xref: /linux/fs/ntfs3/ntfs.h (revision a81f47c4406e372ce47aff140f3876babac5f01e)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  *
4  * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5  *
6  * on-disk ntfs structs
7  */
8 
9 // clang-format off
10 #ifndef _LINUX_NTFS3_NTFS_H
11 #define _LINUX_NTFS3_NTFS_H
12 
13 #include <linux/blkdev.h>
14 #include <linux/build_bug.h>
15 #include <linux/kernel.h>
16 #include <linux/stddef.h>
17 #include <linux/string.h>
18 #include <linux/types.h>
19 
20 #include "debug.h"
21 
22 /* TODO: Check 4K MFT record and 512 bytes cluster. */
23 
24 /* Check each run for marked clusters. */
25 #define NTFS3_CHECK_FREE_CLST
26 
27 #define NTFS_NAME_LEN 255
28 
29 /*
30  * ntfs.sys used 500 maximum links on-disk struct allows up to 0xffff.
31  * xfstest generic/041 creates 3003 hardlinks.
32  */
33 #define NTFS_LINK_MAX 4000
34 
35 /*
36  * Activate to use 64 bit clusters instead of 32 bits in ntfs.sys.
37  * Logical and virtual cluster number if needed, may be
38  * redefined to use 64 bit value.
39  */
40 //#define CONFIG_NTFS3_64BIT_CLUSTER
41 
42 #define NTFS_LZNT_MAX_CLUSTER	4096
43 #define NTFS_LZNT_CUNIT		4
44 #define NTFS_LZNT_CLUSTERS	(1u<<NTFS_LZNT_CUNIT)
45 
46 struct GUID {
47 	__le32 Data1;
48 	__le16 Data2;
49 	__le16 Data3;
50 	u8 Data4[8];
51 };
52 
53 /*
54  * This struct repeats layout of ATTR_FILE_NAME
55  * at offset 0x40.
56  * It used to store global constants NAME_MFT/NAME_MIRROR...
57  * most constant names are shorter than 10.
58  */
59 struct cpu_str {
60 	u8 len;
61 	u8 unused;
62 	u16 name[10];
63 };
64 
65 struct le_str {
66 	u8 len;
67 	u8 unused;
68 	__le16 name[];
69 };
70 
71 static_assert(SECTOR_SHIFT == 9);
72 
73 #ifdef CONFIG_NTFS3_64BIT_CLUSTER
74 typedef u64 CLST;
75 static_assert(sizeof(size_t) == 8);
76 #else
77 typedef u32 CLST;
78 #endif
79 
80 #define SPARSE_LCN64   ((u64)-1)
81 #define SPARSE_LCN     ((CLST)-1)
82 #define RESIDENT_LCN   ((CLST)-2)
83 #define COMPRESSED_LCN ((CLST)-3)
84 
85 #define COMPRESSION_UNIT     4
86 #define COMPRESS_MAX_CLUSTER 0x1000
87 
88 enum RECORD_NUM {
89 	MFT_REC_MFT		= 0,
90 	MFT_REC_MIRR		= 1,
91 	MFT_REC_LOG		= 2,
92 	MFT_REC_VOL		= 3,
93 	MFT_REC_ATTR		= 4,
94 	MFT_REC_ROOT		= 5,
95 	MFT_REC_BITMAP		= 6,
96 	MFT_REC_BOOT		= 7,
97 	MFT_REC_BADCLUST	= 8,
98 	MFT_REC_SECURE		= 9,
99 	MFT_REC_UPCASE		= 10,
100 	MFT_REC_EXTEND		= 11,
101 	MFT_REC_RESERVED	= 12,
102 	MFT_REC_FREE		= 16,
103 	MFT_REC_USER		= 24,
104 };
105 
106 enum ATTR_TYPE {
107 	ATTR_ZERO		= cpu_to_le32(0x00),
108 	ATTR_STD		= cpu_to_le32(0x10),
109 	ATTR_LIST		= cpu_to_le32(0x20),
110 	ATTR_NAME		= cpu_to_le32(0x30),
111 	ATTR_ID			= cpu_to_le32(0x40),
112 	ATTR_SECURE		= cpu_to_le32(0x50),
113 	ATTR_LABEL		= cpu_to_le32(0x60),
114 	ATTR_VOL_INFO		= cpu_to_le32(0x70),
115 	ATTR_DATA		= cpu_to_le32(0x80),
116 	ATTR_ROOT		= cpu_to_le32(0x90),
117 	ATTR_ALLOC		= cpu_to_le32(0xA0),
118 	ATTR_BITMAP		= cpu_to_le32(0xB0),
119 	ATTR_REPARSE		= cpu_to_le32(0xC0),
120 	ATTR_EA_INFO		= cpu_to_le32(0xD0),
121 	ATTR_EA			= cpu_to_le32(0xE0),
122 	ATTR_PROPERTYSET	= cpu_to_le32(0xF0),
123 	ATTR_LOGGED_UTILITY_STREAM = cpu_to_le32(0x100),
124 	ATTR_END		= cpu_to_le32(0xFFFFFFFF)
125 };
126 
127 static_assert(sizeof(enum ATTR_TYPE) == 4);
128 
129 enum FILE_ATTRIBUTE {
130 	FILE_ATTRIBUTE_READONLY		= cpu_to_le32(0x00000001),
131 	FILE_ATTRIBUTE_HIDDEN		= cpu_to_le32(0x00000002),
132 	FILE_ATTRIBUTE_SYSTEM		= cpu_to_le32(0x00000004),
133 	FILE_ATTRIBUTE_ARCHIVE		= cpu_to_le32(0x00000020),
134 	FILE_ATTRIBUTE_DEVICE		= cpu_to_le32(0x00000040),
135 	FILE_ATTRIBUTE_TEMPORARY	= cpu_to_le32(0x00000100),
136 	FILE_ATTRIBUTE_SPARSE_FILE	= cpu_to_le32(0x00000200),
137 	FILE_ATTRIBUTE_REPARSE_POINT	= cpu_to_le32(0x00000400),
138 	FILE_ATTRIBUTE_COMPRESSED	= cpu_to_le32(0x00000800),
139 	FILE_ATTRIBUTE_OFFLINE		= cpu_to_le32(0x00001000),
140 	FILE_ATTRIBUTE_NOT_CONTENT_INDEXED = cpu_to_le32(0x00002000),
141 	FILE_ATTRIBUTE_ENCRYPTED	= cpu_to_le32(0x00004000),
142 	FILE_ATTRIBUTE_VALID_FLAGS	= cpu_to_le32(0x00007fb7),
143 	FILE_ATTRIBUTE_DIRECTORY	= cpu_to_le32(0x10000000),
144 	FILE_ATTRIBUTE_INDEX		= cpu_to_le32(0x20000000)
145 };
146 
147 static_assert(sizeof(enum FILE_ATTRIBUTE) == 4);
148 
149 extern const struct cpu_str NAME_MFT;
150 extern const struct cpu_str NAME_MIRROR;
151 extern const struct cpu_str NAME_LOGFILE;
152 extern const struct cpu_str NAME_VOLUME;
153 extern const struct cpu_str NAME_ATTRDEF;
154 extern const struct cpu_str NAME_ROOT;
155 extern const struct cpu_str NAME_BITMAP;
156 extern const struct cpu_str NAME_BOOT;
157 extern const struct cpu_str NAME_BADCLUS;
158 extern const struct cpu_str NAME_QUOTA;
159 extern const struct cpu_str NAME_SECURE;
160 extern const struct cpu_str NAME_UPCASE;
161 extern const struct cpu_str NAME_EXTEND;
162 extern const struct cpu_str NAME_OBJID;
163 extern const struct cpu_str NAME_REPARSE;
164 extern const struct cpu_str NAME_USNJRNL;
165 
166 extern const __le16 I30_NAME[4];
167 extern const __le16 SII_NAME[4];
168 extern const __le16 SDH_NAME[4];
169 extern const __le16 SO_NAME[2];
170 extern const __le16 SQ_NAME[2];
171 extern const __le16 SR_NAME[2];
172 
173 extern const __le16 BAD_NAME[4];
174 extern const __le16 SDS_NAME[4];
175 extern const __le16 WOF_NAME[17];	/* WofCompressedData */
176 
177 /* MFT record number structure. */
178 struct MFT_REF {
179 	__le32 low;	// The low part of the number.
180 	__le16 high;	// The high part of the number.
181 	__le16 seq;	// The sequence number of MFT record.
182 };
183 
184 static_assert(sizeof(__le64) == sizeof(struct MFT_REF));
185 
186 static inline CLST ino_get(const struct MFT_REF *ref)
187 {
188 #ifdef CONFIG_NTFS3_64BIT_CLUSTER
189 	return le32_to_cpu(ref->low) | ((u64)le16_to_cpu(ref->high) << 32);
190 #else
191 	return le32_to_cpu(ref->low);
192 #endif
193 }
194 
195 struct NTFS_BOOT {
196 	u8 jump_code[3];	// 0x00: Jump to boot code.
197 	u8 system_id[8];	// 0x03: System ID, equals "NTFS    "
198 
199 	// NOTE: This member is not aligned(!)
200 	// bytes_per_sector[0] must be 0.
201 	// bytes_per_sector[1] must be multiplied by 256.
202 	u8 bytes_per_sector[2];	// 0x0B: Bytes per sector.
203 
204 	u8 sectors_per_clusters;// 0x0D: Sectors per cluster.
205 	u8 unused1[7];
206 	u8 media_type;		// 0x15: Media type (0xF8 - harddisk)
207 	u8 unused2[2];
208 	__le16 sct_per_track;	// 0x18: number of sectors per track.
209 	__le16 heads;		// 0x1A: number of heads per cylinder.
210 	__le32 hidden_sectors;	// 0x1C: number of 'hidden' sectors.
211 	u8 unused3[4];
212 	u8 bios_drive_num;	// 0x24: BIOS drive number =0x80.
213 	u8 unused4;
214 	u8 signature_ex;	// 0x26: Extended BOOT signature =0x80.
215 	u8 unused5;
216 	__le64 sectors_per_volume;// 0x28: Size of volume in sectors.
217 	__le64 mft_clst;	// 0x30: First cluster of $MFT
218 	__le64 mft2_clst;	// 0x38: First cluster of $MFTMirr
219 	s8 record_size;		// 0x40: Size of MFT record in clusters(sectors).
220 	u8 unused6[3];
221 	s8 index_size;		// 0x44: Size of INDX record in clusters(sectors).
222 	u8 unused7[3];
223 	__le64 serial_num;	// 0x48: Volume serial number
224 	__le32 check_sum;	// 0x50: Simple additive checksum of all
225 				// of the u32's which precede the 'check_sum'.
226 
227 	u8 boot_code[0x200 - 0x50 - 2 - 4]; // 0x54:
228 	u8 boot_magic[2];	// 0x1FE: Boot signature =0x55 + 0xAA
229 };
230 
231 static_assert(sizeof(struct NTFS_BOOT) == 0x200);
232 
233 enum NTFS_SIGNATURE {
234 	NTFS_FILE_SIGNATURE = cpu_to_le32(0x454C4946), // 'FILE'
235 	NTFS_INDX_SIGNATURE = cpu_to_le32(0x58444E49), // 'INDX'
236 	NTFS_CHKD_SIGNATURE = cpu_to_le32(0x444B4843), // 'CHKD'
237 	NTFS_RSTR_SIGNATURE = cpu_to_le32(0x52545352), // 'RSTR'
238 	NTFS_RCRD_SIGNATURE = cpu_to_le32(0x44524352), // 'RCRD'
239 	NTFS_BAAD_SIGNATURE = cpu_to_le32(0x44414142), // 'BAAD'
240 	NTFS_HOLE_SIGNATURE = cpu_to_le32(0x454C4F48), // 'HOLE'
241 	NTFS_FFFF_SIGNATURE = cpu_to_le32(0xffffffff),
242 };
243 
244 static_assert(sizeof(enum NTFS_SIGNATURE) == 4);
245 
246 /* MFT Record header structure. */
247 struct NTFS_RECORD_HEADER {
248 	/* Record magic number, equals 'FILE'/'INDX'/'RSTR'/'RCRD'. */
249 	enum NTFS_SIGNATURE sign; // 0x00:
250 	__le16 fix_off;		// 0x04:
251 	__le16 fix_num;		// 0x06:
252 	__le64 lsn;		// 0x08: Log file sequence number,
253 };
254 
255 static_assert(sizeof(struct NTFS_RECORD_HEADER) == 0x10);
256 
257 static inline int is_baad(const struct NTFS_RECORD_HEADER *hdr)
258 {
259 	return hdr->sign == NTFS_BAAD_SIGNATURE;
260 }
261 
262 /* Possible bits in struct MFT_REC.flags. */
263 enum RECORD_FLAG {
264 	RECORD_FLAG_IN_USE	= cpu_to_le16(0x0001),
265 	RECORD_FLAG_DIR		= cpu_to_le16(0x0002),
266 	RECORD_FLAG_SYSTEM	= cpu_to_le16(0x0004),
267 	RECORD_FLAG_INDEX	= cpu_to_le16(0x0008),
268 };
269 
270 /* MFT Record structure. */
271 struct MFT_REC {
272 	struct NTFS_RECORD_HEADER rhdr; // 'FILE'
273 
274 	__le16 seq;		// 0x10: Sequence number for this record.
275 	__le16 hard_links;	// 0x12: The number of hard links to record.
276 	__le16 attr_off;	// 0x14: Offset to attributes.
277 	__le16 flags;		// 0x16: See RECORD_FLAG.
278 	__le32 used;		// 0x18: The size of used part.
279 	__le32 total;		// 0x1C: Total record size.
280 
281 	struct MFT_REF parent_ref; // 0x20: Parent MFT record.
282 	__le16 next_attr_id;	// 0x28: The next attribute Id.
283 
284 	__le16 res;		// 0x2A: High part of MFT record?
285 	__le32 mft_record;	// 0x2C: Current MFT record number.
286 	__le16 fixups[];	// 0x30:
287 };
288 
289 #define MFTRECORD_FIXUP_OFFSET_1 offsetof(struct MFT_REC, res)
290 #define MFTRECORD_FIXUP_OFFSET_3 offsetof(struct MFT_REC, fixups)
291 
292 static_assert(MFTRECORD_FIXUP_OFFSET_1 == 0x2A);
293 static_assert(MFTRECORD_FIXUP_OFFSET_3 == 0x30);
294 
295 static inline bool is_rec_base(const struct MFT_REC *rec)
296 {
297 	const struct MFT_REF *r = &rec->parent_ref;
298 
299 	return !r->low && !r->high && !r->seq;
300 }
301 
302 static inline bool is_mft_rec5(const struct MFT_REC *rec)
303 {
304 	return le16_to_cpu(rec->rhdr.fix_off) >=
305 	       offsetof(struct MFT_REC, fixups);
306 }
307 
308 static inline bool is_rec_inuse(const struct MFT_REC *rec)
309 {
310 	return rec->flags & RECORD_FLAG_IN_USE;
311 }
312 
313 static inline bool clear_rec_inuse(struct MFT_REC *rec)
314 {
315 	return rec->flags &= ~RECORD_FLAG_IN_USE;
316 }
317 
318 /* Possible values of ATTR_RESIDENT.flags */
319 #define RESIDENT_FLAG_INDEXED 0x01
320 
321 struct ATTR_RESIDENT {
322 	__le32 data_size;	// 0x10: The size of data.
323 	__le16 data_off;	// 0x14: Offset to data.
324 	u8 flags;		// 0x16: Resident flags ( 1 - indexed ).
325 	u8 res;			// 0x17:
326 }; // sizeof() = 0x18
327 
328 struct ATTR_NONRESIDENT {
329 	__le64 svcn;		// 0x10: Starting VCN of this segment.
330 	__le64 evcn;		// 0x18: End VCN of this segment.
331 	__le16 run_off;		// 0x20: Offset to packed runs.
332 	// Unit of Compression size for this stream, expressed
333 	// as a log of the cluster size.
334 	//
335 	// 0 means file is not compressed
336 	// 1, 2, 3, and 4 are potentially legal values if the
337 	// stream is compressed, however the implementation
338 	// may only choose to use 4, or possibly 3.
339         // Note that 4 means cluster size time 16.
340         // If convenient the implementation may wish to accept a
341 	// reasonable range of legal values here (1-5?),
342 	// even if the implementation only generates
343 	// a smaller set of values itself.
344 	u8 c_unit;		// 0x22:
345 	u8 res1[5];		// 0x23:
346 	__le64 alloc_size;	// 0x28: The allocated size of attribute in bytes.
347 				// (multiple of cluster size)
348 	__le64 data_size;	// 0x30: The size of attribute  in bytes <= alloc_size.
349 	__le64 valid_size;	// 0x38: The size of valid part in bytes <= data_size.
350 	__le64 total_size;	// 0x40: The sum of the allocated clusters for a file.
351 				// (present only for the first segment (0 == vcn)
352 				// of compressed attribute)
353 
354 }; // sizeof()=0x40 or 0x48 (if compressed)
355 
356 /* Possible values of ATTRIB.flags: */
357 #define ATTR_FLAG_COMPRESSED	  cpu_to_le16(0x0001)
358 #define ATTR_FLAG_COMPRESSED_MASK cpu_to_le16(0x00FF)
359 #define ATTR_FLAG_ENCRYPTED	  cpu_to_le16(0x4000)
360 #define ATTR_FLAG_SPARSED	  cpu_to_le16(0x8000)
361 
362 struct ATTRIB {
363 	enum ATTR_TYPE type;	// 0x00: The type of this attribute.
364 	__le32 size;		// 0x04: The size of this attribute.
365 	u8 non_res;		// 0x08: Is this attribute non-resident?
366 	u8 name_len;		// 0x09: This attribute name length.
367 	__le16 name_off;	// 0x0A: Offset to the attribute name.
368 	__le16 flags;		// 0x0C: See ATTR_FLAG_XXX.
369 	__le16 id;		// 0x0E: Unique id (per record).
370 
371 	union {
372 		struct ATTR_RESIDENT res;     // 0x10
373 		struct ATTR_NONRESIDENT nres; // 0x10
374 	};
375 };
376 
377 /* Define attribute sizes. */
378 #define SIZEOF_RESIDENT			0x18
379 #define SIZEOF_NONRESIDENT_EX		0x48
380 #define SIZEOF_NONRESIDENT		0x40
381 
382 #define SIZEOF_RESIDENT_LE		cpu_to_le16(0x18)
383 #define SIZEOF_NONRESIDENT_EX_LE	cpu_to_le16(0x48)
384 #define SIZEOF_NONRESIDENT_LE		cpu_to_le16(0x40)
385 
386 static inline u64 attr_ondisk_size(const struct ATTRIB *attr)
387 {
388 	return attr->non_res ? ((attr->flags &
389 				 (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ?
390 					le64_to_cpu(attr->nres.total_size) :
391 					le64_to_cpu(attr->nres.alloc_size))
392 			     : ALIGN(le32_to_cpu(attr->res.data_size), 8);
393 }
394 
395 static inline u64 attr_size(const struct ATTRIB *attr)
396 {
397 	return attr->non_res ? le64_to_cpu(attr->nres.data_size) :
398 			       le32_to_cpu(attr->res.data_size);
399 }
400 
401 static inline bool is_attr_encrypted(const struct ATTRIB *attr)
402 {
403 	return attr->flags & ATTR_FLAG_ENCRYPTED;
404 }
405 
406 static inline bool is_attr_sparsed(const struct ATTRIB *attr)
407 {
408 	return attr->flags & ATTR_FLAG_SPARSED;
409 }
410 
411 static inline bool is_attr_compressed(const struct ATTRIB *attr)
412 {
413 	return attr->flags & ATTR_FLAG_COMPRESSED;
414 }
415 
416 static inline bool is_attr_ext(const struct ATTRIB *attr)
417 {
418 	return attr->flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED);
419 }
420 
421 static inline bool is_attr_indexed(const struct ATTRIB *attr)
422 {
423 	return !attr->non_res && (attr->res.flags & RESIDENT_FLAG_INDEXED);
424 }
425 
426 static inline __le16 const *attr_name(const struct ATTRIB *attr)
427 {
428 	return Add2Ptr(attr, le16_to_cpu(attr->name_off));
429 }
430 
431 static inline u64 attr_svcn(const struct ATTRIB *attr)
432 {
433 	return attr->non_res ? le64_to_cpu(attr->nres.svcn) : 0;
434 }
435 
436 static_assert(sizeof(struct ATTRIB) == 0x48);
437 static_assert(sizeof(((struct ATTRIB *)NULL)->res) == 0x08);
438 static_assert(sizeof(((struct ATTRIB *)NULL)->nres) == 0x38);
439 
440 static inline void *resident_data_ex(const struct ATTRIB *attr, u32 datasize)
441 {
442 	u32 asize, rsize;
443 	u16 off;
444 
445 	if (attr->non_res)
446 		return NULL;
447 
448 	asize = le32_to_cpu(attr->size);
449 	off = le16_to_cpu(attr->res.data_off);
450 
451 	if (asize < datasize + off)
452 		return NULL;
453 
454 	rsize = le32_to_cpu(attr->res.data_size);
455 	if (rsize < datasize)
456 		return NULL;
457 
458 	return Add2Ptr(attr, off);
459 }
460 
461 static inline void *resident_data(const struct ATTRIB *attr)
462 {
463 	return Add2Ptr(attr, le16_to_cpu(attr->res.data_off));
464 }
465 
466 static inline void *attr_run(const struct ATTRIB *attr)
467 {
468 	return Add2Ptr(attr, le16_to_cpu(attr->nres.run_off));
469 }
470 
471 /* Standard information attribute (0x10). */
472 struct ATTR_STD_INFO {
473 	__le64 cr_time;		// 0x00: File creation file.
474 	__le64 m_time;		// 0x08: File modification time.
475 	__le64 c_time;		// 0x10: Last time any attribute was modified.
476 	__le64 a_time;		// 0x18: File last access time.
477 	enum FILE_ATTRIBUTE fa;	// 0x20: Standard DOS attributes & more.
478 	__le32 max_ver_num;	// 0x24: Maximum Number of Versions.
479 	__le32 ver_num;		// 0x28: Version Number.
480 	__le32 class_id;	// 0x2C: Class Id from bidirectional Class Id index.
481 };
482 
483 static_assert(sizeof(struct ATTR_STD_INFO) == 0x30);
484 
485 #define SECURITY_ID_INVALID 0x00000000
486 #define SECURITY_ID_FIRST 0x00000100
487 
488 struct ATTR_STD_INFO5 {
489 	__le64 cr_time;		// 0x00: File creation file.
490 	__le64 m_time;		// 0x08: File modification time.
491 	__le64 c_time;		// 0x10: Last time any attribute was modified.
492 	__le64 a_time;		// 0x18: File last access time.
493 	enum FILE_ATTRIBUTE fa;	// 0x20: Standard DOS attributes & more.
494 	__le32 max_ver_num;	// 0x24: Maximum Number of Versions.
495 	__le32 ver_num;		// 0x28: Version Number.
496 	__le32 class_id;	// 0x2C: Class Id from bidirectional Class Id index.
497 
498 	__le32 owner_id;	// 0x30: Owner Id of the user owning the file.
499 	__le32 security_id;	// 0x34: The Security Id is a key in the $SII Index and $SDS.
500 	__le64 quota_charge;	// 0x38:
501 	__le64 usn;		// 0x40: Last Update Sequence Number of the file. This is a direct
502 				// index into the file $UsnJrnl. If zero, the USN Journal is
503 				// disabled.
504 };
505 
506 static_assert(sizeof(struct ATTR_STD_INFO5) == 0x48);
507 
508 /* Attribute list entry structure (0x20) */
509 struct ATTR_LIST_ENTRY {
510 	enum ATTR_TYPE type;	// 0x00: The type of attribute.
511 	__le16 size;		// 0x04: The size of this record.
512 	u8 name_len;		// 0x06: The length of attribute name.
513 	u8 name_off;		// 0x07: The offset to attribute name.
514 	__le64 vcn;		// 0x08: Starting VCN of this attribute.
515 	struct MFT_REF ref;	// 0x10: MFT record number with attribute.
516 	__le16 id;		// 0x18: struct ATTRIB ID.
517 	__le16 name[3];		// 0x1A: Just to align. To get real name can use bNameOffset.
518 
519 }; // sizeof(0x20)
520 
521 static_assert(sizeof(struct ATTR_LIST_ENTRY) == 0x20);
522 
523 static inline u32 le_size(u8 name_len)
524 {
525 	return ALIGN(offsetof(struct ATTR_LIST_ENTRY, name) +
526 		     name_len * sizeof(short), 8);
527 }
528 
529 /* Returns 0 if 'attr' has the same type and name. */
530 static inline int le_cmp(const struct ATTR_LIST_ENTRY *le,
531 			 const struct ATTRIB *attr)
532 {
533 	return le->type != attr->type || le->name_len != attr->name_len ||
534 	       (!le->name_len &&
535 		memcmp(Add2Ptr(le, le->name_off),
536 		       Add2Ptr(attr, le16_to_cpu(attr->name_off)),
537 		       le->name_len * sizeof(short)));
538 }
539 
540 static inline __le16 const *le_name(const struct ATTR_LIST_ENTRY *le)
541 {
542 	return Add2Ptr(le, le->name_off);
543 }
544 
545 /* File name types (the field type in struct ATTR_FILE_NAME). */
546 #define FILE_NAME_POSIX   0
547 #define FILE_NAME_UNICODE 1
548 #define FILE_NAME_DOS	  2
549 #define FILE_NAME_UNICODE_AND_DOS (FILE_NAME_DOS | FILE_NAME_UNICODE)
550 
551 /* Filename attribute structure (0x30). */
552 struct NTFS_DUP_INFO {
553 	__le64 cr_time;		// 0x00: File creation file.
554 	__le64 m_time;		// 0x08: File modification time.
555 	__le64 c_time;		// 0x10: Last time any attribute was modified.
556 	__le64 a_time;		// 0x18: File last access time.
557 	__le64 alloc_size;	// 0x20: Data attribute allocated size, multiple of cluster size.
558 	__le64 data_size;	// 0x28: Data attribute size <= Dataalloc_size.
559 	enum FILE_ATTRIBUTE fa;	// 0x30: Standard DOS attributes & more.
560 	__le16 ea_size;		// 0x34: Packed EAs.
561 	__le16 reparse;		// 0x36: Used by Reparse.
562 
563 }; // 0x38
564 
565 struct ATTR_FILE_NAME {
566 	struct MFT_REF home;	// 0x00: MFT record for directory.
567 	struct NTFS_DUP_INFO dup;// 0x08:
568 	u8 name_len;		// 0x40: File name length in words.
569 	u8 type;		// 0x41: File name type.
570 	__le16 name[];		// 0x42: File name.
571 };
572 
573 static_assert(sizeof(((struct ATTR_FILE_NAME *)NULL)->dup) == 0x38);
574 static_assert(offsetof(struct ATTR_FILE_NAME, name) == 0x42);
575 #define SIZEOF_ATTRIBUTE_FILENAME     0x44
576 #define SIZEOF_ATTRIBUTE_FILENAME_MAX (0x42 + 255 * 2)
577 
578 static inline struct ATTRIB *attr_from_name(struct ATTR_FILE_NAME *fname)
579 {
580 	return (struct ATTRIB *)((char *)fname - SIZEOF_RESIDENT);
581 }
582 
583 static inline u16 fname_full_size(const struct ATTR_FILE_NAME *fname)
584 {
585 	/* Don't return struct_size(fname, name, fname->name_len); */
586 	return offsetof(struct ATTR_FILE_NAME, name) +
587 	       fname->name_len * sizeof(short);
588 }
589 
590 static inline u8 paired_name(u8 type)
591 {
592 	if (type == FILE_NAME_UNICODE)
593 		return FILE_NAME_DOS;
594 	if (type == FILE_NAME_DOS)
595 		return FILE_NAME_UNICODE;
596 	return FILE_NAME_POSIX;
597 }
598 
599 /* Index entry defines ( the field flags in NtfsDirEntry ). */
600 #define NTFS_IE_HAS_SUBNODES	cpu_to_le16(1)
601 #define NTFS_IE_LAST		cpu_to_le16(2)
602 
603 /* Directory entry structure. */
604 struct NTFS_DE {
605 	union {
606 		struct MFT_REF ref; // 0x00: MFT record number with this file.
607 		struct {
608 			__le16 data_off;  // 0x00:
609 			__le16 data_size; // 0x02:
610 			__le32 res;	  // 0x04: Must be 0.
611 		} view;
612 	};
613 	__le16 size;		// 0x08: The size of this entry.
614 	__le16 key_size;	// 0x0A: The size of File name length in bytes + 0x42.
615 	__le16 flags;		// 0x0C: Entry flags: NTFS_IE_XXX.
616 	__le16 res;		// 0x0E:
617 
618 	// Here any indexed attribute can be placed.
619 	// One of them is:
620 	// struct ATTR_FILE_NAME AttrFileName;
621 	//
622 
623 	// The last 8 bytes of this structure contains
624 	// the VBN of subnode.
625 	// !!! Note !!!
626 	// This field is presented only if (flags & NTFS_IE_HAS_SUBNODES)
627 	// __le64 vbn;
628 };
629 
630 static_assert(sizeof(struct NTFS_DE) == 0x10);
631 
632 static inline void de_set_vbn_le(struct NTFS_DE *e, __le64 vcn)
633 {
634 	__le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
635 
636 	*v = vcn;
637 }
638 
639 static inline void de_set_vbn(struct NTFS_DE *e, CLST vcn)
640 {
641 	__le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
642 
643 	*v = cpu_to_le64(vcn);
644 }
645 
646 static inline __le64 de_get_vbn_le(const struct NTFS_DE *e)
647 {
648 	return *(__le64 *)Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
649 }
650 
651 static inline CLST de_get_vbn(const struct NTFS_DE *e)
652 {
653 	__le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
654 
655 	return le64_to_cpu(*v);
656 }
657 
658 static inline struct NTFS_DE *de_get_next(const struct NTFS_DE *e)
659 {
660 	return Add2Ptr(e, le16_to_cpu(e->size));
661 }
662 
663 static inline struct ATTR_FILE_NAME *de_get_fname(const struct NTFS_DE *e)
664 {
665 	return le16_to_cpu(e->key_size) >= SIZEOF_ATTRIBUTE_FILENAME ?
666 		       Add2Ptr(e, sizeof(struct NTFS_DE)) :
667 		       NULL;
668 }
669 
670 static inline bool de_is_last(const struct NTFS_DE *e)
671 {
672 	return e->flags & NTFS_IE_LAST;
673 }
674 
675 static inline bool de_has_vcn(const struct NTFS_DE *e)
676 {
677 	return e->flags & NTFS_IE_HAS_SUBNODES;
678 }
679 
680 static inline bool de_has_vcn_ex(const struct NTFS_DE *e)
681 {
682 	return (e->flags & NTFS_IE_HAS_SUBNODES) &&
683 	       (u64)(-1) != *((u64 *)Add2Ptr(e, le16_to_cpu(e->size) -
684 							sizeof(__le64)));
685 }
686 
687 #define MAX_BYTES_PER_NAME_ENTRY \
688 	ALIGN(sizeof(struct NTFS_DE) + \
689 	      offsetof(struct ATTR_FILE_NAME, name) + \
690 	      NTFS_NAME_LEN * sizeof(short), 8)
691 
692 struct INDEX_HDR {
693 	__le32 de_off;	// 0x00: The offset from the start of this structure
694 			// to the first NTFS_DE.
695 	__le32 used;	// 0x04: The size of this structure plus all
696 			// entries (quad-word aligned).
697 	__le32 total;	// 0x08: The allocated size of for this structure plus all entries.
698 	u8 flags;	// 0x0C: 0x00 = Small directory, 0x01 = Large directory.
699 	u8 res[3];
700 
701 	//
702 	// de_off + used <= total
703 	//
704 };
705 
706 static_assert(sizeof(struct INDEX_HDR) == 0x10);
707 
708 static inline struct NTFS_DE *hdr_first_de(const struct INDEX_HDR *hdr)
709 {
710 	u32 de_off = le32_to_cpu(hdr->de_off);
711 	u32 used = le32_to_cpu(hdr->used);
712 	struct NTFS_DE *e;
713 	u16 esize;
714 
715 	if (de_off >= used || de_off + sizeof(struct NTFS_DE) > used )
716 		return NULL;
717 
718 	e = Add2Ptr(hdr, de_off);
719 	esize = le16_to_cpu(e->size);
720 	if (esize < sizeof(struct NTFS_DE) || de_off + esize > used)
721 		return NULL;
722 
723 	return e;
724 }
725 
726 static inline struct NTFS_DE *hdr_next_de(const struct INDEX_HDR *hdr,
727 					  const struct NTFS_DE *e)
728 {
729 	size_t off = PtrOffset(hdr, e);
730 	u32 used = le32_to_cpu(hdr->used);
731 	u16 esize;
732 
733 	if (off >= used)
734 		return NULL;
735 
736 	esize = le16_to_cpu(e->size);
737 
738 	if (esize < sizeof(struct NTFS_DE) ||
739 	    off + esize + sizeof(struct NTFS_DE) > used)
740 		return NULL;
741 
742 	return Add2Ptr(e, esize);
743 }
744 
745 static inline bool hdr_has_subnode(const struct INDEX_HDR *hdr)
746 {
747 	return hdr->flags & 1;
748 }
749 
750 struct INDEX_BUFFER {
751 	struct NTFS_RECORD_HEADER rhdr; // 'INDX'
752 	__le64 vbn; // 0x10: vcn if index >= cluster or vsn id index < cluster
753 	struct INDEX_HDR ihdr; // 0x18:
754 };
755 
756 static_assert(sizeof(struct INDEX_BUFFER) == 0x28);
757 
758 static inline bool ib_is_empty(const struct INDEX_BUFFER *ib)
759 {
760 	const struct NTFS_DE *first = hdr_first_de(&ib->ihdr);
761 
762 	return !first || de_is_last(first);
763 }
764 
765 static inline bool ib_is_leaf(const struct INDEX_BUFFER *ib)
766 {
767 	return !(ib->ihdr.flags & 1);
768 }
769 
770 /* Index root structure ( 0x90 ). */
771 enum COLLATION_RULE {
772 	NTFS_COLLATION_TYPE_BINARY	= cpu_to_le32(0),
773 	// $I30
774 	NTFS_COLLATION_TYPE_FILENAME	= cpu_to_le32(0x01),
775 	// $SII of $Secure and $Q of Quota
776 	NTFS_COLLATION_TYPE_UINT	= cpu_to_le32(0x10),
777 	// $O of Quota
778 	NTFS_COLLATION_TYPE_SID		= cpu_to_le32(0x11),
779 	// $SDH of $Secure
780 	NTFS_COLLATION_TYPE_SECURITY_HASH = cpu_to_le32(0x12),
781 	// $O of ObjId and "$R" for Reparse
782 	NTFS_COLLATION_TYPE_UINTS	= cpu_to_le32(0x13)
783 };
784 
785 static_assert(sizeof(enum COLLATION_RULE) == 4);
786 
787 //
788 struct INDEX_ROOT {
789 	enum ATTR_TYPE type;	// 0x00: The type of attribute to index on.
790 	enum COLLATION_RULE rule; // 0x04: The rule.
791 	__le32 index_block_size;// 0x08: The size of index record.
792 	u8 index_block_clst;	// 0x0C: The number of clusters or sectors per index.
793 	u8 res[3];
794 	struct INDEX_HDR ihdr;	// 0x10:
795 };
796 
797 static_assert(sizeof(struct INDEX_ROOT) == 0x20);
798 static_assert(offsetof(struct INDEX_ROOT, ihdr) == 0x10);
799 
800 #define VOLUME_FLAG_DIRTY	    cpu_to_le16(0x0001)
801 #define VOLUME_FLAG_RESIZE_LOG_FILE cpu_to_le16(0x0002)
802 
803 struct VOLUME_INFO {
804 	__le64 res1;	// 0x00
805 	u8 major_ver;	// 0x08: NTFS major version number (before .)
806 	u8 minor_ver;	// 0x09: NTFS minor version number (after .)
807 	__le16 flags;	// 0x0A: Volume flags, see VOLUME_FLAG_XXX
808 
809 }; // sizeof=0xC
810 
811 #define SIZEOF_ATTRIBUTE_VOLUME_INFO 0xc
812 
813 #define NTFS_LABEL_MAX_LENGTH		(0x100 / sizeof(short))
814 #define NTFS_ATTR_INDEXABLE		cpu_to_le32(0x00000002)
815 #define NTFS_ATTR_DUPALLOWED		cpu_to_le32(0x00000004)
816 #define NTFS_ATTR_MUST_BE_INDEXED	cpu_to_le32(0x00000010)
817 #define NTFS_ATTR_MUST_BE_NAMED		cpu_to_le32(0x00000020)
818 #define NTFS_ATTR_MUST_BE_RESIDENT	cpu_to_le32(0x00000040)
819 #define NTFS_ATTR_LOG_ALWAYS		cpu_to_le32(0x00000080)
820 
821 /* $AttrDef file entry. */
822 struct ATTR_DEF_ENTRY {
823 	__le16 name[0x40];	// 0x00: Attr name.
824 	enum ATTR_TYPE type;	// 0x80: struct ATTRIB type.
825 	__le32 res;		// 0x84:
826 	enum COLLATION_RULE rule; // 0x88:
827 	__le32 flags;		// 0x8C: NTFS_ATTR_XXX (see above).
828 	__le64 min_sz;		// 0x90: Minimum attribute data size.
829 	__le64 max_sz;		// 0x98: Maximum attribute data size.
830 };
831 
832 static_assert(sizeof(struct ATTR_DEF_ENTRY) == 0xa0);
833 
834 /* Object ID (0x40) */
835 struct OBJECT_ID {
836 	struct GUID ObjId;	// 0x00: Unique Id assigned to file.
837 
838 	// Birth Volume Id is the Object Id of the Volume on.
839 	// which the Object Id was allocated. It never changes.
840 	struct GUID BirthVolumeId; //0x10:
841 
842 	// Birth Object Id is the first Object Id that was
843 	// ever assigned to this MFT Record. I.e. If the Object Id
844 	// is changed for some reason, this field will reflect the
845 	// original value of the Object Id.
846 	struct GUID BirthObjectId; // 0x20:
847 
848 	// Domain Id is currently unused but it is intended to be
849 	// used in a network environment where the local machine is
850 	// part of a Windows 2000 Domain. This may be used in a Windows
851 	// 2000 Advanced Server managed domain.
852 	struct GUID DomainId;	// 0x30:
853 };
854 
855 static_assert(sizeof(struct OBJECT_ID) == 0x40);
856 
857 /* O Directory entry structure ( rule = 0x13 ) */
858 struct NTFS_DE_O {
859 	struct NTFS_DE de;
860 	struct GUID ObjId;	// 0x10: Unique Id assigned to file.
861 	struct MFT_REF ref;	// 0x20: MFT record number with this file.
862 
863 	// Birth Volume Id is the Object Id of the Volume on
864 	// which the Object Id was allocated. It never changes.
865 	struct GUID BirthVolumeId; // 0x28:
866 
867 	// Birth Object Id is the first Object Id that was
868 	// ever assigned to this MFT Record. I.e. If the Object Id
869 	// is changed for some reason, this field will reflect the
870 	// original value of the Object Id.
871 	// This field is valid if data_size == 0x48.
872 	struct GUID BirthObjectId; // 0x38:
873 
874 	// Domain Id is currently unused but it is intended
875 	// to be used in a network environment where the local
876 	// machine is part of a Windows 2000 Domain. This may be
877 	// used in a Windows 2000 Advanced Server managed domain.
878 	struct GUID BirthDomainId; // 0x48:
879 };
880 
881 static_assert(sizeof(struct NTFS_DE_O) == 0x58);
882 
883 /* Q Directory entry structure ( rule = 0x11 ) */
884 struct NTFS_DE_Q {
885 	struct NTFS_DE de;
886 	__le32 owner_id;	// 0x10: Unique Id assigned to file
887 
888 	/* here is 0x30 bytes of user quota. NOTE: 4 byte aligned! */
889 	__le32 Version;		// 0x14: 0x02
890 	__le32 Flags;		// 0x18: Quota flags, see above
891 	__le64 BytesUsed;	// 0x1C:
892 	__le64 ChangeTime;	// 0x24:
893 	__le64 WarningLimit;	// 0x28:
894 	__le64 HardLimit;	// 0x34:
895 	__le64 ExceededTime;	// 0x3C:
896 
897 	// SID is placed here
898 }__packed; // sizeof() = 0x44
899 
900 static_assert(sizeof(struct NTFS_DE_Q) == 0x44);
901 
902 #define SecurityDescriptorsBlockSize 0x40000 // 256K
903 #define SecurityDescriptorMaxSize    0x20000 // 128K
904 #define Log2OfSecurityDescriptorsBlockSize 18
905 
906 struct SECURITY_KEY {
907 	__le32 hash; //  Hash value for descriptor
908 	__le32 sec_id; //  Security Id (guaranteed unique)
909 };
910 
911 /* Security descriptors (the content of $Secure::SDS data stream) */
912 struct SECURITY_HDR {
913 	struct SECURITY_KEY key;	// 0x00: Security Key.
914 	__le64 off;			// 0x08: Offset of this entry in the file.
915 	__le32 size;			// 0x10: Size of this entry, 8 byte aligned.
916 	/*
917 	 * Security descriptor itself is placed here.
918 	 * Total size is 16 byte aligned.
919 	 */
920 } __packed;
921 
922 static_assert(sizeof(struct SECURITY_HDR) == 0x14);
923 
924 /* SII Directory entry structure */
925 struct NTFS_DE_SII {
926 	struct NTFS_DE de;
927 	__le32 sec_id;			// 0x10: Key: sizeof(security_id) = wKeySize
928 	struct SECURITY_HDR sec_hdr;	// 0x14:
929 } __packed;
930 
931 static_assert(offsetof(struct NTFS_DE_SII, sec_hdr) == 0x14);
932 static_assert(sizeof(struct NTFS_DE_SII) == 0x28);
933 
934 /* SDH Directory entry structure */
935 struct NTFS_DE_SDH {
936 	struct NTFS_DE de;
937 	struct SECURITY_KEY key;	// 0x10: Key
938 	struct SECURITY_HDR sec_hdr;	// 0x18: Data
939 	__le16 magic[2];		// 0x2C: 0x00490049 "I I"
940 };
941 
942 #define SIZEOF_SDH_DIRENTRY 0x30
943 
944 struct REPARSE_KEY {
945 	__le32 ReparseTag;		// 0x00: Reparse Tag
946 	struct MFT_REF ref;		// 0x04: MFT record number with this file
947 }; // sizeof() = 0x0C
948 
949 static_assert(offsetof(struct REPARSE_KEY, ref) == 0x04);
950 #define SIZEOF_REPARSE_KEY 0x0C
951 
952 /* Reparse Directory entry structure */
953 struct NTFS_DE_R {
954 	struct NTFS_DE de;
955 	struct REPARSE_KEY key;		// 0x10: Reparse Key.
956 	u32 zero;			// 0x1c:
957 }; // sizeof() = 0x20
958 
959 static_assert(sizeof(struct NTFS_DE_R) == 0x20);
960 
961 /* CompressReparseBuffer.WofVersion */
962 #define WOF_CURRENT_VERSION		cpu_to_le32(1)
963 /* CompressReparseBuffer.WofProvider */
964 #define WOF_PROVIDER_WIM		cpu_to_le32(1)
965 /* CompressReparseBuffer.WofProvider */
966 #define WOF_PROVIDER_SYSTEM		cpu_to_le32(2)
967 /* CompressReparseBuffer.ProviderVer */
968 #define WOF_PROVIDER_CURRENT_VERSION	cpu_to_le32(1)
969 
970 #define WOF_COMPRESSION_XPRESS4K	cpu_to_le32(0) // 4k
971 #define WOF_COMPRESSION_LZX32K		cpu_to_le32(1) // 32k
972 #define WOF_COMPRESSION_XPRESS8K	cpu_to_le32(2) // 8k
973 #define WOF_COMPRESSION_XPRESS16K	cpu_to_le32(3) // 16k
974 
975 /*
976  * ATTR_REPARSE (0xC0)
977  *
978  * The reparse struct GUID structure is used by all 3rd party layered drivers to
979  * store data in a reparse point. For non-Microsoft tags, The struct GUID field
980  * cannot be GUID_NULL.
981  * The constraints on reparse tags are defined below.
982  * Microsoft tags can also be used with this format of the reparse point buffer.
983  */
984 struct REPARSE_POINT {
985 	__le32 ReparseTag;	// 0x00:
986 	__le16 ReparseDataLength;// 0x04:
987 	__le16 Reserved;
988 
989 	struct GUID Guid;	// 0x08:
990 
991 	//
992 	// Here GenericReparseBuffer is placed
993 	//
994 };
995 
996 static_assert(sizeof(struct REPARSE_POINT) == 0x18);
997 
998 /* Maximum allowed size of the reparse data. */
999 #define MAXIMUM_REPARSE_DATA_BUFFER_SIZE	(16 * 1024)
1000 
1001 /*
1002  * The value of the following constant needs to satisfy the following
1003  * conditions:
1004  *  (1) Be at least as large as the largest of the reserved tags.
1005  *  (2) Be strictly smaller than all the tags in use.
1006  */
1007 #define IO_REPARSE_TAG_RESERVED_RANGE		1
1008 
1009 /*
1010  * The reparse tags are a ULONG. The 32 bits are laid out as follows:
1011  *
1012  *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1013  *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1014  *  +-+-+-+-+-----------------------+-------------------------------+
1015  *  |M|R|N|R|	  Reserved bits     |	    Reparse Tag Value	    |
1016  *  +-+-+-+-+-----------------------+-------------------------------+
1017  *
1018  * M is the Microsoft bit. When set to 1, it denotes a tag owned by Microsoft.
1019  *   All ISVs must use a tag with a 0 in this position.
1020  *   Note: If a Microsoft tag is used by non-Microsoft software, the
1021  *   behavior is not defined.
1022  *
1023  * R is reserved.  Must be zero for non-Microsoft tags.
1024  *
1025  * N is name surrogate. When set to 1, the file represents another named
1026  *   entity in the system.
1027  *
1028  * The M and N bits are OR-able.
1029  * The following macros check for the M and N bit values:
1030  */
1031 
1032 /*
1033  * Macro to determine whether a reparse point tag corresponds to a tag
1034  * owned by Microsoft.
1035  */
1036 #define IsReparseTagMicrosoft(_tag)	(((_tag)&IO_REPARSE_TAG_MICROSOFT))
1037 
1038 /* Macro to determine whether a reparse point tag is a name surrogate. */
1039 #define IsReparseTagNameSurrogate(_tag)	(((_tag)&IO_REPARSE_TAG_NAME_SURROGATE))
1040 
1041 /*
1042  * The following constant represents the bits that are valid to use in
1043  * reparse tags.
1044  */
1045 #define IO_REPARSE_TAG_VALID_VALUES	0xF000FFFF
1046 
1047 /*
1048  * Macro to determine whether a reparse tag is a valid tag.
1049  */
1050 #define IsReparseTagValid(_tag)						       \
1051 	(!((_tag) & ~IO_REPARSE_TAG_VALID_VALUES) &&			       \
1052 	 ((_tag) > IO_REPARSE_TAG_RESERVED_RANGE))
1053 
1054 /* Microsoft tags for reparse points. */
1055 
1056 enum IO_REPARSE_TAG {
1057 	IO_REPARSE_TAG_SYMBOLIC_LINK	= cpu_to_le32(0),
1058 	IO_REPARSE_TAG_NAME_SURROGATE	= cpu_to_le32(0x20000000),
1059 	IO_REPARSE_TAG_MICROSOFT	= cpu_to_le32(0x80000000),
1060 	IO_REPARSE_TAG_MOUNT_POINT	= cpu_to_le32(0xA0000003),
1061 	IO_REPARSE_TAG_SYMLINK		= cpu_to_le32(0xA000000C),
1062 	IO_REPARSE_TAG_HSM		= cpu_to_le32(0xC0000004),
1063 	IO_REPARSE_TAG_SIS		= cpu_to_le32(0x80000007),
1064 	IO_REPARSE_TAG_DEDUP		= cpu_to_le32(0x80000013),
1065 	IO_REPARSE_TAG_COMPRESS		= cpu_to_le32(0x80000017),
1066 
1067 	/*
1068 	 * The reparse tag 0x80000008 is reserved for Microsoft internal use.
1069 	 * May be published in the future.
1070 	 */
1071 
1072 	/* Microsoft reparse tag reserved for DFS */
1073 	IO_REPARSE_TAG_DFS	= cpu_to_le32(0x8000000A),
1074 
1075 	/* Microsoft reparse tag reserved for the file system filter manager. */
1076 	IO_REPARSE_TAG_FILTER_MANAGER	= cpu_to_le32(0x8000000B),
1077 
1078 	/* Non-Microsoft tags for reparse points */
1079 
1080 	/* Tag allocated to CONGRUENT, May 2000. Used by IFSTEST. */
1081 	IO_REPARSE_TAG_IFSTEST_CONGRUENT = cpu_to_le32(0x00000009),
1082 
1083 	/* Tag allocated to ARKIVIO. */
1084 	IO_REPARSE_TAG_ARKIVIO	= cpu_to_le32(0x0000000C),
1085 
1086 	/* Tag allocated to SOLUTIONSOFT. */
1087 	IO_REPARSE_TAG_SOLUTIONSOFT	= cpu_to_le32(0x2000000D),
1088 
1089 	/* Tag allocated to COMMVAULT. */
1090 	IO_REPARSE_TAG_COMMVAULT	= cpu_to_le32(0x0000000E),
1091 
1092 	/* OneDrive?? */
1093 	IO_REPARSE_TAG_CLOUD	= cpu_to_le32(0x9000001A),
1094 	IO_REPARSE_TAG_CLOUD_1	= cpu_to_le32(0x9000101A),
1095 	IO_REPARSE_TAG_CLOUD_2	= cpu_to_le32(0x9000201A),
1096 	IO_REPARSE_TAG_CLOUD_3	= cpu_to_le32(0x9000301A),
1097 	IO_REPARSE_TAG_CLOUD_4	= cpu_to_le32(0x9000401A),
1098 	IO_REPARSE_TAG_CLOUD_5	= cpu_to_le32(0x9000501A),
1099 	IO_REPARSE_TAG_CLOUD_6	= cpu_to_le32(0x9000601A),
1100 	IO_REPARSE_TAG_CLOUD_7	= cpu_to_le32(0x9000701A),
1101 	IO_REPARSE_TAG_CLOUD_8	= cpu_to_le32(0x9000801A),
1102 	IO_REPARSE_TAG_CLOUD_9	= cpu_to_le32(0x9000901A),
1103 	IO_REPARSE_TAG_CLOUD_A	= cpu_to_le32(0x9000A01A),
1104 	IO_REPARSE_TAG_CLOUD_B	= cpu_to_le32(0x9000B01A),
1105 	IO_REPARSE_TAG_CLOUD_C	= cpu_to_le32(0x9000C01A),
1106 	IO_REPARSE_TAG_CLOUD_D	= cpu_to_le32(0x9000D01A),
1107 	IO_REPARSE_TAG_CLOUD_E	= cpu_to_le32(0x9000E01A),
1108 	IO_REPARSE_TAG_CLOUD_F	= cpu_to_le32(0x9000F01A),
1109 
1110 };
1111 
1112 #define SYMLINK_FLAG_RELATIVE		1
1113 
1114 /* Microsoft reparse buffer. (see DDK for details) */
1115 struct REPARSE_DATA_BUFFER {
1116 	__le32 ReparseTag;		// 0x00:
1117 	__le16 ReparseDataLength;	// 0x04:
1118 	__le16 Reserved;
1119 
1120 	union {
1121 		/* If ReparseTag == 0xA0000003 (IO_REPARSE_TAG_MOUNT_POINT) */
1122 		struct {
1123 			__le16 SubstituteNameOffset; // 0x08
1124 			__le16 SubstituteNameLength; // 0x0A
1125 			__le16 PrintNameOffset;      // 0x0C
1126 			__le16 PrintNameLength;      // 0x0E
1127 			__le16 PathBuffer[];	     // 0x10
1128 		} MountPointReparseBuffer;
1129 
1130 		/*
1131 		 * If ReparseTag == 0xA000000C (IO_REPARSE_TAG_SYMLINK)
1132 		 * https://msdn.microsoft.com/en-us/library/cc232006.aspx
1133 		 */
1134 		struct {
1135 			__le16 SubstituteNameOffset; // 0x08
1136 			__le16 SubstituteNameLength; // 0x0A
1137 			__le16 PrintNameOffset;      // 0x0C
1138 			__le16 PrintNameLength;      // 0x0E
1139 			// 0-absolute path 1- relative path, SYMLINK_FLAG_RELATIVE
1140 			__le32 Flags;		     // 0x10
1141 			__le16 PathBuffer[];	     // 0x14
1142 		} SymbolicLinkReparseBuffer;
1143 
1144 		/* If ReparseTag == 0x80000017U */
1145 		struct {
1146 			__le32 WofVersion;  // 0x08 == 1
1147 			/*
1148 			 * 1 - WIM backing provider ("WIMBoot"),
1149 			 * 2 - System compressed file provider
1150 			 */
1151 			__le32 WofProvider; // 0x0C:
1152 			__le32 ProviderVer; // 0x10: == 1 WOF_FILE_PROVIDER_CURRENT_VERSION == 1
1153 			__le32 CompressionFormat; // 0x14: 0, 1, 2, 3. See WOF_COMPRESSION_XXX
1154 		} CompressReparseBuffer;
1155 
1156 		struct {
1157 			u8 DataBuffer[1];   // 0x08:
1158 		} GenericReparseBuffer;
1159 	};
1160 };
1161 
1162 /* ATTR_EA_INFO (0xD0) */
1163 
1164 #define FILE_NEED_EA 0x80 // See ntifs.h
1165 /*
1166  * FILE_NEED_EA, indicates that the file to which the EA belongs cannot be
1167  * interpreted without understanding the associated extended attributes.
1168  */
1169 struct EA_INFO {
1170 	__le16 size_pack;	// 0x00: Size of buffer to hold in packed form.
1171 	__le16 count;		// 0x02: Count of EA's with FILE_NEED_EA bit set.
1172 	__le32 size;		// 0x04: Size of buffer to hold in unpacked form.
1173 };
1174 
1175 static_assert(sizeof(struct EA_INFO) == 8);
1176 
1177 /* ATTR_EA (0xE0) */
1178 struct EA_FULL {
1179 	__le32 size;		// 0x00: (not in packed)
1180 	u8 flags;		// 0x04:
1181 	u8 name_len;		// 0x05:
1182 	__le16 elength;		// 0x06:
1183 	u8 name[];		// 0x08:
1184 };
1185 
1186 static_assert(offsetof(struct EA_FULL, name) == 8);
1187 
1188 #define ACL_REVISION	2
1189 #define ACL_REVISION_DS 4
1190 
1191 #define SE_SELF_RELATIVE cpu_to_le16(0x8000)
1192 
1193 struct SECURITY_DESCRIPTOR_RELATIVE {
1194 	u8 Revision;
1195 	u8 Sbz1;
1196 	__le16 Control;
1197 	__le32 Owner;
1198 	__le32 Group;
1199 	__le32 Sacl;
1200 	__le32 Dacl;
1201 };
1202 static_assert(sizeof(struct SECURITY_DESCRIPTOR_RELATIVE) == 0x14);
1203 
1204 struct ACE_HEADER {
1205 	u8 AceType;
1206 	u8 AceFlags;
1207 	__le16 AceSize;
1208 };
1209 static_assert(sizeof(struct ACE_HEADER) == 4);
1210 
1211 struct ACL {
1212 	u8 AclRevision;
1213 	u8 Sbz1;
1214 	__le16 AclSize;
1215 	__le16 AceCount;
1216 	__le16 Sbz2;
1217 };
1218 static_assert(sizeof(struct ACL) == 8);
1219 
1220 struct SID {
1221 	u8 Revision;
1222 	u8 SubAuthorityCount;
1223 	u8 IdentifierAuthority[6];
1224 	__le32 SubAuthority[];
1225 };
1226 static_assert(offsetof(struct SID, SubAuthority) == 8);
1227 
1228 #endif /* _LINUX_NTFS3_NTFS_H */
1229 // clang-format on
1230