1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved. 4 */ 5 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_format.h" 9 #include "xfs_log_format.h" 10 #include "xfs_shared.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_extent_busy.h" 14 #include "xfs_trans.h" 15 #include "xfs_trans_priv.h" 16 #include "xfs_log.h" 17 #include "xfs_log_priv.h" 18 #include "xfs_trace.h" 19 #include "xfs_discard.h" 20 21 /* 22 * Allocate a new ticket. Failing to get a new ticket makes it really hard to 23 * recover, so we don't allow failure here. Also, we allocate in a context that 24 * we don't want to be issuing transactions from, so we need to tell the 25 * allocation code this as well. 26 * 27 * We don't reserve any space for the ticket - we are going to steal whatever 28 * space we require from transactions as they commit. To ensure we reserve all 29 * the space required, we need to set the current reservation of the ticket to 30 * zero so that we know to steal the initial transaction overhead from the 31 * first transaction commit. 32 */ 33 static struct xlog_ticket * 34 xlog_cil_ticket_alloc( 35 struct xlog *log) 36 { 37 struct xlog_ticket *tic; 38 39 tic = xlog_ticket_alloc(log, 0, 1, 0); 40 41 /* 42 * set the current reservation to zero so we know to steal the basic 43 * transaction overhead reservation from the first transaction commit. 44 */ 45 tic->t_curr_res = 0; 46 tic->t_iclog_hdrs = 0; 47 return tic; 48 } 49 50 static inline void 51 xlog_cil_set_iclog_hdr_count(struct xfs_cil *cil) 52 { 53 struct xlog *log = cil->xc_log; 54 55 atomic_set(&cil->xc_iclog_hdrs, 56 (XLOG_CIL_BLOCKING_SPACE_LIMIT(log) / 57 (log->l_iclog_size - log->l_iclog_hsize))); 58 } 59 60 /* 61 * Check if the current log item was first committed in this sequence. 62 * We can't rely on just the log item being in the CIL, we have to check 63 * the recorded commit sequence number. 64 * 65 * Note: for this to be used in a non-racy manner, it has to be called with 66 * CIL flushing locked out. As a result, it should only be used during the 67 * transaction commit process when deciding what to format into the item. 68 */ 69 static bool 70 xlog_item_in_current_chkpt( 71 struct xfs_cil *cil, 72 struct xfs_log_item *lip) 73 { 74 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) 75 return false; 76 77 /* 78 * li_seq is written on the first commit of a log item to record the 79 * first checkpoint it is written to. Hence if it is different to the 80 * current sequence, we're in a new checkpoint. 81 */ 82 return lip->li_seq == READ_ONCE(cil->xc_current_sequence); 83 } 84 85 bool 86 xfs_log_item_in_current_chkpt( 87 struct xfs_log_item *lip) 88 { 89 return xlog_item_in_current_chkpt(lip->li_log->l_cilp, lip); 90 } 91 92 /* 93 * Unavoidable forward declaration - xlog_cil_push_work() calls 94 * xlog_cil_ctx_alloc() itself. 95 */ 96 static void xlog_cil_push_work(struct work_struct *work); 97 98 static struct xfs_cil_ctx * 99 xlog_cil_ctx_alloc(void) 100 { 101 struct xfs_cil_ctx *ctx; 102 103 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL | __GFP_NOFAIL); 104 INIT_LIST_HEAD(&ctx->committing); 105 INIT_LIST_HEAD(&ctx->busy_extents.extent_list); 106 INIT_LIST_HEAD(&ctx->log_items); 107 INIT_LIST_HEAD(&ctx->lv_chain); 108 INIT_WORK(&ctx->push_work, xlog_cil_push_work); 109 return ctx; 110 } 111 112 /* 113 * Aggregate the CIL per cpu structures into global counts, lists, etc and 114 * clear the percpu state ready for the next context to use. This is called 115 * from the push code with the context lock held exclusively, hence nothing else 116 * will be accessing or modifying the per-cpu counters. 117 */ 118 static void 119 xlog_cil_push_pcp_aggregate( 120 struct xfs_cil *cil, 121 struct xfs_cil_ctx *ctx) 122 { 123 struct xlog_cil_pcp *cilpcp; 124 int cpu; 125 126 for_each_cpu(cpu, &ctx->cil_pcpmask) { 127 cilpcp = per_cpu_ptr(cil->xc_pcp, cpu); 128 129 ctx->ticket->t_curr_res += cilpcp->space_reserved; 130 cilpcp->space_reserved = 0; 131 132 if (!list_empty(&cilpcp->busy_extents)) { 133 list_splice_init(&cilpcp->busy_extents, 134 &ctx->busy_extents.extent_list); 135 } 136 if (!list_empty(&cilpcp->log_items)) 137 list_splice_init(&cilpcp->log_items, &ctx->log_items); 138 139 /* 140 * We're in the middle of switching cil contexts. Reset the 141 * counter we use to detect when the current context is nearing 142 * full. 143 */ 144 cilpcp->space_used = 0; 145 } 146 } 147 148 /* 149 * Aggregate the CIL per-cpu space used counters into the global atomic value. 150 * This is called when the per-cpu counter aggregation will first pass the soft 151 * limit threshold so we can switch to atomic counter aggregation for accurate 152 * detection of hard limit traversal. 153 */ 154 static void 155 xlog_cil_insert_pcp_aggregate( 156 struct xfs_cil *cil, 157 struct xfs_cil_ctx *ctx) 158 { 159 int cpu; 160 int count = 0; 161 162 /* Trigger atomic updates then aggregate only for the first caller */ 163 if (!test_and_clear_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags)) 164 return; 165 166 /* 167 * We can race with other cpus setting cil_pcpmask. However, we've 168 * atomically cleared PCP_SPACE which forces other threads to add to 169 * the global space used count. cil_pcpmask is a superset of cilpcp 170 * structures that could have a nonzero space_used. 171 */ 172 for_each_cpu(cpu, &ctx->cil_pcpmask) { 173 struct xlog_cil_pcp *cilpcp = per_cpu_ptr(cil->xc_pcp, cpu); 174 175 count += xchg(&cilpcp->space_used, 0); 176 } 177 atomic_add(count, &ctx->space_used); 178 } 179 180 static void 181 xlog_cil_ctx_switch( 182 struct xfs_cil *cil, 183 struct xfs_cil_ctx *ctx) 184 { 185 xlog_cil_set_iclog_hdr_count(cil); 186 set_bit(XLOG_CIL_EMPTY, &cil->xc_flags); 187 set_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags); 188 ctx->sequence = ++cil->xc_current_sequence; 189 ctx->cil = cil; 190 cil->xc_ctx = ctx; 191 } 192 193 /* 194 * After the first stage of log recovery is done, we know where the head and 195 * tail of the log are. We need this log initialisation done before we can 196 * initialise the first CIL checkpoint context. 197 * 198 * Here we allocate a log ticket to track space usage during a CIL push. This 199 * ticket is passed to xlog_write() directly so that we don't slowly leak log 200 * space by failing to account for space used by log headers and additional 201 * region headers for split regions. 202 */ 203 void 204 xlog_cil_init_post_recovery( 205 struct xlog *log) 206 { 207 log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log); 208 log->l_cilp->xc_ctx->sequence = 1; 209 xlog_cil_set_iclog_hdr_count(log->l_cilp); 210 } 211 212 static inline int 213 xlog_cil_iovec_space( 214 uint niovecs) 215 { 216 return round_up((sizeof(struct xfs_log_vec) + 217 niovecs * sizeof(struct xfs_log_iovec)), 218 sizeof(uint64_t)); 219 } 220 221 /* 222 * Allocate or pin log vector buffers for CIL insertion. 223 * 224 * The CIL currently uses disposable buffers for copying a snapshot of the 225 * modified items into the log during a push. The biggest problem with this is 226 * the requirement to allocate the disposable buffer during the commit if: 227 * a) does not exist; or 228 * b) it is too small 229 * 230 * If we do this allocation within xlog_cil_insert_format_items(), it is done 231 * under the xc_ctx_lock, which means that a CIL push cannot occur during 232 * the memory allocation. This means that we have a potential deadlock situation 233 * under low memory conditions when we have lots of dirty metadata pinned in 234 * the CIL and we need a CIL commit to occur to free memory. 235 * 236 * To avoid this, we need to move the memory allocation outside the 237 * xc_ctx_lock, but because the log vector buffers are disposable, that opens 238 * up a TOCTOU race condition w.r.t. the CIL committing and removing the log 239 * vector buffers between the check and the formatting of the item into the 240 * log vector buffer within the xc_ctx_lock. 241 * 242 * Because the log vector buffer needs to be unchanged during the CIL push 243 * process, we cannot share the buffer between the transaction commit (which 244 * modifies the buffer) and the CIL push context that is writing the changes 245 * into the log. This means skipping preallocation of buffer space is 246 * unreliable, but we most definitely do not want to be allocating and freeing 247 * buffers unnecessarily during commits when overwrites can be done safely. 248 * 249 * The simplest solution to this problem is to allocate a shadow buffer when a 250 * log item is committed for the second time, and then to only use this buffer 251 * if necessary. The buffer can remain attached to the log item until such time 252 * it is needed, and this is the buffer that is reallocated to match the size of 253 * the incoming modification. Then during the formatting of the item we can swap 254 * the active buffer with the new one if we can't reuse the existing buffer. We 255 * don't free the old buffer as it may be reused on the next modification if 256 * it's size is right, otherwise we'll free and reallocate it at that point. 257 * 258 * This function builds a vector for the changes in each log item in the 259 * transaction. It then works out the length of the buffer needed for each log 260 * item, allocates them and attaches the vector to the log item in preparation 261 * for the formatting step which occurs under the xc_ctx_lock. 262 * 263 * While this means the memory footprint goes up, it avoids the repeated 264 * alloc/free pattern that repeated modifications of an item would otherwise 265 * cause, and hence minimises the CPU overhead of such behaviour. 266 */ 267 static void 268 xlog_cil_alloc_shadow_bufs( 269 struct xlog *log, 270 struct xfs_trans *tp) 271 { 272 struct xfs_log_item *lip; 273 274 list_for_each_entry(lip, &tp->t_items, li_trans) { 275 struct xfs_log_vec *lv; 276 int niovecs = 0; 277 int nbytes = 0; 278 int buf_size; 279 bool ordered = false; 280 281 /* Skip items which aren't dirty in this transaction. */ 282 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags)) 283 continue; 284 285 /* get number of vecs and size of data to be stored */ 286 lip->li_ops->iop_size(lip, &niovecs, &nbytes); 287 288 /* 289 * Ordered items need to be tracked but we do not wish to write 290 * them. We need a logvec to track the object, but we do not 291 * need an iovec or buffer to be allocated for copying data. 292 */ 293 if (niovecs == XFS_LOG_VEC_ORDERED) { 294 ordered = true; 295 niovecs = 0; 296 nbytes = 0; 297 } 298 299 /* 300 * We 64-bit align the length of each iovec so that the start of 301 * the next one is naturally aligned. We'll need to account for 302 * that slack space here. 303 * 304 * We also add the xlog_op_header to each region when 305 * formatting, but that's not accounted to the size of the item 306 * at this point. Hence we'll need an addition number of bytes 307 * for each vector to hold an opheader. 308 * 309 * Then round nbytes up to 64-bit alignment so that the initial 310 * buffer alignment is easy to calculate and verify. 311 */ 312 nbytes = xlog_item_space(niovecs, nbytes); 313 314 /* 315 * The data buffer needs to start 64-bit aligned, so round up 316 * that space to ensure we can align it appropriately and not 317 * overrun the buffer. 318 */ 319 buf_size = nbytes + xlog_cil_iovec_space(niovecs); 320 321 /* 322 * if we have no shadow buffer, or it is too small, we need to 323 * reallocate it. 324 */ 325 if (!lip->li_lv_shadow || 326 buf_size > lip->li_lv_shadow->lv_size) { 327 /* 328 * We free and allocate here as a realloc would copy 329 * unnecessary data. We don't use kvzalloc() for the 330 * same reason - we don't need to zero the data area in 331 * the buffer, only the log vector header and the iovec 332 * storage. 333 */ 334 kvfree(lip->li_lv_shadow); 335 lv = xlog_kvmalloc(buf_size); 336 337 memset(lv, 0, xlog_cil_iovec_space(niovecs)); 338 339 INIT_LIST_HEAD(&lv->lv_list); 340 lv->lv_item = lip; 341 lv->lv_size = buf_size; 342 if (ordered) 343 lv->lv_buf_len = XFS_LOG_VEC_ORDERED; 344 else 345 lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1]; 346 lip->li_lv_shadow = lv; 347 } else { 348 /* same or smaller, optimise common overwrite case */ 349 lv = lip->li_lv_shadow; 350 if (ordered) 351 lv->lv_buf_len = XFS_LOG_VEC_ORDERED; 352 else 353 lv->lv_buf_len = 0; 354 lv->lv_bytes = 0; 355 } 356 357 /* Ensure the lv is set up according to ->iop_size */ 358 lv->lv_niovecs = niovecs; 359 360 /* The allocated data region lies beyond the iovec region */ 361 lv->lv_buf = (char *)lv + xlog_cil_iovec_space(niovecs); 362 } 363 364 } 365 366 /* 367 * Prepare the log item for insertion into the CIL. Calculate the difference in 368 * log space it will consume, and if it is a new item pin it as well. 369 */ 370 STATIC void 371 xfs_cil_prepare_item( 372 struct xlog *log, 373 struct xfs_log_vec *lv, 374 struct xfs_log_vec *old_lv, 375 int *diff_len) 376 { 377 /* Account for the new LV being passed in */ 378 if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) 379 *diff_len += lv->lv_bytes; 380 381 /* 382 * If there is no old LV, this is the first time we've seen the item in 383 * this CIL context and so we need to pin it. If we are replacing the 384 * old_lv, then remove the space it accounts for and make it the shadow 385 * buffer for later freeing. In both cases we are now switching to the 386 * shadow buffer, so update the pointer to it appropriately. 387 */ 388 if (!old_lv) { 389 if (lv->lv_item->li_ops->iop_pin) 390 lv->lv_item->li_ops->iop_pin(lv->lv_item); 391 lv->lv_item->li_lv_shadow = NULL; 392 } else if (old_lv != lv) { 393 ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED); 394 395 *diff_len -= old_lv->lv_bytes; 396 lv->lv_item->li_lv_shadow = old_lv; 397 } 398 399 /* attach new log vector to log item */ 400 lv->lv_item->li_lv = lv; 401 402 /* 403 * If this is the first time the item is being committed to the 404 * CIL, store the sequence number on the log item so we can 405 * tell in future commits whether this is the first checkpoint 406 * the item is being committed into. 407 */ 408 if (!lv->lv_item->li_seq) 409 lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence; 410 } 411 412 /* 413 * Format log item into a flat buffers 414 * 415 * For delayed logging, we need to hold a formatted buffer containing all the 416 * changes on the log item. This enables us to relog the item in memory and 417 * write it out asynchronously without needing to relock the object that was 418 * modified at the time it gets written into the iclog. 419 * 420 * This function takes the prepared log vectors attached to each log item, and 421 * formats the changes into the log vector buffer. The buffer it uses is 422 * dependent on the current state of the vector in the CIL - the shadow lv is 423 * guaranteed to be large enough for the current modification, but we will only 424 * use that if we can't reuse the existing lv. If we can't reuse the existing 425 * lv, then simple swap it out for the shadow lv. We don't free it - that is 426 * done lazily either by th enext modification or the freeing of the log item. 427 * 428 * We don't set up region headers during this process; we simply copy the 429 * regions into the flat buffer. We can do this because we still have to do a 430 * formatting step to write the regions into the iclog buffer. Writing the 431 * ophdrs during the iclog write means that we can support splitting large 432 * regions across iclog boundares without needing a change in the format of the 433 * item/region encapsulation. 434 * 435 * Hence what we need to do now is change the rewrite the vector array to point 436 * to the copied region inside the buffer we just allocated. This allows us to 437 * format the regions into the iclog as though they are being formatted 438 * directly out of the objects themselves. 439 */ 440 static void 441 xlog_cil_insert_format_items( 442 struct xlog *log, 443 struct xfs_trans *tp, 444 int *diff_len) 445 { 446 struct xfs_log_item *lip; 447 448 /* Bail out if we didn't find a log item. */ 449 if (list_empty(&tp->t_items)) { 450 ASSERT(0); 451 return; 452 } 453 454 list_for_each_entry(lip, &tp->t_items, li_trans) { 455 struct xfs_log_vec *lv; 456 struct xfs_log_vec *old_lv = NULL; 457 struct xfs_log_vec *shadow; 458 bool ordered = false; 459 460 /* Skip items which aren't dirty in this transaction. */ 461 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags)) 462 continue; 463 464 /* 465 * The formatting size information is already attached to 466 * the shadow lv on the log item. 467 */ 468 shadow = lip->li_lv_shadow; 469 if (shadow->lv_buf_len == XFS_LOG_VEC_ORDERED) 470 ordered = true; 471 472 /* Skip items that do not have any vectors for writing */ 473 if (!shadow->lv_niovecs && !ordered) 474 continue; 475 476 /* compare to existing item size */ 477 old_lv = lip->li_lv; 478 if (lip->li_lv && shadow->lv_size <= lip->li_lv->lv_size) { 479 /* same or smaller, optimise common overwrite case */ 480 lv = lip->li_lv; 481 482 if (ordered) 483 goto insert; 484 485 /* 486 * set the item up as though it is a new insertion so 487 * that the space reservation accounting is correct. 488 */ 489 *diff_len -= lv->lv_bytes; 490 491 /* Ensure the lv is set up according to ->iop_size */ 492 lv->lv_niovecs = shadow->lv_niovecs; 493 494 /* reset the lv buffer information for new formatting */ 495 lv->lv_buf_len = 0; 496 lv->lv_bytes = 0; 497 lv->lv_buf = (char *)lv + 498 xlog_cil_iovec_space(lv->lv_niovecs); 499 } else { 500 /* switch to shadow buffer! */ 501 lv = shadow; 502 lv->lv_item = lip; 503 if (ordered) { 504 /* track as an ordered logvec */ 505 ASSERT(lip->li_lv == NULL); 506 goto insert; 507 } 508 } 509 510 ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t))); 511 lip->li_ops->iop_format(lip, lv); 512 insert: 513 xfs_cil_prepare_item(log, lv, old_lv, diff_len); 514 } 515 } 516 517 /* 518 * The use of lockless waitqueue_active() requires that the caller has 519 * serialised itself against the wakeup call in xlog_cil_push_work(). That 520 * can be done by either holding the push lock or the context lock. 521 */ 522 static inline bool 523 xlog_cil_over_hard_limit( 524 struct xlog *log, 525 int32_t space_used) 526 { 527 if (waitqueue_active(&log->l_cilp->xc_push_wait)) 528 return true; 529 if (space_used >= XLOG_CIL_BLOCKING_SPACE_LIMIT(log)) 530 return true; 531 return false; 532 } 533 534 /* 535 * Insert the log items into the CIL and calculate the difference in space 536 * consumed by the item. Add the space to the checkpoint ticket and calculate 537 * if the change requires additional log metadata. If it does, take that space 538 * as well. Remove the amount of space we added to the checkpoint ticket from 539 * the current transaction ticket so that the accounting works out correctly. 540 */ 541 static void 542 xlog_cil_insert_items( 543 struct xlog *log, 544 struct xfs_trans *tp, 545 uint32_t released_space) 546 { 547 struct xfs_cil *cil = log->l_cilp; 548 struct xfs_cil_ctx *ctx = cil->xc_ctx; 549 struct xfs_log_item *lip; 550 int len = 0; 551 int iovhdr_res = 0, split_res = 0, ctx_res = 0; 552 int space_used; 553 int order; 554 unsigned int cpu_nr; 555 struct xlog_cil_pcp *cilpcp; 556 557 ASSERT(tp); 558 559 /* 560 * We can do this safely because the context can't checkpoint until we 561 * are done so it doesn't matter exactly how we update the CIL. 562 */ 563 xlog_cil_insert_format_items(log, tp, &len); 564 565 /* 566 * Subtract the space released by intent cancelation from the space we 567 * consumed so that we remove it from the CIL space and add it back to 568 * the current transaction reservation context. 569 */ 570 len -= released_space; 571 572 /* 573 * Grab the per-cpu pointer for the CIL before we start any accounting. 574 * That ensures that we are running with pre-emption disabled and so we 575 * can't be scheduled away between split sample/update operations that 576 * are done without outside locking to serialise them. 577 */ 578 cpu_nr = get_cpu(); 579 cilpcp = this_cpu_ptr(cil->xc_pcp); 580 581 /* Tell the future push that there was work added by this CPU. */ 582 if (!cpumask_test_cpu(cpu_nr, &ctx->cil_pcpmask)) 583 cpumask_test_and_set_cpu(cpu_nr, &ctx->cil_pcpmask); 584 585 /* 586 * We need to take the CIL checkpoint unit reservation on the first 587 * commit into the CIL. Test the XLOG_CIL_EMPTY bit first so we don't 588 * unnecessarily do an atomic op in the fast path here. We can clear the 589 * XLOG_CIL_EMPTY bit as we are under the xc_ctx_lock here and that 590 * needs to be held exclusively to reset the XLOG_CIL_EMPTY bit. 591 */ 592 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags) && 593 test_and_clear_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) 594 ctx_res = ctx->ticket->t_unit_res; 595 596 /* 597 * Check if we need to steal iclog headers. atomic_read() is not a 598 * locked atomic operation, so we can check the value before we do any 599 * real atomic ops in the fast path. If we've already taken the CIL unit 600 * reservation from this commit, we've already got one iclog header 601 * space reserved so we have to account for that otherwise we risk 602 * overrunning the reservation on this ticket. 603 * 604 * If the CIL is already at the hard limit, we might need more header 605 * space that originally reserved. So steal more header space from every 606 * commit that occurs once we are over the hard limit to ensure the CIL 607 * push won't run out of reservation space. 608 * 609 * This can steal more than we need, but that's OK. 610 * 611 * The cil->xc_ctx_lock provides the serialisation necessary for safely 612 * calling xlog_cil_over_hard_limit() in this context. 613 */ 614 space_used = atomic_read(&ctx->space_used) + cilpcp->space_used + len; 615 if (atomic_read(&cil->xc_iclog_hdrs) > 0 || 616 xlog_cil_over_hard_limit(log, space_used)) { 617 split_res = log->l_iclog_hsize + 618 sizeof(struct xlog_op_header); 619 if (ctx_res) 620 ctx_res += split_res * (tp->t_ticket->t_iclog_hdrs - 1); 621 else 622 ctx_res = split_res * tp->t_ticket->t_iclog_hdrs; 623 atomic_sub(tp->t_ticket->t_iclog_hdrs, &cil->xc_iclog_hdrs); 624 } 625 cilpcp->space_reserved += ctx_res; 626 627 /* 628 * Accurately account when over the soft limit, otherwise fold the 629 * percpu count into the global count if over the per-cpu threshold. 630 */ 631 if (!test_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags)) { 632 atomic_add(len, &ctx->space_used); 633 } else if (cilpcp->space_used + len > 634 (XLOG_CIL_SPACE_LIMIT(log) / num_online_cpus())) { 635 space_used = atomic_add_return(cilpcp->space_used + len, 636 &ctx->space_used); 637 cilpcp->space_used = 0; 638 639 /* 640 * If we just transitioned over the soft limit, we need to 641 * transition to the global atomic counter. 642 */ 643 if (space_used >= XLOG_CIL_SPACE_LIMIT(log)) 644 xlog_cil_insert_pcp_aggregate(cil, ctx); 645 } else { 646 cilpcp->space_used += len; 647 } 648 /* attach the transaction to the CIL if it has any busy extents */ 649 if (!list_empty(&tp->t_busy)) 650 list_splice_init(&tp->t_busy, &cilpcp->busy_extents); 651 652 /* 653 * Now update the order of everything modified in the transaction 654 * and insert items into the CIL if they aren't already there. 655 * We do this here so we only need to take the CIL lock once during 656 * the transaction commit. 657 */ 658 order = atomic_inc_return(&ctx->order_id); 659 list_for_each_entry(lip, &tp->t_items, li_trans) { 660 /* Skip items which aren't dirty in this transaction. */ 661 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags)) 662 continue; 663 664 lip->li_order_id = order; 665 if (!list_empty(&lip->li_cil)) 666 continue; 667 list_add_tail(&lip->li_cil, &cilpcp->log_items); 668 } 669 put_cpu(); 670 671 /* 672 * If we've overrun the reservation, dump the tx details before we move 673 * the log items. Shutdown is imminent... 674 */ 675 tp->t_ticket->t_curr_res -= ctx_res + len; 676 if (WARN_ON(tp->t_ticket->t_curr_res < 0)) { 677 xfs_warn(log->l_mp, "Transaction log reservation overrun:"); 678 xfs_warn(log->l_mp, 679 " log items: %d bytes (iov hdrs: %d bytes)", 680 len, iovhdr_res); 681 xfs_warn(log->l_mp, " split region headers: %d bytes", 682 split_res); 683 xfs_warn(log->l_mp, " ctx ticket: %d bytes", ctx_res); 684 xlog_print_trans(tp); 685 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 686 } 687 } 688 689 static inline void 690 xlog_cil_ail_insert_batch( 691 struct xfs_ail *ailp, 692 struct xfs_ail_cursor *cur, 693 struct xfs_log_item **log_items, 694 int nr_items, 695 xfs_lsn_t commit_lsn) 696 { 697 int i; 698 699 spin_lock(&ailp->ail_lock); 700 /* xfs_trans_ail_update_bulk drops ailp->ail_lock */ 701 xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn); 702 703 for (i = 0; i < nr_items; i++) { 704 struct xfs_log_item *lip = log_items[i]; 705 706 if (lip->li_ops->iop_unpin) 707 lip->li_ops->iop_unpin(lip, 0); 708 } 709 } 710 711 /* 712 * Take the checkpoint's log vector chain of items and insert the attached log 713 * items into the AIL. This uses bulk insertion techniques to minimise AIL lock 714 * traffic. 715 * 716 * The AIL tracks log items via the start record LSN of the checkpoint, 717 * not the commit record LSN. This is because we can pipeline multiple 718 * checkpoints, and so the start record of checkpoint N+1 can be 719 * written before the commit record of checkpoint N. i.e: 720 * 721 * start N commit N 722 * +-------------+------------+----------------+ 723 * start N+1 commit N+1 724 * 725 * The tail of the log cannot be moved to the LSN of commit N when all 726 * the items of that checkpoint are written back, because then the 727 * start record for N+1 is no longer in the active portion of the log 728 * and recovery will fail/corrupt the filesystem. 729 * 730 * Hence when all the log items in checkpoint N are written back, the 731 * tail of the log most now only move as far forwards as the start LSN 732 * of checkpoint N+1. 733 * 734 * If we are called with the aborted flag set, it is because a log write during 735 * a CIL checkpoint commit has failed. In this case, all the items in the 736 * checkpoint have already gone through iop_committed and iop_committing, which 737 * means that checkpoint commit abort handling is treated exactly the same as an 738 * iclog write error even though we haven't started any IO yet. Hence in this 739 * case all we need to do is iop_committed processing, followed by an 740 * iop_unpin(aborted) call. 741 * 742 * The AIL cursor is used to optimise the insert process. If commit_lsn is not 743 * at the end of the AIL, the insert cursor avoids the need to walk the AIL to 744 * find the insertion point on every xfs_log_item_batch_insert() call. This 745 * saves a lot of needless list walking and is a net win, even though it 746 * slightly increases that amount of AIL lock traffic to set it up and tear it 747 * down. 748 */ 749 static void 750 xlog_cil_ail_insert( 751 struct xfs_cil_ctx *ctx, 752 bool aborted) 753 { 754 #define LOG_ITEM_BATCH_SIZE 32 755 struct xfs_ail *ailp = ctx->cil->xc_log->l_ailp; 756 struct xfs_log_item *log_items[LOG_ITEM_BATCH_SIZE]; 757 struct xfs_log_vec *lv; 758 struct xfs_ail_cursor cur; 759 xfs_lsn_t old_head; 760 int i = 0; 761 762 /* 763 * Update the AIL head LSN with the commit record LSN of this 764 * checkpoint. As iclogs are always completed in order, this should 765 * always be the same (as iclogs can contain multiple commit records) or 766 * higher LSN than the current head. We do this before insertion of the 767 * items so that log space checks during insertion will reflect the 768 * space that this checkpoint has already consumed. We call 769 * xfs_ail_update_finish() so that tail space and space-based wakeups 770 * will be recalculated appropriately. 771 */ 772 ASSERT(XFS_LSN_CMP(ctx->commit_lsn, ailp->ail_head_lsn) >= 0 || 773 aborted); 774 spin_lock(&ailp->ail_lock); 775 xfs_trans_ail_cursor_last(ailp, &cur, ctx->start_lsn); 776 old_head = ailp->ail_head_lsn; 777 ailp->ail_head_lsn = ctx->commit_lsn; 778 /* xfs_ail_update_finish() drops the ail_lock */ 779 xfs_ail_update_finish(ailp, NULLCOMMITLSN); 780 781 /* 782 * We move the AIL head forwards to account for the space used in the 783 * log before we remove that space from the grant heads. This prevents a 784 * transient condition where reservation space appears to become 785 * available on return, only for it to disappear again immediately as 786 * the AIL head update accounts in the log tail space. 787 */ 788 smp_wmb(); /* paired with smp_rmb in xlog_grant_space_left */ 789 xlog_grant_return_space(ailp->ail_log, old_head, ailp->ail_head_lsn); 790 791 /* unpin all the log items */ 792 list_for_each_entry(lv, &ctx->lv_chain, lv_list) { 793 struct xfs_log_item *lip = lv->lv_item; 794 xfs_lsn_t item_lsn; 795 796 if (aborted) 797 set_bit(XFS_LI_ABORTED, &lip->li_flags); 798 799 if (lip->li_ops->flags & XFS_ITEM_RELEASE_WHEN_COMMITTED) { 800 lip->li_ops->iop_release(lip); 801 continue; 802 } 803 804 if (lip->li_ops->iop_committed) 805 item_lsn = lip->li_ops->iop_committed(lip, 806 ctx->start_lsn); 807 else 808 item_lsn = ctx->start_lsn; 809 810 /* item_lsn of -1 means the item needs no further processing */ 811 if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0) 812 continue; 813 814 /* 815 * if we are aborting the operation, no point in inserting the 816 * object into the AIL as we are in a shutdown situation. 817 */ 818 if (aborted) { 819 ASSERT(xlog_is_shutdown(ailp->ail_log)); 820 if (lip->li_ops->iop_unpin) 821 lip->li_ops->iop_unpin(lip, 1); 822 continue; 823 } 824 825 if (item_lsn != ctx->start_lsn) { 826 827 /* 828 * Not a bulk update option due to unusual item_lsn. 829 * Push into AIL immediately, rechecking the lsn once 830 * we have the ail lock. Then unpin the item. This does 831 * not affect the AIL cursor the bulk insert path is 832 * using. 833 */ 834 spin_lock(&ailp->ail_lock); 835 if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0) 836 xfs_trans_ail_update(ailp, lip, item_lsn); 837 else 838 spin_unlock(&ailp->ail_lock); 839 if (lip->li_ops->iop_unpin) 840 lip->li_ops->iop_unpin(lip, 0); 841 continue; 842 } 843 844 /* Item is a candidate for bulk AIL insert. */ 845 log_items[i++] = lv->lv_item; 846 if (i >= LOG_ITEM_BATCH_SIZE) { 847 xlog_cil_ail_insert_batch(ailp, &cur, log_items, 848 LOG_ITEM_BATCH_SIZE, ctx->start_lsn); 849 i = 0; 850 } 851 } 852 853 /* make sure we insert the remainder! */ 854 if (i) 855 xlog_cil_ail_insert_batch(ailp, &cur, log_items, i, 856 ctx->start_lsn); 857 858 spin_lock(&ailp->ail_lock); 859 xfs_trans_ail_cursor_done(&cur); 860 spin_unlock(&ailp->ail_lock); 861 } 862 863 static void 864 xlog_cil_free_logvec( 865 struct list_head *lv_chain) 866 { 867 struct xfs_log_vec *lv; 868 869 while (!list_empty(lv_chain)) { 870 lv = list_first_entry(lv_chain, struct xfs_log_vec, lv_list); 871 list_del_init(&lv->lv_list); 872 kvfree(lv); 873 } 874 } 875 876 /* 877 * Mark all items committed and clear busy extents. We free the log vector 878 * chains in a separate pass so that we unpin the log items as quickly as 879 * possible. 880 */ 881 static void 882 xlog_cil_committed( 883 struct xfs_cil_ctx *ctx) 884 { 885 struct xfs_mount *mp = ctx->cil->xc_log->l_mp; 886 bool abort = xlog_is_shutdown(ctx->cil->xc_log); 887 888 /* 889 * If the I/O failed, we're aborting the commit and already shutdown. 890 * Wake any commit waiters before aborting the log items so we don't 891 * block async log pushers on callbacks. Async log pushers explicitly do 892 * not wait on log force completion because they may be holding locks 893 * required to unpin items. 894 */ 895 if (abort) { 896 spin_lock(&ctx->cil->xc_push_lock); 897 wake_up_all(&ctx->cil->xc_start_wait); 898 wake_up_all(&ctx->cil->xc_commit_wait); 899 spin_unlock(&ctx->cil->xc_push_lock); 900 } 901 902 xlog_cil_ail_insert(ctx, abort); 903 904 xfs_extent_busy_sort(&ctx->busy_extents.extent_list); 905 xfs_extent_busy_clear(&ctx->busy_extents.extent_list, 906 xfs_has_discard(mp) && !abort); 907 908 spin_lock(&ctx->cil->xc_push_lock); 909 list_del(&ctx->committing); 910 spin_unlock(&ctx->cil->xc_push_lock); 911 912 xlog_cil_free_logvec(&ctx->lv_chain); 913 914 if (!list_empty(&ctx->busy_extents.extent_list)) { 915 ctx->busy_extents.owner = ctx; 916 xfs_discard_extents(mp, &ctx->busy_extents); 917 return; 918 } 919 920 kfree(ctx); 921 } 922 923 void 924 xlog_cil_process_committed( 925 struct list_head *list) 926 { 927 struct xfs_cil_ctx *ctx; 928 929 while ((ctx = list_first_entry_or_null(list, 930 struct xfs_cil_ctx, iclog_entry))) { 931 list_del(&ctx->iclog_entry); 932 xlog_cil_committed(ctx); 933 } 934 } 935 936 /* 937 * Record the LSN of the iclog we were just granted space to start writing into. 938 * If the context doesn't have a start_lsn recorded, then this iclog will 939 * contain the start record for the checkpoint. Otherwise this write contains 940 * the commit record for the checkpoint. 941 */ 942 void 943 xlog_cil_set_ctx_write_state( 944 struct xfs_cil_ctx *ctx, 945 struct xlog_in_core *iclog) 946 { 947 struct xfs_cil *cil = ctx->cil; 948 xfs_lsn_t lsn = be64_to_cpu(iclog->ic_header.h_lsn); 949 950 ASSERT(!ctx->commit_lsn); 951 if (!ctx->start_lsn) { 952 spin_lock(&cil->xc_push_lock); 953 /* 954 * The LSN we need to pass to the log items on transaction 955 * commit is the LSN reported by the first log vector write, not 956 * the commit lsn. If we use the commit record lsn then we can 957 * move the grant write head beyond the tail LSN and overwrite 958 * it. 959 */ 960 ctx->start_lsn = lsn; 961 wake_up_all(&cil->xc_start_wait); 962 spin_unlock(&cil->xc_push_lock); 963 964 /* 965 * Make sure the metadata we are about to overwrite in the log 966 * has been flushed to stable storage before this iclog is 967 * issued. 968 */ 969 spin_lock(&cil->xc_log->l_icloglock); 970 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH; 971 spin_unlock(&cil->xc_log->l_icloglock); 972 return; 973 } 974 975 /* 976 * Take a reference to the iclog for the context so that we still hold 977 * it when xlog_write is done and has released it. This means the 978 * context controls when the iclog is released for IO. 979 */ 980 atomic_inc(&iclog->ic_refcnt); 981 982 /* 983 * xlog_state_get_iclog_space() guarantees there is enough space in the 984 * iclog for an entire commit record, so we can attach the context 985 * callbacks now. This needs to be done before we make the commit_lsn 986 * visible to waiters so that checkpoints with commit records in the 987 * same iclog order their IO completion callbacks in the same order that 988 * the commit records appear in the iclog. 989 */ 990 spin_lock(&cil->xc_log->l_icloglock); 991 list_add_tail(&ctx->iclog_entry, &iclog->ic_callbacks); 992 spin_unlock(&cil->xc_log->l_icloglock); 993 994 /* 995 * Now we can record the commit LSN and wake anyone waiting for this 996 * sequence to have the ordered commit record assigned to a physical 997 * location in the log. 998 */ 999 spin_lock(&cil->xc_push_lock); 1000 ctx->commit_iclog = iclog; 1001 ctx->commit_lsn = lsn; 1002 wake_up_all(&cil->xc_commit_wait); 1003 spin_unlock(&cil->xc_push_lock); 1004 } 1005 1006 1007 /* 1008 * Ensure that the order of log writes follows checkpoint sequence order. This 1009 * relies on the context LSN being zero until the log write has guaranteed the 1010 * LSN that the log write will start at via xlog_state_get_iclog_space(). 1011 */ 1012 enum _record_type { 1013 _START_RECORD, 1014 _COMMIT_RECORD, 1015 }; 1016 1017 static int 1018 xlog_cil_order_write( 1019 struct xfs_cil *cil, 1020 xfs_csn_t sequence, 1021 enum _record_type record) 1022 { 1023 struct xfs_cil_ctx *ctx; 1024 1025 restart: 1026 spin_lock(&cil->xc_push_lock); 1027 list_for_each_entry(ctx, &cil->xc_committing, committing) { 1028 /* 1029 * Avoid getting stuck in this loop because we were woken by the 1030 * shutdown, but then went back to sleep once already in the 1031 * shutdown state. 1032 */ 1033 if (xlog_is_shutdown(cil->xc_log)) { 1034 spin_unlock(&cil->xc_push_lock); 1035 return -EIO; 1036 } 1037 1038 /* 1039 * Higher sequences will wait for this one so skip them. 1040 * Don't wait for our own sequence, either. 1041 */ 1042 if (ctx->sequence >= sequence) 1043 continue; 1044 1045 /* Wait until the LSN for the record has been recorded. */ 1046 switch (record) { 1047 case _START_RECORD: 1048 if (!ctx->start_lsn) { 1049 xlog_wait(&cil->xc_start_wait, &cil->xc_push_lock); 1050 goto restart; 1051 } 1052 break; 1053 case _COMMIT_RECORD: 1054 if (!ctx->commit_lsn) { 1055 xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock); 1056 goto restart; 1057 } 1058 break; 1059 } 1060 } 1061 spin_unlock(&cil->xc_push_lock); 1062 return 0; 1063 } 1064 1065 /* 1066 * Write out the log vector change now attached to the CIL context. This will 1067 * write a start record that needs to be strictly ordered in ascending CIL 1068 * sequence order so that log recovery will always use in-order start LSNs when 1069 * replaying checkpoints. 1070 */ 1071 static int 1072 xlog_cil_write_chain( 1073 struct xfs_cil_ctx *ctx, 1074 uint32_t chain_len) 1075 { 1076 struct xlog *log = ctx->cil->xc_log; 1077 int error; 1078 1079 error = xlog_cil_order_write(ctx->cil, ctx->sequence, _START_RECORD); 1080 if (error) 1081 return error; 1082 return xlog_write(log, ctx, &ctx->lv_chain, ctx->ticket, chain_len); 1083 } 1084 1085 /* 1086 * Write out the commit record of a checkpoint transaction to close off a 1087 * running log write. These commit records are strictly ordered in ascending CIL 1088 * sequence order so that log recovery will always replay the checkpoints in the 1089 * correct order. 1090 */ 1091 static int 1092 xlog_cil_write_commit_record( 1093 struct xfs_cil_ctx *ctx) 1094 { 1095 struct xlog *log = ctx->cil->xc_log; 1096 struct xlog_op_header ophdr = { 1097 .oh_clientid = XFS_TRANSACTION, 1098 .oh_tid = cpu_to_be32(ctx->ticket->t_tid), 1099 .oh_flags = XLOG_COMMIT_TRANS, 1100 }; 1101 struct xfs_log_iovec reg = { 1102 .i_addr = &ophdr, 1103 .i_len = sizeof(struct xlog_op_header), 1104 .i_type = XLOG_REG_TYPE_COMMIT, 1105 }; 1106 struct xfs_log_vec vec = { 1107 .lv_niovecs = 1, 1108 .lv_iovecp = ®, 1109 }; 1110 int error; 1111 LIST_HEAD(lv_chain); 1112 list_add(&vec.lv_list, &lv_chain); 1113 1114 if (xlog_is_shutdown(log)) 1115 return -EIO; 1116 1117 error = xlog_cil_order_write(ctx->cil, ctx->sequence, _COMMIT_RECORD); 1118 if (error) 1119 return error; 1120 1121 /* account for space used by record data */ 1122 ctx->ticket->t_curr_res -= reg.i_len; 1123 error = xlog_write(log, ctx, &lv_chain, ctx->ticket, reg.i_len); 1124 if (error) 1125 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 1126 return error; 1127 } 1128 1129 struct xlog_cil_trans_hdr { 1130 struct xlog_op_header oph[2]; 1131 struct xfs_trans_header thdr; 1132 struct xfs_log_iovec lhdr[2]; 1133 }; 1134 1135 /* 1136 * Build a checkpoint transaction header to begin the journal transaction. We 1137 * need to account for the space used by the transaction header here as it is 1138 * not accounted for in xlog_write(). 1139 * 1140 * This is the only place we write a transaction header, so we also build the 1141 * log opheaders that indicate the start of a log transaction and wrap the 1142 * transaction header. We keep the start record in it's own log vector rather 1143 * than compacting them into a single region as this ends up making the logic 1144 * in xlog_write() for handling empty opheaders for start, commit and unmount 1145 * records much simpler. 1146 */ 1147 static void 1148 xlog_cil_build_trans_hdr( 1149 struct xfs_cil_ctx *ctx, 1150 struct xlog_cil_trans_hdr *hdr, 1151 struct xfs_log_vec *lvhdr, 1152 int num_iovecs) 1153 { 1154 struct xlog_ticket *tic = ctx->ticket; 1155 __be32 tid = cpu_to_be32(tic->t_tid); 1156 1157 memset(hdr, 0, sizeof(*hdr)); 1158 1159 /* Log start record */ 1160 hdr->oph[0].oh_tid = tid; 1161 hdr->oph[0].oh_clientid = XFS_TRANSACTION; 1162 hdr->oph[0].oh_flags = XLOG_START_TRANS; 1163 1164 /* log iovec region pointer */ 1165 hdr->lhdr[0].i_addr = &hdr->oph[0]; 1166 hdr->lhdr[0].i_len = sizeof(struct xlog_op_header); 1167 hdr->lhdr[0].i_type = XLOG_REG_TYPE_LRHEADER; 1168 1169 /* log opheader */ 1170 hdr->oph[1].oh_tid = tid; 1171 hdr->oph[1].oh_clientid = XFS_TRANSACTION; 1172 hdr->oph[1].oh_len = cpu_to_be32(sizeof(struct xfs_trans_header)); 1173 1174 /* transaction header in host byte order format */ 1175 hdr->thdr.th_magic = XFS_TRANS_HEADER_MAGIC; 1176 hdr->thdr.th_type = XFS_TRANS_CHECKPOINT; 1177 hdr->thdr.th_tid = tic->t_tid; 1178 hdr->thdr.th_num_items = num_iovecs; 1179 1180 /* log iovec region pointer */ 1181 hdr->lhdr[1].i_addr = &hdr->oph[1]; 1182 hdr->lhdr[1].i_len = sizeof(struct xlog_op_header) + 1183 sizeof(struct xfs_trans_header); 1184 hdr->lhdr[1].i_type = XLOG_REG_TYPE_TRANSHDR; 1185 1186 lvhdr->lv_niovecs = 2; 1187 lvhdr->lv_iovecp = &hdr->lhdr[0]; 1188 lvhdr->lv_bytes = hdr->lhdr[0].i_len + hdr->lhdr[1].i_len; 1189 1190 tic->t_curr_res -= lvhdr->lv_bytes; 1191 } 1192 1193 /* 1194 * CIL item reordering compare function. We want to order in ascending ID order, 1195 * but we want to leave items with the same ID in the order they were added to 1196 * the list. This is important for operations like reflink where we log 4 order 1197 * dependent intents in a single transaction when we overwrite an existing 1198 * shared extent with a new shared extent. i.e. BUI(unmap), CUI(drop), 1199 * CUI (inc), BUI(remap)... 1200 */ 1201 static int 1202 xlog_cil_order_cmp( 1203 void *priv, 1204 const struct list_head *a, 1205 const struct list_head *b) 1206 { 1207 struct xfs_log_vec *l1 = container_of(a, struct xfs_log_vec, lv_list); 1208 struct xfs_log_vec *l2 = container_of(b, struct xfs_log_vec, lv_list); 1209 1210 return l1->lv_order_id > l2->lv_order_id; 1211 } 1212 1213 /* 1214 * Pull all the log vectors off the items in the CIL, and remove the items from 1215 * the CIL. We don't need the CIL lock here because it's only needed on the 1216 * transaction commit side which is currently locked out by the flush lock. 1217 * 1218 * If a log item is marked with a whiteout, we do not need to write it to the 1219 * journal and so we just move them to the whiteout list for the caller to 1220 * dispose of appropriately. 1221 */ 1222 static void 1223 xlog_cil_build_lv_chain( 1224 struct xfs_cil_ctx *ctx, 1225 struct list_head *whiteouts, 1226 uint32_t *num_iovecs, 1227 uint32_t *num_bytes) 1228 { 1229 while (!list_empty(&ctx->log_items)) { 1230 struct xfs_log_item *item; 1231 struct xfs_log_vec *lv; 1232 1233 item = list_first_entry(&ctx->log_items, 1234 struct xfs_log_item, li_cil); 1235 1236 if (test_bit(XFS_LI_WHITEOUT, &item->li_flags)) { 1237 list_move(&item->li_cil, whiteouts); 1238 trace_xfs_cil_whiteout_skip(item); 1239 continue; 1240 } 1241 1242 lv = item->li_lv; 1243 lv->lv_order_id = item->li_order_id; 1244 1245 /* we don't write ordered log vectors */ 1246 if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) 1247 *num_bytes += lv->lv_bytes; 1248 *num_iovecs += lv->lv_niovecs; 1249 list_add_tail(&lv->lv_list, &ctx->lv_chain); 1250 1251 list_del_init(&item->li_cil); 1252 item->li_order_id = 0; 1253 item->li_lv = NULL; 1254 } 1255 } 1256 1257 static void 1258 xlog_cil_cleanup_whiteouts( 1259 struct list_head *whiteouts) 1260 { 1261 while (!list_empty(whiteouts)) { 1262 struct xfs_log_item *item = list_first_entry(whiteouts, 1263 struct xfs_log_item, li_cil); 1264 list_del_init(&item->li_cil); 1265 trace_xfs_cil_whiteout_unpin(item); 1266 item->li_ops->iop_unpin(item, 1); 1267 } 1268 } 1269 1270 /* 1271 * Push the Committed Item List to the log. 1272 * 1273 * If the current sequence is the same as xc_push_seq we need to do a flush. If 1274 * xc_push_seq is less than the current sequence, then it has already been 1275 * flushed and we don't need to do anything - the caller will wait for it to 1276 * complete if necessary. 1277 * 1278 * xc_push_seq is checked unlocked against the sequence number for a match. 1279 * Hence we can allow log forces to run racily and not issue pushes for the 1280 * same sequence twice. If we get a race between multiple pushes for the same 1281 * sequence they will block on the first one and then abort, hence avoiding 1282 * needless pushes. 1283 * 1284 * This runs from a workqueue so it does not inherent any specific memory 1285 * allocation context. However, we do not want to block on memory reclaim 1286 * recursing back into the filesystem because this push may have been triggered 1287 * by memory reclaim itself. Hence we really need to run under full GFP_NOFS 1288 * contraints here. 1289 */ 1290 static void 1291 xlog_cil_push_work( 1292 struct work_struct *work) 1293 { 1294 unsigned int nofs_flags = memalloc_nofs_save(); 1295 struct xfs_cil_ctx *ctx = 1296 container_of(work, struct xfs_cil_ctx, push_work); 1297 struct xfs_cil *cil = ctx->cil; 1298 struct xlog *log = cil->xc_log; 1299 struct xfs_cil_ctx *new_ctx; 1300 int num_iovecs = 0; 1301 int num_bytes = 0; 1302 int error = 0; 1303 struct xlog_cil_trans_hdr thdr; 1304 struct xfs_log_vec lvhdr = {}; 1305 xfs_csn_t push_seq; 1306 bool push_commit_stable; 1307 LIST_HEAD (whiteouts); 1308 struct xlog_ticket *ticket; 1309 1310 new_ctx = xlog_cil_ctx_alloc(); 1311 new_ctx->ticket = xlog_cil_ticket_alloc(log); 1312 1313 down_write(&cil->xc_ctx_lock); 1314 1315 spin_lock(&cil->xc_push_lock); 1316 push_seq = cil->xc_push_seq; 1317 ASSERT(push_seq <= ctx->sequence); 1318 push_commit_stable = cil->xc_push_commit_stable; 1319 cil->xc_push_commit_stable = false; 1320 1321 /* 1322 * As we are about to switch to a new, empty CIL context, we no longer 1323 * need to throttle tasks on CIL space overruns. Wake any waiters that 1324 * the hard push throttle may have caught so they can start committing 1325 * to the new context. The ctx->xc_push_lock provides the serialisation 1326 * necessary for safely using the lockless waitqueue_active() check in 1327 * this context. 1328 */ 1329 if (waitqueue_active(&cil->xc_push_wait)) 1330 wake_up_all(&cil->xc_push_wait); 1331 1332 xlog_cil_push_pcp_aggregate(cil, ctx); 1333 1334 /* 1335 * Check if we've anything to push. If there is nothing, then we don't 1336 * move on to a new sequence number and so we have to be able to push 1337 * this sequence again later. 1338 */ 1339 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) { 1340 cil->xc_push_seq = 0; 1341 spin_unlock(&cil->xc_push_lock); 1342 goto out_skip; 1343 } 1344 1345 1346 /* check for a previously pushed sequence */ 1347 if (push_seq < ctx->sequence) { 1348 spin_unlock(&cil->xc_push_lock); 1349 goto out_skip; 1350 } 1351 1352 /* 1353 * We are now going to push this context, so add it to the committing 1354 * list before we do anything else. This ensures that anyone waiting on 1355 * this push can easily detect the difference between a "push in 1356 * progress" and "CIL is empty, nothing to do". 1357 * 1358 * IOWs, a wait loop can now check for: 1359 * the current sequence not being found on the committing list; 1360 * an empty CIL; and 1361 * an unchanged sequence number 1362 * to detect a push that had nothing to do and therefore does not need 1363 * waiting on. If the CIL is not empty, we get put on the committing 1364 * list before emptying the CIL and bumping the sequence number. Hence 1365 * an empty CIL and an unchanged sequence number means we jumped out 1366 * above after doing nothing. 1367 * 1368 * Hence the waiter will either find the commit sequence on the 1369 * committing list or the sequence number will be unchanged and the CIL 1370 * still dirty. In that latter case, the push has not yet started, and 1371 * so the waiter will have to continue trying to check the CIL 1372 * committing list until it is found. In extreme cases of delay, the 1373 * sequence may fully commit between the attempts the wait makes to wait 1374 * on the commit sequence. 1375 */ 1376 list_add(&ctx->committing, &cil->xc_committing); 1377 spin_unlock(&cil->xc_push_lock); 1378 1379 xlog_cil_build_lv_chain(ctx, &whiteouts, &num_iovecs, &num_bytes); 1380 1381 /* 1382 * Switch the contexts so we can drop the context lock and move out 1383 * of a shared context. We can't just go straight to the commit record, 1384 * though - we need to synchronise with previous and future commits so 1385 * that the commit records are correctly ordered in the log to ensure 1386 * that we process items during log IO completion in the correct order. 1387 * 1388 * For example, if we get an EFI in one checkpoint and the EFD in the 1389 * next (e.g. due to log forces), we do not want the checkpoint with 1390 * the EFD to be committed before the checkpoint with the EFI. Hence 1391 * we must strictly order the commit records of the checkpoints so 1392 * that: a) the checkpoint callbacks are attached to the iclogs in the 1393 * correct order; and b) the checkpoints are replayed in correct order 1394 * in log recovery. 1395 * 1396 * Hence we need to add this context to the committing context list so 1397 * that higher sequences will wait for us to write out a commit record 1398 * before they do. 1399 * 1400 * xfs_log_force_seq requires us to mirror the new sequence into the cil 1401 * structure atomically with the addition of this sequence to the 1402 * committing list. This also ensures that we can do unlocked checks 1403 * against the current sequence in log forces without risking 1404 * deferencing a freed context pointer. 1405 */ 1406 spin_lock(&cil->xc_push_lock); 1407 xlog_cil_ctx_switch(cil, new_ctx); 1408 spin_unlock(&cil->xc_push_lock); 1409 up_write(&cil->xc_ctx_lock); 1410 1411 /* 1412 * Sort the log vector chain before we add the transaction headers. 1413 * This ensures we always have the transaction headers at the start 1414 * of the chain. 1415 */ 1416 list_sort(NULL, &ctx->lv_chain, xlog_cil_order_cmp); 1417 1418 /* 1419 * Build a checkpoint transaction header and write it to the log to 1420 * begin the transaction. We need to account for the space used by the 1421 * transaction header here as it is not accounted for in xlog_write(). 1422 * Add the lvhdr to the head of the lv chain we pass to xlog_write() so 1423 * it gets written into the iclog first. 1424 */ 1425 xlog_cil_build_trans_hdr(ctx, &thdr, &lvhdr, num_iovecs); 1426 num_bytes += lvhdr.lv_bytes; 1427 list_add(&lvhdr.lv_list, &ctx->lv_chain); 1428 1429 /* 1430 * Take the lvhdr back off the lv_chain immediately after calling 1431 * xlog_cil_write_chain() as it should not be passed to log IO 1432 * completion. 1433 */ 1434 error = xlog_cil_write_chain(ctx, num_bytes); 1435 list_del(&lvhdr.lv_list); 1436 if (error) 1437 goto out_abort_free_ticket; 1438 1439 error = xlog_cil_write_commit_record(ctx); 1440 if (error) 1441 goto out_abort_free_ticket; 1442 1443 /* 1444 * Grab the ticket from the ctx so we can ungrant it after releasing the 1445 * commit_iclog. The ctx may be freed by the time we return from 1446 * releasing the commit_iclog (i.e. checkpoint has been completed and 1447 * callback run) so we can't reference the ctx after the call to 1448 * xlog_state_release_iclog(). 1449 */ 1450 ticket = ctx->ticket; 1451 1452 /* 1453 * If the checkpoint spans multiple iclogs, wait for all previous iclogs 1454 * to complete before we submit the commit_iclog. We can't use state 1455 * checks for this - ACTIVE can be either a past completed iclog or a 1456 * future iclog being filled, while WANT_SYNC through SYNC_DONE can be a 1457 * past or future iclog awaiting IO or ordered IO completion to be run. 1458 * In the latter case, if it's a future iclog and we wait on it, the we 1459 * will hang because it won't get processed through to ic_force_wait 1460 * wakeup until this commit_iclog is written to disk. Hence we use the 1461 * iclog header lsn and compare it to the commit lsn to determine if we 1462 * need to wait on iclogs or not. 1463 */ 1464 spin_lock(&log->l_icloglock); 1465 if (ctx->start_lsn != ctx->commit_lsn) { 1466 xfs_lsn_t plsn; 1467 1468 plsn = be64_to_cpu(ctx->commit_iclog->ic_prev->ic_header.h_lsn); 1469 if (plsn && XFS_LSN_CMP(plsn, ctx->commit_lsn) < 0) { 1470 /* 1471 * Waiting on ic_force_wait orders the completion of 1472 * iclogs older than ic_prev. Hence we only need to wait 1473 * on the most recent older iclog here. 1474 */ 1475 xlog_wait_on_iclog(ctx->commit_iclog->ic_prev); 1476 spin_lock(&log->l_icloglock); 1477 } 1478 1479 /* 1480 * We need to issue a pre-flush so that the ordering for this 1481 * checkpoint is correctly preserved down to stable storage. 1482 */ 1483 ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FLUSH; 1484 } 1485 1486 /* 1487 * The commit iclog must be written to stable storage to guarantee 1488 * journal IO vs metadata writeback IO is correctly ordered on stable 1489 * storage. 1490 * 1491 * If the push caller needs the commit to be immediately stable and the 1492 * commit_iclog is not yet marked as XLOG_STATE_WANT_SYNC to indicate it 1493 * will be written when released, switch it's state to WANT_SYNC right 1494 * now. 1495 */ 1496 ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FUA; 1497 if (push_commit_stable && 1498 ctx->commit_iclog->ic_state == XLOG_STATE_ACTIVE) 1499 xlog_state_switch_iclogs(log, ctx->commit_iclog, 0); 1500 ticket = ctx->ticket; 1501 xlog_state_release_iclog(log, ctx->commit_iclog, ticket); 1502 1503 /* Not safe to reference ctx now! */ 1504 1505 spin_unlock(&log->l_icloglock); 1506 xlog_cil_cleanup_whiteouts(&whiteouts); 1507 xfs_log_ticket_ungrant(log, ticket); 1508 memalloc_nofs_restore(nofs_flags); 1509 return; 1510 1511 out_skip: 1512 up_write(&cil->xc_ctx_lock); 1513 xfs_log_ticket_put(new_ctx->ticket); 1514 kfree(new_ctx); 1515 memalloc_nofs_restore(nofs_flags); 1516 return; 1517 1518 out_abort_free_ticket: 1519 ASSERT(xlog_is_shutdown(log)); 1520 xlog_cil_cleanup_whiteouts(&whiteouts); 1521 if (!ctx->commit_iclog) { 1522 xfs_log_ticket_ungrant(log, ctx->ticket); 1523 xlog_cil_committed(ctx); 1524 memalloc_nofs_restore(nofs_flags); 1525 return; 1526 } 1527 spin_lock(&log->l_icloglock); 1528 ticket = ctx->ticket; 1529 xlog_state_release_iclog(log, ctx->commit_iclog, ticket); 1530 /* Not safe to reference ctx now! */ 1531 spin_unlock(&log->l_icloglock); 1532 xfs_log_ticket_ungrant(log, ticket); 1533 memalloc_nofs_restore(nofs_flags); 1534 } 1535 1536 /* 1537 * We need to push CIL every so often so we don't cache more than we can fit in 1538 * the log. The limit really is that a checkpoint can't be more than half the 1539 * log (the current checkpoint is not allowed to overwrite the previous 1540 * checkpoint), but commit latency and memory usage limit this to a smaller 1541 * size. 1542 */ 1543 static void 1544 xlog_cil_push_background( 1545 struct xlog *log) 1546 { 1547 struct xfs_cil *cil = log->l_cilp; 1548 int space_used = atomic_read(&cil->xc_ctx->space_used); 1549 1550 /* 1551 * The cil won't be empty because we are called while holding the 1552 * context lock so whatever we added to the CIL will still be there. 1553 */ 1554 ASSERT(!test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)); 1555 1556 /* 1557 * We are done if: 1558 * - we haven't used up all the space available yet; or 1559 * - we've already queued up a push; and 1560 * - we're not over the hard limit; and 1561 * - nothing has been over the hard limit. 1562 * 1563 * If so, we don't need to take the push lock as there's nothing to do. 1564 */ 1565 if (space_used < XLOG_CIL_SPACE_LIMIT(log) || 1566 (cil->xc_push_seq == cil->xc_current_sequence && 1567 space_used < XLOG_CIL_BLOCKING_SPACE_LIMIT(log) && 1568 !waitqueue_active(&cil->xc_push_wait))) { 1569 up_read(&cil->xc_ctx_lock); 1570 return; 1571 } 1572 1573 spin_lock(&cil->xc_push_lock); 1574 if (cil->xc_push_seq < cil->xc_current_sequence) { 1575 cil->xc_push_seq = cil->xc_current_sequence; 1576 queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work); 1577 } 1578 1579 /* 1580 * Drop the context lock now, we can't hold that if we need to sleep 1581 * because we are over the blocking threshold. The push_lock is still 1582 * held, so blocking threshold sleep/wakeup is still correctly 1583 * serialised here. 1584 */ 1585 up_read(&cil->xc_ctx_lock); 1586 1587 /* 1588 * If we are well over the space limit, throttle the work that is being 1589 * done until the push work on this context has begun. Enforce the hard 1590 * throttle on all transaction commits once it has been activated, even 1591 * if the committing transactions have resulted in the space usage 1592 * dipping back down under the hard limit. 1593 * 1594 * The ctx->xc_push_lock provides the serialisation necessary for safely 1595 * calling xlog_cil_over_hard_limit() in this context. 1596 */ 1597 if (xlog_cil_over_hard_limit(log, space_used)) { 1598 trace_xfs_log_cil_wait(log, cil->xc_ctx->ticket); 1599 ASSERT(space_used < log->l_logsize); 1600 xlog_wait(&cil->xc_push_wait, &cil->xc_push_lock); 1601 return; 1602 } 1603 1604 spin_unlock(&cil->xc_push_lock); 1605 1606 } 1607 1608 /* 1609 * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence 1610 * number that is passed. When it returns, the work will be queued for 1611 * @push_seq, but it won't be completed. 1612 * 1613 * If the caller is performing a synchronous force, we will flush the workqueue 1614 * to get previously queued work moving to minimise the wait time they will 1615 * undergo waiting for all outstanding pushes to complete. The caller is 1616 * expected to do the required waiting for push_seq to complete. 1617 * 1618 * If the caller is performing an async push, we need to ensure that the 1619 * checkpoint is fully flushed out of the iclogs when we finish the push. If we 1620 * don't do this, then the commit record may remain sitting in memory in an 1621 * ACTIVE iclog. This then requires another full log force to push to disk, 1622 * which defeats the purpose of having an async, non-blocking CIL force 1623 * mechanism. Hence in this case we need to pass a flag to the push work to 1624 * indicate it needs to flush the commit record itself. 1625 */ 1626 static void 1627 xlog_cil_push_now( 1628 struct xlog *log, 1629 xfs_lsn_t push_seq, 1630 bool async) 1631 { 1632 struct xfs_cil *cil = log->l_cilp; 1633 1634 if (!cil) 1635 return; 1636 1637 ASSERT(push_seq && push_seq <= cil->xc_current_sequence); 1638 1639 /* start on any pending background push to minimise wait time on it */ 1640 if (!async) 1641 flush_workqueue(cil->xc_push_wq); 1642 1643 spin_lock(&cil->xc_push_lock); 1644 1645 /* 1646 * If this is an async flush request, we always need to set the 1647 * xc_push_commit_stable flag even if something else has already queued 1648 * a push. The flush caller is asking for the CIL to be on stable 1649 * storage when the next push completes, so regardless of who has queued 1650 * the push, the flush requires stable semantics from it. 1651 */ 1652 cil->xc_push_commit_stable = async; 1653 1654 /* 1655 * If the CIL is empty or we've already pushed the sequence then 1656 * there's no more work that we need to do. 1657 */ 1658 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags) || 1659 push_seq <= cil->xc_push_seq) { 1660 spin_unlock(&cil->xc_push_lock); 1661 return; 1662 } 1663 1664 cil->xc_push_seq = push_seq; 1665 queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work); 1666 spin_unlock(&cil->xc_push_lock); 1667 } 1668 1669 bool 1670 xlog_cil_empty( 1671 struct xlog *log) 1672 { 1673 struct xfs_cil *cil = log->l_cilp; 1674 bool empty = false; 1675 1676 spin_lock(&cil->xc_push_lock); 1677 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) 1678 empty = true; 1679 spin_unlock(&cil->xc_push_lock); 1680 return empty; 1681 } 1682 1683 /* 1684 * If there are intent done items in this transaction and the related intent was 1685 * committed in the current (same) CIL checkpoint, we don't need to write either 1686 * the intent or intent done item to the journal as the change will be 1687 * journalled atomically within this checkpoint. As we cannot remove items from 1688 * the CIL here, mark the related intent with a whiteout so that the CIL push 1689 * can remove it rather than writing it to the journal. Then remove the intent 1690 * done item from the current transaction and release it so it doesn't get put 1691 * into the CIL at all. 1692 */ 1693 static uint32_t 1694 xlog_cil_process_intents( 1695 struct xfs_cil *cil, 1696 struct xfs_trans *tp) 1697 { 1698 struct xfs_log_item *lip, *ilip, *next; 1699 uint32_t len = 0; 1700 1701 list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) { 1702 if (!(lip->li_ops->flags & XFS_ITEM_INTENT_DONE)) 1703 continue; 1704 1705 ilip = lip->li_ops->iop_intent(lip); 1706 if (!ilip || !xlog_item_in_current_chkpt(cil, ilip)) 1707 continue; 1708 set_bit(XFS_LI_WHITEOUT, &ilip->li_flags); 1709 trace_xfs_cil_whiteout_mark(ilip); 1710 len += ilip->li_lv->lv_bytes; 1711 kvfree(ilip->li_lv); 1712 ilip->li_lv = NULL; 1713 1714 xfs_trans_del_item(lip); 1715 lip->li_ops->iop_release(lip); 1716 } 1717 return len; 1718 } 1719 1720 /* 1721 * Commit a transaction with the given vector to the Committed Item List. 1722 * 1723 * To do this, we need to format the item, pin it in memory if required and 1724 * account for the space used by the transaction. Once we have done that we 1725 * need to release the unused reservation for the transaction, attach the 1726 * transaction to the checkpoint context so we carry the busy extents through 1727 * to checkpoint completion, and then unlock all the items in the transaction. 1728 * 1729 * Called with the context lock already held in read mode to lock out 1730 * background commit, returns without it held once background commits are 1731 * allowed again. 1732 */ 1733 void 1734 xlog_cil_commit( 1735 struct xlog *log, 1736 struct xfs_trans *tp, 1737 xfs_csn_t *commit_seq, 1738 bool regrant) 1739 { 1740 struct xfs_cil *cil = log->l_cilp; 1741 struct xfs_log_item *lip, *next; 1742 uint32_t released_space = 0; 1743 1744 /* 1745 * Do all necessary memory allocation before we lock the CIL. 1746 * This ensures the allocation does not deadlock with a CIL 1747 * push in memory reclaim (e.g. from kswapd). 1748 */ 1749 xlog_cil_alloc_shadow_bufs(log, tp); 1750 1751 /* lock out background commit */ 1752 down_read(&cil->xc_ctx_lock); 1753 1754 if (tp->t_flags & XFS_TRANS_HAS_INTENT_DONE) 1755 released_space = xlog_cil_process_intents(cil, tp); 1756 1757 xlog_cil_insert_items(log, tp, released_space); 1758 1759 if (regrant && !xlog_is_shutdown(log)) 1760 xfs_log_ticket_regrant(log, tp->t_ticket); 1761 else 1762 xfs_log_ticket_ungrant(log, tp->t_ticket); 1763 tp->t_ticket = NULL; 1764 xfs_trans_unreserve_and_mod_sb(tp); 1765 1766 /* 1767 * Once all the items of the transaction have been copied to the CIL, 1768 * the items can be unlocked and possibly freed. 1769 * 1770 * This needs to be done before we drop the CIL context lock because we 1771 * have to update state in the log items and unlock them before they go 1772 * to disk. If we don't, then the CIL checkpoint can race with us and 1773 * we can run checkpoint completion before we've updated and unlocked 1774 * the log items. This affects (at least) processing of stale buffers, 1775 * inodes and EFIs. 1776 */ 1777 trace_xfs_trans_commit_items(tp, _RET_IP_); 1778 list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) { 1779 xfs_trans_del_item(lip); 1780 if (lip->li_ops->iop_committing) 1781 lip->li_ops->iop_committing(lip, cil->xc_ctx->sequence); 1782 } 1783 if (commit_seq) 1784 *commit_seq = cil->xc_ctx->sequence; 1785 1786 /* xlog_cil_push_background() releases cil->xc_ctx_lock */ 1787 xlog_cil_push_background(log); 1788 } 1789 1790 /* 1791 * Flush the CIL to stable storage but don't wait for it to complete. This 1792 * requires the CIL push to ensure the commit record for the push hits the disk, 1793 * but otherwise is no different to a push done from a log force. 1794 */ 1795 void 1796 xlog_cil_flush( 1797 struct xlog *log) 1798 { 1799 xfs_csn_t seq = log->l_cilp->xc_current_sequence; 1800 1801 trace_xfs_log_force(log->l_mp, seq, _RET_IP_); 1802 xlog_cil_push_now(log, seq, true); 1803 1804 /* 1805 * If the CIL is empty, make sure that any previous checkpoint that may 1806 * still be in an active iclog is pushed to stable storage. 1807 */ 1808 if (test_bit(XLOG_CIL_EMPTY, &log->l_cilp->xc_flags)) 1809 xfs_log_force(log->l_mp, 0); 1810 } 1811 1812 /* 1813 * Conditionally push the CIL based on the sequence passed in. 1814 * 1815 * We only need to push if we haven't already pushed the sequence number given. 1816 * Hence the only time we will trigger a push here is if the push sequence is 1817 * the same as the current context. 1818 * 1819 * We return the current commit lsn to allow the callers to determine if a 1820 * iclog flush is necessary following this call. 1821 */ 1822 xfs_lsn_t 1823 xlog_cil_force_seq( 1824 struct xlog *log, 1825 xfs_csn_t sequence) 1826 { 1827 struct xfs_cil *cil = log->l_cilp; 1828 struct xfs_cil_ctx *ctx; 1829 xfs_lsn_t commit_lsn = NULLCOMMITLSN; 1830 1831 ASSERT(sequence <= cil->xc_current_sequence); 1832 1833 if (!sequence) 1834 sequence = cil->xc_current_sequence; 1835 trace_xfs_log_force(log->l_mp, sequence, _RET_IP_); 1836 1837 /* 1838 * check to see if we need to force out the current context. 1839 * xlog_cil_push() handles racing pushes for the same sequence, 1840 * so no need to deal with it here. 1841 */ 1842 restart: 1843 xlog_cil_push_now(log, sequence, false); 1844 1845 /* 1846 * See if we can find a previous sequence still committing. 1847 * We need to wait for all previous sequence commits to complete 1848 * before allowing the force of push_seq to go ahead. Hence block 1849 * on commits for those as well. 1850 */ 1851 spin_lock(&cil->xc_push_lock); 1852 list_for_each_entry(ctx, &cil->xc_committing, committing) { 1853 /* 1854 * Avoid getting stuck in this loop because we were woken by the 1855 * shutdown, but then went back to sleep once already in the 1856 * shutdown state. 1857 */ 1858 if (xlog_is_shutdown(log)) 1859 goto out_shutdown; 1860 if (ctx->sequence > sequence) 1861 continue; 1862 if (!ctx->commit_lsn) { 1863 /* 1864 * It is still being pushed! Wait for the push to 1865 * complete, then start again from the beginning. 1866 */ 1867 XFS_STATS_INC(log->l_mp, xs_log_force_sleep); 1868 xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock); 1869 goto restart; 1870 } 1871 if (ctx->sequence != sequence) 1872 continue; 1873 /* found it! */ 1874 commit_lsn = ctx->commit_lsn; 1875 } 1876 1877 /* 1878 * The call to xlog_cil_push_now() executes the push in the background. 1879 * Hence by the time we have got here it our sequence may not have been 1880 * pushed yet. This is true if the current sequence still matches the 1881 * push sequence after the above wait loop and the CIL still contains 1882 * dirty objects. This is guaranteed by the push code first adding the 1883 * context to the committing list before emptying the CIL. 1884 * 1885 * Hence if we don't find the context in the committing list and the 1886 * current sequence number is unchanged then the CIL contents are 1887 * significant. If the CIL is empty, if means there was nothing to push 1888 * and that means there is nothing to wait for. If the CIL is not empty, 1889 * it means we haven't yet started the push, because if it had started 1890 * we would have found the context on the committing list. 1891 */ 1892 if (sequence == cil->xc_current_sequence && 1893 !test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) { 1894 spin_unlock(&cil->xc_push_lock); 1895 goto restart; 1896 } 1897 1898 spin_unlock(&cil->xc_push_lock); 1899 return commit_lsn; 1900 1901 /* 1902 * We detected a shutdown in progress. We need to trigger the log force 1903 * to pass through it's iclog state machine error handling, even though 1904 * we are already in a shutdown state. Hence we can't return 1905 * NULLCOMMITLSN here as that has special meaning to log forces (i.e. 1906 * LSN is already stable), so we return a zero LSN instead. 1907 */ 1908 out_shutdown: 1909 spin_unlock(&cil->xc_push_lock); 1910 return 0; 1911 } 1912 1913 /* 1914 * Perform initial CIL structure initialisation. 1915 */ 1916 int 1917 xlog_cil_init( 1918 struct xlog *log) 1919 { 1920 struct xfs_cil *cil; 1921 struct xfs_cil_ctx *ctx; 1922 struct xlog_cil_pcp *cilpcp; 1923 int cpu; 1924 1925 cil = kzalloc(sizeof(*cil), GFP_KERNEL | __GFP_RETRY_MAYFAIL); 1926 if (!cil) 1927 return -ENOMEM; 1928 /* 1929 * Limit the CIL pipeline depth to 4 concurrent works to bound the 1930 * concurrency the log spinlocks will be exposed to. 1931 */ 1932 cil->xc_push_wq = alloc_workqueue("xfs-cil/%s", 1933 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | WQ_UNBOUND), 1934 4, log->l_mp->m_super->s_id); 1935 if (!cil->xc_push_wq) 1936 goto out_destroy_cil; 1937 1938 cil->xc_log = log; 1939 cil->xc_pcp = alloc_percpu(struct xlog_cil_pcp); 1940 if (!cil->xc_pcp) 1941 goto out_destroy_wq; 1942 1943 for_each_possible_cpu(cpu) { 1944 cilpcp = per_cpu_ptr(cil->xc_pcp, cpu); 1945 INIT_LIST_HEAD(&cilpcp->busy_extents); 1946 INIT_LIST_HEAD(&cilpcp->log_items); 1947 } 1948 1949 INIT_LIST_HEAD(&cil->xc_committing); 1950 spin_lock_init(&cil->xc_push_lock); 1951 init_waitqueue_head(&cil->xc_push_wait); 1952 init_rwsem(&cil->xc_ctx_lock); 1953 init_waitqueue_head(&cil->xc_start_wait); 1954 init_waitqueue_head(&cil->xc_commit_wait); 1955 log->l_cilp = cil; 1956 1957 ctx = xlog_cil_ctx_alloc(); 1958 xlog_cil_ctx_switch(cil, ctx); 1959 return 0; 1960 1961 out_destroy_wq: 1962 destroy_workqueue(cil->xc_push_wq); 1963 out_destroy_cil: 1964 kfree(cil); 1965 return -ENOMEM; 1966 } 1967 1968 void 1969 xlog_cil_destroy( 1970 struct xlog *log) 1971 { 1972 struct xfs_cil *cil = log->l_cilp; 1973 1974 if (cil->xc_ctx) { 1975 if (cil->xc_ctx->ticket) 1976 xfs_log_ticket_put(cil->xc_ctx->ticket); 1977 kfree(cil->xc_ctx); 1978 } 1979 1980 ASSERT(test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)); 1981 free_percpu(cil->xc_pcp); 1982 destroy_workqueue(cil->xc_push_wq); 1983 kfree(cil); 1984 } 1985 1986