1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/pipe.c 4 * 5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/file.h> 10 #include <linux/poll.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/fs.h> 15 #include <linux/log2.h> 16 #include <linux/mount.h> 17 #include <linux/pseudo_fs.h> 18 #include <linux/magic.h> 19 #include <linux/pipe_fs_i.h> 20 #include <linux/uio.h> 21 #include <linux/highmem.h> 22 #include <linux/pagemap.h> 23 #include <linux/audit.h> 24 #include <linux/syscalls.h> 25 #include <linux/fcntl.h> 26 #include <linux/memcontrol.h> 27 #include <linux/watch_queue.h> 28 #include <linux/sysctl.h> 29 #include <linux/sort.h> 30 31 #include <linux/uaccess.h> 32 #include <asm/ioctls.h> 33 34 #include "internal.h" 35 36 /* 37 * New pipe buffers will be restricted to this size while the user is exceeding 38 * their pipe buffer quota. The general pipe use case needs at least two 39 * buffers: one for data yet to be read, and one for new data. If this is less 40 * than two, then a write to a non-empty pipe may block even if the pipe is not 41 * full. This can occur with GNU make jobserver or similar uses of pipes as 42 * semaphores: multiple processes may be waiting to write tokens back to the 43 * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/. 44 * 45 * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their 46 * own risk, namely: pipe writes to non-full pipes may block until the pipe is 47 * emptied. 48 */ 49 #define PIPE_MIN_DEF_BUFFERS 2 50 51 /* 52 * The max size that a non-root user is allowed to grow the pipe. Can 53 * be set by root in /proc/sys/fs/pipe-max-size 54 */ 55 static unsigned int pipe_max_size = 1048576; 56 57 /* Maximum allocatable pages per user. Hard limit is unset by default, soft 58 * matches default values. 59 */ 60 static unsigned long pipe_user_pages_hard; 61 static unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR; 62 63 /* 64 * We use head and tail indices that aren't masked off, except at the point of 65 * dereference, but rather they're allowed to wrap naturally. This means there 66 * isn't a dead spot in the buffer, but the ring has to be a power of two and 67 * <= 2^31. 68 * -- David Howells 2019-09-23. 69 * 70 * Reads with count = 0 should always return 0. 71 * -- Julian Bradfield 1999-06-07. 72 * 73 * FIFOs and Pipes now generate SIGIO for both readers and writers. 74 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16 75 * 76 * pipe_read & write cleanup 77 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09 78 */ 79 80 #ifdef CONFIG_PROVE_LOCKING 81 static int pipe_lock_cmp_fn(const struct lockdep_map *a, 82 const struct lockdep_map *b) 83 { 84 return cmp_int((unsigned long) a, (unsigned long) b); 85 } 86 #endif 87 88 void pipe_lock(struct pipe_inode_info *pipe) 89 { 90 if (pipe->files) 91 mutex_lock(&pipe->mutex); 92 } 93 EXPORT_SYMBOL(pipe_lock); 94 95 void pipe_unlock(struct pipe_inode_info *pipe) 96 { 97 if (pipe->files) 98 mutex_unlock(&pipe->mutex); 99 } 100 EXPORT_SYMBOL(pipe_unlock); 101 102 void pipe_double_lock(struct pipe_inode_info *pipe1, 103 struct pipe_inode_info *pipe2) 104 { 105 BUG_ON(pipe1 == pipe2); 106 107 if (pipe1 > pipe2) 108 swap(pipe1, pipe2); 109 110 pipe_lock(pipe1); 111 pipe_lock(pipe2); 112 } 113 114 static struct page *anon_pipe_get_page(struct pipe_inode_info *pipe) 115 { 116 for (int i = 0; i < ARRAY_SIZE(pipe->tmp_page); i++) { 117 if (pipe->tmp_page[i]) { 118 struct page *page = pipe->tmp_page[i]; 119 pipe->tmp_page[i] = NULL; 120 return page; 121 } 122 } 123 124 return alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT); 125 } 126 127 static void anon_pipe_put_page(struct pipe_inode_info *pipe, 128 struct page *page) 129 { 130 if (page_count(page) == 1) { 131 for (int i = 0; i < ARRAY_SIZE(pipe->tmp_page); i++) { 132 if (!pipe->tmp_page[i]) { 133 pipe->tmp_page[i] = page; 134 return; 135 } 136 } 137 } 138 139 put_page(page); 140 } 141 142 static void anon_pipe_buf_release(struct pipe_inode_info *pipe, 143 struct pipe_buffer *buf) 144 { 145 struct page *page = buf->page; 146 147 anon_pipe_put_page(pipe, page); 148 } 149 150 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe, 151 struct pipe_buffer *buf) 152 { 153 struct page *page = buf->page; 154 155 if (page_count(page) != 1) 156 return false; 157 memcg_kmem_uncharge_page(page, 0); 158 __SetPageLocked(page); 159 return true; 160 } 161 162 /** 163 * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer 164 * @pipe: the pipe that the buffer belongs to 165 * @buf: the buffer to attempt to steal 166 * 167 * Description: 168 * This function attempts to steal the &struct page attached to 169 * @buf. If successful, this function returns 0 and returns with 170 * the page locked. The caller may then reuse the page for whatever 171 * he wishes; the typical use is insertion into a different file 172 * page cache. 173 */ 174 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe, 175 struct pipe_buffer *buf) 176 { 177 struct page *page = buf->page; 178 179 /* 180 * A reference of one is golden, that means that the owner of this 181 * page is the only one holding a reference to it. lock the page 182 * and return OK. 183 */ 184 if (page_count(page) == 1) { 185 lock_page(page); 186 return true; 187 } 188 return false; 189 } 190 EXPORT_SYMBOL(generic_pipe_buf_try_steal); 191 192 /** 193 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer 194 * @pipe: the pipe that the buffer belongs to 195 * @buf: the buffer to get a reference to 196 * 197 * Description: 198 * This function grabs an extra reference to @buf. It's used in 199 * the tee() system call, when we duplicate the buffers in one 200 * pipe into another. 201 */ 202 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf) 203 { 204 return try_get_page(buf->page); 205 } 206 EXPORT_SYMBOL(generic_pipe_buf_get); 207 208 /** 209 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer 210 * @pipe: the pipe that the buffer belongs to 211 * @buf: the buffer to put a reference to 212 * 213 * Description: 214 * This function releases a reference to @buf. 215 */ 216 void generic_pipe_buf_release(struct pipe_inode_info *pipe, 217 struct pipe_buffer *buf) 218 { 219 put_page(buf->page); 220 } 221 EXPORT_SYMBOL(generic_pipe_buf_release); 222 223 static const struct pipe_buf_operations anon_pipe_buf_ops = { 224 .release = anon_pipe_buf_release, 225 .try_steal = anon_pipe_buf_try_steal, 226 .get = generic_pipe_buf_get, 227 }; 228 229 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */ 230 static inline bool pipe_readable(const struct pipe_inode_info *pipe) 231 { 232 union pipe_index idx = { .head_tail = READ_ONCE(pipe->head_tail) }; 233 unsigned int writers = READ_ONCE(pipe->writers); 234 235 return !pipe_empty(idx.head, idx.tail) || !writers; 236 } 237 238 static inline unsigned int pipe_update_tail(struct pipe_inode_info *pipe, 239 struct pipe_buffer *buf, 240 unsigned int tail) 241 { 242 pipe_buf_release(pipe, buf); 243 244 /* 245 * If the pipe has a watch_queue, we need additional protection 246 * by the spinlock because notifications get posted with only 247 * this spinlock, no mutex 248 */ 249 if (pipe_has_watch_queue(pipe)) { 250 spin_lock_irq(&pipe->rd_wait.lock); 251 #ifdef CONFIG_WATCH_QUEUE 252 if (buf->flags & PIPE_BUF_FLAG_LOSS) 253 pipe->note_loss = true; 254 #endif 255 pipe->tail = ++tail; 256 spin_unlock_irq(&pipe->rd_wait.lock); 257 return tail; 258 } 259 260 /* 261 * Without a watch_queue, we can simply increment the tail 262 * without the spinlock - the mutex is enough. 263 */ 264 pipe->tail = ++tail; 265 return tail; 266 } 267 268 static ssize_t 269 anon_pipe_read(struct kiocb *iocb, struct iov_iter *to) 270 { 271 size_t total_len = iov_iter_count(to); 272 struct file *filp = iocb->ki_filp; 273 struct pipe_inode_info *pipe = filp->private_data; 274 bool wake_writer = false, wake_next_reader = false; 275 ssize_t ret; 276 277 /* Null read succeeds. */ 278 if (unlikely(total_len == 0)) 279 return 0; 280 281 ret = 0; 282 mutex_lock(&pipe->mutex); 283 284 /* 285 * We only wake up writers if the pipe was full when we started reading 286 * and it is no longer full after reading to avoid unnecessary wakeups. 287 * 288 * But when we do wake up writers, we do so using a sync wakeup 289 * (WF_SYNC), because we want them to get going and generate more 290 * data for us. 291 */ 292 for (;;) { 293 /* Read ->head with a barrier vs post_one_notification() */ 294 unsigned int head = smp_load_acquire(&pipe->head); 295 unsigned int tail = pipe->tail; 296 297 #ifdef CONFIG_WATCH_QUEUE 298 if (pipe->note_loss) { 299 struct watch_notification n; 300 301 if (total_len < 8) { 302 if (ret == 0) 303 ret = -ENOBUFS; 304 break; 305 } 306 307 n.type = WATCH_TYPE_META; 308 n.subtype = WATCH_META_LOSS_NOTIFICATION; 309 n.info = watch_sizeof(n); 310 if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) { 311 if (ret == 0) 312 ret = -EFAULT; 313 break; 314 } 315 ret += sizeof(n); 316 total_len -= sizeof(n); 317 pipe->note_loss = false; 318 } 319 #endif 320 321 if (!pipe_empty(head, tail)) { 322 struct pipe_buffer *buf = pipe_buf(pipe, tail); 323 size_t chars = buf->len; 324 size_t written; 325 int error; 326 327 if (chars > total_len) { 328 if (buf->flags & PIPE_BUF_FLAG_WHOLE) { 329 if (ret == 0) 330 ret = -ENOBUFS; 331 break; 332 } 333 chars = total_len; 334 } 335 336 error = pipe_buf_confirm(pipe, buf); 337 if (error) { 338 if (!ret) 339 ret = error; 340 break; 341 } 342 343 written = copy_page_to_iter(buf->page, buf->offset, chars, to); 344 if (unlikely(written < chars)) { 345 if (!ret) 346 ret = -EFAULT; 347 break; 348 } 349 ret += chars; 350 buf->offset += chars; 351 buf->len -= chars; 352 353 /* Was it a packet buffer? Clean up and exit */ 354 if (buf->flags & PIPE_BUF_FLAG_PACKET) { 355 total_len = chars; 356 buf->len = 0; 357 } 358 359 if (!buf->len) { 360 wake_writer |= pipe_full(head, tail, pipe->max_usage); 361 tail = pipe_update_tail(pipe, buf, tail); 362 } 363 total_len -= chars; 364 if (!total_len) 365 break; /* common path: read succeeded */ 366 if (!pipe_empty(head, tail)) /* More to do? */ 367 continue; 368 } 369 370 if (!pipe->writers) 371 break; 372 if (ret) 373 break; 374 if ((filp->f_flags & O_NONBLOCK) || 375 (iocb->ki_flags & IOCB_NOWAIT)) { 376 ret = -EAGAIN; 377 break; 378 } 379 mutex_unlock(&pipe->mutex); 380 /* 381 * We only get here if we didn't actually read anything. 382 * 383 * But because we didn't read anything, at this point we can 384 * just return directly with -ERESTARTSYS if we're interrupted, 385 * since we've done any required wakeups and there's no need 386 * to mark anything accessed. And we've dropped the lock. 387 */ 388 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0) 389 return -ERESTARTSYS; 390 391 wake_next_reader = true; 392 mutex_lock(&pipe->mutex); 393 } 394 if (pipe_is_empty(pipe)) 395 wake_next_reader = false; 396 mutex_unlock(&pipe->mutex); 397 398 if (wake_writer) 399 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); 400 if (wake_next_reader) 401 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 402 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 403 return ret; 404 } 405 406 static ssize_t 407 fifo_pipe_read(struct kiocb *iocb, struct iov_iter *to) 408 { 409 int ret = anon_pipe_read(iocb, to); 410 if (ret > 0) 411 file_accessed(iocb->ki_filp); 412 return ret; 413 } 414 415 static inline int is_packetized(struct file *file) 416 { 417 return (file->f_flags & O_DIRECT) != 0; 418 } 419 420 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */ 421 static inline bool pipe_writable(const struct pipe_inode_info *pipe) 422 { 423 union pipe_index idx = { .head_tail = READ_ONCE(pipe->head_tail) }; 424 unsigned int max_usage = READ_ONCE(pipe->max_usage); 425 426 return !pipe_full(idx.head, idx.tail, max_usage) || 427 !READ_ONCE(pipe->readers); 428 } 429 430 static ssize_t 431 anon_pipe_write(struct kiocb *iocb, struct iov_iter *from) 432 { 433 struct file *filp = iocb->ki_filp; 434 struct pipe_inode_info *pipe = filp->private_data; 435 unsigned int head; 436 ssize_t ret = 0; 437 size_t total_len = iov_iter_count(from); 438 ssize_t chars; 439 bool was_empty = false; 440 bool wake_next_writer = false; 441 442 /* 443 * Reject writing to watch queue pipes before the point where we lock 444 * the pipe. 445 * Otherwise, lockdep would be unhappy if the caller already has another 446 * pipe locked. 447 * If we had to support locking a normal pipe and a notification pipe at 448 * the same time, we could set up lockdep annotations for that, but 449 * since we don't actually need that, it's simpler to just bail here. 450 */ 451 if (pipe_has_watch_queue(pipe)) 452 return -EXDEV; 453 454 /* Null write succeeds. */ 455 if (unlikely(total_len == 0)) 456 return 0; 457 458 mutex_lock(&pipe->mutex); 459 460 if (!pipe->readers) { 461 send_sig(SIGPIPE, current, 0); 462 ret = -EPIPE; 463 goto out; 464 } 465 466 /* 467 * If it wasn't empty we try to merge new data into 468 * the last buffer. 469 * 470 * That naturally merges small writes, but it also 471 * page-aligns the rest of the writes for large writes 472 * spanning multiple pages. 473 */ 474 head = pipe->head; 475 was_empty = pipe_empty(head, pipe->tail); 476 chars = total_len & (PAGE_SIZE-1); 477 if (chars && !was_empty) { 478 struct pipe_buffer *buf = pipe_buf(pipe, head - 1); 479 int offset = buf->offset + buf->len; 480 481 if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) && 482 offset + chars <= PAGE_SIZE) { 483 ret = pipe_buf_confirm(pipe, buf); 484 if (ret) 485 goto out; 486 487 ret = copy_page_from_iter(buf->page, offset, chars, from); 488 if (unlikely(ret < chars)) { 489 ret = -EFAULT; 490 goto out; 491 } 492 493 buf->len += ret; 494 if (!iov_iter_count(from)) 495 goto out; 496 } 497 } 498 499 for (;;) { 500 if (!pipe->readers) { 501 send_sig(SIGPIPE, current, 0); 502 if (!ret) 503 ret = -EPIPE; 504 break; 505 } 506 507 head = pipe->head; 508 if (!pipe_full(head, pipe->tail, pipe->max_usage)) { 509 struct pipe_buffer *buf; 510 struct page *page; 511 int copied; 512 513 page = anon_pipe_get_page(pipe); 514 if (unlikely(!page)) { 515 if (!ret) 516 ret = -ENOMEM; 517 break; 518 } 519 520 copied = copy_page_from_iter(page, 0, PAGE_SIZE, from); 521 if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) { 522 anon_pipe_put_page(pipe, page); 523 if (!ret) 524 ret = -EFAULT; 525 break; 526 } 527 528 pipe->head = head + 1; 529 /* Insert it into the buffer array */ 530 buf = pipe_buf(pipe, head); 531 buf->page = page; 532 buf->ops = &anon_pipe_buf_ops; 533 buf->offset = 0; 534 if (is_packetized(filp)) 535 buf->flags = PIPE_BUF_FLAG_PACKET; 536 else 537 buf->flags = PIPE_BUF_FLAG_CAN_MERGE; 538 539 buf->len = copied; 540 ret += copied; 541 542 if (!iov_iter_count(from)) 543 break; 544 545 continue; 546 } 547 548 /* Wait for buffer space to become available. */ 549 if ((filp->f_flags & O_NONBLOCK) || 550 (iocb->ki_flags & IOCB_NOWAIT)) { 551 if (!ret) 552 ret = -EAGAIN; 553 break; 554 } 555 if (signal_pending(current)) { 556 if (!ret) 557 ret = -ERESTARTSYS; 558 break; 559 } 560 561 /* 562 * We're going to release the pipe lock and wait for more 563 * space. We wake up any readers if necessary, and then 564 * after waiting we need to re-check whether the pipe 565 * become empty while we dropped the lock. 566 */ 567 mutex_unlock(&pipe->mutex); 568 if (was_empty) 569 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 570 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 571 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe)); 572 mutex_lock(&pipe->mutex); 573 was_empty = pipe_is_empty(pipe); 574 wake_next_writer = true; 575 } 576 out: 577 if (pipe_is_full(pipe)) 578 wake_next_writer = false; 579 mutex_unlock(&pipe->mutex); 580 581 /* 582 * If we do do a wakeup event, we do a 'sync' wakeup, because we 583 * want the reader to start processing things asap, rather than 584 * leave the data pending. 585 * 586 * This is particularly important for small writes, because of 587 * how (for example) the GNU make jobserver uses small writes to 588 * wake up pending jobs 589 * 590 * Epoll nonsensically wants a wakeup whether the pipe 591 * was already empty or not. 592 */ 593 if (was_empty || pipe->poll_usage) 594 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 595 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 596 if (wake_next_writer) 597 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); 598 return ret; 599 } 600 601 static ssize_t 602 fifo_pipe_write(struct kiocb *iocb, struct iov_iter *from) 603 { 604 int ret = anon_pipe_write(iocb, from); 605 if (ret > 0) { 606 struct file *filp = iocb->ki_filp; 607 if (sb_start_write_trylock(file_inode(filp)->i_sb)) { 608 int err = file_update_time(filp); 609 if (err) 610 ret = err; 611 sb_end_write(file_inode(filp)->i_sb); 612 } 613 } 614 return ret; 615 } 616 617 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 618 { 619 struct pipe_inode_info *pipe = filp->private_data; 620 unsigned int count, head, tail; 621 622 switch (cmd) { 623 case FIONREAD: 624 mutex_lock(&pipe->mutex); 625 count = 0; 626 head = pipe->head; 627 tail = pipe->tail; 628 629 while (!pipe_empty(head, tail)) { 630 count += pipe_buf(pipe, tail)->len; 631 tail++; 632 } 633 mutex_unlock(&pipe->mutex); 634 635 return put_user(count, (int __user *)arg); 636 637 #ifdef CONFIG_WATCH_QUEUE 638 case IOC_WATCH_QUEUE_SET_SIZE: { 639 int ret; 640 mutex_lock(&pipe->mutex); 641 ret = watch_queue_set_size(pipe, arg); 642 mutex_unlock(&pipe->mutex); 643 return ret; 644 } 645 646 case IOC_WATCH_QUEUE_SET_FILTER: 647 return watch_queue_set_filter( 648 pipe, (struct watch_notification_filter __user *)arg); 649 #endif 650 651 default: 652 return -ENOIOCTLCMD; 653 } 654 } 655 656 /* No kernel lock held - fine */ 657 static __poll_t 658 pipe_poll(struct file *filp, poll_table *wait) 659 { 660 __poll_t mask; 661 struct pipe_inode_info *pipe = filp->private_data; 662 union pipe_index idx; 663 664 /* Epoll has some historical nasty semantics, this enables them */ 665 WRITE_ONCE(pipe->poll_usage, true); 666 667 /* 668 * Reading pipe state only -- no need for acquiring the semaphore. 669 * 670 * But because this is racy, the code has to add the 671 * entry to the poll table _first_ .. 672 */ 673 if (filp->f_mode & FMODE_READ) 674 poll_wait(filp, &pipe->rd_wait, wait); 675 if (filp->f_mode & FMODE_WRITE) 676 poll_wait(filp, &pipe->wr_wait, wait); 677 678 /* 679 * .. and only then can you do the racy tests. That way, 680 * if something changes and you got it wrong, the poll 681 * table entry will wake you up and fix it. 682 */ 683 idx.head_tail = READ_ONCE(pipe->head_tail); 684 685 mask = 0; 686 if (filp->f_mode & FMODE_READ) { 687 if (!pipe_empty(idx.head, idx.tail)) 688 mask |= EPOLLIN | EPOLLRDNORM; 689 if (!pipe->writers && filp->f_pipe != pipe->w_counter) 690 mask |= EPOLLHUP; 691 } 692 693 if (filp->f_mode & FMODE_WRITE) { 694 if (!pipe_full(idx.head, idx.tail, pipe->max_usage)) 695 mask |= EPOLLOUT | EPOLLWRNORM; 696 /* 697 * Most Unices do not set EPOLLERR for FIFOs but on Linux they 698 * behave exactly like pipes for poll(). 699 */ 700 if (!pipe->readers) 701 mask |= EPOLLERR; 702 } 703 704 return mask; 705 } 706 707 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe) 708 { 709 int kill = 0; 710 711 spin_lock(&inode->i_lock); 712 if (!--pipe->files) { 713 inode->i_pipe = NULL; 714 kill = 1; 715 } 716 spin_unlock(&inode->i_lock); 717 718 if (kill) 719 free_pipe_info(pipe); 720 } 721 722 static int 723 pipe_release(struct inode *inode, struct file *file) 724 { 725 struct pipe_inode_info *pipe = file->private_data; 726 727 mutex_lock(&pipe->mutex); 728 if (file->f_mode & FMODE_READ) 729 pipe->readers--; 730 if (file->f_mode & FMODE_WRITE) 731 pipe->writers--; 732 733 /* Was that the last reader or writer, but not the other side? */ 734 if (!pipe->readers != !pipe->writers) { 735 wake_up_interruptible_all(&pipe->rd_wait); 736 wake_up_interruptible_all(&pipe->wr_wait); 737 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 738 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 739 } 740 mutex_unlock(&pipe->mutex); 741 742 put_pipe_info(inode, pipe); 743 return 0; 744 } 745 746 static int 747 pipe_fasync(int fd, struct file *filp, int on) 748 { 749 struct pipe_inode_info *pipe = filp->private_data; 750 int retval = 0; 751 752 mutex_lock(&pipe->mutex); 753 if (filp->f_mode & FMODE_READ) 754 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers); 755 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) { 756 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers); 757 if (retval < 0 && (filp->f_mode & FMODE_READ)) 758 /* this can happen only if on == T */ 759 fasync_helper(-1, filp, 0, &pipe->fasync_readers); 760 } 761 mutex_unlock(&pipe->mutex); 762 return retval; 763 } 764 765 unsigned long account_pipe_buffers(struct user_struct *user, 766 unsigned long old, unsigned long new) 767 { 768 return atomic_long_add_return(new - old, &user->pipe_bufs); 769 } 770 771 bool too_many_pipe_buffers_soft(unsigned long user_bufs) 772 { 773 unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft); 774 775 return soft_limit && user_bufs > soft_limit; 776 } 777 778 bool too_many_pipe_buffers_hard(unsigned long user_bufs) 779 { 780 unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard); 781 782 return hard_limit && user_bufs > hard_limit; 783 } 784 785 bool pipe_is_unprivileged_user(void) 786 { 787 return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN); 788 } 789 790 struct pipe_inode_info *alloc_pipe_info(void) 791 { 792 struct pipe_inode_info *pipe; 793 unsigned long pipe_bufs = PIPE_DEF_BUFFERS; 794 struct user_struct *user = get_current_user(); 795 unsigned long user_bufs; 796 unsigned int max_size = READ_ONCE(pipe_max_size); 797 798 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT); 799 if (pipe == NULL) 800 goto out_free_uid; 801 802 if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE)) 803 pipe_bufs = max_size >> PAGE_SHIFT; 804 805 user_bufs = account_pipe_buffers(user, 0, pipe_bufs); 806 807 if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) { 808 user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS); 809 pipe_bufs = PIPE_MIN_DEF_BUFFERS; 810 } 811 812 if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user()) 813 goto out_revert_acct; 814 815 pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer), 816 GFP_KERNEL_ACCOUNT); 817 818 if (pipe->bufs) { 819 init_waitqueue_head(&pipe->rd_wait); 820 init_waitqueue_head(&pipe->wr_wait); 821 pipe->r_counter = pipe->w_counter = 1; 822 pipe->max_usage = pipe_bufs; 823 pipe->ring_size = pipe_bufs; 824 pipe->nr_accounted = pipe_bufs; 825 pipe->user = user; 826 mutex_init(&pipe->mutex); 827 lock_set_cmp_fn(&pipe->mutex, pipe_lock_cmp_fn, NULL); 828 return pipe; 829 } 830 831 out_revert_acct: 832 (void) account_pipe_buffers(user, pipe_bufs, 0); 833 kfree(pipe); 834 out_free_uid: 835 free_uid(user); 836 return NULL; 837 } 838 839 void free_pipe_info(struct pipe_inode_info *pipe) 840 { 841 unsigned int i; 842 843 #ifdef CONFIG_WATCH_QUEUE 844 if (pipe->watch_queue) 845 watch_queue_clear(pipe->watch_queue); 846 #endif 847 848 (void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0); 849 free_uid(pipe->user); 850 for (i = 0; i < pipe->ring_size; i++) { 851 struct pipe_buffer *buf = pipe->bufs + i; 852 if (buf->ops) 853 pipe_buf_release(pipe, buf); 854 } 855 #ifdef CONFIG_WATCH_QUEUE 856 if (pipe->watch_queue) 857 put_watch_queue(pipe->watch_queue); 858 #endif 859 for (i = 0; i < ARRAY_SIZE(pipe->tmp_page); i++) { 860 if (pipe->tmp_page[i]) 861 __free_page(pipe->tmp_page[i]); 862 } 863 kfree(pipe->bufs); 864 kfree(pipe); 865 } 866 867 static struct vfsmount *pipe_mnt __ro_after_init; 868 869 /* 870 * pipefs_dname() is called from d_path(). 871 */ 872 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen) 873 { 874 return dynamic_dname(buffer, buflen, "pipe:[%lu]", 875 d_inode(dentry)->i_ino); 876 } 877 878 static const struct dentry_operations pipefs_dentry_operations = { 879 .d_dname = pipefs_dname, 880 }; 881 882 static const struct file_operations pipeanon_fops; 883 884 static struct inode * get_pipe_inode(void) 885 { 886 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb); 887 struct pipe_inode_info *pipe; 888 889 if (!inode) 890 goto fail_inode; 891 892 inode->i_ino = get_next_ino(); 893 894 pipe = alloc_pipe_info(); 895 if (!pipe) 896 goto fail_iput; 897 898 inode->i_pipe = pipe; 899 pipe->files = 2; 900 pipe->readers = pipe->writers = 1; 901 inode->i_fop = &pipeanon_fops; 902 903 /* 904 * Mark the inode dirty from the very beginning, 905 * that way it will never be moved to the dirty 906 * list because "mark_inode_dirty()" will think 907 * that it already _is_ on the dirty list. 908 */ 909 inode->i_state = I_DIRTY; 910 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR; 911 inode->i_uid = current_fsuid(); 912 inode->i_gid = current_fsgid(); 913 simple_inode_init_ts(inode); 914 915 return inode; 916 917 fail_iput: 918 iput(inode); 919 920 fail_inode: 921 return NULL; 922 } 923 924 int create_pipe_files(struct file **res, int flags) 925 { 926 struct inode *inode = get_pipe_inode(); 927 struct file *f; 928 int error; 929 930 if (!inode) 931 return -ENFILE; 932 933 if (flags & O_NOTIFICATION_PIPE) { 934 error = watch_queue_init(inode->i_pipe); 935 if (error) { 936 free_pipe_info(inode->i_pipe); 937 iput(inode); 938 return error; 939 } 940 } 941 942 f = alloc_file_pseudo(inode, pipe_mnt, "", 943 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)), 944 &pipeanon_fops); 945 if (IS_ERR(f)) { 946 free_pipe_info(inode->i_pipe); 947 iput(inode); 948 return PTR_ERR(f); 949 } 950 951 f->private_data = inode->i_pipe; 952 f->f_pipe = 0; 953 954 res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK), 955 &pipeanon_fops); 956 if (IS_ERR(res[0])) { 957 put_pipe_info(inode, inode->i_pipe); 958 fput(f); 959 return PTR_ERR(res[0]); 960 } 961 res[0]->private_data = inode->i_pipe; 962 res[0]->f_pipe = 0; 963 res[1] = f; 964 stream_open(inode, res[0]); 965 stream_open(inode, res[1]); 966 /* 967 * Disable permission and pre-content events, but enable legacy 968 * inotify events for legacy users. 969 */ 970 file_set_fsnotify_mode(res[0], FMODE_NONOTIFY_PERM); 971 file_set_fsnotify_mode(res[1], FMODE_NONOTIFY_PERM); 972 return 0; 973 } 974 975 static int __do_pipe_flags(int *fd, struct file **files, int flags) 976 { 977 int error; 978 int fdw, fdr; 979 980 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE)) 981 return -EINVAL; 982 983 error = create_pipe_files(files, flags); 984 if (error) 985 return error; 986 987 error = get_unused_fd_flags(flags); 988 if (error < 0) 989 goto err_read_pipe; 990 fdr = error; 991 992 error = get_unused_fd_flags(flags); 993 if (error < 0) 994 goto err_fdr; 995 fdw = error; 996 997 audit_fd_pair(fdr, fdw); 998 fd[0] = fdr; 999 fd[1] = fdw; 1000 /* pipe groks IOCB_NOWAIT */ 1001 files[0]->f_mode |= FMODE_NOWAIT; 1002 files[1]->f_mode |= FMODE_NOWAIT; 1003 return 0; 1004 1005 err_fdr: 1006 put_unused_fd(fdr); 1007 err_read_pipe: 1008 fput(files[0]); 1009 fput(files[1]); 1010 return error; 1011 } 1012 1013 int do_pipe_flags(int *fd, int flags) 1014 { 1015 struct file *files[2]; 1016 int error = __do_pipe_flags(fd, files, flags); 1017 if (!error) { 1018 fd_install(fd[0], files[0]); 1019 fd_install(fd[1], files[1]); 1020 } 1021 return error; 1022 } 1023 1024 /* 1025 * sys_pipe() is the normal C calling standard for creating 1026 * a pipe. It's not the way Unix traditionally does this, though. 1027 */ 1028 static int do_pipe2(int __user *fildes, int flags) 1029 { 1030 struct file *files[2]; 1031 int fd[2]; 1032 int error; 1033 1034 error = __do_pipe_flags(fd, files, flags); 1035 if (!error) { 1036 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) { 1037 fput(files[0]); 1038 fput(files[1]); 1039 put_unused_fd(fd[0]); 1040 put_unused_fd(fd[1]); 1041 error = -EFAULT; 1042 } else { 1043 fd_install(fd[0], files[0]); 1044 fd_install(fd[1], files[1]); 1045 } 1046 } 1047 return error; 1048 } 1049 1050 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags) 1051 { 1052 return do_pipe2(fildes, flags); 1053 } 1054 1055 SYSCALL_DEFINE1(pipe, int __user *, fildes) 1056 { 1057 return do_pipe2(fildes, 0); 1058 } 1059 1060 /* 1061 * This is the stupid "wait for pipe to be readable or writable" 1062 * model. 1063 * 1064 * See pipe_read/write() for the proper kind of exclusive wait, 1065 * but that requires that we wake up any other readers/writers 1066 * if we then do not end up reading everything (ie the whole 1067 * "wake_next_reader/writer" logic in pipe_read/write()). 1068 */ 1069 void pipe_wait_readable(struct pipe_inode_info *pipe) 1070 { 1071 pipe_unlock(pipe); 1072 wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe)); 1073 pipe_lock(pipe); 1074 } 1075 1076 void pipe_wait_writable(struct pipe_inode_info *pipe) 1077 { 1078 pipe_unlock(pipe); 1079 wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe)); 1080 pipe_lock(pipe); 1081 } 1082 1083 /* 1084 * This depends on both the wait (here) and the wakeup (wake_up_partner) 1085 * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot 1086 * race with the count check and waitqueue prep. 1087 * 1088 * Normally in order to avoid races, you'd do the prepare_to_wait() first, 1089 * then check the condition you're waiting for, and only then sleep. But 1090 * because of the pipe lock, we can check the condition before being on 1091 * the wait queue. 1092 * 1093 * We use the 'rd_wait' waitqueue for pipe partner waiting. 1094 */ 1095 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt) 1096 { 1097 DEFINE_WAIT(rdwait); 1098 int cur = *cnt; 1099 1100 while (cur == *cnt) { 1101 prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE); 1102 pipe_unlock(pipe); 1103 schedule(); 1104 finish_wait(&pipe->rd_wait, &rdwait); 1105 pipe_lock(pipe); 1106 if (signal_pending(current)) 1107 break; 1108 } 1109 return cur == *cnt ? -ERESTARTSYS : 0; 1110 } 1111 1112 static void wake_up_partner(struct pipe_inode_info *pipe) 1113 { 1114 wake_up_interruptible_all(&pipe->rd_wait); 1115 } 1116 1117 static int fifo_open(struct inode *inode, struct file *filp) 1118 { 1119 bool is_pipe = inode->i_fop == &pipeanon_fops; 1120 struct pipe_inode_info *pipe; 1121 int ret; 1122 1123 filp->f_pipe = 0; 1124 1125 spin_lock(&inode->i_lock); 1126 if (inode->i_pipe) { 1127 pipe = inode->i_pipe; 1128 pipe->files++; 1129 spin_unlock(&inode->i_lock); 1130 } else { 1131 spin_unlock(&inode->i_lock); 1132 pipe = alloc_pipe_info(); 1133 if (!pipe) 1134 return -ENOMEM; 1135 pipe->files = 1; 1136 spin_lock(&inode->i_lock); 1137 if (unlikely(inode->i_pipe)) { 1138 inode->i_pipe->files++; 1139 spin_unlock(&inode->i_lock); 1140 free_pipe_info(pipe); 1141 pipe = inode->i_pipe; 1142 } else { 1143 inode->i_pipe = pipe; 1144 spin_unlock(&inode->i_lock); 1145 } 1146 } 1147 filp->private_data = pipe; 1148 /* OK, we have a pipe and it's pinned down */ 1149 1150 mutex_lock(&pipe->mutex); 1151 1152 /* We can only do regular read/write on fifos */ 1153 stream_open(inode, filp); 1154 1155 switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) { 1156 case FMODE_READ: 1157 /* 1158 * O_RDONLY 1159 * POSIX.1 says that O_NONBLOCK means return with the FIFO 1160 * opened, even when there is no process writing the FIFO. 1161 */ 1162 pipe->r_counter++; 1163 if (pipe->readers++ == 0) 1164 wake_up_partner(pipe); 1165 1166 if (!is_pipe && !pipe->writers) { 1167 if ((filp->f_flags & O_NONBLOCK)) { 1168 /* suppress EPOLLHUP until we have 1169 * seen a writer */ 1170 filp->f_pipe = pipe->w_counter; 1171 } else { 1172 if (wait_for_partner(pipe, &pipe->w_counter)) 1173 goto err_rd; 1174 } 1175 } 1176 break; 1177 1178 case FMODE_WRITE: 1179 /* 1180 * O_WRONLY 1181 * POSIX.1 says that O_NONBLOCK means return -1 with 1182 * errno=ENXIO when there is no process reading the FIFO. 1183 */ 1184 ret = -ENXIO; 1185 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers) 1186 goto err; 1187 1188 pipe->w_counter++; 1189 if (!pipe->writers++) 1190 wake_up_partner(pipe); 1191 1192 if (!is_pipe && !pipe->readers) { 1193 if (wait_for_partner(pipe, &pipe->r_counter)) 1194 goto err_wr; 1195 } 1196 break; 1197 1198 case FMODE_READ | FMODE_WRITE: 1199 /* 1200 * O_RDWR 1201 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set. 1202 * This implementation will NEVER block on a O_RDWR open, since 1203 * the process can at least talk to itself. 1204 */ 1205 1206 pipe->readers++; 1207 pipe->writers++; 1208 pipe->r_counter++; 1209 pipe->w_counter++; 1210 if (pipe->readers == 1 || pipe->writers == 1) 1211 wake_up_partner(pipe); 1212 break; 1213 1214 default: 1215 ret = -EINVAL; 1216 goto err; 1217 } 1218 1219 /* Ok! */ 1220 mutex_unlock(&pipe->mutex); 1221 return 0; 1222 1223 err_rd: 1224 if (!--pipe->readers) 1225 wake_up_interruptible(&pipe->wr_wait); 1226 ret = -ERESTARTSYS; 1227 goto err; 1228 1229 err_wr: 1230 if (!--pipe->writers) 1231 wake_up_interruptible_all(&pipe->rd_wait); 1232 ret = -ERESTARTSYS; 1233 goto err; 1234 1235 err: 1236 mutex_unlock(&pipe->mutex); 1237 1238 put_pipe_info(inode, pipe); 1239 return ret; 1240 } 1241 1242 const struct file_operations pipefifo_fops = { 1243 .open = fifo_open, 1244 .read_iter = fifo_pipe_read, 1245 .write_iter = fifo_pipe_write, 1246 .poll = pipe_poll, 1247 .unlocked_ioctl = pipe_ioctl, 1248 .release = pipe_release, 1249 .fasync = pipe_fasync, 1250 .splice_write = iter_file_splice_write, 1251 }; 1252 1253 static const struct file_operations pipeanon_fops = { 1254 .open = fifo_open, 1255 .read_iter = anon_pipe_read, 1256 .write_iter = anon_pipe_write, 1257 .poll = pipe_poll, 1258 .unlocked_ioctl = pipe_ioctl, 1259 .release = pipe_release, 1260 .fasync = pipe_fasync, 1261 .splice_write = iter_file_splice_write, 1262 }; 1263 1264 /* 1265 * Currently we rely on the pipe array holding a power-of-2 number 1266 * of pages. Returns 0 on error. 1267 */ 1268 unsigned int round_pipe_size(unsigned int size) 1269 { 1270 if (size > (1U << 31)) 1271 return 0; 1272 1273 /* Minimum pipe size, as required by POSIX */ 1274 if (size < PAGE_SIZE) 1275 return PAGE_SIZE; 1276 1277 return roundup_pow_of_two(size); 1278 } 1279 1280 /* 1281 * Resize the pipe ring to a number of slots. 1282 * 1283 * Note the pipe can be reduced in capacity, but only if the current 1284 * occupancy doesn't exceed nr_slots; if it does, EBUSY will be 1285 * returned instead. 1286 */ 1287 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots) 1288 { 1289 struct pipe_buffer *bufs; 1290 unsigned int head, tail, mask, n; 1291 1292 /* nr_slots larger than limits of pipe->{head,tail} */ 1293 if (unlikely(nr_slots > (pipe_index_t)-1u)) 1294 return -EINVAL; 1295 1296 bufs = kcalloc(nr_slots, sizeof(*bufs), 1297 GFP_KERNEL_ACCOUNT | __GFP_NOWARN); 1298 if (unlikely(!bufs)) 1299 return -ENOMEM; 1300 1301 spin_lock_irq(&pipe->rd_wait.lock); 1302 mask = pipe->ring_size - 1; 1303 head = pipe->head; 1304 tail = pipe->tail; 1305 1306 n = pipe_occupancy(head, tail); 1307 if (nr_slots < n) { 1308 spin_unlock_irq(&pipe->rd_wait.lock); 1309 kfree(bufs); 1310 return -EBUSY; 1311 } 1312 1313 /* 1314 * The pipe array wraps around, so just start the new one at zero 1315 * and adjust the indices. 1316 */ 1317 if (n > 0) { 1318 unsigned int h = head & mask; 1319 unsigned int t = tail & mask; 1320 if (h > t) { 1321 memcpy(bufs, pipe->bufs + t, 1322 n * sizeof(struct pipe_buffer)); 1323 } else { 1324 unsigned int tsize = pipe->ring_size - t; 1325 if (h > 0) 1326 memcpy(bufs + tsize, pipe->bufs, 1327 h * sizeof(struct pipe_buffer)); 1328 memcpy(bufs, pipe->bufs + t, 1329 tsize * sizeof(struct pipe_buffer)); 1330 } 1331 } 1332 1333 head = n; 1334 tail = 0; 1335 1336 kfree(pipe->bufs); 1337 pipe->bufs = bufs; 1338 pipe->ring_size = nr_slots; 1339 if (pipe->max_usage > nr_slots) 1340 pipe->max_usage = nr_slots; 1341 pipe->tail = tail; 1342 pipe->head = head; 1343 1344 if (!pipe_has_watch_queue(pipe)) { 1345 pipe->max_usage = nr_slots; 1346 pipe->nr_accounted = nr_slots; 1347 } 1348 1349 spin_unlock_irq(&pipe->rd_wait.lock); 1350 1351 /* This might have made more room for writers */ 1352 wake_up_interruptible(&pipe->wr_wait); 1353 return 0; 1354 } 1355 1356 /* 1357 * Allocate a new array of pipe buffers and copy the info over. Returns the 1358 * pipe size if successful, or return -ERROR on error. 1359 */ 1360 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned int arg) 1361 { 1362 unsigned long user_bufs; 1363 unsigned int nr_slots, size; 1364 long ret = 0; 1365 1366 if (pipe_has_watch_queue(pipe)) 1367 return -EBUSY; 1368 1369 size = round_pipe_size(arg); 1370 nr_slots = size >> PAGE_SHIFT; 1371 1372 if (!nr_slots) 1373 return -EINVAL; 1374 1375 /* 1376 * If trying to increase the pipe capacity, check that an 1377 * unprivileged user is not trying to exceed various limits 1378 * (soft limit check here, hard limit check just below). 1379 * Decreasing the pipe capacity is always permitted, even 1380 * if the user is currently over a limit. 1381 */ 1382 if (nr_slots > pipe->max_usage && 1383 size > pipe_max_size && !capable(CAP_SYS_RESOURCE)) 1384 return -EPERM; 1385 1386 user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots); 1387 1388 if (nr_slots > pipe->max_usage && 1389 (too_many_pipe_buffers_hard(user_bufs) || 1390 too_many_pipe_buffers_soft(user_bufs)) && 1391 pipe_is_unprivileged_user()) { 1392 ret = -EPERM; 1393 goto out_revert_acct; 1394 } 1395 1396 ret = pipe_resize_ring(pipe, nr_slots); 1397 if (ret < 0) 1398 goto out_revert_acct; 1399 1400 return pipe->max_usage * PAGE_SIZE; 1401 1402 out_revert_acct: 1403 (void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted); 1404 return ret; 1405 } 1406 1407 /* 1408 * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is 1409 * not enough to verify that this is a pipe. 1410 */ 1411 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice) 1412 { 1413 struct pipe_inode_info *pipe = file->private_data; 1414 1415 if (!pipe) 1416 return NULL; 1417 if (file->f_op != &pipefifo_fops && file->f_op != &pipeanon_fops) 1418 return NULL; 1419 if (for_splice && pipe_has_watch_queue(pipe)) 1420 return NULL; 1421 return pipe; 1422 } 1423 1424 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned int arg) 1425 { 1426 struct pipe_inode_info *pipe; 1427 long ret; 1428 1429 pipe = get_pipe_info(file, false); 1430 if (!pipe) 1431 return -EBADF; 1432 1433 mutex_lock(&pipe->mutex); 1434 1435 switch (cmd) { 1436 case F_SETPIPE_SZ: 1437 ret = pipe_set_size(pipe, arg); 1438 break; 1439 case F_GETPIPE_SZ: 1440 ret = pipe->max_usage * PAGE_SIZE; 1441 break; 1442 default: 1443 ret = -EINVAL; 1444 break; 1445 } 1446 1447 mutex_unlock(&pipe->mutex); 1448 return ret; 1449 } 1450 1451 static const struct super_operations pipefs_ops = { 1452 .destroy_inode = free_inode_nonrcu, 1453 .statfs = simple_statfs, 1454 }; 1455 1456 /* 1457 * pipefs should _never_ be mounted by userland - too much of security hassle, 1458 * no real gain from having the whole file system mounted. So we don't need 1459 * any operations on the root directory. However, we need a non-trivial 1460 * d_name - pipe: will go nicely and kill the special-casing in procfs. 1461 */ 1462 1463 static int pipefs_init_fs_context(struct fs_context *fc) 1464 { 1465 struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC); 1466 if (!ctx) 1467 return -ENOMEM; 1468 ctx->ops = &pipefs_ops; 1469 ctx->dops = &pipefs_dentry_operations; 1470 return 0; 1471 } 1472 1473 static struct file_system_type pipe_fs_type = { 1474 .name = "pipefs", 1475 .init_fs_context = pipefs_init_fs_context, 1476 .kill_sb = kill_anon_super, 1477 }; 1478 1479 #ifdef CONFIG_SYSCTL 1480 static int do_proc_dopipe_max_size_conv(unsigned long *lvalp, 1481 unsigned int *valp, 1482 int write, void *data) 1483 { 1484 if (write) { 1485 unsigned int val; 1486 1487 val = round_pipe_size(*lvalp); 1488 if (val == 0) 1489 return -EINVAL; 1490 1491 *valp = val; 1492 } else { 1493 unsigned int val = *valp; 1494 *lvalp = (unsigned long) val; 1495 } 1496 1497 return 0; 1498 } 1499 1500 static int proc_dopipe_max_size(const struct ctl_table *table, int write, 1501 void *buffer, size_t *lenp, loff_t *ppos) 1502 { 1503 return do_proc_douintvec(table, write, buffer, lenp, ppos, 1504 do_proc_dopipe_max_size_conv, NULL); 1505 } 1506 1507 static const struct ctl_table fs_pipe_sysctls[] = { 1508 { 1509 .procname = "pipe-max-size", 1510 .data = &pipe_max_size, 1511 .maxlen = sizeof(pipe_max_size), 1512 .mode = 0644, 1513 .proc_handler = proc_dopipe_max_size, 1514 }, 1515 { 1516 .procname = "pipe-user-pages-hard", 1517 .data = &pipe_user_pages_hard, 1518 .maxlen = sizeof(pipe_user_pages_hard), 1519 .mode = 0644, 1520 .proc_handler = proc_doulongvec_minmax, 1521 }, 1522 { 1523 .procname = "pipe-user-pages-soft", 1524 .data = &pipe_user_pages_soft, 1525 .maxlen = sizeof(pipe_user_pages_soft), 1526 .mode = 0644, 1527 .proc_handler = proc_doulongvec_minmax, 1528 }, 1529 }; 1530 #endif 1531 1532 static int __init init_pipe_fs(void) 1533 { 1534 int err = register_filesystem(&pipe_fs_type); 1535 1536 if (!err) { 1537 pipe_mnt = kern_mount(&pipe_fs_type); 1538 if (IS_ERR(pipe_mnt)) { 1539 err = PTR_ERR(pipe_mnt); 1540 unregister_filesystem(&pipe_fs_type); 1541 } 1542 } 1543 #ifdef CONFIG_SYSCTL 1544 register_sysctl_init("fs", fs_pipe_sysctls); 1545 #endif 1546 return err; 1547 } 1548 1549 fs_initcall(init_pipe_fs); 1550