xref: /linux/include/uapi/drm/i915_drm.h (revision 7961c5b60f23dff5d82a523f9aeb8ebf34cf9926)
1 /*
2  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the
14  * next paragraph) shall be included in all copies or substantial portions
15  * of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
20  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
21  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24  *
25  */
26 
27 #ifndef _UAPI_I915_DRM_H_
28 #define _UAPI_I915_DRM_H_
29 
30 #include "drm.h"
31 
32 #if defined(__cplusplus)
33 extern "C" {
34 #endif
35 
36 /* Please note that modifications to all structs defined here are
37  * subject to backwards-compatibility constraints.
38  */
39 
40 /**
41  * DOC: uevents generated by i915 on it's device node
42  *
43  * I915_L3_PARITY_UEVENT - Generated when the driver receives a parity mismatch
44  *	event from the gpu l3 cache. Additional information supplied is ROW,
45  *	BANK, SUBBANK, SLICE of the affected cacheline. Userspace should keep
46  *	track of these events and if a specific cache-line seems to have a
47  *	persistent error remap it with the l3 remapping tool supplied in
48  *	intel-gpu-tools.  The value supplied with the event is always 1.
49  *
50  * I915_ERROR_UEVENT - Generated upon error detection, currently only via
51  *	hangcheck. The error detection event is a good indicator of when things
52  *	began to go badly. The value supplied with the event is a 1 upon error
53  *	detection, and a 0 upon reset completion, signifying no more error
54  *	exists. NOTE: Disabling hangcheck or reset via module parameter will
55  *	cause the related events to not be seen.
56  *
57  * I915_RESET_UEVENT - Event is generated just before an attempt to reset the
58  *	GPU. The value supplied with the event is always 1. NOTE: Disable
59  *	reset via module parameter will cause this event to not be seen.
60  */
61 #define I915_L3_PARITY_UEVENT		"L3_PARITY_ERROR"
62 #define I915_ERROR_UEVENT		"ERROR"
63 #define I915_RESET_UEVENT		"RESET"
64 
65 /**
66  * struct i915_user_extension - Base class for defining a chain of extensions
67  *
68  * Many interfaces need to grow over time. In most cases we can simply
69  * extend the struct and have userspace pass in more data. Another option,
70  * as demonstrated by Vulkan's approach to providing extensions for forward
71  * and backward compatibility, is to use a list of optional structs to
72  * provide those extra details.
73  *
74  * The key advantage to using an extension chain is that it allows us to
75  * redefine the interface more easily than an ever growing struct of
76  * increasing complexity, and for large parts of that interface to be
77  * entirely optional. The downside is more pointer chasing; chasing across
78  * the __user boundary with pointers encapsulated inside u64.
79  *
80  * Example chaining:
81  *
82  * .. code-block:: C
83  *
84  *	struct i915_user_extension ext3 {
85  *		.next_extension = 0, // end
86  *		.name = ...,
87  *	};
88  *	struct i915_user_extension ext2 {
89  *		.next_extension = (uintptr_t)&ext3,
90  *		.name = ...,
91  *	};
92  *	struct i915_user_extension ext1 {
93  *		.next_extension = (uintptr_t)&ext2,
94  *		.name = ...,
95  *	};
96  *
97  * Typically the struct i915_user_extension would be embedded in some uAPI
98  * struct, and in this case we would feed it the head of the chain(i.e ext1),
99  * which would then apply all of the above extensions.
100  *
101  */
102 struct i915_user_extension {
103 	/**
104 	 * @next_extension:
105 	 *
106 	 * Pointer to the next struct i915_user_extension, or zero if the end.
107 	 */
108 	__u64 next_extension;
109 	/**
110 	 * @name: Name of the extension.
111 	 *
112 	 * Note that the name here is just some integer.
113 	 *
114 	 * Also note that the name space for this is not global for the whole
115 	 * driver, but rather its scope/meaning is limited to the specific piece
116 	 * of uAPI which has embedded the struct i915_user_extension.
117 	 */
118 	__u32 name;
119 	/**
120 	 * @flags: MBZ
121 	 *
122 	 * All undefined bits must be zero.
123 	 */
124 	__u32 flags;
125 	/**
126 	 * @rsvd: MBZ
127 	 *
128 	 * Reserved for future use; must be zero.
129 	 */
130 	__u32 rsvd[4];
131 };
132 
133 /*
134  * MOCS indexes used for GPU surfaces, defining the cacheability of the
135  * surface data and the coherency for this data wrt. CPU vs. GPU accesses.
136  */
137 enum i915_mocs_table_index {
138 	/*
139 	 * Not cached anywhere, coherency between CPU and GPU accesses is
140 	 * guaranteed.
141 	 */
142 	I915_MOCS_UNCACHED,
143 	/*
144 	 * Cacheability and coherency controlled by the kernel automatically
145 	 * based on the DRM_I915_GEM_SET_CACHING IOCTL setting and the current
146 	 * usage of the surface (used for display scanout or not).
147 	 */
148 	I915_MOCS_PTE,
149 	/*
150 	 * Cached in all GPU caches available on the platform.
151 	 * Coherency between CPU and GPU accesses to the surface is not
152 	 * guaranteed without extra synchronization.
153 	 */
154 	I915_MOCS_CACHED,
155 };
156 
157 /*
158  * Different engines serve different roles, and there may be more than one
159  * engine serving each role. enum drm_i915_gem_engine_class provides a
160  * classification of the role of the engine, which may be used when requesting
161  * operations to be performed on a certain subset of engines, or for providing
162  * information about that group.
163  */
164 enum drm_i915_gem_engine_class {
165 	I915_ENGINE_CLASS_RENDER	= 0,
166 	I915_ENGINE_CLASS_COPY		= 1,
167 	I915_ENGINE_CLASS_VIDEO		= 2,
168 	I915_ENGINE_CLASS_VIDEO_ENHANCE	= 3,
169 
170 	/* should be kept compact */
171 
172 	I915_ENGINE_CLASS_INVALID	= -1
173 };
174 
175 /*
176  * There may be more than one engine fulfilling any role within the system.
177  * Each engine of a class is given a unique instance number and therefore
178  * any engine can be specified by its class:instance tuplet. APIs that allow
179  * access to any engine in the system will use struct i915_engine_class_instance
180  * for this identification.
181  */
182 struct i915_engine_class_instance {
183 	__u16 engine_class; /* see enum drm_i915_gem_engine_class */
184 	__u16 engine_instance;
185 #define I915_ENGINE_CLASS_INVALID_NONE -1
186 #define I915_ENGINE_CLASS_INVALID_VIRTUAL -2
187 };
188 
189 /**
190  * DOC: perf_events exposed by i915 through /sys/bus/event_sources/drivers/i915
191  *
192  */
193 
194 enum drm_i915_pmu_engine_sample {
195 	I915_SAMPLE_BUSY = 0,
196 	I915_SAMPLE_WAIT = 1,
197 	I915_SAMPLE_SEMA = 2
198 };
199 
200 #define I915_PMU_SAMPLE_BITS (4)
201 #define I915_PMU_SAMPLE_MASK (0xf)
202 #define I915_PMU_SAMPLE_INSTANCE_BITS (8)
203 #define I915_PMU_CLASS_SHIFT \
204 	(I915_PMU_SAMPLE_BITS + I915_PMU_SAMPLE_INSTANCE_BITS)
205 
206 #define __I915_PMU_ENGINE(class, instance, sample) \
207 	((class) << I915_PMU_CLASS_SHIFT | \
208 	(instance) << I915_PMU_SAMPLE_BITS | \
209 	(sample))
210 
211 #define I915_PMU_ENGINE_BUSY(class, instance) \
212 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_BUSY)
213 
214 #define I915_PMU_ENGINE_WAIT(class, instance) \
215 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_WAIT)
216 
217 #define I915_PMU_ENGINE_SEMA(class, instance) \
218 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_SEMA)
219 
220 #define __I915_PMU_OTHER(x) (__I915_PMU_ENGINE(0xff, 0xff, 0xf) + 1 + (x))
221 
222 #define I915_PMU_ACTUAL_FREQUENCY	__I915_PMU_OTHER(0)
223 #define I915_PMU_REQUESTED_FREQUENCY	__I915_PMU_OTHER(1)
224 #define I915_PMU_INTERRUPTS		__I915_PMU_OTHER(2)
225 #define I915_PMU_RC6_RESIDENCY		__I915_PMU_OTHER(3)
226 #define I915_PMU_SOFTWARE_GT_AWAKE_TIME	__I915_PMU_OTHER(4)
227 
228 #define I915_PMU_LAST /* Deprecated - do not use */ I915_PMU_RC6_RESIDENCY
229 
230 /* Each region is a minimum of 16k, and there are at most 255 of them.
231  */
232 #define I915_NR_TEX_REGIONS 255	/* table size 2k - maximum due to use
233 				 * of chars for next/prev indices */
234 #define I915_LOG_MIN_TEX_REGION_SIZE 14
235 
236 typedef struct _drm_i915_init {
237 	enum {
238 		I915_INIT_DMA = 0x01,
239 		I915_CLEANUP_DMA = 0x02,
240 		I915_RESUME_DMA = 0x03
241 	} func;
242 	unsigned int mmio_offset;
243 	int sarea_priv_offset;
244 	unsigned int ring_start;
245 	unsigned int ring_end;
246 	unsigned int ring_size;
247 	unsigned int front_offset;
248 	unsigned int back_offset;
249 	unsigned int depth_offset;
250 	unsigned int w;
251 	unsigned int h;
252 	unsigned int pitch;
253 	unsigned int pitch_bits;
254 	unsigned int back_pitch;
255 	unsigned int depth_pitch;
256 	unsigned int cpp;
257 	unsigned int chipset;
258 } drm_i915_init_t;
259 
260 typedef struct _drm_i915_sarea {
261 	struct drm_tex_region texList[I915_NR_TEX_REGIONS + 1];
262 	int last_upload;	/* last time texture was uploaded */
263 	int last_enqueue;	/* last time a buffer was enqueued */
264 	int last_dispatch;	/* age of the most recently dispatched buffer */
265 	int ctxOwner;		/* last context to upload state */
266 	int texAge;
267 	int pf_enabled;		/* is pageflipping allowed? */
268 	int pf_active;
269 	int pf_current_page;	/* which buffer is being displayed? */
270 	int perf_boxes;		/* performance boxes to be displayed */
271 	int width, height;      /* screen size in pixels */
272 
273 	drm_handle_t front_handle;
274 	int front_offset;
275 	int front_size;
276 
277 	drm_handle_t back_handle;
278 	int back_offset;
279 	int back_size;
280 
281 	drm_handle_t depth_handle;
282 	int depth_offset;
283 	int depth_size;
284 
285 	drm_handle_t tex_handle;
286 	int tex_offset;
287 	int tex_size;
288 	int log_tex_granularity;
289 	int pitch;
290 	int rotation;           /* 0, 90, 180 or 270 */
291 	int rotated_offset;
292 	int rotated_size;
293 	int rotated_pitch;
294 	int virtualX, virtualY;
295 
296 	unsigned int front_tiled;
297 	unsigned int back_tiled;
298 	unsigned int depth_tiled;
299 	unsigned int rotated_tiled;
300 	unsigned int rotated2_tiled;
301 
302 	int pipeA_x;
303 	int pipeA_y;
304 	int pipeA_w;
305 	int pipeA_h;
306 	int pipeB_x;
307 	int pipeB_y;
308 	int pipeB_w;
309 	int pipeB_h;
310 
311 	/* fill out some space for old userspace triple buffer */
312 	drm_handle_t unused_handle;
313 	__u32 unused1, unused2, unused3;
314 
315 	/* buffer object handles for static buffers. May change
316 	 * over the lifetime of the client.
317 	 */
318 	__u32 front_bo_handle;
319 	__u32 back_bo_handle;
320 	__u32 unused_bo_handle;
321 	__u32 depth_bo_handle;
322 
323 } drm_i915_sarea_t;
324 
325 /* due to userspace building against these headers we need some compat here */
326 #define planeA_x pipeA_x
327 #define planeA_y pipeA_y
328 #define planeA_w pipeA_w
329 #define planeA_h pipeA_h
330 #define planeB_x pipeB_x
331 #define planeB_y pipeB_y
332 #define planeB_w pipeB_w
333 #define planeB_h pipeB_h
334 
335 /* Flags for perf_boxes
336  */
337 #define I915_BOX_RING_EMPTY    0x1
338 #define I915_BOX_FLIP          0x2
339 #define I915_BOX_WAIT          0x4
340 #define I915_BOX_TEXTURE_LOAD  0x8
341 #define I915_BOX_LOST_CONTEXT  0x10
342 
343 /*
344  * i915 specific ioctls.
345  *
346  * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie
347  * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset
348  * against DRM_COMMAND_BASE and should be between [0x0, 0x60).
349  */
350 #define DRM_I915_INIT		0x00
351 #define DRM_I915_FLUSH		0x01
352 #define DRM_I915_FLIP		0x02
353 #define DRM_I915_BATCHBUFFER	0x03
354 #define DRM_I915_IRQ_EMIT	0x04
355 #define DRM_I915_IRQ_WAIT	0x05
356 #define DRM_I915_GETPARAM	0x06
357 #define DRM_I915_SETPARAM	0x07
358 #define DRM_I915_ALLOC		0x08
359 #define DRM_I915_FREE		0x09
360 #define DRM_I915_INIT_HEAP	0x0a
361 #define DRM_I915_CMDBUFFER	0x0b
362 #define DRM_I915_DESTROY_HEAP	0x0c
363 #define DRM_I915_SET_VBLANK_PIPE	0x0d
364 #define DRM_I915_GET_VBLANK_PIPE	0x0e
365 #define DRM_I915_VBLANK_SWAP	0x0f
366 #define DRM_I915_HWS_ADDR	0x11
367 #define DRM_I915_GEM_INIT	0x13
368 #define DRM_I915_GEM_EXECBUFFER	0x14
369 #define DRM_I915_GEM_PIN	0x15
370 #define DRM_I915_GEM_UNPIN	0x16
371 #define DRM_I915_GEM_BUSY	0x17
372 #define DRM_I915_GEM_THROTTLE	0x18
373 #define DRM_I915_GEM_ENTERVT	0x19
374 #define DRM_I915_GEM_LEAVEVT	0x1a
375 #define DRM_I915_GEM_CREATE	0x1b
376 #define DRM_I915_GEM_PREAD	0x1c
377 #define DRM_I915_GEM_PWRITE	0x1d
378 #define DRM_I915_GEM_MMAP	0x1e
379 #define DRM_I915_GEM_SET_DOMAIN	0x1f
380 #define DRM_I915_GEM_SW_FINISH	0x20
381 #define DRM_I915_GEM_SET_TILING	0x21
382 #define DRM_I915_GEM_GET_TILING	0x22
383 #define DRM_I915_GEM_GET_APERTURE 0x23
384 #define DRM_I915_GEM_MMAP_GTT	0x24
385 #define DRM_I915_GET_PIPE_FROM_CRTC_ID	0x25
386 #define DRM_I915_GEM_MADVISE	0x26
387 #define DRM_I915_OVERLAY_PUT_IMAGE	0x27
388 #define DRM_I915_OVERLAY_ATTRS	0x28
389 #define DRM_I915_GEM_EXECBUFFER2	0x29
390 #define DRM_I915_GEM_EXECBUFFER2_WR	DRM_I915_GEM_EXECBUFFER2
391 #define DRM_I915_GET_SPRITE_COLORKEY	0x2a
392 #define DRM_I915_SET_SPRITE_COLORKEY	0x2b
393 #define DRM_I915_GEM_WAIT	0x2c
394 #define DRM_I915_GEM_CONTEXT_CREATE	0x2d
395 #define DRM_I915_GEM_CONTEXT_DESTROY	0x2e
396 #define DRM_I915_GEM_SET_CACHING	0x2f
397 #define DRM_I915_GEM_GET_CACHING	0x30
398 #define DRM_I915_REG_READ		0x31
399 #define DRM_I915_GET_RESET_STATS	0x32
400 #define DRM_I915_GEM_USERPTR		0x33
401 #define DRM_I915_GEM_CONTEXT_GETPARAM	0x34
402 #define DRM_I915_GEM_CONTEXT_SETPARAM	0x35
403 #define DRM_I915_PERF_OPEN		0x36
404 #define DRM_I915_PERF_ADD_CONFIG	0x37
405 #define DRM_I915_PERF_REMOVE_CONFIG	0x38
406 #define DRM_I915_QUERY			0x39
407 #define DRM_I915_GEM_VM_CREATE		0x3a
408 #define DRM_I915_GEM_VM_DESTROY		0x3b
409 #define DRM_I915_GEM_CREATE_EXT		0x3c
410 /* Must be kept compact -- no holes */
411 
412 #define DRM_IOCTL_I915_INIT		DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT, drm_i915_init_t)
413 #define DRM_IOCTL_I915_FLUSH		DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLUSH)
414 #define DRM_IOCTL_I915_FLIP		DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLIP)
415 #define DRM_IOCTL_I915_BATCHBUFFER	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_BATCHBUFFER, drm_i915_batchbuffer_t)
416 #define DRM_IOCTL_I915_IRQ_EMIT         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_IRQ_EMIT, drm_i915_irq_emit_t)
417 #define DRM_IOCTL_I915_IRQ_WAIT         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_IRQ_WAIT, drm_i915_irq_wait_t)
418 #define DRM_IOCTL_I915_GETPARAM         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GETPARAM, drm_i915_getparam_t)
419 #define DRM_IOCTL_I915_SETPARAM         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SETPARAM, drm_i915_setparam_t)
420 #define DRM_IOCTL_I915_ALLOC            DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_ALLOC, drm_i915_mem_alloc_t)
421 #define DRM_IOCTL_I915_FREE             DRM_IOW( DRM_COMMAND_BASE + DRM_I915_FREE, drm_i915_mem_free_t)
422 #define DRM_IOCTL_I915_INIT_HEAP        DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT_HEAP, drm_i915_mem_init_heap_t)
423 #define DRM_IOCTL_I915_CMDBUFFER	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_CMDBUFFER, drm_i915_cmdbuffer_t)
424 #define DRM_IOCTL_I915_DESTROY_HEAP	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_DESTROY_HEAP, drm_i915_mem_destroy_heap_t)
425 #define DRM_IOCTL_I915_SET_VBLANK_PIPE	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
426 #define DRM_IOCTL_I915_GET_VBLANK_PIPE	DRM_IOR( DRM_COMMAND_BASE + DRM_I915_GET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
427 #define DRM_IOCTL_I915_VBLANK_SWAP	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_VBLANK_SWAP, drm_i915_vblank_swap_t)
428 #define DRM_IOCTL_I915_HWS_ADDR		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_HWS_ADDR, struct drm_i915_gem_init)
429 #define DRM_IOCTL_I915_GEM_INIT		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_INIT, struct drm_i915_gem_init)
430 #define DRM_IOCTL_I915_GEM_EXECBUFFER	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER, struct drm_i915_gem_execbuffer)
431 #define DRM_IOCTL_I915_GEM_EXECBUFFER2	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2, struct drm_i915_gem_execbuffer2)
432 #define DRM_IOCTL_I915_GEM_EXECBUFFER2_WR	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2_WR, struct drm_i915_gem_execbuffer2)
433 #define DRM_IOCTL_I915_GEM_PIN		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_PIN, struct drm_i915_gem_pin)
434 #define DRM_IOCTL_I915_GEM_UNPIN	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_UNPIN, struct drm_i915_gem_unpin)
435 #define DRM_IOCTL_I915_GEM_BUSY		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_BUSY, struct drm_i915_gem_busy)
436 #define DRM_IOCTL_I915_GEM_SET_CACHING		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_SET_CACHING, struct drm_i915_gem_caching)
437 #define DRM_IOCTL_I915_GEM_GET_CACHING		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_GET_CACHING, struct drm_i915_gem_caching)
438 #define DRM_IOCTL_I915_GEM_THROTTLE	DRM_IO ( DRM_COMMAND_BASE + DRM_I915_GEM_THROTTLE)
439 #define DRM_IOCTL_I915_GEM_ENTERVT	DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_ENTERVT)
440 #define DRM_IOCTL_I915_GEM_LEAVEVT	DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_LEAVEVT)
441 #define DRM_IOCTL_I915_GEM_CREATE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE, struct drm_i915_gem_create)
442 #define DRM_IOCTL_I915_GEM_CREATE_EXT	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE_EXT, struct drm_i915_gem_create_ext)
443 #define DRM_IOCTL_I915_GEM_PREAD	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PREAD, struct drm_i915_gem_pread)
444 #define DRM_IOCTL_I915_GEM_PWRITE	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PWRITE, struct drm_i915_gem_pwrite)
445 #define DRM_IOCTL_I915_GEM_MMAP		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP, struct drm_i915_gem_mmap)
446 #define DRM_IOCTL_I915_GEM_MMAP_GTT	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_gtt)
447 #define DRM_IOCTL_I915_GEM_MMAP_OFFSET	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_offset)
448 #define DRM_IOCTL_I915_GEM_SET_DOMAIN	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SET_DOMAIN, struct drm_i915_gem_set_domain)
449 #define DRM_IOCTL_I915_GEM_SW_FINISH	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SW_FINISH, struct drm_i915_gem_sw_finish)
450 #define DRM_IOCTL_I915_GEM_SET_TILING	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_SET_TILING, struct drm_i915_gem_set_tiling)
451 #define DRM_IOCTL_I915_GEM_GET_TILING	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_TILING, struct drm_i915_gem_get_tiling)
452 #define DRM_IOCTL_I915_GEM_GET_APERTURE	DRM_IOR  (DRM_COMMAND_BASE + DRM_I915_GEM_GET_APERTURE, struct drm_i915_gem_get_aperture)
453 #define DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_PIPE_FROM_CRTC_ID, struct drm_i915_get_pipe_from_crtc_id)
454 #define DRM_IOCTL_I915_GEM_MADVISE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MADVISE, struct drm_i915_gem_madvise)
455 #define DRM_IOCTL_I915_OVERLAY_PUT_IMAGE	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_OVERLAY_PUT_IMAGE, struct drm_intel_overlay_put_image)
456 #define DRM_IOCTL_I915_OVERLAY_ATTRS	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_OVERLAY_ATTRS, struct drm_intel_overlay_attrs)
457 #define DRM_IOCTL_I915_SET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_SET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
458 #define DRM_IOCTL_I915_GET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
459 #define DRM_IOCTL_I915_GEM_WAIT		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_WAIT, struct drm_i915_gem_wait)
460 #define DRM_IOCTL_I915_GEM_CONTEXT_CREATE	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create)
461 #define DRM_IOCTL_I915_GEM_CONTEXT_CREATE_EXT	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create_ext)
462 #define DRM_IOCTL_I915_GEM_CONTEXT_DESTROY	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_DESTROY, struct drm_i915_gem_context_destroy)
463 #define DRM_IOCTL_I915_REG_READ			DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_REG_READ, struct drm_i915_reg_read)
464 #define DRM_IOCTL_I915_GET_RESET_STATS		DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GET_RESET_STATS, struct drm_i915_reset_stats)
465 #define DRM_IOCTL_I915_GEM_USERPTR			DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_USERPTR, struct drm_i915_gem_userptr)
466 #define DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_GETPARAM, struct drm_i915_gem_context_param)
467 #define DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_SETPARAM, struct drm_i915_gem_context_param)
468 #define DRM_IOCTL_I915_PERF_OPEN	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_OPEN, struct drm_i915_perf_open_param)
469 #define DRM_IOCTL_I915_PERF_ADD_CONFIG	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_ADD_CONFIG, struct drm_i915_perf_oa_config)
470 #define DRM_IOCTL_I915_PERF_REMOVE_CONFIG	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_REMOVE_CONFIG, __u64)
471 #define DRM_IOCTL_I915_QUERY			DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_QUERY, struct drm_i915_query)
472 #define DRM_IOCTL_I915_GEM_VM_CREATE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_VM_CREATE, struct drm_i915_gem_vm_control)
473 #define DRM_IOCTL_I915_GEM_VM_DESTROY	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_VM_DESTROY, struct drm_i915_gem_vm_control)
474 
475 /* Allow drivers to submit batchbuffers directly to hardware, relying
476  * on the security mechanisms provided by hardware.
477  */
478 typedef struct drm_i915_batchbuffer {
479 	int start;		/* agp offset */
480 	int used;		/* nr bytes in use */
481 	int DR1;		/* hw flags for GFX_OP_DRAWRECT_INFO */
482 	int DR4;		/* window origin for GFX_OP_DRAWRECT_INFO */
483 	int num_cliprects;	/* mulitpass with multiple cliprects? */
484 	struct drm_clip_rect __user *cliprects;	/* pointer to userspace cliprects */
485 } drm_i915_batchbuffer_t;
486 
487 /* As above, but pass a pointer to userspace buffer which can be
488  * validated by the kernel prior to sending to hardware.
489  */
490 typedef struct _drm_i915_cmdbuffer {
491 	char __user *buf;	/* pointer to userspace command buffer */
492 	int sz;			/* nr bytes in buf */
493 	int DR1;		/* hw flags for GFX_OP_DRAWRECT_INFO */
494 	int DR4;		/* window origin for GFX_OP_DRAWRECT_INFO */
495 	int num_cliprects;	/* mulitpass with multiple cliprects? */
496 	struct drm_clip_rect __user *cliprects;	/* pointer to userspace cliprects */
497 } drm_i915_cmdbuffer_t;
498 
499 /* Userspace can request & wait on irq's:
500  */
501 typedef struct drm_i915_irq_emit {
502 	int __user *irq_seq;
503 } drm_i915_irq_emit_t;
504 
505 typedef struct drm_i915_irq_wait {
506 	int irq_seq;
507 } drm_i915_irq_wait_t;
508 
509 /*
510  * Different modes of per-process Graphics Translation Table,
511  * see I915_PARAM_HAS_ALIASING_PPGTT
512  */
513 #define I915_GEM_PPGTT_NONE	0
514 #define I915_GEM_PPGTT_ALIASING	1
515 #define I915_GEM_PPGTT_FULL	2
516 
517 /* Ioctl to query kernel params:
518  */
519 #define I915_PARAM_IRQ_ACTIVE            1
520 #define I915_PARAM_ALLOW_BATCHBUFFER     2
521 #define I915_PARAM_LAST_DISPATCH         3
522 #define I915_PARAM_CHIPSET_ID            4
523 #define I915_PARAM_HAS_GEM               5
524 #define I915_PARAM_NUM_FENCES_AVAIL      6
525 #define I915_PARAM_HAS_OVERLAY           7
526 #define I915_PARAM_HAS_PAGEFLIPPING	 8
527 #define I915_PARAM_HAS_EXECBUF2          9
528 #define I915_PARAM_HAS_BSD		 10
529 #define I915_PARAM_HAS_BLT		 11
530 #define I915_PARAM_HAS_RELAXED_FENCING	 12
531 #define I915_PARAM_HAS_COHERENT_RINGS	 13
532 #define I915_PARAM_HAS_EXEC_CONSTANTS	 14
533 #define I915_PARAM_HAS_RELAXED_DELTA	 15
534 #define I915_PARAM_HAS_GEN7_SOL_RESET	 16
535 #define I915_PARAM_HAS_LLC     	 	 17
536 #define I915_PARAM_HAS_ALIASING_PPGTT	 18
537 #define I915_PARAM_HAS_WAIT_TIMEOUT	 19
538 #define I915_PARAM_HAS_SEMAPHORES	 20
539 #define I915_PARAM_HAS_PRIME_VMAP_FLUSH	 21
540 #define I915_PARAM_HAS_VEBOX		 22
541 #define I915_PARAM_HAS_SECURE_BATCHES	 23
542 #define I915_PARAM_HAS_PINNED_BATCHES	 24
543 #define I915_PARAM_HAS_EXEC_NO_RELOC	 25
544 #define I915_PARAM_HAS_EXEC_HANDLE_LUT   26
545 #define I915_PARAM_HAS_WT     	 	 27
546 #define I915_PARAM_CMD_PARSER_VERSION	 28
547 #define I915_PARAM_HAS_COHERENT_PHYS_GTT 29
548 #define I915_PARAM_MMAP_VERSION          30
549 #define I915_PARAM_HAS_BSD2		 31
550 #define I915_PARAM_REVISION              32
551 #define I915_PARAM_SUBSLICE_TOTAL	 33
552 #define I915_PARAM_EU_TOTAL		 34
553 #define I915_PARAM_HAS_GPU_RESET	 35
554 #define I915_PARAM_HAS_RESOURCE_STREAMER 36
555 #define I915_PARAM_HAS_EXEC_SOFTPIN	 37
556 #define I915_PARAM_HAS_POOLED_EU	 38
557 #define I915_PARAM_MIN_EU_IN_POOL	 39
558 #define I915_PARAM_MMAP_GTT_VERSION	 40
559 
560 /*
561  * Query whether DRM_I915_GEM_EXECBUFFER2 supports user defined execution
562  * priorities and the driver will attempt to execute batches in priority order.
563  * The param returns a capability bitmask, nonzero implies that the scheduler
564  * is enabled, with different features present according to the mask.
565  *
566  * The initial priority for each batch is supplied by the context and is
567  * controlled via I915_CONTEXT_PARAM_PRIORITY.
568  */
569 #define I915_PARAM_HAS_SCHEDULER	 41
570 #define   I915_SCHEDULER_CAP_ENABLED	(1ul << 0)
571 #define   I915_SCHEDULER_CAP_PRIORITY	(1ul << 1)
572 #define   I915_SCHEDULER_CAP_PREEMPTION	(1ul << 2)
573 #define   I915_SCHEDULER_CAP_SEMAPHORES	(1ul << 3)
574 #define   I915_SCHEDULER_CAP_ENGINE_BUSY_STATS	(1ul << 4)
575 
576 #define I915_PARAM_HUC_STATUS		 42
577 
578 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to opt-out of
579  * synchronisation with implicit fencing on individual objects.
580  * See EXEC_OBJECT_ASYNC.
581  */
582 #define I915_PARAM_HAS_EXEC_ASYNC	 43
583 
584 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports explicit fence support -
585  * both being able to pass in a sync_file fd to wait upon before executing,
586  * and being able to return a new sync_file fd that is signaled when the
587  * current request is complete. See I915_EXEC_FENCE_IN and I915_EXEC_FENCE_OUT.
588  */
589 #define I915_PARAM_HAS_EXEC_FENCE	 44
590 
591 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to capture
592  * user specified bufffers for post-mortem debugging of GPU hangs. See
593  * EXEC_OBJECT_CAPTURE.
594  */
595 #define I915_PARAM_HAS_EXEC_CAPTURE	 45
596 
597 #define I915_PARAM_SLICE_MASK		 46
598 
599 /* Assuming it's uniform for each slice, this queries the mask of subslices
600  * per-slice for this system.
601  */
602 #define I915_PARAM_SUBSLICE_MASK	 47
603 
604 /*
605  * Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying the batch buffer
606  * as the first execobject as opposed to the last. See I915_EXEC_BATCH_FIRST.
607  */
608 #define I915_PARAM_HAS_EXEC_BATCH_FIRST	 48
609 
610 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
611  * drm_i915_gem_exec_fence structures.  See I915_EXEC_FENCE_ARRAY.
612  */
613 #define I915_PARAM_HAS_EXEC_FENCE_ARRAY  49
614 
615 /*
616  * Query whether every context (both per-file default and user created) is
617  * isolated (insofar as HW supports). If this parameter is not true, then
618  * freshly created contexts may inherit values from an existing context,
619  * rather than default HW values. If true, it also ensures (insofar as HW
620  * supports) that all state set by this context will not leak to any other
621  * context.
622  *
623  * As not every engine across every gen support contexts, the returned
624  * value reports the support of context isolation for individual engines by
625  * returning a bitmask of each engine class set to true if that class supports
626  * isolation.
627  */
628 #define I915_PARAM_HAS_CONTEXT_ISOLATION 50
629 
630 /* Frequency of the command streamer timestamps given by the *_TIMESTAMP
631  * registers. This used to be fixed per platform but from CNL onwards, this
632  * might vary depending on the parts.
633  */
634 #define I915_PARAM_CS_TIMESTAMP_FREQUENCY 51
635 
636 /*
637  * Once upon a time we supposed that writes through the GGTT would be
638  * immediately in physical memory (once flushed out of the CPU path). However,
639  * on a few different processors and chipsets, this is not necessarily the case
640  * as the writes appear to be buffered internally. Thus a read of the backing
641  * storage (physical memory) via a different path (with different physical tags
642  * to the indirect write via the GGTT) will see stale values from before
643  * the GGTT write. Inside the kernel, we can for the most part keep track of
644  * the different read/write domains in use (e.g. set-domain), but the assumption
645  * of coherency is baked into the ABI, hence reporting its true state in this
646  * parameter.
647  *
648  * Reports true when writes via mmap_gtt are immediately visible following an
649  * lfence to flush the WCB.
650  *
651  * Reports false when writes via mmap_gtt are indeterminately delayed in an in
652  * internal buffer and are _not_ immediately visible to third parties accessing
653  * directly via mmap_cpu/mmap_wc. Use of mmap_gtt as part of an IPC
654  * communications channel when reporting false is strongly disadvised.
655  */
656 #define I915_PARAM_MMAP_GTT_COHERENT	52
657 
658 /*
659  * Query whether DRM_I915_GEM_EXECBUFFER2 supports coordination of parallel
660  * execution through use of explicit fence support.
661  * See I915_EXEC_FENCE_OUT and I915_EXEC_FENCE_SUBMIT.
662  */
663 #define I915_PARAM_HAS_EXEC_SUBMIT_FENCE 53
664 
665 /*
666  * Revision of the i915-perf uAPI. The value returned helps determine what
667  * i915-perf features are available. See drm_i915_perf_property_id.
668  */
669 #define I915_PARAM_PERF_REVISION	54
670 
671 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
672  * timeline syncobj through drm_i915_gem_execbuffer_ext_timeline_fences. See
673  * I915_EXEC_USE_EXTENSIONS.
674  */
675 #define I915_PARAM_HAS_EXEC_TIMELINE_FENCES 55
676 
677 /* Must be kept compact -- no holes and well documented */
678 
679 typedef struct drm_i915_getparam {
680 	__s32 param;
681 	/*
682 	 * WARNING: Using pointers instead of fixed-size u64 means we need to write
683 	 * compat32 code. Don't repeat this mistake.
684 	 */
685 	int __user *value;
686 } drm_i915_getparam_t;
687 
688 /* Ioctl to set kernel params:
689  */
690 #define I915_SETPARAM_USE_MI_BATCHBUFFER_START            1
691 #define I915_SETPARAM_TEX_LRU_LOG_GRANULARITY             2
692 #define I915_SETPARAM_ALLOW_BATCHBUFFER                   3
693 #define I915_SETPARAM_NUM_USED_FENCES                     4
694 /* Must be kept compact -- no holes */
695 
696 typedef struct drm_i915_setparam {
697 	int param;
698 	int value;
699 } drm_i915_setparam_t;
700 
701 /* A memory manager for regions of shared memory:
702  */
703 #define I915_MEM_REGION_AGP 1
704 
705 typedef struct drm_i915_mem_alloc {
706 	int region;
707 	int alignment;
708 	int size;
709 	int __user *region_offset;	/* offset from start of fb or agp */
710 } drm_i915_mem_alloc_t;
711 
712 typedef struct drm_i915_mem_free {
713 	int region;
714 	int region_offset;
715 } drm_i915_mem_free_t;
716 
717 typedef struct drm_i915_mem_init_heap {
718 	int region;
719 	int size;
720 	int start;
721 } drm_i915_mem_init_heap_t;
722 
723 /* Allow memory manager to be torn down and re-initialized (eg on
724  * rotate):
725  */
726 typedef struct drm_i915_mem_destroy_heap {
727 	int region;
728 } drm_i915_mem_destroy_heap_t;
729 
730 /* Allow X server to configure which pipes to monitor for vblank signals
731  */
732 #define	DRM_I915_VBLANK_PIPE_A	1
733 #define	DRM_I915_VBLANK_PIPE_B	2
734 
735 typedef struct drm_i915_vblank_pipe {
736 	int pipe;
737 } drm_i915_vblank_pipe_t;
738 
739 /* Schedule buffer swap at given vertical blank:
740  */
741 typedef struct drm_i915_vblank_swap {
742 	drm_drawable_t drawable;
743 	enum drm_vblank_seq_type seqtype;
744 	unsigned int sequence;
745 } drm_i915_vblank_swap_t;
746 
747 typedef struct drm_i915_hws_addr {
748 	__u64 addr;
749 } drm_i915_hws_addr_t;
750 
751 struct drm_i915_gem_init {
752 	/**
753 	 * Beginning offset in the GTT to be managed by the DRM memory
754 	 * manager.
755 	 */
756 	__u64 gtt_start;
757 	/**
758 	 * Ending offset in the GTT to be managed by the DRM memory
759 	 * manager.
760 	 */
761 	__u64 gtt_end;
762 };
763 
764 struct drm_i915_gem_create {
765 	/**
766 	 * Requested size for the object.
767 	 *
768 	 * The (page-aligned) allocated size for the object will be returned.
769 	 */
770 	__u64 size;
771 	/**
772 	 * Returned handle for the object.
773 	 *
774 	 * Object handles are nonzero.
775 	 */
776 	__u32 handle;
777 	__u32 pad;
778 };
779 
780 struct drm_i915_gem_pread {
781 	/** Handle for the object being read. */
782 	__u32 handle;
783 	__u32 pad;
784 	/** Offset into the object to read from */
785 	__u64 offset;
786 	/** Length of data to read */
787 	__u64 size;
788 	/**
789 	 * Pointer to write the data into.
790 	 *
791 	 * This is a fixed-size type for 32/64 compatibility.
792 	 */
793 	__u64 data_ptr;
794 };
795 
796 struct drm_i915_gem_pwrite {
797 	/** Handle for the object being written to. */
798 	__u32 handle;
799 	__u32 pad;
800 	/** Offset into the object to write to */
801 	__u64 offset;
802 	/** Length of data to write */
803 	__u64 size;
804 	/**
805 	 * Pointer to read the data from.
806 	 *
807 	 * This is a fixed-size type for 32/64 compatibility.
808 	 */
809 	__u64 data_ptr;
810 };
811 
812 struct drm_i915_gem_mmap {
813 	/** Handle for the object being mapped. */
814 	__u32 handle;
815 	__u32 pad;
816 	/** Offset in the object to map. */
817 	__u64 offset;
818 	/**
819 	 * Length of data to map.
820 	 *
821 	 * The value will be page-aligned.
822 	 */
823 	__u64 size;
824 	/**
825 	 * Returned pointer the data was mapped at.
826 	 *
827 	 * This is a fixed-size type for 32/64 compatibility.
828 	 */
829 	__u64 addr_ptr;
830 
831 	/**
832 	 * Flags for extended behaviour.
833 	 *
834 	 * Added in version 2.
835 	 */
836 	__u64 flags;
837 #define I915_MMAP_WC 0x1
838 };
839 
840 struct drm_i915_gem_mmap_gtt {
841 	/** Handle for the object being mapped. */
842 	__u32 handle;
843 	__u32 pad;
844 	/**
845 	 * Fake offset to use for subsequent mmap call
846 	 *
847 	 * This is a fixed-size type for 32/64 compatibility.
848 	 */
849 	__u64 offset;
850 };
851 
852 /**
853  * struct drm_i915_gem_mmap_offset - Retrieve an offset so we can mmap this buffer object.
854  *
855  * This struct is passed as argument to the `DRM_IOCTL_I915_GEM_MMAP_OFFSET` ioctl,
856  * and is used to retrieve the fake offset to mmap an object specified by &handle.
857  *
858  * The legacy way of using `DRM_IOCTL_I915_GEM_MMAP` is removed on gen12+.
859  * `DRM_IOCTL_I915_GEM_MMAP_GTT` is an older supported alias to this struct, but will behave
860  * as setting the &extensions to 0, and &flags to `I915_MMAP_OFFSET_GTT`.
861  */
862 struct drm_i915_gem_mmap_offset {
863 	/** @handle: Handle for the object being mapped. */
864 	__u32 handle;
865 	/** @pad: Must be zero */
866 	__u32 pad;
867 	/**
868 	 * @offset: The fake offset to use for subsequent mmap call
869 	 *
870 	 * This is a fixed-size type for 32/64 compatibility.
871 	 */
872 	__u64 offset;
873 
874 	/**
875 	 * @flags: Flags for extended behaviour.
876 	 *
877 	 * It is mandatory that one of the `MMAP_OFFSET` types
878 	 * should be included:
879 	 *
880 	 * - `I915_MMAP_OFFSET_GTT`: Use mmap with the object bound to GTT. (Write-Combined)
881 	 * - `I915_MMAP_OFFSET_WC`: Use Write-Combined caching.
882 	 * - `I915_MMAP_OFFSET_WB`: Use Write-Back caching.
883 	 * - `I915_MMAP_OFFSET_FIXED`: Use object placement to determine caching.
884 	 *
885 	 * On devices with local memory `I915_MMAP_OFFSET_FIXED` is the only valid
886 	 * type. On devices without local memory, this caching mode is invalid.
887 	 *
888 	 * As caching mode when specifying `I915_MMAP_OFFSET_FIXED`, WC or WB will
889 	 * be used, depending on the object placement on creation. WB will be used
890 	 * when the object can only exist in system memory, WC otherwise.
891 	 */
892 	__u64 flags;
893 
894 #define I915_MMAP_OFFSET_GTT	0
895 #define I915_MMAP_OFFSET_WC	1
896 #define I915_MMAP_OFFSET_WB	2
897 #define I915_MMAP_OFFSET_UC	3
898 #define I915_MMAP_OFFSET_FIXED	4
899 
900 	/**
901 	 * @extensions: Zero-terminated chain of extensions.
902 	 *
903 	 * No current extensions defined; mbz.
904 	 */
905 	__u64 extensions;
906 };
907 
908 /**
909  * struct drm_i915_gem_set_domain - Adjust the objects write or read domain, in
910  * preparation for accessing the pages via some CPU domain.
911  *
912  * Specifying a new write or read domain will flush the object out of the
913  * previous domain(if required), before then updating the objects domain
914  * tracking with the new domain.
915  *
916  * Note this might involve waiting for the object first if it is still active on
917  * the GPU.
918  *
919  * Supported values for @read_domains and @write_domain:
920  *
921  *	- I915_GEM_DOMAIN_WC: Uncached write-combined domain
922  *	- I915_GEM_DOMAIN_CPU: CPU cache domain
923  *	- I915_GEM_DOMAIN_GTT: Mappable aperture domain
924  *
925  * All other domains are rejected.
926  */
927 struct drm_i915_gem_set_domain {
928 	/** @handle: Handle for the object. */
929 	__u32 handle;
930 
931 	/** @read_domains: New read domains. */
932 	__u32 read_domains;
933 
934 	/**
935 	 * @write_domain: New write domain.
936 	 *
937 	 * Note that having something in the write domain implies it's in the
938 	 * read domain, and only that read domain.
939 	 */
940 	__u32 write_domain;
941 };
942 
943 struct drm_i915_gem_sw_finish {
944 	/** Handle for the object */
945 	__u32 handle;
946 };
947 
948 struct drm_i915_gem_relocation_entry {
949 	/**
950 	 * Handle of the buffer being pointed to by this relocation entry.
951 	 *
952 	 * It's appealing to make this be an index into the mm_validate_entry
953 	 * list to refer to the buffer, but this allows the driver to create
954 	 * a relocation list for state buffers and not re-write it per
955 	 * exec using the buffer.
956 	 */
957 	__u32 target_handle;
958 
959 	/**
960 	 * Value to be added to the offset of the target buffer to make up
961 	 * the relocation entry.
962 	 */
963 	__u32 delta;
964 
965 	/** Offset in the buffer the relocation entry will be written into */
966 	__u64 offset;
967 
968 	/**
969 	 * Offset value of the target buffer that the relocation entry was last
970 	 * written as.
971 	 *
972 	 * If the buffer has the same offset as last time, we can skip syncing
973 	 * and writing the relocation.  This value is written back out by
974 	 * the execbuffer ioctl when the relocation is written.
975 	 */
976 	__u64 presumed_offset;
977 
978 	/**
979 	 * Target memory domains read by this operation.
980 	 */
981 	__u32 read_domains;
982 
983 	/**
984 	 * Target memory domains written by this operation.
985 	 *
986 	 * Note that only one domain may be written by the whole
987 	 * execbuffer operation, so that where there are conflicts,
988 	 * the application will get -EINVAL back.
989 	 */
990 	__u32 write_domain;
991 };
992 
993 /** @{
994  * Intel memory domains
995  *
996  * Most of these just align with the various caches in
997  * the system and are used to flush and invalidate as
998  * objects end up cached in different domains.
999  */
1000 /** CPU cache */
1001 #define I915_GEM_DOMAIN_CPU		0x00000001
1002 /** Render cache, used by 2D and 3D drawing */
1003 #define I915_GEM_DOMAIN_RENDER		0x00000002
1004 /** Sampler cache, used by texture engine */
1005 #define I915_GEM_DOMAIN_SAMPLER		0x00000004
1006 /** Command queue, used to load batch buffers */
1007 #define I915_GEM_DOMAIN_COMMAND		0x00000008
1008 /** Instruction cache, used by shader programs */
1009 #define I915_GEM_DOMAIN_INSTRUCTION	0x00000010
1010 /** Vertex address cache */
1011 #define I915_GEM_DOMAIN_VERTEX		0x00000020
1012 /** GTT domain - aperture and scanout */
1013 #define I915_GEM_DOMAIN_GTT		0x00000040
1014 /** WC domain - uncached access */
1015 #define I915_GEM_DOMAIN_WC		0x00000080
1016 /** @} */
1017 
1018 struct drm_i915_gem_exec_object {
1019 	/**
1020 	 * User's handle for a buffer to be bound into the GTT for this
1021 	 * operation.
1022 	 */
1023 	__u32 handle;
1024 
1025 	/** Number of relocations to be performed on this buffer */
1026 	__u32 relocation_count;
1027 	/**
1028 	 * Pointer to array of struct drm_i915_gem_relocation_entry containing
1029 	 * the relocations to be performed in this buffer.
1030 	 */
1031 	__u64 relocs_ptr;
1032 
1033 	/** Required alignment in graphics aperture */
1034 	__u64 alignment;
1035 
1036 	/**
1037 	 * Returned value of the updated offset of the object, for future
1038 	 * presumed_offset writes.
1039 	 */
1040 	__u64 offset;
1041 };
1042 
1043 /* DRM_IOCTL_I915_GEM_EXECBUFFER was removed in Linux 5.13 */
1044 struct drm_i915_gem_execbuffer {
1045 	/**
1046 	 * List of buffers to be validated with their relocations to be
1047 	 * performend on them.
1048 	 *
1049 	 * This is a pointer to an array of struct drm_i915_gem_validate_entry.
1050 	 *
1051 	 * These buffers must be listed in an order such that all relocations
1052 	 * a buffer is performing refer to buffers that have already appeared
1053 	 * in the validate list.
1054 	 */
1055 	__u64 buffers_ptr;
1056 	__u32 buffer_count;
1057 
1058 	/** Offset in the batchbuffer to start execution from. */
1059 	__u32 batch_start_offset;
1060 	/** Bytes used in batchbuffer from batch_start_offset */
1061 	__u32 batch_len;
1062 	__u32 DR1;
1063 	__u32 DR4;
1064 	__u32 num_cliprects;
1065 	/** This is a struct drm_clip_rect *cliprects */
1066 	__u64 cliprects_ptr;
1067 };
1068 
1069 struct drm_i915_gem_exec_object2 {
1070 	/**
1071 	 * User's handle for a buffer to be bound into the GTT for this
1072 	 * operation.
1073 	 */
1074 	__u32 handle;
1075 
1076 	/** Number of relocations to be performed on this buffer */
1077 	__u32 relocation_count;
1078 	/**
1079 	 * Pointer to array of struct drm_i915_gem_relocation_entry containing
1080 	 * the relocations to be performed in this buffer.
1081 	 */
1082 	__u64 relocs_ptr;
1083 
1084 	/** Required alignment in graphics aperture */
1085 	__u64 alignment;
1086 
1087 	/**
1088 	 * When the EXEC_OBJECT_PINNED flag is specified this is populated by
1089 	 * the user with the GTT offset at which this object will be pinned.
1090 	 * When the I915_EXEC_NO_RELOC flag is specified this must contain the
1091 	 * presumed_offset of the object.
1092 	 * During execbuffer2 the kernel populates it with the value of the
1093 	 * current GTT offset of the object, for future presumed_offset writes.
1094 	 */
1095 	__u64 offset;
1096 
1097 #define EXEC_OBJECT_NEEDS_FENCE		 (1<<0)
1098 #define EXEC_OBJECT_NEEDS_GTT		 (1<<1)
1099 #define EXEC_OBJECT_WRITE		 (1<<2)
1100 #define EXEC_OBJECT_SUPPORTS_48B_ADDRESS (1<<3)
1101 #define EXEC_OBJECT_PINNED		 (1<<4)
1102 #define EXEC_OBJECT_PAD_TO_SIZE		 (1<<5)
1103 /* The kernel implicitly tracks GPU activity on all GEM objects, and
1104  * synchronises operations with outstanding rendering. This includes
1105  * rendering on other devices if exported via dma-buf. However, sometimes
1106  * this tracking is too coarse and the user knows better. For example,
1107  * if the object is split into non-overlapping ranges shared between different
1108  * clients or engines (i.e. suballocating objects), the implicit tracking
1109  * by kernel assumes that each operation affects the whole object rather
1110  * than an individual range, causing needless synchronisation between clients.
1111  * The kernel will also forgo any CPU cache flushes prior to rendering from
1112  * the object as the client is expected to be also handling such domain
1113  * tracking.
1114  *
1115  * The kernel maintains the implicit tracking in order to manage resources
1116  * used by the GPU - this flag only disables the synchronisation prior to
1117  * rendering with this object in this execbuf.
1118  *
1119  * Opting out of implicit synhronisation requires the user to do its own
1120  * explicit tracking to avoid rendering corruption. See, for example,
1121  * I915_PARAM_HAS_EXEC_FENCE to order execbufs and execute them asynchronously.
1122  */
1123 #define EXEC_OBJECT_ASYNC		(1<<6)
1124 /* Request that the contents of this execobject be copied into the error
1125  * state upon a GPU hang involving this batch for post-mortem debugging.
1126  * These buffers are recorded in no particular order as "user" in
1127  * /sys/class/drm/cardN/error. Query I915_PARAM_HAS_EXEC_CAPTURE to see
1128  * if the kernel supports this flag.
1129  */
1130 #define EXEC_OBJECT_CAPTURE		(1<<7)
1131 /* All remaining bits are MBZ and RESERVED FOR FUTURE USE */
1132 #define __EXEC_OBJECT_UNKNOWN_FLAGS -(EXEC_OBJECT_CAPTURE<<1)
1133 	__u64 flags;
1134 
1135 	union {
1136 		__u64 rsvd1;
1137 		__u64 pad_to_size;
1138 	};
1139 	__u64 rsvd2;
1140 };
1141 
1142 struct drm_i915_gem_exec_fence {
1143 	/**
1144 	 * User's handle for a drm_syncobj to wait on or signal.
1145 	 */
1146 	__u32 handle;
1147 
1148 #define I915_EXEC_FENCE_WAIT            (1<<0)
1149 #define I915_EXEC_FENCE_SIGNAL          (1<<1)
1150 #define __I915_EXEC_FENCE_UNKNOWN_FLAGS (-(I915_EXEC_FENCE_SIGNAL << 1))
1151 	__u32 flags;
1152 };
1153 
1154 /*
1155  * See drm_i915_gem_execbuffer_ext_timeline_fences.
1156  */
1157 #define DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES 0
1158 
1159 /*
1160  * This structure describes an array of drm_syncobj and associated points for
1161  * timeline variants of drm_syncobj. It is invalid to append this structure to
1162  * the execbuf if I915_EXEC_FENCE_ARRAY is set.
1163  */
1164 struct drm_i915_gem_execbuffer_ext_timeline_fences {
1165 	struct i915_user_extension base;
1166 
1167 	/**
1168 	 * Number of element in the handles_ptr & value_ptr arrays.
1169 	 */
1170 	__u64 fence_count;
1171 
1172 	/**
1173 	 * Pointer to an array of struct drm_i915_gem_exec_fence of length
1174 	 * fence_count.
1175 	 */
1176 	__u64 handles_ptr;
1177 
1178 	/**
1179 	 * Pointer to an array of u64 values of length fence_count. Values
1180 	 * must be 0 for a binary drm_syncobj. A Value of 0 for a timeline
1181 	 * drm_syncobj is invalid as it turns a drm_syncobj into a binary one.
1182 	 */
1183 	__u64 values_ptr;
1184 };
1185 
1186 struct drm_i915_gem_execbuffer2 {
1187 	/**
1188 	 * List of gem_exec_object2 structs
1189 	 */
1190 	__u64 buffers_ptr;
1191 	__u32 buffer_count;
1192 
1193 	/** Offset in the batchbuffer to start execution from. */
1194 	__u32 batch_start_offset;
1195 	/** Bytes used in batchbuffer from batch_start_offset */
1196 	__u32 batch_len;
1197 	__u32 DR1;
1198 	__u32 DR4;
1199 	__u32 num_cliprects;
1200 	/**
1201 	 * This is a struct drm_clip_rect *cliprects if I915_EXEC_FENCE_ARRAY
1202 	 * & I915_EXEC_USE_EXTENSIONS are not set.
1203 	 *
1204 	 * If I915_EXEC_FENCE_ARRAY is set, then this is a pointer to an array
1205 	 * of struct drm_i915_gem_exec_fence and num_cliprects is the length
1206 	 * of the array.
1207 	 *
1208 	 * If I915_EXEC_USE_EXTENSIONS is set, then this is a pointer to a
1209 	 * single struct i915_user_extension and num_cliprects is 0.
1210 	 */
1211 	__u64 cliprects_ptr;
1212 #define I915_EXEC_RING_MASK              (0x3f)
1213 #define I915_EXEC_DEFAULT                (0<<0)
1214 #define I915_EXEC_RENDER                 (1<<0)
1215 #define I915_EXEC_BSD                    (2<<0)
1216 #define I915_EXEC_BLT                    (3<<0)
1217 #define I915_EXEC_VEBOX                  (4<<0)
1218 
1219 /* Used for switching the constants addressing mode on gen4+ RENDER ring.
1220  * Gen6+ only supports relative addressing to dynamic state (default) and
1221  * absolute addressing.
1222  *
1223  * These flags are ignored for the BSD and BLT rings.
1224  */
1225 #define I915_EXEC_CONSTANTS_MASK 	(3<<6)
1226 #define I915_EXEC_CONSTANTS_REL_GENERAL (0<<6) /* default */
1227 #define I915_EXEC_CONSTANTS_ABSOLUTE 	(1<<6)
1228 #define I915_EXEC_CONSTANTS_REL_SURFACE (2<<6) /* gen4/5 only */
1229 	__u64 flags;
1230 	__u64 rsvd1; /* now used for context info */
1231 	__u64 rsvd2;
1232 };
1233 
1234 /** Resets the SO write offset registers for transform feedback on gen7. */
1235 #define I915_EXEC_GEN7_SOL_RESET	(1<<8)
1236 
1237 /** Request a privileged ("secure") batch buffer. Note only available for
1238  * DRM_ROOT_ONLY | DRM_MASTER processes.
1239  */
1240 #define I915_EXEC_SECURE		(1<<9)
1241 
1242 /** Inform the kernel that the batch is and will always be pinned. This
1243  * negates the requirement for a workaround to be performed to avoid
1244  * an incoherent CS (such as can be found on 830/845). If this flag is
1245  * not passed, the kernel will endeavour to make sure the batch is
1246  * coherent with the CS before execution. If this flag is passed,
1247  * userspace assumes the responsibility for ensuring the same.
1248  */
1249 #define I915_EXEC_IS_PINNED		(1<<10)
1250 
1251 /** Provide a hint to the kernel that the command stream and auxiliary
1252  * state buffers already holds the correct presumed addresses and so the
1253  * relocation process may be skipped if no buffers need to be moved in
1254  * preparation for the execbuffer.
1255  */
1256 #define I915_EXEC_NO_RELOC		(1<<11)
1257 
1258 /** Use the reloc.handle as an index into the exec object array rather
1259  * than as the per-file handle.
1260  */
1261 #define I915_EXEC_HANDLE_LUT		(1<<12)
1262 
1263 /** Used for switching BSD rings on the platforms with two BSD rings */
1264 #define I915_EXEC_BSD_SHIFT	 (13)
1265 #define I915_EXEC_BSD_MASK	 (3 << I915_EXEC_BSD_SHIFT)
1266 /* default ping-pong mode */
1267 #define I915_EXEC_BSD_DEFAULT	 (0 << I915_EXEC_BSD_SHIFT)
1268 #define I915_EXEC_BSD_RING1	 (1 << I915_EXEC_BSD_SHIFT)
1269 #define I915_EXEC_BSD_RING2	 (2 << I915_EXEC_BSD_SHIFT)
1270 
1271 /** Tell the kernel that the batchbuffer is processed by
1272  *  the resource streamer.
1273  */
1274 #define I915_EXEC_RESOURCE_STREAMER     (1<<15)
1275 
1276 /* Setting I915_EXEC_FENCE_IN implies that lower_32_bits(rsvd2) represent
1277  * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1278  * the batch.
1279  *
1280  * Returns -EINVAL if the sync_file fd cannot be found.
1281  */
1282 #define I915_EXEC_FENCE_IN		(1<<16)
1283 
1284 /* Setting I915_EXEC_FENCE_OUT causes the ioctl to return a sync_file fd
1285  * in the upper_32_bits(rsvd2) upon success. Ownership of the fd is given
1286  * to the caller, and it should be close() after use. (The fd is a regular
1287  * file descriptor and will be cleaned up on process termination. It holds
1288  * a reference to the request, but nothing else.)
1289  *
1290  * The sync_file fd can be combined with other sync_file and passed either
1291  * to execbuf using I915_EXEC_FENCE_IN, to atomic KMS ioctls (so that a flip
1292  * will only occur after this request completes), or to other devices.
1293  *
1294  * Using I915_EXEC_FENCE_OUT requires use of
1295  * DRM_IOCTL_I915_GEM_EXECBUFFER2_WR ioctl so that the result is written
1296  * back to userspace. Failure to do so will cause the out-fence to always
1297  * be reported as zero, and the real fence fd to be leaked.
1298  */
1299 #define I915_EXEC_FENCE_OUT		(1<<17)
1300 
1301 /*
1302  * Traditionally the execbuf ioctl has only considered the final element in
1303  * the execobject[] to be the executable batch. Often though, the client
1304  * will known the batch object prior to construction and being able to place
1305  * it into the execobject[] array first can simplify the relocation tracking.
1306  * Setting I915_EXEC_BATCH_FIRST tells execbuf to use element 0 of the
1307  * execobject[] as the * batch instead (the default is to use the last
1308  * element).
1309  */
1310 #define I915_EXEC_BATCH_FIRST		(1<<18)
1311 
1312 /* Setting I915_FENCE_ARRAY implies that num_cliprects and cliprects_ptr
1313  * define an array of i915_gem_exec_fence structures which specify a set of
1314  * dma fences to wait upon or signal.
1315  */
1316 #define I915_EXEC_FENCE_ARRAY   (1<<19)
1317 
1318 /*
1319  * Setting I915_EXEC_FENCE_SUBMIT implies that lower_32_bits(rsvd2) represent
1320  * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1321  * the batch.
1322  *
1323  * Returns -EINVAL if the sync_file fd cannot be found.
1324  */
1325 #define I915_EXEC_FENCE_SUBMIT		(1 << 20)
1326 
1327 /*
1328  * Setting I915_EXEC_USE_EXTENSIONS implies that
1329  * drm_i915_gem_execbuffer2.cliprects_ptr is treated as a pointer to an linked
1330  * list of i915_user_extension. Each i915_user_extension node is the base of a
1331  * larger structure. The list of supported structures are listed in the
1332  * drm_i915_gem_execbuffer_ext enum.
1333  */
1334 #define I915_EXEC_USE_EXTENSIONS	(1 << 21)
1335 
1336 #define __I915_EXEC_UNKNOWN_FLAGS (-(I915_EXEC_USE_EXTENSIONS << 1))
1337 
1338 #define I915_EXEC_CONTEXT_ID_MASK	(0xffffffff)
1339 #define i915_execbuffer2_set_context_id(eb2, context) \
1340 	(eb2).rsvd1 = context & I915_EXEC_CONTEXT_ID_MASK
1341 #define i915_execbuffer2_get_context_id(eb2) \
1342 	((eb2).rsvd1 & I915_EXEC_CONTEXT_ID_MASK)
1343 
1344 struct drm_i915_gem_pin {
1345 	/** Handle of the buffer to be pinned. */
1346 	__u32 handle;
1347 	__u32 pad;
1348 
1349 	/** alignment required within the aperture */
1350 	__u64 alignment;
1351 
1352 	/** Returned GTT offset of the buffer. */
1353 	__u64 offset;
1354 };
1355 
1356 struct drm_i915_gem_unpin {
1357 	/** Handle of the buffer to be unpinned. */
1358 	__u32 handle;
1359 	__u32 pad;
1360 };
1361 
1362 struct drm_i915_gem_busy {
1363 	/** Handle of the buffer to check for busy */
1364 	__u32 handle;
1365 
1366 	/** Return busy status
1367 	 *
1368 	 * A return of 0 implies that the object is idle (after
1369 	 * having flushed any pending activity), and a non-zero return that
1370 	 * the object is still in-flight on the GPU. (The GPU has not yet
1371 	 * signaled completion for all pending requests that reference the
1372 	 * object.) An object is guaranteed to become idle eventually (so
1373 	 * long as no new GPU commands are executed upon it). Due to the
1374 	 * asynchronous nature of the hardware, an object reported
1375 	 * as busy may become idle before the ioctl is completed.
1376 	 *
1377 	 * Furthermore, if the object is busy, which engine is busy is only
1378 	 * provided as a guide and only indirectly by reporting its class
1379 	 * (there may be more than one engine in each class). There are race
1380 	 * conditions which prevent the report of which engines are busy from
1381 	 * being always accurate.  However, the converse is not true. If the
1382 	 * object is idle, the result of the ioctl, that all engines are idle,
1383 	 * is accurate.
1384 	 *
1385 	 * The returned dword is split into two fields to indicate both
1386 	 * the engine classess on which the object is being read, and the
1387 	 * engine class on which it is currently being written (if any).
1388 	 *
1389 	 * The low word (bits 0:15) indicate if the object is being written
1390 	 * to by any engine (there can only be one, as the GEM implicit
1391 	 * synchronisation rules force writes to be serialised). Only the
1392 	 * engine class (offset by 1, I915_ENGINE_CLASS_RENDER is reported as
1393 	 * 1 not 0 etc) for the last write is reported.
1394 	 *
1395 	 * The high word (bits 16:31) are a bitmask of which engines classes
1396 	 * are currently reading from the object. Multiple engines may be
1397 	 * reading from the object simultaneously.
1398 	 *
1399 	 * The value of each engine class is the same as specified in the
1400 	 * I915_CONTEXT_PARAM_ENGINES context parameter and via perf, i.e.
1401 	 * I915_ENGINE_CLASS_RENDER, I915_ENGINE_CLASS_COPY, etc.
1402 	 * Some hardware may have parallel execution engines, e.g. multiple
1403 	 * media engines, which are mapped to the same class identifier and so
1404 	 * are not separately reported for busyness.
1405 	 *
1406 	 * Caveat emptor:
1407 	 * Only the boolean result of this query is reliable; that is whether
1408 	 * the object is idle or busy. The report of which engines are busy
1409 	 * should be only used as a heuristic.
1410 	 */
1411 	__u32 busy;
1412 };
1413 
1414 /**
1415  * struct drm_i915_gem_caching - Set or get the caching for given object
1416  * handle.
1417  *
1418  * Allow userspace to control the GTT caching bits for a given object when the
1419  * object is later mapped through the ppGTT(or GGTT on older platforms lacking
1420  * ppGTT support, or if the object is used for scanout). Note that this might
1421  * require unbinding the object from the GTT first, if its current caching value
1422  * doesn't match.
1423  *
1424  * Note that this all changes on discrete platforms, starting from DG1, the
1425  * set/get caching is no longer supported, and is now rejected.  Instead the CPU
1426  * caching attributes(WB vs WC) will become an immutable creation time property
1427  * for the object, along with the GTT caching level. For now we don't expose any
1428  * new uAPI for this, instead on DG1 this is all implicit, although this largely
1429  * shouldn't matter since DG1 is coherent by default(without any way of
1430  * controlling it).
1431  *
1432  * Implicit caching rules, starting from DG1:
1433  *
1434  *     - If any of the object placements (see &drm_i915_gem_create_ext_memory_regions)
1435  *       contain I915_MEMORY_CLASS_DEVICE then the object will be allocated and
1436  *       mapped as write-combined only.
1437  *
1438  *     - Everything else is always allocated and mapped as write-back, with the
1439  *       guarantee that everything is also coherent with the GPU.
1440  *
1441  * Note that this is likely to change in the future again, where we might need
1442  * more flexibility on future devices, so making this all explicit as part of a
1443  * new &drm_i915_gem_create_ext extension is probable.
1444  *
1445  * Side note: Part of the reason for this is that changing the at-allocation-time CPU
1446  * caching attributes for the pages might be required(and is expensive) if we
1447  * need to then CPU map the pages later with different caching attributes. This
1448  * inconsistent caching behaviour, while supported on x86, is not universally
1449  * supported on other architectures. So for simplicity we opt for setting
1450  * everything at creation time, whilst also making it immutable, on discrete
1451  * platforms.
1452  */
1453 struct drm_i915_gem_caching {
1454 	/**
1455 	 * @handle: Handle of the buffer to set/get the caching level.
1456 	 */
1457 	__u32 handle;
1458 
1459 	/**
1460 	 * @caching: The GTT caching level to apply or possible return value.
1461 	 *
1462 	 * The supported @caching values:
1463 	 *
1464 	 * I915_CACHING_NONE:
1465 	 *
1466 	 * GPU access is not coherent with CPU caches.  Default for machines
1467 	 * without an LLC. This means manual flushing might be needed, if we
1468 	 * want GPU access to be coherent.
1469 	 *
1470 	 * I915_CACHING_CACHED:
1471 	 *
1472 	 * GPU access is coherent with CPU caches and furthermore the data is
1473 	 * cached in last-level caches shared between CPU cores and the GPU GT.
1474 	 *
1475 	 * I915_CACHING_DISPLAY:
1476 	 *
1477 	 * Special GPU caching mode which is coherent with the scanout engines.
1478 	 * Transparently falls back to I915_CACHING_NONE on platforms where no
1479 	 * special cache mode (like write-through or gfdt flushing) is
1480 	 * available. The kernel automatically sets this mode when using a
1481 	 * buffer as a scanout target.  Userspace can manually set this mode to
1482 	 * avoid a costly stall and clflush in the hotpath of drawing the first
1483 	 * frame.
1484 	 */
1485 #define I915_CACHING_NONE		0
1486 #define I915_CACHING_CACHED		1
1487 #define I915_CACHING_DISPLAY		2
1488 	__u32 caching;
1489 };
1490 
1491 #define I915_TILING_NONE	0
1492 #define I915_TILING_X		1
1493 #define I915_TILING_Y		2
1494 #define I915_TILING_LAST	I915_TILING_Y
1495 
1496 #define I915_BIT_6_SWIZZLE_NONE		0
1497 #define I915_BIT_6_SWIZZLE_9		1
1498 #define I915_BIT_6_SWIZZLE_9_10		2
1499 #define I915_BIT_6_SWIZZLE_9_11		3
1500 #define I915_BIT_6_SWIZZLE_9_10_11	4
1501 /* Not seen by userland */
1502 #define I915_BIT_6_SWIZZLE_UNKNOWN	5
1503 /* Seen by userland. */
1504 #define I915_BIT_6_SWIZZLE_9_17		6
1505 #define I915_BIT_6_SWIZZLE_9_10_17	7
1506 
1507 struct drm_i915_gem_set_tiling {
1508 	/** Handle of the buffer to have its tiling state updated */
1509 	__u32 handle;
1510 
1511 	/**
1512 	 * Tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1513 	 * I915_TILING_Y).
1514 	 *
1515 	 * This value is to be set on request, and will be updated by the
1516 	 * kernel on successful return with the actual chosen tiling layout.
1517 	 *
1518 	 * The tiling mode may be demoted to I915_TILING_NONE when the system
1519 	 * has bit 6 swizzling that can't be managed correctly by GEM.
1520 	 *
1521 	 * Buffer contents become undefined when changing tiling_mode.
1522 	 */
1523 	__u32 tiling_mode;
1524 
1525 	/**
1526 	 * Stride in bytes for the object when in I915_TILING_X or
1527 	 * I915_TILING_Y.
1528 	 */
1529 	__u32 stride;
1530 
1531 	/**
1532 	 * Returned address bit 6 swizzling required for CPU access through
1533 	 * mmap mapping.
1534 	 */
1535 	__u32 swizzle_mode;
1536 };
1537 
1538 struct drm_i915_gem_get_tiling {
1539 	/** Handle of the buffer to get tiling state for. */
1540 	__u32 handle;
1541 
1542 	/**
1543 	 * Current tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1544 	 * I915_TILING_Y).
1545 	 */
1546 	__u32 tiling_mode;
1547 
1548 	/**
1549 	 * Returned address bit 6 swizzling required for CPU access through
1550 	 * mmap mapping.
1551 	 */
1552 	__u32 swizzle_mode;
1553 
1554 	/**
1555 	 * Returned address bit 6 swizzling required for CPU access through
1556 	 * mmap mapping whilst bound.
1557 	 */
1558 	__u32 phys_swizzle_mode;
1559 };
1560 
1561 struct drm_i915_gem_get_aperture {
1562 	/** Total size of the aperture used by i915_gem_execbuffer, in bytes */
1563 	__u64 aper_size;
1564 
1565 	/**
1566 	 * Available space in the aperture used by i915_gem_execbuffer, in
1567 	 * bytes
1568 	 */
1569 	__u64 aper_available_size;
1570 };
1571 
1572 struct drm_i915_get_pipe_from_crtc_id {
1573 	/** ID of CRTC being requested **/
1574 	__u32 crtc_id;
1575 
1576 	/** pipe of requested CRTC **/
1577 	__u32 pipe;
1578 };
1579 
1580 #define I915_MADV_WILLNEED 0
1581 #define I915_MADV_DONTNEED 1
1582 #define __I915_MADV_PURGED 2 /* internal state */
1583 
1584 struct drm_i915_gem_madvise {
1585 	/** Handle of the buffer to change the backing store advice */
1586 	__u32 handle;
1587 
1588 	/* Advice: either the buffer will be needed again in the near future,
1589 	 *         or wont be and could be discarded under memory pressure.
1590 	 */
1591 	__u32 madv;
1592 
1593 	/** Whether the backing store still exists. */
1594 	__u32 retained;
1595 };
1596 
1597 /* flags */
1598 #define I915_OVERLAY_TYPE_MASK 		0xff
1599 #define I915_OVERLAY_YUV_PLANAR 	0x01
1600 #define I915_OVERLAY_YUV_PACKED 	0x02
1601 #define I915_OVERLAY_RGB		0x03
1602 
1603 #define I915_OVERLAY_DEPTH_MASK		0xff00
1604 #define I915_OVERLAY_RGB24		0x1000
1605 #define I915_OVERLAY_RGB16		0x2000
1606 #define I915_OVERLAY_RGB15		0x3000
1607 #define I915_OVERLAY_YUV422		0x0100
1608 #define I915_OVERLAY_YUV411		0x0200
1609 #define I915_OVERLAY_YUV420		0x0300
1610 #define I915_OVERLAY_YUV410		0x0400
1611 
1612 #define I915_OVERLAY_SWAP_MASK		0xff0000
1613 #define I915_OVERLAY_NO_SWAP		0x000000
1614 #define I915_OVERLAY_UV_SWAP		0x010000
1615 #define I915_OVERLAY_Y_SWAP		0x020000
1616 #define I915_OVERLAY_Y_AND_UV_SWAP	0x030000
1617 
1618 #define I915_OVERLAY_FLAGS_MASK		0xff000000
1619 #define I915_OVERLAY_ENABLE		0x01000000
1620 
1621 struct drm_intel_overlay_put_image {
1622 	/* various flags and src format description */
1623 	__u32 flags;
1624 	/* source picture description */
1625 	__u32 bo_handle;
1626 	/* stride values and offsets are in bytes, buffer relative */
1627 	__u16 stride_Y; /* stride for packed formats */
1628 	__u16 stride_UV;
1629 	__u32 offset_Y; /* offset for packet formats */
1630 	__u32 offset_U;
1631 	__u32 offset_V;
1632 	/* in pixels */
1633 	__u16 src_width;
1634 	__u16 src_height;
1635 	/* to compensate the scaling factors for partially covered surfaces */
1636 	__u16 src_scan_width;
1637 	__u16 src_scan_height;
1638 	/* output crtc description */
1639 	__u32 crtc_id;
1640 	__u16 dst_x;
1641 	__u16 dst_y;
1642 	__u16 dst_width;
1643 	__u16 dst_height;
1644 };
1645 
1646 /* flags */
1647 #define I915_OVERLAY_UPDATE_ATTRS	(1<<0)
1648 #define I915_OVERLAY_UPDATE_GAMMA	(1<<1)
1649 #define I915_OVERLAY_DISABLE_DEST_COLORKEY	(1<<2)
1650 struct drm_intel_overlay_attrs {
1651 	__u32 flags;
1652 	__u32 color_key;
1653 	__s32 brightness;
1654 	__u32 contrast;
1655 	__u32 saturation;
1656 	__u32 gamma0;
1657 	__u32 gamma1;
1658 	__u32 gamma2;
1659 	__u32 gamma3;
1660 	__u32 gamma4;
1661 	__u32 gamma5;
1662 };
1663 
1664 /*
1665  * Intel sprite handling
1666  *
1667  * Color keying works with a min/mask/max tuple.  Both source and destination
1668  * color keying is allowed.
1669  *
1670  * Source keying:
1671  * Sprite pixels within the min & max values, masked against the color channels
1672  * specified in the mask field, will be transparent.  All other pixels will
1673  * be displayed on top of the primary plane.  For RGB surfaces, only the min
1674  * and mask fields will be used; ranged compares are not allowed.
1675  *
1676  * Destination keying:
1677  * Primary plane pixels that match the min value, masked against the color
1678  * channels specified in the mask field, will be replaced by corresponding
1679  * pixels from the sprite plane.
1680  *
1681  * Note that source & destination keying are exclusive; only one can be
1682  * active on a given plane.
1683  */
1684 
1685 #define I915_SET_COLORKEY_NONE		(1<<0) /* Deprecated. Instead set
1686 						* flags==0 to disable colorkeying.
1687 						*/
1688 #define I915_SET_COLORKEY_DESTINATION	(1<<1)
1689 #define I915_SET_COLORKEY_SOURCE	(1<<2)
1690 struct drm_intel_sprite_colorkey {
1691 	__u32 plane_id;
1692 	__u32 min_value;
1693 	__u32 channel_mask;
1694 	__u32 max_value;
1695 	__u32 flags;
1696 };
1697 
1698 struct drm_i915_gem_wait {
1699 	/** Handle of BO we shall wait on */
1700 	__u32 bo_handle;
1701 	__u32 flags;
1702 	/** Number of nanoseconds to wait, Returns time remaining. */
1703 	__s64 timeout_ns;
1704 };
1705 
1706 struct drm_i915_gem_context_create {
1707 	__u32 ctx_id; /* output: id of new context*/
1708 	__u32 pad;
1709 };
1710 
1711 struct drm_i915_gem_context_create_ext {
1712 	__u32 ctx_id; /* output: id of new context*/
1713 	__u32 flags;
1714 #define I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS	(1u << 0)
1715 #define I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE	(1u << 1)
1716 #define I915_CONTEXT_CREATE_FLAGS_UNKNOWN \
1717 	(-(I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE << 1))
1718 	__u64 extensions;
1719 };
1720 
1721 struct drm_i915_gem_context_param {
1722 	__u32 ctx_id;
1723 	__u32 size;
1724 	__u64 param;
1725 #define I915_CONTEXT_PARAM_BAN_PERIOD	0x1
1726 /* I915_CONTEXT_PARAM_NO_ZEROMAP has been removed.  On the off chance
1727  * someone somewhere has attempted to use it, never re-use this context
1728  * param number.
1729  */
1730 #define I915_CONTEXT_PARAM_NO_ZEROMAP	0x2
1731 #define I915_CONTEXT_PARAM_GTT_SIZE	0x3
1732 #define I915_CONTEXT_PARAM_NO_ERROR_CAPTURE	0x4
1733 #define I915_CONTEXT_PARAM_BANNABLE	0x5
1734 #define I915_CONTEXT_PARAM_PRIORITY	0x6
1735 #define   I915_CONTEXT_MAX_USER_PRIORITY	1023 /* inclusive */
1736 #define   I915_CONTEXT_DEFAULT_PRIORITY		0
1737 #define   I915_CONTEXT_MIN_USER_PRIORITY	-1023 /* inclusive */
1738 	/*
1739 	 * When using the following param, value should be a pointer to
1740 	 * drm_i915_gem_context_param_sseu.
1741 	 */
1742 #define I915_CONTEXT_PARAM_SSEU		0x7
1743 
1744 /*
1745  * Not all clients may want to attempt automatic recover of a context after
1746  * a hang (for example, some clients may only submit very small incremental
1747  * batches relying on known logical state of previous batches which will never
1748  * recover correctly and each attempt will hang), and so would prefer that
1749  * the context is forever banned instead.
1750  *
1751  * If set to false (0), after a reset, subsequent (and in flight) rendering
1752  * from this context is discarded, and the client will need to create a new
1753  * context to use instead.
1754  *
1755  * If set to true (1), the kernel will automatically attempt to recover the
1756  * context by skipping the hanging batch and executing the next batch starting
1757  * from the default context state (discarding the incomplete logical context
1758  * state lost due to the reset).
1759  *
1760  * On creation, all new contexts are marked as recoverable.
1761  */
1762 #define I915_CONTEXT_PARAM_RECOVERABLE	0x8
1763 
1764 	/*
1765 	 * The id of the associated virtual memory address space (ppGTT) of
1766 	 * this context. Can be retrieved and passed to another context
1767 	 * (on the same fd) for both to use the same ppGTT and so share
1768 	 * address layouts, and avoid reloading the page tables on context
1769 	 * switches between themselves.
1770 	 *
1771 	 * See DRM_I915_GEM_VM_CREATE and DRM_I915_GEM_VM_DESTROY.
1772 	 */
1773 #define I915_CONTEXT_PARAM_VM		0x9
1774 
1775 /*
1776  * I915_CONTEXT_PARAM_ENGINES:
1777  *
1778  * Bind this context to operate on this subset of available engines. Henceforth,
1779  * the I915_EXEC_RING selector for DRM_IOCTL_I915_GEM_EXECBUFFER2 operates as
1780  * an index into this array of engines; I915_EXEC_DEFAULT selecting engine[0]
1781  * and upwards. Slots 0...N are filled in using the specified (class, instance).
1782  * Use
1783  *	engine_class: I915_ENGINE_CLASS_INVALID,
1784  *	engine_instance: I915_ENGINE_CLASS_INVALID_NONE
1785  * to specify a gap in the array that can be filled in later, e.g. by a
1786  * virtual engine used for load balancing.
1787  *
1788  * Setting the number of engines bound to the context to 0, by passing a zero
1789  * sized argument, will revert back to default settings.
1790  *
1791  * See struct i915_context_param_engines.
1792  *
1793  * Extensions:
1794  *   i915_context_engines_load_balance (I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE)
1795  *   i915_context_engines_bond (I915_CONTEXT_ENGINES_EXT_BOND)
1796  */
1797 #define I915_CONTEXT_PARAM_ENGINES	0xa
1798 
1799 /*
1800  * I915_CONTEXT_PARAM_PERSISTENCE:
1801  *
1802  * Allow the context and active rendering to survive the process until
1803  * completion. Persistence allows fire-and-forget clients to queue up a
1804  * bunch of work, hand the output over to a display server and then quit.
1805  * If the context is marked as not persistent, upon closing (either via
1806  * an explicit DRM_I915_GEM_CONTEXT_DESTROY or implicitly from file closure
1807  * or process termination), the context and any outstanding requests will be
1808  * cancelled (and exported fences for cancelled requests marked as -EIO).
1809  *
1810  * By default, new contexts allow persistence.
1811  */
1812 #define I915_CONTEXT_PARAM_PERSISTENCE	0xb
1813 
1814 /* This API has been removed.  On the off chance someone somewhere has
1815  * attempted to use it, never re-use this context param number.
1816  */
1817 #define I915_CONTEXT_PARAM_RINGSIZE	0xc
1818 /* Must be kept compact -- no holes and well documented */
1819 
1820 	__u64 value;
1821 };
1822 
1823 /*
1824  * Context SSEU programming
1825  *
1826  * It may be necessary for either functional or performance reason to configure
1827  * a context to run with a reduced number of SSEU (where SSEU stands for Slice/
1828  * Sub-slice/EU).
1829  *
1830  * This is done by configuring SSEU configuration using the below
1831  * @struct drm_i915_gem_context_param_sseu for every supported engine which
1832  * userspace intends to use.
1833  *
1834  * Not all GPUs or engines support this functionality in which case an error
1835  * code -ENODEV will be returned.
1836  *
1837  * Also, flexibility of possible SSEU configuration permutations varies between
1838  * GPU generations and software imposed limitations. Requesting such a
1839  * combination will return an error code of -EINVAL.
1840  *
1841  * NOTE: When perf/OA is active the context's SSEU configuration is ignored in
1842  * favour of a single global setting.
1843  */
1844 struct drm_i915_gem_context_param_sseu {
1845 	/*
1846 	 * Engine class & instance to be configured or queried.
1847 	 */
1848 	struct i915_engine_class_instance engine;
1849 
1850 	/*
1851 	 * Unknown flags must be cleared to zero.
1852 	 */
1853 	__u32 flags;
1854 #define I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX (1u << 0)
1855 
1856 	/*
1857 	 * Mask of slices to enable for the context. Valid values are a subset
1858 	 * of the bitmask value returned for I915_PARAM_SLICE_MASK.
1859 	 */
1860 	__u64 slice_mask;
1861 
1862 	/*
1863 	 * Mask of subslices to enable for the context. Valid values are a
1864 	 * subset of the bitmask value return by I915_PARAM_SUBSLICE_MASK.
1865 	 */
1866 	__u64 subslice_mask;
1867 
1868 	/*
1869 	 * Minimum/Maximum number of EUs to enable per subslice for the
1870 	 * context. min_eus_per_subslice must be inferior or equal to
1871 	 * max_eus_per_subslice.
1872 	 */
1873 	__u16 min_eus_per_subslice;
1874 	__u16 max_eus_per_subslice;
1875 
1876 	/*
1877 	 * Unused for now. Must be cleared to zero.
1878 	 */
1879 	__u32 rsvd;
1880 };
1881 
1882 /**
1883  * DOC: Virtual Engine uAPI
1884  *
1885  * Virtual engine is a concept where userspace is able to configure a set of
1886  * physical engines, submit a batch buffer, and let the driver execute it on any
1887  * engine from the set as it sees fit.
1888  *
1889  * This is primarily useful on parts which have multiple instances of a same
1890  * class engine, like for example GT3+ Skylake parts with their two VCS engines.
1891  *
1892  * For instance userspace can enumerate all engines of a certain class using the
1893  * previously described `Engine Discovery uAPI`_. After that userspace can
1894  * create a GEM context with a placeholder slot for the virtual engine (using
1895  * `I915_ENGINE_CLASS_INVALID` and `I915_ENGINE_CLASS_INVALID_NONE` for class
1896  * and instance respectively) and finally using the
1897  * `I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE` extension place a virtual engine in
1898  * the same reserved slot.
1899  *
1900  * Example of creating a virtual engine and submitting a batch buffer to it:
1901  *
1902  * .. code-block:: C
1903  *
1904  * 	I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(virtual, 2) = {
1905  * 		.base.name = I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE,
1906  * 		.engine_index = 0, // Place this virtual engine into engine map slot 0
1907  * 		.num_siblings = 2,
1908  * 		.engines = { { I915_ENGINE_CLASS_VIDEO, 0 },
1909  * 			     { I915_ENGINE_CLASS_VIDEO, 1 }, },
1910  * 	};
1911  * 	I915_DEFINE_CONTEXT_PARAM_ENGINES(engines, 1) = {
1912  * 		.engines = { { I915_ENGINE_CLASS_INVALID,
1913  * 			       I915_ENGINE_CLASS_INVALID_NONE } },
1914  * 		.extensions = to_user_pointer(&virtual), // Chains after load_balance extension
1915  * 	};
1916  * 	struct drm_i915_gem_context_create_ext_setparam p_engines = {
1917  * 		.base = {
1918  * 			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
1919  * 		},
1920  * 		.param = {
1921  * 			.param = I915_CONTEXT_PARAM_ENGINES,
1922  * 			.value = to_user_pointer(&engines),
1923  * 			.size = sizeof(engines),
1924  * 		},
1925  * 	};
1926  * 	struct drm_i915_gem_context_create_ext create = {
1927  * 		.flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
1928  * 		.extensions = to_user_pointer(&p_engines);
1929  * 	};
1930  *
1931  * 	ctx_id = gem_context_create_ext(drm_fd, &create);
1932  *
1933  * 	// Now we have created a GEM context with its engine map containing a
1934  * 	// single virtual engine. Submissions to this slot can go either to
1935  * 	// vcs0 or vcs1, depending on the load balancing algorithm used inside
1936  * 	// the driver. The load balancing is dynamic from one batch buffer to
1937  * 	// another and transparent to userspace.
1938  *
1939  * 	...
1940  * 	execbuf.rsvd1 = ctx_id;
1941  * 	execbuf.flags = 0; // Submits to index 0 which is the virtual engine
1942  * 	gem_execbuf(drm_fd, &execbuf);
1943  */
1944 
1945 /*
1946  * i915_context_engines_load_balance:
1947  *
1948  * Enable load balancing across this set of engines.
1949  *
1950  * Into the I915_EXEC_DEFAULT slot [0], a virtual engine is created that when
1951  * used will proxy the execbuffer request onto one of the set of engines
1952  * in such a way as to distribute the load evenly across the set.
1953  *
1954  * The set of engines must be compatible (e.g. the same HW class) as they
1955  * will share the same logical GPU context and ring.
1956  *
1957  * To intermix rendering with the virtual engine and direct rendering onto
1958  * the backing engines (bypassing the load balancing proxy), the context must
1959  * be defined to use a single timeline for all engines.
1960  */
1961 struct i915_context_engines_load_balance {
1962 	struct i915_user_extension base;
1963 
1964 	__u16 engine_index;
1965 	__u16 num_siblings;
1966 	__u32 flags; /* all undefined flags must be zero */
1967 
1968 	__u64 mbz64; /* reserved for future use; must be zero */
1969 
1970 	struct i915_engine_class_instance engines[0];
1971 } __attribute__((packed));
1972 
1973 #define I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(name__, N__) struct { \
1974 	struct i915_user_extension base; \
1975 	__u16 engine_index; \
1976 	__u16 num_siblings; \
1977 	__u32 flags; \
1978 	__u64 mbz64; \
1979 	struct i915_engine_class_instance engines[N__]; \
1980 } __attribute__((packed)) name__
1981 
1982 /*
1983  * i915_context_engines_bond:
1984  *
1985  * Constructed bonded pairs for execution within a virtual engine.
1986  *
1987  * All engines are equal, but some are more equal than others. Given
1988  * the distribution of resources in the HW, it may be preferable to run
1989  * a request on a given subset of engines in parallel to a request on a
1990  * specific engine. We enable this selection of engines within a virtual
1991  * engine by specifying bonding pairs, for any given master engine we will
1992  * only execute on one of the corresponding siblings within the virtual engine.
1993  *
1994  * To execute a request in parallel on the master engine and a sibling requires
1995  * coordination with a I915_EXEC_FENCE_SUBMIT.
1996  */
1997 struct i915_context_engines_bond {
1998 	struct i915_user_extension base;
1999 
2000 	struct i915_engine_class_instance master;
2001 
2002 	__u16 virtual_index; /* index of virtual engine in ctx->engines[] */
2003 	__u16 num_bonds;
2004 
2005 	__u64 flags; /* all undefined flags must be zero */
2006 	__u64 mbz64[4]; /* reserved for future use; must be zero */
2007 
2008 	struct i915_engine_class_instance engines[0];
2009 } __attribute__((packed));
2010 
2011 #define I915_DEFINE_CONTEXT_ENGINES_BOND(name__, N__) struct { \
2012 	struct i915_user_extension base; \
2013 	struct i915_engine_class_instance master; \
2014 	__u16 virtual_index; \
2015 	__u16 num_bonds; \
2016 	__u64 flags; \
2017 	__u64 mbz64[4]; \
2018 	struct i915_engine_class_instance engines[N__]; \
2019 } __attribute__((packed)) name__
2020 
2021 /**
2022  * DOC: Context Engine Map uAPI
2023  *
2024  * Context engine map is a new way of addressing engines when submitting batch-
2025  * buffers, replacing the existing way of using identifiers like `I915_EXEC_BLT`
2026  * inside the flags field of `struct drm_i915_gem_execbuffer2`.
2027  *
2028  * To use it created GEM contexts need to be configured with a list of engines
2029  * the user is intending to submit to. This is accomplished using the
2030  * `I915_CONTEXT_PARAM_ENGINES` parameter and `struct
2031  * i915_context_param_engines`.
2032  *
2033  * For such contexts the `I915_EXEC_RING_MASK` field becomes an index into the
2034  * configured map.
2035  *
2036  * Example of creating such context and submitting against it:
2037  *
2038  * .. code-block:: C
2039  *
2040  * 	I915_DEFINE_CONTEXT_PARAM_ENGINES(engines, 2) = {
2041  * 		.engines = { { I915_ENGINE_CLASS_RENDER, 0 },
2042  * 			     { I915_ENGINE_CLASS_COPY, 0 } }
2043  * 	};
2044  * 	struct drm_i915_gem_context_create_ext_setparam p_engines = {
2045  * 		.base = {
2046  * 			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2047  * 		},
2048  * 		.param = {
2049  * 			.param = I915_CONTEXT_PARAM_ENGINES,
2050  * 			.value = to_user_pointer(&engines),
2051  * 			.size = sizeof(engines),
2052  * 		},
2053  * 	};
2054  * 	struct drm_i915_gem_context_create_ext create = {
2055  * 		.flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
2056  * 		.extensions = to_user_pointer(&p_engines);
2057  * 	};
2058  *
2059  * 	ctx_id = gem_context_create_ext(drm_fd, &create);
2060  *
2061  * 	// We have now created a GEM context with two engines in the map:
2062  * 	// Index 0 points to rcs0 while index 1 points to bcs0. Other engines
2063  * 	// will not be accessible from this context.
2064  *
2065  * 	...
2066  * 	execbuf.rsvd1 = ctx_id;
2067  * 	execbuf.flags = 0; // Submits to index 0, which is rcs0 for this context
2068  * 	gem_execbuf(drm_fd, &execbuf);
2069  *
2070  * 	...
2071  * 	execbuf.rsvd1 = ctx_id;
2072  * 	execbuf.flags = 1; // Submits to index 0, which is bcs0 for this context
2073  * 	gem_execbuf(drm_fd, &execbuf);
2074  */
2075 
2076 struct i915_context_param_engines {
2077 	__u64 extensions; /* linked chain of extension blocks, 0 terminates */
2078 #define I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE 0 /* see i915_context_engines_load_balance */
2079 #define I915_CONTEXT_ENGINES_EXT_BOND 1 /* see i915_context_engines_bond */
2080 	struct i915_engine_class_instance engines[0];
2081 } __attribute__((packed));
2082 
2083 #define I915_DEFINE_CONTEXT_PARAM_ENGINES(name__, N__) struct { \
2084 	__u64 extensions; \
2085 	struct i915_engine_class_instance engines[N__]; \
2086 } __attribute__((packed)) name__
2087 
2088 struct drm_i915_gem_context_create_ext_setparam {
2089 #define I915_CONTEXT_CREATE_EXT_SETPARAM 0
2090 	struct i915_user_extension base;
2091 	struct drm_i915_gem_context_param param;
2092 };
2093 
2094 /* This API has been removed.  On the off chance someone somewhere has
2095  * attempted to use it, never re-use this extension number.
2096  */
2097 #define I915_CONTEXT_CREATE_EXT_CLONE 1
2098 
2099 struct drm_i915_gem_context_destroy {
2100 	__u32 ctx_id;
2101 	__u32 pad;
2102 };
2103 
2104 /*
2105  * DRM_I915_GEM_VM_CREATE -
2106  *
2107  * Create a new virtual memory address space (ppGTT) for use within a context
2108  * on the same file. Extensions can be provided to configure exactly how the
2109  * address space is setup upon creation.
2110  *
2111  * The id of new VM (bound to the fd) for use with I915_CONTEXT_PARAM_VM is
2112  * returned in the outparam @id.
2113  *
2114  * No flags are defined, with all bits reserved and must be zero.
2115  *
2116  * An extension chain maybe provided, starting with @extensions, and terminated
2117  * by the @next_extension being 0. Currently, no extensions are defined.
2118  *
2119  * DRM_I915_GEM_VM_DESTROY -
2120  *
2121  * Destroys a previously created VM id, specified in @id.
2122  *
2123  * No extensions or flags are allowed currently, and so must be zero.
2124  */
2125 struct drm_i915_gem_vm_control {
2126 	__u64 extensions;
2127 	__u32 flags;
2128 	__u32 vm_id;
2129 };
2130 
2131 struct drm_i915_reg_read {
2132 	/*
2133 	 * Register offset.
2134 	 * For 64bit wide registers where the upper 32bits don't immediately
2135 	 * follow the lower 32bits, the offset of the lower 32bits must
2136 	 * be specified
2137 	 */
2138 	__u64 offset;
2139 #define I915_REG_READ_8B_WA (1ul << 0)
2140 
2141 	__u64 val; /* Return value */
2142 };
2143 
2144 /* Known registers:
2145  *
2146  * Render engine timestamp - 0x2358 + 64bit - gen7+
2147  * - Note this register returns an invalid value if using the default
2148  *   single instruction 8byte read, in order to workaround that pass
2149  *   flag I915_REG_READ_8B_WA in offset field.
2150  *
2151  */
2152 
2153 struct drm_i915_reset_stats {
2154 	__u32 ctx_id;
2155 	__u32 flags;
2156 
2157 	/* All resets since boot/module reload, for all contexts */
2158 	__u32 reset_count;
2159 
2160 	/* Number of batches lost when active in GPU, for this context */
2161 	__u32 batch_active;
2162 
2163 	/* Number of batches lost pending for execution, for this context */
2164 	__u32 batch_pending;
2165 
2166 	__u32 pad;
2167 };
2168 
2169 /**
2170  * struct drm_i915_gem_userptr - Create GEM object from user allocated memory.
2171  *
2172  * Userptr objects have several restrictions on what ioctls can be used with the
2173  * object handle.
2174  */
2175 struct drm_i915_gem_userptr {
2176 	/**
2177 	 * @user_ptr: The pointer to the allocated memory.
2178 	 *
2179 	 * Needs to be aligned to PAGE_SIZE.
2180 	 */
2181 	__u64 user_ptr;
2182 
2183 	/**
2184 	 * @user_size:
2185 	 *
2186 	 * The size in bytes for the allocated memory. This will also become the
2187 	 * object size.
2188 	 *
2189 	 * Needs to be aligned to PAGE_SIZE, and should be at least PAGE_SIZE,
2190 	 * or larger.
2191 	 */
2192 	__u64 user_size;
2193 
2194 	/**
2195 	 * @flags:
2196 	 *
2197 	 * Supported flags:
2198 	 *
2199 	 * I915_USERPTR_READ_ONLY:
2200 	 *
2201 	 * Mark the object as readonly, this also means GPU access can only be
2202 	 * readonly. This is only supported on HW which supports readonly access
2203 	 * through the GTT. If the HW can't support readonly access, an error is
2204 	 * returned.
2205 	 *
2206 	 * I915_USERPTR_UNSYNCHRONIZED:
2207 	 *
2208 	 * NOT USED. Setting this flag will result in an error.
2209 	 */
2210 	__u32 flags;
2211 #define I915_USERPTR_READ_ONLY 0x1
2212 #define I915_USERPTR_UNSYNCHRONIZED 0x80000000
2213 	/**
2214 	 * @handle: Returned handle for the object.
2215 	 *
2216 	 * Object handles are nonzero.
2217 	 */
2218 	__u32 handle;
2219 };
2220 
2221 enum drm_i915_oa_format {
2222 	I915_OA_FORMAT_A13 = 1,	    /* HSW only */
2223 	I915_OA_FORMAT_A29,	    /* HSW only */
2224 	I915_OA_FORMAT_A13_B8_C8,   /* HSW only */
2225 	I915_OA_FORMAT_B4_C8,	    /* HSW only */
2226 	I915_OA_FORMAT_A45_B8_C8,   /* HSW only */
2227 	I915_OA_FORMAT_B4_C8_A16,   /* HSW only */
2228 	I915_OA_FORMAT_C4_B8,	    /* HSW+ */
2229 
2230 	/* Gen8+ */
2231 	I915_OA_FORMAT_A12,
2232 	I915_OA_FORMAT_A12_B8_C8,
2233 	I915_OA_FORMAT_A32u40_A4u32_B8_C8,
2234 
2235 	I915_OA_FORMAT_MAX	    /* non-ABI */
2236 };
2237 
2238 enum drm_i915_perf_property_id {
2239 	/**
2240 	 * Open the stream for a specific context handle (as used with
2241 	 * execbuffer2). A stream opened for a specific context this way
2242 	 * won't typically require root privileges.
2243 	 *
2244 	 * This property is available in perf revision 1.
2245 	 */
2246 	DRM_I915_PERF_PROP_CTX_HANDLE = 1,
2247 
2248 	/**
2249 	 * A value of 1 requests the inclusion of raw OA unit reports as
2250 	 * part of stream samples.
2251 	 *
2252 	 * This property is available in perf revision 1.
2253 	 */
2254 	DRM_I915_PERF_PROP_SAMPLE_OA,
2255 
2256 	/**
2257 	 * The value specifies which set of OA unit metrics should be
2258 	 * configured, defining the contents of any OA unit reports.
2259 	 *
2260 	 * This property is available in perf revision 1.
2261 	 */
2262 	DRM_I915_PERF_PROP_OA_METRICS_SET,
2263 
2264 	/**
2265 	 * The value specifies the size and layout of OA unit reports.
2266 	 *
2267 	 * This property is available in perf revision 1.
2268 	 */
2269 	DRM_I915_PERF_PROP_OA_FORMAT,
2270 
2271 	/**
2272 	 * Specifying this property implicitly requests periodic OA unit
2273 	 * sampling and (at least on Haswell) the sampling frequency is derived
2274 	 * from this exponent as follows:
2275 	 *
2276 	 *   80ns * 2^(period_exponent + 1)
2277 	 *
2278 	 * This property is available in perf revision 1.
2279 	 */
2280 	DRM_I915_PERF_PROP_OA_EXPONENT,
2281 
2282 	/**
2283 	 * Specifying this property is only valid when specify a context to
2284 	 * filter with DRM_I915_PERF_PROP_CTX_HANDLE. Specifying this property
2285 	 * will hold preemption of the particular context we want to gather
2286 	 * performance data about. The execbuf2 submissions must include a
2287 	 * drm_i915_gem_execbuffer_ext_perf parameter for this to apply.
2288 	 *
2289 	 * This property is available in perf revision 3.
2290 	 */
2291 	DRM_I915_PERF_PROP_HOLD_PREEMPTION,
2292 
2293 	/**
2294 	 * Specifying this pins all contexts to the specified SSEU power
2295 	 * configuration for the duration of the recording.
2296 	 *
2297 	 * This parameter's value is a pointer to a struct
2298 	 * drm_i915_gem_context_param_sseu.
2299 	 *
2300 	 * This property is available in perf revision 4.
2301 	 */
2302 	DRM_I915_PERF_PROP_GLOBAL_SSEU,
2303 
2304 	/**
2305 	 * This optional parameter specifies the timer interval in nanoseconds
2306 	 * at which the i915 driver will check the OA buffer for available data.
2307 	 * Minimum allowed value is 100 microseconds. A default value is used by
2308 	 * the driver if this parameter is not specified. Note that larger timer
2309 	 * values will reduce cpu consumption during OA perf captures. However,
2310 	 * excessively large values would potentially result in OA buffer
2311 	 * overwrites as captures reach end of the OA buffer.
2312 	 *
2313 	 * This property is available in perf revision 5.
2314 	 */
2315 	DRM_I915_PERF_PROP_POLL_OA_PERIOD,
2316 
2317 	DRM_I915_PERF_PROP_MAX /* non-ABI */
2318 };
2319 
2320 struct drm_i915_perf_open_param {
2321 	__u32 flags;
2322 #define I915_PERF_FLAG_FD_CLOEXEC	(1<<0)
2323 #define I915_PERF_FLAG_FD_NONBLOCK	(1<<1)
2324 #define I915_PERF_FLAG_DISABLED		(1<<2)
2325 
2326 	/** The number of u64 (id, value) pairs */
2327 	__u32 num_properties;
2328 
2329 	/**
2330 	 * Pointer to array of u64 (id, value) pairs configuring the stream
2331 	 * to open.
2332 	 */
2333 	__u64 properties_ptr;
2334 };
2335 
2336 /*
2337  * Enable data capture for a stream that was either opened in a disabled state
2338  * via I915_PERF_FLAG_DISABLED or was later disabled via
2339  * I915_PERF_IOCTL_DISABLE.
2340  *
2341  * It is intended to be cheaper to disable and enable a stream than it may be
2342  * to close and re-open a stream with the same configuration.
2343  *
2344  * It's undefined whether any pending data for the stream will be lost.
2345  *
2346  * This ioctl is available in perf revision 1.
2347  */
2348 #define I915_PERF_IOCTL_ENABLE	_IO('i', 0x0)
2349 
2350 /*
2351  * Disable data capture for a stream.
2352  *
2353  * It is an error to try and read a stream that is disabled.
2354  *
2355  * This ioctl is available in perf revision 1.
2356  */
2357 #define I915_PERF_IOCTL_DISABLE	_IO('i', 0x1)
2358 
2359 /*
2360  * Change metrics_set captured by a stream.
2361  *
2362  * If the stream is bound to a specific context, the configuration change
2363  * will performed inline with that context such that it takes effect before
2364  * the next execbuf submission.
2365  *
2366  * Returns the previously bound metrics set id, or a negative error code.
2367  *
2368  * This ioctl is available in perf revision 2.
2369  */
2370 #define I915_PERF_IOCTL_CONFIG	_IO('i', 0x2)
2371 
2372 /*
2373  * Common to all i915 perf records
2374  */
2375 struct drm_i915_perf_record_header {
2376 	__u32 type;
2377 	__u16 pad;
2378 	__u16 size;
2379 };
2380 
2381 enum drm_i915_perf_record_type {
2382 
2383 	/**
2384 	 * Samples are the work horse record type whose contents are extensible
2385 	 * and defined when opening an i915 perf stream based on the given
2386 	 * properties.
2387 	 *
2388 	 * Boolean properties following the naming convention
2389 	 * DRM_I915_PERF_SAMPLE_xyz_PROP request the inclusion of 'xyz' data in
2390 	 * every sample.
2391 	 *
2392 	 * The order of these sample properties given by userspace has no
2393 	 * affect on the ordering of data within a sample. The order is
2394 	 * documented here.
2395 	 *
2396 	 * struct {
2397 	 *     struct drm_i915_perf_record_header header;
2398 	 *
2399 	 *     { u32 oa_report[]; } && DRM_I915_PERF_PROP_SAMPLE_OA
2400 	 * };
2401 	 */
2402 	DRM_I915_PERF_RECORD_SAMPLE = 1,
2403 
2404 	/*
2405 	 * Indicates that one or more OA reports were not written by the
2406 	 * hardware. This can happen for example if an MI_REPORT_PERF_COUNT
2407 	 * command collides with periodic sampling - which would be more likely
2408 	 * at higher sampling frequencies.
2409 	 */
2410 	DRM_I915_PERF_RECORD_OA_REPORT_LOST = 2,
2411 
2412 	/**
2413 	 * An error occurred that resulted in all pending OA reports being lost.
2414 	 */
2415 	DRM_I915_PERF_RECORD_OA_BUFFER_LOST = 3,
2416 
2417 	DRM_I915_PERF_RECORD_MAX /* non-ABI */
2418 };
2419 
2420 /*
2421  * Structure to upload perf dynamic configuration into the kernel.
2422  */
2423 struct drm_i915_perf_oa_config {
2424 	/** String formatted like "%08x-%04x-%04x-%04x-%012x" */
2425 	char uuid[36];
2426 
2427 	__u32 n_mux_regs;
2428 	__u32 n_boolean_regs;
2429 	__u32 n_flex_regs;
2430 
2431 	/*
2432 	 * These fields are pointers to tuples of u32 values (register address,
2433 	 * value). For example the expected length of the buffer pointed by
2434 	 * mux_regs_ptr is (2 * sizeof(u32) * n_mux_regs).
2435 	 */
2436 	__u64 mux_regs_ptr;
2437 	__u64 boolean_regs_ptr;
2438 	__u64 flex_regs_ptr;
2439 };
2440 
2441 /**
2442  * struct drm_i915_query_item - An individual query for the kernel to process.
2443  *
2444  * The behaviour is determined by the @query_id. Note that exactly what
2445  * @data_ptr is also depends on the specific @query_id.
2446  */
2447 struct drm_i915_query_item {
2448 	/** @query_id: The id for this query */
2449 	__u64 query_id;
2450 #define DRM_I915_QUERY_TOPOLOGY_INFO    1
2451 #define DRM_I915_QUERY_ENGINE_INFO	2
2452 #define DRM_I915_QUERY_PERF_CONFIG      3
2453 #define DRM_I915_QUERY_MEMORY_REGIONS   4
2454 /* Must be kept compact -- no holes and well documented */
2455 
2456 	/**
2457 	 * @length:
2458 	 *
2459 	 * When set to zero by userspace, this is filled with the size of the
2460 	 * data to be written at the @data_ptr pointer. The kernel sets this
2461 	 * value to a negative value to signal an error on a particular query
2462 	 * item.
2463 	 */
2464 	__s32 length;
2465 
2466 	/**
2467 	 * @flags:
2468 	 *
2469 	 * When query_id == DRM_I915_QUERY_TOPOLOGY_INFO, must be 0.
2470 	 *
2471 	 * When query_id == DRM_I915_QUERY_PERF_CONFIG, must be one of the
2472 	 * following:
2473 	 *
2474 	 *	- DRM_I915_QUERY_PERF_CONFIG_LIST
2475 	 *      - DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID
2476 	 *      - DRM_I915_QUERY_PERF_CONFIG_FOR_UUID
2477 	 */
2478 	__u32 flags;
2479 #define DRM_I915_QUERY_PERF_CONFIG_LIST          1
2480 #define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID 2
2481 #define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID   3
2482 
2483 	/**
2484 	 * @data_ptr:
2485 	 *
2486 	 * Data will be written at the location pointed by @data_ptr when the
2487 	 * value of @length matches the length of the data to be written by the
2488 	 * kernel.
2489 	 */
2490 	__u64 data_ptr;
2491 };
2492 
2493 /**
2494  * struct drm_i915_query - Supply an array of struct drm_i915_query_item for the
2495  * kernel to fill out.
2496  *
2497  * Note that this is generally a two step process for each struct
2498  * drm_i915_query_item in the array:
2499  *
2500  * 1. Call the DRM_IOCTL_I915_QUERY, giving it our array of struct
2501  *    drm_i915_query_item, with &drm_i915_query_item.length set to zero. The
2502  *    kernel will then fill in the size, in bytes, which tells userspace how
2503  *    memory it needs to allocate for the blob(say for an array of properties).
2504  *
2505  * 2. Next we call DRM_IOCTL_I915_QUERY again, this time with the
2506  *    &drm_i915_query_item.data_ptr equal to our newly allocated blob. Note that
2507  *    the &drm_i915_query_item.length should still be the same as what the
2508  *    kernel previously set. At this point the kernel can fill in the blob.
2509  *
2510  * Note that for some query items it can make sense for userspace to just pass
2511  * in a buffer/blob equal to or larger than the required size. In this case only
2512  * a single ioctl call is needed. For some smaller query items this can work
2513  * quite well.
2514  *
2515  */
2516 struct drm_i915_query {
2517 	/** @num_items: The number of elements in the @items_ptr array */
2518 	__u32 num_items;
2519 
2520 	/**
2521 	 * @flags: Unused for now. Must be cleared to zero.
2522 	 */
2523 	__u32 flags;
2524 
2525 	/**
2526 	 * @items_ptr:
2527 	 *
2528 	 * Pointer to an array of struct drm_i915_query_item. The number of
2529 	 * array elements is @num_items.
2530 	 */
2531 	__u64 items_ptr;
2532 };
2533 
2534 /*
2535  * Data written by the kernel with query DRM_I915_QUERY_TOPOLOGY_INFO :
2536  *
2537  * data: contains the 3 pieces of information :
2538  *
2539  * - the slice mask with one bit per slice telling whether a slice is
2540  *   available. The availability of slice X can be queried with the following
2541  *   formula :
2542  *
2543  *           (data[X / 8] >> (X % 8)) & 1
2544  *
2545  * - the subslice mask for each slice with one bit per subslice telling
2546  *   whether a subslice is available. Gen12 has dual-subslices, which are
2547  *   similar to two gen11 subslices. For gen12, this array represents dual-
2548  *   subslices. The availability of subslice Y in slice X can be queried
2549  *   with the following formula :
2550  *
2551  *           (data[subslice_offset +
2552  *                 X * subslice_stride +
2553  *                 Y / 8] >> (Y % 8)) & 1
2554  *
2555  * - the EU mask for each subslice in each slice with one bit per EU telling
2556  *   whether an EU is available. The availability of EU Z in subslice Y in
2557  *   slice X can be queried with the following formula :
2558  *
2559  *           (data[eu_offset +
2560  *                 (X * max_subslices + Y) * eu_stride +
2561  *                 Z / 8] >> (Z % 8)) & 1
2562  */
2563 struct drm_i915_query_topology_info {
2564 	/*
2565 	 * Unused for now. Must be cleared to zero.
2566 	 */
2567 	__u16 flags;
2568 
2569 	__u16 max_slices;
2570 	__u16 max_subslices;
2571 	__u16 max_eus_per_subslice;
2572 
2573 	/*
2574 	 * Offset in data[] at which the subslice masks are stored.
2575 	 */
2576 	__u16 subslice_offset;
2577 
2578 	/*
2579 	 * Stride at which each of the subslice masks for each slice are
2580 	 * stored.
2581 	 */
2582 	__u16 subslice_stride;
2583 
2584 	/*
2585 	 * Offset in data[] at which the EU masks are stored.
2586 	 */
2587 	__u16 eu_offset;
2588 
2589 	/*
2590 	 * Stride at which each of the EU masks for each subslice are stored.
2591 	 */
2592 	__u16 eu_stride;
2593 
2594 	__u8 data[];
2595 };
2596 
2597 /**
2598  * DOC: Engine Discovery uAPI
2599  *
2600  * Engine discovery uAPI is a way of enumerating physical engines present in a
2601  * GPU associated with an open i915 DRM file descriptor. This supersedes the old
2602  * way of using `DRM_IOCTL_I915_GETPARAM` and engine identifiers like
2603  * `I915_PARAM_HAS_BLT`.
2604  *
2605  * The need for this interface came starting with Icelake and newer GPUs, which
2606  * started to establish a pattern of having multiple engines of a same class,
2607  * where not all instances were always completely functionally equivalent.
2608  *
2609  * Entry point for this uapi is `DRM_IOCTL_I915_QUERY` with the
2610  * `DRM_I915_QUERY_ENGINE_INFO` as the queried item id.
2611  *
2612  * Example for getting the list of engines:
2613  *
2614  * .. code-block:: C
2615  *
2616  * 	struct drm_i915_query_engine_info *info;
2617  * 	struct drm_i915_query_item item = {
2618  * 		.query_id = DRM_I915_QUERY_ENGINE_INFO;
2619  * 	};
2620  * 	struct drm_i915_query query = {
2621  * 		.num_items = 1,
2622  * 		.items_ptr = (uintptr_t)&item,
2623  * 	};
2624  * 	int err, i;
2625  *
2626  * 	// First query the size of the blob we need, this needs to be large
2627  * 	// enough to hold our array of engines. The kernel will fill out the
2628  * 	// item.length for us, which is the number of bytes we need.
2629  * 	//
2630  * 	// Alternatively a large buffer can be allocated straight away enabling
2631  * 	// querying in one pass, in which case item.length should contain the
2632  * 	// length of the provided buffer.
2633  * 	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
2634  * 	if (err) ...
2635  *
2636  * 	info = calloc(1, item.length);
2637  * 	// Now that we allocated the required number of bytes, we call the ioctl
2638  * 	// again, this time with the data_ptr pointing to our newly allocated
2639  * 	// blob, which the kernel can then populate with info on all engines.
2640  * 	item.data_ptr = (uintptr_t)&info,
2641  *
2642  * 	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
2643  * 	if (err) ...
2644  *
2645  * 	// We can now access each engine in the array
2646  * 	for (i = 0; i < info->num_engines; i++) {
2647  * 		struct drm_i915_engine_info einfo = info->engines[i];
2648  * 		u16 class = einfo.engine.class;
2649  * 		u16 instance = einfo.engine.instance;
2650  * 		....
2651  * 	}
2652  *
2653  * 	free(info);
2654  *
2655  * Each of the enumerated engines, apart from being defined by its class and
2656  * instance (see `struct i915_engine_class_instance`), also can have flags and
2657  * capabilities defined as documented in i915_drm.h.
2658  *
2659  * For instance video engines which support HEVC encoding will have the
2660  * `I915_VIDEO_CLASS_CAPABILITY_HEVC` capability bit set.
2661  *
2662  * Engine discovery only fully comes to its own when combined with the new way
2663  * of addressing engines when submitting batch buffers using contexts with
2664  * engine maps configured.
2665  */
2666 
2667 /**
2668  * struct drm_i915_engine_info
2669  *
2670  * Describes one engine and it's capabilities as known to the driver.
2671  */
2672 struct drm_i915_engine_info {
2673 	/** @engine: Engine class and instance. */
2674 	struct i915_engine_class_instance engine;
2675 
2676 	/** @rsvd0: Reserved field. */
2677 	__u32 rsvd0;
2678 
2679 	/** @flags: Engine flags. */
2680 	__u64 flags;
2681 
2682 	/** @capabilities: Capabilities of this engine. */
2683 	__u64 capabilities;
2684 #define I915_VIDEO_CLASS_CAPABILITY_HEVC		(1 << 0)
2685 #define I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC	(1 << 1)
2686 
2687 	/** @rsvd1: Reserved fields. */
2688 	__u64 rsvd1[4];
2689 };
2690 
2691 /**
2692  * struct drm_i915_query_engine_info
2693  *
2694  * Engine info query enumerates all engines known to the driver by filling in
2695  * an array of struct drm_i915_engine_info structures.
2696  */
2697 struct drm_i915_query_engine_info {
2698 	/** @num_engines: Number of struct drm_i915_engine_info structs following. */
2699 	__u32 num_engines;
2700 
2701 	/** @rsvd: MBZ */
2702 	__u32 rsvd[3];
2703 
2704 	/** @engines: Marker for drm_i915_engine_info structures. */
2705 	struct drm_i915_engine_info engines[];
2706 };
2707 
2708 /*
2709  * Data written by the kernel with query DRM_I915_QUERY_PERF_CONFIG.
2710  */
2711 struct drm_i915_query_perf_config {
2712 	union {
2713 		/*
2714 		 * When query_item.flags == DRM_I915_QUERY_PERF_CONFIG_LIST, i915 sets
2715 		 * this fields to the number of configurations available.
2716 		 */
2717 		__u64 n_configs;
2718 
2719 		/*
2720 		 * When query_id == DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID,
2721 		 * i915 will use the value in this field as configuration
2722 		 * identifier to decide what data to write into config_ptr.
2723 		 */
2724 		__u64 config;
2725 
2726 		/*
2727 		 * When query_id == DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID,
2728 		 * i915 will use the value in this field as configuration
2729 		 * identifier to decide what data to write into config_ptr.
2730 		 *
2731 		 * String formatted like "%08x-%04x-%04x-%04x-%012x"
2732 		 */
2733 		char uuid[36];
2734 	};
2735 
2736 	/*
2737 	 * Unused for now. Must be cleared to zero.
2738 	 */
2739 	__u32 flags;
2740 
2741 	/*
2742 	 * When query_item.flags == DRM_I915_QUERY_PERF_CONFIG_LIST, i915 will
2743 	 * write an array of __u64 of configuration identifiers.
2744 	 *
2745 	 * When query_item.flags == DRM_I915_QUERY_PERF_CONFIG_DATA, i915 will
2746 	 * write a struct drm_i915_perf_oa_config. If the following fields of
2747 	 * drm_i915_perf_oa_config are set not set to 0, i915 will write into
2748 	 * the associated pointers the values of submitted when the
2749 	 * configuration was created :
2750 	 *
2751 	 *         - n_mux_regs
2752 	 *         - n_boolean_regs
2753 	 *         - n_flex_regs
2754 	 */
2755 	__u8 data[];
2756 };
2757 
2758 /**
2759  * enum drm_i915_gem_memory_class - Supported memory classes
2760  */
2761 enum drm_i915_gem_memory_class {
2762 	/** @I915_MEMORY_CLASS_SYSTEM: System memory */
2763 	I915_MEMORY_CLASS_SYSTEM = 0,
2764 	/** @I915_MEMORY_CLASS_DEVICE: Device local-memory */
2765 	I915_MEMORY_CLASS_DEVICE,
2766 };
2767 
2768 /**
2769  * struct drm_i915_gem_memory_class_instance - Identify particular memory region
2770  */
2771 struct drm_i915_gem_memory_class_instance {
2772 	/** @memory_class: See enum drm_i915_gem_memory_class */
2773 	__u16 memory_class;
2774 
2775 	/** @memory_instance: Which instance */
2776 	__u16 memory_instance;
2777 };
2778 
2779 /**
2780  * struct drm_i915_memory_region_info - Describes one region as known to the
2781  * driver.
2782  *
2783  * Note that we reserve some stuff here for potential future work. As an example
2784  * we might want expose the capabilities for a given region, which could include
2785  * things like if the region is CPU mappable/accessible, what are the supported
2786  * mapping types etc.
2787  *
2788  * Note that to extend struct drm_i915_memory_region_info and struct
2789  * drm_i915_query_memory_regions in the future the plan is to do the following:
2790  *
2791  * .. code-block:: C
2792  *
2793  *	struct drm_i915_memory_region_info {
2794  *		struct drm_i915_gem_memory_class_instance region;
2795  *		union {
2796  *			__u32 rsvd0;
2797  *			__u32 new_thing1;
2798  *		};
2799  *		...
2800  *		union {
2801  *			__u64 rsvd1[8];
2802  *			struct {
2803  *				__u64 new_thing2;
2804  *				__u64 new_thing3;
2805  *				...
2806  *			};
2807  *		};
2808  *	};
2809  *
2810  * With this things should remain source compatible between versions for
2811  * userspace, even as we add new fields.
2812  *
2813  * Note this is using both struct drm_i915_query_item and struct drm_i915_query.
2814  * For this new query we are adding the new query id DRM_I915_QUERY_MEMORY_REGIONS
2815  * at &drm_i915_query_item.query_id.
2816  */
2817 struct drm_i915_memory_region_info {
2818 	/** @region: The class:instance pair encoding */
2819 	struct drm_i915_gem_memory_class_instance region;
2820 
2821 	/** @rsvd0: MBZ */
2822 	__u32 rsvd0;
2823 
2824 	/** @probed_size: Memory probed by the driver (-1 = unknown) */
2825 	__u64 probed_size;
2826 
2827 	/** @unallocated_size: Estimate of memory remaining (-1 = unknown) */
2828 	__u64 unallocated_size;
2829 
2830 	/** @rsvd1: MBZ */
2831 	__u64 rsvd1[8];
2832 };
2833 
2834 /**
2835  * struct drm_i915_query_memory_regions
2836  *
2837  * The region info query enumerates all regions known to the driver by filling
2838  * in an array of struct drm_i915_memory_region_info structures.
2839  *
2840  * Example for getting the list of supported regions:
2841  *
2842  * .. code-block:: C
2843  *
2844  *	struct drm_i915_query_memory_regions *info;
2845  *	struct drm_i915_query_item item = {
2846  *		.query_id = DRM_I915_QUERY_MEMORY_REGIONS;
2847  *	};
2848  *	struct drm_i915_query query = {
2849  *		.num_items = 1,
2850  *		.items_ptr = (uintptr_t)&item,
2851  *	};
2852  *	int err, i;
2853  *
2854  *	// First query the size of the blob we need, this needs to be large
2855  *	// enough to hold our array of regions. The kernel will fill out the
2856  *	// item.length for us, which is the number of bytes we need.
2857  *	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
2858  *	if (err) ...
2859  *
2860  *	info = calloc(1, item.length);
2861  *	// Now that we allocated the required number of bytes, we call the ioctl
2862  *	// again, this time with the data_ptr pointing to our newly allocated
2863  *	// blob, which the kernel can then populate with the all the region info.
2864  *	item.data_ptr = (uintptr_t)&info,
2865  *
2866  *	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
2867  *	if (err) ...
2868  *
2869  *	// We can now access each region in the array
2870  *	for (i = 0; i < info->num_regions; i++) {
2871  *		struct drm_i915_memory_region_info mr = info->regions[i];
2872  *		u16 class = mr.region.class;
2873  *		u16 instance = mr.region.instance;
2874  *
2875  *		....
2876  *	}
2877  *
2878  *	free(info);
2879  */
2880 struct drm_i915_query_memory_regions {
2881 	/** @num_regions: Number of supported regions */
2882 	__u32 num_regions;
2883 
2884 	/** @rsvd: MBZ */
2885 	__u32 rsvd[3];
2886 
2887 	/** @regions: Info about each supported region */
2888 	struct drm_i915_memory_region_info regions[];
2889 };
2890 
2891 /**
2892  * struct drm_i915_gem_create_ext - Existing gem_create behaviour, with added
2893  * extension support using struct i915_user_extension.
2894  *
2895  * Note that in the future we want to have our buffer flags here, at least for
2896  * the stuff that is immutable. Previously we would have two ioctls, one to
2897  * create the object with gem_create, and another to apply various parameters,
2898  * however this creates some ambiguity for the params which are considered
2899  * immutable. Also in general we're phasing out the various SET/GET ioctls.
2900  */
2901 struct drm_i915_gem_create_ext {
2902 	/**
2903 	 * @size: Requested size for the object.
2904 	 *
2905 	 * The (page-aligned) allocated size for the object will be returned.
2906 	 *
2907 	 * Note that for some devices we have might have further minimum
2908 	 * page-size restrictions(larger than 4K), like for device local-memory.
2909 	 * However in general the final size here should always reflect any
2910 	 * rounding up, if for example using the I915_GEM_CREATE_EXT_MEMORY_REGIONS
2911 	 * extension to place the object in device local-memory.
2912 	 */
2913 	__u64 size;
2914 	/**
2915 	 * @handle: Returned handle for the object.
2916 	 *
2917 	 * Object handles are nonzero.
2918 	 */
2919 	__u32 handle;
2920 	/** @flags: MBZ */
2921 	__u32 flags;
2922 	/**
2923 	 * @extensions: The chain of extensions to apply to this object.
2924 	 *
2925 	 * This will be useful in the future when we need to support several
2926 	 * different extensions, and we need to apply more than one when
2927 	 * creating the object. See struct i915_user_extension.
2928 	 *
2929 	 * If we don't supply any extensions then we get the same old gem_create
2930 	 * behaviour.
2931 	 *
2932 	 * For I915_GEM_CREATE_EXT_MEMORY_REGIONS usage see
2933 	 * struct drm_i915_gem_create_ext_memory_regions.
2934 	 */
2935 #define I915_GEM_CREATE_EXT_MEMORY_REGIONS 0
2936 	__u64 extensions;
2937 };
2938 
2939 /**
2940  * struct drm_i915_gem_create_ext_memory_regions - The
2941  * I915_GEM_CREATE_EXT_MEMORY_REGIONS extension.
2942  *
2943  * Set the object with the desired set of placements/regions in priority
2944  * order. Each entry must be unique and supported by the device.
2945  *
2946  * This is provided as an array of struct drm_i915_gem_memory_class_instance, or
2947  * an equivalent layout of class:instance pair encodings. See struct
2948  * drm_i915_query_memory_regions and DRM_I915_QUERY_MEMORY_REGIONS for how to
2949  * query the supported regions for a device.
2950  *
2951  * As an example, on discrete devices, if we wish to set the placement as
2952  * device local-memory we can do something like:
2953  *
2954  * .. code-block:: C
2955  *
2956  *	struct drm_i915_gem_memory_class_instance region_lmem = {
2957  *              .memory_class = I915_MEMORY_CLASS_DEVICE,
2958  *              .memory_instance = 0,
2959  *      };
2960  *      struct drm_i915_gem_create_ext_memory_regions regions = {
2961  *              .base = { .name = I915_GEM_CREATE_EXT_MEMORY_REGIONS },
2962  *              .regions = (uintptr_t)&region_lmem,
2963  *              .num_regions = 1,
2964  *      };
2965  *      struct drm_i915_gem_create_ext create_ext = {
2966  *              .size = 16 * PAGE_SIZE,
2967  *              .extensions = (uintptr_t)&regions,
2968  *      };
2969  *
2970  *      int err = ioctl(fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create_ext);
2971  *      if (err) ...
2972  *
2973  * At which point we get the object handle in &drm_i915_gem_create_ext.handle,
2974  * along with the final object size in &drm_i915_gem_create_ext.size, which
2975  * should account for any rounding up, if required.
2976  */
2977 struct drm_i915_gem_create_ext_memory_regions {
2978 	/** @base: Extension link. See struct i915_user_extension. */
2979 	struct i915_user_extension base;
2980 
2981 	/** @pad: MBZ */
2982 	__u32 pad;
2983 	/** @num_regions: Number of elements in the @regions array. */
2984 	__u32 num_regions;
2985 	/**
2986 	 * @regions: The regions/placements array.
2987 	 *
2988 	 * An array of struct drm_i915_gem_memory_class_instance.
2989 	 */
2990 	__u64 regions;
2991 };
2992 
2993 #if defined(__cplusplus)
2994 }
2995 #endif
2996 
2997 #endif /* _UAPI_I915_DRM_H_ */
2998