum/Maximum number of EUs to enable per subslice for the 1845 * context. min_eus_per_subslice must be inferior or equal to 1846 * max_eus_per_subslice. 1847 */ 1848 __u16 min_eus_per_subslice; 1849 __u16 max_eus_per_subslice; 1850 1851 /* 1852 * Unused for now. Must be cleared to zero. 1853 */ 1854 __u32 rsvd; 1855 }; 1856 1857 /** 1858 * DOC: Virtual Engine uAPI 1859 * 1860 * Virtual engine is a concept where userspace is able to configure a set of 1861 * physical engines, submit a batch buffer, and let the driver execute it on any 1862 * engine from the set as it sees fit. 1863 * 1864 * This is primarily useful on parts which have multiple instances of a same 1865 * class engine, like for example GT3+ Skylake parts with their two VCS engines. 1866 * 1867 * For instance userspace can enumerate all engines of a certain class using the 1868 * previously described `Engine Discovery uAPI`_. After that userspace can 1869 * create a GEM context with a placeholder slot for the virtual engine (using 1870 * `I915_ENGINE_CLASS_INVALID` and `I915_ENGINE_CLASS_INVALID_NONE` for class 1871 * and instance respectively) and finally using the 1872 * `I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE` extension place a virtual engine in 1873 * the same reserved slot. 1874 * 1875 * Example of creating a virtual engine and submitting a batch buffer to it: 1876 * 1877 * .. code-block:: C 1878 * 1879 * I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(virtual, 2) = { 1880 * .base.name = I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE, 1881 * .engine_index = 0, // Place this virtual engine into engine map slot 0 1882 * .num_siblings = 2, 1883 * .engines = { { I915_ENGINE_CLASS_VIDEO, 0 }, 1884 * { I915_ENGINE_CLASS_VIDEO, 1 }, }, 1885 * }; 1886 * I915_DEFINE_CONTEXT_PARAM_ENGINES(engines, 1) = { 1887 * .engines = { { I915_ENGINE_CLASS_INVALID, 1888 * I915_ENGINE_CLASS_INVALID_NONE } }, 1889 * .extensions = to_user_pointer(&virtual), // Chains after load_balance extension 1890 * }; 1891 * struct drm_i915_gem_context_create_ext_setparam p_engines = { 1892 * .base = { 1893 * .name = I915_CONTEXT_CREATE_EXT_SETPARAM, 1894 * }, 1895 * .param = { 1896 * .param = I915_CONTEXT_PARAM_ENGINES, 1897 * .value = to_user_pointer(&engines), 1898 * .size = sizeof(engines), 1899 * }, 1900 * }; 1901 * struct drm_i915_gem_context_create_ext create = { 1902 * .flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS, 1903 * .extensions = to_user_pointer(&p_engines); 1904 * }; 1905 * 1906 * ctx_id = gem_context_create_ext(drm_fd, &create); 1907 * 1908 * // Now we have created a GEM context with its engine map containing a 1909 * // single virtual engine. Submissions to this slot can go either to 1910 * // vcs0 or vcs1, depending on the load balancing algorithm used inside 1911 * // the driver. The load balancing is dynamic from one batch buffer to 1912 * // another and transparent to userspace. 1913 * 1914 * ... 1915 * execbuf.rsvd1 = ctx_id; 1916 * execbuf.flags = 0; // Submits to index 0 which is the virtual engine 1917 * gem_execbuf(drm_fd, &execbuf); 1918 */ 1919 1920 /* 1921 * i915_context_engines_load_balance: 1922 * 1923 * Enable load balancing across this set of engines. 1924 * 1925 * Into the I915_EXEC_DEFAULT slot [0], a virtual engine is created that when 1926 * used will proxy the execbuffer request onto one of the set of engines 1927 * in such a way as to distribute the load evenly across the set. 1928 * 1929 * The set of engines must be compatible (e.g. the same HW class) as they 1930 * will share the same logical GPU context and ring. 1931 * 1932 * To intermix rendering with the virtual engine and direct rendering onto 1933 * the backing engines (bypassing the load balancing proxy), the context must 1934 * be defined to use a single timeline for all engines. 1935 */ 1936 struct i915_context_engines_load_balance { 1937 struct i915_user_extension base; 1938 1939 __u16 engine_index; 1940 __u16 num_siblings; 1941 __u32 flags; /* all undefined flags must be zero */ 1942 1943 __u64 mbz64; /* reserved for future use; must be zero */ 1944 1945 struct i915_engine_class_instance engines[0]; 1946 } __attribute__((packed)); 1947 1948 #define I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(name__, N__) struct { \ 1949 struct i915_user_extension base; \ 1950 __u16 engine_index; \ 1951 __u16 num_siblings; \ 1952 __u32 flags; \ 1953 __u64 mbz64; \ 1954 struct i915_engine_class_instance engines[N__]; \ 1955 } __attribute__((packed)) name__ 1956 1957 /* 1958 * i915_context_engines_bond: 1959 * 1960 * Constructed bonded pairs for execution within a virtual engine. 1961 * 1962 * All engines are equal, but some are more equal than others. Given 1963 * the distribution of resources in the HW, it may be preferable to run 1964 * a request on a given subset of engines in parallel to a request on a 1965 * specific engine. We enable this selection of engines within a virtual 1966 * engine by specifying bonding pairs, for any given master engine we will 1967 * only execute on one of the corresponding siblings within the virtual engine. 1968 * 1969 * To execute a request in parallel on the master engine and a sibling requires 1970 * coordination with a I915_EXEC_FENCE_SUBMIT. 1971 */ 1972 struct i915_context_engines_bond { 1973 struct i915_user_extension base; 1974 1975 struct i915_engine_class_instance master; 1976 1977 __u16 virtual_index; /* index of virtual engine in ctx->engines[] */ 1978 __u16 num_bonds; 1979 1980 __u64 flags; /* all undefined flags must be zero */ 1981 __u64 mbz64[4]; /* reserved for future use; must be zero */ 1982 1983 struct i915_engine_class_instance engines[0]; 1984 } __attribute__((packed)); 1985 1986 #define I915_DEFINE_CONTEXT_ENGINES_BOND(name__, N__) struct { \ 1987 struct i915_user_extension base; \ 1988 struct i915_engine_class_instance master; \ 1989 __u16 virtual_index; \ 1990 __u16 num_bonds; \ 1991 __u64 flags; \ 1992 __u64 mbz64[4]; \ 1993 struct i915_engine_class_instance engines[N__]; \ 1994 } __attribute__((packed)) name__ 1995 1996 /** 1997 * DOC: Context Engine Map uAPI 1998 * 1999 * Context engine map is a new way of addressing engines when submitting batch- 2000 * buffers, replacing the existing way of using identifiers like `I915_EXEC_BLT` 2001 * inside the flags field of `struct drm_i915_gem_execbuffer2`. 2002 * 2003 * To use it created GEM contexts need to be configured with a list of engines 2004 * the user is intending to submit to. This is accomplished using the 2005 * `I915_CONTEXT_PARAM_ENGINES` parameter and `struct 2006 * i915_context_param_engines`. 2007 * 2008 * For such contexts the `I915_EXEC_RING_MASK` field becomes an index into the 2009 * configured map. 2010 * 2011 * Example of creating such context and submitting against it: 2012 * 2013 * .. code-block:: C 2014 * 2015 * I915_DEFINE_CONTEXT_PARAM_ENGINES(engines, 2) = { 2016 * .engines = { { I915_ENGINE_CLASS_RENDER, 0 }, 2017 * { I915_ENGINE_CLASS_COPY, 0 } } 2018 * }; 2019 * struct drm_i915_gem_context_create_ext_setparam p_engines = { 2020 * .base = { 2021 * .name = I915_CONTEXT_CREATE_EXT_SETPARAM, 2022 * }, 2023 * .param = { 2024 * .param = I915_CONTEXT_PARAM_ENGINES, 2025 * .value = to_user_pointer(&engines), 2026 * .size = sizeof(engines), 2027 * }, 2028 * }; 2029 * struct drm_i915_gem_context_create_ext create = { 2030 * .flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS, 2031 * .extensions = to_user_pointer(&p_engines); 2032 * }; 2033 * 2034 * ctx_id = gem_context_create_ext(drm_fd, &create); 2035 * 2036 * // We have now created a GEM context with two engines in the map: 2037 * // Index 0 points to rcs0 while index 1 points to bcs0. Other engines 2038 * // will not be accessible from this context. 2039 * 2040 * ... 2041 * execbuf.rsvd1 = ctx_id; 2042 * execbuf.flags = 0; // Submits to index 0, which is rcs0 for this context 2043 * gem_execbuf(drm_fd, &execbuf); 2044 * 2045 * ... 2046 * execbuf.rsvd1 = ctx_id; 2047 * execbuf.flags = 1; // Submits to index 0, which is bcs0 for this context 2048 * gem_execbuf(drm_fd, &execbuf); 2049 */ 2050 2051 struct i915_context_param_engines { 2052 __u64 extensions; /* linked chain of extension blocks, 0 terminates */ 2053 #define I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE 0 /* see i915_context_engines_load_balance */ 2054 #define I915_CONTEXT_ENGINES_EXT_BOND 1 /* see i915_context_engines_bond */ 2055 struct i915_engine_class_instance engines[0]; 2056 } __attribute__((packed)); 2057 2058 #define I915_DEFINE_CONTEXT_PARAM_ENGINES(name__, N__) struct { \ 2059 __u64 extensions; \ 2060 struct i915_engine_class_instance engines[N__]; \ 2061 } __attribute__((packed)) name__ 2062 2063 struct drm_i915_gem_context_create_ext_setparam { 2064 #define I915_CONTEXT_CREATE_EXT_SETPARAM 0 2065 struct i915_user_extension base; 2066 struct drm_i915_gem_context_param param; 2067 }; 2068 2069 /* This API has been removed. On the off chance someone somewhere has 2070 * attempted to use it, never re-use this extension number. 2071 */ 2072 #define I915_CONTEXT_CREATE_EXT_CLONE 1 2073 2074 struct drm_i915_gem_context_destroy { 2075 __u32 ctx_id; 2076 __u32 pad; 2077 }; 2078 2079 /* 2080 * DRM_I915_GEM_VM_CREATE - 2081 * 2082 * Create a new virtual memory address space (ppGTT) for use within a context 2083 * on the same file. Extensions can be provided to configure exactly how the 2084 * address space is setup upon creation. 2085 * 2086 * The id of new VM (bound to the fd) for use with I915_CONTEXT_PARAM_VM is 2087 * returned in the outparam @id. 2088 * 2089 * No flags are defined, with all bits reserved and must be zero. 2090 * 2091 * An extension chain maybe provided, starting with @extensions, and terminated 2092 * by the @next_extension being 0. Currently, no extensions are defined. 2093 * 2094 * DRM_I915_GEM_VM_DESTROY - 2095 * 2096 * Destroys a previously created VM id, specified in @id. 2097 * 2098 * No extensions or flags are allowed currently, and so must be zero. 2099 */ 2100 struct drm_i915_gem_vm_control { 2101 __u64 extensions; 2102 __u32 flags; 2103 __u32 vm_id; 2104 }; 2105 2106 struct drm_i915_reg_read { 2107 /* 2108 * Register offset. 2109 * For 64bit wide registers where the upper 32bits don't immediately 2110 * follow the lower 32bits, the offset of the lower 32bits must 2111 * be specified 2112 */ 2113 __u64 offset; 2114 #define I915_REG_READ_8B_WA (1ul << 0) 2115 2116 __u64 val; /* Return value */ 2117 }; 2118 2119 /* Known registers: 2120 * 2121 * Render engine timestamp - 0x2358 + 64bit - gen7+ 2122 * - Note this register returns an invalid value if using the default 2123 * single instruction 8byte read, in order to workaround that pass 2124 * flag I915_REG_READ_8B_WA in offset field. 2125 * 2126 */ 2127 2128 struct drm_i915_reset_stats { 2129 __u32 ctx_id; 2130 __u32 flags; 2131 2132 /* All resets since boot/module reload, for all contexts */ 2133 __u32 reset_count; 2134 2135 /* Number of batches lost when active in GPU, for this context */ 2136 __u32 batch_active; 2137 2138 /* Number of batches lost pending for execution, for this context */ 2139 __u32 batch_pending; 2140 2141 __u32 pad; 2142 }; 2143 2144 /** 2145 * struct drm_i915_gem_userptr - Create GEM object from user allocated memory. 2146 * 2147 * Userptr objects have several restrictions on what ioctls can be used with the 2148 * object handle. 2149 */ 2150 struct drm_i915_gem_userptr { 2151 /** 2152 * @user_ptr: The pointer to the allocated memory. 2153 * 2154 * Needs to be aligned to PAGE_SIZE. 2155 */ 2156 __u64 user_ptr; 2157 2158 /** 2159 * @user_size: 2160 * 2161 * The size in bytes for the allocated memory. This will also become the 2162 * object size. 2163 * 2164 * Needs to be aligned to PAGE_SIZE, and should be at least PAGE_SIZE, 2165 * or larger. 2166 */ 2167 __u64 user_size; 2168 2169 /** 2170 * @flags: 2171 * 2172 * Supported flags: 2173 * 2174 * I915_USERPTR_READ_ONLY: 2175 * 2176 * Mark the object as readonly, this also means GPU access can only be 2177 * readonly. This is only supported on HW which supports readonly access 2178 * through the GTT. If the HW can't support readonly access, an error is 2179 * returned. 2180 * 2181 * I915_USERPTR_UNSYNCHRONIZED: 2182 * 2183 * NOT USED. Setting this flag will result in an error. 2184 */ 2185 __u32 flags; 2186 #define I915_USERPTR_READ_ONLY 0x1 2187 #define I915_USERPTR_UNSYNCHRONIZED 0x80000000 2188 /** 2189 * @handle: Returned handle for the object. 2190 * 2191 * Object handles are nonzero. 2192 */ 2193 __u32 handle; 2194 }; 2195 2196 enum drm_i915_oa_format { 2197 I915_OA_FORMAT_A13 = 1, /* HSW only */ 2198 I915_OA_FORMAT_A29, /* HSW only */ 2199 I915_OA_FORMAT_A13_B8_C8, /* HSW only */ 2200 I915_OA_FORMAT_B4_C8, /* HSW only */ 2201 I915_OA_FORMAT_A45_B8_C8, /* HSW only */ 2202 I915_OA_FORMAT_B4_C8_A16, /* HSW only */ 2203 I915_OA_FORMAT_C4_B8, /* HSW+ */ 2204 2205 /* Gen8+ */ 2206 I915_OA_FORMAT_A12, 2207 I915_OA_FORMAT_A12_B8_C8, 2208 I915_OA_FORMAT_A32u40_A4u32_B8_C8, 2209 2210 I915_OA_FORMAT_MAX /* non-ABI */ 2211 }; 2212 2213 enum drm_i915_perf_property_id { 2214 /** 2215 * Open the stream for a specific context handle (as used with 2216 * execbuffer2). A stream opened for a specific context this way 2217 * won't typically require root privileges. 2218 * 2219 * This property is available in perf revision 1. 2220 */ 2221 DRM_I915_PERF_PROP_CTX_HANDLE = 1, 2222 2223 /** 2224 * A value of 1 requests the inclusion of raw OA unit reports as 2225 * part of stream samples. 2226 * 2227 * This property is available in perf revision 1. 2228 */ 2229 DRM_I915_PERF_PROP_SAMPLE_OA, 2230 2231 /** 2232 * The value specifies which set of OA unit metrics should be 2233 * configured, defining the contents of any OA unit reports. 2234 * 2235 * This property is available in perf revision 1. 2236 */ 2237 DRM_I915_PERF_PROP_OA_METRICS_SET, 2238 2239 /** 2240 * The value specifies the size and layout of OA unit reports. 2241 * 2242 * This property is available in perf revision 1. 2243 */ 2244 DRM_I915_PERF_PROP_OA_FORMAT, 2245 2246 /** 2247 * Specifying this property implicitly requests periodic OA unit 2248 * sampling and (at least on Haswell) the sampling frequency is derived 2249 * from this exponent as follows: 2250 * 2251 * 80ns * 2^(period_exponent + 1) 2252 * 2253 * This property is available in perf revision 1. 2254 */ 2255 DRM_I915_PERF_PROP_OA_EXPONENT, 2256 2257 /** 2258 * Specifying this property is only valid when specify a context to 2259 * filter with DRM_I915_PERF_PROP_CTX_HANDLE. Specifying this property 2260 * will hold preemption of the particular context we want to gather 2261 * performance data about. The execbuf2 submissions must include a 2262 * drm_i915_gem_execbuffer_ext_perf parameter for this to apply. 2263 * 2264 * This property is available in perf revision 3. 2265 */ 2266 DRM_I915_PERF_PROP_HOLD_PREEMPTION, 2267 2268 /** 2269 * Specifying this pins all contexts to the specified SSEU power 2270 * configuration for the duration of the recording. 2271 * 2272 * This parameter's value is a pointer to a struct 2273 * drm_i915_gem_context_param_sseu. 2274 * 2275 * This property is available in perf revision 4. 2276 */ 2277 DRM_I915_PERF_PROP_GLOBAL_SSEU, 2278 2279 /** 2280 * This optional parameter specifies the timer interval in nanoseconds 2281 * at which the i915 driver will check the OA buffer for available data. 2282 * Minimum allowed value is 100 microseconds. A default value is used by 2283 * the driver if this parameter is not specified. Note that larger timer 2284 * values will reduce cpu consumption during OA perf captures. However, 2285 * excessively large values would potentially result in OA buffer 2286 * overwrites as captures reach end of the OA buffer. 2287 * 2288 * This property is available in perf revision 5. 2289 */ 2290 DRM_I915_PERF_PROP_POLL_OA_PERIOD, 2291 2292 DRM_I915_PERF_PROP_MAX /* non-ABI */ 2293 }; 2294 2295 struct drm_i915_perf_open_param { 2296 __u32 flags; 2297 #define I915_PERF_FLAG_FD_CLOEXEC (1<<0) 2298 #define I915_PERF_FLAG_FD_NONBLOCK (1<<1) 2299 #define I915_PERF_FLAG_DISABLED (1<<2) 2300 2301 /** The number of u64 (id, value) pairs */ 2302 __u32 num_properties; 2303 2304 /** 2305 * Pointer to array of u64 (id, value) pairs configuring the stream 2306 * to open. 2307 */ 2308 __u64 properties_ptr; 2309 }; 2310 2311 /* 2312 * Enable data capture for a stream that was either opened in a disabled state 2313 * via I915_PERF_FLAG_DISABLED or was later disabled via 2314 * I915_PERF_IOCTL_DISABLE. 2315 * 2316 * It is intended to be cheaper to disable and enable a stream than it may be 2317 * to close and re-open a stream with the same configuration. 2318 * 2319 * It's undefined whether any pending data for the stream will be lost. 2320 * 2321 * This ioctl is available in perf revision 1. 2322 */ 2323 #define I915_PERF_IOCTL_ENABLE _IO('i', 0x0) 2324 2325 /* 2326 * Disable data capture for a stream. 2327 * 2328 * It is an error to try and read a stream that is disabled. 2329 * 2330 * This ioctl is available in perf revision 1. 2331 */ 2332 #define I915_PERF_IOCTL_DISABLE _IO('i', 0x1) 2333 2334 /* 2335 * Change metrics_set captured by a stream. 2336 * 2337 * If the stream is bound to a specific context, the configuration change 2338 * will performed inline with that context such that it takes effect before 2339 * the next execbuf submission. 2340 * 2341 * Returns the previously bound metrics set id, or a negative error code. 2342 * 2343 * This ioctl is available in perf revision 2. 2344 */ 2345 #define I915_PERF_IOCTL_CONFIG _IO('i', 0x2) 2346 2347 /* 2348 * Common to all i915 perf records 2349 */ 2350 struct drm_i915_perf_record_header { 2351 __u32 type; 2352 __u16 pad; 2353 __u16 size; 2354 }; 2355 2356 enum drm_i915_perf_record_type { 2357 2358 /** 2359 * Samples are the work horse record type whose contents are extensible 2360 * and defined when opening an i915 perf stream based on the given 2361 * properties. 2362 * 2363 * Boolean properties following the naming convention 2364 * DRM_I915_PERF_SAMPLE_xyz_PROP request the inclusion of 'xyz' data in 2365 * every sample. 2366 * 2367 * The order of these sample properties given by userspace has no 2368 * affect on the ordering of data within a sample. The order is 2369 * documented here. 2370 * 2371 * struct { 2372 * struct drm_i915_perf_record_header header; 2373 * 2374 * { u32 oa_report[]; } && DRM_I915_PERF_PROP_SAMPLE_OA 2375 * }; 2376 */ 2377 DRM_I915_PERF_RECORD_SAMPLE = 1, 2378 2379 /* 2380 * Indicates that one or more OA reports were not written by the 2381 * hardware. This can happen for example if an MI_REPORT_PERF_COUNT 2382 * command collides with periodic sampling - which would be more likely 2383 * at higher sampling frequencies. 2384 */ 2385 DRM_I915_PERF_RECORD_OA_REPORT_LOST = 2, 2386 2387 /** 2388 * An error occurred that resulted in all pending OA reports being lost. 2389 */ 2390 DRM_I915_PERF_RECORD_OA_BUFFER_LOST = 3, 2391 2392 DRM_I915_PERF_RECORD_MAX /* non-ABI */ 2393 }; 2394 2395 /* 2396 * Structure to upload perf dynamic configuration into the kernel. 2397 */ 2398 struct drm_i915_perf_oa_config { 2399 /** String formatted like "%08x-%04x-%04x-%04x-%012x" */ 2400 char uuid[36]; 2401 2402 __u32 n_mux_regs; 2403 __u32 n_boolean_regs; 2404 __u32 n_flex_regs; 2405 2406 /* 2407 * These fields are pointers to tuples of u32 values (register address, 2408 * value). For example the expected length of the buffer pointed by 2409 * mux_regs_ptr is (2 * sizeof(u32) * n_mux_regs). 2410 */ 2411 __u64 mux_regs_ptr; 2412 __u64 boolean_regs_ptr; 2413 __u64 flex_regs_ptr; 2414 }; 2415 2416 /** 2417 * struct drm_i915_query_item - An individual query for the kernel to process. 2418 * 2419 * The behaviour is determined by the @query_id. Note that exactly what 2420 * @data_ptr is also depends on the specific @query_id. 2421 */ 2422 struct drm_i915_query_item { 2423 /** @query_id: The id for this query */ 2424 __u64 query_id; 2425 #define DRM_I915_QUERY_TOPOLOGY_INFO 1 2426 #define DRM_I915_QUERY_ENGINE_INFO 2 2427 #define DRM_I915_QUERY_PERF_CONFIG 3 2428 #define DRM_I915_QUERY_MEMORY_REGIONS 4 2429 /* Must be kept compact -- no holes and well documented */ 2430 2431 /** 2432 * @length: 2433 * 2434 * When set to zero by userspace, this is filled with the size of the 2435 * data to be written at the @data_ptr pointer. The kernel sets this 2436 * value to a negative value to signal an error on a particular query 2437 * item. 2438 */ 2439 __s32 length; 2440 2441 /** 2442 * @flags: 2443 * 2444 * When query_id == DRM_I915_QUERY_TOPOLOGY_INFO, must be 0. 2445 * 2446 * When query_id == DRM_I915_QUERY_PERF_CONFIG, must be one of the 2447 * following: 2448 * 2449 * - DRM_I915_QUERY_PERF_CONFIG_LIST 2450 * - DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID 2451 * - DRM_I915_QUERY_PERF_CONFIG_FOR_UUID 2452 */ 2453 __u32 flags; 2454 #define DRM_I915_QUERY_PERF_CONFIG_LIST 1 2455 #define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID 2 2456 #define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID 3 2457 2458 /** 2459 * @data_ptr: 2460 * 2461 * Data will be written at the location pointed by @data_ptr when the 2462 * value of @length matches the length of the data to be written by the 2463 * kernel. 2464 */ 2465 __u64 data_ptr; 2466 }; 2467 2468 /** 2469 * struct drm_i915_query - Supply an array of struct drm_i915_query_item for the 2470 * kernel to fill out. 2471 * 2472 * Note that this is generally a two step process for each struct 2473 * drm_i915_query_item in the array: 2474 * 2475 * 1. Call the DRM_IOCTL_I915_QUERY, giving it our array of struct 2476 * drm_i915_query_item, with &drm_i915_query_item.length set to zero. The 2477 * kernel will then fill in the size, in bytes, which tells userspace how 2478 * memory it needs to allocate for the blob(say for an array of properties). 2479 * 2480 * 2. Next we call DRM_IOCTL_I915_QUERY again, this time with the 2481 * &drm_i915_query_item.data_ptr equal to our newly allocated blob. Note that 2482 * the &drm_i915_query_item.length should still be the same as what the 2483 * kernel previously set. At this point the kernel can fill in the blob. 2484 * 2485 * Note that for some query items it can make sense for userspace to just pass 2486 * in a buffer/blob equal to or larger than the required size. In this case only 2487 * a single ioctl call is needed. For some smaller query items this can work 2488 * quite well. 2489 * 2490 */ 2491 struct drm_i915_query { 2492 /** @num_items: The number of elements in the @items_ptr array */ 2493 __u32 num_items; 2494 2495 /** 2496 * @flags: Unused for now. Must be cleared to zero. 2497 */ 2498 __u32 flags; 2499 2500 /** 2501 * @items_ptr: 2502 * 2503 * Pointer to an array of struct drm_i915_query_item. The number of 2504 * array elements is @num_items. 2505 */ 2506 __u64 items_ptr; 2507 }; 2508 2509 /* 2510 * Data written by the kernel with query DRM_I915_QUERY_TOPOLOGY_INFO : 2511 * 2512 * data: contains the 3 pieces of information : 2513 * 2514 * - the slice mask with one bit per slice telling whether a slice is 2515 * available. The availability of slice X can be queried with the following 2516 * formula : 2517 * 2518 * (data[X / 8] >> (X % 8)) & 1 2519 * 2520 * - the subslice mask for each slice with one bit per subslice telling 2521 * whether a subslice is available. Gen12 has dual-subslices, which are 2522 * similar to two gen11 subslices. For gen12, this array represents dual- 2523 * subslices. The availability of subslice Y in slice X can be queried 2524 * with the following formula : 2525 * 2526 * (data[subslice_offset + 2527 * X * subslice_stride + 2528 * Y / 8] >> (Y % 8)) & 1 2529 * 2530 * - the EU mask for each subslice in each slice with one bit per EU telling 2531 * whether an EU is available. The availability of EU Z in subslice Y in 2532 * slice X can be queried with the following formula : 2533 * 2534 * (data[eu_offset + 2535 * (X * max_subslices + Y) * eu_stride + 2536 * Z / 8] >> (Z % 8)) & 1 2537 */ 2538 struct drm_i915_query_topology_info { 2539 /* 2540 * Unused for now. Must be cleared to zero. 2541 */ 2542 __u16 flags; 2543 2544 __u16 max_slices; 2545 __u16 max_subslices; 2546 __u16 max_eus_per_subslice; 2547 2548 /* 2549 * Offset in data[] at which the subslice masks are stored. 2550 */ 2551 __u16 subslice_offset; 2552 2553 /* 2554 * Stride at which each of the subslice masks for each slice are 2555 * stored. 2556 */ 2557 __u16 subslice_stride; 2558 2559 /* 2560 * Offset in data[] at which the EU masks are stored. 2561 */ 2562 __u16 eu_offset; 2563 2564 /* 2565 * Stride at which each of the EU masks for each subslice are stored. 2566 */ 2567 __u16 eu_stride; 2568 2569 __u8 data[]; 2570 }; 2571 2572 /** 2573 * DOC: Engine Discovery uAPI 2574 * 2575 * Engine discovery uAPI is a way of enumerating physical engines present in a 2576 * GPU associated with an open i915 DRM file descriptor. This supersedes the old 2577 * way of using `DRM_IOCTL_I915_GETPARAM` and engine identifiers like 2578 * `I915_PARAM_HAS_BLT`. 2579 * 2580 * The need for this interface came starting with Icelake and newer GPUs, which 2581 * started to establish a pattern of having multiple engines of a same class, 2582 * where not all instances were always completely functionally equivalent. 2583 * 2584 * Entry point for this uapi is `DRM_IOCTL_I915_QUERY` with the 2585 * `DRM_I915_QUERY_ENGINE_INFO` as the queried item id. 2586 * 2587 * Example for getting the list of engines: 2588 * 2589 * .. code-block:: C 2590 * 2591 * struct drm_i915_query_engine_info *info; 2592 * struct drm_i915_query_item item = { 2593 * .query_id = DRM_I915_QUERY_ENGINE_INFO; 2594 * }; 2595 * struct drm_i915_query query = { 2596 * .num_items = 1, 2597 * .items_ptr = (uintptr_t)&item, 2598 * }; 2599 * int err, i; 2600 * 2601 * // First query the size of the blob we need, this needs to be large 2602 * // enough to hold our array of engines. The kernel will fill out the 2603 * // item.length for us, which is the number of bytes we need. 2604 * // 2605 * // Alternatively a large buffer can be allocated straight away enabling 2606 * // querying in one pass, in which case item.length should contain the 2607 * // length of the provided buffer. 2608 * err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query); 2609 * if (err) ... 2610 * 2611 * info = calloc(1, item.length); 2612 * // Now that we allocated the required number of bytes, we call the ioctl 2613 * // again, this time with the data_ptr pointing to our newly allocated 2614 * // blob, which the kernel can then populate with info on all engines. 2615 * item.data_ptr = (uintptr_t)&info, 2616 * 2617 * err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query); 2618 * if (err) ... 2619 * 2620 * // We can now access each engine in the array 2621 * for (i = 0; i < info->num_engines; i++) { 2622 * struct drm_i915_engine_info einfo = info->engines[i]; 2623 * u16 class = einfo.engine.class; 2624 * u16 instance = einfo.engine.instance; 2625 * .... 2626 * } 2627 * 2628 * free(info); 2629 * 2630 * Each of the enumerated engines, apart from being defined by its class and 2631 * instance (see `struct i915_engine_class_instance`), also can have flags and 2632 * capabilities defined as documented in i915_drm.h. 2633 * 2634 * For instance video engines which support HEVC encoding will have the 2635 * `I915_VIDEO_CLASS_CAPABILITY_HEVC` capability bit set. 2636 * 2637 * Engine discovery only fully comes to its own when combined with the new way 2638 * of addressing engines when submitting batch buffers using contexts with 2639 * engine maps configured. 2640 */ 2641 2642 /** 2643 * struct drm_i915_engine_info 2644 * 2645 * Describes one engine and it's capabilities as known to the driver. 2646 */ 2647 struct drm_i915_engine_info { 2648 /** @engine: Engine class and instance. */ 2649 struct i915_engine_class_instance engine; 2650 2651 /** @rsvd0: Reserved field. */ 2652 __u32 rsvd0; 2653 2654 /** @flags: Engine flags. */ 2655 __u64 flags; 2656 2657 /** @capabilities: Capabilities of this engine. */ 2658 __u64 capabilities; 2659 #define I915_VIDEO_CLASS_CAPABILITY_HEVC (1 << 0) 2660 #define I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC (1 << 1) 2661 2662 /** @rsvd1: Reserved fields. */ 2663 __u64 rsvd1[4]; 2664 }; 2665 2666 /** 2667 * struct drm_i915_query_engine_info 2668 * 2669 * Engine info query enumerates all engines known to the driver by filling in 2670 * an array of struct drm_i915_engine_info structures. 2671 */ 2672 struct drm_i915_query_engine_info { 2673 /** @num_engines: Number of struct drm_i915_engine_info structs following. */ 2674 __u32 num_engines; 2675 2676 /** @rsvd: MBZ */ 2677 __u32 rsvd[3]; 2678 2679 /** @engines: Marker for drm_i915_engine_info structures. */ 2680 struct drm_i915_engine_info engines[]; 2681 }; 2682 2683 /* 2684 * Data written by the kernel with query DRM_I915_QUERY_PERF_CONFIG. 2685 */ 2686 struct drm_i915_query_perf_config { 2687 union { 2688 /* 2689 * When query_item.flags == DRM_I915_QUERY_PERF_CONFIG_LIST, i915 sets 2690 * this fields to the number of configurations available. 2691 */ 2692 __u64 n_configs; 2693 2694 /* 2695 * When query_id == DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID, 2696 * i915 will use the value in this field as configuration 2697 * identifier to decide what data to write into config_ptr. 2698 */ 2699 __u64 config; 2700 2701 /* 2702 * When query_id == DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID, 2703 * i915 will use the value in this field as configuration 2704 * identifier to decide what data to write into config_ptr. 2705 * 2706 * String formatted like "%08x-%04x-%04x-%04x-%012x" 2707 */ 2708 char uuid[36]; 2709 }; 2710 2711 /* 2712 * Unused for now. Must be cleared to zero. 2713 */ 2714 __u32 flags; 2715 2716 /* 2717 * When query_item.flags == DRM_I915_QUERY_PERF_CONFIG_LIST, i915 will 2718 * write an array of __u64 of configuration identifiers. 2719 * 2720 * When query_item.flags == DRM_I915_QUERY_PERF_CONFIG_DATA, i915 will 2721 * write a struct drm_i915_perf_oa_config. If the following fields of 2722 * drm_i915_perf_oa_config are set not set to 0, i915 will write into 2723 * the associated pointers the values of submitted when the 2724 * configuration was created : 2725 * 2726 * - n_mux_regs 2727 * - n_boolean_regs 2728 * - n_flex_regs 2729 */ 2730 __u8 data[]; 2731 }; 2732 2733 /** 2734 * enum drm_i915_gem_memory_class - Supported memory classes 2735 */ 2736 enum drm_i915_gem_memory_class { 2737 /** @I915_MEMORY_CLASS_SYSTEM: System memory */ 2738 I915_MEMORY_CLASS_SYSTEM = 0, 2739 /** @I915_MEMORY_CLASS_DEVICE: Device local-memory */ 2740 I915_MEMORY_CLASS_DEVICE, 2741 }; 2742 2743 /** 2744 * struct drm_i915_gem_memory_class_instance - Identify particular memory region 2745 */ 2746 struct drm_i915_gem_memory_class_instance { 2747 /** @memory_class: See enum drm_i915_gem_memory_class */ 2748 __u16 memory_class; 2749 2750 /** @memory_instance: Which instance */ 2751 __u16 memory_instance; 2752 }; 2753 2754 /** 2755 * struct drm_i915_memory_region_info - Describes one region as known to the 2756 * driver. 2757 * 2758 * Note that we reserve some stuff here for potential future work. As an example 2759 * we might want expose the capabilities for a given region, which could include 2760 * things like if the region is CPU mappable/accessible, what are the supported 2761 * mapping types etc. 2762 * 2763 * Note that to extend struct drm_i915_memory_region_info and struct 2764 * drm_i915_query_memory_regions in the future the plan is to do the following: 2765 * 2766 * .. code-block:: C 2767 * 2768 * struct drm_i915_memory_region_info { 2769 * struct drm_i915_gem_memory_class_instance region; 2770 * union { 2771 * __u32 rsvd0; 2772 * __u32 new_thing1; 2773 * }; 2774 * ... 2775 * union { 2776 * __u64 rsvd1[8]; 2777 * struct { 2778 * __u64 new_thing2; 2779 * __u64 new_thing3; 2780 * ... 2781 * }; 2782 * }; 2783 * }; 2784 * 2785 * With this things should remain source compatible between versions for 2786 * userspace, even as we add new fields. 2787 * 2788 * Note this is using both struct drm_i915_query_item and struct drm_i915_query. 2789 * For this new query we are adding the new query id DRM_I915_QUERY_MEMORY_REGIONS 2790 * at &drm_i915_query_item.query_id. 2791 */ 2792 struct drm_i915_memory_region_info { 2793 /** @region: The class:instance pair encoding */ 2794 struct drm_i915_gem_memory_class_instance region; 2795 2796 /** @rsvd0: MBZ */ 2797 __u32 rsvd0; 2798 2799 /** @probed_size: Memory probed by the driver (-1 = unknown) */ 2800 __u64 probed_size; 2801 2802 /** @unallocated_size: Estimate of memory remaining (-1 = unknown) */ 2803 __u64 unallocated_size; 2804 2805 /** @rsvd1: MBZ */ 2806 __u64 rsvd1[8]; 2807 }; 2808 2809 /** 2810 * struct drm_i915_query_memory_regions 2811 * 2812 * The region info query enumerates all regions known to the driver by filling 2813 * in an array of struct drm_i915_memory_region_info structures. 2814 * 2815 * Example for getting the list of supported regions: 2816 * 2817 * .. code-block:: C 2818 * 2819 * struct drm_i915_query_memory_regions *info; 2820 * struct drm_i915_query_item item = { 2821 * .query_id = DRM_I915_QUERY_MEMORY_REGIONS; 2822 * }; 2823 * struct drm_i915_query query = { 2824 * .num_items = 1, 2825 * .items_ptr = (uintptr_t)&item, 2826 * }; 2827 * int err, i; 2828 * 2829 * // First query the size of the blob we need, this needs to be large 2830 * // enough to hold our array of regions. The kernel will fill out the 2831 * // item.length for us, which is the number of bytes we need. 2832 * err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query); 2833 * if (err) ... 2834 * 2835 * info = calloc(1, item.length); 2836 * // Now that we allocated the required number of bytes, we call the ioctl 2837 * // again, this time with the data_ptr pointing to our newly allocated 2838 * // blob, which the kernel can then populate with the all the region info. 2839 * item.data_ptr = (uintptr_t)&info, 2840 * 2841 * err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query); 2842 * if (err) ... 2843 * 2844 * // We can now access each region in the array 2845 * for (i = 0; i < info->num_regions; i++) { 2846 * struct drm_i915_memory_region_info mr = info->regions[i]; 2847 * u16 class = mr.region.class; 2848 * u16 instance = mr.region.instance; 2849 * 2850 * .... 2851 * } 2852 * 2853 * free(info); 2854 */ 2855 struct drm_i915_query_memory_regions { 2856 /** @num_regions: Number of supported regions */ 2857 __u32 num_regions; 2858 2859 /** @rsvd: MBZ */ 2860 __u32 rsvd[3]; 2861 2862 /** @regions: Info about each supported region */ 2863 struct drm_i915_memory_region_info regions[]; 2864 }; 2865 2866 /** 2867 * struct drm_i915_gem_create_ext - Existing gem_create behaviour, with added 2868 * extension support using struct i915_user_extension. 2869 * 2870 * Note that in the future we want to have our buffer flags here, at least for 2871 * the stuff that is immutable. Previously we would have two ioctls, one to 2872 * create the object with gem_create, and another to apply various parameters, 2873 * however this creates some ambiguity for the params which are considered 2874 * immutable. Also in general we're phasing out the various SET/GET ioctls. 2875 */ 2876 struct drm_i915_gem_create_ext { 2877 /** 2878 * @size: Requested size for the object. 2879 * 2880 * The (page-aligned) allocated size for the object will be returned. 2881 * 2882 * Note that for some devices we have might have further minimum 2883 * page-size restrictions(larger than 4K), like for device local-memory. 2884 * However in general the final size here should always reflect any 2885 * rounding up, if for example using the I915_GEM_CREATE_EXT_MEMORY_REGIONS 2886 * extension to place the object in device local-memory. 2887 */ 2888 __u64 size; 2889 /** 2890 * @handle: Returned handle for the object. 2891 * 2892 * Object handles are nonzero. 2893 */ 2894 __u32 handle; 2895 /** @flags: MBZ */ 2896 __u32 flags; 2897 /** 2898 * @extensions: The chain of extensions to apply to this object. 2899 * 2900 * This will be useful in the future when we need to support several 2901 * different extensions, and we need to apply more than one when 2902 * creating the object. See struct i915_user_extension. 2903 * 2904 * If we don't supply any extensions then we get the same old gem_create 2905 * behaviour. 2906 * 2907 * For I915_GEM_CREATE_EXT_MEMORY_REGIONS usage see 2908 * struct drm_i915_gem_create_ext_memory_regions. 2909 */ 2910 #define I915_GEM_CREATE_EXT_MEMORY_REGIONS 0 2911 __u64 extensions; 2912 }; 2913 2914 /** 2915 * struct drm_i915_gem_create_ext_memory_regions - The 2916 * I915_GEM_CREATE_EXT_MEMORY_REGIONS extension. 2917 * 2918 * Set the object with the desired set of placements/regions in priority 2919 * order. Each entry must be unique and supported by the device. 2920 * 2921 * This is provided as an array of struct drm_i915_gem_memory_class_instance, or 2922 * an equivalent layout of class:instance pair encodings. See struct 2923 * drm_i915_query_memory_regions and DRM_I915_QUERY_MEMORY_REGIONS for how to 2924 * query the supported regions for a device. 2925 * 2926 * As an example, on discrete devices, if we wish to set the placement as 2927 * device local-memory we can do something like: 2928 * 2929 * .. code-block:: C 2930 * 2931 * struct drm_i915_gem_memory_class_instance region_lmem = { 2932 * .memory_class = I915_MEMORY_CLASS_DEVICE, 2933 * .memory_instance = 0, 2934 * }; 2935 * struct drm_i915_gem_create_ext_memory_regions regions = { 2936 * .base = { .name = I915_GEM_CREATE_EXT_MEMORY_REGIONS }, 2937 * .regions = (uintptr_t)®ion_lmem, 2938 * .num_regions = 1, 2939 * }; 2940 * struct drm_i915_gem_create_ext create_ext = { 2941 * .size = 16 * PAGE_SIZE, 2942 * .extensions = (uintptr_t)®ions, 2943 * }; 2944 * 2945 * int err = ioctl(fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create_ext); 2946 * if (err) ... 2947 * 2948 * At which point we get the object handle in &drm_i915_gem_create_ext.handle, 2949 * along with the final object size in &drm_i915_gem_create_ext.size, which 2950 * should account for any rounding up, if required. 2951 */ 2952 struct drm_i915_gem_create_ext_memory_regions { 2953 /** @base: Extension link. See struct i915_user_extension. */ 2954 struct i915_user_extension base; 2955 2956 /** @pad: MBZ */ 2957 __u32 pad; 2958 /** @num_regions: Number of elements in the @regions array. */ 2959 __u32 num_regions; 2960 /** 2961 * @regions: The regions/placements array. 2962 * 2963 * An array of struct drm_i915_gem_memory_class_instance. 2964 */ 2965 __u64 regions; 2966 }; 2967 2968 #if defined(__cplusplus) 2969 } 2970 #endif 2971 2972 #endif /* _UAPI_I915_DRM_H_ */ 2973