xref: /linux/include/uapi/drm/i915_drm.h (revision 9bda072a7bec278c424ad660373e69d8e4a3385d)
1 /*
2  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the
14  * next paragraph) shall be included in all copies or substantial portions
15  * of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
20  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
21  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24  *
25  */
26 
27 #ifndef _UAPI_I915_DRM_H_
28 #define _UAPI_I915_DRM_H_
29 
30 #include "drm.h"
31 
32 #if defined(__cplusplus)
33 extern "C" {
34 #endif
35 
36 /* Please note that modifications to all structs defined here are
37  * subject to backwards-compatibility constraints.
38  */
39 
40 /**
41  * DOC: uevents generated by i915 on it's device node
42  *
43  * I915_L3_PARITY_UEVENT - Generated when the driver receives a parity mismatch
44  *	event from the gpu l3 cache. Additional information supplied is ROW,
45  *	BANK, SUBBANK, SLICE of the affected cacheline. Userspace should keep
46  *	track of these events and if a specific cache-line seems to have a
47  *	persistent error remap it with the l3 remapping tool supplied in
48  *	intel-gpu-tools.  The value supplied with the event is always 1.
49  *
50  * I915_ERROR_UEVENT - Generated upon error detection, currently only via
51  *	hangcheck. The error detection event is a good indicator of when things
52  *	began to go badly. The value supplied with the event is a 1 upon error
53  *	detection, and a 0 upon reset completion, signifying no more error
54  *	exists. NOTE: Disabling hangcheck or reset via module parameter will
55  *	cause the related events to not be seen.
56  *
57  * I915_RESET_UEVENT - Event is generated just before an attempt to reset the
58  *	GPU. The value supplied with the event is always 1. NOTE: Disable
59  *	reset via module parameter will cause this event to not be seen.
60  */
61 #define I915_L3_PARITY_UEVENT		"L3_PARITY_ERROR"
62 #define I915_ERROR_UEVENT		"ERROR"
63 #define I915_RESET_UEVENT		"RESET"
64 
65 /**
66  * struct i915_user_extension - Base class for defining a chain of extensions
67  *
68  * Many interfaces need to grow over time. In most cases we can simply
69  * extend the struct and have userspace pass in more data. Another option,
70  * as demonstrated by Vulkan's approach to providing extensions for forward
71  * and backward compatibility, is to use a list of optional structs to
72  * provide those extra details.
73  *
74  * The key advantage to using an extension chain is that it allows us to
75  * redefine the interface more easily than an ever growing struct of
76  * increasing complexity, and for large parts of that interface to be
77  * entirely optional. The downside is more pointer chasing; chasing across
78  * the __user boundary with pointers encapsulated inside u64.
79  *
80  * Example chaining:
81  *
82  * .. code-block:: C
83  *
84  *	struct i915_user_extension ext3 {
85  *		.next_extension = 0, // end
86  *		.name = ...,
87  *	};
88  *	struct i915_user_extension ext2 {
89  *		.next_extension = (uintptr_t)&ext3,
90  *		.name = ...,
91  *	};
92  *	struct i915_user_extension ext1 {
93  *		.next_extension = (uintptr_t)&ext2,
94  *		.name = ...,
95  *	};
96  *
97  * Typically the struct i915_user_extension would be embedded in some uAPI
98  * struct, and in this case we would feed it the head of the chain(i.e ext1),
99  * which would then apply all of the above extensions.
100  *
101  */
102 struct i915_user_extension {
103 	/**
104 	 * @next_extension:
105 	 *
106 	 * Pointer to the next struct i915_user_extension, or zero if the end.
107 	 */
108 	__u64 next_extension;
109 	/**
110 	 * @name: Name of the extension.
111 	 *
112 	 * Note that the name here is just some integer.
113 	 *
114 	 * Also note that the name space for this is not global for the whole
115 	 * driver, but rather its scope/meaning is limited to the specific piece
116 	 * of uAPI which has embedded the struct i915_user_extension.
117 	 */
118 	__u32 name;
119 	/**
120 	 * @flags: MBZ
121 	 *
122 	 * All undefined bits must be zero.
123 	 */
124 	__u32 flags;
125 	/**
126 	 * @rsvd: MBZ
127 	 *
128 	 * Reserved for future use; must be zero.
129 	 */
130 	__u32 rsvd[4];
131 };
132 
133 /*
134  * MOCS indexes used for GPU surfaces, defining the cacheability of the
135  * surface data and the coherency for this data wrt. CPU vs. GPU accesses.
136  */
137 enum i915_mocs_table_index {
138 	/*
139 	 * Not cached anywhere, coherency between CPU and GPU accesses is
140 	 * guaranteed.
141 	 */
142 	I915_MOCS_UNCACHED,
143 	/*
144 	 * Cacheability and coherency controlled by the kernel automatically
145 	 * based on the DRM_I915_GEM_SET_CACHING IOCTL setting and the current
146 	 * usage of the surface (used for display scanout or not).
147 	 */
148 	I915_MOCS_PTE,
149 	/*
150 	 * Cached in all GPU caches available on the platform.
151 	 * Coherency between CPU and GPU accesses to the surface is not
152 	 * guaranteed without extra synchronization.
153 	 */
154 	I915_MOCS_CACHED,
155 };
156 
157 /*
158  * Different engines serve different roles, and there may be more than one
159  * engine serving each role. enum drm_i915_gem_engine_class provides a
160  * classification of the role of the engine, which may be used when requesting
161  * operations to be performed on a certain subset of engines, or for providing
162  * information about that group.
163  */
164 enum drm_i915_gem_engine_class {
165 	I915_ENGINE_CLASS_RENDER	= 0,
166 	I915_ENGINE_CLASS_COPY		= 1,
167 	I915_ENGINE_CLASS_VIDEO		= 2,
168 	I915_ENGINE_CLASS_VIDEO_ENHANCE	= 3,
169 
170 	/* should be kept compact */
171 
172 	I915_ENGINE_CLASS_INVALID	= -1
173 };
174 
175 /**
176  * struct i915_engine_class_instance - Engine class/instance identifier
177  *
178  * There may be more than one engine fulfilling any role within the system.
179  * Each engine of a class is given a unique instance number and therefore
180  * any engine can be specified by its class:instance tuplet. APIs that allow
181  * access to any engine in the system will use struct i915_engine_class_instance
182  * for this identification.
183  */
184 struct i915_engine_class_instance {
185 	/**
186 	 * @engine_class:
187 	 *
188 	 * Engine class from enum drm_i915_gem_engine_class
189 	 */
190 	__u16 engine_class;
191 #define I915_ENGINE_CLASS_INVALID_NONE -1
192 #define I915_ENGINE_CLASS_INVALID_VIRTUAL -2
193 
194 	/**
195 	 * @engine_instance:
196 	 *
197 	 * Engine instance.
198 	 */
199 	__u16 engine_instance;
200 };
201 
202 /**
203  * DOC: perf_events exposed by i915 through /sys/bus/event_sources/drivers/i915
204  *
205  */
206 
207 enum drm_i915_pmu_engine_sample {
208 	I915_SAMPLE_BUSY = 0,
209 	I915_SAMPLE_WAIT = 1,
210 	I915_SAMPLE_SEMA = 2
211 };
212 
213 #define I915_PMU_SAMPLE_BITS (4)
214 #define I915_PMU_SAMPLE_MASK (0xf)
215 #define I915_PMU_SAMPLE_INSTANCE_BITS (8)
216 #define I915_PMU_CLASS_SHIFT \
217 	(I915_PMU_SAMPLE_BITS + I915_PMU_SAMPLE_INSTANCE_BITS)
218 
219 #define __I915_PMU_ENGINE(class, instance, sample) \
220 	((class) << I915_PMU_CLASS_SHIFT | \
221 	(instance) << I915_PMU_SAMPLE_BITS | \
222 	(sample))
223 
224 #define I915_PMU_ENGINE_BUSY(class, instance) \
225 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_BUSY)
226 
227 #define I915_PMU_ENGINE_WAIT(class, instance) \
228 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_WAIT)
229 
230 #define I915_PMU_ENGINE_SEMA(class, instance) \
231 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_SEMA)
232 
233 #define __I915_PMU_OTHER(x) (__I915_PMU_ENGINE(0xff, 0xff, 0xf) + 1 + (x))
234 
235 #define I915_PMU_ACTUAL_FREQUENCY	__I915_PMU_OTHER(0)
236 #define I915_PMU_REQUESTED_FREQUENCY	__I915_PMU_OTHER(1)
237 #define I915_PMU_INTERRUPTS		__I915_PMU_OTHER(2)
238 #define I915_PMU_RC6_RESIDENCY		__I915_PMU_OTHER(3)
239 #define I915_PMU_SOFTWARE_GT_AWAKE_TIME	__I915_PMU_OTHER(4)
240 
241 #define I915_PMU_LAST /* Deprecated - do not use */ I915_PMU_RC6_RESIDENCY
242 
243 /* Each region is a minimum of 16k, and there are at most 255 of them.
244  */
245 #define I915_NR_TEX_REGIONS 255	/* table size 2k - maximum due to use
246 				 * of chars for next/prev indices */
247 #define I915_LOG_MIN_TEX_REGION_SIZE 14
248 
249 typedef struct _drm_i915_init {
250 	enum {
251 		I915_INIT_DMA = 0x01,
252 		I915_CLEANUP_DMA = 0x02,
253 		I915_RESUME_DMA = 0x03
254 	} func;
255 	unsigned int mmio_offset;
256 	int sarea_priv_offset;
257 	unsigned int ring_start;
258 	unsigned int ring_end;
259 	unsigned int ring_size;
260 	unsigned int front_offset;
261 	unsigned int back_offset;
262 	unsigned int depth_offset;
263 	unsigned int w;
264 	unsigned int h;
265 	unsigned int pitch;
266 	unsigned int pitch_bits;
267 	unsigned int back_pitch;
268 	unsigned int depth_pitch;
269 	unsigned int cpp;
270 	unsigned int chipset;
271 } drm_i915_init_t;
272 
273 typedef struct _drm_i915_sarea {
274 	struct drm_tex_region texList[I915_NR_TEX_REGIONS + 1];
275 	int last_upload;	/* last time texture was uploaded */
276 	int last_enqueue;	/* last time a buffer was enqueued */
277 	int last_dispatch;	/* age of the most recently dispatched buffer */
278 	int ctxOwner;		/* last context to upload state */
279 	int texAge;
280 	int pf_enabled;		/* is pageflipping allowed? */
281 	int pf_active;
282 	int pf_current_page;	/* which buffer is being displayed? */
283 	int perf_boxes;		/* performance boxes to be displayed */
284 	int width, height;      /* screen size in pixels */
285 
286 	drm_handle_t front_handle;
287 	int front_offset;
288 	int front_size;
289 
290 	drm_handle_t back_handle;
291 	int back_offset;
292 	int back_size;
293 
294 	drm_handle_t depth_handle;
295 	int depth_offset;
296 	int depth_size;
297 
298 	drm_handle_t tex_handle;
299 	int tex_offset;
300 	int tex_size;
301 	int log_tex_granularity;
302 	int pitch;
303 	int rotation;           /* 0, 90, 180 or 270 */
304 	int rotated_offset;
305 	int rotated_size;
306 	int rotated_pitch;
307 	int virtualX, virtualY;
308 
309 	unsigned int front_tiled;
310 	unsigned int back_tiled;
311 	unsigned int depth_tiled;
312 	unsigned int rotated_tiled;
313 	unsigned int rotated2_tiled;
314 
315 	int pipeA_x;
316 	int pipeA_y;
317 	int pipeA_w;
318 	int pipeA_h;
319 	int pipeB_x;
320 	int pipeB_y;
321 	int pipeB_w;
322 	int pipeB_h;
323 
324 	/* fill out some space for old userspace triple buffer */
325 	drm_handle_t unused_handle;
326 	__u32 unused1, unused2, unused3;
327 
328 	/* buffer object handles for static buffers. May change
329 	 * over the lifetime of the client.
330 	 */
331 	__u32 front_bo_handle;
332 	__u32 back_bo_handle;
333 	__u32 unused_bo_handle;
334 	__u32 depth_bo_handle;
335 
336 } drm_i915_sarea_t;
337 
338 /* due to userspace building against these headers we need some compat here */
339 #define planeA_x pipeA_x
340 #define planeA_y pipeA_y
341 #define planeA_w pipeA_w
342 #define planeA_h pipeA_h
343 #define planeB_x pipeB_x
344 #define planeB_y pipeB_y
345 #define planeB_w pipeB_w
346 #define planeB_h pipeB_h
347 
348 /* Flags for perf_boxes
349  */
350 #define I915_BOX_RING_EMPTY    0x1
351 #define I915_BOX_FLIP          0x2
352 #define I915_BOX_WAIT          0x4
353 #define I915_BOX_TEXTURE_LOAD  0x8
354 #define I915_BOX_LOST_CONTEXT  0x10
355 
356 /*
357  * i915 specific ioctls.
358  *
359  * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie
360  * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset
361  * against DRM_COMMAND_BASE and should be between [0x0, 0x60).
362  */
363 #define DRM_I915_INIT		0x00
364 #define DRM_I915_FLUSH		0x01
365 #define DRM_I915_FLIP		0x02
366 #define DRM_I915_BATCHBUFFER	0x03
367 #define DRM_I915_IRQ_EMIT	0x04
368 #define DRM_I915_IRQ_WAIT	0x05
369 #define DRM_I915_GETPARAM	0x06
370 #define DRM_I915_SETPARAM	0x07
371 #define DRM_I915_ALLOC		0x08
372 #define DRM_I915_FREE		0x09
373 #define DRM_I915_INIT_HEAP	0x0a
374 #define DRM_I915_CMDBUFFER	0x0b
375 #define DRM_I915_DESTROY_HEAP	0x0c
376 #define DRM_I915_SET_VBLANK_PIPE	0x0d
377 #define DRM_I915_GET_VBLANK_PIPE	0x0e
378 #define DRM_I915_VBLANK_SWAP	0x0f
379 #define DRM_I915_HWS_ADDR	0x11
380 #define DRM_I915_GEM_INIT	0x13
381 #define DRM_I915_GEM_EXECBUFFER	0x14
382 #define DRM_I915_GEM_PIN	0x15
383 #define DRM_I915_GEM_UNPIN	0x16
384 #define DRM_I915_GEM_BUSY	0x17
385 #define DRM_I915_GEM_THROTTLE	0x18
386 #define DRM_I915_GEM_ENTERVT	0x19
387 #define DRM_I915_GEM_LEAVEVT	0x1a
388 #define DRM_I915_GEM_CREATE	0x1b
389 #define DRM_I915_GEM_PREAD	0x1c
390 #define DRM_I915_GEM_PWRITE	0x1d
391 #define DRM_I915_GEM_MMAP	0x1e
392 #define DRM_I915_GEM_SET_DOMAIN	0x1f
393 #define DRM_I915_GEM_SW_FINISH	0x20
394 #define DRM_I915_GEM_SET_TILING	0x21
395 #define DRM_I915_GEM_GET_TILING	0x22
396 #define DRM_I915_GEM_GET_APERTURE 0x23
397 #define DRM_I915_GEM_MMAP_GTT	0x24
398 #define DRM_I915_GET_PIPE_FROM_CRTC_ID	0x25
399 #define DRM_I915_GEM_MADVISE	0x26
400 #define DRM_I915_OVERLAY_PUT_IMAGE	0x27
401 #define DRM_I915_OVERLAY_ATTRS	0x28
402 #define DRM_I915_GEM_EXECBUFFER2	0x29
403 #define DRM_I915_GEM_EXECBUFFER2_WR	DRM_I915_GEM_EXECBUFFER2
404 #define DRM_I915_GET_SPRITE_COLORKEY	0x2a
405 #define DRM_I915_SET_SPRITE_COLORKEY	0x2b
406 #define DRM_I915_GEM_WAIT	0x2c
407 #define DRM_I915_GEM_CONTEXT_CREATE	0x2d
408 #define DRM_I915_GEM_CONTEXT_DESTROY	0x2e
409 #define DRM_I915_GEM_SET_CACHING	0x2f
410 #define DRM_I915_GEM_GET_CACHING	0x30
411 #define DRM_I915_REG_READ		0x31
412 #define DRM_I915_GET_RESET_STATS	0x32
413 #define DRM_I915_GEM_USERPTR		0x33
414 #define DRM_I915_GEM_CONTEXT_GETPARAM	0x34
415 #define DRM_I915_GEM_CONTEXT_SETPARAM	0x35
416 #define DRM_I915_PERF_OPEN		0x36
417 #define DRM_I915_PERF_ADD_CONFIG	0x37
418 #define DRM_I915_PERF_REMOVE_CONFIG	0x38
419 #define DRM_I915_QUERY			0x39
420 #define DRM_I915_GEM_VM_CREATE		0x3a
421 #define DRM_I915_GEM_VM_DESTROY		0x3b
422 #define DRM_I915_GEM_CREATE_EXT		0x3c
423 /* Must be kept compact -- no holes */
424 
425 #define DRM_IOCTL_I915_INIT		DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT, drm_i915_init_t)
426 #define DRM_IOCTL_I915_FLUSH		DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLUSH)
427 #define DRM_IOCTL_I915_FLIP		DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLIP)
428 #define DRM_IOCTL_I915_BATCHBUFFER	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_BATCHBUFFER, drm_i915_batchbuffer_t)
429 #define DRM_IOCTL_I915_IRQ_EMIT         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_IRQ_EMIT, drm_i915_irq_emit_t)
430 #define DRM_IOCTL_I915_IRQ_WAIT         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_IRQ_WAIT, drm_i915_irq_wait_t)
431 #define DRM_IOCTL_I915_GETPARAM         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GETPARAM, drm_i915_getparam_t)
432 #define DRM_IOCTL_I915_SETPARAM         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SETPARAM, drm_i915_setparam_t)
433 #define DRM_IOCTL_I915_ALLOC            DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_ALLOC, drm_i915_mem_alloc_t)
434 #define DRM_IOCTL_I915_FREE             DRM_IOW( DRM_COMMAND_BASE + DRM_I915_FREE, drm_i915_mem_free_t)
435 #define DRM_IOCTL_I915_INIT_HEAP        DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT_HEAP, drm_i915_mem_init_heap_t)
436 #define DRM_IOCTL_I915_CMDBUFFER	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_CMDBUFFER, drm_i915_cmdbuffer_t)
437 #define DRM_IOCTL_I915_DESTROY_HEAP	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_DESTROY_HEAP, drm_i915_mem_destroy_heap_t)
438 #define DRM_IOCTL_I915_SET_VBLANK_PIPE	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
439 #define DRM_IOCTL_I915_GET_VBLANK_PIPE	DRM_IOR( DRM_COMMAND_BASE + DRM_I915_GET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
440 #define DRM_IOCTL_I915_VBLANK_SWAP	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_VBLANK_SWAP, drm_i915_vblank_swap_t)
441 #define DRM_IOCTL_I915_HWS_ADDR		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_HWS_ADDR, struct drm_i915_gem_init)
442 #define DRM_IOCTL_I915_GEM_INIT		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_INIT, struct drm_i915_gem_init)
443 #define DRM_IOCTL_I915_GEM_EXECBUFFER	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER, struct drm_i915_gem_execbuffer)
444 #define DRM_IOCTL_I915_GEM_EXECBUFFER2	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2, struct drm_i915_gem_execbuffer2)
445 #define DRM_IOCTL_I915_GEM_EXECBUFFER2_WR	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2_WR, struct drm_i915_gem_execbuffer2)
446 #define DRM_IOCTL_I915_GEM_PIN		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_PIN, struct drm_i915_gem_pin)
447 #define DRM_IOCTL_I915_GEM_UNPIN	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_UNPIN, struct drm_i915_gem_unpin)
448 #define DRM_IOCTL_I915_GEM_BUSY		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_BUSY, struct drm_i915_gem_busy)
449 #define DRM_IOCTL_I915_GEM_SET_CACHING		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_SET_CACHING, struct drm_i915_gem_caching)
450 #define DRM_IOCTL_I915_GEM_GET_CACHING		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_GET_CACHING, struct drm_i915_gem_caching)
451 #define DRM_IOCTL_I915_GEM_THROTTLE	DRM_IO ( DRM_COMMAND_BASE + DRM_I915_GEM_THROTTLE)
452 #define DRM_IOCTL_I915_GEM_ENTERVT	DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_ENTERVT)
453 #define DRM_IOCTL_I915_GEM_LEAVEVT	DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_LEAVEVT)
454 #define DRM_IOCTL_I915_GEM_CREATE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE, struct drm_i915_gem_create)
455 #define DRM_IOCTL_I915_GEM_CREATE_EXT	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE_EXT, struct drm_i915_gem_create_ext)
456 #define DRM_IOCTL_I915_GEM_PREAD	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PREAD, struct drm_i915_gem_pread)
457 #define DRM_IOCTL_I915_GEM_PWRITE	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PWRITE, struct drm_i915_gem_pwrite)
458 #define DRM_IOCTL_I915_GEM_MMAP		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP, struct drm_i915_gem_mmap)
459 #define DRM_IOCTL_I915_GEM_MMAP_GTT	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_gtt)
460 #define DRM_IOCTL_I915_GEM_MMAP_OFFSET	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_offset)
461 #define DRM_IOCTL_I915_GEM_SET_DOMAIN	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SET_DOMAIN, struct drm_i915_gem_set_domain)
462 #define DRM_IOCTL_I915_GEM_SW_FINISH	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SW_FINISH, struct drm_i915_gem_sw_finish)
463 #define DRM_IOCTL_I915_GEM_SET_TILING	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_SET_TILING, struct drm_i915_gem_set_tiling)
464 #define DRM_IOCTL_I915_GEM_GET_TILING	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_TILING, struct drm_i915_gem_get_tiling)
465 #define DRM_IOCTL_I915_GEM_GET_APERTURE	DRM_IOR  (DRM_COMMAND_BASE + DRM_I915_GEM_GET_APERTURE, struct drm_i915_gem_get_aperture)
466 #define DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_PIPE_FROM_CRTC_ID, struct drm_i915_get_pipe_from_crtc_id)
467 #define DRM_IOCTL_I915_GEM_MADVISE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MADVISE, struct drm_i915_gem_madvise)
468 #define DRM_IOCTL_I915_OVERLAY_PUT_IMAGE	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_OVERLAY_PUT_IMAGE, struct drm_intel_overlay_put_image)
469 #define DRM_IOCTL_I915_OVERLAY_ATTRS	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_OVERLAY_ATTRS, struct drm_intel_overlay_attrs)
470 #define DRM_IOCTL_I915_SET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_SET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
471 #define DRM_IOCTL_I915_GET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
472 #define DRM_IOCTL_I915_GEM_WAIT		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_WAIT, struct drm_i915_gem_wait)
473 #define DRM_IOCTL_I915_GEM_CONTEXT_CREATE	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create)
474 #define DRM_IOCTL_I915_GEM_CONTEXT_CREATE_EXT	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create_ext)
475 #define DRM_IOCTL_I915_GEM_CONTEXT_DESTROY	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_DESTROY, struct drm_i915_gem_context_destroy)
476 #define DRM_IOCTL_I915_REG_READ			DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_REG_READ, struct drm_i915_reg_read)
477 #define DRM_IOCTL_I915_GET_RESET_STATS		DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GET_RESET_STATS, struct drm_i915_reset_stats)
478 #define DRM_IOCTL_I915_GEM_USERPTR			DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_USERPTR, struct drm_i915_gem_userptr)
479 #define DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_GETPARAM, struct drm_i915_gem_context_param)
480 #define DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_SETPARAM, struct drm_i915_gem_context_param)
481 #define DRM_IOCTL_I915_PERF_OPEN	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_OPEN, struct drm_i915_perf_open_param)
482 #define DRM_IOCTL_I915_PERF_ADD_CONFIG	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_ADD_CONFIG, struct drm_i915_perf_oa_config)
483 #define DRM_IOCTL_I915_PERF_REMOVE_CONFIG	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_REMOVE_CONFIG, __u64)
484 #define DRM_IOCTL_I915_QUERY			DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_QUERY, struct drm_i915_query)
485 #define DRM_IOCTL_I915_GEM_VM_CREATE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_VM_CREATE, struct drm_i915_gem_vm_control)
486 #define DRM_IOCTL_I915_GEM_VM_DESTROY	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_VM_DESTROY, struct drm_i915_gem_vm_control)
487 
488 /* Allow drivers to submit batchbuffers directly to hardware, relying
489  * on the security mechanisms provided by hardware.
490  */
491 typedef struct drm_i915_batchbuffer {
492 	int start;		/* agp offset */
493 	int used;		/* nr bytes in use */
494 	int DR1;		/* hw flags for GFX_OP_DRAWRECT_INFO */
495 	int DR4;		/* window origin for GFX_OP_DRAWRECT_INFO */
496 	int num_cliprects;	/* mulitpass with multiple cliprects? */
497 	struct drm_clip_rect __user *cliprects;	/* pointer to userspace cliprects */
498 } drm_i915_batchbuffer_t;
499 
500 /* As above, but pass a pointer to userspace buffer which can be
501  * validated by the kernel prior to sending to hardware.
502  */
503 typedef struct _drm_i915_cmdbuffer {
504 	char __user *buf;	/* pointer to userspace command buffer */
505 	int sz;			/* nr bytes in buf */
506 	int DR1;		/* hw flags for GFX_OP_DRAWRECT_INFO */
507 	int DR4;		/* window origin for GFX_OP_DRAWRECT_INFO */
508 	int num_cliprects;	/* mulitpass with multiple cliprects? */
509 	struct drm_clip_rect __user *cliprects;	/* pointer to userspace cliprects */
510 } drm_i915_cmdbuffer_t;
511 
512 /* Userspace can request & wait on irq's:
513  */
514 typedef struct drm_i915_irq_emit {
515 	int __user *irq_seq;
516 } drm_i915_irq_emit_t;
517 
518 typedef struct drm_i915_irq_wait {
519 	int irq_seq;
520 } drm_i915_irq_wait_t;
521 
522 /*
523  * Different modes of per-process Graphics Translation Table,
524  * see I915_PARAM_HAS_ALIASING_PPGTT
525  */
526 #define I915_GEM_PPGTT_NONE	0
527 #define I915_GEM_PPGTT_ALIASING	1
528 #define I915_GEM_PPGTT_FULL	2
529 
530 /* Ioctl to query kernel params:
531  */
532 #define I915_PARAM_IRQ_ACTIVE            1
533 #define I915_PARAM_ALLOW_BATCHBUFFER     2
534 #define I915_PARAM_LAST_DISPATCH         3
535 #define I915_PARAM_CHIPSET_ID            4
536 #define I915_PARAM_HAS_GEM               5
537 #define I915_PARAM_NUM_FENCES_AVAIL      6
538 #define I915_PARAM_HAS_OVERLAY           7
539 #define I915_PARAM_HAS_PAGEFLIPPING	 8
540 #define I915_PARAM_HAS_EXECBUF2          9
541 #define I915_PARAM_HAS_BSD		 10
542 #define I915_PARAM_HAS_BLT		 11
543 #define I915_PARAM_HAS_RELAXED_FENCING	 12
544 #define I915_PARAM_HAS_COHERENT_RINGS	 13
545 #define I915_PARAM_HAS_EXEC_CONSTANTS	 14
546 #define I915_PARAM_HAS_RELAXED_DELTA	 15
547 #define I915_PARAM_HAS_GEN7_SOL_RESET	 16
548 #define I915_PARAM_HAS_LLC     	 	 17
549 #define I915_PARAM_HAS_ALIASING_PPGTT	 18
550 #define I915_PARAM_HAS_WAIT_TIMEOUT	 19
551 #define I915_PARAM_HAS_SEMAPHORES	 20
552 #define I915_PARAM_HAS_PRIME_VMAP_FLUSH	 21
553 #define I915_PARAM_HAS_VEBOX		 22
554 #define I915_PARAM_HAS_SECURE_BATCHES	 23
555 #define I915_PARAM_HAS_PINNED_BATCHES	 24
556 #define I915_PARAM_HAS_EXEC_NO_RELOC	 25
557 #define I915_PARAM_HAS_EXEC_HANDLE_LUT   26
558 #define I915_PARAM_HAS_WT     	 	 27
559 #define I915_PARAM_CMD_PARSER_VERSION	 28
560 #define I915_PARAM_HAS_COHERENT_PHYS_GTT 29
561 #define I915_PARAM_MMAP_VERSION          30
562 #define I915_PARAM_HAS_BSD2		 31
563 #define I915_PARAM_REVISION              32
564 #define I915_PARAM_SUBSLICE_TOTAL	 33
565 #define I915_PARAM_EU_TOTAL		 34
566 #define I915_PARAM_HAS_GPU_RESET	 35
567 #define I915_PARAM_HAS_RESOURCE_STREAMER 36
568 #define I915_PARAM_HAS_EXEC_SOFTPIN	 37
569 #define I915_PARAM_HAS_POOLED_EU	 38
570 #define I915_PARAM_MIN_EU_IN_POOL	 39
571 #define I915_PARAM_MMAP_GTT_VERSION	 40
572 
573 /*
574  * Query whether DRM_I915_GEM_EXECBUFFER2 supports user defined execution
575  * priorities and the driver will attempt to execute batches in priority order.
576  * The param returns a capability bitmask, nonzero implies that the scheduler
577  * is enabled, with different features present according to the mask.
578  *
579  * The initial priority for each batch is supplied by the context and is
580  * controlled via I915_CONTEXT_PARAM_PRIORITY.
581  */
582 #define I915_PARAM_HAS_SCHEDULER	 41
583 #define   I915_SCHEDULER_CAP_ENABLED	(1ul << 0)
584 #define   I915_SCHEDULER_CAP_PRIORITY	(1ul << 1)
585 #define   I915_SCHEDULER_CAP_PREEMPTION	(1ul << 2)
586 #define   I915_SCHEDULER_CAP_SEMAPHORES	(1ul << 3)
587 #define   I915_SCHEDULER_CAP_ENGINE_BUSY_STATS	(1ul << 4)
588 /*
589  * Indicates the 2k user priority levels are statically mapped into 3 buckets as
590  * follows:
591  *
592  * -1k to -1	Low priority
593  * 0		Normal priority
594  * 1 to 1k	Highest priority
595  */
596 #define   I915_SCHEDULER_CAP_STATIC_PRIORITY_MAP	(1ul << 5)
597 
598 #define I915_PARAM_HUC_STATUS		 42
599 
600 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to opt-out of
601  * synchronisation with implicit fencing on individual objects.
602  * See EXEC_OBJECT_ASYNC.
603  */
604 #define I915_PARAM_HAS_EXEC_ASYNC	 43
605 
606 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports explicit fence support -
607  * both being able to pass in a sync_file fd to wait upon before executing,
608  * and being able to return a new sync_file fd that is signaled when the
609  * current request is complete. See I915_EXEC_FENCE_IN and I915_EXEC_FENCE_OUT.
610  */
611 #define I915_PARAM_HAS_EXEC_FENCE	 44
612 
613 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to capture
614  * user specified bufffers for post-mortem debugging of GPU hangs. See
615  * EXEC_OBJECT_CAPTURE.
616  */
617 #define I915_PARAM_HAS_EXEC_CAPTURE	 45
618 
619 #define I915_PARAM_SLICE_MASK		 46
620 
621 /* Assuming it's uniform for each slice, this queries the mask of subslices
622  * per-slice for this system.
623  */
624 #define I915_PARAM_SUBSLICE_MASK	 47
625 
626 /*
627  * Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying the batch buffer
628  * as the first execobject as opposed to the last. See I915_EXEC_BATCH_FIRST.
629  */
630 #define I915_PARAM_HAS_EXEC_BATCH_FIRST	 48
631 
632 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
633  * drm_i915_gem_exec_fence structures.  See I915_EXEC_FENCE_ARRAY.
634  */
635 #define I915_PARAM_HAS_EXEC_FENCE_ARRAY  49
636 
637 /*
638  * Query whether every context (both per-file default and user created) is
639  * isolated (insofar as HW supports). If this parameter is not true, then
640  * freshly created contexts may inherit values from an existing context,
641  * rather than default HW values. If true, it also ensures (insofar as HW
642  * supports) that all state set by this context will not leak to any other
643  * context.
644  *
645  * As not every engine across every gen support contexts, the returned
646  * value reports the support of context isolation for individual engines by
647  * returning a bitmask of each engine class set to true if that class supports
648  * isolation.
649  */
650 #define I915_PARAM_HAS_CONTEXT_ISOLATION 50
651 
652 /* Frequency of the command streamer timestamps given by the *_TIMESTAMP
653  * registers. This used to be fixed per platform but from CNL onwards, this
654  * might vary depending on the parts.
655  */
656 #define I915_PARAM_CS_TIMESTAMP_FREQUENCY 51
657 
658 /*
659  * Once upon a time we supposed that writes through the GGTT would be
660  * immediately in physical memory (once flushed out of the CPU path). However,
661  * on a few different processors and chipsets, this is not necessarily the case
662  * as the writes appear to be buffered internally. Thus a read of the backing
663  * storage (physical memory) via a different path (with different physical tags
664  * to the indirect write via the GGTT) will see stale values from before
665  * the GGTT write. Inside the kernel, we can for the most part keep track of
666  * the different read/write domains in use (e.g. set-domain), but the assumption
667  * of coherency is baked into the ABI, hence reporting its true state in this
668  * parameter.
669  *
670  * Reports true when writes via mmap_gtt are immediately visible following an
671  * lfence to flush the WCB.
672  *
673  * Reports false when writes via mmap_gtt are indeterminately delayed in an in
674  * internal buffer and are _not_ immediately visible to third parties accessing
675  * directly via mmap_cpu/mmap_wc. Use of mmap_gtt as part of an IPC
676  * communications channel when reporting false is strongly disadvised.
677  */
678 #define I915_PARAM_MMAP_GTT_COHERENT	52
679 
680 /*
681  * Query whether DRM_I915_GEM_EXECBUFFER2 supports coordination of parallel
682  * execution through use of explicit fence support.
683  * See I915_EXEC_FENCE_OUT and I915_EXEC_FENCE_SUBMIT.
684  */
685 #define I915_PARAM_HAS_EXEC_SUBMIT_FENCE 53
686 
687 /*
688  * Revision of the i915-perf uAPI. The value returned helps determine what
689  * i915-perf features are available. See drm_i915_perf_property_id.
690  */
691 #define I915_PARAM_PERF_REVISION	54
692 
693 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
694  * timeline syncobj through drm_i915_gem_execbuffer_ext_timeline_fences. See
695  * I915_EXEC_USE_EXTENSIONS.
696  */
697 #define I915_PARAM_HAS_EXEC_TIMELINE_FENCES 55
698 
699 /* Query if the kernel supports the I915_USERPTR_PROBE flag. */
700 #define I915_PARAM_HAS_USERPTR_PROBE 56
701 
702 /* Must be kept compact -- no holes and well documented */
703 
704 typedef struct drm_i915_getparam {
705 	__s32 param;
706 	/*
707 	 * WARNING: Using pointers instead of fixed-size u64 means we need to write
708 	 * compat32 code. Don't repeat this mistake.
709 	 */
710 	int __user *value;
711 } drm_i915_getparam_t;
712 
713 /* Ioctl to set kernel params:
714  */
715 #define I915_SETPARAM_USE_MI_BATCHBUFFER_START            1
716 #define I915_SETPARAM_TEX_LRU_LOG_GRANULARITY             2
717 #define I915_SETPARAM_ALLOW_BATCHBUFFER                   3
718 #define I915_SETPARAM_NUM_USED_FENCES                     4
719 /* Must be kept compact -- no holes */
720 
721 typedef struct drm_i915_setparam {
722 	int param;
723 	int value;
724 } drm_i915_setparam_t;
725 
726 /* A memory manager for regions of shared memory:
727  */
728 #define I915_MEM_REGION_AGP 1
729 
730 typedef struct drm_i915_mem_alloc {
731 	int region;
732 	int alignment;
733 	int size;
734 	int __user *region_offset;	/* offset from start of fb or agp */
735 } drm_i915_mem_alloc_t;
736 
737 typedef struct drm_i915_mem_free {
738 	int region;
739 	int region_offset;
740 } drm_i915_mem_free_t;
741 
742 typedef struct drm_i915_mem_init_heap {
743 	int region;
744 	int size;
745 	int start;
746 } drm_i915_mem_init_heap_t;
747 
748 /* Allow memory manager to be torn down and re-initialized (eg on
749  * rotate):
750  */
751 typedef struct drm_i915_mem_destroy_heap {
752 	int region;
753 } drm_i915_mem_destroy_heap_t;
754 
755 /* Allow X server to configure which pipes to monitor for vblank signals
756  */
757 #define	DRM_I915_VBLANK_PIPE_A	1
758 #define	DRM_I915_VBLANK_PIPE_B	2
759 
760 typedef struct drm_i915_vblank_pipe {
761 	int pipe;
762 } drm_i915_vblank_pipe_t;
763 
764 /* Schedule buffer swap at given vertical blank:
765  */
766 typedef struct drm_i915_vblank_swap {
767 	drm_drawable_t drawable;
768 	enum drm_vblank_seq_type seqtype;
769 	unsigned int sequence;
770 } drm_i915_vblank_swap_t;
771 
772 typedef struct drm_i915_hws_addr {
773 	__u64 addr;
774 } drm_i915_hws_addr_t;
775 
776 struct drm_i915_gem_init {
777 	/**
778 	 * Beginning offset in the GTT to be managed by the DRM memory
779 	 * manager.
780 	 */
781 	__u64 gtt_start;
782 	/**
783 	 * Ending offset in the GTT to be managed by the DRM memory
784 	 * manager.
785 	 */
786 	__u64 gtt_end;
787 };
788 
789 struct drm_i915_gem_create {
790 	/**
791 	 * Requested size for the object.
792 	 *
793 	 * The (page-aligned) allocated size for the object will be returned.
794 	 */
795 	__u64 size;
796 	/**
797 	 * Returned handle for the object.
798 	 *
799 	 * Object handles are nonzero.
800 	 */
801 	__u32 handle;
802 	__u32 pad;
803 };
804 
805 struct drm_i915_gem_pread {
806 	/** Handle for the object being read. */
807 	__u32 handle;
808 	__u32 pad;
809 	/** Offset into the object to read from */
810 	__u64 offset;
811 	/** Length of data to read */
812 	__u64 size;
813 	/**
814 	 * Pointer to write the data into.
815 	 *
816 	 * This is a fixed-size type for 32/64 compatibility.
817 	 */
818 	__u64 data_ptr;
819 };
820 
821 struct drm_i915_gem_pwrite {
822 	/** Handle for the object being written to. */
823 	__u32 handle;
824 	__u32 pad;
825 	/** Offset into the object to write to */
826 	__u64 offset;
827 	/** Length of data to write */
828 	__u64 size;
829 	/**
830 	 * Pointer to read the data from.
831 	 *
832 	 * This is a fixed-size type for 32/64 compatibility.
833 	 */
834 	__u64 data_ptr;
835 };
836 
837 struct drm_i915_gem_mmap {
838 	/** Handle for the object being mapped. */
839 	__u32 handle;
840 	__u32 pad;
841 	/** Offset in the object to map. */
842 	__u64 offset;
843 	/**
844 	 * Length of data to map.
845 	 *
846 	 * The value will be page-aligned.
847 	 */
848 	__u64 size;
849 	/**
850 	 * Returned pointer the data was mapped at.
851 	 *
852 	 * This is a fixed-size type for 32/64 compatibility.
853 	 */
854 	__u64 addr_ptr;
855 
856 	/**
857 	 * Flags for extended behaviour.
858 	 *
859 	 * Added in version 2.
860 	 */
861 	__u64 flags;
862 #define I915_MMAP_WC 0x1
863 };
864 
865 struct drm_i915_gem_mmap_gtt {
866 	/** Handle for the object being mapped. */
867 	__u32 handle;
868 	__u32 pad;
869 	/**
870 	 * Fake offset to use for subsequent mmap call
871 	 *
872 	 * This is a fixed-size type for 32/64 compatibility.
873 	 */
874 	__u64 offset;
875 };
876 
877 /**
878  * struct drm_i915_gem_mmap_offset - Retrieve an offset so we can mmap this buffer object.
879  *
880  * This struct is passed as argument to the `DRM_IOCTL_I915_GEM_MMAP_OFFSET` ioctl,
881  * and is used to retrieve the fake offset to mmap an object specified by &handle.
882  *
883  * The legacy way of using `DRM_IOCTL_I915_GEM_MMAP` is removed on gen12+.
884  * `DRM_IOCTL_I915_GEM_MMAP_GTT` is an older supported alias to this struct, but will behave
885  * as setting the &extensions to 0, and &flags to `I915_MMAP_OFFSET_GTT`.
886  */
887 struct drm_i915_gem_mmap_offset {
888 	/** @handle: Handle for the object being mapped. */
889 	__u32 handle;
890 	/** @pad: Must be zero */
891 	__u32 pad;
892 	/**
893 	 * @offset: The fake offset to use for subsequent mmap call
894 	 *
895 	 * This is a fixed-size type for 32/64 compatibility.
896 	 */
897 	__u64 offset;
898 
899 	/**
900 	 * @flags: Flags for extended behaviour.
901 	 *
902 	 * It is mandatory that one of the `MMAP_OFFSET` types
903 	 * should be included:
904 	 *
905 	 * - `I915_MMAP_OFFSET_GTT`: Use mmap with the object bound to GTT. (Write-Combined)
906 	 * - `I915_MMAP_OFFSET_WC`: Use Write-Combined caching.
907 	 * - `I915_MMAP_OFFSET_WB`: Use Write-Back caching.
908 	 * - `I915_MMAP_OFFSET_FIXED`: Use object placement to determine caching.
909 	 *
910 	 * On devices with local memory `I915_MMAP_OFFSET_FIXED` is the only valid
911 	 * type. On devices without local memory, this caching mode is invalid.
912 	 *
913 	 * As caching mode when specifying `I915_MMAP_OFFSET_FIXED`, WC or WB will
914 	 * be used, depending on the object placement on creation. WB will be used
915 	 * when the object can only exist in system memory, WC otherwise.
916 	 */
917 	__u64 flags;
918 
919 #define I915_MMAP_OFFSET_GTT	0
920 #define I915_MMAP_OFFSET_WC	1
921 #define I915_MMAP_OFFSET_WB	2
922 #define I915_MMAP_OFFSET_UC	3
923 #define I915_MMAP_OFFSET_FIXED	4
924 
925 	/**
926 	 * @extensions: Zero-terminated chain of extensions.
927 	 *
928 	 * No current extensions defined; mbz.
929 	 */
930 	__u64 extensions;
931 };
932 
933 /**
934  * struct drm_i915_gem_set_domain - Adjust the objects write or read domain, in
935  * preparation for accessing the pages via some CPU domain.
936  *
937  * Specifying a new write or read domain will flush the object out of the
938  * previous domain(if required), before then updating the objects domain
939  * tracking with the new domain.
940  *
941  * Note this might involve waiting for the object first if it is still active on
942  * the GPU.
943  *
944  * Supported values for @read_domains and @write_domain:
945  *
946  *	- I915_GEM_DOMAIN_WC: Uncached write-combined domain
947  *	- I915_GEM_DOMAIN_CPU: CPU cache domain
948  *	- I915_GEM_DOMAIN_GTT: Mappable aperture domain
949  *
950  * All other domains are rejected.
951  *
952  * Note that for discrete, starting from DG1, this is no longer supported, and
953  * is instead rejected. On such platforms the CPU domain is effectively static,
954  * where we also only support a single &drm_i915_gem_mmap_offset cache mode,
955  * which can't be set explicitly and instead depends on the object placements,
956  * as per the below.
957  *
958  * Implicit caching rules, starting from DG1:
959  *
960  *	- If any of the object placements (see &drm_i915_gem_create_ext_memory_regions)
961  *	  contain I915_MEMORY_CLASS_DEVICE then the object will be allocated and
962  *	  mapped as write-combined only.
963  *
964  *	- Everything else is always allocated and mapped as write-back, with the
965  *	  guarantee that everything is also coherent with the GPU.
966  *
967  * Note that this is likely to change in the future again, where we might need
968  * more flexibility on future devices, so making this all explicit as part of a
969  * new &drm_i915_gem_create_ext extension is probable.
970  */
971 struct drm_i915_gem_set_domain {
972 	/** @handle: Handle for the object. */
973 	__u32 handle;
974 
975 	/** @read_domains: New read domains. */
976 	__u32 read_domains;
977 
978 	/**
979 	 * @write_domain: New write domain.
980 	 *
981 	 * Note that having something in the write domain implies it's in the
982 	 * read domain, and only that read domain.
983 	 */
984 	__u32 write_domain;
985 };
986 
987 struct drm_i915_gem_sw_finish {
988 	/** Handle for the object */
989 	__u32 handle;
990 };
991 
992 struct drm_i915_gem_relocation_entry {
993 	/**
994 	 * Handle of the buffer being pointed to by this relocation entry.
995 	 *
996 	 * It's appealing to make this be an index into the mm_validate_entry
997 	 * list to refer to the buffer, but this allows the driver to create
998 	 * a relocation list for state buffers and not re-write it per
999 	 * exec using the buffer.
1000 	 */
1001 	__u32 target_handle;
1002 
1003 	/**
1004 	 * Value to be added to the offset of the target buffer to make up
1005 	 * the relocation entry.
1006 	 */
1007 	__u32 delta;
1008 
1009 	/** Offset in the buffer the relocation entry will be written into */
1010 	__u64 offset;
1011 
1012 	/**
1013 	 * Offset value of the target buffer that the relocation entry was last
1014 	 * written as.
1015 	 *
1016 	 * If the buffer has the same offset as last time, we can skip syncing
1017 	 * and writing the relocation.  This value is written back out by
1018 	 * the execbuffer ioctl when the relocation is written.
1019 	 */
1020 	__u64 presumed_offset;
1021 
1022 	/**
1023 	 * Target memory domains read by this operation.
1024 	 */
1025 	__u32 read_domains;
1026 
1027 	/**
1028 	 * Target memory domains written by this operation.
1029 	 *
1030 	 * Note that only one domain may be written by the whole
1031 	 * execbuffer operation, so that where there are conflicts,
1032 	 * the application will get -EINVAL back.
1033 	 */
1034 	__u32 write_domain;
1035 };
1036 
1037 /** @{
1038  * Intel memory domains
1039  *
1040  * Most of these just align with the various caches in
1041  * the system and are used to flush and invalidate as
1042  * objects end up cached in different domains.
1043  */
1044 /** CPU cache */
1045 #define I915_GEM_DOMAIN_CPU		0x00000001
1046 /** Render cache, used by 2D and 3D drawing */
1047 #define I915_GEM_DOMAIN_RENDER		0x00000002
1048 /** Sampler cache, used by texture engine */
1049 #define I915_GEM_DOMAIN_SAMPLER		0x00000004
1050 /** Command queue, used to load batch buffers */
1051 #define I915_GEM_DOMAIN_COMMAND		0x00000008
1052 /** Instruction cache, used by shader programs */
1053 #define I915_GEM_DOMAIN_INSTRUCTION	0x00000010
1054 /** Vertex address cache */
1055 #define I915_GEM_DOMAIN_VERTEX		0x00000020
1056 /** GTT domain - aperture and scanout */
1057 #define I915_GEM_DOMAIN_GTT		0x00000040
1058 /** WC domain - uncached access */
1059 #define I915_GEM_DOMAIN_WC		0x00000080
1060 /** @} */
1061 
1062 struct drm_i915_gem_exec_object {
1063 	/**
1064 	 * User's handle for a buffer to be bound into the GTT for this
1065 	 * operation.
1066 	 */
1067 	__u32 handle;
1068 
1069 	/** Number of relocations to be performed on this buffer */
1070 	__u32 relocation_count;
1071 	/**
1072 	 * Pointer to array of struct drm_i915_gem_relocation_entry containing
1073 	 * the relocations to be performed in this buffer.
1074 	 */
1075 	__u64 relocs_ptr;
1076 
1077 	/** Required alignment in graphics aperture */
1078 	__u64 alignment;
1079 
1080 	/**
1081 	 * Returned value of the updated offset of the object, for future
1082 	 * presumed_offset writes.
1083 	 */
1084 	__u64 offset;
1085 };
1086 
1087 /* DRM_IOCTL_I915_GEM_EXECBUFFER was removed in Linux 5.13 */
1088 struct drm_i915_gem_execbuffer {
1089 	/**
1090 	 * List of buffers to be validated with their relocations to be
1091 	 * performend on them.
1092 	 *
1093 	 * This is a pointer to an array of struct drm_i915_gem_validate_entry.
1094 	 *
1095 	 * These buffers must be listed in an order such that all relocations
1096 	 * a buffer is performing refer to buffers that have already appeared
1097 	 * in the validate list.
1098 	 */
1099 	__u64 buffers_ptr;
1100 	__u32 buffer_count;
1101 
1102 	/** Offset in the batchbuffer to start execution from. */
1103 	__u32 batch_start_offset;
1104 	/** Bytes used in batchbuffer from batch_start_offset */
1105 	__u32 batch_len;
1106 	__u32 DR1;
1107 	__u32 DR4;
1108 	__u32 num_cliprects;
1109 	/** This is a struct drm_clip_rect *cliprects */
1110 	__u64 cliprects_ptr;
1111 };
1112 
1113 struct drm_i915_gem_exec_object2 {
1114 	/**
1115 	 * User's handle for a buffer to be bound into the GTT for this
1116 	 * operation.
1117 	 */
1118 	__u32 handle;
1119 
1120 	/** Number of relocations to be performed on this buffer */
1121 	__u32 relocation_count;
1122 	/**
1123 	 * Pointer to array of struct drm_i915_gem_relocation_entry containing
1124 	 * the relocations to be performed in this buffer.
1125 	 */
1126 	__u64 relocs_ptr;
1127 
1128 	/** Required alignment in graphics aperture */
1129 	__u64 alignment;
1130 
1131 	/**
1132 	 * When the EXEC_OBJECT_PINNED flag is specified this is populated by
1133 	 * the user with the GTT offset at which this object will be pinned.
1134 	 *
1135 	 * When the I915_EXEC_NO_RELOC flag is specified this must contain the
1136 	 * presumed_offset of the object.
1137 	 *
1138 	 * During execbuffer2 the kernel populates it with the value of the
1139 	 * current GTT offset of the object, for future presumed_offset writes.
1140 	 *
1141 	 * See struct drm_i915_gem_create_ext for the rules when dealing with
1142 	 * alignment restrictions with I915_MEMORY_CLASS_DEVICE, on devices with
1143 	 * minimum page sizes, like DG2.
1144 	 */
1145 	__u64 offset;
1146 
1147 #define EXEC_OBJECT_NEEDS_FENCE		 (1<<0)
1148 #define EXEC_OBJECT_NEEDS_GTT		 (1<<1)
1149 #define EXEC_OBJECT_WRITE		 (1<<2)
1150 #define EXEC_OBJECT_SUPPORTS_48B_ADDRESS (1<<3)
1151 #define EXEC_OBJECT_PINNED		 (1<<4)
1152 #define EXEC_OBJECT_PAD_TO_SIZE		 (1<<5)
1153 /* The kernel implicitly tracks GPU activity on all GEM objects, and
1154  * synchronises operations with outstanding rendering. This includes
1155  * rendering on other devices if exported via dma-buf. However, sometimes
1156  * this tracking is too coarse and the user knows better. For example,
1157  * if the object is split into non-overlapping ranges shared between different
1158  * clients or engines (i.e. suballocating objects), the implicit tracking
1159  * by kernel assumes that each operation affects the whole object rather
1160  * than an individual range, causing needless synchronisation between clients.
1161  * The kernel will also forgo any CPU cache flushes prior to rendering from
1162  * the object as the client is expected to be also handling such domain
1163  * tracking.
1164  *
1165  * The kernel maintains the implicit tracking in order to manage resources
1166  * used by the GPU - this flag only disables the synchronisation prior to
1167  * rendering with this object in this execbuf.
1168  *
1169  * Opting out of implicit synhronisation requires the user to do its own
1170  * explicit tracking to avoid rendering corruption. See, for example,
1171  * I915_PARAM_HAS_EXEC_FENCE to order execbufs and execute them asynchronously.
1172  */
1173 #define EXEC_OBJECT_ASYNC		(1<<6)
1174 /* Request that the contents of this execobject be copied into the error
1175  * state upon a GPU hang involving this batch for post-mortem debugging.
1176  * These buffers are recorded in no particular order as "user" in
1177  * /sys/class/drm/cardN/error. Query I915_PARAM_HAS_EXEC_CAPTURE to see
1178  * if the kernel supports this flag.
1179  */
1180 #define EXEC_OBJECT_CAPTURE		(1<<7)
1181 /* All remaining bits are MBZ and RESERVED FOR FUTURE USE */
1182 #define __EXEC_OBJECT_UNKNOWN_FLAGS -(EXEC_OBJECT_CAPTURE<<1)
1183 	__u64 flags;
1184 
1185 	union {
1186 		__u64 rsvd1;
1187 		__u64 pad_to_size;
1188 	};
1189 	__u64 rsvd2;
1190 };
1191 
1192 struct drm_i915_gem_exec_fence {
1193 	/**
1194 	 * User's handle for a drm_syncobj to wait on or signal.
1195 	 */
1196 	__u32 handle;
1197 
1198 #define I915_EXEC_FENCE_WAIT            (1<<0)
1199 #define I915_EXEC_FENCE_SIGNAL          (1<<1)
1200 #define __I915_EXEC_FENCE_UNKNOWN_FLAGS (-(I915_EXEC_FENCE_SIGNAL << 1))
1201 	__u32 flags;
1202 };
1203 
1204 /*
1205  * See drm_i915_gem_execbuffer_ext_timeline_fences.
1206  */
1207 #define DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES 0
1208 
1209 /*
1210  * This structure describes an array of drm_syncobj and associated points for
1211  * timeline variants of drm_syncobj. It is invalid to append this structure to
1212  * the execbuf if I915_EXEC_FENCE_ARRAY is set.
1213  */
1214 struct drm_i915_gem_execbuffer_ext_timeline_fences {
1215 	struct i915_user_extension base;
1216 
1217 	/**
1218 	 * Number of element in the handles_ptr & value_ptr arrays.
1219 	 */
1220 	__u64 fence_count;
1221 
1222 	/**
1223 	 * Pointer to an array of struct drm_i915_gem_exec_fence of length
1224 	 * fence_count.
1225 	 */
1226 	__u64 handles_ptr;
1227 
1228 	/**
1229 	 * Pointer to an array of u64 values of length fence_count. Values
1230 	 * must be 0 for a binary drm_syncobj. A Value of 0 for a timeline
1231 	 * drm_syncobj is invalid as it turns a drm_syncobj into a binary one.
1232 	 */
1233 	__u64 values_ptr;
1234 };
1235 
1236 struct drm_i915_gem_execbuffer2 {
1237 	/**
1238 	 * List of gem_exec_object2 structs
1239 	 */
1240 	__u64 buffers_ptr;
1241 	__u32 buffer_count;
1242 
1243 	/** Offset in the batchbuffer to start execution from. */
1244 	__u32 batch_start_offset;
1245 	/** Bytes used in batchbuffer from batch_start_offset */
1246 	__u32 batch_len;
1247 	__u32 DR1;
1248 	__u32 DR4;
1249 	__u32 num_cliprects;
1250 	/**
1251 	 * This is a struct drm_clip_rect *cliprects if I915_EXEC_FENCE_ARRAY
1252 	 * & I915_EXEC_USE_EXTENSIONS are not set.
1253 	 *
1254 	 * If I915_EXEC_FENCE_ARRAY is set, then this is a pointer to an array
1255 	 * of struct drm_i915_gem_exec_fence and num_cliprects is the length
1256 	 * of the array.
1257 	 *
1258 	 * If I915_EXEC_USE_EXTENSIONS is set, then this is a pointer to a
1259 	 * single struct i915_user_extension and num_cliprects is 0.
1260 	 */
1261 	__u64 cliprects_ptr;
1262 #define I915_EXEC_RING_MASK              (0x3f)
1263 #define I915_EXEC_DEFAULT                (0<<0)
1264 #define I915_EXEC_RENDER                 (1<<0)
1265 #define I915_EXEC_BSD                    (2<<0)
1266 #define I915_EXEC_BLT                    (3<<0)
1267 #define I915_EXEC_VEBOX                  (4<<0)
1268 
1269 /* Used for switching the constants addressing mode on gen4+ RENDER ring.
1270  * Gen6+ only supports relative addressing to dynamic state (default) and
1271  * absolute addressing.
1272  *
1273  * These flags are ignored for the BSD and BLT rings.
1274  */
1275 #define I915_EXEC_CONSTANTS_MASK 	(3<<6)
1276 #define I915_EXEC_CONSTANTS_REL_GENERAL (0<<6) /* default */
1277 #define I915_EXEC_CONSTANTS_ABSOLUTE 	(1<<6)
1278 #define I915_EXEC_CONSTANTS_REL_SURFACE (2<<6) /* gen4/5 only */
1279 	__u64 flags;
1280 	__u64 rsvd1; /* now used for context info */
1281 	__u64 rsvd2;
1282 };
1283 
1284 /** Resets the SO write offset registers for transform feedback on gen7. */
1285 #define I915_EXEC_GEN7_SOL_RESET	(1<<8)
1286 
1287 /** Request a privileged ("secure") batch buffer. Note only available for
1288  * DRM_ROOT_ONLY | DRM_MASTER processes.
1289  */
1290 #define I915_EXEC_SECURE		(1<<9)
1291 
1292 /** Inform the kernel that the batch is and will always be pinned. This
1293  * negates the requirement for a workaround to be performed to avoid
1294  * an incoherent CS (such as can be found on 830/845). If this flag is
1295  * not passed, the kernel will endeavour to make sure the batch is
1296  * coherent with the CS before execution. If this flag is passed,
1297  * userspace assumes the responsibility for ensuring the same.
1298  */
1299 #define I915_EXEC_IS_PINNED		(1<<10)
1300 
1301 /** Provide a hint to the kernel that the command stream and auxiliary
1302  * state buffers already holds the correct presumed addresses and so the
1303  * relocation process may be skipped if no buffers need to be moved in
1304  * preparation for the execbuffer.
1305  */
1306 #define I915_EXEC_NO_RELOC		(1<<11)
1307 
1308 /** Use the reloc.handle as an index into the exec object array rather
1309  * than as the per-file handle.
1310  */
1311 #define I915_EXEC_HANDLE_LUT		(1<<12)
1312 
1313 /** Used for switching BSD rings on the platforms with two BSD rings */
1314 #define I915_EXEC_BSD_SHIFT	 (13)
1315 #define I915_EXEC_BSD_MASK	 (3 << I915_EXEC_BSD_SHIFT)
1316 /* default ping-pong mode */
1317 #define I915_EXEC_BSD_DEFAULT	 (0 << I915_EXEC_BSD_SHIFT)
1318 #define I915_EXEC_BSD_RING1	 (1 << I915_EXEC_BSD_SHIFT)
1319 #define I915_EXEC_BSD_RING2	 (2 << I915_EXEC_BSD_SHIFT)
1320 
1321 /** Tell the kernel that the batchbuffer is processed by
1322  *  the resource streamer.
1323  */
1324 #define I915_EXEC_RESOURCE_STREAMER     (1<<15)
1325 
1326 /* Setting I915_EXEC_FENCE_IN implies that lower_32_bits(rsvd2) represent
1327  * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1328  * the batch.
1329  *
1330  * Returns -EINVAL if the sync_file fd cannot be found.
1331  */
1332 #define I915_EXEC_FENCE_IN		(1<<16)
1333 
1334 /* Setting I915_EXEC_FENCE_OUT causes the ioctl to return a sync_file fd
1335  * in the upper_32_bits(rsvd2) upon success. Ownership of the fd is given
1336  * to the caller, and it should be close() after use. (The fd is a regular
1337  * file descriptor and will be cleaned up on process termination. It holds
1338  * a reference to the request, but nothing else.)
1339  *
1340  * The sync_file fd can be combined with other sync_file and passed either
1341  * to execbuf using I915_EXEC_FENCE_IN, to atomic KMS ioctls (so that a flip
1342  * will only occur after this request completes), or to other devices.
1343  *
1344  * Using I915_EXEC_FENCE_OUT requires use of
1345  * DRM_IOCTL_I915_GEM_EXECBUFFER2_WR ioctl so that the result is written
1346  * back to userspace. Failure to do so will cause the out-fence to always
1347  * be reported as zero, and the real fence fd to be leaked.
1348  */
1349 #define I915_EXEC_FENCE_OUT		(1<<17)
1350 
1351 /*
1352  * Traditionally the execbuf ioctl has only considered the final element in
1353  * the execobject[] to be the executable batch. Often though, the client
1354  * will known the batch object prior to construction and being able to place
1355  * it into the execobject[] array first can simplify the relocation tracking.
1356  * Setting I915_EXEC_BATCH_FIRST tells execbuf to use element 0 of the
1357  * execobject[] as the * batch instead (the default is to use the last
1358  * element).
1359  */
1360 #define I915_EXEC_BATCH_FIRST		(1<<18)
1361 
1362 /* Setting I915_FENCE_ARRAY implies that num_cliprects and cliprects_ptr
1363  * define an array of i915_gem_exec_fence structures which specify a set of
1364  * dma fences to wait upon or signal.
1365  */
1366 #define I915_EXEC_FENCE_ARRAY   (1<<19)
1367 
1368 /*
1369  * Setting I915_EXEC_FENCE_SUBMIT implies that lower_32_bits(rsvd2) represent
1370  * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1371  * the batch.
1372  *
1373  * Returns -EINVAL if the sync_file fd cannot be found.
1374  */
1375 #define I915_EXEC_FENCE_SUBMIT		(1 << 20)
1376 
1377 /*
1378  * Setting I915_EXEC_USE_EXTENSIONS implies that
1379  * drm_i915_gem_execbuffer2.cliprects_ptr is treated as a pointer to an linked
1380  * list of i915_user_extension. Each i915_user_extension node is the base of a
1381  * larger structure. The list of supported structures are listed in the
1382  * drm_i915_gem_execbuffer_ext enum.
1383  */
1384 #define I915_EXEC_USE_EXTENSIONS	(1 << 21)
1385 
1386 #define __I915_EXEC_UNKNOWN_FLAGS (-(I915_EXEC_USE_EXTENSIONS << 1))
1387 
1388 #define I915_EXEC_CONTEXT_ID_MASK	(0xffffffff)
1389 #define i915_execbuffer2_set_context_id(eb2, context) \
1390 	(eb2).rsvd1 = context & I915_EXEC_CONTEXT_ID_MASK
1391 #define i915_execbuffer2_get_context_id(eb2) \
1392 	((eb2).rsvd1 & I915_EXEC_CONTEXT_ID_MASK)
1393 
1394 struct drm_i915_gem_pin {
1395 	/** Handle of the buffer to be pinned. */
1396 	__u32 handle;
1397 	__u32 pad;
1398 
1399 	/** alignment required within the aperture */
1400 	__u64 alignment;
1401 
1402 	/** Returned GTT offset of the buffer. */
1403 	__u64 offset;
1404 };
1405 
1406 struct drm_i915_gem_unpin {
1407 	/** Handle of the buffer to be unpinned. */
1408 	__u32 handle;
1409 	__u32 pad;
1410 };
1411 
1412 struct drm_i915_gem_busy {
1413 	/** Handle of the buffer to check for busy */
1414 	__u32 handle;
1415 
1416 	/** Return busy status
1417 	 *
1418 	 * A return of 0 implies that the object is idle (after
1419 	 * having flushed any pending activity), and a non-zero return that
1420 	 * the object is still in-flight on the GPU. (The GPU has not yet
1421 	 * signaled completion for all pending requests that reference the
1422 	 * object.) An object is guaranteed to become idle eventually (so
1423 	 * long as no new GPU commands are executed upon it). Due to the
1424 	 * asynchronous nature of the hardware, an object reported
1425 	 * as busy may become idle before the ioctl is completed.
1426 	 *
1427 	 * Furthermore, if the object is busy, which engine is busy is only
1428 	 * provided as a guide and only indirectly by reporting its class
1429 	 * (there may be more than one engine in each class). There are race
1430 	 * conditions which prevent the report of which engines are busy from
1431 	 * being always accurate.  However, the converse is not true. If the
1432 	 * object is idle, the result of the ioctl, that all engines are idle,
1433 	 * is accurate.
1434 	 *
1435 	 * The returned dword is split into two fields to indicate both
1436 	 * the engine classess on which the object is being read, and the
1437 	 * engine class on which it is currently being written (if any).
1438 	 *
1439 	 * The low word (bits 0:15) indicate if the object is being written
1440 	 * to by any engine (there can only be one, as the GEM implicit
1441 	 * synchronisation rules force writes to be serialised). Only the
1442 	 * engine class (offset by 1, I915_ENGINE_CLASS_RENDER is reported as
1443 	 * 1 not 0 etc) for the last write is reported.
1444 	 *
1445 	 * The high word (bits 16:31) are a bitmask of which engines classes
1446 	 * are currently reading from the object. Multiple engines may be
1447 	 * reading from the object simultaneously.
1448 	 *
1449 	 * The value of each engine class is the same as specified in the
1450 	 * I915_CONTEXT_PARAM_ENGINES context parameter and via perf, i.e.
1451 	 * I915_ENGINE_CLASS_RENDER, I915_ENGINE_CLASS_COPY, etc.
1452 	 * Some hardware may have parallel execution engines, e.g. multiple
1453 	 * media engines, which are mapped to the same class identifier and so
1454 	 * are not separately reported for busyness.
1455 	 *
1456 	 * Caveat emptor:
1457 	 * Only the boolean result of this query is reliable; that is whether
1458 	 * the object is idle or busy. The report of which engines are busy
1459 	 * should be only used as a heuristic.
1460 	 */
1461 	__u32 busy;
1462 };
1463 
1464 /**
1465  * struct drm_i915_gem_caching - Set or get the caching for given object
1466  * handle.
1467  *
1468  * Allow userspace to control the GTT caching bits for a given object when the
1469  * object is later mapped through the ppGTT(or GGTT on older platforms lacking
1470  * ppGTT support, or if the object is used for scanout). Note that this might
1471  * require unbinding the object from the GTT first, if its current caching value
1472  * doesn't match.
1473  *
1474  * Note that this all changes on discrete platforms, starting from DG1, the
1475  * set/get caching is no longer supported, and is now rejected.  Instead the CPU
1476  * caching attributes(WB vs WC) will become an immutable creation time property
1477  * for the object, along with the GTT caching level. For now we don't expose any
1478  * new uAPI for this, instead on DG1 this is all implicit, although this largely
1479  * shouldn't matter since DG1 is coherent by default(without any way of
1480  * controlling it).
1481  *
1482  * Implicit caching rules, starting from DG1:
1483  *
1484  *     - If any of the object placements (see &drm_i915_gem_create_ext_memory_regions)
1485  *       contain I915_MEMORY_CLASS_DEVICE then the object will be allocated and
1486  *       mapped as write-combined only.
1487  *
1488  *     - Everything else is always allocated and mapped as write-back, with the
1489  *       guarantee that everything is also coherent with the GPU.
1490  *
1491  * Note that this is likely to change in the future again, where we might need
1492  * more flexibility on future devices, so making this all explicit as part of a
1493  * new &drm_i915_gem_create_ext extension is probable.
1494  *
1495  * Side note: Part of the reason for this is that changing the at-allocation-time CPU
1496  * caching attributes for the pages might be required(and is expensive) if we
1497  * need to then CPU map the pages later with different caching attributes. This
1498  * inconsistent caching behaviour, while supported on x86, is not universally
1499  * supported on other architectures. So for simplicity we opt for setting
1500  * everything at creation time, whilst also making it immutable, on discrete
1501  * platforms.
1502  */
1503 struct drm_i915_gem_caching {
1504 	/**
1505 	 * @handle: Handle of the buffer to set/get the caching level.
1506 	 */
1507 	__u32 handle;
1508 
1509 	/**
1510 	 * @caching: The GTT caching level to apply or possible return value.
1511 	 *
1512 	 * The supported @caching values:
1513 	 *
1514 	 * I915_CACHING_NONE:
1515 	 *
1516 	 * GPU access is not coherent with CPU caches.  Default for machines
1517 	 * without an LLC. This means manual flushing might be needed, if we
1518 	 * want GPU access to be coherent.
1519 	 *
1520 	 * I915_CACHING_CACHED:
1521 	 *
1522 	 * GPU access is coherent with CPU caches and furthermore the data is
1523 	 * cached in last-level caches shared between CPU cores and the GPU GT.
1524 	 *
1525 	 * I915_CACHING_DISPLAY:
1526 	 *
1527 	 * Special GPU caching mode which is coherent with the scanout engines.
1528 	 * Transparently falls back to I915_CACHING_NONE on platforms where no
1529 	 * special cache mode (like write-through or gfdt flushing) is
1530 	 * available. The kernel automatically sets this mode when using a
1531 	 * buffer as a scanout target.  Userspace can manually set this mode to
1532 	 * avoid a costly stall and clflush in the hotpath of drawing the first
1533 	 * frame.
1534 	 */
1535 #define I915_CACHING_NONE		0
1536 #define I915_CACHING_CACHED		1
1537 #define I915_CACHING_DISPLAY		2
1538 	__u32 caching;
1539 };
1540 
1541 #define I915_TILING_NONE	0
1542 #define I915_TILING_X		1
1543 #define I915_TILING_Y		2
1544 /*
1545  * Do not add new tiling types here.  The I915_TILING_* values are for
1546  * de-tiling fence registers that no longer exist on modern platforms.  Although
1547  * the hardware may support new types of tiling in general (e.g., Tile4), we
1548  * do not need to add them to the uapi that is specific to now-defunct ioctls.
1549  */
1550 #define I915_TILING_LAST	I915_TILING_Y
1551 
1552 #define I915_BIT_6_SWIZZLE_NONE		0
1553 #define I915_BIT_6_SWIZZLE_9		1
1554 #define I915_BIT_6_SWIZZLE_9_10		2
1555 #define I915_BIT_6_SWIZZLE_9_11		3
1556 #define I915_BIT_6_SWIZZLE_9_10_11	4
1557 /* Not seen by userland */
1558 #define I915_BIT_6_SWIZZLE_UNKNOWN	5
1559 /* Seen by userland. */
1560 #define I915_BIT_6_SWIZZLE_9_17		6
1561 #define I915_BIT_6_SWIZZLE_9_10_17	7
1562 
1563 struct drm_i915_gem_set_tiling {
1564 	/** Handle of the buffer to have its tiling state updated */
1565 	__u32 handle;
1566 
1567 	/**
1568 	 * Tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1569 	 * I915_TILING_Y).
1570 	 *
1571 	 * This value is to be set on request, and will be updated by the
1572 	 * kernel on successful return with the actual chosen tiling layout.
1573 	 *
1574 	 * The tiling mode may be demoted to I915_TILING_NONE when the system
1575 	 * has bit 6 swizzling that can't be managed correctly by GEM.
1576 	 *
1577 	 * Buffer contents become undefined when changing tiling_mode.
1578 	 */
1579 	__u32 tiling_mode;
1580 
1581 	/**
1582 	 * Stride in bytes for the object when in I915_TILING_X or
1583 	 * I915_TILING_Y.
1584 	 */
1585 	__u32 stride;
1586 
1587 	/**
1588 	 * Returned address bit 6 swizzling required for CPU access through
1589 	 * mmap mapping.
1590 	 */
1591 	__u32 swizzle_mode;
1592 };
1593 
1594 struct drm_i915_gem_get_tiling {
1595 	/** Handle of the buffer to get tiling state for. */
1596 	__u32 handle;
1597 
1598 	/**
1599 	 * Current tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1600 	 * I915_TILING_Y).
1601 	 */
1602 	__u32 tiling_mode;
1603 
1604 	/**
1605 	 * Returned address bit 6 swizzling required for CPU access through
1606 	 * mmap mapping.
1607 	 */
1608 	__u32 swizzle_mode;
1609 
1610 	/**
1611 	 * Returned address bit 6 swizzling required for CPU access through
1612 	 * mmap mapping whilst bound.
1613 	 */
1614 	__u32 phys_swizzle_mode;
1615 };
1616 
1617 struct drm_i915_gem_get_aperture {
1618 	/** Total size of the aperture used by i915_gem_execbuffer, in bytes */
1619 	__u64 aper_size;
1620 
1621 	/**
1622 	 * Available space in the aperture used by i915_gem_execbuffer, in
1623 	 * bytes
1624 	 */
1625 	__u64 aper_available_size;
1626 };
1627 
1628 struct drm_i915_get_pipe_from_crtc_id {
1629 	/** ID of CRTC being requested **/
1630 	__u32 crtc_id;
1631 
1632 	/** pipe of requested CRTC **/
1633 	__u32 pipe;
1634 };
1635 
1636 #define I915_MADV_WILLNEED 0
1637 #define I915_MADV_DONTNEED 1
1638 #define __I915_MADV_PURGED 2 /* internal state */
1639 
1640 struct drm_i915_gem_madvise {
1641 	/** Handle of the buffer to change the backing store advice */
1642 	__u32 handle;
1643 
1644 	/* Advice: either the buffer will be needed again in the near future,
1645 	 *         or wont be and could be discarded under memory pressure.
1646 	 */
1647 	__u32 madv;
1648 
1649 	/** Whether the backing store still exists. */
1650 	__u32 retained;
1651 };
1652 
1653 /* flags */
1654 #define I915_OVERLAY_TYPE_MASK 		0xff
1655 #define I915_OVERLAY_YUV_PLANAR 	0x01
1656 #define I915_OVERLAY_YUV_PACKED 	0x02
1657 #define I915_OVERLAY_RGB		0x03
1658 
1659 #define I915_OVERLAY_DEPTH_MASK		0xff00
1660 #define I915_OVERLAY_RGB24		0x1000
1661 #define I915_OVERLAY_RGB16		0x2000
1662 #define I915_OVERLAY_RGB15		0x3000
1663 #define I915_OVERLAY_YUV422		0x0100
1664 #define I915_OVERLAY_YUV411		0x0200
1665 #define I915_OVERLAY_YUV420		0x0300
1666 #define I915_OVERLAY_YUV410		0x0400
1667 
1668 #define I915_OVERLAY_SWAP_MASK		0xff0000
1669 #define I915_OVERLAY_NO_SWAP		0x000000
1670 #define I915_OVERLAY_UV_SWAP		0x010000
1671 #define I915_OVERLAY_Y_SWAP		0x020000
1672 #define I915_OVERLAY_Y_AND_UV_SWAP	0x030000
1673 
1674 #define I915_OVERLAY_FLAGS_MASK		0xff000000
1675 #define I915_OVERLAY_ENABLE		0x01000000
1676 
1677 struct drm_intel_overlay_put_image {
1678 	/* various flags and src format description */
1679 	__u32 flags;
1680 	/* source picture description */
1681 	__u32 bo_handle;
1682 	/* stride values and offsets are in bytes, buffer relative */
1683 	__u16 stride_Y; /* stride for packed formats */
1684 	__u16 stride_UV;
1685 	__u32 offset_Y; /* offset for packet formats */
1686 	__u32 offset_U;
1687 	__u32 offset_V;
1688 	/* in pixels */
1689 	__u16 src_width;
1690 	__u16 src_height;
1691 	/* to compensate the scaling factors for partially covered surfaces */
1692 	__u16 src_scan_width;
1693 	__u16 src_scan_height;
1694 	/* output crtc description */
1695 	__u32 crtc_id;
1696 	__u16 dst_x;
1697 	__u16 dst_y;
1698 	__u16 dst_width;
1699 	__u16 dst_height;
1700 };
1701 
1702 /* flags */
1703 #define I915_OVERLAY_UPDATE_ATTRS	(1<<0)
1704 #define I915_OVERLAY_UPDATE_GAMMA	(1<<1)
1705 #define I915_OVERLAY_DISABLE_DEST_COLORKEY	(1<<2)
1706 struct drm_intel_overlay_attrs {
1707 	__u32 flags;
1708 	__u32 color_key;
1709 	__s32 brightness;
1710 	__u32 contrast;
1711 	__u32 saturation;
1712 	__u32 gamma0;
1713 	__u32 gamma1;
1714 	__u32 gamma2;
1715 	__u32 gamma3;
1716 	__u32 gamma4;
1717 	__u32 gamma5;
1718 };
1719 
1720 /*
1721  * Intel sprite handling
1722  *
1723  * Color keying works with a min/mask/max tuple.  Both source and destination
1724  * color keying is allowed.
1725  *
1726  * Source keying:
1727  * Sprite pixels within the min & max values, masked against the color channels
1728  * specified in the mask field, will be transparent.  All other pixels will
1729  * be displayed on top of the primary plane.  For RGB surfaces, only the min
1730  * and mask fields will be used; ranged compares are not allowed.
1731  *
1732  * Destination keying:
1733  * Primary plane pixels that match the min value, masked against the color
1734  * channels specified in the mask field, will be replaced by corresponding
1735  * pixels from the sprite plane.
1736  *
1737  * Note that source & destination keying are exclusive; only one can be
1738  * active on a given plane.
1739  */
1740 
1741 #define I915_SET_COLORKEY_NONE		(1<<0) /* Deprecated. Instead set
1742 						* flags==0 to disable colorkeying.
1743 						*/
1744 #define I915_SET_COLORKEY_DESTINATION	(1<<1)
1745 #define I915_SET_COLORKEY_SOURCE	(1<<2)
1746 struct drm_intel_sprite_colorkey {
1747 	__u32 plane_id;
1748 	__u32 min_value;
1749 	__u32 channel_mask;
1750 	__u32 max_value;
1751 	__u32 flags;
1752 };
1753 
1754 struct drm_i915_gem_wait {
1755 	/** Handle of BO we shall wait on */
1756 	__u32 bo_handle;
1757 	__u32 flags;
1758 	/** Number of nanoseconds to wait, Returns time remaining. */
1759 	__s64 timeout_ns;
1760 };
1761 
1762 struct drm_i915_gem_context_create {
1763 	__u32 ctx_id; /* output: id of new context*/
1764 	__u32 pad;
1765 };
1766 
1767 struct drm_i915_gem_context_create_ext {
1768 	__u32 ctx_id; /* output: id of new context*/
1769 	__u32 flags;
1770 #define I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS	(1u << 0)
1771 #define I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE	(1u << 1)
1772 #define I915_CONTEXT_CREATE_FLAGS_UNKNOWN \
1773 	(-(I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE << 1))
1774 	__u64 extensions;
1775 };
1776 
1777 struct drm_i915_gem_context_param {
1778 	__u32 ctx_id;
1779 	__u32 size;
1780 	__u64 param;
1781 #define I915_CONTEXT_PARAM_BAN_PERIOD	0x1
1782 /* I915_CONTEXT_PARAM_NO_ZEROMAP has been removed.  On the off chance
1783  * someone somewhere has attempted to use it, never re-use this context
1784  * param number.
1785  */
1786 #define I915_CONTEXT_PARAM_NO_ZEROMAP	0x2
1787 #define I915_CONTEXT_PARAM_GTT_SIZE	0x3
1788 #define I915_CONTEXT_PARAM_NO_ERROR_CAPTURE	0x4
1789 #define I915_CONTEXT_PARAM_BANNABLE	0x5
1790 #define I915_CONTEXT_PARAM_PRIORITY	0x6
1791 #define   I915_CONTEXT_MAX_USER_PRIORITY	1023 /* inclusive */
1792 #define   I915_CONTEXT_DEFAULT_PRIORITY		0
1793 #define   I915_CONTEXT_MIN_USER_PRIORITY	-1023 /* inclusive */
1794 	/*
1795 	 * When using the following param, value should be a pointer to
1796 	 * drm_i915_gem_context_param_sseu.
1797 	 */
1798 #define I915_CONTEXT_PARAM_SSEU		0x7
1799 
1800 /*
1801  * Not all clients may want to attempt automatic recover of a context after
1802  * a hang (for example, some clients may only submit very small incremental
1803  * batches relying on known logical state of previous batches which will never
1804  * recover correctly and each attempt will hang), and so would prefer that
1805  * the context is forever banned instead.
1806  *
1807  * If set to false (0), after a reset, subsequent (and in flight) rendering
1808  * from this context is discarded, and the client will need to create a new
1809  * context to use instead.
1810  *
1811  * If set to true (1), the kernel will automatically attempt to recover the
1812  * context by skipping the hanging batch and executing the next batch starting
1813  * from the default context state (discarding the incomplete logical context
1814  * state lost due to the reset).
1815  *
1816  * On creation, all new contexts are marked as recoverable.
1817  */
1818 #define I915_CONTEXT_PARAM_RECOVERABLE	0x8
1819 
1820 	/*
1821 	 * The id of the associated virtual memory address space (ppGTT) of
1822 	 * this context. Can be retrieved and passed to another context
1823 	 * (on the same fd) for both to use the same ppGTT and so share
1824 	 * address layouts, and avoid reloading the page tables on context
1825 	 * switches between themselves.
1826 	 *
1827 	 * See DRM_I915_GEM_VM_CREATE and DRM_I915_GEM_VM_DESTROY.
1828 	 */
1829 #define I915_CONTEXT_PARAM_VM		0x9
1830 
1831 /*
1832  * I915_CONTEXT_PARAM_ENGINES:
1833  *
1834  * Bind this context to operate on this subset of available engines. Henceforth,
1835  * the I915_EXEC_RING selector for DRM_IOCTL_I915_GEM_EXECBUFFER2 operates as
1836  * an index into this array of engines; I915_EXEC_DEFAULT selecting engine[0]
1837  * and upwards. Slots 0...N are filled in using the specified (class, instance).
1838  * Use
1839  *	engine_class: I915_ENGINE_CLASS_INVALID,
1840  *	engine_instance: I915_ENGINE_CLASS_INVALID_NONE
1841  * to specify a gap in the array that can be filled in later, e.g. by a
1842  * virtual engine used for load balancing.
1843  *
1844  * Setting the number of engines bound to the context to 0, by passing a zero
1845  * sized argument, will revert back to default settings.
1846  *
1847  * See struct i915_context_param_engines.
1848  *
1849  * Extensions:
1850  *   i915_context_engines_load_balance (I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE)
1851  *   i915_context_engines_bond (I915_CONTEXT_ENGINES_EXT_BOND)
1852  *   i915_context_engines_parallel_submit (I915_CONTEXT_ENGINES_EXT_PARALLEL_SUBMIT)
1853  */
1854 #define I915_CONTEXT_PARAM_ENGINES	0xa
1855 
1856 /*
1857  * I915_CONTEXT_PARAM_PERSISTENCE:
1858  *
1859  * Allow the context and active rendering to survive the process until
1860  * completion. Persistence allows fire-and-forget clients to queue up a
1861  * bunch of work, hand the output over to a display server and then quit.
1862  * If the context is marked as not persistent, upon closing (either via
1863  * an explicit DRM_I915_GEM_CONTEXT_DESTROY or implicitly from file closure
1864  * or process termination), the context and any outstanding requests will be
1865  * cancelled (and exported fences for cancelled requests marked as -EIO).
1866  *
1867  * By default, new contexts allow persistence.
1868  */
1869 #define I915_CONTEXT_PARAM_PERSISTENCE	0xb
1870 
1871 /* This API has been removed.  On the off chance someone somewhere has
1872  * attempted to use it, never re-use this context param number.
1873  */
1874 #define I915_CONTEXT_PARAM_RINGSIZE	0xc
1875 
1876 /*
1877  * I915_CONTEXT_PARAM_PROTECTED_CONTENT:
1878  *
1879  * Mark that the context makes use of protected content, which will result
1880  * in the context being invalidated when the protected content session is.
1881  * Given that the protected content session is killed on suspend, the device
1882  * is kept awake for the lifetime of a protected context, so the user should
1883  * make sure to dispose of them once done.
1884  * This flag can only be set at context creation time and, when set to true,
1885  * must be preceded by an explicit setting of I915_CONTEXT_PARAM_RECOVERABLE
1886  * to false. This flag can't be set to true in conjunction with setting the
1887  * I915_CONTEXT_PARAM_BANNABLE flag to false. Creation example:
1888  *
1889  * .. code-block:: C
1890  *
1891  *	struct drm_i915_gem_context_create_ext_setparam p_protected = {
1892  *		.base = {
1893  *			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
1894  *		},
1895  *		.param = {
1896  *			.param = I915_CONTEXT_PARAM_PROTECTED_CONTENT,
1897  *			.value = 1,
1898  *		}
1899  *	};
1900  *	struct drm_i915_gem_context_create_ext_setparam p_norecover = {
1901  *		.base = {
1902  *			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
1903  *			.next_extension = to_user_pointer(&p_protected),
1904  *		},
1905  *		.param = {
1906  *			.param = I915_CONTEXT_PARAM_RECOVERABLE,
1907  *			.value = 0,
1908  *		}
1909  *	};
1910  *	struct drm_i915_gem_context_create_ext create = {
1911  *		.flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
1912  *		.extensions = to_user_pointer(&p_norecover);
1913  *	};
1914  *
1915  *	ctx_id = gem_context_create_ext(drm_fd, &create);
1916  *
1917  * In addition to the normal failure cases, setting this flag during context
1918  * creation can result in the following errors:
1919  *
1920  * -ENODEV: feature not available
1921  * -EPERM: trying to mark a recoverable or not bannable context as protected
1922  */
1923 #define I915_CONTEXT_PARAM_PROTECTED_CONTENT    0xd
1924 /* Must be kept compact -- no holes and well documented */
1925 
1926 	__u64 value;
1927 };
1928 
1929 /*
1930  * Context SSEU programming
1931  *
1932  * It may be necessary for either functional or performance reason to configure
1933  * a context to run with a reduced number of SSEU (where SSEU stands for Slice/
1934  * Sub-slice/EU).
1935  *
1936  * This is done by configuring SSEU configuration using the below
1937  * @struct drm_i915_gem_context_param_sseu for every supported engine which
1938  * userspace intends to use.
1939  *
1940  * Not all GPUs or engines support this functionality in which case an error
1941  * code -ENODEV will be returned.
1942  *
1943  * Also, flexibility of possible SSEU configuration permutations varies between
1944  * GPU generations and software imposed limitations. Requesting such a
1945  * combination will return an error code of -EINVAL.
1946  *
1947  * NOTE: When perf/OA is active the context's SSEU configuration is ignored in
1948  * favour of a single global setting.
1949  */
1950 struct drm_i915_gem_context_param_sseu {
1951 	/*
1952 	 * Engine class & instance to be configured or queried.
1953 	 */
1954 	struct i915_engine_class_instance engine;
1955 
1956 	/*
1957 	 * Unknown flags must be cleared to zero.
1958 	 */
1959 	__u32 flags;
1960 #define I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX (1u << 0)
1961 
1962 	/*
1963 	 * Mask of slices to enable for the context. Valid values are a subset
1964 	 * of the bitmask value returned for I915_PARAM_SLICE_MASK.
1965 	 */
1966 	__u64 slice_mask;
1967 
1968 	/*
1969 	 * Mask of subslices to enable for the context. Valid values are a
1970 	 * subset of the bitmask value return by I915_PARAM_SUBSLICE_MASK.
1971 	 */
1972 	__u64 subslice_mask;
1973 
1974 	/*
1975 	 * Minimum/Maximum number of EUs to enable per subslice for the
1976 	 * context. min_eus_per_subslice must be inferior or equal to
1977 	 * max_eus_per_subslice.
1978 	 */
1979 	__u16 min_eus_per_subslice;
1980 	__u16 max_eus_per_subslice;
1981 
1982 	/*
1983 	 * Unused for now. Must be cleared to zero.
1984 	 */
1985 	__u32 rsvd;
1986 };
1987 
1988 /**
1989  * DOC: Virtual Engine uAPI
1990  *
1991  * Virtual engine is a concept where userspace is able to configure a set of
1992  * physical engines, submit a batch buffer, and let the driver execute it on any
1993  * engine from the set as it sees fit.
1994  *
1995  * This is primarily useful on parts which have multiple instances of a same
1996  * class engine, like for example GT3+ Skylake parts with their two VCS engines.
1997  *
1998  * For instance userspace can enumerate all engines of a certain class using the
1999  * previously described `Engine Discovery uAPI`_. After that userspace can
2000  * create a GEM context with a placeholder slot for the virtual engine (using
2001  * `I915_ENGINE_CLASS_INVALID` and `I915_ENGINE_CLASS_INVALID_NONE` for class
2002  * and instance respectively) and finally using the
2003  * `I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE` extension place a virtual engine in
2004  * the same reserved slot.
2005  *
2006  * Example of creating a virtual engine and submitting a batch buffer to it:
2007  *
2008  * .. code-block:: C
2009  *
2010  * 	I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(virtual, 2) = {
2011  * 		.base.name = I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE,
2012  * 		.engine_index = 0, // Place this virtual engine into engine map slot 0
2013  * 		.num_siblings = 2,
2014  * 		.engines = { { I915_ENGINE_CLASS_VIDEO, 0 },
2015  * 			     { I915_ENGINE_CLASS_VIDEO, 1 }, },
2016  * 	};
2017  * 	I915_DEFINE_CONTEXT_PARAM_ENGINES(engines, 1) = {
2018  * 		.engines = { { I915_ENGINE_CLASS_INVALID,
2019  * 			       I915_ENGINE_CLASS_INVALID_NONE } },
2020  * 		.extensions = to_user_pointer(&virtual), // Chains after load_balance extension
2021  * 	};
2022  * 	struct drm_i915_gem_context_create_ext_setparam p_engines = {
2023  * 		.base = {
2024  * 			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2025  * 		},
2026  * 		.param = {
2027  * 			.param = I915_CONTEXT_PARAM_ENGINES,
2028  * 			.value = to_user_pointer(&engines),
2029  * 			.size = sizeof(engines),
2030  * 		},
2031  * 	};
2032  * 	struct drm_i915_gem_context_create_ext create = {
2033  * 		.flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
2034  * 		.extensions = to_user_pointer(&p_engines);
2035  * 	};
2036  *
2037  * 	ctx_id = gem_context_create_ext(drm_fd, &create);
2038  *
2039  * 	// Now we have created a GEM context with its engine map containing a
2040  * 	// single virtual engine. Submissions to this slot can go either to
2041  * 	// vcs0 or vcs1, depending on the load balancing algorithm used inside
2042  * 	// the driver. The load balancing is dynamic from one batch buffer to
2043  * 	// another and transparent to userspace.
2044  *
2045  * 	...
2046  * 	execbuf.rsvd1 = ctx_id;
2047  * 	execbuf.flags = 0; // Submits to index 0 which is the virtual engine
2048  * 	gem_execbuf(drm_fd, &execbuf);
2049  */
2050 
2051 /*
2052  * i915_context_engines_load_balance:
2053  *
2054  * Enable load balancing across this set of engines.
2055  *
2056  * Into the I915_EXEC_DEFAULT slot [0], a virtual engine is created that when
2057  * used will proxy the execbuffer request onto one of the set of engines
2058  * in such a way as to distribute the load evenly across the set.
2059  *
2060  * The set of engines must be compatible (e.g. the same HW class) as they
2061  * will share the same logical GPU context and ring.
2062  *
2063  * To intermix rendering with the virtual engine and direct rendering onto
2064  * the backing engines (bypassing the load balancing proxy), the context must
2065  * be defined to use a single timeline for all engines.
2066  */
2067 struct i915_context_engines_load_balance {
2068 	struct i915_user_extension base;
2069 
2070 	__u16 engine_index;
2071 	__u16 num_siblings;
2072 	__u32 flags; /* all undefined flags must be zero */
2073 
2074 	__u64 mbz64; /* reserved for future use; must be zero */
2075 
2076 	struct i915_engine_class_instance engines[0];
2077 } __attribute__((packed));
2078 
2079 #define I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(name__, N__) struct { \
2080 	struct i915_user_extension base; \
2081 	__u16 engine_index; \
2082 	__u16 num_siblings; \
2083 	__u32 flags; \
2084 	__u64 mbz64; \
2085 	struct i915_engine_class_instance engines[N__]; \
2086 } __attribute__((packed)) name__
2087 
2088 /*
2089  * i915_context_engines_bond:
2090  *
2091  * Constructed bonded pairs for execution within a virtual engine.
2092  *
2093  * All engines are equal, but some are more equal than others. Given
2094  * the distribution of resources in the HW, it may be preferable to run
2095  * a request on a given subset of engines in parallel to a request on a
2096  * specific engine. We enable this selection of engines within a virtual
2097  * engine by specifying bonding pairs, for any given master engine we will
2098  * only execute on one of the corresponding siblings within the virtual engine.
2099  *
2100  * To execute a request in parallel on the master engine and a sibling requires
2101  * coordination with a I915_EXEC_FENCE_SUBMIT.
2102  */
2103 struct i915_context_engines_bond {
2104 	struct i915_user_extension base;
2105 
2106 	struct i915_engine_class_instance master;
2107 
2108 	__u16 virtual_index; /* index of virtual engine in ctx->engines[] */
2109 	__u16 num_bonds;
2110 
2111 	__u64 flags; /* all undefined flags must be zero */
2112 	__u64 mbz64[4]; /* reserved for future use; must be zero */
2113 
2114 	struct i915_engine_class_instance engines[0];
2115 } __attribute__((packed));
2116 
2117 #define I915_DEFINE_CONTEXT_ENGINES_BOND(name__, N__) struct { \
2118 	struct i915_user_extension base; \
2119 	struct i915_engine_class_instance master; \
2120 	__u16 virtual_index; \
2121 	__u16 num_bonds; \
2122 	__u64 flags; \
2123 	__u64 mbz64[4]; \
2124 	struct i915_engine_class_instance engines[N__]; \
2125 } __attribute__((packed)) name__
2126 
2127 /**
2128  * struct i915_context_engines_parallel_submit - Configure engine for
2129  * parallel submission.
2130  *
2131  * Setup a slot in the context engine map to allow multiple BBs to be submitted
2132  * in a single execbuf IOCTL. Those BBs will then be scheduled to run on the GPU
2133  * in parallel. Multiple hardware contexts are created internally in the i915 to
2134  * run these BBs. Once a slot is configured for N BBs only N BBs can be
2135  * submitted in each execbuf IOCTL and this is implicit behavior e.g. The user
2136  * doesn't tell the execbuf IOCTL there are N BBs, the execbuf IOCTL knows how
2137  * many BBs there are based on the slot's configuration. The N BBs are the last
2138  * N buffer objects or first N if I915_EXEC_BATCH_FIRST is set.
2139  *
2140  * The default placement behavior is to create implicit bonds between each
2141  * context if each context maps to more than 1 physical engine (e.g. context is
2142  * a virtual engine). Also we only allow contexts of same engine class and these
2143  * contexts must be in logically contiguous order. Examples of the placement
2144  * behavior are described below. Lastly, the default is to not allow BBs to be
2145  * preempted mid-batch. Rather insert coordinated preemption points on all
2146  * hardware contexts between each set of BBs. Flags could be added in the future
2147  * to change both of these default behaviors.
2148  *
2149  * Returns -EINVAL if hardware context placement configuration is invalid or if
2150  * the placement configuration isn't supported on the platform / submission
2151  * interface.
2152  * Returns -ENODEV if extension isn't supported on the platform / submission
2153  * interface.
2154  *
2155  * .. code-block:: none
2156  *
2157  *	Examples syntax:
2158  *	CS[X] = generic engine of same class, logical instance X
2159  *	INVALID = I915_ENGINE_CLASS_INVALID, I915_ENGINE_CLASS_INVALID_NONE
2160  *
2161  *	Example 1 pseudo code:
2162  *	set_engines(INVALID)
2163  *	set_parallel(engine_index=0, width=2, num_siblings=1,
2164  *		     engines=CS[0],CS[1])
2165  *
2166  *	Results in the following valid placement:
2167  *	CS[0], CS[1]
2168  *
2169  *	Example 2 pseudo code:
2170  *	set_engines(INVALID)
2171  *	set_parallel(engine_index=0, width=2, num_siblings=2,
2172  *		     engines=CS[0],CS[2],CS[1],CS[3])
2173  *
2174  *	Results in the following valid placements:
2175  *	CS[0], CS[1]
2176  *	CS[2], CS[3]
2177  *
2178  *	This can be thought of as two virtual engines, each containing two
2179  *	engines thereby making a 2D array. However, there are bonds tying the
2180  *	entries together and placing restrictions on how they can be scheduled.
2181  *	Specifically, the scheduler can choose only vertical columns from the 2D
2182  *	array. That is, CS[0] is bonded to CS[1] and CS[2] to CS[3]. So if the
2183  *	scheduler wants to submit to CS[0], it must also choose CS[1] and vice
2184  *	versa. Same for CS[2] requires also using CS[3].
2185  *	VE[0] = CS[0], CS[2]
2186  *	VE[1] = CS[1], CS[3]
2187  *
2188  *	Example 3 pseudo code:
2189  *	set_engines(INVALID)
2190  *	set_parallel(engine_index=0, width=2, num_siblings=2,
2191  *		     engines=CS[0],CS[1],CS[1],CS[3])
2192  *
2193  *	Results in the following valid and invalid placements:
2194  *	CS[0], CS[1]
2195  *	CS[1], CS[3] - Not logically contiguous, return -EINVAL
2196  */
2197 struct i915_context_engines_parallel_submit {
2198 	/**
2199 	 * @base: base user extension.
2200 	 */
2201 	struct i915_user_extension base;
2202 
2203 	/**
2204 	 * @engine_index: slot for parallel engine
2205 	 */
2206 	__u16 engine_index;
2207 
2208 	/**
2209 	 * @width: number of contexts per parallel engine or in other words the
2210 	 * number of batches in each submission
2211 	 */
2212 	__u16 width;
2213 
2214 	/**
2215 	 * @num_siblings: number of siblings per context or in other words the
2216 	 * number of possible placements for each submission
2217 	 */
2218 	__u16 num_siblings;
2219 
2220 	/**
2221 	 * @mbz16: reserved for future use; must be zero
2222 	 */
2223 	__u16 mbz16;
2224 
2225 	/**
2226 	 * @flags: all undefined flags must be zero, currently not defined flags
2227 	 */
2228 	__u64 flags;
2229 
2230 	/**
2231 	 * @mbz64: reserved for future use; must be zero
2232 	 */
2233 	__u64 mbz64[3];
2234 
2235 	/**
2236 	 * @engines: 2-d array of engine instances to configure parallel engine
2237 	 *
2238 	 * length = width (i) * num_siblings (j)
2239 	 * index = j + i * num_siblings
2240 	 */
2241 	struct i915_engine_class_instance engines[0];
2242 
2243 } __packed;
2244 
2245 #define I915_DEFINE_CONTEXT_ENGINES_PARALLEL_SUBMIT(name__, N__) struct { \
2246 	struct i915_user_extension base; \
2247 	__u16 engine_index; \
2248 	__u16 width; \
2249 	__u16 num_siblings; \
2250 	__u16 mbz16; \
2251 	__u64 flags; \
2252 	__u64 mbz64[3]; \
2253 	struct i915_engine_class_instance engines[N__]; \
2254 } __attribute__((packed)) name__
2255 
2256 /**
2257  * DOC: Context Engine Map uAPI
2258  *
2259  * Context engine map is a new way of addressing engines when submitting batch-
2260  * buffers, replacing the existing way of using identifiers like `I915_EXEC_BLT`
2261  * inside the flags field of `struct drm_i915_gem_execbuffer2`.
2262  *
2263  * To use it created GEM contexts need to be configured with a list of engines
2264  * the user is intending to submit to. This is accomplished using the
2265  * `I915_CONTEXT_PARAM_ENGINES` parameter and `struct
2266  * i915_context_param_engines`.
2267  *
2268  * For such contexts the `I915_EXEC_RING_MASK` field becomes an index into the
2269  * configured map.
2270  *
2271  * Example of creating such context and submitting against it:
2272  *
2273  * .. code-block:: C
2274  *
2275  * 	I915_DEFINE_CONTEXT_PARAM_ENGINES(engines, 2) = {
2276  * 		.engines = { { I915_ENGINE_CLASS_RENDER, 0 },
2277  * 			     { I915_ENGINE_CLASS_COPY, 0 } }
2278  * 	};
2279  * 	struct drm_i915_gem_context_create_ext_setparam p_engines = {
2280  * 		.base = {
2281  * 			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2282  * 		},
2283  * 		.param = {
2284  * 			.param = I915_CONTEXT_PARAM_ENGINES,
2285  * 			.value = to_user_pointer(&engines),
2286  * 			.size = sizeof(engines),
2287  * 		},
2288  * 	};
2289  * 	struct drm_i915_gem_context_create_ext create = {
2290  * 		.flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
2291  * 		.extensions = to_user_pointer(&p_engines);
2292  * 	};
2293  *
2294  * 	ctx_id = gem_context_create_ext(drm_fd, &create);
2295  *
2296  * 	// We have now created a GEM context with two engines in the map:
2297  * 	// Index 0 points to rcs0 while index 1 points to bcs0. Other engines
2298  * 	// will not be accessible from this context.
2299  *
2300  * 	...
2301  * 	execbuf.rsvd1 = ctx_id;
2302  * 	execbuf.flags = 0; // Submits to index 0, which is rcs0 for this context
2303  * 	gem_execbuf(drm_fd, &execbuf);
2304  *
2305  * 	...
2306  * 	execbuf.rsvd1 = ctx_id;
2307  * 	execbuf.flags = 1; // Submits to index 0, which is bcs0 for this context
2308  * 	gem_execbuf(drm_fd, &execbuf);
2309  */
2310 
2311 struct i915_context_param_engines {
2312 	__u64 extensions; /* linked chain of extension blocks, 0 terminates */
2313 #define I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE 0 /* see i915_context_engines_load_balance */
2314 #define I915_CONTEXT_ENGINES_EXT_BOND 1 /* see i915_context_engines_bond */
2315 #define I915_CONTEXT_ENGINES_EXT_PARALLEL_SUBMIT 2 /* see i915_context_engines_parallel_submit */
2316 	struct i915_engine_class_instance engines[0];
2317 } __attribute__((packed));
2318 
2319 #define I915_DEFINE_CONTEXT_PARAM_ENGINES(name__, N__) struct { \
2320 	__u64 extensions; \
2321 	struct i915_engine_class_instance engines[N__]; \
2322 } __attribute__((packed)) name__
2323 
2324 struct drm_i915_gem_context_create_ext_setparam {
2325 #define I915_CONTEXT_CREATE_EXT_SETPARAM 0
2326 	struct i915_user_extension base;
2327 	struct drm_i915_gem_context_param param;
2328 };
2329 
2330 /* This API has been removed.  On the off chance someone somewhere has
2331  * attempted to use it, never re-use this extension number.
2332  */
2333 #define I915_CONTEXT_CREATE_EXT_CLONE 1
2334 
2335 struct drm_i915_gem_context_destroy {
2336 	__u32 ctx_id;
2337 	__u32 pad;
2338 };
2339 
2340 /*
2341  * DRM_I915_GEM_VM_CREATE -
2342  *
2343  * Create a new virtual memory address space (ppGTT) for use within a context
2344  * on the same file. Extensions can be provided to configure exactly how the
2345  * address space is setup upon creation.
2346  *
2347  * The id of new VM (bound to the fd) for use with I915_CONTEXT_PARAM_VM is
2348  * returned in the outparam @id.
2349  *
2350  * No flags are defined, with all bits reserved and must be zero.
2351  *
2352  * An extension chain maybe provided, starting with @extensions, and terminated
2353  * by the @next_extension being 0. Currently, no extensions are defined.
2354  *
2355  * DRM_I915_GEM_VM_DESTROY -
2356  *
2357  * Destroys a previously created VM id, specified in @id.
2358  *
2359  * No extensions or flags are allowed currently, and so must be zero.
2360  */
2361 struct drm_i915_gem_vm_control {
2362 	__u64 extensions;
2363 	__u32 flags;
2364 	__u32 vm_id;
2365 };
2366 
2367 struct drm_i915_reg_read {
2368 	/*
2369 	 * Register offset.
2370 	 * For 64bit wide registers where the upper 32bits don't immediately
2371 	 * follow the lower 32bits, the offset of the lower 32bits must
2372 	 * be specified
2373 	 */
2374 	__u64 offset;
2375 #define I915_REG_READ_8B_WA (1ul << 0)
2376 
2377 	__u64 val; /* Return value */
2378 };
2379 
2380 /* Known registers:
2381  *
2382  * Render engine timestamp - 0x2358 + 64bit - gen7+
2383  * - Note this register returns an invalid value if using the default
2384  *   single instruction 8byte read, in order to workaround that pass
2385  *   flag I915_REG_READ_8B_WA in offset field.
2386  *
2387  */
2388 
2389 struct drm_i915_reset_stats {
2390 	__u32 ctx_id;
2391 	__u32 flags;
2392 
2393 	/* All resets since boot/module reload, for all contexts */
2394 	__u32 reset_count;
2395 
2396 	/* Number of batches lost when active in GPU, for this context */
2397 	__u32 batch_active;
2398 
2399 	/* Number of batches lost pending for execution, for this context */
2400 	__u32 batch_pending;
2401 
2402 	__u32 pad;
2403 };
2404 
2405 /**
2406  * struct drm_i915_gem_userptr - Create GEM object from user allocated memory.
2407  *
2408  * Userptr objects have several restrictions on what ioctls can be used with the
2409  * object handle.
2410  */
2411 struct drm_i915_gem_userptr {
2412 	/**
2413 	 * @user_ptr: The pointer to the allocated memory.
2414 	 *
2415 	 * Needs to be aligned to PAGE_SIZE.
2416 	 */
2417 	__u64 user_ptr;
2418 
2419 	/**
2420 	 * @user_size:
2421 	 *
2422 	 * The size in bytes for the allocated memory. This will also become the
2423 	 * object size.
2424 	 *
2425 	 * Needs to be aligned to PAGE_SIZE, and should be at least PAGE_SIZE,
2426 	 * or larger.
2427 	 */
2428 	__u64 user_size;
2429 
2430 	/**
2431 	 * @flags:
2432 	 *
2433 	 * Supported flags:
2434 	 *
2435 	 * I915_USERPTR_READ_ONLY:
2436 	 *
2437 	 * Mark the object as readonly, this also means GPU access can only be
2438 	 * readonly. This is only supported on HW which supports readonly access
2439 	 * through the GTT. If the HW can't support readonly access, an error is
2440 	 * returned.
2441 	 *
2442 	 * I915_USERPTR_PROBE:
2443 	 *
2444 	 * Probe the provided @user_ptr range and validate that the @user_ptr is
2445 	 * indeed pointing to normal memory and that the range is also valid.
2446 	 * For example if some garbage address is given to the kernel, then this
2447 	 * should complain.
2448 	 *
2449 	 * Returns -EFAULT if the probe failed.
2450 	 *
2451 	 * Note that this doesn't populate the backing pages, and also doesn't
2452 	 * guarantee that the object will remain valid when the object is
2453 	 * eventually used.
2454 	 *
2455 	 * The kernel supports this feature if I915_PARAM_HAS_USERPTR_PROBE
2456 	 * returns a non-zero value.
2457 	 *
2458 	 * I915_USERPTR_UNSYNCHRONIZED:
2459 	 *
2460 	 * NOT USED. Setting this flag will result in an error.
2461 	 */
2462 	__u32 flags;
2463 #define I915_USERPTR_READ_ONLY 0x1
2464 #define I915_USERPTR_PROBE 0x2
2465 #define I915_USERPTR_UNSYNCHRONIZED 0x80000000
2466 	/**
2467 	 * @handle: Returned handle for the object.
2468 	 *
2469 	 * Object handles are nonzero.
2470 	 */
2471 	__u32 handle;
2472 };
2473 
2474 enum drm_i915_oa_format {
2475 	I915_OA_FORMAT_A13 = 1,	    /* HSW only */
2476 	I915_OA_FORMAT_A29,	    /* HSW only */
2477 	I915_OA_FORMAT_A13_B8_C8,   /* HSW only */
2478 	I915_OA_FORMAT_B4_C8,	    /* HSW only */
2479 	I915_OA_FORMAT_A45_B8_C8,   /* HSW only */
2480 	I915_OA_FORMAT_B4_C8_A16,   /* HSW only */
2481 	I915_OA_FORMAT_C4_B8,	    /* HSW+ */
2482 
2483 	/* Gen8+ */
2484 	I915_OA_FORMAT_A12,
2485 	I915_OA_FORMAT_A12_B8_C8,
2486 	I915_OA_FORMAT_A32u40_A4u32_B8_C8,
2487 
2488 	I915_OA_FORMAT_MAX	    /* non-ABI */
2489 };
2490 
2491 enum drm_i915_perf_property_id {
2492 	/**
2493 	 * Open the stream for a specific context handle (as used with
2494 	 * execbuffer2). A stream opened for a specific context this way
2495 	 * won't typically require root privileges.
2496 	 *
2497 	 * This property is available in perf revision 1.
2498 	 */
2499 	DRM_I915_PERF_PROP_CTX_HANDLE = 1,
2500 
2501 	/**
2502 	 * A value of 1 requests the inclusion of raw OA unit reports as
2503 	 * part of stream samples.
2504 	 *
2505 	 * This property is available in perf revision 1.
2506 	 */
2507 	DRM_I915_PERF_PROP_SAMPLE_OA,
2508 
2509 	/**
2510 	 * The value specifies which set of OA unit metrics should be
2511 	 * configured, defining the contents of any OA unit reports.
2512 	 *
2513 	 * This property is available in perf revision 1.
2514 	 */
2515 	DRM_I915_PERF_PROP_OA_METRICS_SET,
2516 
2517 	/**
2518 	 * The value specifies the size and layout of OA unit reports.
2519 	 *
2520 	 * This property is available in perf revision 1.
2521 	 */
2522 	DRM_I915_PERF_PROP_OA_FORMAT,
2523 
2524 	/**
2525 	 * Specifying this property implicitly requests periodic OA unit
2526 	 * sampling and (at least on Haswell) the sampling frequency is derived
2527 	 * from this exponent as follows:
2528 	 *
2529 	 *   80ns * 2^(period_exponent + 1)
2530 	 *
2531 	 * This property is available in perf revision 1.
2532 	 */
2533 	DRM_I915_PERF_PROP_OA_EXPONENT,
2534 
2535 	/**
2536 	 * Specifying this property is only valid when specify a context to
2537 	 * filter with DRM_I915_PERF_PROP_CTX_HANDLE. Specifying this property
2538 	 * will hold preemption of the particular context we want to gather
2539 	 * performance data about. The execbuf2 submissions must include a
2540 	 * drm_i915_gem_execbuffer_ext_perf parameter for this to apply.
2541 	 *
2542 	 * This property is available in perf revision 3.
2543 	 */
2544 	DRM_I915_PERF_PROP_HOLD_PREEMPTION,
2545 
2546 	/**
2547 	 * Specifying this pins all contexts to the specified SSEU power
2548 	 * configuration for the duration of the recording.
2549 	 *
2550 	 * This parameter's value is a pointer to a struct
2551 	 * drm_i915_gem_context_param_sseu.
2552 	 *
2553 	 * This property is available in perf revision 4.
2554 	 */
2555 	DRM_I915_PERF_PROP_GLOBAL_SSEU,
2556 
2557 	/**
2558 	 * This optional parameter specifies the timer interval in nanoseconds
2559 	 * at which the i915 driver will check the OA buffer for available data.
2560 	 * Minimum allowed value is 100 microseconds. A default value is used by
2561 	 * the driver if this parameter is not specified. Note that larger timer
2562 	 * values will reduce cpu consumption during OA perf captures. However,
2563 	 * excessively large values would potentially result in OA buffer
2564 	 * overwrites as captures reach end of the OA buffer.
2565 	 *
2566 	 * This property is available in perf revision 5.
2567 	 */
2568 	DRM_I915_PERF_PROP_POLL_OA_PERIOD,
2569 
2570 	DRM_I915_PERF_PROP_MAX /* non-ABI */
2571 };
2572 
2573 struct drm_i915_perf_open_param {
2574 	__u32 flags;
2575 #define I915_PERF_FLAG_FD_CLOEXEC	(1<<0)
2576 #define I915_PERF_FLAG_FD_NONBLOCK	(1<<1)
2577 #define I915_PERF_FLAG_DISABLED		(1<<2)
2578 
2579 	/** The number of u64 (id, value) pairs */
2580 	__u32 num_properties;
2581 
2582 	/**
2583 	 * Pointer to array of u64 (id, value) pairs configuring the stream
2584 	 * to open.
2585 	 */
2586 	__u64 properties_ptr;
2587 };
2588 
2589 /*
2590  * Enable data capture for a stream that was either opened in a disabled state
2591  * via I915_PERF_FLAG_DISABLED or was later disabled via
2592  * I915_PERF_IOCTL_DISABLE.
2593  *
2594  * It is intended to be cheaper to disable and enable a stream than it may be
2595  * to close and re-open a stream with the same configuration.
2596  *
2597  * It's undefined whether any pending data for the stream will be lost.
2598  *
2599  * This ioctl is available in perf revision 1.
2600  */
2601 #define I915_PERF_IOCTL_ENABLE	_IO('i', 0x0)
2602 
2603 /*
2604  * Disable data capture for a stream.
2605  *
2606  * It is an error to try and read a stream that is disabled.
2607  *
2608  * This ioctl is available in perf revision 1.
2609  */
2610 #define I915_PERF_IOCTL_DISABLE	_IO('i', 0x1)
2611 
2612 /*
2613  * Change metrics_set captured by a stream.
2614  *
2615  * If the stream is bound to a specific context, the configuration change
2616  * will performed inline with that context such that it takes effect before
2617  * the next execbuf submission.
2618  *
2619  * Returns the previously bound metrics set id, or a negative error code.
2620  *
2621  * This ioctl is available in perf revision 2.
2622  */
2623 #define I915_PERF_IOCTL_CONFIG	_IO('i', 0x2)
2624 
2625 /*
2626  * Common to all i915 perf records
2627  */
2628 struct drm_i915_perf_record_header {
2629 	__u32 type;
2630 	__u16 pad;
2631 	__u16 size;
2632 };
2633 
2634 enum drm_i915_perf_record_type {
2635 
2636 	/**
2637 	 * Samples are the work horse record type whose contents are extensible
2638 	 * and defined when opening an i915 perf stream based on the given
2639 	 * properties.
2640 	 *
2641 	 * Boolean properties following the naming convention
2642 	 * DRM_I915_PERF_SAMPLE_xyz_PROP request the inclusion of 'xyz' data in
2643 	 * every sample.
2644 	 *
2645 	 * The order of these sample properties given by userspace has no
2646 	 * affect on the ordering of data within a sample. The order is
2647 	 * documented here.
2648 	 *
2649 	 * struct {
2650 	 *     struct drm_i915_perf_record_header header;
2651 	 *
2652 	 *     { u32 oa_report[]; } && DRM_I915_PERF_PROP_SAMPLE_OA
2653 	 * };
2654 	 */
2655 	DRM_I915_PERF_RECORD_SAMPLE = 1,
2656 
2657 	/*
2658 	 * Indicates that one or more OA reports were not written by the
2659 	 * hardware. This can happen for example if an MI_REPORT_PERF_COUNT
2660 	 * command collides with periodic sampling - which would be more likely
2661 	 * at higher sampling frequencies.
2662 	 */
2663 	DRM_I915_PERF_RECORD_OA_REPORT_LOST = 2,
2664 
2665 	/**
2666 	 * An error occurred that resulted in all pending OA reports being lost.
2667 	 */
2668 	DRM_I915_PERF_RECORD_OA_BUFFER_LOST = 3,
2669 
2670 	DRM_I915_PERF_RECORD_MAX /* non-ABI */
2671 };
2672 
2673 /**
2674  * struct drm_i915_perf_oa_config
2675  *
2676  * Structure to upload perf dynamic configuration into the kernel.
2677  */
2678 struct drm_i915_perf_oa_config {
2679 	/**
2680 	 * @uuid:
2681 	 *
2682 	 * String formatted like "%\08x-%\04x-%\04x-%\04x-%\012x"
2683 	 */
2684 	char uuid[36];
2685 
2686 	/**
2687 	 * @n_mux_regs:
2688 	 *
2689 	 * Number of mux regs in &mux_regs_ptr.
2690 	 */
2691 	__u32 n_mux_regs;
2692 
2693 	/**
2694 	 * @n_boolean_regs:
2695 	 *
2696 	 * Number of boolean regs in &boolean_regs_ptr.
2697 	 */
2698 	__u32 n_boolean_regs;
2699 
2700 	/**
2701 	 * @n_flex_regs:
2702 	 *
2703 	 * Number of flex regs in &flex_regs_ptr.
2704 	 */
2705 	__u32 n_flex_regs;
2706 
2707 	/**
2708 	 * @mux_regs_ptr:
2709 	 *
2710 	 * Pointer to tuples of u32 values (register address, value) for mux
2711 	 * registers.  Expected length of buffer is (2 * sizeof(u32) *
2712 	 * &n_mux_regs).
2713 	 */
2714 	__u64 mux_regs_ptr;
2715 
2716 	/**
2717 	 * @boolean_regs_ptr:
2718 	 *
2719 	 * Pointer to tuples of u32 values (register address, value) for mux
2720 	 * registers.  Expected length of buffer is (2 * sizeof(u32) *
2721 	 * &n_boolean_regs).
2722 	 */
2723 	__u64 boolean_regs_ptr;
2724 
2725 	/**
2726 	 * @flex_regs_ptr:
2727 	 *
2728 	 * Pointer to tuples of u32 values (register address, value) for mux
2729 	 * registers.  Expected length of buffer is (2 * sizeof(u32) *
2730 	 * &n_flex_regs).
2731 	 */
2732 	__u64 flex_regs_ptr;
2733 };
2734 
2735 /**
2736  * struct drm_i915_query_item - An individual query for the kernel to process.
2737  *
2738  * The behaviour is determined by the @query_id. Note that exactly what
2739  * @data_ptr is also depends on the specific @query_id.
2740  */
2741 struct drm_i915_query_item {
2742 	/**
2743 	 * @query_id:
2744 	 *
2745 	 * The id for this query.  Currently accepted query IDs are:
2746 	 *  - %DRM_I915_QUERY_TOPOLOGY_INFO (see struct drm_i915_query_topology_info)
2747 	 *  - %DRM_I915_QUERY_ENGINE_INFO (see struct drm_i915_engine_info)
2748 	 *  - %DRM_I915_QUERY_PERF_CONFIG (see struct drm_i915_query_perf_config)
2749 	 *  - %DRM_I915_QUERY_MEMORY_REGIONS (see struct drm_i915_query_memory_regions)
2750 	 *  - %DRM_I915_QUERY_HWCONFIG_BLOB (see `GuC HWCONFIG blob uAPI`)
2751 	 *  - %DRM_I915_QUERY_GEOMETRY_SUBSLICES (see struct drm_i915_query_topology_info)
2752 	 */
2753 	__u64 query_id;
2754 #define DRM_I915_QUERY_TOPOLOGY_INFO		1
2755 #define DRM_I915_QUERY_ENGINE_INFO		2
2756 #define DRM_I915_QUERY_PERF_CONFIG		3
2757 #define DRM_I915_QUERY_MEMORY_REGIONS		4
2758 #define DRM_I915_QUERY_HWCONFIG_BLOB		5
2759 #define DRM_I915_QUERY_GEOMETRY_SUBSLICES	6
2760 /* Must be kept compact -- no holes and well documented */
2761 
2762 	/**
2763 	 * @length:
2764 	 *
2765 	 * When set to zero by userspace, this is filled with the size of the
2766 	 * data to be written at the @data_ptr pointer. The kernel sets this
2767 	 * value to a negative value to signal an error on a particular query
2768 	 * item.
2769 	 */
2770 	__s32 length;
2771 
2772 	/**
2773 	 * @flags:
2774 	 *
2775 	 * When &query_id == %DRM_I915_QUERY_TOPOLOGY_INFO, must be 0.
2776 	 *
2777 	 * When &query_id == %DRM_I915_QUERY_PERF_CONFIG, must be one of the
2778 	 * following:
2779 	 *
2780 	 *	- %DRM_I915_QUERY_PERF_CONFIG_LIST
2781 	 *      - %DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID
2782 	 *      - %DRM_I915_QUERY_PERF_CONFIG_FOR_UUID
2783 	 *
2784 	 * When &query_id == %DRM_I915_QUERY_GEOMETRY_SUBSLICES must contain
2785 	 * a struct i915_engine_class_instance that references a render engine.
2786 	 */
2787 	__u32 flags;
2788 #define DRM_I915_QUERY_PERF_CONFIG_LIST          1
2789 #define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID 2
2790 #define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID   3
2791 
2792 	/**
2793 	 * @data_ptr:
2794 	 *
2795 	 * Data will be written at the location pointed by @data_ptr when the
2796 	 * value of @length matches the length of the data to be written by the
2797 	 * kernel.
2798 	 */
2799 	__u64 data_ptr;
2800 };
2801 
2802 /**
2803  * struct drm_i915_query - Supply an array of struct drm_i915_query_item for the
2804  * kernel to fill out.
2805  *
2806  * Note that this is generally a two step process for each struct
2807  * drm_i915_query_item in the array:
2808  *
2809  * 1. Call the DRM_IOCTL_I915_QUERY, giving it our array of struct
2810  *    drm_i915_query_item, with &drm_i915_query_item.length set to zero. The
2811  *    kernel will then fill in the size, in bytes, which tells userspace how
2812  *    memory it needs to allocate for the blob(say for an array of properties).
2813  *
2814  * 2. Next we call DRM_IOCTL_I915_QUERY again, this time with the
2815  *    &drm_i915_query_item.data_ptr equal to our newly allocated blob. Note that
2816  *    the &drm_i915_query_item.length should still be the same as what the
2817  *    kernel previously set. At this point the kernel can fill in the blob.
2818  *
2819  * Note that for some query items it can make sense for userspace to just pass
2820  * in a buffer/blob equal to or larger than the required size. In this case only
2821  * a single ioctl call is needed. For some smaller query items this can work
2822  * quite well.
2823  *
2824  */
2825 struct drm_i915_query {
2826 	/** @num_items: The number of elements in the @items_ptr array */
2827 	__u32 num_items;
2828 
2829 	/**
2830 	 * @flags: Unused for now. Must be cleared to zero.
2831 	 */
2832 	__u32 flags;
2833 
2834 	/**
2835 	 * @items_ptr:
2836 	 *
2837 	 * Pointer to an array of struct drm_i915_query_item. The number of
2838 	 * array elements is @num_items.
2839 	 */
2840 	__u64 items_ptr;
2841 };
2842 
2843 /**
2844  * struct drm_i915_query_topology_info
2845  *
2846  * Describes slice/subslice/EU information queried by
2847  * %DRM_I915_QUERY_TOPOLOGY_INFO
2848  */
2849 struct drm_i915_query_topology_info {
2850 	/**
2851 	 * @flags:
2852 	 *
2853 	 * Unused for now. Must be cleared to zero.
2854 	 */
2855 	__u16 flags;
2856 
2857 	/**
2858 	 * @max_slices:
2859 	 *
2860 	 * The number of bits used to express the slice mask.
2861 	 */
2862 	__u16 max_slices;
2863 
2864 	/**
2865 	 * @max_subslices:
2866 	 *
2867 	 * The number of bits used to express the subslice mask.
2868 	 */
2869 	__u16 max_subslices;
2870 
2871 	/**
2872 	 * @max_eus_per_subslice:
2873 	 *
2874 	 * The number of bits in the EU mask that correspond to a single
2875 	 * subslice's EUs.
2876 	 */
2877 	__u16 max_eus_per_subslice;
2878 
2879 	/**
2880 	 * @subslice_offset:
2881 	 *
2882 	 * Offset in data[] at which the subslice masks are stored.
2883 	 */
2884 	__u16 subslice_offset;
2885 
2886 	/**
2887 	 * @subslice_stride:
2888 	 *
2889 	 * Stride at which each of the subslice masks for each slice are
2890 	 * stored.
2891 	 */
2892 	__u16 subslice_stride;
2893 
2894 	/**
2895 	 * @eu_offset:
2896 	 *
2897 	 * Offset in data[] at which the EU masks are stored.
2898 	 */
2899 	__u16 eu_offset;
2900 
2901 	/**
2902 	 * @eu_stride:
2903 	 *
2904 	 * Stride at which each of the EU masks for each subslice are stored.
2905 	 */
2906 	__u16 eu_stride;
2907 
2908 	/**
2909 	 * @data:
2910 	 *
2911 	 * Contains 3 pieces of information :
2912 	 *
2913 	 * - The slice mask with one bit per slice telling whether a slice is
2914 	 *   available. The availability of slice X can be queried with the
2915 	 *   following formula :
2916 	 *
2917 	 *   .. code:: c
2918 	 *
2919 	 *      (data[X / 8] >> (X % 8)) & 1
2920 	 *
2921 	 *   Starting with Xe_HP platforms, Intel hardware no longer has
2922 	 *   traditional slices so i915 will always report a single slice
2923 	 *   (hardcoded slicemask = 0x1) which contains all of the platform's
2924 	 *   subslices.  I.e., the mask here does not reflect any of the newer
2925 	 *   hardware concepts such as "gslices" or "cslices" since userspace
2926 	 *   is capable of inferring those from the subslice mask.
2927 	 *
2928 	 * - The subslice mask for each slice with one bit per subslice telling
2929 	 *   whether a subslice is available.  Starting with Gen12 we use the
2930 	 *   term "subslice" to refer to what the hardware documentation
2931 	 *   describes as a "dual-subslices."  The availability of subslice Y
2932 	 *   in slice X can be queried with the following formula :
2933 	 *
2934 	 *   .. code:: c
2935 	 *
2936 	 *      (data[subslice_offset + X * subslice_stride + Y / 8] >> (Y % 8)) & 1
2937 	 *
2938 	 * - The EU mask for each subslice in each slice, with one bit per EU
2939 	 *   telling whether an EU is available. The availability of EU Z in
2940 	 *   subslice Y in slice X can be queried with the following formula :
2941 	 *
2942 	 *   .. code:: c
2943 	 *
2944 	 *      (data[eu_offset +
2945 	 *            (X * max_subslices + Y) * eu_stride +
2946 	 *            Z / 8
2947 	 *       ] >> (Z % 8)) & 1
2948 	 */
2949 	__u8 data[];
2950 };
2951 
2952 /**
2953  * DOC: Engine Discovery uAPI
2954  *
2955  * Engine discovery uAPI is a way of enumerating physical engines present in a
2956  * GPU associated with an open i915 DRM file descriptor. This supersedes the old
2957  * way of using `DRM_IOCTL_I915_GETPARAM` and engine identifiers like
2958  * `I915_PARAM_HAS_BLT`.
2959  *
2960  * The need for this interface came starting with Icelake and newer GPUs, which
2961  * started to establish a pattern of having multiple engines of a same class,
2962  * where not all instances were always completely functionally equivalent.
2963  *
2964  * Entry point for this uapi is `DRM_IOCTL_I915_QUERY` with the
2965  * `DRM_I915_QUERY_ENGINE_INFO` as the queried item id.
2966  *
2967  * Example for getting the list of engines:
2968  *
2969  * .. code-block:: C
2970  *
2971  * 	struct drm_i915_query_engine_info *info;
2972  * 	struct drm_i915_query_item item = {
2973  * 		.query_id = DRM_I915_QUERY_ENGINE_INFO;
2974  * 	};
2975  * 	struct drm_i915_query query = {
2976  * 		.num_items = 1,
2977  * 		.items_ptr = (uintptr_t)&item,
2978  * 	};
2979  * 	int err, i;
2980  *
2981  * 	// First query the size of the blob we need, this needs to be large
2982  * 	// enough to hold our array of engines. The kernel will fill out the
2983  * 	// item.length for us, which is the number of bytes we need.
2984  * 	//
2985  * 	// Alternatively a large buffer can be allocated straight away enabling
2986  * 	// querying in one pass, in which case item.length should contain the
2987  * 	// length of the provided buffer.
2988  * 	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
2989  * 	if (err) ...
2990  *
2991  * 	info = calloc(1, item.length);
2992  * 	// Now that we allocated the required number of bytes, we call the ioctl
2993  * 	// again, this time with the data_ptr pointing to our newly allocated
2994  * 	// blob, which the kernel can then populate with info on all engines.
2995  * 	item.data_ptr = (uintptr_t)&info,
2996  *
2997  * 	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
2998  * 	if (err) ...
2999  *
3000  * 	// We can now access each engine in the array
3001  * 	for (i = 0; i < info->num_engines; i++) {
3002  * 		struct drm_i915_engine_info einfo = info->engines[i];
3003  * 		u16 class = einfo.engine.class;
3004  * 		u16 instance = einfo.engine.instance;
3005  * 		....
3006  * 	}
3007  *
3008  * 	free(info);
3009  *
3010  * Each of the enumerated engines, apart from being defined by its class and
3011  * instance (see `struct i915_engine_class_instance`), also can have flags and
3012  * capabilities defined as documented in i915_drm.h.
3013  *
3014  * For instance video engines which support HEVC encoding will have the
3015  * `I915_VIDEO_CLASS_CAPABILITY_HEVC` capability bit set.
3016  *
3017  * Engine discovery only fully comes to its own when combined with the new way
3018  * of addressing engines when submitting batch buffers using contexts with
3019  * engine maps configured.
3020  */
3021 
3022 /**
3023  * struct drm_i915_engine_info
3024  *
3025  * Describes one engine and it's capabilities as known to the driver.
3026  */
3027 struct drm_i915_engine_info {
3028 	/** @engine: Engine class and instance. */
3029 	struct i915_engine_class_instance engine;
3030 
3031 	/** @rsvd0: Reserved field. */
3032 	__u32 rsvd0;
3033 
3034 	/** @flags: Engine flags. */
3035 	__u64 flags;
3036 #define I915_ENGINE_INFO_HAS_LOGICAL_INSTANCE		(1 << 0)
3037 
3038 	/** @capabilities: Capabilities of this engine. */
3039 	__u64 capabilities;
3040 #define I915_VIDEO_CLASS_CAPABILITY_HEVC		(1 << 0)
3041 #define I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC	(1 << 1)
3042 
3043 	/** @logical_instance: Logical instance of engine */
3044 	__u16 logical_instance;
3045 
3046 	/** @rsvd1: Reserved fields. */
3047 	__u16 rsvd1[3];
3048 	/** @rsvd2: Reserved fields. */
3049 	__u64 rsvd2[3];
3050 };
3051 
3052 /**
3053  * struct drm_i915_query_engine_info
3054  *
3055  * Engine info query enumerates all engines known to the driver by filling in
3056  * an array of struct drm_i915_engine_info structures.
3057  */
3058 struct drm_i915_query_engine_info {
3059 	/** @num_engines: Number of struct drm_i915_engine_info structs following. */
3060 	__u32 num_engines;
3061 
3062 	/** @rsvd: MBZ */
3063 	__u32 rsvd[3];
3064 
3065 	/** @engines: Marker for drm_i915_engine_info structures. */
3066 	struct drm_i915_engine_info engines[];
3067 };
3068 
3069 /**
3070  * struct drm_i915_query_perf_config
3071  *
3072  * Data written by the kernel with query %DRM_I915_QUERY_PERF_CONFIG and
3073  * %DRM_I915_QUERY_GEOMETRY_SUBSLICES.
3074  */
3075 struct drm_i915_query_perf_config {
3076 	union {
3077 		/**
3078 		 * @n_configs:
3079 		 *
3080 		 * When &drm_i915_query_item.flags ==
3081 		 * %DRM_I915_QUERY_PERF_CONFIG_LIST, i915 sets this fields to
3082 		 * the number of configurations available.
3083 		 */
3084 		__u64 n_configs;
3085 
3086 		/**
3087 		 * @config:
3088 		 *
3089 		 * When &drm_i915_query_item.flags ==
3090 		 * %DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID, i915 will use the
3091 		 * value in this field as configuration identifier to decide
3092 		 * what data to write into config_ptr.
3093 		 */
3094 		__u64 config;
3095 
3096 		/**
3097 		 * @uuid:
3098 		 *
3099 		 * When &drm_i915_query_item.flags ==
3100 		 * %DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID, i915 will use the
3101 		 * value in this field as configuration identifier to decide
3102 		 * what data to write into config_ptr.
3103 		 *
3104 		 * String formatted like "%08x-%04x-%04x-%04x-%012x"
3105 		 */
3106 		char uuid[36];
3107 	};
3108 
3109 	/**
3110 	 * @flags:
3111 	 *
3112 	 * Unused for now. Must be cleared to zero.
3113 	 */
3114 	__u32 flags;
3115 
3116 	/**
3117 	 * @data:
3118 	 *
3119 	 * When &drm_i915_query_item.flags == %DRM_I915_QUERY_PERF_CONFIG_LIST,
3120 	 * i915 will write an array of __u64 of configuration identifiers.
3121 	 *
3122 	 * When &drm_i915_query_item.flags == %DRM_I915_QUERY_PERF_CONFIG_DATA,
3123 	 * i915 will write a struct drm_i915_perf_oa_config. If the following
3124 	 * fields of struct drm_i915_perf_oa_config are not set to 0, i915 will
3125 	 * write into the associated pointers the values of submitted when the
3126 	 * configuration was created :
3127 	 *
3128 	 *  - &drm_i915_perf_oa_config.n_mux_regs
3129 	 *  - &drm_i915_perf_oa_config.n_boolean_regs
3130 	 *  - &drm_i915_perf_oa_config.n_flex_regs
3131 	 */
3132 	__u8 data[];
3133 };
3134 
3135 /**
3136  * enum drm_i915_gem_memory_class - Supported memory classes
3137  */
3138 enum drm_i915_gem_memory_class {
3139 	/** @I915_MEMORY_CLASS_SYSTEM: System memory */
3140 	I915_MEMORY_CLASS_SYSTEM = 0,
3141 	/** @I915_MEMORY_CLASS_DEVICE: Device local-memory */
3142 	I915_MEMORY_CLASS_DEVICE,
3143 };
3144 
3145 /**
3146  * struct drm_i915_gem_memory_class_instance - Identify particular memory region
3147  */
3148 struct drm_i915_gem_memory_class_instance {
3149 	/** @memory_class: See enum drm_i915_gem_memory_class */
3150 	__u16 memory_class;
3151 
3152 	/** @memory_instance: Which instance */
3153 	__u16 memory_instance;
3154 };
3155 
3156 /**
3157  * struct drm_i915_memory_region_info - Describes one region as known to the
3158  * driver.
3159  *
3160  * Note that we reserve some stuff here for potential future work. As an example
3161  * we might want expose the capabilities for a given region, which could include
3162  * things like if the region is CPU mappable/accessible, what are the supported
3163  * mapping types etc.
3164  *
3165  * Note that to extend struct drm_i915_memory_region_info and struct
3166  * drm_i915_query_memory_regions in the future the plan is to do the following:
3167  *
3168  * .. code-block:: C
3169  *
3170  *	struct drm_i915_memory_region_info {
3171  *		struct drm_i915_gem_memory_class_instance region;
3172  *		union {
3173  *			__u32 rsvd0;
3174  *			__u32 new_thing1;
3175  *		};
3176  *		...
3177  *		union {
3178  *			__u64 rsvd1[8];
3179  *			struct {
3180  *				__u64 new_thing2;
3181  *				__u64 new_thing3;
3182  *				...
3183  *			};
3184  *		};
3185  *	};
3186  *
3187  * With this things should remain source compatible between versions for
3188  * userspace, even as we add new fields.
3189  *
3190  * Note this is using both struct drm_i915_query_item and struct drm_i915_query.
3191  * For this new query we are adding the new query id DRM_I915_QUERY_MEMORY_REGIONS
3192  * at &drm_i915_query_item.query_id.
3193  */
3194 struct drm_i915_memory_region_info {
3195 	/** @region: The class:instance pair encoding */
3196 	struct drm_i915_gem_memory_class_instance region;
3197 
3198 	/** @rsvd0: MBZ */
3199 	__u32 rsvd0;
3200 
3201 	/** @probed_size: Memory probed by the driver (-1 = unknown) */
3202 	__u64 probed_size;
3203 
3204 	/** @unallocated_size: Estimate of memory remaining (-1 = unknown) */
3205 	__u64 unallocated_size;
3206 
3207 	/** @rsvd1: MBZ */
3208 	__u64 rsvd1[8];
3209 };
3210 
3211 /**
3212  * struct drm_i915_query_memory_regions
3213  *
3214  * The region info query enumerates all regions known to the driver by filling
3215  * in an array of struct drm_i915_memory_region_info structures.
3216  *
3217  * Example for getting the list of supported regions:
3218  *
3219  * .. code-block:: C
3220  *
3221  *	struct drm_i915_query_memory_regions *info;
3222  *	struct drm_i915_query_item item = {
3223  *		.query_id = DRM_I915_QUERY_MEMORY_REGIONS;
3224  *	};
3225  *	struct drm_i915_query query = {
3226  *		.num_items = 1,
3227  *		.items_ptr = (uintptr_t)&item,
3228  *	};
3229  *	int err, i;
3230  *
3231  *	// First query the size of the blob we need, this needs to be large
3232  *	// enough to hold our array of regions. The kernel will fill out the
3233  *	// item.length for us, which is the number of bytes we need.
3234  *	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3235  *	if (err) ...
3236  *
3237  *	info = calloc(1, item.length);
3238  *	// Now that we allocated the required number of bytes, we call the ioctl
3239  *	// again, this time with the data_ptr pointing to our newly allocated
3240  *	// blob, which the kernel can then populate with the all the region info.
3241  *	item.data_ptr = (uintptr_t)&info,
3242  *
3243  *	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3244  *	if (err) ...
3245  *
3246  *	// We can now access each region in the array
3247  *	for (i = 0; i < info->num_regions; i++) {
3248  *		struct drm_i915_memory_region_info mr = info->regions[i];
3249  *		u16 class = mr.region.class;
3250  *		u16 instance = mr.region.instance;
3251  *
3252  *		....
3253  *	}
3254  *
3255  *	free(info);
3256  */
3257 struct drm_i915_query_memory_regions {
3258 	/** @num_regions: Number of supported regions */
3259 	__u32 num_regions;
3260 
3261 	/** @rsvd: MBZ */
3262 	__u32 rsvd[3];
3263 
3264 	/** @regions: Info about each supported region */
3265 	struct drm_i915_memory_region_info regions[];
3266 };
3267 
3268 /**
3269  * DOC: GuC HWCONFIG blob uAPI
3270  *
3271  * The GuC produces a blob with information about the current device.
3272  * i915 reads this blob from GuC and makes it available via this uAPI.
3273  *
3274  * The format and meaning of the blob content are documented in the
3275  * Programmer's Reference Manual.
3276  */
3277 
3278 /**
3279  * struct drm_i915_gem_create_ext - Existing gem_create behaviour, with added
3280  * extension support using struct i915_user_extension.
3281  *
3282  * Note that in the future we want to have our buffer flags here, at least for
3283  * the stuff that is immutable. Previously we would have two ioctls, one to
3284  * create the object with gem_create, and another to apply various parameters,
3285  * however this creates some ambiguity for the params which are considered
3286  * immutable. Also in general we're phasing out the various SET/GET ioctls.
3287  */
3288 struct drm_i915_gem_create_ext {
3289 	/**
3290 	 * @size: Requested size for the object.
3291 	 *
3292 	 * The (page-aligned) allocated size for the object will be returned.
3293 	 *
3294 	 *
3295 	 * DG2 64K min page size implications:
3296 	 *
3297 	 * On discrete platforms, starting from DG2, we have to contend with GTT
3298 	 * page size restrictions when dealing with I915_MEMORY_CLASS_DEVICE
3299 	 * objects.  Specifically the hardware only supports 64K or larger GTT
3300 	 * page sizes for such memory. The kernel will already ensure that all
3301 	 * I915_MEMORY_CLASS_DEVICE memory is allocated using 64K or larger page
3302 	 * sizes underneath.
3303 	 *
3304 	 * Note that the returned size here will always reflect any required
3305 	 * rounding up done by the kernel, i.e 4K will now become 64K on devices
3306 	 * such as DG2.
3307 	 *
3308 	 * Special DG2 GTT address alignment requirement:
3309 	 *
3310 	 * The GTT alignment will also need to be at least 2M for such objects.
3311 	 *
3312 	 * Note that due to how the hardware implements 64K GTT page support, we
3313 	 * have some further complications:
3314 	 *
3315 	 *   1) The entire PDE (which covers a 2MB virtual address range), must
3316 	 *   contain only 64K PTEs, i.e mixing 4K and 64K PTEs in the same
3317 	 *   PDE is forbidden by the hardware.
3318 	 *
3319 	 *   2) We still need to support 4K PTEs for I915_MEMORY_CLASS_SYSTEM
3320 	 *   objects.
3321 	 *
3322 	 * To keep things simple for userland, we mandate that any GTT mappings
3323 	 * must be aligned to and rounded up to 2MB. The kernel will internally
3324 	 * pad them out to the next 2MB boundary. As this only wastes virtual
3325 	 * address space and avoids userland having to copy any needlessly
3326 	 * complicated PDE sharing scheme (coloring) and only affects DG2, this
3327 	 * is deemed to be a good compromise.
3328 	 */
3329 	__u64 size;
3330 	/**
3331 	 * @handle: Returned handle for the object.
3332 	 *
3333 	 * Object handles are nonzero.
3334 	 */
3335 	__u32 handle;
3336 	/** @flags: MBZ */
3337 	__u32 flags;
3338 	/**
3339 	 * @extensions: The chain of extensions to apply to this object.
3340 	 *
3341 	 * This will be useful in the future when we need to support several
3342 	 * different extensions, and we need to apply more than one when
3343 	 * creating the object. See struct i915_user_extension.
3344 	 *
3345 	 * If we don't supply any extensions then we get the same old gem_create
3346 	 * behaviour.
3347 	 *
3348 	 * For I915_GEM_CREATE_EXT_MEMORY_REGIONS usage see
3349 	 * struct drm_i915_gem_create_ext_memory_regions.
3350 	 *
3351 	 * For I915_GEM_CREATE_EXT_PROTECTED_CONTENT usage see
3352 	 * struct drm_i915_gem_create_ext_protected_content.
3353 	 */
3354 #define I915_GEM_CREATE_EXT_MEMORY_REGIONS 0
3355 #define I915_GEM_CREATE_EXT_PROTECTED_CONTENT 1
3356 	__u64 extensions;
3357 };
3358 
3359 /**
3360  * struct drm_i915_gem_create_ext_memory_regions - The
3361  * I915_GEM_CREATE_EXT_MEMORY_REGIONS extension.
3362  *
3363  * Set the object with the desired set of placements/regions in priority
3364  * order. Each entry must be unique and supported by the device.
3365  *
3366  * This is provided as an array of struct drm_i915_gem_memory_class_instance, or
3367  * an equivalent layout of class:instance pair encodings. See struct
3368  * drm_i915_query_memory_regions and DRM_I915_QUERY_MEMORY_REGIONS for how to
3369  * query the supported regions for a device.
3370  *
3371  * As an example, on discrete devices, if we wish to set the placement as
3372  * device local-memory we can do something like:
3373  *
3374  * .. code-block:: C
3375  *
3376  *	struct drm_i915_gem_memory_class_instance region_lmem = {
3377  *              .memory_class = I915_MEMORY_CLASS_DEVICE,
3378  *              .memory_instance = 0,
3379  *      };
3380  *      struct drm_i915_gem_create_ext_memory_regions regions = {
3381  *              .base = { .name = I915_GEM_CREATE_EXT_MEMORY_REGIONS },
3382  *              .regions = (uintptr_t)&region_lmem,
3383  *              .num_regions = 1,
3384  *      };
3385  *      struct drm_i915_gem_create_ext create_ext = {
3386  *              .size = 16 * PAGE_SIZE,
3387  *              .extensions = (uintptr_t)&regions,
3388  *      };
3389  *
3390  *      int err = ioctl(fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create_ext);
3391  *      if (err) ...
3392  *
3393  * At which point we get the object handle in &drm_i915_gem_create_ext.handle,
3394  * along with the final object size in &drm_i915_gem_create_ext.size, which
3395  * should account for any rounding up, if required.
3396  */
3397 struct drm_i915_gem_create_ext_memory_regions {
3398 	/** @base: Extension link. See struct i915_user_extension. */
3399 	struct i915_user_extension base;
3400 
3401 	/** @pad: MBZ */
3402 	__u32 pad;
3403 	/** @num_regions: Number of elements in the @regions array. */
3404 	__u32 num_regions;
3405 	/**
3406 	 * @regions: The regions/placements array.
3407 	 *
3408 	 * An array of struct drm_i915_gem_memory_class_instance.
3409 	 */
3410 	__u64 regions;
3411 };
3412 
3413 /**
3414  * struct drm_i915_gem_create_ext_protected_content - The
3415  * I915_OBJECT_PARAM_PROTECTED_CONTENT extension.
3416  *
3417  * If this extension is provided, buffer contents are expected to be protected
3418  * by PXP encryption and require decryption for scan out and processing. This
3419  * is only possible on platforms that have PXP enabled, on all other scenarios
3420  * using this extension will cause the ioctl to fail and return -ENODEV. The
3421  * flags parameter is reserved for future expansion and must currently be set
3422  * to zero.
3423  *
3424  * The buffer contents are considered invalid after a PXP session teardown.
3425  *
3426  * The encryption is guaranteed to be processed correctly only if the object
3427  * is submitted with a context created using the
3428  * I915_CONTEXT_PARAM_PROTECTED_CONTENT flag. This will also enable extra checks
3429  * at submission time on the validity of the objects involved.
3430  *
3431  * Below is an example on how to create a protected object:
3432  *
3433  * .. code-block:: C
3434  *
3435  *      struct drm_i915_gem_create_ext_protected_content protected_ext = {
3436  *              .base = { .name = I915_GEM_CREATE_EXT_PROTECTED_CONTENT },
3437  *              .flags = 0,
3438  *      };
3439  *      struct drm_i915_gem_create_ext create_ext = {
3440  *              .size = PAGE_SIZE,
3441  *              .extensions = (uintptr_t)&protected_ext,
3442  *      };
3443  *
3444  *      int err = ioctl(fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create_ext);
3445  *      if (err) ...
3446  */
3447 struct drm_i915_gem_create_ext_protected_content {
3448 	/** @base: Extension link. See struct i915_user_extension. */
3449 	struct i915_user_extension base;
3450 	/** @flags: reserved for future usage, currently MBZ */
3451 	__u32 flags;
3452 };
3453 
3454 /* ID of the protected content session managed by i915 when PXP is active */
3455 #define I915_PROTECTED_CONTENT_DEFAULT_SESSION 0xf
3456 
3457 #if defined(__cplusplus)
3458 }
3459 #endif
3460 
3461 #endif /* _UAPI_I915_DRM_H_ */
3462