xref: /linux/include/uapi/drm/i915_drm.h (revision 577729533cdc4e37a8c230e404a44ad7a3ff4eda)
1 /*
2  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the
14  * next paragraph) shall be included in all copies or substantial portions
15  * of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
20  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
21  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24  *
25  */
26 
27 #ifndef _UAPI_I915_DRM_H_
28 #define _UAPI_I915_DRM_H_
29 
30 #include "drm.h"
31 
32 #if defined(__cplusplus)
33 extern "C" {
34 #endif
35 
36 /* Please note that modifications to all structs defined here are
37  * subject to backwards-compatibility constraints.
38  */
39 
40 /**
41  * DOC: uevents generated by i915 on it's device node
42  *
43  * I915_L3_PARITY_UEVENT - Generated when the driver receives a parity mismatch
44  *	event from the gpu l3 cache. Additional information supplied is ROW,
45  *	BANK, SUBBANK, SLICE of the affected cacheline. Userspace should keep
46  *	track of these events and if a specific cache-line seems to have a
47  *	persistent error remap it with the l3 remapping tool supplied in
48  *	intel-gpu-tools.  The value supplied with the event is always 1.
49  *
50  * I915_ERROR_UEVENT - Generated upon error detection, currently only via
51  *	hangcheck. The error detection event is a good indicator of when things
52  *	began to go badly. The value supplied with the event is a 1 upon error
53  *	detection, and a 0 upon reset completion, signifying no more error
54  *	exists. NOTE: Disabling hangcheck or reset via module parameter will
55  *	cause the related events to not be seen.
56  *
57  * I915_RESET_UEVENT - Event is generated just before an attempt to reset the
58  *	GPU. The value supplied with the event is always 1. NOTE: Disable
59  *	reset via module parameter will cause this event to not be seen.
60  */
61 #define I915_L3_PARITY_UEVENT		"L3_PARITY_ERROR"
62 #define I915_ERROR_UEVENT		"ERROR"
63 #define I915_RESET_UEVENT		"RESET"
64 
65 /**
66  * struct i915_user_extension - Base class for defining a chain of extensions
67  *
68  * Many interfaces need to grow over time. In most cases we can simply
69  * extend the struct and have userspace pass in more data. Another option,
70  * as demonstrated by Vulkan's approach to providing extensions for forward
71  * and backward compatibility, is to use a list of optional structs to
72  * provide those extra details.
73  *
74  * The key advantage to using an extension chain is that it allows us to
75  * redefine the interface more easily than an ever growing struct of
76  * increasing complexity, and for large parts of that interface to be
77  * entirely optional. The downside is more pointer chasing; chasing across
78  * the __user boundary with pointers encapsulated inside u64.
79  *
80  * Example chaining:
81  *
82  * .. code-block:: C
83  *
84  *	struct i915_user_extension ext3 {
85  *		.next_extension = 0, // end
86  *		.name = ...,
87  *	};
88  *	struct i915_user_extension ext2 {
89  *		.next_extension = (uintptr_t)&ext3,
90  *		.name = ...,
91  *	};
92  *	struct i915_user_extension ext1 {
93  *		.next_extension = (uintptr_t)&ext2,
94  *		.name = ...,
95  *	};
96  *
97  * Typically the struct i915_user_extension would be embedded in some uAPI
98  * struct, and in this case we would feed it the head of the chain(i.e ext1),
99  * which would then apply all of the above extensions.
100  *
101  */
102 struct i915_user_extension {
103 	/**
104 	 * @next_extension:
105 	 *
106 	 * Pointer to the next struct i915_user_extension, or zero if the end.
107 	 */
108 	__u64 next_extension;
109 	/**
110 	 * @name: Name of the extension.
111 	 *
112 	 * Note that the name here is just some integer.
113 	 *
114 	 * Also note that the name space for this is not global for the whole
115 	 * driver, but rather its scope/meaning is limited to the specific piece
116 	 * of uAPI which has embedded the struct i915_user_extension.
117 	 */
118 	__u32 name;
119 	/**
120 	 * @flags: MBZ
121 	 *
122 	 * All undefined bits must be zero.
123 	 */
124 	__u32 flags;
125 	/**
126 	 * @rsvd: MBZ
127 	 *
128 	 * Reserved for future use; must be zero.
129 	 */
130 	__u32 rsvd[4];
131 };
132 
133 /*
134  * MOCS indexes used for GPU surfaces, defining the cacheability of the
135  * surface data and the coherency for this data wrt. CPU vs. GPU accesses.
136  */
137 enum i915_mocs_table_index {
138 	/*
139 	 * Not cached anywhere, coherency between CPU and GPU accesses is
140 	 * guaranteed.
141 	 */
142 	I915_MOCS_UNCACHED,
143 	/*
144 	 * Cacheability and coherency controlled by the kernel automatically
145 	 * based on the DRM_I915_GEM_SET_CACHING IOCTL setting and the current
146 	 * usage of the surface (used for display scanout or not).
147 	 */
148 	I915_MOCS_PTE,
149 	/*
150 	 * Cached in all GPU caches available on the platform.
151 	 * Coherency between CPU and GPU accesses to the surface is not
152 	 * guaranteed without extra synchronization.
153 	 */
154 	I915_MOCS_CACHED,
155 };
156 
157 /*
158  * Different engines serve different roles, and there may be more than one
159  * engine serving each role. enum drm_i915_gem_engine_class provides a
160  * classification of the role of the engine, which may be used when requesting
161  * operations to be performed on a certain subset of engines, or for providing
162  * information about that group.
163  */
164 enum drm_i915_gem_engine_class {
165 	I915_ENGINE_CLASS_RENDER	= 0,
166 	I915_ENGINE_CLASS_COPY		= 1,
167 	I915_ENGINE_CLASS_VIDEO		= 2,
168 	I915_ENGINE_CLASS_VIDEO_ENHANCE	= 3,
169 
170 	/* should be kept compact */
171 
172 	I915_ENGINE_CLASS_INVALID	= -1
173 };
174 
175 /*
176  * There may be more than one engine fulfilling any role within the system.
177  * Each engine of a class is given a unique instance number and therefore
178  * any engine can be specified by its class:instance tuplet. APIs that allow
179  * access to any engine in the system will use struct i915_engine_class_instance
180  * for this identification.
181  */
182 struct i915_engine_class_instance {
183 	__u16 engine_class; /* see enum drm_i915_gem_engine_class */
184 	__u16 engine_instance;
185 #define I915_ENGINE_CLASS_INVALID_NONE -1
186 #define I915_ENGINE_CLASS_INVALID_VIRTUAL -2
187 };
188 
189 /**
190  * DOC: perf_events exposed by i915 through /sys/bus/event_sources/drivers/i915
191  *
192  */
193 
194 enum drm_i915_pmu_engine_sample {
195 	I915_SAMPLE_BUSY = 0,
196 	I915_SAMPLE_WAIT = 1,
197 	I915_SAMPLE_SEMA = 2
198 };
199 
200 #define I915_PMU_SAMPLE_BITS (4)
201 #define I915_PMU_SAMPLE_MASK (0xf)
202 #define I915_PMU_SAMPLE_INSTANCE_BITS (8)
203 #define I915_PMU_CLASS_SHIFT \
204 	(I915_PMU_SAMPLE_BITS + I915_PMU_SAMPLE_INSTANCE_BITS)
205 
206 #define __I915_PMU_ENGINE(class, instance, sample) \
207 	((class) << I915_PMU_CLASS_SHIFT | \
208 	(instance) << I915_PMU_SAMPLE_BITS | \
209 	(sample))
210 
211 #define I915_PMU_ENGINE_BUSY(class, instance) \
212 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_BUSY)
213 
214 #define I915_PMU_ENGINE_WAIT(class, instance) \
215 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_WAIT)
216 
217 #define I915_PMU_ENGINE_SEMA(class, instance) \
218 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_SEMA)
219 
220 #define __I915_PMU_OTHER(x) (__I915_PMU_ENGINE(0xff, 0xff, 0xf) + 1 + (x))
221 
222 #define I915_PMU_ACTUAL_FREQUENCY	__I915_PMU_OTHER(0)
223 #define I915_PMU_REQUESTED_FREQUENCY	__I915_PMU_OTHER(1)
224 #define I915_PMU_INTERRUPTS		__I915_PMU_OTHER(2)
225 #define I915_PMU_RC6_RESIDENCY		__I915_PMU_OTHER(3)
226 #define I915_PMU_SOFTWARE_GT_AWAKE_TIME	__I915_PMU_OTHER(4)
227 
228 #define I915_PMU_LAST /* Deprecated - do not use */ I915_PMU_RC6_RESIDENCY
229 
230 /* Each region is a minimum of 16k, and there are at most 255 of them.
231  */
232 #define I915_NR_TEX_REGIONS 255	/* table size 2k - maximum due to use
233 				 * of chars for next/prev indices */
234 #define I915_LOG_MIN_TEX_REGION_SIZE 14
235 
236 typedef struct _drm_i915_init {
237 	enum {
238 		I915_INIT_DMA = 0x01,
239 		I915_CLEANUP_DMA = 0x02,
240 		I915_RESUME_DMA = 0x03
241 	} func;
242 	unsigned int mmio_offset;
243 	int sarea_priv_offset;
244 	unsigned int ring_start;
245 	unsigned int ring_end;
246 	unsigned int ring_size;
247 	unsigned int front_offset;
248 	unsigned int back_offset;
249 	unsigned int depth_offset;
250 	unsigned int w;
251 	unsigned int h;
252 	unsigned int pitch;
253 	unsigned int pitch_bits;
254 	unsigned int back_pitch;
255 	unsigned int depth_pitch;
256 	unsigned int cpp;
257 	unsigned int chipset;
258 } drm_i915_init_t;
259 
260 typedef struct _drm_i915_sarea {
261 	struct drm_tex_region texList[I915_NR_TEX_REGIONS + 1];
262 	int last_upload;	/* last time texture was uploaded */
263 	int last_enqueue;	/* last time a buffer was enqueued */
264 	int last_dispatch;	/* age of the most recently dispatched buffer */
265 	int ctxOwner;		/* last context to upload state */
266 	int texAge;
267 	int pf_enabled;		/* is pageflipping allowed? */
268 	int pf_active;
269 	int pf_current_page;	/* which buffer is being displayed? */
270 	int perf_boxes;		/* performance boxes to be displayed */
271 	int width, height;      /* screen size in pixels */
272 
273 	drm_handle_t front_handle;
274 	int front_offset;
275 	int front_size;
276 
277 	drm_handle_t back_handle;
278 	int back_offset;
279 	int back_size;
280 
281 	drm_handle_t depth_handle;
282 	int depth_offset;
283 	int depth_size;
284 
285 	drm_handle_t tex_handle;
286 	int tex_offset;
287 	int tex_size;
288 	int log_tex_granularity;
289 	int pitch;
290 	int rotation;           /* 0, 90, 180 or 270 */
291 	int rotated_offset;
292 	int rotated_size;
293 	int rotated_pitch;
294 	int virtualX, virtualY;
295 
296 	unsigned int front_tiled;
297 	unsigned int back_tiled;
298 	unsigned int depth_tiled;
299 	unsigned int rotated_tiled;
300 	unsigned int rotated2_tiled;
301 
302 	int pipeA_x;
303 	int pipeA_y;
304 	int pipeA_w;
305 	int pipeA_h;
306 	int pipeB_x;
307 	int pipeB_y;
308 	int pipeB_w;
309 	int pipeB_h;
310 
311 	/* fill out some space for old userspace triple buffer */
312 	drm_handle_t unused_handle;
313 	__u32 unused1, unused2, unused3;
314 
315 	/* buffer object handles for static buffers. May change
316 	 * over the lifetime of the client.
317 	 */
318 	__u32 front_bo_handle;
319 	__u32 back_bo_handle;
320 	__u32 unused_bo_handle;
321 	__u32 depth_bo_handle;
322 
323 } drm_i915_sarea_t;
324 
325 /* due to userspace building against these headers we need some compat here */
326 #define planeA_x pipeA_x
327 #define planeA_y pipeA_y
328 #define planeA_w pipeA_w
329 #define planeA_h pipeA_h
330 #define planeB_x pipeB_x
331 #define planeB_y pipeB_y
332 #define planeB_w pipeB_w
333 #define planeB_h pipeB_h
334 
335 /* Flags for perf_boxes
336  */
337 #define I915_BOX_RING_EMPTY    0x1
338 #define I915_BOX_FLIP          0x2
339 #define I915_BOX_WAIT          0x4
340 #define I915_BOX_TEXTURE_LOAD  0x8
341 #define I915_BOX_LOST_CONTEXT  0x10
342 
343 /*
344  * i915 specific ioctls.
345  *
346  * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie
347  * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset
348  * against DRM_COMMAND_BASE and should be between [0x0, 0x60).
349  */
350 #define DRM_I915_INIT		0x00
351 #define DRM_I915_FLUSH		0x01
352 #define DRM_I915_FLIP		0x02
353 #define DRM_I915_BATCHBUFFER	0x03
354 #define DRM_I915_IRQ_EMIT	0x04
355 #define DRM_I915_IRQ_WAIT	0x05
356 #define DRM_I915_GETPARAM	0x06
357 #define DRM_I915_SETPARAM	0x07
358 #define DRM_I915_ALLOC		0x08
359 #define DRM_I915_FREE		0x09
360 #define DRM_I915_INIT_HEAP	0x0a
361 #define DRM_I915_CMDBUFFER	0x0b
362 #define DRM_I915_DESTROY_HEAP	0x0c
363 #define DRM_I915_SET_VBLANK_PIPE	0x0d
364 #define DRM_I915_GET_VBLANK_PIPE	0x0e
365 #define DRM_I915_VBLANK_SWAP	0x0f
366 #define DRM_I915_HWS_ADDR	0x11
367 #define DRM_I915_GEM_INIT	0x13
368 #define DRM_I915_GEM_EXECBUFFER	0x14
369 #define DRM_I915_GEM_PIN	0x15
370 #define DRM_I915_GEM_UNPIN	0x16
371 #define DRM_I915_GEM_BUSY	0x17
372 #define DRM_I915_GEM_THROTTLE	0x18
373 #define DRM_I915_GEM_ENTERVT	0x19
374 #define DRM_I915_GEM_LEAVEVT	0x1a
375 #define DRM_I915_GEM_CREATE	0x1b
376 #define DRM_I915_GEM_PREAD	0x1c
377 #define DRM_I915_GEM_PWRITE	0x1d
378 #define DRM_I915_GEM_MMAP	0x1e
379 #define DRM_I915_GEM_SET_DOMAIN	0x1f
380 #define DRM_I915_GEM_SW_FINISH	0x20
381 #define DRM_I915_GEM_SET_TILING	0x21
382 #define DRM_I915_GEM_GET_TILING	0x22
383 #define DRM_I915_GEM_GET_APERTURE 0x23
384 #define DRM_I915_GEM_MMAP_GTT	0x24
385 #define DRM_I915_GET_PIPE_FROM_CRTC_ID	0x25
386 #define DRM_I915_GEM_MADVISE	0x26
387 #define DRM_I915_OVERLAY_PUT_IMAGE	0x27
388 #define DRM_I915_OVERLAY_ATTRS	0x28
389 #define DRM_I915_GEM_EXECBUFFER2	0x29
390 #define DRM_I915_GEM_EXECBUFFER2_WR	DRM_I915_GEM_EXECBUFFER2
391 #define DRM_I915_GET_SPRITE_COLORKEY	0x2a
392 #define DRM_I915_SET_SPRITE_COLORKEY	0x2b
393 #define DRM_I915_GEM_WAIT	0x2c
394 #define DRM_I915_GEM_CONTEXT_CREATE	0x2d
395 #define DRM_I915_GEM_CONTEXT_DESTROY	0x2e
396 #define DRM_I915_GEM_SET_CACHING	0x2f
397 #define DRM_I915_GEM_GET_CACHING	0x30
398 #define DRM_I915_REG_READ		0x31
399 #define DRM_I915_GET_RESET_STATS	0x32
400 #define DRM_I915_GEM_USERPTR		0x33
401 #define DRM_I915_GEM_CONTEXT_GETPARAM	0x34
402 #define DRM_I915_GEM_CONTEXT_SETPARAM	0x35
403 #define DRM_I915_PERF_OPEN		0x36
404 #define DRM_I915_PERF_ADD_CONFIG	0x37
405 #define DRM_I915_PERF_REMOVE_CONFIG	0x38
406 #define DRM_I915_QUERY			0x39
407 #define DRM_I915_GEM_VM_CREATE		0x3a
408 #define DRM_I915_GEM_VM_DESTROY		0x3b
409 #define DRM_I915_GEM_CREATE_EXT		0x3c
410 /* Must be kept compact -- no holes */
411 
412 #define DRM_IOCTL_I915_INIT		DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT, drm_i915_init_t)
413 #define DRM_IOCTL_I915_FLUSH		DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLUSH)
414 #define DRM_IOCTL_I915_FLIP		DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLIP)
415 #define DRM_IOCTL_I915_BATCHBUFFER	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_BATCHBUFFER, drm_i915_batchbuffer_t)
416 #define DRM_IOCTL_I915_IRQ_EMIT         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_IRQ_EMIT, drm_i915_irq_emit_t)
417 #define DRM_IOCTL_I915_IRQ_WAIT         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_IRQ_WAIT, drm_i915_irq_wait_t)
418 #define DRM_IOCTL_I915_GETPARAM         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GETPARAM, drm_i915_getparam_t)
419 #define DRM_IOCTL_I915_SETPARAM         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SETPARAM, drm_i915_setparam_t)
420 #define DRM_IOCTL_I915_ALLOC            DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_ALLOC, drm_i915_mem_alloc_t)
421 #define DRM_IOCTL_I915_FREE             DRM_IOW( DRM_COMMAND_BASE + DRM_I915_FREE, drm_i915_mem_free_t)
422 #define DRM_IOCTL_I915_INIT_HEAP        DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT_HEAP, drm_i915_mem_init_heap_t)
423 #define DRM_IOCTL_I915_CMDBUFFER	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_CMDBUFFER, drm_i915_cmdbuffer_t)
424 #define DRM_IOCTL_I915_DESTROY_HEAP	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_DESTROY_HEAP, drm_i915_mem_destroy_heap_t)
425 #define DRM_IOCTL_I915_SET_VBLANK_PIPE	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
426 #define DRM_IOCTL_I915_GET_VBLANK_PIPE	DRM_IOR( DRM_COMMAND_BASE + DRM_I915_GET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
427 #define DRM_IOCTL_I915_VBLANK_SWAP	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_VBLANK_SWAP, drm_i915_vblank_swap_t)
428 #define DRM_IOCTL_I915_HWS_ADDR		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_HWS_ADDR, struct drm_i915_gem_init)
429 #define DRM_IOCTL_I915_GEM_INIT		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_INIT, struct drm_i915_gem_init)
430 #define DRM_IOCTL_I915_GEM_EXECBUFFER	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER, struct drm_i915_gem_execbuffer)
431 #define DRM_IOCTL_I915_GEM_EXECBUFFER2	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2, struct drm_i915_gem_execbuffer2)
432 #define DRM_IOCTL_I915_GEM_EXECBUFFER2_WR	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2_WR, struct drm_i915_gem_execbuffer2)
433 #define DRM_IOCTL_I915_GEM_PIN		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_PIN, struct drm_i915_gem_pin)
434 #define DRM_IOCTL_I915_GEM_UNPIN	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_UNPIN, struct drm_i915_gem_unpin)
435 #define DRM_IOCTL_I915_GEM_BUSY		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_BUSY, struct drm_i915_gem_busy)
436 #define DRM_IOCTL_I915_GEM_SET_CACHING		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_SET_CACHING, struct drm_i915_gem_caching)
437 #define DRM_IOCTL_I915_GEM_GET_CACHING		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_GET_CACHING, struct drm_i915_gem_caching)
438 #define DRM_IOCTL_I915_GEM_THROTTLE	DRM_IO ( DRM_COMMAND_BASE + DRM_I915_GEM_THROTTLE)
439 #define DRM_IOCTL_I915_GEM_ENTERVT	DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_ENTERVT)
440 #define DRM_IOCTL_I915_GEM_LEAVEVT	DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_LEAVEVT)
441 #define DRM_IOCTL_I915_GEM_CREATE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE, struct drm_i915_gem_create)
442 #define DRM_IOCTL_I915_GEM_CREATE_EXT	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE_EXT, struct drm_i915_gem_create_ext)
443 #define DRM_IOCTL_I915_GEM_PREAD	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PREAD, struct drm_i915_gem_pread)
444 #define DRM_IOCTL_I915_GEM_PWRITE	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PWRITE, struct drm_i915_gem_pwrite)
445 #define DRM_IOCTL_I915_GEM_MMAP		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP, struct drm_i915_gem_mmap)
446 #define DRM_IOCTL_I915_GEM_MMAP_GTT	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_gtt)
447 #define DRM_IOCTL_I915_GEM_MMAP_OFFSET	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_offset)
448 #define DRM_IOCTL_I915_GEM_SET_DOMAIN	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SET_DOMAIN, struct drm_i915_gem_set_domain)
449 #define DRM_IOCTL_I915_GEM_SW_FINISH	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SW_FINISH, struct drm_i915_gem_sw_finish)
450 #define DRM_IOCTL_I915_GEM_SET_TILING	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_SET_TILING, struct drm_i915_gem_set_tiling)
451 #define DRM_IOCTL_I915_GEM_GET_TILING	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_TILING, struct drm_i915_gem_get_tiling)
452 #define DRM_IOCTL_I915_GEM_GET_APERTURE	DRM_IOR  (DRM_COMMAND_BASE + DRM_I915_GEM_GET_APERTURE, struct drm_i915_gem_get_aperture)
453 #define DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_PIPE_FROM_CRTC_ID, struct drm_i915_get_pipe_from_crtc_id)
454 #define DRM_IOCTL_I915_GEM_MADVISE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MADVISE, struct drm_i915_gem_madvise)
455 #define DRM_IOCTL_I915_OVERLAY_PUT_IMAGE	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_OVERLAY_PUT_IMAGE, struct drm_intel_overlay_put_image)
456 #define DRM_IOCTL_I915_OVERLAY_ATTRS	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_OVERLAY_ATTRS, struct drm_intel_overlay_attrs)
457 #define DRM_IOCTL_I915_SET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_SET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
458 #define DRM_IOCTL_I915_GET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
459 #define DRM_IOCTL_I915_GEM_WAIT		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_WAIT, struct drm_i915_gem_wait)
460 #define DRM_IOCTL_I915_GEM_CONTEXT_CREATE	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create)
461 #define DRM_IOCTL_I915_GEM_CONTEXT_CREATE_EXT	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create_ext)
462 #define DRM_IOCTL_I915_GEM_CONTEXT_DESTROY	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_DESTROY, struct drm_i915_gem_context_destroy)
463 #define DRM_IOCTL_I915_REG_READ			DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_REG_READ, struct drm_i915_reg_read)
464 #define DRM_IOCTL_I915_GET_RESET_STATS		DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GET_RESET_STATS, struct drm_i915_reset_stats)
465 #define DRM_IOCTL_I915_GEM_USERPTR			DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_USERPTR, struct drm_i915_gem_userptr)
466 #define DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_GETPARAM, struct drm_i915_gem_context_param)
467 #define DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_SETPARAM, struct drm_i915_gem_context_param)
468 #define DRM_IOCTL_I915_PERF_OPEN	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_OPEN, struct drm_i915_perf_open_param)
469 #define DRM_IOCTL_I915_PERF_ADD_CONFIG	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_ADD_CONFIG, struct drm_i915_perf_oa_config)
470 #define DRM_IOCTL_I915_PERF_REMOVE_CONFIG	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_REMOVE_CONFIG, __u64)
471 #define DRM_IOCTL_I915_QUERY			DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_QUERY, struct drm_i915_query)
472 #define DRM_IOCTL_I915_GEM_VM_CREATE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_VM_CREATE, struct drm_i915_gem_vm_control)
473 #define DRM_IOCTL_I915_GEM_VM_DESTROY	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_VM_DESTROY, struct drm_i915_gem_vm_control)
474 
475 /* Allow drivers to submit batchbuffers directly to hardware, relying
476  * on the security mechanisms provided by hardware.
477  */
478 typedef struct drm_i915_batchbuffer {
479 	int start;		/* agp offset */
480 	int used;		/* nr bytes in use */
481 	int DR1;		/* hw flags for GFX_OP_DRAWRECT_INFO */
482 	int DR4;		/* window origin for GFX_OP_DRAWRECT_INFO */
483 	int num_cliprects;	/* mulitpass with multiple cliprects? */
484 	struct drm_clip_rect __user *cliprects;	/* pointer to userspace cliprects */
485 } drm_i915_batchbuffer_t;
486 
487 /* As above, but pass a pointer to userspace buffer which can be
488  * validated by the kernel prior to sending to hardware.
489  */
490 typedef struct _drm_i915_cmdbuffer {
491 	char __user *buf;	/* pointer to userspace command buffer */
492 	int sz;			/* nr bytes in buf */
493 	int DR1;		/* hw flags for GFX_OP_DRAWRECT_INFO */
494 	int DR4;		/* window origin for GFX_OP_DRAWRECT_INFO */
495 	int num_cliprects;	/* mulitpass with multiple cliprects? */
496 	struct drm_clip_rect __user *cliprects;	/* pointer to userspace cliprects */
497 } drm_i915_cmdbuffer_t;
498 
499 /* Userspace can request & wait on irq's:
500  */
501 typedef struct drm_i915_irq_emit {
502 	int __user *irq_seq;
503 } drm_i915_irq_emit_t;
504 
505 typedef struct drm_i915_irq_wait {
506 	int irq_seq;
507 } drm_i915_irq_wait_t;
508 
509 /*
510  * Different modes of per-process Graphics Translation Table,
511  * see I915_PARAM_HAS_ALIASING_PPGTT
512  */
513 #define I915_GEM_PPGTT_NONE	0
514 #define I915_GEM_PPGTT_ALIASING	1
515 #define I915_GEM_PPGTT_FULL	2
516 
517 /* Ioctl to query kernel params:
518  */
519 #define I915_PARAM_IRQ_ACTIVE            1
520 #define I915_PARAM_ALLOW_BATCHBUFFER     2
521 #define I915_PARAM_LAST_DISPATCH         3
522 #define I915_PARAM_CHIPSET_ID            4
523 #define I915_PARAM_HAS_GEM               5
524 #define I915_PARAM_NUM_FENCES_AVAIL      6
525 #define I915_PARAM_HAS_OVERLAY           7
526 #define I915_PARAM_HAS_PAGEFLIPPING	 8
527 #define I915_PARAM_HAS_EXECBUF2          9
528 #define I915_PARAM_HAS_BSD		 10
529 #define I915_PARAM_HAS_BLT		 11
530 #define I915_PARAM_HAS_RELAXED_FENCING	 12
531 #define I915_PARAM_HAS_COHERENT_RINGS	 13
532 #define I915_PARAM_HAS_EXEC_CONSTANTS	 14
533 #define I915_PARAM_HAS_RELAXED_DELTA	 15
534 #define I915_PARAM_HAS_GEN7_SOL_RESET	 16
535 #define I915_PARAM_HAS_LLC     	 	 17
536 #define I915_PARAM_HAS_ALIASING_PPGTT	 18
537 #define I915_PARAM_HAS_WAIT_TIMEOUT	 19
538 #define I915_PARAM_HAS_SEMAPHORES	 20
539 #define I915_PARAM_HAS_PRIME_VMAP_FLUSH	 21
540 #define I915_PARAM_HAS_VEBOX		 22
541 #define I915_PARAM_HAS_SECURE_BATCHES	 23
542 #define I915_PARAM_HAS_PINNED_BATCHES	 24
543 #define I915_PARAM_HAS_EXEC_NO_RELOC	 25
544 #define I915_PARAM_HAS_EXEC_HANDLE_LUT   26
545 #define I915_PARAM_HAS_WT     	 	 27
546 #define I915_PARAM_CMD_PARSER_VERSION	 28
547 #define I915_PARAM_HAS_COHERENT_PHYS_GTT 29
548 #define I915_PARAM_MMAP_VERSION          30
549 #define I915_PARAM_HAS_BSD2		 31
550 #define I915_PARAM_REVISION              32
551 #define I915_PARAM_SUBSLICE_TOTAL	 33
552 #define I915_PARAM_EU_TOTAL		 34
553 #define I915_PARAM_HAS_GPU_RESET	 35
554 #define I915_PARAM_HAS_RESOURCE_STREAMER 36
555 #define I915_PARAM_HAS_EXEC_SOFTPIN	 37
556 #define I915_PARAM_HAS_POOLED_EU	 38
557 #define I915_PARAM_MIN_EU_IN_POOL	 39
558 #define I915_PARAM_MMAP_GTT_VERSION	 40
559 
560 /*
561  * Query whether DRM_I915_GEM_EXECBUFFER2 supports user defined execution
562  * priorities and the driver will attempt to execute batches in priority order.
563  * The param returns a capability bitmask, nonzero implies that the scheduler
564  * is enabled, with different features present according to the mask.
565  *
566  * The initial priority for each batch is supplied by the context and is
567  * controlled via I915_CONTEXT_PARAM_PRIORITY.
568  */
569 #define I915_PARAM_HAS_SCHEDULER	 41
570 #define   I915_SCHEDULER_CAP_ENABLED	(1ul << 0)
571 #define   I915_SCHEDULER_CAP_PRIORITY	(1ul << 1)
572 #define   I915_SCHEDULER_CAP_PREEMPTION	(1ul << 2)
573 #define   I915_SCHEDULER_CAP_SEMAPHORES	(1ul << 3)
574 #define   I915_SCHEDULER_CAP_ENGINE_BUSY_STATS	(1ul << 4)
575 
576 #define I915_PARAM_HUC_STATUS		 42
577 
578 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to opt-out of
579  * synchronisation with implicit fencing on individual objects.
580  * See EXEC_OBJECT_ASYNC.
581  */
582 #define I915_PARAM_HAS_EXEC_ASYNC	 43
583 
584 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports explicit fence support -
585  * both being able to pass in a sync_file fd to wait upon before executing,
586  * and being able to return a new sync_file fd that is signaled when the
587  * current request is complete. See I915_EXEC_FENCE_IN and I915_EXEC_FENCE_OUT.
588  */
589 #define I915_PARAM_HAS_EXEC_FENCE	 44
590 
591 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to capture
592  * user specified bufffers for post-mortem debugging of GPU hangs. See
593  * EXEC_OBJECT_CAPTURE.
594  */
595 #define I915_PARAM_HAS_EXEC_CAPTURE	 45
596 
597 #define I915_PARAM_SLICE_MASK		 46
598 
599 /* Assuming it's uniform for each slice, this queries the mask of subslices
600  * per-slice for this system.
601  */
602 #define I915_PARAM_SUBSLICE_MASK	 47
603 
604 /*
605  * Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying the batch buffer
606  * as the first execobject as opposed to the last. See I915_EXEC_BATCH_FIRST.
607  */
608 #define I915_PARAM_HAS_EXEC_BATCH_FIRST	 48
609 
610 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
611  * drm_i915_gem_exec_fence structures.  See I915_EXEC_FENCE_ARRAY.
612  */
613 #define I915_PARAM_HAS_EXEC_FENCE_ARRAY  49
614 
615 /*
616  * Query whether every context (both per-file default and user created) is
617  * isolated (insofar as HW supports). If this parameter is not true, then
618  * freshly created contexts may inherit values from an existing context,
619  * rather than default HW values. If true, it also ensures (insofar as HW
620  * supports) that all state set by this context will not leak to any other
621  * context.
622  *
623  * As not every engine across every gen support contexts, the returned
624  * value reports the support of context isolation for individual engines by
625  * returning a bitmask of each engine class set to true if that class supports
626  * isolation.
627  */
628 #define I915_PARAM_HAS_CONTEXT_ISOLATION 50
629 
630 /* Frequency of the command streamer timestamps given by the *_TIMESTAMP
631  * registers. This used to be fixed per platform but from CNL onwards, this
632  * might vary depending on the parts.
633  */
634 #define I915_PARAM_CS_TIMESTAMP_FREQUENCY 51
635 
636 /*
637  * Once upon a time we supposed that writes through the GGTT would be
638  * immediately in physical memory (once flushed out of the CPU path). However,
639  * on a few different processors and chipsets, this is not necessarily the case
640  * as the writes appear to be buffered internally. Thus a read of the backing
641  * storage (physical memory) via a different path (with different physical tags
642  * to the indirect write via the GGTT) will see stale values from before
643  * the GGTT write. Inside the kernel, we can for the most part keep track of
644  * the different read/write domains in use (e.g. set-domain), but the assumption
645  * of coherency is baked into the ABI, hence reporting its true state in this
646  * parameter.
647  *
648  * Reports true when writes via mmap_gtt are immediately visible following an
649  * lfence to flush the WCB.
650  *
651  * Reports false when writes via mmap_gtt are indeterminately delayed in an in
652  * internal buffer and are _not_ immediately visible to third parties accessing
653  * directly via mmap_cpu/mmap_wc. Use of mmap_gtt as part of an IPC
654  * communications channel when reporting false is strongly disadvised.
655  */
656 #define I915_PARAM_MMAP_GTT_COHERENT	52
657 
658 /*
659  * Query whether DRM_I915_GEM_EXECBUFFER2 supports coordination of parallel
660  * execution through use of explicit fence support.
661  * See I915_EXEC_FENCE_OUT and I915_EXEC_FENCE_SUBMIT.
662  */
663 #define I915_PARAM_HAS_EXEC_SUBMIT_FENCE 53
664 
665 /*
666  * Revision of the i915-perf uAPI. The value returned helps determine what
667  * i915-perf features are available. See drm_i915_perf_property_id.
668  */
669 #define I915_PARAM_PERF_REVISION	54
670 
671 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
672  * timeline syncobj through drm_i915_gem_execbuffer_ext_timeline_fences. See
673  * I915_EXEC_USE_EXTENSIONS.
674  */
675 #define I915_PARAM_HAS_EXEC_TIMELINE_FENCES 55
676 
677 /* Must be kept compact -- no holes and well documented */
678 
679 typedef struct drm_i915_getparam {
680 	__s32 param;
681 	/*
682 	 * WARNING: Using pointers instead of fixed-size u64 means we need to write
683 	 * compat32 code. Don't repeat this mistake.
684 	 */
685 	int __user *value;
686 } drm_i915_getparam_t;
687 
688 /* Ioctl to set kernel params:
689  */
690 #define I915_SETPARAM_USE_MI_BATCHBUFFER_START            1
691 #define I915_SETPARAM_TEX_LRU_LOG_GRANULARITY             2
692 #define I915_SETPARAM_ALLOW_BATCHBUFFER                   3
693 #define I915_SETPARAM_NUM_USED_FENCES                     4
694 /* Must be kept compact -- no holes */
695 
696 typedef struct drm_i915_setparam {
697 	int param;
698 	int value;
699 } drm_i915_setparam_t;
700 
701 /* A memory manager for regions of shared memory:
702  */
703 #define I915_MEM_REGION_AGP 1
704 
705 typedef struct drm_i915_mem_alloc {
706 	int region;
707 	int alignment;
708 	int size;
709 	int __user *region_offset;	/* offset from start of fb or agp */
710 } drm_i915_mem_alloc_t;
711 
712 typedef struct drm_i915_mem_free {
713 	int region;
714 	int region_offset;
715 } drm_i915_mem_free_t;
716 
717 typedef struct drm_i915_mem_init_heap {
718 	int region;
719 	int size;
720 	int start;
721 } drm_i915_mem_init_heap_t;
722 
723 /* Allow memory manager to be torn down and re-initialized (eg on
724  * rotate):
725  */
726 typedef struct drm_i915_mem_destroy_heap {
727 	int region;
728 } drm_i915_mem_destroy_heap_t;
729 
730 /* Allow X server to configure which pipes to monitor for vblank signals
731  */
732 #define	DRM_I915_VBLANK_PIPE_A	1
733 #define	DRM_I915_VBLANK_PIPE_B	2
734 
735 typedef struct drm_i915_vblank_pipe {
736 	int pipe;
737 } drm_i915_vblank_pipe_t;
738 
739 /* Schedule buffer swap at given vertical blank:
740  */
741 typedef struct drm_i915_vblank_swap {
742 	drm_drawable_t drawable;
743 	enum drm_vblank_seq_type seqtype;
744 	unsigned int sequence;
745 } drm_i915_vblank_swap_t;
746 
747 typedef struct drm_i915_hws_addr {
748 	__u64 addr;
749 } drm_i915_hws_addr_t;
750 
751 struct drm_i915_gem_init {
752 	/**
753 	 * Beginning offset in the GTT to be managed by the DRM memory
754 	 * manager.
755 	 */
756 	__u64 gtt_start;
757 	/**
758 	 * Ending offset in the GTT to be managed by the DRM memory
759 	 * manager.
760 	 */
761 	__u64 gtt_end;
762 };
763 
764 struct drm_i915_gem_create {
765 	/**
766 	 * Requested size for the object.
767 	 *
768 	 * The (page-aligned) allocated size for the object will be returned.
769 	 */
770 	__u64 size;
771 	/**
772 	 * Returned handle for the object.
773 	 *
774 	 * Object handles are nonzero.
775 	 */
776 	__u32 handle;
777 	__u32 pad;
778 };
779 
780 struct drm_i915_gem_pread {
781 	/** Handle for the object being read. */
782 	__u32 handle;
783 	__u32 pad;
784 	/** Offset into the object to read from */
785 	__u64 offset;
786 	/** Length of data to read */
787 	__u64 size;
788 	/**
789 	 * Pointer to write the data into.
790 	 *
791 	 * This is a fixed-size type for 32/64 compatibility.
792 	 */
793 	__u64 data_ptr;
794 };
795 
796 struct drm_i915_gem_pwrite {
797 	/** Handle for the object being written to. */
798 	__u32 handle;
799 	__u32 pad;
800 	/** Offset into the object to write to */
801 	__u64 offset;
802 	/** Length of data to write */
803 	__u64 size;
804 	/**
805 	 * Pointer to read the data from.
806 	 *
807 	 * This is a fixed-size type for 32/64 compatibility.
808 	 */
809 	__u64 data_ptr;
810 };
811 
812 struct drm_i915_gem_mmap {
813 	/** Handle for the object being mapped. */
814 	__u32 handle;
815 	__u32 pad;
816 	/** Offset in the object to map. */
817 	__u64 offset;
818 	/**
819 	 * Length of data to map.
820 	 *
821 	 * The value will be page-aligned.
822 	 */
823 	__u64 size;
824 	/**
825 	 * Returned pointer the data was mapped at.
826 	 *
827 	 * This is a fixed-size type for 32/64 compatibility.
828 	 */
829 	__u64 addr_ptr;
830 
831 	/**
832 	 * Flags for extended behaviour.
833 	 *
834 	 * Added in version 2.
835 	 */
836 	__u64 flags;
837 #define I915_MMAP_WC 0x1
838 };
839 
840 struct drm_i915_gem_mmap_gtt {
841 	/** Handle for the object being mapped. */
842 	__u32 handle;
843 	__u32 pad;
844 	/**
845 	 * Fake offset to use for subsequent mmap call
846 	 *
847 	 * This is a fixed-size type for 32/64 compatibility.
848 	 */
849 	__u64 offset;
850 };
851 
852 struct drm_i915_gem_mmap_offset {
853 	/** Handle for the object being mapped. */
854 	__u32 handle;
855 	__u32 pad;
856 	/**
857 	 * Fake offset to use for subsequent mmap call
858 	 *
859 	 * This is a fixed-size type for 32/64 compatibility.
860 	 */
861 	__u64 offset;
862 
863 	/**
864 	 * Flags for extended behaviour.
865 	 *
866 	 * It is mandatory that one of the MMAP_OFFSET types
867 	 * (GTT, WC, WB, UC, etc) should be included.
868 	 */
869 	__u64 flags;
870 #define I915_MMAP_OFFSET_GTT 0
871 #define I915_MMAP_OFFSET_WC  1
872 #define I915_MMAP_OFFSET_WB  2
873 #define I915_MMAP_OFFSET_UC  3
874 
875 	/*
876 	 * Zero-terminated chain of extensions.
877 	 *
878 	 * No current extensions defined; mbz.
879 	 */
880 	__u64 extensions;
881 };
882 
883 struct drm_i915_gem_set_domain {
884 	/** Handle for the object */
885 	__u32 handle;
886 
887 	/** New read domains */
888 	__u32 read_domains;
889 
890 	/** New write domain */
891 	__u32 write_domain;
892 };
893 
894 struct drm_i915_gem_sw_finish {
895 	/** Handle for the object */
896 	__u32 handle;
897 };
898 
899 struct drm_i915_gem_relocation_entry {
900 	/**
901 	 * Handle of the buffer being pointed to by this relocation entry.
902 	 *
903 	 * It's appealing to make this be an index into the mm_validate_entry
904 	 * list to refer to the buffer, but this allows the driver to create
905 	 * a relocation list for state buffers and not re-write it per
906 	 * exec using the buffer.
907 	 */
908 	__u32 target_handle;
909 
910 	/**
911 	 * Value to be added to the offset of the target buffer to make up
912 	 * the relocation entry.
913 	 */
914 	__u32 delta;
915 
916 	/** Offset in the buffer the relocation entry will be written into */
917 	__u64 offset;
918 
919 	/**
920 	 * Offset value of the target buffer that the relocation entry was last
921 	 * written as.
922 	 *
923 	 * If the buffer has the same offset as last time, we can skip syncing
924 	 * and writing the relocation.  This value is written back out by
925 	 * the execbuffer ioctl when the relocation is written.
926 	 */
927 	__u64 presumed_offset;
928 
929 	/**
930 	 * Target memory domains read by this operation.
931 	 */
932 	__u32 read_domains;
933 
934 	/**
935 	 * Target memory domains written by this operation.
936 	 *
937 	 * Note that only one domain may be written by the whole
938 	 * execbuffer operation, so that where there are conflicts,
939 	 * the application will get -EINVAL back.
940 	 */
941 	__u32 write_domain;
942 };
943 
944 /** @{
945  * Intel memory domains
946  *
947  * Most of these just align with the various caches in
948  * the system and are used to flush and invalidate as
949  * objects end up cached in different domains.
950  */
951 /** CPU cache */
952 #define I915_GEM_DOMAIN_CPU		0x00000001
953 /** Render cache, used by 2D and 3D drawing */
954 #define I915_GEM_DOMAIN_RENDER		0x00000002
955 /** Sampler cache, used by texture engine */
956 #define I915_GEM_DOMAIN_SAMPLER		0x00000004
957 /** Command queue, used to load batch buffers */
958 #define I915_GEM_DOMAIN_COMMAND		0x00000008
959 /** Instruction cache, used by shader programs */
960 #define I915_GEM_DOMAIN_INSTRUCTION	0x00000010
961 /** Vertex address cache */
962 #define I915_GEM_DOMAIN_VERTEX		0x00000020
963 /** GTT domain - aperture and scanout */
964 #define I915_GEM_DOMAIN_GTT		0x00000040
965 /** WC domain - uncached access */
966 #define I915_GEM_DOMAIN_WC		0x00000080
967 /** @} */
968 
969 struct drm_i915_gem_exec_object {
970 	/**
971 	 * User's handle for a buffer to be bound into the GTT for this
972 	 * operation.
973 	 */
974 	__u32 handle;
975 
976 	/** Number of relocations to be performed on this buffer */
977 	__u32 relocation_count;
978 	/**
979 	 * Pointer to array of struct drm_i915_gem_relocation_entry containing
980 	 * the relocations to be performed in this buffer.
981 	 */
982 	__u64 relocs_ptr;
983 
984 	/** Required alignment in graphics aperture */
985 	__u64 alignment;
986 
987 	/**
988 	 * Returned value of the updated offset of the object, for future
989 	 * presumed_offset writes.
990 	 */
991 	__u64 offset;
992 };
993 
994 /* DRM_IOCTL_I915_GEM_EXECBUFFER was removed in Linux 5.13 */
995 struct drm_i915_gem_execbuffer {
996 	/**
997 	 * List of buffers to be validated with their relocations to be
998 	 * performend on them.
999 	 *
1000 	 * This is a pointer to an array of struct drm_i915_gem_validate_entry.
1001 	 *
1002 	 * These buffers must be listed in an order such that all relocations
1003 	 * a buffer is performing refer to buffers that have already appeared
1004 	 * in the validate list.
1005 	 */
1006 	__u64 buffers_ptr;
1007 	__u32 buffer_count;
1008 
1009 	/** Offset in the batchbuffer to start execution from. */
1010 	__u32 batch_start_offset;
1011 	/** Bytes used in batchbuffer from batch_start_offset */
1012 	__u32 batch_len;
1013 	__u32 DR1;
1014 	__u32 DR4;
1015 	__u32 num_cliprects;
1016 	/** This is a struct drm_clip_rect *cliprects */
1017 	__u64 cliprects_ptr;
1018 };
1019 
1020 struct drm_i915_gem_exec_object2 {
1021 	/**
1022 	 * User's handle for a buffer to be bound into the GTT for this
1023 	 * operation.
1024 	 */
1025 	__u32 handle;
1026 
1027 	/** Number of relocations to be performed on this buffer */
1028 	__u32 relocation_count;
1029 	/**
1030 	 * Pointer to array of struct drm_i915_gem_relocation_entry containing
1031 	 * the relocations to be performed in this buffer.
1032 	 */
1033 	__u64 relocs_ptr;
1034 
1035 	/** Required alignment in graphics aperture */
1036 	__u64 alignment;
1037 
1038 	/**
1039 	 * When the EXEC_OBJECT_PINNED flag is specified this is populated by
1040 	 * the user with the GTT offset at which this object will be pinned.
1041 	 * When the I915_EXEC_NO_RELOC flag is specified this must contain the
1042 	 * presumed_offset of the object.
1043 	 * During execbuffer2 the kernel populates it with the value of the
1044 	 * current GTT offset of the object, for future presumed_offset writes.
1045 	 */
1046 	__u64 offset;
1047 
1048 #define EXEC_OBJECT_NEEDS_FENCE		 (1<<0)
1049 #define EXEC_OBJECT_NEEDS_GTT		 (1<<1)
1050 #define EXEC_OBJECT_WRITE		 (1<<2)
1051 #define EXEC_OBJECT_SUPPORTS_48B_ADDRESS (1<<3)
1052 #define EXEC_OBJECT_PINNED		 (1<<4)
1053 #define EXEC_OBJECT_PAD_TO_SIZE		 (1<<5)
1054 /* The kernel implicitly tracks GPU activity on all GEM objects, and
1055  * synchronises operations with outstanding rendering. This includes
1056  * rendering on other devices if exported via dma-buf. However, sometimes
1057  * this tracking is too coarse and the user knows better. For example,
1058  * if the object is split into non-overlapping ranges shared between different
1059  * clients or engines (i.e. suballocating objects), the implicit tracking
1060  * by kernel assumes that each operation affects the whole object rather
1061  * than an individual range, causing needless synchronisation between clients.
1062  * The kernel will also forgo any CPU cache flushes prior to rendering from
1063  * the object as the client is expected to be also handling such domain
1064  * tracking.
1065  *
1066  * The kernel maintains the implicit tracking in order to manage resources
1067  * used by the GPU - this flag only disables the synchronisation prior to
1068  * rendering with this object in this execbuf.
1069  *
1070  * Opting out of implicit synhronisation requires the user to do its own
1071  * explicit tracking to avoid rendering corruption. See, for example,
1072  * I915_PARAM_HAS_EXEC_FENCE to order execbufs and execute them asynchronously.
1073  */
1074 #define EXEC_OBJECT_ASYNC		(1<<6)
1075 /* Request that the contents of this execobject be copied into the error
1076  * state upon a GPU hang involving this batch for post-mortem debugging.
1077  * These buffers are recorded in no particular order as "user" in
1078  * /sys/class/drm/cardN/error. Query I915_PARAM_HAS_EXEC_CAPTURE to see
1079  * if the kernel supports this flag.
1080  */
1081 #define EXEC_OBJECT_CAPTURE		(1<<7)
1082 /* All remaining bits are MBZ and RESERVED FOR FUTURE USE */
1083 #define __EXEC_OBJECT_UNKNOWN_FLAGS -(EXEC_OBJECT_CAPTURE<<1)
1084 	__u64 flags;
1085 
1086 	union {
1087 		__u64 rsvd1;
1088 		__u64 pad_to_size;
1089 	};
1090 	__u64 rsvd2;
1091 };
1092 
1093 struct drm_i915_gem_exec_fence {
1094 	/**
1095 	 * User's handle for a drm_syncobj to wait on or signal.
1096 	 */
1097 	__u32 handle;
1098 
1099 #define I915_EXEC_FENCE_WAIT            (1<<0)
1100 #define I915_EXEC_FENCE_SIGNAL          (1<<1)
1101 #define __I915_EXEC_FENCE_UNKNOWN_FLAGS (-(I915_EXEC_FENCE_SIGNAL << 1))
1102 	__u32 flags;
1103 };
1104 
1105 /*
1106  * See drm_i915_gem_execbuffer_ext_timeline_fences.
1107  */
1108 #define DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES 0
1109 
1110 /*
1111  * This structure describes an array of drm_syncobj and associated points for
1112  * timeline variants of drm_syncobj. It is invalid to append this structure to
1113  * the execbuf if I915_EXEC_FENCE_ARRAY is set.
1114  */
1115 struct drm_i915_gem_execbuffer_ext_timeline_fences {
1116 	struct i915_user_extension base;
1117 
1118 	/**
1119 	 * Number of element in the handles_ptr & value_ptr arrays.
1120 	 */
1121 	__u64 fence_count;
1122 
1123 	/**
1124 	 * Pointer to an array of struct drm_i915_gem_exec_fence of length
1125 	 * fence_count.
1126 	 */
1127 	__u64 handles_ptr;
1128 
1129 	/**
1130 	 * Pointer to an array of u64 values of length fence_count. Values
1131 	 * must be 0 for a binary drm_syncobj. A Value of 0 for a timeline
1132 	 * drm_syncobj is invalid as it turns a drm_syncobj into a binary one.
1133 	 */
1134 	__u64 values_ptr;
1135 };
1136 
1137 struct drm_i915_gem_execbuffer2 {
1138 	/**
1139 	 * List of gem_exec_object2 structs
1140 	 */
1141 	__u64 buffers_ptr;
1142 	__u32 buffer_count;
1143 
1144 	/** Offset in the batchbuffer to start execution from. */
1145 	__u32 batch_start_offset;
1146 	/** Bytes used in batchbuffer from batch_start_offset */
1147 	__u32 batch_len;
1148 	__u32 DR1;
1149 	__u32 DR4;
1150 	__u32 num_cliprects;
1151 	/**
1152 	 * This is a struct drm_clip_rect *cliprects if I915_EXEC_FENCE_ARRAY
1153 	 * & I915_EXEC_USE_EXTENSIONS are not set.
1154 	 *
1155 	 * If I915_EXEC_FENCE_ARRAY is set, then this is a pointer to an array
1156 	 * of struct drm_i915_gem_exec_fence and num_cliprects is the length
1157 	 * of the array.
1158 	 *
1159 	 * If I915_EXEC_USE_EXTENSIONS is set, then this is a pointer to a
1160 	 * single struct i915_user_extension and num_cliprects is 0.
1161 	 */
1162 	__u64 cliprects_ptr;
1163 #define I915_EXEC_RING_MASK              (0x3f)
1164 #define I915_EXEC_DEFAULT                (0<<0)
1165 #define I915_EXEC_RENDER                 (1<<0)
1166 #define I915_EXEC_BSD                    (2<<0)
1167 #define I915_EXEC_BLT                    (3<<0)
1168 #define I915_EXEC_VEBOX                  (4<<0)
1169 
1170 /* Used for switching the constants addressing mode on gen4+ RENDER ring.
1171  * Gen6+ only supports relative addressing to dynamic state (default) and
1172  * absolute addressing.
1173  *
1174  * These flags are ignored for the BSD and BLT rings.
1175  */
1176 #define I915_EXEC_CONSTANTS_MASK 	(3<<6)
1177 #define I915_EXEC_CONSTANTS_REL_GENERAL (0<<6) /* default */
1178 #define I915_EXEC_CONSTANTS_ABSOLUTE 	(1<<6)
1179 #define I915_EXEC_CONSTANTS_REL_SURFACE (2<<6) /* gen4/5 only */
1180 	__u64 flags;
1181 	__u64 rsvd1; /* now used for context info */
1182 	__u64 rsvd2;
1183 };
1184 
1185 /** Resets the SO write offset registers for transform feedback on gen7. */
1186 #define I915_EXEC_GEN7_SOL_RESET	(1<<8)
1187 
1188 /** Request a privileged ("secure") batch buffer. Note only available for
1189  * DRM_ROOT_ONLY | DRM_MASTER processes.
1190  */
1191 #define I915_EXEC_SECURE		(1<<9)
1192 
1193 /** Inform the kernel that the batch is and will always be pinned. This
1194  * negates the requirement for a workaround to be performed to avoid
1195  * an incoherent CS (such as can be found on 830/845). If this flag is
1196  * not passed, the kernel will endeavour to make sure the batch is
1197  * coherent with the CS before execution. If this flag is passed,
1198  * userspace assumes the responsibility for ensuring the same.
1199  */
1200 #define I915_EXEC_IS_PINNED		(1<<10)
1201 
1202 /** Provide a hint to the kernel that the command stream and auxiliary
1203  * state buffers already holds the correct presumed addresses and so the
1204  * relocation process may be skipped if no buffers need to be moved in
1205  * preparation for the execbuffer.
1206  */
1207 #define I915_EXEC_NO_RELOC		(1<<11)
1208 
1209 /** Use the reloc.handle as an index into the exec object array rather
1210  * than as the per-file handle.
1211  */
1212 #define I915_EXEC_HANDLE_LUT		(1<<12)
1213 
1214 /** Used for switching BSD rings on the platforms with two BSD rings */
1215 #define I915_EXEC_BSD_SHIFT	 (13)
1216 #define I915_EXEC_BSD_MASK	 (3 << I915_EXEC_BSD_SHIFT)
1217 /* default ping-pong mode */
1218 #define I915_EXEC_BSD_DEFAULT	 (0 << I915_EXEC_BSD_SHIFT)
1219 #define I915_EXEC_BSD_RING1	 (1 << I915_EXEC_BSD_SHIFT)
1220 #define I915_EXEC_BSD_RING2	 (2 << I915_EXEC_BSD_SHIFT)
1221 
1222 /** Tell the kernel that the batchbuffer is processed by
1223  *  the resource streamer.
1224  */
1225 #define I915_EXEC_RESOURCE_STREAMER     (1<<15)
1226 
1227 /* Setting I915_EXEC_FENCE_IN implies that lower_32_bits(rsvd2) represent
1228  * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1229  * the batch.
1230  *
1231  * Returns -EINVAL if the sync_file fd cannot be found.
1232  */
1233 #define I915_EXEC_FENCE_IN		(1<<16)
1234 
1235 /* Setting I915_EXEC_FENCE_OUT causes the ioctl to return a sync_file fd
1236  * in the upper_32_bits(rsvd2) upon success. Ownership of the fd is given
1237  * to the caller, and it should be close() after use. (The fd is a regular
1238  * file descriptor and will be cleaned up on process termination. It holds
1239  * a reference to the request, but nothing else.)
1240  *
1241  * The sync_file fd can be combined with other sync_file and passed either
1242  * to execbuf using I915_EXEC_FENCE_IN, to atomic KMS ioctls (so that a flip
1243  * will only occur after this request completes), or to other devices.
1244  *
1245  * Using I915_EXEC_FENCE_OUT requires use of
1246  * DRM_IOCTL_I915_GEM_EXECBUFFER2_WR ioctl so that the result is written
1247  * back to userspace. Failure to do so will cause the out-fence to always
1248  * be reported as zero, and the real fence fd to be leaked.
1249  */
1250 #define I915_EXEC_FENCE_OUT		(1<<17)
1251 
1252 /*
1253  * Traditionally the execbuf ioctl has only considered the final element in
1254  * the execobject[] to be the executable batch. Often though, the client
1255  * will known the batch object prior to construction and being able to place
1256  * it into the execobject[] array first can simplify the relocation tracking.
1257  * Setting I915_EXEC_BATCH_FIRST tells execbuf to use element 0 of the
1258  * execobject[] as the * batch instead (the default is to use the last
1259  * element).
1260  */
1261 #define I915_EXEC_BATCH_FIRST		(1<<18)
1262 
1263 /* Setting I915_FENCE_ARRAY implies that num_cliprects and cliprects_ptr
1264  * define an array of i915_gem_exec_fence structures which specify a set of
1265  * dma fences to wait upon or signal.
1266  */
1267 #define I915_EXEC_FENCE_ARRAY   (1<<19)
1268 
1269 /*
1270  * Setting I915_EXEC_FENCE_SUBMIT implies that lower_32_bits(rsvd2) represent
1271  * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1272  * the batch.
1273  *
1274  * Returns -EINVAL if the sync_file fd cannot be found.
1275  */
1276 #define I915_EXEC_FENCE_SUBMIT		(1 << 20)
1277 
1278 /*
1279  * Setting I915_EXEC_USE_EXTENSIONS implies that
1280  * drm_i915_gem_execbuffer2.cliprects_ptr is treated as a pointer to an linked
1281  * list of i915_user_extension. Each i915_user_extension node is the base of a
1282  * larger structure. The list of supported structures are listed in the
1283  * drm_i915_gem_execbuffer_ext enum.
1284  */
1285 #define I915_EXEC_USE_EXTENSIONS	(1 << 21)
1286 
1287 #define __I915_EXEC_UNKNOWN_FLAGS (-(I915_EXEC_USE_EXTENSIONS << 1))
1288 
1289 #define I915_EXEC_CONTEXT_ID_MASK	(0xffffffff)
1290 #define i915_execbuffer2_set_context_id(eb2, context) \
1291 	(eb2).rsvd1 = context & I915_EXEC_CONTEXT_ID_MASK
1292 #define i915_execbuffer2_get_context_id(eb2) \
1293 	((eb2).rsvd1 & I915_EXEC_CONTEXT_ID_MASK)
1294 
1295 struct drm_i915_gem_pin {
1296 	/** Handle of the buffer to be pinned. */
1297 	__u32 handle;
1298 	__u32 pad;
1299 
1300 	/** alignment required within the aperture */
1301 	__u64 alignment;
1302 
1303 	/** Returned GTT offset of the buffer. */
1304 	__u64 offset;
1305 };
1306 
1307 struct drm_i915_gem_unpin {
1308 	/** Handle of the buffer to be unpinned. */
1309 	__u32 handle;
1310 	__u32 pad;
1311 };
1312 
1313 struct drm_i915_gem_busy {
1314 	/** Handle of the buffer to check for busy */
1315 	__u32 handle;
1316 
1317 	/** Return busy status
1318 	 *
1319 	 * A return of 0 implies that the object is idle (after
1320 	 * having flushed any pending activity), and a non-zero return that
1321 	 * the object is still in-flight on the GPU. (The GPU has not yet
1322 	 * signaled completion for all pending requests that reference the
1323 	 * object.) An object is guaranteed to become idle eventually (so
1324 	 * long as no new GPU commands are executed upon it). Due to the
1325 	 * asynchronous nature of the hardware, an object reported
1326 	 * as busy may become idle before the ioctl is completed.
1327 	 *
1328 	 * Furthermore, if the object is busy, which engine is busy is only
1329 	 * provided as a guide and only indirectly by reporting its class
1330 	 * (there may be more than one engine in each class). There are race
1331 	 * conditions which prevent the report of which engines are busy from
1332 	 * being always accurate.  However, the converse is not true. If the
1333 	 * object is idle, the result of the ioctl, that all engines are idle,
1334 	 * is accurate.
1335 	 *
1336 	 * The returned dword is split into two fields to indicate both
1337 	 * the engine classess on which the object is being read, and the
1338 	 * engine class on which it is currently being written (if any).
1339 	 *
1340 	 * The low word (bits 0:15) indicate if the object is being written
1341 	 * to by any engine (there can only be one, as the GEM implicit
1342 	 * synchronisation rules force writes to be serialised). Only the
1343 	 * engine class (offset by 1, I915_ENGINE_CLASS_RENDER is reported as
1344 	 * 1 not 0 etc) for the last write is reported.
1345 	 *
1346 	 * The high word (bits 16:31) are a bitmask of which engines classes
1347 	 * are currently reading from the object. Multiple engines may be
1348 	 * reading from the object simultaneously.
1349 	 *
1350 	 * The value of each engine class is the same as specified in the
1351 	 * I915_CONTEXT_PARAM_ENGINES context parameter and via perf, i.e.
1352 	 * I915_ENGINE_CLASS_RENDER, I915_ENGINE_CLASS_COPY, etc.
1353 	 * Some hardware may have parallel execution engines, e.g. multiple
1354 	 * media engines, which are mapped to the same class identifier and so
1355 	 * are not separately reported for busyness.
1356 	 *
1357 	 * Caveat emptor:
1358 	 * Only the boolean result of this query is reliable; that is whether
1359 	 * the object is idle or busy. The report of which engines are busy
1360 	 * should be only used as a heuristic.
1361 	 */
1362 	__u32 busy;
1363 };
1364 
1365 /**
1366  * I915_CACHING_NONE
1367  *
1368  * GPU access is not coherent with cpu caches. Default for machines without an
1369  * LLC.
1370  */
1371 #define I915_CACHING_NONE		0
1372 /**
1373  * I915_CACHING_CACHED
1374  *
1375  * GPU access is coherent with cpu caches and furthermore the data is cached in
1376  * last-level caches shared between cpu cores and the gpu GT. Default on
1377  * machines with HAS_LLC.
1378  */
1379 #define I915_CACHING_CACHED		1
1380 /**
1381  * I915_CACHING_DISPLAY
1382  *
1383  * Special GPU caching mode which is coherent with the scanout engines.
1384  * Transparently falls back to I915_CACHING_NONE on platforms where no special
1385  * cache mode (like write-through or gfdt flushing) is available. The kernel
1386  * automatically sets this mode when using a buffer as a scanout target.
1387  * Userspace can manually set this mode to avoid a costly stall and clflush in
1388  * the hotpath of drawing the first frame.
1389  */
1390 #define I915_CACHING_DISPLAY		2
1391 
1392 struct drm_i915_gem_caching {
1393 	/**
1394 	 * Handle of the buffer to set/get the caching level of. */
1395 	__u32 handle;
1396 
1397 	/**
1398 	 * Cacheing level to apply or return value
1399 	 *
1400 	 * bits0-15 are for generic caching control (i.e. the above defined
1401 	 * values). bits16-31 are reserved for platform-specific variations
1402 	 * (e.g. l3$ caching on gen7). */
1403 	__u32 caching;
1404 };
1405 
1406 #define I915_TILING_NONE	0
1407 #define I915_TILING_X		1
1408 #define I915_TILING_Y		2
1409 #define I915_TILING_LAST	I915_TILING_Y
1410 
1411 #define I915_BIT_6_SWIZZLE_NONE		0
1412 #define I915_BIT_6_SWIZZLE_9		1
1413 #define I915_BIT_6_SWIZZLE_9_10		2
1414 #define I915_BIT_6_SWIZZLE_9_11		3
1415 #define I915_BIT_6_SWIZZLE_9_10_11	4
1416 /* Not seen by userland */
1417 #define I915_BIT_6_SWIZZLE_UNKNOWN	5
1418 /* Seen by userland. */
1419 #define I915_BIT_6_SWIZZLE_9_17		6
1420 #define I915_BIT_6_SWIZZLE_9_10_17	7
1421 
1422 struct drm_i915_gem_set_tiling {
1423 	/** Handle of the buffer to have its tiling state updated */
1424 	__u32 handle;
1425 
1426 	/**
1427 	 * Tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1428 	 * I915_TILING_Y).
1429 	 *
1430 	 * This value is to be set on request, and will be updated by the
1431 	 * kernel on successful return with the actual chosen tiling layout.
1432 	 *
1433 	 * The tiling mode may be demoted to I915_TILING_NONE when the system
1434 	 * has bit 6 swizzling that can't be managed correctly by GEM.
1435 	 *
1436 	 * Buffer contents become undefined when changing tiling_mode.
1437 	 */
1438 	__u32 tiling_mode;
1439 
1440 	/**
1441 	 * Stride in bytes for the object when in I915_TILING_X or
1442 	 * I915_TILING_Y.
1443 	 */
1444 	__u32 stride;
1445 
1446 	/**
1447 	 * Returned address bit 6 swizzling required for CPU access through
1448 	 * mmap mapping.
1449 	 */
1450 	__u32 swizzle_mode;
1451 };
1452 
1453 struct drm_i915_gem_get_tiling {
1454 	/** Handle of the buffer to get tiling state for. */
1455 	__u32 handle;
1456 
1457 	/**
1458 	 * Current tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1459 	 * I915_TILING_Y).
1460 	 */
1461 	__u32 tiling_mode;
1462 
1463 	/**
1464 	 * Returned address bit 6 swizzling required for CPU access through
1465 	 * mmap mapping.
1466 	 */
1467 	__u32 swizzle_mode;
1468 
1469 	/**
1470 	 * Returned address bit 6 swizzling required for CPU access through
1471 	 * mmap mapping whilst bound.
1472 	 */
1473 	__u32 phys_swizzle_mode;
1474 };
1475 
1476 struct drm_i915_gem_get_aperture {
1477 	/** Total size of the aperture used by i915_gem_execbuffer, in bytes */
1478 	__u64 aper_size;
1479 
1480 	/**
1481 	 * Available space in the aperture used by i915_gem_execbuffer, in
1482 	 * bytes
1483 	 */
1484 	__u64 aper_available_size;
1485 };
1486 
1487 struct drm_i915_get_pipe_from_crtc_id {
1488 	/** ID of CRTC being requested **/
1489 	__u32 crtc_id;
1490 
1491 	/** pipe of requested CRTC **/
1492 	__u32 pipe;
1493 };
1494 
1495 #define I915_MADV_WILLNEED 0
1496 #define I915_MADV_DONTNEED 1
1497 #define __I915_MADV_PURGED 2 /* internal state */
1498 
1499 struct drm_i915_gem_madvise {
1500 	/** Handle of the buffer to change the backing store advice */
1501 	__u32 handle;
1502 
1503 	/* Advice: either the buffer will be needed again in the near future,
1504 	 *         or wont be and could be discarded under memory pressure.
1505 	 */
1506 	__u32 madv;
1507 
1508 	/** Whether the backing store still exists. */
1509 	__u32 retained;
1510 };
1511 
1512 /* flags */
1513 #define I915_OVERLAY_TYPE_MASK 		0xff
1514 #define I915_OVERLAY_YUV_PLANAR 	0x01
1515 #define I915_OVERLAY_YUV_PACKED 	0x02
1516 #define I915_OVERLAY_RGB		0x03
1517 
1518 #define I915_OVERLAY_DEPTH_MASK		0xff00
1519 #define I915_OVERLAY_RGB24		0x1000
1520 #define I915_OVERLAY_RGB16		0x2000
1521 #define I915_OVERLAY_RGB15		0x3000
1522 #define I915_OVERLAY_YUV422		0x0100
1523 #define I915_OVERLAY_YUV411		0x0200
1524 #define I915_OVERLAY_YUV420		0x0300
1525 #define I915_OVERLAY_YUV410		0x0400
1526 
1527 #define I915_OVERLAY_SWAP_MASK		0xff0000
1528 #define I915_OVERLAY_NO_SWAP		0x000000
1529 #define I915_OVERLAY_UV_SWAP		0x010000
1530 #define I915_OVERLAY_Y_SWAP		0x020000
1531 #define I915_OVERLAY_Y_AND_UV_SWAP	0x030000
1532 
1533 #define I915_OVERLAY_FLAGS_MASK		0xff000000
1534 #define I915_OVERLAY_ENABLE		0x01000000
1535 
1536 struct drm_intel_overlay_put_image {
1537 	/* various flags and src format description */
1538 	__u32 flags;
1539 	/* source picture description */
1540 	__u32 bo_handle;
1541 	/* stride values and offsets are in bytes, buffer relative */
1542 	__u16 stride_Y; /* stride for packed formats */
1543 	__u16 stride_UV;
1544 	__u32 offset_Y; /* offset for packet formats */
1545 	__u32 offset_U;
1546 	__u32 offset_V;
1547 	/* in pixels */
1548 	__u16 src_width;
1549 	__u16 src_height;
1550 	/* to compensate the scaling factors for partially covered surfaces */
1551 	__u16 src_scan_width;
1552 	__u16 src_scan_height;
1553 	/* output crtc description */
1554 	__u32 crtc_id;
1555 	__u16 dst_x;
1556 	__u16 dst_y;
1557 	__u16 dst_width;
1558 	__u16 dst_height;
1559 };
1560 
1561 /* flags */
1562 #define I915_OVERLAY_UPDATE_ATTRS	(1<<0)
1563 #define I915_OVERLAY_UPDATE_GAMMA	(1<<1)
1564 #define I915_OVERLAY_DISABLE_DEST_COLORKEY	(1<<2)
1565 struct drm_intel_overlay_attrs {
1566 	__u32 flags;
1567 	__u32 color_key;
1568 	__s32 brightness;
1569 	__u32 contrast;
1570 	__u32 saturation;
1571 	__u32 gamma0;
1572 	__u32 gamma1;
1573 	__u32 gamma2;
1574 	__u32 gamma3;
1575 	__u32 gamma4;
1576 	__u32 gamma5;
1577 };
1578 
1579 /*
1580  * Intel sprite handling
1581  *
1582  * Color keying works with a min/mask/max tuple.  Both source and destination
1583  * color keying is allowed.
1584  *
1585  * Source keying:
1586  * Sprite pixels within the min & max values, masked against the color channels
1587  * specified in the mask field, will be transparent.  All other pixels will
1588  * be displayed on top of the primary plane.  For RGB surfaces, only the min
1589  * and mask fields will be used; ranged compares are not allowed.
1590  *
1591  * Destination keying:
1592  * Primary plane pixels that match the min value, masked against the color
1593  * channels specified in the mask field, will be replaced by corresponding
1594  * pixels from the sprite plane.
1595  *
1596  * Note that source & destination keying are exclusive; only one can be
1597  * active on a given plane.
1598  */
1599 
1600 #define I915_SET_COLORKEY_NONE		(1<<0) /* Deprecated. Instead set
1601 						* flags==0 to disable colorkeying.
1602 						*/
1603 #define I915_SET_COLORKEY_DESTINATION	(1<<1)
1604 #define I915_SET_COLORKEY_SOURCE	(1<<2)
1605 struct drm_intel_sprite_colorkey {
1606 	__u32 plane_id;
1607 	__u32 min_value;
1608 	__u32 channel_mask;
1609 	__u32 max_value;
1610 	__u32 flags;
1611 };
1612 
1613 struct drm_i915_gem_wait {
1614 	/** Handle of BO we shall wait on */
1615 	__u32 bo_handle;
1616 	__u32 flags;
1617 	/** Number of nanoseconds to wait, Returns time remaining. */
1618 	__s64 timeout_ns;
1619 };
1620 
1621 struct drm_i915_gem_context_create {
1622 	__u32 ctx_id; /* output: id of new context*/
1623 	__u32 pad;
1624 };
1625 
1626 struct drm_i915_gem_context_create_ext {
1627 	__u32 ctx_id; /* output: id of new context*/
1628 	__u32 flags;
1629 #define I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS	(1u << 0)
1630 #define I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE	(1u << 1)
1631 #define I915_CONTEXT_CREATE_FLAGS_UNKNOWN \
1632 	(-(I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE << 1))
1633 	__u64 extensions;
1634 };
1635 
1636 struct drm_i915_gem_context_param {
1637 	__u32 ctx_id;
1638 	__u32 size;
1639 	__u64 param;
1640 #define I915_CONTEXT_PARAM_BAN_PERIOD	0x1
1641 #define I915_CONTEXT_PARAM_NO_ZEROMAP	0x2
1642 #define I915_CONTEXT_PARAM_GTT_SIZE	0x3
1643 #define I915_CONTEXT_PARAM_NO_ERROR_CAPTURE	0x4
1644 #define I915_CONTEXT_PARAM_BANNABLE	0x5
1645 #define I915_CONTEXT_PARAM_PRIORITY	0x6
1646 #define   I915_CONTEXT_MAX_USER_PRIORITY	1023 /* inclusive */
1647 #define   I915_CONTEXT_DEFAULT_PRIORITY		0
1648 #define   I915_CONTEXT_MIN_USER_PRIORITY	-1023 /* inclusive */
1649 	/*
1650 	 * When using the following param, value should be a pointer to
1651 	 * drm_i915_gem_context_param_sseu.
1652 	 */
1653 #define I915_CONTEXT_PARAM_SSEU		0x7
1654 
1655 /*
1656  * Not all clients may want to attempt automatic recover of a context after
1657  * a hang (for example, some clients may only submit very small incremental
1658  * batches relying on known logical state of previous batches which will never
1659  * recover correctly and each attempt will hang), and so would prefer that
1660  * the context is forever banned instead.
1661  *
1662  * If set to false (0), after a reset, subsequent (and in flight) rendering
1663  * from this context is discarded, and the client will need to create a new
1664  * context to use instead.
1665  *
1666  * If set to true (1), the kernel will automatically attempt to recover the
1667  * context by skipping the hanging batch and executing the next batch starting
1668  * from the default context state (discarding the incomplete logical context
1669  * state lost due to the reset).
1670  *
1671  * On creation, all new contexts are marked as recoverable.
1672  */
1673 #define I915_CONTEXT_PARAM_RECOVERABLE	0x8
1674 
1675 	/*
1676 	 * The id of the associated virtual memory address space (ppGTT) of
1677 	 * this context. Can be retrieved and passed to another context
1678 	 * (on the same fd) for both to use the same ppGTT and so share
1679 	 * address layouts, and avoid reloading the page tables on context
1680 	 * switches between themselves.
1681 	 *
1682 	 * See DRM_I915_GEM_VM_CREATE and DRM_I915_GEM_VM_DESTROY.
1683 	 */
1684 #define I915_CONTEXT_PARAM_VM		0x9
1685 
1686 /*
1687  * I915_CONTEXT_PARAM_ENGINES:
1688  *
1689  * Bind this context to operate on this subset of available engines. Henceforth,
1690  * the I915_EXEC_RING selector for DRM_IOCTL_I915_GEM_EXECBUFFER2 operates as
1691  * an index into this array of engines; I915_EXEC_DEFAULT selecting engine[0]
1692  * and upwards. Slots 0...N are filled in using the specified (class, instance).
1693  * Use
1694  *	engine_class: I915_ENGINE_CLASS_INVALID,
1695  *	engine_instance: I915_ENGINE_CLASS_INVALID_NONE
1696  * to specify a gap in the array that can be filled in later, e.g. by a
1697  * virtual engine used for load balancing.
1698  *
1699  * Setting the number of engines bound to the context to 0, by passing a zero
1700  * sized argument, will revert back to default settings.
1701  *
1702  * See struct i915_context_param_engines.
1703  *
1704  * Extensions:
1705  *   i915_context_engines_load_balance (I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE)
1706  *   i915_context_engines_bond (I915_CONTEXT_ENGINES_EXT_BOND)
1707  */
1708 #define I915_CONTEXT_PARAM_ENGINES	0xa
1709 
1710 /*
1711  * I915_CONTEXT_PARAM_PERSISTENCE:
1712  *
1713  * Allow the context and active rendering to survive the process until
1714  * completion. Persistence allows fire-and-forget clients to queue up a
1715  * bunch of work, hand the output over to a display server and then quit.
1716  * If the context is marked as not persistent, upon closing (either via
1717  * an explicit DRM_I915_GEM_CONTEXT_DESTROY or implicitly from file closure
1718  * or process termination), the context and any outstanding requests will be
1719  * cancelled (and exported fences for cancelled requests marked as -EIO).
1720  *
1721  * By default, new contexts allow persistence.
1722  */
1723 #define I915_CONTEXT_PARAM_PERSISTENCE	0xb
1724 
1725 /*
1726  * I915_CONTEXT_PARAM_RINGSIZE:
1727  *
1728  * Sets the size of the CS ringbuffer to use for logical ring contexts. This
1729  * applies a limit of how many batches can be queued to HW before the caller
1730  * is blocked due to lack of space for more commands.
1731  *
1732  * Only reliably possible to be set prior to first use, i.e. during
1733  * construction. At any later point, the current execution must be flushed as
1734  * the ring can only be changed while the context is idle. Note, the ringsize
1735  * can be specified as a constructor property, see
1736  * I915_CONTEXT_CREATE_EXT_SETPARAM, but can also be set later if required.
1737  *
1738  * Only applies to the current set of engine and lost when those engines
1739  * are replaced by a new mapping (see I915_CONTEXT_PARAM_ENGINES).
1740  *
1741  * Must be between 4 - 512 KiB, in intervals of page size [4 KiB].
1742  * Default is 16 KiB.
1743  */
1744 #define I915_CONTEXT_PARAM_RINGSIZE	0xc
1745 /* Must be kept compact -- no holes and well documented */
1746 
1747 	__u64 value;
1748 };
1749 
1750 /*
1751  * Context SSEU programming
1752  *
1753  * It may be necessary for either functional or performance reason to configure
1754  * a context to run with a reduced number of SSEU (where SSEU stands for Slice/
1755  * Sub-slice/EU).
1756  *
1757  * This is done by configuring SSEU configuration using the below
1758  * @struct drm_i915_gem_context_param_sseu for every supported engine which
1759  * userspace intends to use.
1760  *
1761  * Not all GPUs or engines support this functionality in which case an error
1762  * code -ENODEV will be returned.
1763  *
1764  * Also, flexibility of possible SSEU configuration permutations varies between
1765  * GPU generations and software imposed limitations. Requesting such a
1766  * combination will return an error code of -EINVAL.
1767  *
1768  * NOTE: When perf/OA is active the context's SSEU configuration is ignored in
1769  * favour of a single global setting.
1770  */
1771 struct drm_i915_gem_context_param_sseu {
1772 	/*
1773 	 * Engine class & instance to be configured or queried.
1774 	 */
1775 	struct i915_engine_class_instance engine;
1776 
1777 	/*
1778 	 * Unknown flags must be cleared to zero.
1779 	 */
1780 	__u32 flags;
1781 #define I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX (1u << 0)
1782 
1783 	/*
1784 	 * Mask of slices to enable for the context. Valid values are a subset
1785 	 * of the bitmask value returned for I915_PARAM_SLICE_MASK.
1786 	 */
1787 	__u64 slice_mask;
1788 
1789 	/*
1790 	 * Mask of subslices to enable for the context. Valid values are a
1791 	 * subset of the bitmask value return by I915_PARAM_SUBSLICE_MASK.
1792 	 */
1793 	__u64 subslice_mask;
1794 
1795 	/*
1796 	 * Minimum/Maximum number of EUs to enable per subslice for the
1797 	 * context. min_eus_per_subslice must be inferior or equal to
1798 	 * max_eus_per_subslice.
1799 	 */
1800 	__u16 min_eus_per_subslice;
1801 	__u16 max_eus_per_subslice;
1802 
1803 	/*
1804 	 * Unused for now. Must be cleared to zero.
1805 	 */
1806 	__u32 rsvd;
1807 };
1808 
1809 /**
1810  * DOC: Virtual Engine uAPI
1811  *
1812  * Virtual engine is a concept where userspace is able to configure a set of
1813  * physical engines, submit a batch buffer, and let the driver execute it on any
1814  * engine from the set as it sees fit.
1815  *
1816  * This is primarily useful on parts which have multiple instances of a same
1817  * class engine, like for example GT3+ Skylake parts with their two VCS engines.
1818  *
1819  * For instance userspace can enumerate all engines of a certain class using the
1820  * previously described `Engine Discovery uAPI`_. After that userspace can
1821  * create a GEM context with a placeholder slot for the virtual engine (using
1822  * `I915_ENGINE_CLASS_INVALID` and `I915_ENGINE_CLASS_INVALID_NONE` for class
1823  * and instance respectively) and finally using the
1824  * `I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE` extension place a virtual engine in
1825  * the same reserved slot.
1826  *
1827  * Example of creating a virtual engine and submitting a batch buffer to it:
1828  *
1829  * .. code-block:: C
1830  *
1831  * 	I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(virtual, 2) = {
1832  * 		.base.name = I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE,
1833  * 		.engine_index = 0, // Place this virtual engine into engine map slot 0
1834  * 		.num_siblings = 2,
1835  * 		.engines = { { I915_ENGINE_CLASS_VIDEO, 0 },
1836  * 			     { I915_ENGINE_CLASS_VIDEO, 1 }, },
1837  * 	};
1838  * 	I915_DEFINE_CONTEXT_PARAM_ENGINES(engines, 1) = {
1839  * 		.engines = { { I915_ENGINE_CLASS_INVALID,
1840  * 			       I915_ENGINE_CLASS_INVALID_NONE } },
1841  * 		.extensions = to_user_pointer(&virtual), // Chains after load_balance extension
1842  * 	};
1843  * 	struct drm_i915_gem_context_create_ext_setparam p_engines = {
1844  * 		.base = {
1845  * 			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
1846  * 		},
1847  * 		.param = {
1848  * 			.param = I915_CONTEXT_PARAM_ENGINES,
1849  * 			.value = to_user_pointer(&engines),
1850  * 			.size = sizeof(engines),
1851  * 		},
1852  * 	};
1853  * 	struct drm_i915_gem_context_create_ext create = {
1854  * 		.flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
1855  * 		.extensions = to_user_pointer(&p_engines);
1856  * 	};
1857  *
1858  * 	ctx_id = gem_context_create_ext(drm_fd, &create);
1859  *
1860  * 	// Now we have created a GEM context with its engine map containing a
1861  * 	// single virtual engine. Submissions to this slot can go either to
1862  * 	// vcs0 or vcs1, depending on the load balancing algorithm used inside
1863  * 	// the driver. The load balancing is dynamic from one batch buffer to
1864  * 	// another and transparent to userspace.
1865  *
1866  * 	...
1867  * 	execbuf.rsvd1 = ctx_id;
1868  * 	execbuf.flags = 0; // Submits to index 0 which is the virtual engine
1869  * 	gem_execbuf(drm_fd, &execbuf);
1870  */
1871 
1872 /*
1873  * i915_context_engines_load_balance:
1874  *
1875  * Enable load balancing across this set of engines.
1876  *
1877  * Into the I915_EXEC_DEFAULT slot [0], a virtual engine is created that when
1878  * used will proxy the execbuffer request onto one of the set of engines
1879  * in such a way as to distribute the load evenly across the set.
1880  *
1881  * The set of engines must be compatible (e.g. the same HW class) as they
1882  * will share the same logical GPU context and ring.
1883  *
1884  * To intermix rendering with the virtual engine and direct rendering onto
1885  * the backing engines (bypassing the load balancing proxy), the context must
1886  * be defined to use a single timeline for all engines.
1887  */
1888 struct i915_context_engines_load_balance {
1889 	struct i915_user_extension base;
1890 
1891 	__u16 engine_index;
1892 	__u16 num_siblings;
1893 	__u32 flags; /* all undefined flags must be zero */
1894 
1895 	__u64 mbz64; /* reserved for future use; must be zero */
1896 
1897 	struct i915_engine_class_instance engines[0];
1898 } __attribute__((packed));
1899 
1900 #define I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(name__, N__) struct { \
1901 	struct i915_user_extension base; \
1902 	__u16 engine_index; \
1903 	__u16 num_siblings; \
1904 	__u32 flags; \
1905 	__u64 mbz64; \
1906 	struct i915_engine_class_instance engines[N__]; \
1907 } __attribute__((packed)) name__
1908 
1909 /*
1910  * i915_context_engines_bond:
1911  *
1912  * Constructed bonded pairs for execution within a virtual engine.
1913  *
1914  * All engines are equal, but some are more equal than others. Given
1915  * the distribution of resources in the HW, it may be preferable to run
1916  * a request on a given subset of engines in parallel to a request on a
1917  * specific engine. We enable this selection of engines within a virtual
1918  * engine by specifying bonding pairs, for any given master engine we will
1919  * only execute on one of the corresponding siblings within the virtual engine.
1920  *
1921  * To execute a request in parallel on the master engine and a sibling requires
1922  * coordination with a I915_EXEC_FENCE_SUBMIT.
1923  */
1924 struct i915_context_engines_bond {
1925 	struct i915_user_extension base;
1926 
1927 	struct i915_engine_class_instance master;
1928 
1929 	__u16 virtual_index; /* index of virtual engine in ctx->engines[] */
1930 	__u16 num_bonds;
1931 
1932 	__u64 flags; /* all undefined flags must be zero */
1933 	__u64 mbz64[4]; /* reserved for future use; must be zero */
1934 
1935 	struct i915_engine_class_instance engines[0];
1936 } __attribute__((packed));
1937 
1938 #define I915_DEFINE_CONTEXT_ENGINES_BOND(name__, N__) struct { \
1939 	struct i915_user_extension base; \
1940 	struct i915_engine_class_instance master; \
1941 	__u16 virtual_index; \
1942 	__u16 num_bonds; \
1943 	__u64 flags; \
1944 	__u64 mbz64[4]; \
1945 	struct i915_engine_class_instance engines[N__]; \
1946 } __attribute__((packed)) name__
1947 
1948 /**
1949  * DOC: Context Engine Map uAPI
1950  *
1951  * Context engine map is a new way of addressing engines when submitting batch-
1952  * buffers, replacing the existing way of using identifiers like `I915_EXEC_BLT`
1953  * inside the flags field of `struct drm_i915_gem_execbuffer2`.
1954  *
1955  * To use it created GEM contexts need to be configured with a list of engines
1956  * the user is intending to submit to. This is accomplished using the
1957  * `I915_CONTEXT_PARAM_ENGINES` parameter and `struct
1958  * i915_context_param_engines`.
1959  *
1960  * For such contexts the `I915_EXEC_RING_MASK` field becomes an index into the
1961  * configured map.
1962  *
1963  * Example of creating such context and submitting against it:
1964  *
1965  * .. code-block:: C
1966  *
1967  * 	I915_DEFINE_CONTEXT_PARAM_ENGINES(engines, 2) = {
1968  * 		.engines = { { I915_ENGINE_CLASS_RENDER, 0 },
1969  * 			     { I915_ENGINE_CLASS_COPY, 0 } }
1970  * 	};
1971  * 	struct drm_i915_gem_context_create_ext_setparam p_engines = {
1972  * 		.base = {
1973  * 			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
1974  * 		},
1975  * 		.param = {
1976  * 			.param = I915_CONTEXT_PARAM_ENGINES,
1977  * 			.value = to_user_pointer(&engines),
1978  * 			.size = sizeof(engines),
1979  * 		},
1980  * 	};
1981  * 	struct drm_i915_gem_context_create_ext create = {
1982  * 		.flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
1983  * 		.extensions = to_user_pointer(&p_engines);
1984  * 	};
1985  *
1986  * 	ctx_id = gem_context_create_ext(drm_fd, &create);
1987  *
1988  * 	// We have now created a GEM context with two engines in the map:
1989  * 	// Index 0 points to rcs0 while index 1 points to bcs0. Other engines
1990  * 	// will not be accessible from this context.
1991  *
1992  * 	...
1993  * 	execbuf.rsvd1 = ctx_id;
1994  * 	execbuf.flags = 0; // Submits to index 0, which is rcs0 for this context
1995  * 	gem_execbuf(drm_fd, &execbuf);
1996  *
1997  * 	...
1998  * 	execbuf.rsvd1 = ctx_id;
1999  * 	execbuf.flags = 1; // Submits to index 0, which is bcs0 for this context
2000  * 	gem_execbuf(drm_fd, &execbuf);
2001  */
2002 
2003 struct i915_context_param_engines {
2004 	__u64 extensions; /* linked chain of extension blocks, 0 terminates */
2005 #define I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE 0 /* see i915_context_engines_load_balance */
2006 #define I915_CONTEXT_ENGINES_EXT_BOND 1 /* see i915_context_engines_bond */
2007 	struct i915_engine_class_instance engines[0];
2008 } __attribute__((packed));
2009 
2010 #define I915_DEFINE_CONTEXT_PARAM_ENGINES(name__, N__) struct { \
2011 	__u64 extensions; \
2012 	struct i915_engine_class_instance engines[N__]; \
2013 } __attribute__((packed)) name__
2014 
2015 struct drm_i915_gem_context_create_ext_setparam {
2016 #define I915_CONTEXT_CREATE_EXT_SETPARAM 0
2017 	struct i915_user_extension base;
2018 	struct drm_i915_gem_context_param param;
2019 };
2020 
2021 struct drm_i915_gem_context_create_ext_clone {
2022 #define I915_CONTEXT_CREATE_EXT_CLONE 1
2023 	struct i915_user_extension base;
2024 	__u32 clone_id;
2025 	__u32 flags;
2026 #define I915_CONTEXT_CLONE_ENGINES	(1u << 0)
2027 #define I915_CONTEXT_CLONE_FLAGS	(1u << 1)
2028 #define I915_CONTEXT_CLONE_SCHEDATTR	(1u << 2)
2029 #define I915_CONTEXT_CLONE_SSEU		(1u << 3)
2030 #define I915_CONTEXT_CLONE_TIMELINE	(1u << 4)
2031 #define I915_CONTEXT_CLONE_VM		(1u << 5)
2032 #define I915_CONTEXT_CLONE_UNKNOWN -(I915_CONTEXT_CLONE_VM << 1)
2033 	__u64 rsvd;
2034 };
2035 
2036 struct drm_i915_gem_context_destroy {
2037 	__u32 ctx_id;
2038 	__u32 pad;
2039 };
2040 
2041 /*
2042  * DRM_I915_GEM_VM_CREATE -
2043  *
2044  * Create a new virtual memory address space (ppGTT) for use within a context
2045  * on the same file. Extensions can be provided to configure exactly how the
2046  * address space is setup upon creation.
2047  *
2048  * The id of new VM (bound to the fd) for use with I915_CONTEXT_PARAM_VM is
2049  * returned in the outparam @id.
2050  *
2051  * No flags are defined, with all bits reserved and must be zero.
2052  *
2053  * An extension chain maybe provided, starting with @extensions, and terminated
2054  * by the @next_extension being 0. Currently, no extensions are defined.
2055  *
2056  * DRM_I915_GEM_VM_DESTROY -
2057  *
2058  * Destroys a previously created VM id, specified in @id.
2059  *
2060  * No extensions or flags are allowed currently, and so must be zero.
2061  */
2062 struct drm_i915_gem_vm_control {
2063 	__u64 extensions;
2064 	__u32 flags;
2065 	__u32 vm_id;
2066 };
2067 
2068 struct drm_i915_reg_read {
2069 	/*
2070 	 * Register offset.
2071 	 * For 64bit wide registers where the upper 32bits don't immediately
2072 	 * follow the lower 32bits, the offset of the lower 32bits must
2073 	 * be specified
2074 	 */
2075 	__u64 offset;
2076 #define I915_REG_READ_8B_WA (1ul << 0)
2077 
2078 	__u64 val; /* Return value */
2079 };
2080 
2081 /* Known registers:
2082  *
2083  * Render engine timestamp - 0x2358 + 64bit - gen7+
2084  * - Note this register returns an invalid value if using the default
2085  *   single instruction 8byte read, in order to workaround that pass
2086  *   flag I915_REG_READ_8B_WA in offset field.
2087  *
2088  */
2089 
2090 struct drm_i915_reset_stats {
2091 	__u32 ctx_id;
2092 	__u32 flags;
2093 
2094 	/* All resets since boot/module reload, for all contexts */
2095 	__u32 reset_count;
2096 
2097 	/* Number of batches lost when active in GPU, for this context */
2098 	__u32 batch_active;
2099 
2100 	/* Number of batches lost pending for execution, for this context */
2101 	__u32 batch_pending;
2102 
2103 	__u32 pad;
2104 };
2105 
2106 struct drm_i915_gem_userptr {
2107 	__u64 user_ptr;
2108 	__u64 user_size;
2109 	__u32 flags;
2110 #define I915_USERPTR_READ_ONLY 0x1
2111 #define I915_USERPTR_UNSYNCHRONIZED 0x80000000
2112 	/**
2113 	 * Returned handle for the object.
2114 	 *
2115 	 * Object handles are nonzero.
2116 	 */
2117 	__u32 handle;
2118 };
2119 
2120 enum drm_i915_oa_format {
2121 	I915_OA_FORMAT_A13 = 1,	    /* HSW only */
2122 	I915_OA_FORMAT_A29,	    /* HSW only */
2123 	I915_OA_FORMAT_A13_B8_C8,   /* HSW only */
2124 	I915_OA_FORMAT_B4_C8,	    /* HSW only */
2125 	I915_OA_FORMAT_A45_B8_C8,   /* HSW only */
2126 	I915_OA_FORMAT_B4_C8_A16,   /* HSW only */
2127 	I915_OA_FORMAT_C4_B8,	    /* HSW+ */
2128 
2129 	/* Gen8+ */
2130 	I915_OA_FORMAT_A12,
2131 	I915_OA_FORMAT_A12_B8_C8,
2132 	I915_OA_FORMAT_A32u40_A4u32_B8_C8,
2133 
2134 	I915_OA_FORMAT_MAX	    /* non-ABI */
2135 };
2136 
2137 enum drm_i915_perf_property_id {
2138 	/**
2139 	 * Open the stream for a specific context handle (as used with
2140 	 * execbuffer2). A stream opened for a specific context this way
2141 	 * won't typically require root privileges.
2142 	 *
2143 	 * This property is available in perf revision 1.
2144 	 */
2145 	DRM_I915_PERF_PROP_CTX_HANDLE = 1,
2146 
2147 	/**
2148 	 * A value of 1 requests the inclusion of raw OA unit reports as
2149 	 * part of stream samples.
2150 	 *
2151 	 * This property is available in perf revision 1.
2152 	 */
2153 	DRM_I915_PERF_PROP_SAMPLE_OA,
2154 
2155 	/**
2156 	 * The value specifies which set of OA unit metrics should be
2157 	 * configured, defining the contents of any OA unit reports.
2158 	 *
2159 	 * This property is available in perf revision 1.
2160 	 */
2161 	DRM_I915_PERF_PROP_OA_METRICS_SET,
2162 
2163 	/**
2164 	 * The value specifies the size and layout of OA unit reports.
2165 	 *
2166 	 * This property is available in perf revision 1.
2167 	 */
2168 	DRM_I915_PERF_PROP_OA_FORMAT,
2169 
2170 	/**
2171 	 * Specifying this property implicitly requests periodic OA unit
2172 	 * sampling and (at least on Haswell) the sampling frequency is derived
2173 	 * from this exponent as follows:
2174 	 *
2175 	 *   80ns * 2^(period_exponent + 1)
2176 	 *
2177 	 * This property is available in perf revision 1.
2178 	 */
2179 	DRM_I915_PERF_PROP_OA_EXPONENT,
2180 
2181 	/**
2182 	 * Specifying this property is only valid when specify a context to
2183 	 * filter with DRM_I915_PERF_PROP_CTX_HANDLE. Specifying this property
2184 	 * will hold preemption of the particular context we want to gather
2185 	 * performance data about. The execbuf2 submissions must include a
2186 	 * drm_i915_gem_execbuffer_ext_perf parameter for this to apply.
2187 	 *
2188 	 * This property is available in perf revision 3.
2189 	 */
2190 	DRM_I915_PERF_PROP_HOLD_PREEMPTION,
2191 
2192 	/**
2193 	 * Specifying this pins all contexts to the specified SSEU power
2194 	 * configuration for the duration of the recording.
2195 	 *
2196 	 * This parameter's value is a pointer to a struct
2197 	 * drm_i915_gem_context_param_sseu.
2198 	 *
2199 	 * This property is available in perf revision 4.
2200 	 */
2201 	DRM_I915_PERF_PROP_GLOBAL_SSEU,
2202 
2203 	/**
2204 	 * This optional parameter specifies the timer interval in nanoseconds
2205 	 * at which the i915 driver will check the OA buffer for available data.
2206 	 * Minimum allowed value is 100 microseconds. A default value is used by
2207 	 * the driver if this parameter is not specified. Note that larger timer
2208 	 * values will reduce cpu consumption during OA perf captures. However,
2209 	 * excessively large values would potentially result in OA buffer
2210 	 * overwrites as captures reach end of the OA buffer.
2211 	 *
2212 	 * This property is available in perf revision 5.
2213 	 */
2214 	DRM_I915_PERF_PROP_POLL_OA_PERIOD,
2215 
2216 	DRM_I915_PERF_PROP_MAX /* non-ABI */
2217 };
2218 
2219 struct drm_i915_perf_open_param {
2220 	__u32 flags;
2221 #define I915_PERF_FLAG_FD_CLOEXEC	(1<<0)
2222 #define I915_PERF_FLAG_FD_NONBLOCK	(1<<1)
2223 #define I915_PERF_FLAG_DISABLED		(1<<2)
2224 
2225 	/** The number of u64 (id, value) pairs */
2226 	__u32 num_properties;
2227 
2228 	/**
2229 	 * Pointer to array of u64 (id, value) pairs configuring the stream
2230 	 * to open.
2231 	 */
2232 	__u64 properties_ptr;
2233 };
2234 
2235 /*
2236  * Enable data capture for a stream that was either opened in a disabled state
2237  * via I915_PERF_FLAG_DISABLED or was later disabled via
2238  * I915_PERF_IOCTL_DISABLE.
2239  *
2240  * It is intended to be cheaper to disable and enable a stream than it may be
2241  * to close and re-open a stream with the same configuration.
2242  *
2243  * It's undefined whether any pending data for the stream will be lost.
2244  *
2245  * This ioctl is available in perf revision 1.
2246  */
2247 #define I915_PERF_IOCTL_ENABLE	_IO('i', 0x0)
2248 
2249 /*
2250  * Disable data capture for a stream.
2251  *
2252  * It is an error to try and read a stream that is disabled.
2253  *
2254  * This ioctl is available in perf revision 1.
2255  */
2256 #define I915_PERF_IOCTL_DISABLE	_IO('i', 0x1)
2257 
2258 /*
2259  * Change metrics_set captured by a stream.
2260  *
2261  * If the stream is bound to a specific context, the configuration change
2262  * will performed inline with that context such that it takes effect before
2263  * the next execbuf submission.
2264  *
2265  * Returns the previously bound metrics set id, or a negative error code.
2266  *
2267  * This ioctl is available in perf revision 2.
2268  */
2269 #define I915_PERF_IOCTL_CONFIG	_IO('i', 0x2)
2270 
2271 /*
2272  * Common to all i915 perf records
2273  */
2274 struct drm_i915_perf_record_header {
2275 	__u32 type;
2276 	__u16 pad;
2277 	__u16 size;
2278 };
2279 
2280 enum drm_i915_perf_record_type {
2281 
2282 	/**
2283 	 * Samples are the work horse record type whose contents are extensible
2284 	 * and defined when opening an i915 perf stream based on the given
2285 	 * properties.
2286 	 *
2287 	 * Boolean properties following the naming convention
2288 	 * DRM_I915_PERF_SAMPLE_xyz_PROP request the inclusion of 'xyz' data in
2289 	 * every sample.
2290 	 *
2291 	 * The order of these sample properties given by userspace has no
2292 	 * affect on the ordering of data within a sample. The order is
2293 	 * documented here.
2294 	 *
2295 	 * struct {
2296 	 *     struct drm_i915_perf_record_header header;
2297 	 *
2298 	 *     { u32 oa_report[]; } && DRM_I915_PERF_PROP_SAMPLE_OA
2299 	 * };
2300 	 */
2301 	DRM_I915_PERF_RECORD_SAMPLE = 1,
2302 
2303 	/*
2304 	 * Indicates that one or more OA reports were not written by the
2305 	 * hardware. This can happen for example if an MI_REPORT_PERF_COUNT
2306 	 * command collides with periodic sampling - which would be more likely
2307 	 * at higher sampling frequencies.
2308 	 */
2309 	DRM_I915_PERF_RECORD_OA_REPORT_LOST = 2,
2310 
2311 	/**
2312 	 * An error occurred that resulted in all pending OA reports being lost.
2313 	 */
2314 	DRM_I915_PERF_RECORD_OA_BUFFER_LOST = 3,
2315 
2316 	DRM_I915_PERF_RECORD_MAX /* non-ABI */
2317 };
2318 
2319 /*
2320  * Structure to upload perf dynamic configuration into the kernel.
2321  */
2322 struct drm_i915_perf_oa_config {
2323 	/** String formatted like "%08x-%04x-%04x-%04x-%012x" */
2324 	char uuid[36];
2325 
2326 	__u32 n_mux_regs;
2327 	__u32 n_boolean_regs;
2328 	__u32 n_flex_regs;
2329 
2330 	/*
2331 	 * These fields are pointers to tuples of u32 values (register address,
2332 	 * value). For example the expected length of the buffer pointed by
2333 	 * mux_regs_ptr is (2 * sizeof(u32) * n_mux_regs).
2334 	 */
2335 	__u64 mux_regs_ptr;
2336 	__u64 boolean_regs_ptr;
2337 	__u64 flex_regs_ptr;
2338 };
2339 
2340 /**
2341  * struct drm_i915_query_item - An individual query for the kernel to process.
2342  *
2343  * The behaviour is determined by the @query_id. Note that exactly what
2344  * @data_ptr is also depends on the specific @query_id.
2345  */
2346 struct drm_i915_query_item {
2347 	/** @query_id: The id for this query */
2348 	__u64 query_id;
2349 #define DRM_I915_QUERY_TOPOLOGY_INFO    1
2350 #define DRM_I915_QUERY_ENGINE_INFO	2
2351 #define DRM_I915_QUERY_PERF_CONFIG      3
2352 #define DRM_I915_QUERY_MEMORY_REGIONS   4
2353 /* Must be kept compact -- no holes and well documented */
2354 
2355 	/**
2356 	 * @length:
2357 	 *
2358 	 * When set to zero by userspace, this is filled with the size of the
2359 	 * data to be written at the @data_ptr pointer. The kernel sets this
2360 	 * value to a negative value to signal an error on a particular query
2361 	 * item.
2362 	 */
2363 	__s32 length;
2364 
2365 	/**
2366 	 * @flags:
2367 	 *
2368 	 * When query_id == DRM_I915_QUERY_TOPOLOGY_INFO, must be 0.
2369 	 *
2370 	 * When query_id == DRM_I915_QUERY_PERF_CONFIG, must be one of the
2371 	 * following:
2372 	 *
2373 	 *	- DRM_I915_QUERY_PERF_CONFIG_LIST
2374 	 *      - DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID
2375 	 *      - DRM_I915_QUERY_PERF_CONFIG_FOR_UUID
2376 	 */
2377 	__u32 flags;
2378 #define DRM_I915_QUERY_PERF_CONFIG_LIST          1
2379 #define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID 2
2380 #define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID   3
2381 
2382 	/**
2383 	 * @data_ptr:
2384 	 *
2385 	 * Data will be written at the location pointed by @data_ptr when the
2386 	 * value of @length matches the length of the data to be written by the
2387 	 * kernel.
2388 	 */
2389 	__u64 data_ptr;
2390 };
2391 
2392 /**
2393  * struct drm_i915_query - Supply an array of struct drm_i915_query_item for the
2394  * kernel to fill out.
2395  *
2396  * Note that this is generally a two step process for each struct
2397  * drm_i915_query_item in the array:
2398  *
2399  * 1. Call the DRM_IOCTL_I915_QUERY, giving it our array of struct
2400  *    drm_i915_query_item, with &drm_i915_query_item.length set to zero. The
2401  *    kernel will then fill in the size, in bytes, which tells userspace how
2402  *    memory it needs to allocate for the blob(say for an array of properties).
2403  *
2404  * 2. Next we call DRM_IOCTL_I915_QUERY again, this time with the
2405  *    &drm_i915_query_item.data_ptr equal to our newly allocated blob. Note that
2406  *    the &drm_i915_query_item.length should still be the same as what the
2407  *    kernel previously set. At this point the kernel can fill in the blob.
2408  *
2409  * Note that for some query items it can make sense for userspace to just pass
2410  * in a buffer/blob equal to or larger than the required size. In this case only
2411  * a single ioctl call is needed. For some smaller query items this can work
2412  * quite well.
2413  *
2414  */
2415 struct drm_i915_query {
2416 	/** @num_items: The number of elements in the @items_ptr array */
2417 	__u32 num_items;
2418 
2419 	/**
2420 	 * @flags: Unused for now. Must be cleared to zero.
2421 	 */
2422 	__u32 flags;
2423 
2424 	/**
2425 	 * @items_ptr:
2426 	 *
2427 	 * Pointer to an array of struct drm_i915_query_item. The number of
2428 	 * array elements is @num_items.
2429 	 */
2430 	__u64 items_ptr;
2431 };
2432 
2433 /*
2434  * Data written by the kernel with query DRM_I915_QUERY_TOPOLOGY_INFO :
2435  *
2436  * data: contains the 3 pieces of information :
2437  *
2438  * - the slice mask with one bit per slice telling whether a slice is
2439  *   available. The availability of slice X can be queried with the following
2440  *   formula :
2441  *
2442  *           (data[X / 8] >> (X % 8)) & 1
2443  *
2444  * - the subslice mask for each slice with one bit per subslice telling
2445  *   whether a subslice is available. Gen12 has dual-subslices, which are
2446  *   similar to two gen11 subslices. For gen12, this array represents dual-
2447  *   subslices. The availability of subslice Y in slice X can be queried
2448  *   with the following formula :
2449  *
2450  *           (data[subslice_offset +
2451  *                 X * subslice_stride +
2452  *                 Y / 8] >> (Y % 8)) & 1
2453  *
2454  * - the EU mask for each subslice in each slice with one bit per EU telling
2455  *   whether an EU is available. The availability of EU Z in subslice Y in
2456  *   slice X can be queried with the following formula :
2457  *
2458  *           (data[eu_offset +
2459  *                 (X * max_subslices + Y) * eu_stride +
2460  *                 Z / 8] >> (Z % 8)) & 1
2461  */
2462 struct drm_i915_query_topology_info {
2463 	/*
2464 	 * Unused for now. Must be cleared to zero.
2465 	 */
2466 	__u16 flags;
2467 
2468 	__u16 max_slices;
2469 	__u16 max_subslices;
2470 	__u16 max_eus_per_subslice;
2471 
2472 	/*
2473 	 * Offset in data[] at which the subslice masks are stored.
2474 	 */
2475 	__u16 subslice_offset;
2476 
2477 	/*
2478 	 * Stride at which each of the subslice masks for each slice are
2479 	 * stored.
2480 	 */
2481 	__u16 subslice_stride;
2482 
2483 	/*
2484 	 * Offset in data[] at which the EU masks are stored.
2485 	 */
2486 	__u16 eu_offset;
2487 
2488 	/*
2489 	 * Stride at which each of the EU masks for each subslice are stored.
2490 	 */
2491 	__u16 eu_stride;
2492 
2493 	__u8 data[];
2494 };
2495 
2496 /**
2497  * DOC: Engine Discovery uAPI
2498  *
2499  * Engine discovery uAPI is a way of enumerating physical engines present in a
2500  * GPU associated with an open i915 DRM file descriptor. This supersedes the old
2501  * way of using `DRM_IOCTL_I915_GETPARAM` and engine identifiers like
2502  * `I915_PARAM_HAS_BLT`.
2503  *
2504  * The need for this interface came starting with Icelake and newer GPUs, which
2505  * started to establish a pattern of having multiple engines of a same class,
2506  * where not all instances were always completely functionally equivalent.
2507  *
2508  * Entry point for this uapi is `DRM_IOCTL_I915_QUERY` with the
2509  * `DRM_I915_QUERY_ENGINE_INFO` as the queried item id.
2510  *
2511  * Example for getting the list of engines:
2512  *
2513  * .. code-block:: C
2514  *
2515  * 	struct drm_i915_query_engine_info *info;
2516  * 	struct drm_i915_query_item item = {
2517  * 		.query_id = DRM_I915_QUERY_ENGINE_INFO;
2518  * 	};
2519  * 	struct drm_i915_query query = {
2520  * 		.num_items = 1,
2521  * 		.items_ptr = (uintptr_t)&item,
2522  * 	};
2523  * 	int err, i;
2524  *
2525  * 	// First query the size of the blob we need, this needs to be large
2526  * 	// enough to hold our array of engines. The kernel will fill out the
2527  * 	// item.length for us, which is the number of bytes we need.
2528  * 	//
2529  * 	// Alternatively a large buffer can be allocated straight away enabling
2530  * 	// querying in one pass, in which case item.length should contain the
2531  * 	// length of the provided buffer.
2532  * 	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
2533  * 	if (err) ...
2534  *
2535  * 	info = calloc(1, item.length);
2536  * 	// Now that we allocated the required number of bytes, we call the ioctl
2537  * 	// again, this time with the data_ptr pointing to our newly allocated
2538  * 	// blob, which the kernel can then populate with info on all engines.
2539  * 	item.data_ptr = (uintptr_t)&info,
2540  *
2541  * 	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
2542  * 	if (err) ...
2543  *
2544  * 	// We can now access each engine in the array
2545  * 	for (i = 0; i < info->num_engines; i++) {
2546  * 		struct drm_i915_engine_info einfo = info->engines[i];
2547  * 		u16 class = einfo.engine.class;
2548  * 		u16 instance = einfo.engine.instance;
2549  * 		....
2550  * 	}
2551  *
2552  * 	free(info);
2553  *
2554  * Each of the enumerated engines, apart from being defined by its class and
2555  * instance (see `struct i915_engine_class_instance`), also can have flags and
2556  * capabilities defined as documented in i915_drm.h.
2557  *
2558  * For instance video engines which support HEVC encoding will have the
2559  * `I915_VIDEO_CLASS_CAPABILITY_HEVC` capability bit set.
2560  *
2561  * Engine discovery only fully comes to its own when combined with the new way
2562  * of addressing engines when submitting batch buffers using contexts with
2563  * engine maps configured.
2564  */
2565 
2566 /**
2567  * struct drm_i915_engine_info
2568  *
2569  * Describes one engine and it's capabilities as known to the driver.
2570  */
2571 struct drm_i915_engine_info {
2572 	/** @engine: Engine class and instance. */
2573 	struct i915_engine_class_instance engine;
2574 
2575 	/** @rsvd0: Reserved field. */
2576 	__u32 rsvd0;
2577 
2578 	/** @flags: Engine flags. */
2579 	__u64 flags;
2580 
2581 	/** @capabilities: Capabilities of this engine. */
2582 	__u64 capabilities;
2583 #define I915_VIDEO_CLASS_CAPABILITY_HEVC		(1 << 0)
2584 #define I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC	(1 << 1)
2585 
2586 	/** @rsvd1: Reserved fields. */
2587 	__u64 rsvd1[4];
2588 };
2589 
2590 /**
2591  * struct drm_i915_query_engine_info
2592  *
2593  * Engine info query enumerates all engines known to the driver by filling in
2594  * an array of struct drm_i915_engine_info structures.
2595  */
2596 struct drm_i915_query_engine_info {
2597 	/** @num_engines: Number of struct drm_i915_engine_info structs following. */
2598 	__u32 num_engines;
2599 
2600 	/** @rsvd: MBZ */
2601 	__u32 rsvd[3];
2602 
2603 	/** @engines: Marker for drm_i915_engine_info structures. */
2604 	struct drm_i915_engine_info engines[];
2605 };
2606 
2607 /*
2608  * Data written by the kernel with query DRM_I915_QUERY_PERF_CONFIG.
2609  */
2610 struct drm_i915_query_perf_config {
2611 	union {
2612 		/*
2613 		 * When query_item.flags == DRM_I915_QUERY_PERF_CONFIG_LIST, i915 sets
2614 		 * this fields to the number of configurations available.
2615 		 */
2616 		__u64 n_configs;
2617 
2618 		/*
2619 		 * When query_id == DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID,
2620 		 * i915 will use the value in this field as configuration
2621 		 * identifier to decide what data to write into config_ptr.
2622 		 */
2623 		__u64 config;
2624 
2625 		/*
2626 		 * When query_id == DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID,
2627 		 * i915 will use the value in this field as configuration
2628 		 * identifier to decide what data to write into config_ptr.
2629 		 *
2630 		 * String formatted like "%08x-%04x-%04x-%04x-%012x"
2631 		 */
2632 		char uuid[36];
2633 	};
2634 
2635 	/*
2636 	 * Unused for now. Must be cleared to zero.
2637 	 */
2638 	__u32 flags;
2639 
2640 	/*
2641 	 * When query_item.flags == DRM_I915_QUERY_PERF_CONFIG_LIST, i915 will
2642 	 * write an array of __u64 of configuration identifiers.
2643 	 *
2644 	 * When query_item.flags == DRM_I915_QUERY_PERF_CONFIG_DATA, i915 will
2645 	 * write a struct drm_i915_perf_oa_config. If the following fields of
2646 	 * drm_i915_perf_oa_config are set not set to 0, i915 will write into
2647 	 * the associated pointers the values of submitted when the
2648 	 * configuration was created :
2649 	 *
2650 	 *         - n_mux_regs
2651 	 *         - n_boolean_regs
2652 	 *         - n_flex_regs
2653 	 */
2654 	__u8 data[];
2655 };
2656 
2657 /**
2658  * enum drm_i915_gem_memory_class - Supported memory classes
2659  */
2660 enum drm_i915_gem_memory_class {
2661 	/** @I915_MEMORY_CLASS_SYSTEM: System memory */
2662 	I915_MEMORY_CLASS_SYSTEM = 0,
2663 	/** @I915_MEMORY_CLASS_DEVICE: Device local-memory */
2664 	I915_MEMORY_CLASS_DEVICE,
2665 };
2666 
2667 /**
2668  * struct drm_i915_gem_memory_class_instance - Identify particular memory region
2669  */
2670 struct drm_i915_gem_memory_class_instance {
2671 	/** @memory_class: See enum drm_i915_gem_memory_class */
2672 	__u16 memory_class;
2673 
2674 	/** @memory_instance: Which instance */
2675 	__u16 memory_instance;
2676 };
2677 
2678 /**
2679  * struct drm_i915_memory_region_info - Describes one region as known to the
2680  * driver.
2681  *
2682  * Note that we reserve some stuff here for potential future work. As an example
2683  * we might want expose the capabilities for a given region, which could include
2684  * things like if the region is CPU mappable/accessible, what are the supported
2685  * mapping types etc.
2686  *
2687  * Note that to extend struct drm_i915_memory_region_info and struct
2688  * drm_i915_query_memory_regions in the future the plan is to do the following:
2689  *
2690  * .. code-block:: C
2691  *
2692  *	struct drm_i915_memory_region_info {
2693  *		struct drm_i915_gem_memory_class_instance region;
2694  *		union {
2695  *			__u32 rsvd0;
2696  *			__u32 new_thing1;
2697  *		};
2698  *		...
2699  *		union {
2700  *			__u64 rsvd1[8];
2701  *			struct {
2702  *				__u64 new_thing2;
2703  *				__u64 new_thing3;
2704  *				...
2705  *			};
2706  *		};
2707  *	};
2708  *
2709  * With this things should remain source compatible between versions for
2710  * userspace, even as we add new fields.
2711  *
2712  * Note this is using both struct drm_i915_query_item and struct drm_i915_query.
2713  * For this new query we are adding the new query id DRM_I915_QUERY_MEMORY_REGIONS
2714  * at &drm_i915_query_item.query_id.
2715  */
2716 struct drm_i915_memory_region_info {
2717 	/** @region: The class:instance pair encoding */
2718 	struct drm_i915_gem_memory_class_instance region;
2719 
2720 	/** @rsvd0: MBZ */
2721 	__u32 rsvd0;
2722 
2723 	/** @probed_size: Memory probed by the driver (-1 = unknown) */
2724 	__u64 probed_size;
2725 
2726 	/** @unallocated_size: Estimate of memory remaining (-1 = unknown) */
2727 	__u64 unallocated_size;
2728 
2729 	/** @rsvd1: MBZ */
2730 	__u64 rsvd1[8];
2731 };
2732 
2733 /**
2734  * struct drm_i915_query_memory_regions
2735  *
2736  * The region info query enumerates all regions known to the driver by filling
2737  * in an array of struct drm_i915_memory_region_info structures.
2738  *
2739  * Example for getting the list of supported regions:
2740  *
2741  * .. code-block:: C
2742  *
2743  *	struct drm_i915_query_memory_regions *info;
2744  *	struct drm_i915_query_item item = {
2745  *		.query_id = DRM_I915_QUERY_MEMORY_REGIONS;
2746  *	};
2747  *	struct drm_i915_query query = {
2748  *		.num_items = 1,
2749  *		.items_ptr = (uintptr_t)&item,
2750  *	};
2751  *	int err, i;
2752  *
2753  *	// First query the size of the blob we need, this needs to be large
2754  *	// enough to hold our array of regions. The kernel will fill out the
2755  *	// item.length for us, which is the number of bytes we need.
2756  *	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
2757  *	if (err) ...
2758  *
2759  *	info = calloc(1, item.length);
2760  *	// Now that we allocated the required number of bytes, we call the ioctl
2761  *	// again, this time with the data_ptr pointing to our newly allocated
2762  *	// blob, which the kernel can then populate with the all the region info.
2763  *	item.data_ptr = (uintptr_t)&info,
2764  *
2765  *	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
2766  *	if (err) ...
2767  *
2768  *	// We can now access each region in the array
2769  *	for (i = 0; i < info->num_regions; i++) {
2770  *		struct drm_i915_memory_region_info mr = info->regions[i];
2771  *		u16 class = mr.region.class;
2772  *		u16 instance = mr.region.instance;
2773  *
2774  *		....
2775  *	}
2776  *
2777  *	free(info);
2778  */
2779 struct drm_i915_query_memory_regions {
2780 	/** @num_regions: Number of supported regions */
2781 	__u32 num_regions;
2782 
2783 	/** @rsvd: MBZ */
2784 	__u32 rsvd[3];
2785 
2786 	/** @regions: Info about each supported region */
2787 	struct drm_i915_memory_region_info regions[];
2788 };
2789 
2790 /**
2791  * struct drm_i915_gem_create_ext - Existing gem_create behaviour, with added
2792  * extension support using struct i915_user_extension.
2793  *
2794  * Note that in the future we want to have our buffer flags here, at least for
2795  * the stuff that is immutable. Previously we would have two ioctls, one to
2796  * create the object with gem_create, and another to apply various parameters,
2797  * however this creates some ambiguity for the params which are considered
2798  * immutable. Also in general we're phasing out the various SET/GET ioctls.
2799  */
2800 struct drm_i915_gem_create_ext {
2801 	/**
2802 	 * @size: Requested size for the object.
2803 	 *
2804 	 * The (page-aligned) allocated size for the object will be returned.
2805 	 *
2806 	 * Note that for some devices we have might have further minimum
2807 	 * page-size restrictions(larger than 4K), like for device local-memory.
2808 	 * However in general the final size here should always reflect any
2809 	 * rounding up, if for example using the I915_GEM_CREATE_EXT_MEMORY_REGIONS
2810 	 * extension to place the object in device local-memory.
2811 	 */
2812 	__u64 size;
2813 	/**
2814 	 * @handle: Returned handle for the object.
2815 	 *
2816 	 * Object handles are nonzero.
2817 	 */
2818 	__u32 handle;
2819 	/** @flags: MBZ */
2820 	__u32 flags;
2821 	/**
2822 	 * @extensions: The chain of extensions to apply to this object.
2823 	 *
2824 	 * This will be useful in the future when we need to support several
2825 	 * different extensions, and we need to apply more than one when
2826 	 * creating the object. See struct i915_user_extension.
2827 	 *
2828 	 * If we don't supply any extensions then we get the same old gem_create
2829 	 * behaviour.
2830 	 *
2831 	 * For I915_GEM_CREATE_EXT_MEMORY_REGIONS usage see
2832 	 * struct drm_i915_gem_create_ext_memory_regions.
2833 	 */
2834 #define I915_GEM_CREATE_EXT_MEMORY_REGIONS 0
2835 	__u64 extensions;
2836 };
2837 
2838 /**
2839  * struct drm_i915_gem_create_ext_memory_regions - The
2840  * I915_GEM_CREATE_EXT_MEMORY_REGIONS extension.
2841  *
2842  * Set the object with the desired set of placements/regions in priority
2843  * order. Each entry must be unique and supported by the device.
2844  *
2845  * This is provided as an array of struct drm_i915_gem_memory_class_instance, or
2846  * an equivalent layout of class:instance pair encodings. See struct
2847  * drm_i915_query_memory_regions and DRM_I915_QUERY_MEMORY_REGIONS for how to
2848  * query the supported regions for a device.
2849  *
2850  * As an example, on discrete devices, if we wish to set the placement as
2851  * device local-memory we can do something like:
2852  *
2853  * .. code-block:: C
2854  *
2855  *	struct drm_i915_gem_memory_class_instance region_lmem = {
2856  *              .memory_class = I915_MEMORY_CLASS_DEVICE,
2857  *              .memory_instance = 0,
2858  *      };
2859  *      struct drm_i915_gem_create_ext_memory_regions regions = {
2860  *              .base = { .name = I915_GEM_CREATE_EXT_MEMORY_REGIONS },
2861  *              .regions = (uintptr_t)&region_lmem,
2862  *              .num_regions = 1,
2863  *      };
2864  *      struct drm_i915_gem_create_ext create_ext = {
2865  *              .size = 16 * PAGE_SIZE,
2866  *              .extensions = (uintptr_t)&regions,
2867  *      };
2868  *
2869  *      int err = ioctl(fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create_ext);
2870  *      if (err) ...
2871  *
2872  * At which point we get the object handle in &drm_i915_gem_create_ext.handle,
2873  * along with the final object size in &drm_i915_gem_create_ext.size, which
2874  * should account for any rounding up, if required.
2875  */
2876 struct drm_i915_gem_create_ext_memory_regions {
2877 	/** @base: Extension link. See struct i915_user_extension. */
2878 	struct i915_user_extension base;
2879 
2880 	/** @pad: MBZ */
2881 	__u32 pad;
2882 	/** @num_regions: Number of elements in the @regions array. */
2883 	__u32 num_regions;
2884 	/**
2885 	 * @regions: The regions/placements array.
2886 	 *
2887 	 * An array of struct drm_i915_gem_memory_class_instance.
2888 	 */
2889 	__u64 regions;
2890 };
2891 
2892 #if defined(__cplusplus)
2893 }
2894 #endif
2895 
2896 #endif /* _UAPI_I915_DRM_H_ */
2897