1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * Copyright (c) 2008 Dave Chinner 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_fs.h" 9 #include "xfs_shared.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_mount.h" 14 #include "xfs_trans.h" 15 #include "xfs_trans_priv.h" 16 #include "xfs_trace.h" 17 #include "xfs_errortag.h" 18 #include "xfs_error.h" 19 #include "xfs_log.h" 20 #include "xfs_log_priv.h" 21 22 #ifdef DEBUG 23 /* 24 * Check that the list is sorted as it should be. 25 * 26 * Called with the ail lock held, but we don't want to assert fail with it 27 * held otherwise we'll lock everything up and won't be able to debug the 28 * cause. Hence we sample and check the state under the AIL lock and return if 29 * everything is fine, otherwise we drop the lock and run the ASSERT checks. 30 * Asserts may not be fatal, so pick the lock back up and continue onwards. 31 */ 32 STATIC void 33 xfs_ail_check( 34 struct xfs_ail *ailp, 35 struct xfs_log_item *lip) 36 __must_hold(&ailp->ail_lock) 37 { 38 struct xfs_log_item *prev_lip; 39 struct xfs_log_item *next_lip; 40 xfs_lsn_t prev_lsn = NULLCOMMITLSN; 41 xfs_lsn_t next_lsn = NULLCOMMITLSN; 42 xfs_lsn_t lsn; 43 bool in_ail; 44 45 46 if (list_empty(&ailp->ail_head)) 47 return; 48 49 /* 50 * Sample then check the next and previous entries are valid. 51 */ 52 in_ail = test_bit(XFS_LI_IN_AIL, &lip->li_flags); 53 prev_lip = list_entry(lip->li_ail.prev, struct xfs_log_item, li_ail); 54 if (&prev_lip->li_ail != &ailp->ail_head) 55 prev_lsn = prev_lip->li_lsn; 56 next_lip = list_entry(lip->li_ail.next, struct xfs_log_item, li_ail); 57 if (&next_lip->li_ail != &ailp->ail_head) 58 next_lsn = next_lip->li_lsn; 59 lsn = lip->li_lsn; 60 61 if (in_ail && 62 (prev_lsn == NULLCOMMITLSN || XFS_LSN_CMP(prev_lsn, lsn) <= 0) && 63 (next_lsn == NULLCOMMITLSN || XFS_LSN_CMP(next_lsn, lsn) >= 0)) 64 return; 65 66 spin_unlock(&ailp->ail_lock); 67 ASSERT(in_ail); 68 ASSERT(prev_lsn == NULLCOMMITLSN || XFS_LSN_CMP(prev_lsn, lsn) <= 0); 69 ASSERT(next_lsn == NULLCOMMITLSN || XFS_LSN_CMP(next_lsn, lsn) >= 0); 70 spin_lock(&ailp->ail_lock); 71 } 72 #else /* !DEBUG */ 73 #define xfs_ail_check(a,l) 74 #endif /* DEBUG */ 75 76 /* 77 * Return a pointer to the last item in the AIL. If the AIL is empty, then 78 * return NULL. 79 */ 80 static struct xfs_log_item * 81 xfs_ail_max( 82 struct xfs_ail *ailp) 83 { 84 if (list_empty(&ailp->ail_head)) 85 return NULL; 86 87 return list_entry(ailp->ail_head.prev, struct xfs_log_item, li_ail); 88 } 89 90 /* 91 * Return a pointer to the item which follows the given item in the AIL. If 92 * the given item is the last item in the list, then return NULL. 93 */ 94 static struct xfs_log_item * 95 xfs_ail_next( 96 struct xfs_ail *ailp, 97 struct xfs_log_item *lip) 98 { 99 if (lip->li_ail.next == &ailp->ail_head) 100 return NULL; 101 102 return list_first_entry(&lip->li_ail, struct xfs_log_item, li_ail); 103 } 104 105 /* 106 * This is called by the log manager code to determine the LSN of the tail of 107 * the log. This is exactly the LSN of the first item in the AIL. If the AIL 108 * is empty, then this function returns 0. 109 * 110 * We need the AIL lock in order to get a coherent read of the lsn of the last 111 * item in the AIL. 112 */ 113 static xfs_lsn_t 114 __xfs_ail_min_lsn( 115 struct xfs_ail *ailp) 116 { 117 struct xfs_log_item *lip = xfs_ail_min(ailp); 118 119 if (lip) 120 return lip->li_lsn; 121 return 0; 122 } 123 124 xfs_lsn_t 125 xfs_ail_min_lsn( 126 struct xfs_ail *ailp) 127 { 128 xfs_lsn_t lsn; 129 130 spin_lock(&ailp->ail_lock); 131 lsn = __xfs_ail_min_lsn(ailp); 132 spin_unlock(&ailp->ail_lock); 133 134 return lsn; 135 } 136 137 /* 138 * The cursor keeps track of where our current traversal is up to by tracking 139 * the next item in the list for us. However, for this to be safe, removing an 140 * object from the AIL needs to invalidate any cursor that points to it. hence 141 * the traversal cursor needs to be linked to the struct xfs_ail so that 142 * deletion can search all the active cursors for invalidation. 143 */ 144 STATIC void 145 xfs_trans_ail_cursor_init( 146 struct xfs_ail *ailp, 147 struct xfs_ail_cursor *cur) 148 { 149 cur->item = NULL; 150 list_add_tail(&cur->list, &ailp->ail_cursors); 151 } 152 153 /* 154 * Get the next item in the traversal and advance the cursor. If the cursor 155 * was invalidated (indicated by a lip of 1), restart the traversal. 156 */ 157 struct xfs_log_item * 158 xfs_trans_ail_cursor_next( 159 struct xfs_ail *ailp, 160 struct xfs_ail_cursor *cur) 161 { 162 struct xfs_log_item *lip = cur->item; 163 164 if ((uintptr_t)lip & 1) 165 lip = xfs_ail_min(ailp); 166 if (lip) 167 cur->item = xfs_ail_next(ailp, lip); 168 return lip; 169 } 170 171 /* 172 * When the traversal is complete, we need to remove the cursor from the list 173 * of traversing cursors. 174 */ 175 void 176 xfs_trans_ail_cursor_done( 177 struct xfs_ail_cursor *cur) 178 { 179 cur->item = NULL; 180 list_del_init(&cur->list); 181 } 182 183 /* 184 * Invalidate any cursor that is pointing to this item. This is called when an 185 * item is removed from the AIL. Any cursor pointing to this object is now 186 * invalid and the traversal needs to be terminated so it doesn't reference a 187 * freed object. We set the low bit of the cursor item pointer so we can 188 * distinguish between an invalidation and the end of the list when getting the 189 * next item from the cursor. 190 */ 191 STATIC void 192 xfs_trans_ail_cursor_clear( 193 struct xfs_ail *ailp, 194 struct xfs_log_item *lip) 195 { 196 struct xfs_ail_cursor *cur; 197 198 list_for_each_entry(cur, &ailp->ail_cursors, list) { 199 if (cur->item == lip) 200 cur->item = (struct xfs_log_item *) 201 ((uintptr_t)cur->item | 1); 202 } 203 } 204 205 /* 206 * Find the first item in the AIL with the given @lsn by searching in ascending 207 * LSN order and initialise the cursor to point to the next item for a 208 * ascending traversal. Pass a @lsn of zero to initialise the cursor to the 209 * first item in the AIL. Returns NULL if the list is empty. 210 */ 211 struct xfs_log_item * 212 xfs_trans_ail_cursor_first( 213 struct xfs_ail *ailp, 214 struct xfs_ail_cursor *cur, 215 xfs_lsn_t lsn) 216 { 217 struct xfs_log_item *lip; 218 219 xfs_trans_ail_cursor_init(ailp, cur); 220 221 if (lsn == 0) { 222 lip = xfs_ail_min(ailp); 223 goto out; 224 } 225 226 list_for_each_entry(lip, &ailp->ail_head, li_ail) { 227 if (XFS_LSN_CMP(lip->li_lsn, lsn) >= 0) 228 goto out; 229 } 230 return NULL; 231 232 out: 233 if (lip) 234 cur->item = xfs_ail_next(ailp, lip); 235 return lip; 236 } 237 238 static struct xfs_log_item * 239 __xfs_trans_ail_cursor_last( 240 struct xfs_ail *ailp, 241 xfs_lsn_t lsn) 242 { 243 struct xfs_log_item *lip; 244 245 list_for_each_entry_reverse(lip, &ailp->ail_head, li_ail) { 246 if (XFS_LSN_CMP(lip->li_lsn, lsn) <= 0) 247 return lip; 248 } 249 return NULL; 250 } 251 252 /* 253 * Find the last item in the AIL with the given @lsn by searching in descending 254 * LSN order and initialise the cursor to point to that item. If there is no 255 * item with the value of @lsn, then it sets the cursor to the last item with an 256 * LSN lower than @lsn. Returns NULL if the list is empty. 257 */ 258 struct xfs_log_item * 259 xfs_trans_ail_cursor_last( 260 struct xfs_ail *ailp, 261 struct xfs_ail_cursor *cur, 262 xfs_lsn_t lsn) 263 { 264 xfs_trans_ail_cursor_init(ailp, cur); 265 cur->item = __xfs_trans_ail_cursor_last(ailp, lsn); 266 return cur->item; 267 } 268 269 /* 270 * Splice the log item list into the AIL at the given LSN. We splice to the 271 * tail of the given LSN to maintain insert order for push traversals. The 272 * cursor is optional, allowing repeated updates to the same LSN to avoid 273 * repeated traversals. This should not be called with an empty list. 274 */ 275 static void 276 xfs_ail_splice( 277 struct xfs_ail *ailp, 278 struct xfs_ail_cursor *cur, 279 struct list_head *list, 280 xfs_lsn_t lsn) 281 { 282 struct xfs_log_item *lip; 283 284 ASSERT(!list_empty(list)); 285 286 /* 287 * Use the cursor to determine the insertion point if one is 288 * provided. If not, or if the one we got is not valid, 289 * find the place in the AIL where the items belong. 290 */ 291 lip = cur ? cur->item : NULL; 292 if (!lip || (uintptr_t)lip & 1) 293 lip = __xfs_trans_ail_cursor_last(ailp, lsn); 294 295 /* 296 * If a cursor is provided, we know we're processing the AIL 297 * in lsn order, and future items to be spliced in will 298 * follow the last one being inserted now. Update the 299 * cursor to point to that last item, now while we have a 300 * reliable pointer to it. 301 */ 302 if (cur) 303 cur->item = list_entry(list->prev, struct xfs_log_item, li_ail); 304 305 /* 306 * Finally perform the splice. Unless the AIL was empty, 307 * lip points to the item in the AIL _after_ which the new 308 * items should go. If lip is null the AIL was empty, so 309 * the new items go at the head of the AIL. 310 */ 311 if (lip) 312 list_splice(list, &lip->li_ail); 313 else 314 list_splice(list, &ailp->ail_head); 315 } 316 317 /* 318 * Delete the given item from the AIL. 319 */ 320 static void 321 xfs_ail_delete( 322 struct xfs_ail *ailp, 323 struct xfs_log_item *lip) 324 { 325 xfs_ail_check(ailp, lip); 326 list_del(&lip->li_ail); 327 xfs_trans_ail_cursor_clear(ailp, lip); 328 } 329 330 /* 331 * Requeue a failed buffer for writeback. 332 * 333 * We clear the log item failed state here as well, but we have to be careful 334 * about reference counts because the only active reference counts on the buffer 335 * may be the failed log items. Hence if we clear the log item failed state 336 * before queuing the buffer for IO we can release all active references to 337 * the buffer and free it, leading to use after free problems in 338 * xfs_buf_delwri_queue. It makes no difference to the buffer or log items which 339 * order we process them in - the buffer is locked, and we own the buffer list 340 * so nothing on them is going to change while we are performing this action. 341 * 342 * Hence we can safely queue the buffer for IO before we clear the failed log 343 * item state, therefore always having an active reference to the buffer and 344 * avoiding the transient zero-reference state that leads to use-after-free. 345 */ 346 static inline int 347 xfsaild_resubmit_item( 348 struct xfs_log_item *lip, 349 struct list_head *buffer_list) 350 { 351 struct xfs_buf *bp = lip->li_buf; 352 353 if (!xfs_buf_trylock(bp)) 354 return XFS_ITEM_LOCKED; 355 356 if (!xfs_buf_delwri_queue(bp, buffer_list)) { 357 xfs_buf_unlock(bp); 358 return XFS_ITEM_FLUSHING; 359 } 360 361 /* protected by ail_lock */ 362 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) 363 clear_bit(XFS_LI_FAILED, &lip->li_flags); 364 xfs_buf_unlock(bp); 365 return XFS_ITEM_SUCCESS; 366 } 367 368 static inline uint 369 xfsaild_push_item( 370 struct xfs_ail *ailp, 371 struct xfs_log_item *lip) 372 { 373 /* 374 * If log item pinning is enabled, skip the push and track the item as 375 * pinned. This can help induce head-behind-tail conditions. 376 */ 377 if (XFS_TEST_ERROR(false, ailp->ail_log->l_mp, XFS_ERRTAG_LOG_ITEM_PIN)) 378 return XFS_ITEM_PINNED; 379 380 /* 381 * Consider the item pinned if a push callback is not defined so the 382 * caller will force the log. This should only happen for intent items 383 * as they are unpinned once the associated done item is committed to 384 * the on-disk log. 385 */ 386 if (!lip->li_ops->iop_push) 387 return XFS_ITEM_PINNED; 388 if (test_bit(XFS_LI_FAILED, &lip->li_flags)) 389 return xfsaild_resubmit_item(lip, &ailp->ail_buf_list); 390 return lip->li_ops->iop_push(lip, &ailp->ail_buf_list); 391 } 392 393 /* 394 * Compute the LSN that we'd need to push the log tail towards in order to have 395 * at least 25% of the log space free. If the log free space already meets this 396 * threshold, this function returns the lowest LSN in the AIL to slowly keep 397 * writeback ticking over and the tail of the log moving forward. 398 */ 399 static xfs_lsn_t 400 xfs_ail_calc_push_target( 401 struct xfs_ail *ailp) 402 { 403 struct xlog *log = ailp->ail_log; 404 struct xfs_log_item *lip; 405 xfs_lsn_t target_lsn; 406 xfs_lsn_t max_lsn; 407 xfs_lsn_t min_lsn; 408 int32_t free_bytes; 409 uint32_t target_block; 410 uint32_t target_cycle; 411 412 lockdep_assert_held(&ailp->ail_lock); 413 414 lip = xfs_ail_max(ailp); 415 if (!lip) 416 return NULLCOMMITLSN; 417 418 max_lsn = lip->li_lsn; 419 min_lsn = __xfs_ail_min_lsn(ailp); 420 421 /* 422 * If we are supposed to push all the items in the AIL, we want to push 423 * to the current head. We then clear the push flag so that we don't 424 * keep pushing newly queued items beyond where the push all command was 425 * run. If the push waiter wants to empty the ail, it should queue 426 * itself on the ail_empty wait queue. 427 */ 428 if (test_and_clear_bit(XFS_AIL_OPSTATE_PUSH_ALL, &ailp->ail_opstate)) 429 return max_lsn; 430 431 /* If someone wants the AIL empty, keep pushing everything we have. */ 432 if (waitqueue_active(&ailp->ail_empty)) 433 return max_lsn; 434 435 /* 436 * Background pushing - attempt to keep 25% of the log free and if we 437 * have that much free retain the existing target. 438 */ 439 free_bytes = log->l_logsize - xlog_lsn_sub(log, max_lsn, min_lsn); 440 if (free_bytes >= log->l_logsize >> 2) 441 return ailp->ail_target; 442 443 target_cycle = CYCLE_LSN(min_lsn); 444 target_block = BLOCK_LSN(min_lsn) + (log->l_logBBsize >> 2); 445 if (target_block >= log->l_logBBsize) { 446 target_block -= log->l_logBBsize; 447 target_cycle += 1; 448 } 449 target_lsn = xlog_assign_lsn(target_cycle, target_block); 450 451 /* Cap the target to the highest LSN known to be in the AIL. */ 452 if (XFS_LSN_CMP(target_lsn, max_lsn) > 0) 453 return max_lsn; 454 455 /* If the existing target is higher than the new target, keep it. */ 456 if (XFS_LSN_CMP(ailp->ail_target, target_lsn) >= 0) 457 return ailp->ail_target; 458 return target_lsn; 459 } 460 461 static long 462 xfsaild_push( 463 struct xfs_ail *ailp) 464 { 465 struct xfs_mount *mp = ailp->ail_log->l_mp; 466 struct xfs_ail_cursor cur; 467 struct xfs_log_item *lip; 468 xfs_lsn_t lsn; 469 long tout; 470 int stuck = 0; 471 int flushing = 0; 472 int count = 0; 473 474 /* 475 * If we encountered pinned items or did not finish writing out all 476 * buffers the last time we ran, force a background CIL push to get the 477 * items unpinned in the near future. We do not wait on the CIL push as 478 * that could stall us for seconds if there is enough background IO 479 * load. Stalling for that long when the tail of the log is pinned and 480 * needs flushing will hard stop the transaction subsystem when log 481 * space runs out. 482 */ 483 if (ailp->ail_log_flush && ailp->ail_last_pushed_lsn == 0 && 484 (!list_empty_careful(&ailp->ail_buf_list) || 485 xfs_ail_min_lsn(ailp))) { 486 ailp->ail_log_flush = 0; 487 488 XFS_STATS_INC(mp, xs_push_ail_flush); 489 xlog_cil_flush(ailp->ail_log); 490 } 491 492 spin_lock(&ailp->ail_lock); 493 WRITE_ONCE(ailp->ail_target, xfs_ail_calc_push_target(ailp)); 494 if (ailp->ail_target == NULLCOMMITLSN) 495 goto out_done; 496 497 /* we're done if the AIL is empty or our push has reached the end */ 498 lip = xfs_trans_ail_cursor_first(ailp, &cur, ailp->ail_last_pushed_lsn); 499 if (!lip) 500 goto out_done_cursor; 501 502 XFS_STATS_INC(mp, xs_push_ail); 503 504 ASSERT(ailp->ail_target != NULLCOMMITLSN); 505 506 lsn = lip->li_lsn; 507 while ((XFS_LSN_CMP(lip->li_lsn, ailp->ail_target) <= 0)) { 508 int lock_result; 509 510 if (test_bit(XFS_LI_FLUSHING, &lip->li_flags)) 511 goto next_item; 512 513 /* 514 * Note that iop_push may unlock and reacquire the AIL lock. We 515 * rely on the AIL cursor implementation to be able to deal with 516 * the dropped lock. 517 */ 518 lock_result = xfsaild_push_item(ailp, lip); 519 switch (lock_result) { 520 case XFS_ITEM_SUCCESS: 521 XFS_STATS_INC(mp, xs_push_ail_success); 522 trace_xfs_ail_push(lip); 523 524 ailp->ail_last_pushed_lsn = lsn; 525 break; 526 527 case XFS_ITEM_FLUSHING: 528 /* 529 * The item or its backing buffer is already being 530 * flushed. The typical reason for that is that an 531 * inode buffer is locked because we already pushed the 532 * updates to it as part of inode clustering. 533 * 534 * We do not want to stop flushing just because lots 535 * of items are already being flushed, but we need to 536 * re-try the flushing relatively soon if most of the 537 * AIL is being flushed. 538 */ 539 XFS_STATS_INC(mp, xs_push_ail_flushing); 540 trace_xfs_ail_flushing(lip); 541 542 flushing++; 543 ailp->ail_last_pushed_lsn = lsn; 544 break; 545 546 case XFS_ITEM_PINNED: 547 XFS_STATS_INC(mp, xs_push_ail_pinned); 548 trace_xfs_ail_pinned(lip); 549 550 stuck++; 551 ailp->ail_log_flush++; 552 break; 553 case XFS_ITEM_LOCKED: 554 XFS_STATS_INC(mp, xs_push_ail_locked); 555 trace_xfs_ail_locked(lip); 556 557 stuck++; 558 break; 559 default: 560 ASSERT(0); 561 break; 562 } 563 564 count++; 565 566 /* 567 * Are there too many items we can't do anything with? 568 * 569 * If we are skipping too many items because we can't flush 570 * them or they are already being flushed, we back off and 571 * given them time to complete whatever operation is being 572 * done. i.e. remove pressure from the AIL while we can't make 573 * progress so traversals don't slow down further inserts and 574 * removals to/from the AIL. 575 * 576 * The value of 100 is an arbitrary magic number based on 577 * observation. 578 */ 579 if (stuck > 100) 580 break; 581 582 next_item: 583 lip = xfs_trans_ail_cursor_next(ailp, &cur); 584 if (lip == NULL) 585 break; 586 if (lip->li_lsn != lsn && count > 1000) 587 break; 588 lsn = lip->li_lsn; 589 } 590 591 out_done_cursor: 592 xfs_trans_ail_cursor_done(&cur); 593 out_done: 594 spin_unlock(&ailp->ail_lock); 595 596 if (xfs_buf_delwri_submit_nowait(&ailp->ail_buf_list)) 597 ailp->ail_log_flush++; 598 599 if (!count || XFS_LSN_CMP(lsn, ailp->ail_target) >= 0) { 600 /* 601 * We reached the target or the AIL is empty, so wait a bit 602 * longer for I/O to complete and remove pushed items from the 603 * AIL before we start the next scan from the start of the AIL. 604 */ 605 tout = 50; 606 ailp->ail_last_pushed_lsn = 0; 607 } else if (((stuck + flushing) * 100) / count > 90) { 608 /* 609 * Either there is a lot of contention on the AIL or we are 610 * stuck due to operations in progress. "Stuck" in this case 611 * is defined as >90% of the items we tried to push were stuck. 612 * 613 * Backoff a bit more to allow some I/O to complete before 614 * restarting from the start of the AIL. This prevents us from 615 * spinning on the same items, and if they are pinned will all 616 * the restart to issue a log force to unpin the stuck items. 617 */ 618 tout = 20; 619 ailp->ail_last_pushed_lsn = 0; 620 } else { 621 /* 622 * Assume we have more work to do in a short while. 623 */ 624 tout = 0; 625 } 626 627 return tout; 628 } 629 630 static int 631 xfsaild( 632 void *data) 633 { 634 struct xfs_ail *ailp = data; 635 long tout = 0; /* milliseconds */ 636 unsigned int noreclaim_flag; 637 638 noreclaim_flag = memalloc_noreclaim_save(); 639 set_freezable(); 640 641 while (1) { 642 /* 643 * Long waits of 50ms or more occur when we've run out of items 644 * to push, so we only want uninterruptible state if we're 645 * actually blocked on something. 646 */ 647 if (tout && tout <= 20) 648 set_current_state(TASK_KILLABLE|TASK_FREEZABLE); 649 else 650 set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 651 652 /* 653 * Check kthread_should_stop() after we set the task state to 654 * guarantee that we either see the stop bit and exit or the 655 * task state is reset to runnable such that it's not scheduled 656 * out indefinitely and detects the stop bit at next iteration. 657 * A memory barrier is included in above task state set to 658 * serialize again kthread_stop(). 659 */ 660 if (kthread_should_stop()) { 661 __set_current_state(TASK_RUNNING); 662 663 /* 664 * The caller forces out the AIL before stopping the 665 * thread in the common case, which means the delwri 666 * queue is drained. In the shutdown case, the queue may 667 * still hold relogged buffers that haven't been 668 * submitted because they were pinned since added to the 669 * queue. 670 * 671 * Log I/O error processing stales the underlying buffer 672 * and clears the delwri state, expecting the buf to be 673 * removed on the next submission attempt. That won't 674 * happen if we're shutting down, so this is the last 675 * opportunity to release such buffers from the queue. 676 */ 677 ASSERT(list_empty(&ailp->ail_buf_list) || 678 xlog_is_shutdown(ailp->ail_log)); 679 xfs_buf_delwri_cancel(&ailp->ail_buf_list); 680 break; 681 } 682 683 /* Idle if the AIL is empty. */ 684 spin_lock(&ailp->ail_lock); 685 if (!xfs_ail_min(ailp) && list_empty(&ailp->ail_buf_list)) { 686 spin_unlock(&ailp->ail_lock); 687 schedule(); 688 tout = 0; 689 continue; 690 } 691 spin_unlock(&ailp->ail_lock); 692 693 if (tout) 694 schedule_timeout(msecs_to_jiffies(tout)); 695 696 __set_current_state(TASK_RUNNING); 697 698 try_to_freeze(); 699 700 tout = xfsaild_push(ailp); 701 } 702 703 memalloc_noreclaim_restore(noreclaim_flag); 704 return 0; 705 } 706 707 /* 708 * Push out all items in the AIL immediately and wait until the AIL is empty. 709 */ 710 void 711 xfs_ail_push_all_sync( 712 struct xfs_ail *ailp) 713 { 714 DEFINE_WAIT(wait); 715 716 spin_lock(&ailp->ail_lock); 717 while (xfs_ail_max(ailp) != NULL) { 718 prepare_to_wait(&ailp->ail_empty, &wait, TASK_UNINTERRUPTIBLE); 719 wake_up_process(ailp->ail_task); 720 spin_unlock(&ailp->ail_lock); 721 schedule(); 722 spin_lock(&ailp->ail_lock); 723 } 724 spin_unlock(&ailp->ail_lock); 725 726 finish_wait(&ailp->ail_empty, &wait); 727 } 728 729 void 730 __xfs_ail_assign_tail_lsn( 731 struct xfs_ail *ailp) 732 { 733 struct xlog *log = ailp->ail_log; 734 xfs_lsn_t tail_lsn; 735 736 assert_spin_locked(&ailp->ail_lock); 737 738 if (xlog_is_shutdown(log)) 739 return; 740 741 tail_lsn = __xfs_ail_min_lsn(ailp); 742 if (!tail_lsn) 743 tail_lsn = ailp->ail_head_lsn; 744 745 WRITE_ONCE(log->l_tail_space, 746 xlog_lsn_sub(log, ailp->ail_head_lsn, tail_lsn)); 747 trace_xfs_log_assign_tail_lsn(log, tail_lsn); 748 atomic64_set(&log->l_tail_lsn, tail_lsn); 749 } 750 751 /* 752 * Callers should pass the original tail lsn so that we can detect if the tail 753 * has moved as a result of the operation that was performed. If the caller 754 * needs to force a tail space update, it should pass NULLCOMMITLSN to bypass 755 * the "did the tail LSN change?" checks. If the caller wants to avoid a tail 756 * update (e.g. it knows the tail did not change) it should pass an @old_lsn of 757 * 0. 758 */ 759 void 760 xfs_ail_update_finish( 761 struct xfs_ail *ailp, 762 xfs_lsn_t old_lsn) __releases(ailp->ail_lock) 763 { 764 struct xlog *log = ailp->ail_log; 765 766 /* If the tail lsn hasn't changed, don't do updates or wakeups. */ 767 if (!old_lsn || old_lsn == __xfs_ail_min_lsn(ailp)) { 768 spin_unlock(&ailp->ail_lock); 769 return; 770 } 771 772 __xfs_ail_assign_tail_lsn(ailp); 773 if (list_empty(&ailp->ail_head)) 774 wake_up_all(&ailp->ail_empty); 775 spin_unlock(&ailp->ail_lock); 776 xfs_log_space_wake(log->l_mp); 777 } 778 779 /* 780 * xfs_trans_ail_update_bulk - bulk AIL insertion operation. 781 * 782 * @xfs_trans_ail_update_bulk takes an array of log items that all need to be 783 * positioned at the same LSN in the AIL. If an item is not in the AIL, it will 784 * be added. Otherwise, it will be repositioned by removing it and re-adding 785 * it to the AIL. 786 * 787 * If we move the first item in the AIL, update the log tail to match the new 788 * minimum LSN in the AIL. 789 * 790 * This function should be called with the AIL lock held. 791 * 792 * To optimise the insert operation, we add all items to a temporary list, then 793 * splice this list into the correct position in the AIL. 794 * 795 * Items that are already in the AIL are first deleted from their current 796 * location before being added to the temporary list. 797 * 798 * This avoids needing to do an insert operation on every item. 799 * 800 * The AIL lock is dropped by xfs_ail_update_finish() before returning to 801 * the caller. 802 */ 803 void 804 xfs_trans_ail_update_bulk( 805 struct xfs_ail *ailp, 806 struct xfs_ail_cursor *cur, 807 struct xfs_log_item **log_items, 808 int nr_items, 809 xfs_lsn_t lsn) __releases(ailp->ail_lock) 810 { 811 struct xfs_log_item *mlip; 812 xfs_lsn_t tail_lsn = 0; 813 int i; 814 LIST_HEAD(tmp); 815 816 ASSERT(nr_items > 0); /* Not required, but true. */ 817 mlip = xfs_ail_min(ailp); 818 819 for (i = 0; i < nr_items; i++) { 820 struct xfs_log_item *lip = log_items[i]; 821 if (test_and_set_bit(XFS_LI_IN_AIL, &lip->li_flags)) { 822 /* check if we really need to move the item */ 823 if (XFS_LSN_CMP(lsn, lip->li_lsn) <= 0) 824 continue; 825 826 trace_xfs_ail_move(lip, lip->li_lsn, lsn); 827 if (mlip == lip && !tail_lsn) 828 tail_lsn = lip->li_lsn; 829 830 xfs_ail_delete(ailp, lip); 831 } else { 832 trace_xfs_ail_insert(lip, 0, lsn); 833 } 834 lip->li_lsn = lsn; 835 list_add_tail(&lip->li_ail, &tmp); 836 } 837 838 if (!list_empty(&tmp)) 839 xfs_ail_splice(ailp, cur, &tmp, lsn); 840 841 /* 842 * If this is the first insert, wake up the push daemon so it can 843 * actively scan for items to push. We also need to do a log tail 844 * LSN update to ensure that it is correctly tracked by the log, so 845 * set the tail_lsn to NULLCOMMITLSN so that xfs_ail_update_finish() 846 * will see that the tail lsn has changed and will update the tail 847 * appropriately. 848 */ 849 if (!mlip) { 850 wake_up_process(ailp->ail_task); 851 tail_lsn = NULLCOMMITLSN; 852 } 853 854 xfs_ail_update_finish(ailp, tail_lsn); 855 } 856 857 /* Insert a log item into the AIL. */ 858 void 859 xfs_trans_ail_insert( 860 struct xfs_ail *ailp, 861 struct xfs_log_item *lip, 862 xfs_lsn_t lsn) 863 { 864 spin_lock(&ailp->ail_lock); 865 xfs_trans_ail_update_bulk(ailp, NULL, &lip, 1, lsn); 866 } 867 868 /* 869 * Delete one log item from the AIL. 870 * 871 * If this item was at the tail of the AIL, return the LSN of the log item so 872 * that we can use it to check if the LSN of the tail of the log has moved 873 * when finishing up the AIL delete process in xfs_ail_update_finish(). 874 */ 875 xfs_lsn_t 876 xfs_ail_delete_one( 877 struct xfs_ail *ailp, 878 struct xfs_log_item *lip) 879 { 880 struct xfs_log_item *mlip = xfs_ail_min(ailp); 881 xfs_lsn_t lsn = lip->li_lsn; 882 883 trace_xfs_ail_delete(lip, mlip->li_lsn, lip->li_lsn); 884 xfs_ail_delete(ailp, lip); 885 clear_bit(XFS_LI_IN_AIL, &lip->li_flags); 886 lip->li_lsn = 0; 887 888 if (mlip == lip) 889 return lsn; 890 return 0; 891 } 892 893 void 894 xfs_trans_ail_delete( 895 struct xfs_log_item *lip, 896 int shutdown_type) 897 { 898 struct xfs_ail *ailp = lip->li_ailp; 899 struct xlog *log = ailp->ail_log; 900 xfs_lsn_t tail_lsn; 901 902 spin_lock(&ailp->ail_lock); 903 if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) { 904 spin_unlock(&ailp->ail_lock); 905 if (shutdown_type && !xlog_is_shutdown(log)) { 906 xfs_alert_tag(log->l_mp, XFS_PTAG_AILDELETE, 907 "%s: attempting to delete a log item that is not in the AIL", 908 __func__); 909 xlog_force_shutdown(log, shutdown_type); 910 } 911 return; 912 } 913 914 clear_bit(XFS_LI_FAILED, &lip->li_flags); 915 tail_lsn = xfs_ail_delete_one(ailp, lip); 916 xfs_ail_update_finish(ailp, tail_lsn); /* drops the AIL lock */ 917 } 918 919 int 920 xfs_trans_ail_init( 921 xfs_mount_t *mp) 922 { 923 struct xfs_ail *ailp; 924 925 ailp = kzalloc(sizeof(struct xfs_ail), 926 GFP_KERNEL | __GFP_RETRY_MAYFAIL); 927 if (!ailp) 928 return -ENOMEM; 929 930 ailp->ail_log = mp->m_log; 931 INIT_LIST_HEAD(&ailp->ail_head); 932 INIT_LIST_HEAD(&ailp->ail_cursors); 933 spin_lock_init(&ailp->ail_lock); 934 INIT_LIST_HEAD(&ailp->ail_buf_list); 935 init_waitqueue_head(&ailp->ail_empty); 936 937 ailp->ail_task = kthread_run(xfsaild, ailp, "xfsaild/%s", 938 mp->m_super->s_id); 939 if (IS_ERR(ailp->ail_task)) 940 goto out_free_ailp; 941 942 mp->m_ail = ailp; 943 return 0; 944 945 out_free_ailp: 946 kfree(ailp); 947 return -ENOMEM; 948 } 949 950 void 951 xfs_trans_ail_destroy( 952 xfs_mount_t *mp) 953 { 954 struct xfs_ail *ailp = mp->m_ail; 955 956 kthread_stop(ailp->ail_task); 957 kfree(ailp); 958 } 959