1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2016 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_defer.h" 14 #include "xfs_inode.h" 15 #include "xfs_trans.h" 16 #include "xfs_bmap.h" 17 #include "xfs_bmap_util.h" 18 #include "xfs_trace.h" 19 #include "xfs_icache.h" 20 #include "xfs_btree.h" 21 #include "xfs_refcount_btree.h" 22 #include "xfs_refcount.h" 23 #include "xfs_bmap_btree.h" 24 #include "xfs_trans_space.h" 25 #include "xfs_bit.h" 26 #include "xfs_alloc.h" 27 #include "xfs_quota.h" 28 #include "xfs_reflink.h" 29 #include "xfs_iomap.h" 30 #include "xfs_ag.h" 31 #include "xfs_ag_resv.h" 32 #include "xfs_health.h" 33 #include "xfs_rtrefcount_btree.h" 34 #include "xfs_rtalloc.h" 35 #include "xfs_rtgroup.h" 36 #include "xfs_metafile.h" 37 38 /* 39 * Copy on Write of Shared Blocks 40 * 41 * XFS must preserve "the usual" file semantics even when two files share 42 * the same physical blocks. This means that a write to one file must not 43 * alter the blocks in a different file; the way that we'll do that is 44 * through the use of a copy-on-write mechanism. At a high level, that 45 * means that when we want to write to a shared block, we allocate a new 46 * block, write the data to the new block, and if that succeeds we map the 47 * new block into the file. 48 * 49 * XFS provides a "delayed allocation" mechanism that defers the allocation 50 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as 51 * possible. This reduces fragmentation by enabling the filesystem to ask 52 * for bigger chunks less often, which is exactly what we want for CoW. 53 * 54 * The delalloc mechanism begins when the kernel wants to make a block 55 * writable (write_begin or page_mkwrite). If the offset is not mapped, we 56 * create a delalloc mapping, which is a regular in-core extent, but without 57 * a real startblock. (For delalloc mappings, the startblock encodes both 58 * a flag that this is a delalloc mapping, and a worst-case estimate of how 59 * many blocks might be required to put the mapping into the BMBT.) delalloc 60 * mappings are a reservation against the free space in the filesystem; 61 * adjacent mappings can also be combined into fewer larger mappings. 62 * 63 * As an optimization, the CoW extent size hint (cowextsz) creates 64 * outsized aligned delalloc reservations in the hope of landing out of 65 * order nearby CoW writes in a single extent on disk, thereby reducing 66 * fragmentation and improving future performance. 67 * 68 * D: --RRRRRRSSSRRRRRRRR--- (data fork) 69 * C: ------DDDDDDD--------- (CoW fork) 70 * 71 * When dirty pages are being written out (typically in writepage), the 72 * delalloc reservations are converted into unwritten mappings by 73 * allocating blocks and replacing the delalloc mapping with real ones. 74 * A delalloc mapping can be replaced by several unwritten ones if the 75 * free space is fragmented. 76 * 77 * D: --RRRRRRSSSRRRRRRRR--- 78 * C: ------UUUUUUU--------- 79 * 80 * We want to adapt the delalloc mechanism for copy-on-write, since the 81 * write paths are similar. The first two steps (creating the reservation 82 * and allocating the blocks) are exactly the same as delalloc except that 83 * the mappings must be stored in a separate CoW fork because we do not want 84 * to disturb the mapping in the data fork until we're sure that the write 85 * succeeded. IO completion in this case is the process of removing the old 86 * mapping from the data fork and moving the new mapping from the CoW fork to 87 * the data fork. This will be discussed shortly. 88 * 89 * For now, unaligned directio writes will be bounced back to the page cache. 90 * Block-aligned directio writes will use the same mechanism as buffered 91 * writes. 92 * 93 * Just prior to submitting the actual disk write requests, we convert 94 * the extents representing the range of the file actually being written 95 * (as opposed to extra pieces created for the cowextsize hint) to real 96 * extents. This will become important in the next step: 97 * 98 * D: --RRRRRRSSSRRRRRRRR--- 99 * C: ------UUrrUUU--------- 100 * 101 * CoW remapping must be done after the data block write completes, 102 * because we don't want to destroy the old data fork map until we're sure 103 * the new block has been written. Since the new mappings are kept in a 104 * separate fork, we can simply iterate these mappings to find the ones 105 * that cover the file blocks that we just CoW'd. For each extent, simply 106 * unmap the corresponding range in the data fork, map the new range into 107 * the data fork, and remove the extent from the CoW fork. Because of 108 * the presence of the cowextsize hint, however, we must be careful 109 * only to remap the blocks that we've actually written out -- we must 110 * never remap delalloc reservations nor CoW staging blocks that have 111 * yet to be written. This corresponds exactly to the real extents in 112 * the CoW fork: 113 * 114 * D: --RRRRRRrrSRRRRRRRR--- 115 * C: ------UU--UUU--------- 116 * 117 * Since the remapping operation can be applied to an arbitrary file 118 * range, we record the need for the remap step as a flag in the ioend 119 * instead of declaring a new IO type. This is required for direct io 120 * because we only have ioend for the whole dio, and we have to be able to 121 * remember the presence of unwritten blocks and CoW blocks with a single 122 * ioend structure. Better yet, the more ground we can cover with one 123 * ioend, the better. 124 */ 125 126 /* 127 * Given a file mapping for the data device, find the lowest-numbered run of 128 * shared blocks within that mapping and return it in shared_offset/shared_len. 129 * The offset is relative to the start of irec. 130 * 131 * If find_end_of_shared is true, return the longest contiguous extent of shared 132 * blocks. If there are no shared extents, shared_offset and shared_len will be 133 * set to 0; 134 */ 135 static int 136 xfs_reflink_find_shared( 137 struct xfs_mount *mp, 138 struct xfs_trans *tp, 139 const struct xfs_bmbt_irec *irec, 140 xfs_extlen_t *shared_offset, 141 xfs_extlen_t *shared_len, 142 bool find_end_of_shared) 143 { 144 struct xfs_buf *agbp; 145 struct xfs_perag *pag; 146 struct xfs_btree_cur *cur; 147 int error; 148 xfs_agblock_t orig_bno, found_bno; 149 150 pag = xfs_perag_get(mp, XFS_FSB_TO_AGNO(mp, irec->br_startblock)); 151 orig_bno = XFS_FSB_TO_AGBNO(mp, irec->br_startblock); 152 153 error = xfs_alloc_read_agf(pag, tp, 0, &agbp); 154 if (error) 155 goto out; 156 157 cur = xfs_refcountbt_init_cursor(mp, tp, agbp, pag); 158 error = xfs_refcount_find_shared(cur, orig_bno, irec->br_blockcount, 159 &found_bno, shared_len, find_end_of_shared); 160 xfs_btree_del_cursor(cur, error); 161 xfs_trans_brelse(tp, agbp); 162 163 if (!error && *shared_len) 164 *shared_offset = found_bno - orig_bno; 165 out: 166 xfs_perag_put(pag); 167 return error; 168 } 169 170 /* 171 * Given a file mapping for the rt device, find the lowest-numbered run of 172 * shared blocks within that mapping and return it in shared_offset/shared_len. 173 * The offset is relative to the start of irec. 174 * 175 * If find_end_of_shared is true, return the longest contiguous extent of shared 176 * blocks. If there are no shared extents, shared_offset and shared_len will be 177 * set to 0; 178 */ 179 static int 180 xfs_reflink_find_rtshared( 181 struct xfs_mount *mp, 182 struct xfs_trans *tp, 183 const struct xfs_bmbt_irec *irec, 184 xfs_extlen_t *shared_offset, 185 xfs_extlen_t *shared_len, 186 bool find_end_of_shared) 187 { 188 struct xfs_rtgroup *rtg; 189 struct xfs_btree_cur *cur; 190 xfs_rgblock_t orig_bno; 191 xfs_agblock_t found_bno; 192 int error; 193 194 BUILD_BUG_ON(NULLRGBLOCK != NULLAGBLOCK); 195 196 /* 197 * Note: this uses the not quite correct xfs_agblock_t type because 198 * xfs_refcount_find_shared is shared between the RT and data device 199 * refcount code. 200 */ 201 orig_bno = xfs_rtb_to_rgbno(mp, irec->br_startblock); 202 rtg = xfs_rtgroup_get(mp, xfs_rtb_to_rgno(mp, irec->br_startblock)); 203 204 xfs_rtgroup_lock(rtg, XFS_RTGLOCK_REFCOUNT); 205 cur = xfs_rtrefcountbt_init_cursor(tp, rtg); 206 error = xfs_refcount_find_shared(cur, orig_bno, irec->br_blockcount, 207 &found_bno, shared_len, find_end_of_shared); 208 xfs_btree_del_cursor(cur, error); 209 xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_REFCOUNT); 210 xfs_rtgroup_put(rtg); 211 212 if (!error && *shared_len) 213 *shared_offset = found_bno - orig_bno; 214 return error; 215 } 216 217 /* 218 * Trim the mapping to the next block where there's a change in the 219 * shared/unshared status. More specifically, this means that we 220 * find the lowest-numbered extent of shared blocks that coincides with 221 * the given block mapping. If the shared extent overlaps the start of 222 * the mapping, trim the mapping to the end of the shared extent. If 223 * the shared region intersects the mapping, trim the mapping to the 224 * start of the shared extent. If there are no shared regions that 225 * overlap, just return the original extent. 226 */ 227 int 228 xfs_reflink_trim_around_shared( 229 struct xfs_inode *ip, 230 struct xfs_bmbt_irec *irec, 231 bool *shared) 232 { 233 struct xfs_mount *mp = ip->i_mount; 234 xfs_extlen_t shared_offset, shared_len; 235 int error = 0; 236 237 /* Holes, unwritten, and delalloc extents cannot be shared */ 238 if (!xfs_is_reflink_inode(ip) || !xfs_bmap_is_written_extent(irec)) { 239 *shared = false; 240 return 0; 241 } 242 243 trace_xfs_reflink_trim_around_shared(ip, irec); 244 245 if (XFS_IS_REALTIME_INODE(ip)) 246 error = xfs_reflink_find_rtshared(mp, NULL, irec, 247 &shared_offset, &shared_len, true); 248 else 249 error = xfs_reflink_find_shared(mp, NULL, irec, 250 &shared_offset, &shared_len, true); 251 if (error) 252 return error; 253 254 if (!shared_len) { 255 /* No shared blocks at all. */ 256 *shared = false; 257 } else if (!shared_offset) { 258 /* 259 * The start of this mapping points to shared space. Truncate 260 * the mapping at the end of the shared region so that a 261 * subsequent iteration starts at the start of the unshared 262 * region. 263 */ 264 irec->br_blockcount = shared_len; 265 *shared = true; 266 } else { 267 /* 268 * There's a shared region that doesn't start at the beginning 269 * of the mapping. Truncate the mapping at the start of the 270 * shared extent so that a subsequent iteration starts at the 271 * start of the shared region. 272 */ 273 irec->br_blockcount = shared_offset; 274 *shared = false; 275 } 276 return 0; 277 } 278 279 int 280 xfs_bmap_trim_cow( 281 struct xfs_inode *ip, 282 struct xfs_bmbt_irec *imap, 283 bool *shared) 284 { 285 /* We can't update any real extents in always COW mode. */ 286 if (xfs_is_always_cow_inode(ip) && 287 !isnullstartblock(imap->br_startblock)) { 288 *shared = true; 289 return 0; 290 } 291 292 /* Trim the mapping to the nearest shared extent boundary. */ 293 return xfs_reflink_trim_around_shared(ip, imap, shared); 294 } 295 296 int 297 xfs_reflink_convert_cow_locked( 298 struct xfs_inode *ip, 299 xfs_fileoff_t offset_fsb, 300 xfs_filblks_t count_fsb) 301 { 302 struct xfs_iext_cursor icur; 303 struct xfs_bmbt_irec got; 304 struct xfs_btree_cur *dummy_cur = NULL; 305 int dummy_logflags; 306 int error = 0; 307 308 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got)) 309 return 0; 310 311 do { 312 if (got.br_startoff >= offset_fsb + count_fsb) 313 break; 314 if (got.br_state == XFS_EXT_NORM) 315 continue; 316 if (WARN_ON_ONCE(isnullstartblock(got.br_startblock))) 317 return -EIO; 318 319 xfs_trim_extent(&got, offset_fsb, count_fsb); 320 if (!got.br_blockcount) 321 continue; 322 323 got.br_state = XFS_EXT_NORM; 324 error = xfs_bmap_add_extent_unwritten_real(NULL, ip, 325 XFS_COW_FORK, &icur, &dummy_cur, &got, 326 &dummy_logflags); 327 if (error) 328 return error; 329 } while (xfs_iext_next_extent(ip->i_cowfp, &icur, &got)); 330 331 return error; 332 } 333 334 /* Convert all of the unwritten CoW extents in a file's range to real ones. */ 335 int 336 xfs_reflink_convert_cow( 337 struct xfs_inode *ip, 338 xfs_off_t offset, 339 xfs_off_t count) 340 { 341 struct xfs_mount *mp = ip->i_mount; 342 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 343 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count); 344 xfs_filblks_t count_fsb = end_fsb - offset_fsb; 345 int error; 346 347 ASSERT(count != 0); 348 349 xfs_ilock(ip, XFS_ILOCK_EXCL); 350 error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb); 351 xfs_iunlock(ip, XFS_ILOCK_EXCL); 352 return error; 353 } 354 355 /* 356 * Find the extent that maps the given range in the COW fork. Even if the extent 357 * is not shared we might have a preallocation for it in the COW fork. If so we 358 * use it that rather than trigger a new allocation. 359 */ 360 static int 361 xfs_find_trim_cow_extent( 362 struct xfs_inode *ip, 363 struct xfs_bmbt_irec *imap, 364 struct xfs_bmbt_irec *cmap, 365 bool *shared, 366 bool *found) 367 { 368 xfs_fileoff_t offset_fsb = imap->br_startoff; 369 xfs_filblks_t count_fsb = imap->br_blockcount; 370 struct xfs_iext_cursor icur; 371 372 *found = false; 373 374 /* 375 * If we don't find an overlapping extent, trim the range we need to 376 * allocate to fit the hole we found. 377 */ 378 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, cmap)) 379 cmap->br_startoff = offset_fsb + count_fsb; 380 if (cmap->br_startoff > offset_fsb) { 381 xfs_trim_extent(imap, imap->br_startoff, 382 cmap->br_startoff - imap->br_startoff); 383 return xfs_bmap_trim_cow(ip, imap, shared); 384 } 385 386 *shared = true; 387 if (isnullstartblock(cmap->br_startblock)) { 388 xfs_trim_extent(imap, cmap->br_startoff, cmap->br_blockcount); 389 return 0; 390 } 391 392 /* real extent found - no need to allocate */ 393 xfs_trim_extent(cmap, offset_fsb, count_fsb); 394 *found = true; 395 return 0; 396 } 397 398 static int 399 xfs_reflink_convert_unwritten( 400 struct xfs_inode *ip, 401 struct xfs_bmbt_irec *imap, 402 struct xfs_bmbt_irec *cmap, 403 bool convert_now) 404 { 405 xfs_fileoff_t offset_fsb = imap->br_startoff; 406 xfs_filblks_t count_fsb = imap->br_blockcount; 407 int error; 408 409 /* 410 * cmap might larger than imap due to cowextsize hint. 411 */ 412 xfs_trim_extent(cmap, offset_fsb, count_fsb); 413 414 /* 415 * COW fork extents are supposed to remain unwritten until we're ready 416 * to initiate a disk write. For direct I/O we are going to write the 417 * data and need the conversion, but for buffered writes we're done. 418 */ 419 if (!convert_now || cmap->br_state == XFS_EXT_NORM) 420 return 0; 421 422 trace_xfs_reflink_convert_cow(ip, cmap); 423 424 error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb); 425 if (!error) 426 cmap->br_state = XFS_EXT_NORM; 427 428 return error; 429 } 430 431 static int 432 xfs_reflink_fill_cow_hole( 433 struct xfs_inode *ip, 434 struct xfs_bmbt_irec *imap, 435 struct xfs_bmbt_irec *cmap, 436 bool *shared, 437 uint *lockmode, 438 bool convert_now) 439 { 440 struct xfs_mount *mp = ip->i_mount; 441 struct xfs_trans *tp; 442 xfs_filblks_t resaligned; 443 unsigned int dblocks = 0, rblocks = 0; 444 int nimaps; 445 int error; 446 bool found; 447 448 resaligned = xfs_aligned_fsb_count(imap->br_startoff, 449 imap->br_blockcount, xfs_get_cowextsz_hint(ip)); 450 if (XFS_IS_REALTIME_INODE(ip)) { 451 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0); 452 rblocks = resaligned; 453 } else { 454 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned); 455 rblocks = 0; 456 } 457 458 xfs_iunlock(ip, *lockmode); 459 *lockmode = 0; 460 461 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, dblocks, 462 rblocks, false, &tp); 463 if (error) 464 return error; 465 466 *lockmode = XFS_ILOCK_EXCL; 467 468 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found); 469 if (error || !*shared) 470 goto out_trans_cancel; 471 472 if (found) { 473 xfs_trans_cancel(tp); 474 goto convert; 475 } 476 477 /* Allocate the entire reservation as unwritten blocks. */ 478 nimaps = 1; 479 error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount, 480 XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, cmap, 481 &nimaps); 482 if (error) 483 goto out_trans_cancel; 484 485 xfs_inode_set_cowblocks_tag(ip); 486 error = xfs_trans_commit(tp); 487 if (error) 488 return error; 489 490 convert: 491 return xfs_reflink_convert_unwritten(ip, imap, cmap, convert_now); 492 493 out_trans_cancel: 494 xfs_trans_cancel(tp); 495 return error; 496 } 497 498 static int 499 xfs_reflink_fill_delalloc( 500 struct xfs_inode *ip, 501 struct xfs_bmbt_irec *imap, 502 struct xfs_bmbt_irec *cmap, 503 bool *shared, 504 uint *lockmode, 505 bool convert_now) 506 { 507 struct xfs_mount *mp = ip->i_mount; 508 struct xfs_trans *tp; 509 int nimaps; 510 int error; 511 bool found; 512 513 do { 514 xfs_iunlock(ip, *lockmode); 515 *lockmode = 0; 516 517 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, 0, 0, 518 false, &tp); 519 if (error) 520 return error; 521 522 *lockmode = XFS_ILOCK_EXCL; 523 524 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, 525 &found); 526 if (error || !*shared) 527 goto out_trans_cancel; 528 529 if (found) { 530 xfs_trans_cancel(tp); 531 break; 532 } 533 534 ASSERT(isnullstartblock(cmap->br_startblock) || 535 cmap->br_startblock == DELAYSTARTBLOCK); 536 537 /* 538 * Replace delalloc reservation with an unwritten extent. 539 */ 540 nimaps = 1; 541 error = xfs_bmapi_write(tp, ip, cmap->br_startoff, 542 cmap->br_blockcount, 543 XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, 544 cmap, &nimaps); 545 if (error) 546 goto out_trans_cancel; 547 548 xfs_inode_set_cowblocks_tag(ip); 549 error = xfs_trans_commit(tp); 550 if (error) 551 return error; 552 } while (cmap->br_startoff + cmap->br_blockcount <= imap->br_startoff); 553 554 return xfs_reflink_convert_unwritten(ip, imap, cmap, convert_now); 555 556 out_trans_cancel: 557 xfs_trans_cancel(tp); 558 return error; 559 } 560 561 /* Allocate all CoW reservations covering a range of blocks in a file. */ 562 int 563 xfs_reflink_allocate_cow( 564 struct xfs_inode *ip, 565 struct xfs_bmbt_irec *imap, 566 struct xfs_bmbt_irec *cmap, 567 bool *shared, 568 uint *lockmode, 569 bool convert_now) 570 { 571 int error; 572 bool found; 573 574 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); 575 if (!ip->i_cowfp) { 576 ASSERT(!xfs_is_reflink_inode(ip)); 577 xfs_ifork_init_cow(ip); 578 } 579 580 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found); 581 if (error || !*shared) 582 return error; 583 584 /* CoW fork has a real extent */ 585 if (found) 586 return xfs_reflink_convert_unwritten(ip, imap, cmap, 587 convert_now); 588 589 /* 590 * CoW fork does not have an extent and data extent is shared. 591 * Allocate a real extent in the CoW fork. 592 */ 593 if (cmap->br_startoff > imap->br_startoff) 594 return xfs_reflink_fill_cow_hole(ip, imap, cmap, shared, 595 lockmode, convert_now); 596 597 /* 598 * CoW fork has a delalloc reservation. Replace it with a real extent. 599 * There may or may not be a data fork mapping. 600 */ 601 if (isnullstartblock(cmap->br_startblock) || 602 cmap->br_startblock == DELAYSTARTBLOCK) 603 return xfs_reflink_fill_delalloc(ip, imap, cmap, shared, 604 lockmode, convert_now); 605 606 /* Shouldn't get here. */ 607 ASSERT(0); 608 return -EFSCORRUPTED; 609 } 610 611 /* 612 * Cancel CoW reservations for some block range of an inode. 613 * 614 * If cancel_real is true this function cancels all COW fork extents for the 615 * inode; if cancel_real is false, real extents are not cleared. 616 * 617 * Caller must have already joined the inode to the current transaction. The 618 * inode will be joined to the transaction returned to the caller. 619 */ 620 int 621 xfs_reflink_cancel_cow_blocks( 622 struct xfs_inode *ip, 623 struct xfs_trans **tpp, 624 xfs_fileoff_t offset_fsb, 625 xfs_fileoff_t end_fsb, 626 bool cancel_real) 627 { 628 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_COW_FORK); 629 struct xfs_bmbt_irec got, del; 630 struct xfs_iext_cursor icur; 631 bool isrt = XFS_IS_REALTIME_INODE(ip); 632 int error = 0; 633 634 if (!xfs_inode_has_cow_data(ip)) 635 return 0; 636 if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got)) 637 return 0; 638 639 /* Walk backwards until we're out of the I/O range... */ 640 while (got.br_startoff + got.br_blockcount > offset_fsb) { 641 del = got; 642 xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb); 643 644 /* Extent delete may have bumped ext forward */ 645 if (!del.br_blockcount) { 646 xfs_iext_prev(ifp, &icur); 647 goto next_extent; 648 } 649 650 trace_xfs_reflink_cancel_cow(ip, &del); 651 652 if (isnullstartblock(del.br_startblock)) { 653 xfs_bmap_del_extent_delay(ip, XFS_COW_FORK, &icur, &got, 654 &del, 0); 655 } else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) { 656 ASSERT((*tpp)->t_highest_agno == NULLAGNUMBER); 657 658 /* Free the CoW orphan record. */ 659 xfs_refcount_free_cow_extent(*tpp, isrt, 660 del.br_startblock, del.br_blockcount); 661 662 error = xfs_free_extent_later(*tpp, del.br_startblock, 663 del.br_blockcount, NULL, 664 XFS_AG_RESV_NONE, 665 isrt ? XFS_FREE_EXTENT_REALTIME : 0); 666 if (error) 667 break; 668 669 /* Roll the transaction */ 670 error = xfs_defer_finish(tpp); 671 if (error) 672 break; 673 674 /* Remove the mapping from the CoW fork. */ 675 xfs_bmap_del_extent_cow(ip, &icur, &got, &del); 676 677 /* Remove the quota reservation */ 678 xfs_quota_unreserve_blkres(ip, del.br_blockcount); 679 } else { 680 /* Didn't do anything, push cursor back. */ 681 xfs_iext_prev(ifp, &icur); 682 } 683 next_extent: 684 if (!xfs_iext_get_extent(ifp, &icur, &got)) 685 break; 686 } 687 688 /* clear tag if cow fork is emptied */ 689 if (!ifp->if_bytes) 690 xfs_inode_clear_cowblocks_tag(ip); 691 return error; 692 } 693 694 /* 695 * Cancel CoW reservations for some byte range of an inode. 696 * 697 * If cancel_real is true this function cancels all COW fork extents for the 698 * inode; if cancel_real is false, real extents are not cleared. 699 */ 700 int 701 xfs_reflink_cancel_cow_range( 702 struct xfs_inode *ip, 703 xfs_off_t offset, 704 xfs_off_t count, 705 bool cancel_real) 706 { 707 struct xfs_trans *tp; 708 xfs_fileoff_t offset_fsb; 709 xfs_fileoff_t end_fsb; 710 int error; 711 712 trace_xfs_reflink_cancel_cow_range(ip, offset, count); 713 ASSERT(ip->i_cowfp); 714 715 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); 716 if (count == NULLFILEOFF) 717 end_fsb = NULLFILEOFF; 718 else 719 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count); 720 721 /* Start a rolling transaction to remove the mappings */ 722 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write, 723 0, 0, 0, &tp); 724 if (error) 725 goto out; 726 727 xfs_ilock(ip, XFS_ILOCK_EXCL); 728 xfs_trans_ijoin(tp, ip, 0); 729 730 /* Scrape out the old CoW reservations */ 731 error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb, 732 cancel_real); 733 if (error) 734 goto out_cancel; 735 736 error = xfs_trans_commit(tp); 737 738 xfs_iunlock(ip, XFS_ILOCK_EXCL); 739 return error; 740 741 out_cancel: 742 xfs_trans_cancel(tp); 743 xfs_iunlock(ip, XFS_ILOCK_EXCL); 744 out: 745 trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_); 746 return error; 747 } 748 749 #ifdef CONFIG_XFS_QUOTA 750 /* 751 * Update quota accounting for a remapping operation. When we're remapping 752 * something from the CoW fork to the data fork, we must update the quota 753 * accounting for delayed allocations. For remapping from the data fork to the 754 * data fork, use regular block accounting. 755 */ 756 static inline void 757 xfs_reflink_update_quota( 758 struct xfs_trans *tp, 759 struct xfs_inode *ip, 760 bool is_cow, 761 int64_t blocks) 762 { 763 unsigned int qflag; 764 765 if (XFS_IS_REALTIME_INODE(ip)) { 766 qflag = is_cow ? XFS_TRANS_DQ_DELRTBCOUNT : 767 XFS_TRANS_DQ_RTBCOUNT; 768 } else { 769 qflag = is_cow ? XFS_TRANS_DQ_DELBCOUNT : 770 XFS_TRANS_DQ_BCOUNT; 771 } 772 xfs_trans_mod_dquot_byino(tp, ip, qflag, blocks); 773 } 774 #else 775 # define xfs_reflink_update_quota(tp, ip, is_cow, blocks) ((void)0) 776 #endif 777 778 /* 779 * Remap part of the CoW fork into the data fork. 780 * 781 * We aim to remap the range starting at @offset_fsb and ending at @end_fsb 782 * into the data fork; this function will remap what it can (at the end of the 783 * range) and update @end_fsb appropriately. Each remap gets its own 784 * transaction because we can end up merging and splitting bmbt blocks for 785 * every remap operation and we'd like to keep the block reservation 786 * requirements as low as possible. 787 */ 788 STATIC int 789 xfs_reflink_end_cow_extent_locked( 790 struct xfs_trans *tp, 791 struct xfs_inode *ip, 792 xfs_fileoff_t *offset_fsb, 793 xfs_fileoff_t end_fsb) 794 { 795 struct xfs_iext_cursor icur; 796 struct xfs_bmbt_irec got, del, data; 797 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_COW_FORK); 798 int nmaps; 799 bool isrt = XFS_IS_REALTIME_INODE(ip); 800 int error; 801 802 /* 803 * In case of racing, overlapping AIO writes no COW extents might be 804 * left by the time I/O completes for the loser of the race. In that 805 * case we are done. 806 */ 807 if (!xfs_iext_lookup_extent(ip, ifp, *offset_fsb, &icur, &got) || 808 got.br_startoff >= end_fsb) { 809 *offset_fsb = end_fsb; 810 return 0; 811 } 812 813 /* 814 * Only remap real extents that contain data. With AIO, speculative 815 * preallocations can leak into the range we are called upon, and we 816 * need to skip them. Preserve @got for the eventual CoW fork 817 * deletion; from now on @del represents the mapping that we're 818 * actually remapping. 819 */ 820 while (!xfs_bmap_is_written_extent(&got)) { 821 if (!xfs_iext_next_extent(ifp, &icur, &got) || 822 got.br_startoff >= end_fsb) { 823 *offset_fsb = end_fsb; 824 return 0; 825 } 826 } 827 del = got; 828 xfs_trim_extent(&del, *offset_fsb, end_fsb - *offset_fsb); 829 830 error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK, 831 XFS_IEXT_REFLINK_END_COW_CNT); 832 if (error) 833 return error; 834 835 /* Grab the corresponding mapping in the data fork. */ 836 nmaps = 1; 837 error = xfs_bmapi_read(ip, del.br_startoff, del.br_blockcount, &data, 838 &nmaps, 0); 839 if (error) 840 return error; 841 842 /* We can only remap the smaller of the two extent sizes. */ 843 data.br_blockcount = min(data.br_blockcount, del.br_blockcount); 844 del.br_blockcount = data.br_blockcount; 845 846 trace_xfs_reflink_cow_remap_from(ip, &del); 847 trace_xfs_reflink_cow_remap_to(ip, &data); 848 849 if (xfs_bmap_is_real_extent(&data)) { 850 /* 851 * If the extent we're remapping is backed by storage (written 852 * or not), unmap the extent and drop its refcount. 853 */ 854 xfs_bmap_unmap_extent(tp, ip, XFS_DATA_FORK, &data); 855 xfs_refcount_decrease_extent(tp, isrt, &data); 856 xfs_reflink_update_quota(tp, ip, false, -data.br_blockcount); 857 } else if (data.br_startblock == DELAYSTARTBLOCK) { 858 int done; 859 860 /* 861 * If the extent we're remapping is a delalloc reservation, 862 * we can use the regular bunmapi function to release the 863 * incore state. Dropping the delalloc reservation takes care 864 * of the quota reservation for us. 865 */ 866 error = xfs_bunmapi(NULL, ip, data.br_startoff, 867 data.br_blockcount, 0, 1, &done); 868 if (error) 869 return error; 870 ASSERT(done); 871 } 872 873 /* Free the CoW orphan record. */ 874 xfs_refcount_free_cow_extent(tp, isrt, del.br_startblock, 875 del.br_blockcount); 876 877 /* Map the new blocks into the data fork. */ 878 xfs_bmap_map_extent(tp, ip, XFS_DATA_FORK, &del); 879 880 /* Charge this new data fork mapping to the on-disk quota. */ 881 xfs_reflink_update_quota(tp, ip, true, del.br_blockcount); 882 883 /* Remove the mapping from the CoW fork. */ 884 xfs_bmap_del_extent_cow(ip, &icur, &got, &del); 885 886 /* Update the caller about how much progress we made. */ 887 *offset_fsb = del.br_startoff + del.br_blockcount; 888 return 0; 889 } 890 891 /* 892 * Remap part of the CoW fork into the data fork. 893 * 894 * We aim to remap the range starting at @offset_fsb and ending at @end_fsb 895 * into the data fork; this function will remap what it can (at the end of the 896 * range) and update @end_fsb appropriately. Each remap gets its own 897 * transaction because we can end up merging and splitting bmbt blocks for 898 * every remap operation and we'd like to keep the block reservation 899 * requirements as low as possible. 900 */ 901 STATIC int 902 xfs_reflink_end_cow_extent( 903 struct xfs_inode *ip, 904 xfs_fileoff_t *offset_fsb, 905 xfs_fileoff_t end_fsb) 906 { 907 struct xfs_mount *mp = ip->i_mount; 908 struct xfs_trans *tp; 909 unsigned int resblks; 910 int error; 911 912 resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK); 913 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 914 XFS_TRANS_RESERVE, &tp); 915 if (error) 916 return error; 917 xfs_ilock(ip, XFS_ILOCK_EXCL); 918 xfs_trans_ijoin(tp, ip, 0); 919 920 error = xfs_reflink_end_cow_extent_locked(tp, ip, offset_fsb, end_fsb); 921 if (error) 922 xfs_trans_cancel(tp); 923 else 924 error = xfs_trans_commit(tp); 925 xfs_iunlock(ip, XFS_ILOCK_EXCL); 926 return error; 927 } 928 929 /* 930 * Remap parts of a file's data fork after a successful CoW. 931 */ 932 int 933 xfs_reflink_end_cow( 934 struct xfs_inode *ip, 935 xfs_off_t offset, 936 xfs_off_t count) 937 { 938 xfs_fileoff_t offset_fsb; 939 xfs_fileoff_t end_fsb; 940 int error = 0; 941 942 trace_xfs_reflink_end_cow(ip, offset, count); 943 944 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); 945 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count); 946 947 /* 948 * Walk forwards until we've remapped the I/O range. The loop function 949 * repeatedly cycles the ILOCK to allocate one transaction per remapped 950 * extent. 951 * 952 * If we're being called by writeback then the pages will still 953 * have PageWriteback set, which prevents races with reflink remapping 954 * and truncate. Reflink remapping prevents races with writeback by 955 * taking the iolock and mmaplock before flushing the pages and 956 * remapping, which means there won't be any further writeback or page 957 * cache dirtying until the reflink completes. 958 * 959 * We should never have two threads issuing writeback for the same file 960 * region. There are also have post-eof checks in the writeback 961 * preparation code so that we don't bother writing out pages that are 962 * about to be truncated. 963 * 964 * If we're being called as part of directio write completion, the dio 965 * count is still elevated, which reflink and truncate will wait for. 966 * Reflink remapping takes the iolock and mmaplock and waits for 967 * pending dio to finish, which should prevent any directio until the 968 * remap completes. Multiple concurrent directio writes to the same 969 * region are handled by end_cow processing only occurring for the 970 * threads which succeed; the outcome of multiple overlapping direct 971 * writes is not well defined anyway. 972 * 973 * It's possible that a buffered write and a direct write could collide 974 * here (the buffered write stumbles in after the dio flushes and 975 * invalidates the page cache and immediately queues writeback), but we 976 * have never supported this 100%. If either disk write succeeds the 977 * blocks will be remapped. 978 */ 979 while (end_fsb > offset_fsb && !error) 980 error = xfs_reflink_end_cow_extent(ip, &offset_fsb, end_fsb); 981 982 if (error) 983 trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_); 984 return error; 985 } 986 987 /* 988 * Fully remap all of the file's data fork at once, which is the critical part 989 * in achieving atomic behaviour. 990 * The regular CoW end path does not use function as to keep the block 991 * reservation per transaction as low as possible. 992 */ 993 int 994 xfs_reflink_end_atomic_cow( 995 struct xfs_inode *ip, 996 xfs_off_t offset, 997 xfs_off_t count) 998 { 999 xfs_fileoff_t offset_fsb; 1000 xfs_fileoff_t end_fsb; 1001 int error = 0; 1002 struct xfs_mount *mp = ip->i_mount; 1003 struct xfs_trans *tp; 1004 unsigned int resblks; 1005 1006 trace_xfs_reflink_end_cow(ip, offset, count); 1007 1008 offset_fsb = XFS_B_TO_FSBT(mp, offset); 1009 end_fsb = XFS_B_TO_FSB(mp, offset + count); 1010 1011 /* 1012 * Each remapping operation could cause a btree split, so in the worst 1013 * case that's one for each block. 1014 */ 1015 resblks = (end_fsb - offset_fsb) * 1016 XFS_NEXTENTADD_SPACE_RES(mp, 1, XFS_DATA_FORK); 1017 1018 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_atomic_ioend, resblks, 0, 1019 XFS_TRANS_RESERVE, &tp); 1020 if (error) 1021 return error; 1022 1023 xfs_ilock(ip, XFS_ILOCK_EXCL); 1024 xfs_trans_ijoin(tp, ip, 0); 1025 1026 while (end_fsb > offset_fsb && !error) { 1027 error = xfs_reflink_end_cow_extent_locked(tp, ip, &offset_fsb, 1028 end_fsb); 1029 } 1030 if (error) { 1031 trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_); 1032 goto out_cancel; 1033 } 1034 error = xfs_trans_commit(tp); 1035 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1036 return error; 1037 out_cancel: 1038 xfs_trans_cancel(tp); 1039 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1040 return error; 1041 } 1042 1043 /* Compute the largest atomic write that we can complete through software. */ 1044 xfs_extlen_t 1045 xfs_reflink_max_atomic_cow( 1046 struct xfs_mount *mp) 1047 { 1048 /* We cannot do any atomic writes without out of place writes. */ 1049 if (!xfs_can_sw_atomic_write(mp)) 1050 return 0; 1051 1052 /* 1053 * Atomic write limits must always be a power-of-2, according to 1054 * generic_atomic_write_valid. 1055 */ 1056 return rounddown_pow_of_two(xfs_calc_max_atomic_write_fsblocks(mp)); 1057 } 1058 1059 /* 1060 * Free all CoW staging blocks that are still referenced by the ondisk refcount 1061 * metadata. The ondisk metadata does not track which inode created the 1062 * staging extent, so callers must ensure that there are no cached inodes with 1063 * live CoW staging extents. 1064 */ 1065 int 1066 xfs_reflink_recover_cow( 1067 struct xfs_mount *mp) 1068 { 1069 struct xfs_perag *pag = NULL; 1070 struct xfs_rtgroup *rtg = NULL; 1071 int error = 0; 1072 1073 if (!xfs_has_reflink(mp)) 1074 return 0; 1075 1076 while ((pag = xfs_perag_next(mp, pag))) { 1077 error = xfs_refcount_recover_cow_leftovers(pag_group(pag)); 1078 if (error) { 1079 xfs_perag_rele(pag); 1080 return error; 1081 } 1082 } 1083 1084 while ((rtg = xfs_rtgroup_next(mp, rtg))) { 1085 error = xfs_refcount_recover_cow_leftovers(rtg_group(rtg)); 1086 if (error) { 1087 xfs_rtgroup_rele(rtg); 1088 return error; 1089 } 1090 } 1091 1092 return 0; 1093 } 1094 1095 /* 1096 * Reflinking (Block) Ranges of Two Files Together 1097 * 1098 * First, ensure that the reflink flag is set on both inodes. The flag is an 1099 * optimization to avoid unnecessary refcount btree lookups in the write path. 1100 * 1101 * Now we can iteratively remap the range of extents (and holes) in src to the 1102 * corresponding ranges in dest. Let drange and srange denote the ranges of 1103 * logical blocks in dest and src touched by the reflink operation. 1104 * 1105 * While the length of drange is greater than zero, 1106 * - Read src's bmbt at the start of srange ("imap") 1107 * - If imap doesn't exist, make imap appear to start at the end of srange 1108 * with zero length. 1109 * - If imap starts before srange, advance imap to start at srange. 1110 * - If imap goes beyond srange, truncate imap to end at the end of srange. 1111 * - Punch (imap start - srange start + imap len) blocks from dest at 1112 * offset (drange start). 1113 * - If imap points to a real range of pblks, 1114 * > Increase the refcount of the imap's pblks 1115 * > Map imap's pblks into dest at the offset 1116 * (drange start + imap start - srange start) 1117 * - Advance drange and srange by (imap start - srange start + imap len) 1118 * 1119 * Finally, if the reflink made dest longer, update both the in-core and 1120 * on-disk file sizes. 1121 * 1122 * ASCII Art Demonstration: 1123 * 1124 * Let's say we want to reflink this source file: 1125 * 1126 * ----SSSSSSS-SSSSS----SSSSSS (src file) 1127 * <--------------------> 1128 * 1129 * into this destination file: 1130 * 1131 * --DDDDDDDDDDDDDDDDDDD--DDD (dest file) 1132 * <--------------------> 1133 * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest. 1134 * Observe that the range has different logical offsets in either file. 1135 * 1136 * Consider that the first extent in the source file doesn't line up with our 1137 * reflink range. Unmapping and remapping are separate operations, so we can 1138 * unmap more blocks from the destination file than we remap. 1139 * 1140 * ----SSSSSSS-SSSSS----SSSSSS 1141 * <-------> 1142 * --DDDDD---------DDDDD--DDD 1143 * <-------> 1144 * 1145 * Now remap the source extent into the destination file: 1146 * 1147 * ----SSSSSSS-SSSSS----SSSSSS 1148 * <-------> 1149 * --DDDDD--SSSSSSSDDDDD--DDD 1150 * <-------> 1151 * 1152 * Do likewise with the second hole and extent in our range. Holes in the 1153 * unmap range don't affect our operation. 1154 * 1155 * ----SSSSSSS-SSSSS----SSSSSS 1156 * <----> 1157 * --DDDDD--SSSSSSS-SSSSS-DDD 1158 * <----> 1159 * 1160 * Finally, unmap and remap part of the third extent. This will increase the 1161 * size of the destination file. 1162 * 1163 * ----SSSSSSS-SSSSS----SSSSSS 1164 * <-----> 1165 * --DDDDD--SSSSSSS-SSSSS----SSS 1166 * <-----> 1167 * 1168 * Once we update the destination file's i_size, we're done. 1169 */ 1170 1171 /* 1172 * Ensure the reflink bit is set in both inodes. 1173 */ 1174 STATIC int 1175 xfs_reflink_set_inode_flag( 1176 struct xfs_inode *src, 1177 struct xfs_inode *dest) 1178 { 1179 struct xfs_mount *mp = src->i_mount; 1180 int error; 1181 struct xfs_trans *tp; 1182 1183 if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest)) 1184 return 0; 1185 1186 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp); 1187 if (error) 1188 goto out_error; 1189 1190 /* Lock both files against IO */ 1191 if (src->i_ino == dest->i_ino) 1192 xfs_ilock(src, XFS_ILOCK_EXCL); 1193 else 1194 xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL); 1195 1196 if (!xfs_is_reflink_inode(src)) { 1197 trace_xfs_reflink_set_inode_flag(src); 1198 xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL); 1199 src->i_diflags2 |= XFS_DIFLAG2_REFLINK; 1200 xfs_trans_log_inode(tp, src, XFS_ILOG_CORE); 1201 xfs_ifork_init_cow(src); 1202 } else 1203 xfs_iunlock(src, XFS_ILOCK_EXCL); 1204 1205 if (src->i_ino == dest->i_ino) 1206 goto commit_flags; 1207 1208 if (!xfs_is_reflink_inode(dest)) { 1209 trace_xfs_reflink_set_inode_flag(dest); 1210 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL); 1211 dest->i_diflags2 |= XFS_DIFLAG2_REFLINK; 1212 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE); 1213 xfs_ifork_init_cow(dest); 1214 } else 1215 xfs_iunlock(dest, XFS_ILOCK_EXCL); 1216 1217 commit_flags: 1218 error = xfs_trans_commit(tp); 1219 if (error) 1220 goto out_error; 1221 return error; 1222 1223 out_error: 1224 trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_); 1225 return error; 1226 } 1227 1228 /* 1229 * Update destination inode size & cowextsize hint, if necessary. 1230 */ 1231 int 1232 xfs_reflink_update_dest( 1233 struct xfs_inode *dest, 1234 xfs_off_t newlen, 1235 xfs_extlen_t cowextsize, 1236 unsigned int remap_flags) 1237 { 1238 struct xfs_mount *mp = dest->i_mount; 1239 struct xfs_trans *tp; 1240 int error; 1241 1242 if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0) 1243 return 0; 1244 1245 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp); 1246 if (error) 1247 goto out_error; 1248 1249 xfs_ilock(dest, XFS_ILOCK_EXCL); 1250 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL); 1251 1252 if (newlen > i_size_read(VFS_I(dest))) { 1253 trace_xfs_reflink_update_inode_size(dest, newlen); 1254 i_size_write(VFS_I(dest), newlen); 1255 dest->i_disk_size = newlen; 1256 } 1257 1258 if (cowextsize) { 1259 dest->i_cowextsize = cowextsize; 1260 dest->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE; 1261 } 1262 1263 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE); 1264 1265 error = xfs_trans_commit(tp); 1266 if (error) 1267 goto out_error; 1268 return error; 1269 1270 out_error: 1271 trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_); 1272 return error; 1273 } 1274 1275 /* 1276 * Do we have enough reserve in this AG to handle a reflink? The refcount 1277 * btree already reserved all the space it needs, but the rmap btree can grow 1278 * infinitely, so we won't allow more reflinks when the AG is down to the 1279 * btree reserves. 1280 */ 1281 static int 1282 xfs_reflink_ag_has_free_space( 1283 struct xfs_mount *mp, 1284 struct xfs_inode *ip, 1285 xfs_fsblock_t fsb) 1286 { 1287 struct xfs_perag *pag; 1288 xfs_agnumber_t agno; 1289 int error = 0; 1290 1291 if (!xfs_has_rmapbt(mp)) 1292 return 0; 1293 if (XFS_IS_REALTIME_INODE(ip)) { 1294 if (xfs_metafile_resv_critical(mp)) 1295 return -ENOSPC; 1296 return 0; 1297 } 1298 1299 agno = XFS_FSB_TO_AGNO(mp, fsb); 1300 pag = xfs_perag_get(mp, agno); 1301 if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) || 1302 xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA)) 1303 error = -ENOSPC; 1304 xfs_perag_put(pag); 1305 return error; 1306 } 1307 1308 /* 1309 * Remap the given extent into the file. The dmap blockcount will be set to 1310 * the number of blocks that were actually remapped. 1311 */ 1312 STATIC int 1313 xfs_reflink_remap_extent( 1314 struct xfs_inode *ip, 1315 struct xfs_bmbt_irec *dmap, 1316 xfs_off_t new_isize) 1317 { 1318 struct xfs_bmbt_irec smap; 1319 struct xfs_mount *mp = ip->i_mount; 1320 struct xfs_trans *tp; 1321 xfs_off_t newlen; 1322 int64_t qdelta = 0; 1323 unsigned int dblocks, rblocks, resblks; 1324 bool quota_reserved = true; 1325 bool smap_real; 1326 bool dmap_written = xfs_bmap_is_written_extent(dmap); 1327 bool isrt = XFS_IS_REALTIME_INODE(ip); 1328 int iext_delta = 0; 1329 int nimaps; 1330 int error; 1331 1332 /* 1333 * Start a rolling transaction to switch the mappings. 1334 * 1335 * Adding a written extent to the extent map can cause a bmbt split, 1336 * and removing a mapped extent from the extent can cause a bmbt split. 1337 * The two operations cannot both cause a split since they operate on 1338 * the same index in the bmap btree, so we only need a reservation for 1339 * one bmbt split if either thing is happening. However, we haven't 1340 * locked the inode yet, so we reserve assuming this is the case. 1341 * 1342 * The first allocation call tries to reserve enough space to handle 1343 * mapping dmap into a sparse part of the file plus the bmbt split. We 1344 * haven't locked the inode or read the existing mapping yet, so we do 1345 * not know for sure that we need the space. This should succeed most 1346 * of the time. 1347 * 1348 * If the first attempt fails, try again but reserving only enough 1349 * space to handle a bmbt split. This is the hard minimum requirement, 1350 * and we revisit quota reservations later when we know more about what 1351 * we're remapping. 1352 */ 1353 resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK); 1354 if (XFS_IS_REALTIME_INODE(ip)) { 1355 dblocks = resblks; 1356 rblocks = dmap->br_blockcount; 1357 } else { 1358 dblocks = resblks + dmap->br_blockcount; 1359 rblocks = 0; 1360 } 1361 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, 1362 dblocks, rblocks, false, &tp); 1363 if (error == -EDQUOT || error == -ENOSPC) { 1364 quota_reserved = false; 1365 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, 1366 resblks, 0, false, &tp); 1367 } 1368 if (error) 1369 goto out; 1370 1371 /* 1372 * Read what's currently mapped in the destination file into smap. 1373 * If smap isn't a hole, we will have to remove it before we can add 1374 * dmap to the destination file. 1375 */ 1376 nimaps = 1; 1377 error = xfs_bmapi_read(ip, dmap->br_startoff, dmap->br_blockcount, 1378 &smap, &nimaps, 0); 1379 if (error) 1380 goto out_cancel; 1381 ASSERT(nimaps == 1 && smap.br_startoff == dmap->br_startoff); 1382 smap_real = xfs_bmap_is_real_extent(&smap); 1383 1384 /* 1385 * We can only remap as many blocks as the smaller of the two extent 1386 * maps, because we can only remap one extent at a time. 1387 */ 1388 dmap->br_blockcount = min(dmap->br_blockcount, smap.br_blockcount); 1389 ASSERT(dmap->br_blockcount == smap.br_blockcount); 1390 1391 trace_xfs_reflink_remap_extent_dest(ip, &smap); 1392 1393 /* 1394 * Two extents mapped to the same physical block must not have 1395 * different states; that's filesystem corruption. Move on to the next 1396 * extent if they're both holes or both the same physical extent. 1397 */ 1398 if (dmap->br_startblock == smap.br_startblock) { 1399 if (dmap->br_state != smap.br_state) { 1400 xfs_bmap_mark_sick(ip, XFS_DATA_FORK); 1401 error = -EFSCORRUPTED; 1402 } 1403 goto out_cancel; 1404 } 1405 1406 /* If both extents are unwritten, leave them alone. */ 1407 if (dmap->br_state == XFS_EXT_UNWRITTEN && 1408 smap.br_state == XFS_EXT_UNWRITTEN) 1409 goto out_cancel; 1410 1411 /* No reflinking if the AG of the dest mapping is low on space. */ 1412 if (dmap_written) { 1413 error = xfs_reflink_ag_has_free_space(mp, ip, 1414 dmap->br_startblock); 1415 if (error) 1416 goto out_cancel; 1417 } 1418 1419 /* 1420 * Increase quota reservation if we think the quota block counter for 1421 * this file could increase. 1422 * 1423 * If we are mapping a written extent into the file, we need to have 1424 * enough quota block count reservation to handle the blocks in that 1425 * extent. We log only the delta to the quota block counts, so if the 1426 * extent we're unmapping also has blocks allocated to it, we don't 1427 * need a quota reservation for the extent itself. 1428 * 1429 * Note that if we're replacing a delalloc reservation with a written 1430 * extent, we have to take the full quota reservation because removing 1431 * the delalloc reservation gives the block count back to the quota 1432 * count. This is suboptimal, but the VFS flushed the dest range 1433 * before we started. That should have removed all the delalloc 1434 * reservations, but we code defensively. 1435 * 1436 * xfs_trans_alloc_inode above already tried to grab an even larger 1437 * quota reservation, and kicked off a blockgc scan if it couldn't. 1438 * If we can't get a potentially smaller quota reservation now, we're 1439 * done. 1440 */ 1441 if (!quota_reserved && !smap_real && dmap_written) { 1442 if (XFS_IS_REALTIME_INODE(ip)) { 1443 dblocks = 0; 1444 rblocks = dmap->br_blockcount; 1445 } else { 1446 dblocks = dmap->br_blockcount; 1447 rblocks = 0; 1448 } 1449 error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks, 1450 false); 1451 if (error) 1452 goto out_cancel; 1453 } 1454 1455 if (smap_real) 1456 ++iext_delta; 1457 1458 if (dmap_written) 1459 ++iext_delta; 1460 1461 error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK, iext_delta); 1462 if (error) 1463 goto out_cancel; 1464 1465 if (smap_real) { 1466 /* 1467 * If the extent we're unmapping is backed by storage (written 1468 * or not), unmap the extent and drop its refcount. 1469 */ 1470 xfs_bmap_unmap_extent(tp, ip, XFS_DATA_FORK, &smap); 1471 xfs_refcount_decrease_extent(tp, isrt, &smap); 1472 qdelta -= smap.br_blockcount; 1473 } else if (smap.br_startblock == DELAYSTARTBLOCK) { 1474 int done; 1475 1476 /* 1477 * If the extent we're unmapping is a delalloc reservation, 1478 * we can use the regular bunmapi function to release the 1479 * incore state. Dropping the delalloc reservation takes care 1480 * of the quota reservation for us. 1481 */ 1482 error = xfs_bunmapi(NULL, ip, smap.br_startoff, 1483 smap.br_blockcount, 0, 1, &done); 1484 if (error) 1485 goto out_cancel; 1486 ASSERT(done); 1487 } 1488 1489 /* 1490 * If the extent we're sharing is backed by written storage, increase 1491 * its refcount and map it into the file. 1492 */ 1493 if (dmap_written) { 1494 xfs_refcount_increase_extent(tp, isrt, dmap); 1495 xfs_bmap_map_extent(tp, ip, XFS_DATA_FORK, dmap); 1496 qdelta += dmap->br_blockcount; 1497 } 1498 1499 xfs_reflink_update_quota(tp, ip, false, qdelta); 1500 1501 /* Update dest isize if needed. */ 1502 newlen = XFS_FSB_TO_B(mp, dmap->br_startoff + dmap->br_blockcount); 1503 newlen = min_t(xfs_off_t, newlen, new_isize); 1504 if (newlen > i_size_read(VFS_I(ip))) { 1505 trace_xfs_reflink_update_inode_size(ip, newlen); 1506 i_size_write(VFS_I(ip), newlen); 1507 ip->i_disk_size = newlen; 1508 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1509 } 1510 1511 /* Commit everything and unlock. */ 1512 error = xfs_trans_commit(tp); 1513 goto out_unlock; 1514 1515 out_cancel: 1516 xfs_trans_cancel(tp); 1517 out_unlock: 1518 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1519 out: 1520 if (error) 1521 trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_); 1522 return error; 1523 } 1524 1525 /* Remap a range of one file to the other. */ 1526 int 1527 xfs_reflink_remap_blocks( 1528 struct xfs_inode *src, 1529 loff_t pos_in, 1530 struct xfs_inode *dest, 1531 loff_t pos_out, 1532 loff_t remap_len, 1533 loff_t *remapped) 1534 { 1535 struct xfs_bmbt_irec imap; 1536 struct xfs_mount *mp = src->i_mount; 1537 xfs_fileoff_t srcoff = XFS_B_TO_FSBT(mp, pos_in); 1538 xfs_fileoff_t destoff = XFS_B_TO_FSBT(mp, pos_out); 1539 xfs_filblks_t len; 1540 xfs_filblks_t remapped_len = 0; 1541 xfs_off_t new_isize = pos_out + remap_len; 1542 int nimaps; 1543 int error = 0; 1544 1545 len = min_t(xfs_filblks_t, XFS_B_TO_FSB(mp, remap_len), 1546 XFS_MAX_FILEOFF); 1547 1548 trace_xfs_reflink_remap_blocks(src, srcoff, len, dest, destoff); 1549 1550 while (len > 0) { 1551 unsigned int lock_mode; 1552 1553 /* Read extent from the source file */ 1554 nimaps = 1; 1555 lock_mode = xfs_ilock_data_map_shared(src); 1556 error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0); 1557 xfs_iunlock(src, lock_mode); 1558 if (error) 1559 break; 1560 /* 1561 * The caller supposedly flushed all dirty pages in the source 1562 * file range, which means that writeback should have allocated 1563 * or deleted all delalloc reservations in that range. If we 1564 * find one, that's a good sign that something is seriously 1565 * wrong here. 1566 */ 1567 ASSERT(nimaps == 1 && imap.br_startoff == srcoff); 1568 if (imap.br_startblock == DELAYSTARTBLOCK) { 1569 ASSERT(imap.br_startblock != DELAYSTARTBLOCK); 1570 xfs_bmap_mark_sick(src, XFS_DATA_FORK); 1571 error = -EFSCORRUPTED; 1572 break; 1573 } 1574 1575 trace_xfs_reflink_remap_extent_src(src, &imap); 1576 1577 /* Remap into the destination file at the given offset. */ 1578 imap.br_startoff = destoff; 1579 error = xfs_reflink_remap_extent(dest, &imap, new_isize); 1580 if (error) 1581 break; 1582 1583 if (fatal_signal_pending(current)) { 1584 error = -EINTR; 1585 break; 1586 } 1587 1588 /* Advance drange/srange */ 1589 srcoff += imap.br_blockcount; 1590 destoff += imap.br_blockcount; 1591 len -= imap.br_blockcount; 1592 remapped_len += imap.br_blockcount; 1593 cond_resched(); 1594 } 1595 1596 if (error) 1597 trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_); 1598 *remapped = min_t(loff_t, remap_len, 1599 XFS_FSB_TO_B(src->i_mount, remapped_len)); 1600 return error; 1601 } 1602 1603 /* 1604 * If we're reflinking to a point past the destination file's EOF, we must 1605 * zero any speculative post-EOF preallocations that sit between the old EOF 1606 * and the destination file offset. 1607 */ 1608 static int 1609 xfs_reflink_zero_posteof( 1610 struct xfs_inode *ip, 1611 loff_t pos) 1612 { 1613 loff_t isize = i_size_read(VFS_I(ip)); 1614 1615 if (pos <= isize) 1616 return 0; 1617 1618 trace_xfs_zero_eof(ip, isize, pos - isize); 1619 return xfs_zero_range(ip, isize, pos - isize, NULL, NULL); 1620 } 1621 1622 /* 1623 * Prepare two files for range cloning. Upon a successful return both inodes 1624 * will have the iolock and mmaplock held, the page cache of the out file will 1625 * be truncated, and any leases on the out file will have been broken. This 1626 * function borrows heavily from xfs_file_aio_write_checks. 1627 * 1628 * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't 1629 * checked that the bytes beyond EOF physically match. Hence we cannot use the 1630 * EOF block in the source dedupe range because it's not a complete block match, 1631 * hence can introduce a corruption into the file that has it's block replaced. 1632 * 1633 * In similar fashion, the VFS file cloning also allows partial EOF blocks to be 1634 * "block aligned" for the purposes of cloning entire files. However, if the 1635 * source file range includes the EOF block and it lands within the existing EOF 1636 * of the destination file, then we can expose stale data from beyond the source 1637 * file EOF in the destination file. 1638 * 1639 * XFS doesn't support partial block sharing, so in both cases we have check 1640 * these cases ourselves. For dedupe, we can simply round the length to dedupe 1641 * down to the previous whole block and ignore the partial EOF block. While this 1642 * means we can't dedupe the last block of a file, this is an acceptible 1643 * tradeoff for simplicity on implementation. 1644 * 1645 * For cloning, we want to share the partial EOF block if it is also the new EOF 1646 * block of the destination file. If the partial EOF block lies inside the 1647 * existing destination EOF, then we have to abort the clone to avoid exposing 1648 * stale data in the destination file. Hence we reject these clone attempts with 1649 * -EINVAL in this case. 1650 */ 1651 int 1652 xfs_reflink_remap_prep( 1653 struct file *file_in, 1654 loff_t pos_in, 1655 struct file *file_out, 1656 loff_t pos_out, 1657 loff_t *len, 1658 unsigned int remap_flags) 1659 { 1660 struct inode *inode_in = file_inode(file_in); 1661 struct xfs_inode *src = XFS_I(inode_in); 1662 struct inode *inode_out = file_inode(file_out); 1663 struct xfs_inode *dest = XFS_I(inode_out); 1664 int ret; 1665 1666 /* Lock both files against IO */ 1667 ret = xfs_ilock2_io_mmap(src, dest); 1668 if (ret) 1669 return ret; 1670 1671 /* Check file eligibility and prepare for block sharing. */ 1672 ret = -EINVAL; 1673 /* Can't reflink between data and rt volumes */ 1674 if (XFS_IS_REALTIME_INODE(src) != XFS_IS_REALTIME_INODE(dest)) 1675 goto out_unlock; 1676 1677 /* Don't share DAX file data with non-DAX file. */ 1678 if (IS_DAX(inode_in) != IS_DAX(inode_out)) 1679 goto out_unlock; 1680 1681 if (!IS_DAX(inode_in)) 1682 ret = generic_remap_file_range_prep(file_in, pos_in, file_out, 1683 pos_out, len, remap_flags); 1684 else 1685 ret = dax_remap_file_range_prep(file_in, pos_in, file_out, 1686 pos_out, len, remap_flags, &xfs_read_iomap_ops); 1687 if (ret || *len == 0) 1688 goto out_unlock; 1689 1690 /* Attach dquots to dest inode before changing block map */ 1691 ret = xfs_qm_dqattach(dest); 1692 if (ret) 1693 goto out_unlock; 1694 1695 /* 1696 * Zero existing post-eof speculative preallocations in the destination 1697 * file. 1698 */ 1699 ret = xfs_reflink_zero_posteof(dest, pos_out); 1700 if (ret) 1701 goto out_unlock; 1702 1703 /* Set flags and remap blocks. */ 1704 ret = xfs_reflink_set_inode_flag(src, dest); 1705 if (ret) 1706 goto out_unlock; 1707 1708 /* 1709 * If pos_out > EOF, we may have dirtied blocks between EOF and 1710 * pos_out. In that case, we need to extend the flush and unmap to cover 1711 * from EOF to the end of the copy length. 1712 */ 1713 if (pos_out > XFS_ISIZE(dest)) { 1714 loff_t flen = *len + (pos_out - XFS_ISIZE(dest)); 1715 ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen); 1716 } else { 1717 ret = xfs_flush_unmap_range(dest, pos_out, *len); 1718 } 1719 if (ret) 1720 goto out_unlock; 1721 1722 xfs_iflags_set(src, XFS_IREMAPPING); 1723 if (inode_in != inode_out) 1724 xfs_ilock_demote(src, XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL); 1725 1726 return 0; 1727 out_unlock: 1728 xfs_iunlock2_io_mmap(src, dest); 1729 return ret; 1730 } 1731 1732 /* Does this inode need the reflink flag? */ 1733 int 1734 xfs_reflink_inode_has_shared_extents( 1735 struct xfs_trans *tp, 1736 struct xfs_inode *ip, 1737 bool *has_shared) 1738 { 1739 struct xfs_bmbt_irec got; 1740 struct xfs_mount *mp = ip->i_mount; 1741 struct xfs_ifork *ifp; 1742 struct xfs_iext_cursor icur; 1743 bool found; 1744 int error; 1745 1746 ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK); 1747 error = xfs_iread_extents(tp, ip, XFS_DATA_FORK); 1748 if (error) 1749 return error; 1750 1751 *has_shared = false; 1752 found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got); 1753 while (found) { 1754 xfs_extlen_t shared_offset, shared_len; 1755 1756 if (isnullstartblock(got.br_startblock) || 1757 got.br_state != XFS_EXT_NORM) 1758 goto next; 1759 1760 if (XFS_IS_REALTIME_INODE(ip)) 1761 error = xfs_reflink_find_rtshared(mp, tp, &got, 1762 &shared_offset, &shared_len, false); 1763 else 1764 error = xfs_reflink_find_shared(mp, tp, &got, 1765 &shared_offset, &shared_len, false); 1766 if (error) 1767 return error; 1768 1769 /* Is there still a shared block here? */ 1770 if (shared_len) { 1771 *has_shared = true; 1772 return 0; 1773 } 1774 next: 1775 found = xfs_iext_next_extent(ifp, &icur, &got); 1776 } 1777 1778 return 0; 1779 } 1780 1781 /* 1782 * Clear the inode reflink flag if there are no shared extents. 1783 * 1784 * The caller is responsible for joining the inode to the transaction passed in. 1785 * The inode will be joined to the transaction that is returned to the caller. 1786 */ 1787 int 1788 xfs_reflink_clear_inode_flag( 1789 struct xfs_inode *ip, 1790 struct xfs_trans **tpp) 1791 { 1792 bool needs_flag; 1793 int error = 0; 1794 1795 ASSERT(xfs_is_reflink_inode(ip)); 1796 1797 if (!xfs_can_free_cowblocks(ip)) 1798 return 0; 1799 1800 error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag); 1801 if (error || needs_flag) 1802 return error; 1803 1804 /* 1805 * We didn't find any shared blocks so turn off the reflink flag. 1806 * First, get rid of any leftover CoW mappings. 1807 */ 1808 error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, XFS_MAX_FILEOFF, 1809 true); 1810 if (error) 1811 return error; 1812 1813 /* Clear the inode flag. */ 1814 trace_xfs_reflink_unset_inode_flag(ip); 1815 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK; 1816 xfs_inode_clear_cowblocks_tag(ip); 1817 xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE); 1818 1819 return error; 1820 } 1821 1822 /* 1823 * Clear the inode reflink flag if there are no shared extents and the size 1824 * hasn't changed. 1825 */ 1826 STATIC int 1827 xfs_reflink_try_clear_inode_flag( 1828 struct xfs_inode *ip) 1829 { 1830 struct xfs_mount *mp = ip->i_mount; 1831 struct xfs_trans *tp; 1832 int error = 0; 1833 1834 /* Start a rolling transaction to remove the mappings */ 1835 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp); 1836 if (error) 1837 return error; 1838 1839 xfs_ilock(ip, XFS_ILOCK_EXCL); 1840 xfs_trans_ijoin(tp, ip, 0); 1841 1842 error = xfs_reflink_clear_inode_flag(ip, &tp); 1843 if (error) 1844 goto cancel; 1845 1846 error = xfs_trans_commit(tp); 1847 if (error) 1848 goto out; 1849 1850 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1851 return 0; 1852 cancel: 1853 xfs_trans_cancel(tp); 1854 out: 1855 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1856 return error; 1857 } 1858 1859 /* 1860 * Pre-COW all shared blocks within a given byte range of a file and turn off 1861 * the reflink flag if we unshare all of the file's blocks. 1862 */ 1863 int 1864 xfs_reflink_unshare( 1865 struct xfs_inode *ip, 1866 xfs_off_t offset, 1867 xfs_off_t len) 1868 { 1869 struct inode *inode = VFS_I(ip); 1870 int error; 1871 1872 if (!xfs_is_reflink_inode(ip)) 1873 return 0; 1874 1875 trace_xfs_reflink_unshare(ip, offset, len); 1876 1877 inode_dio_wait(inode); 1878 1879 if (IS_DAX(inode)) 1880 error = dax_file_unshare(inode, offset, len, 1881 &xfs_dax_write_iomap_ops); 1882 else 1883 error = iomap_file_unshare(inode, offset, len, 1884 &xfs_buffered_write_iomap_ops); 1885 if (error) 1886 goto out; 1887 1888 error = filemap_write_and_wait_range(inode->i_mapping, offset, 1889 offset + len - 1); 1890 if (error) 1891 goto out; 1892 1893 /* Turn off the reflink flag if possible. */ 1894 error = xfs_reflink_try_clear_inode_flag(ip); 1895 if (error) 1896 goto out; 1897 return 0; 1898 1899 out: 1900 trace_xfs_reflink_unshare_error(ip, error, _RET_IP_); 1901 return error; 1902 } 1903 1904 /* 1905 * Can we use reflink with this realtime extent size? Note that we don't check 1906 * for rblocks > 0 here because this can be called as part of attaching a new 1907 * rt section. 1908 */ 1909 bool 1910 xfs_reflink_supports_rextsize( 1911 struct xfs_mount *mp, 1912 unsigned int rextsize) 1913 { 1914 /* reflink on the realtime device requires rtgroups */ 1915 if (!xfs_has_rtgroups(mp)) 1916 return false; 1917 1918 /* 1919 * Reflink doesn't support rt extent size larger than a single fsblock 1920 * because we would have to perform CoW-around for unaligned write 1921 * requests to guarantee that we always remap entire rt extents. 1922 */ 1923 if (rextsize != 1) 1924 return false; 1925 1926 return true; 1927 } 1928