1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/namei.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * Some corrections by tytso. 10 */ 11 12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 13 * lookup logic. 14 */ 15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 16 */ 17 18 #include <linux/init.h> 19 #include <linux/export.h> 20 #include <linux/slab.h> 21 #include <linux/wordpart.h> 22 #include <linux/fs.h> 23 #include <linux/filelock.h> 24 #include <linux/namei.h> 25 #include <linux/pagemap.h> 26 #include <linux/sched/mm.h> 27 #include <linux/fsnotify.h> 28 #include <linux/personality.h> 29 #include <linux/security.h> 30 #include <linux/syscalls.h> 31 #include <linux/mount.h> 32 #include <linux/audit.h> 33 #include <linux/capability.h> 34 #include <linux/file.h> 35 #include <linux/fcntl.h> 36 #include <linux/device_cgroup.h> 37 #include <linux/fs_struct.h> 38 #include <linux/posix_acl.h> 39 #include <linux/hash.h> 40 #include <linux/bitops.h> 41 #include <linux/init_task.h> 42 #include <linux/uaccess.h> 43 44 #include "internal.h" 45 #include "mount.h" 46 47 /* [Feb-1997 T. Schoebel-Theuer] 48 * Fundamental changes in the pathname lookup mechanisms (namei) 49 * were necessary because of omirr. The reason is that omirr needs 50 * to know the _real_ pathname, not the user-supplied one, in case 51 * of symlinks (and also when transname replacements occur). 52 * 53 * The new code replaces the old recursive symlink resolution with 54 * an iterative one (in case of non-nested symlink chains). It does 55 * this with calls to <fs>_follow_link(). 56 * As a side effect, dir_namei(), _namei() and follow_link() are now 57 * replaced with a single function lookup_dentry() that can handle all 58 * the special cases of the former code. 59 * 60 * With the new dcache, the pathname is stored at each inode, at least as 61 * long as the refcount of the inode is positive. As a side effect, the 62 * size of the dcache depends on the inode cache and thus is dynamic. 63 * 64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 65 * resolution to correspond with current state of the code. 66 * 67 * Note that the symlink resolution is not *completely* iterative. 68 * There is still a significant amount of tail- and mid- recursion in 69 * the algorithm. Also, note that <fs>_readlink() is not used in 70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 71 * may return different results than <fs>_follow_link(). Many virtual 72 * filesystems (including /proc) exhibit this behavior. 73 */ 74 75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 77 * and the name already exists in form of a symlink, try to create the new 78 * name indicated by the symlink. The old code always complained that the 79 * name already exists, due to not following the symlink even if its target 80 * is nonexistent. The new semantics affects also mknod() and link() when 81 * the name is a symlink pointing to a non-existent name. 82 * 83 * I don't know which semantics is the right one, since I have no access 84 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 86 * "old" one. Personally, I think the new semantics is much more logical. 87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 88 * file does succeed in both HP-UX and SunOs, but not in Solaris 89 * and in the old Linux semantics. 90 */ 91 92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 93 * semantics. See the comments in "open_namei" and "do_link" below. 94 * 95 * [10-Sep-98 Alan Modra] Another symlink change. 96 */ 97 98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 99 * inside the path - always follow. 100 * in the last component in creation/removal/renaming - never follow. 101 * if LOOKUP_FOLLOW passed - follow. 102 * if the pathname has trailing slashes - follow. 103 * otherwise - don't follow. 104 * (applied in that order). 105 * 106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 108 * During the 2.4 we need to fix the userland stuff depending on it - 109 * hopefully we will be able to get rid of that wart in 2.5. So far only 110 * XEmacs seems to be relying on it... 111 */ 112 /* 113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 114 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 115 * any extra contention... 116 */ 117 118 /* In order to reduce some races, while at the same time doing additional 119 * checking and hopefully speeding things up, we copy filenames to the 120 * kernel data space before using them.. 121 * 122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 123 * PATH_MAX includes the nul terminator --RR. 124 */ 125 126 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 127 128 static inline void initname(struct filename *name, const char __user *uptr) 129 { 130 name->uptr = uptr; 131 name->aname = NULL; 132 atomic_set(&name->refcnt, 1); 133 } 134 135 struct filename * 136 getname_flags(const char __user *filename, int flags) 137 { 138 struct filename *result; 139 char *kname; 140 int len; 141 142 result = audit_reusename(filename); 143 if (result) 144 return result; 145 146 result = __getname(); 147 if (unlikely(!result)) 148 return ERR_PTR(-ENOMEM); 149 150 /* 151 * First, try to embed the struct filename inside the names_cache 152 * allocation 153 */ 154 kname = (char *)result->iname; 155 result->name = kname; 156 157 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 158 /* 159 * Handle both empty path and copy failure in one go. 160 */ 161 if (unlikely(len <= 0)) { 162 if (unlikely(len < 0)) { 163 __putname(result); 164 return ERR_PTR(len); 165 } 166 167 /* The empty path is special. */ 168 if (!(flags & LOOKUP_EMPTY)) { 169 __putname(result); 170 return ERR_PTR(-ENOENT); 171 } 172 } 173 174 /* 175 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 176 * separate struct filename so we can dedicate the entire 177 * names_cache allocation for the pathname, and re-do the copy from 178 * userland. 179 */ 180 if (unlikely(len == EMBEDDED_NAME_MAX)) { 181 const size_t size = offsetof(struct filename, iname[1]); 182 kname = (char *)result; 183 184 /* 185 * size is chosen that way we to guarantee that 186 * result->iname[0] is within the same object and that 187 * kname can't be equal to result->iname, no matter what. 188 */ 189 result = kzalloc(size, GFP_KERNEL); 190 if (unlikely(!result)) { 191 __putname(kname); 192 return ERR_PTR(-ENOMEM); 193 } 194 result->name = kname; 195 len = strncpy_from_user(kname, filename, PATH_MAX); 196 if (unlikely(len < 0)) { 197 __putname(kname); 198 kfree(result); 199 return ERR_PTR(len); 200 } 201 /* The empty path is special. */ 202 if (unlikely(!len) && !(flags & LOOKUP_EMPTY)) { 203 __putname(kname); 204 kfree(result); 205 return ERR_PTR(-ENOENT); 206 } 207 if (unlikely(len == PATH_MAX)) { 208 __putname(kname); 209 kfree(result); 210 return ERR_PTR(-ENAMETOOLONG); 211 } 212 } 213 initname(result, filename); 214 audit_getname(result); 215 return result; 216 } 217 218 struct filename *getname_uflags(const char __user *filename, int uflags) 219 { 220 int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 221 222 return getname_flags(filename, flags); 223 } 224 225 struct filename *__getname_maybe_null(const char __user *pathname) 226 { 227 struct filename *name; 228 char c; 229 230 /* try to save on allocations; loss on um, though */ 231 if (get_user(c, pathname)) 232 return ERR_PTR(-EFAULT); 233 if (!c) 234 return NULL; 235 236 name = getname_flags(pathname, LOOKUP_EMPTY); 237 if (!IS_ERR(name) && !(name->name[0])) { 238 putname(name); 239 name = NULL; 240 } 241 return name; 242 } 243 244 struct filename *getname_kernel(const char * filename) 245 { 246 struct filename *result; 247 int len = strlen(filename) + 1; 248 249 result = __getname(); 250 if (unlikely(!result)) 251 return ERR_PTR(-ENOMEM); 252 253 if (len <= EMBEDDED_NAME_MAX) { 254 result->name = (char *)result->iname; 255 } else if (len <= PATH_MAX) { 256 const size_t size = offsetof(struct filename, iname[1]); 257 struct filename *tmp; 258 259 tmp = kmalloc(size, GFP_KERNEL); 260 if (unlikely(!tmp)) { 261 __putname(result); 262 return ERR_PTR(-ENOMEM); 263 } 264 tmp->name = (char *)result; 265 result = tmp; 266 } else { 267 __putname(result); 268 return ERR_PTR(-ENAMETOOLONG); 269 } 270 memcpy((char *)result->name, filename, len); 271 initname(result, NULL); 272 audit_getname(result); 273 return result; 274 } 275 EXPORT_SYMBOL(getname_kernel); 276 277 void putname(struct filename *name) 278 { 279 int refcnt; 280 281 if (IS_ERR_OR_NULL(name)) 282 return; 283 284 refcnt = atomic_read(&name->refcnt); 285 if (refcnt != 1) { 286 if (WARN_ON_ONCE(!refcnt)) 287 return; 288 289 if (!atomic_dec_and_test(&name->refcnt)) 290 return; 291 } 292 293 if (name->name != name->iname) { 294 __putname(name->name); 295 kfree(name); 296 } else 297 __putname(name); 298 } 299 EXPORT_SYMBOL(putname); 300 301 /** 302 * check_acl - perform ACL permission checking 303 * @idmap: idmap of the mount the inode was found from 304 * @inode: inode to check permissions on 305 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 306 * 307 * This function performs the ACL permission checking. Since this function 308 * retrieve POSIX acls it needs to know whether it is called from a blocking or 309 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 310 * 311 * If the inode has been found through an idmapped mount the idmap of 312 * the vfsmount must be passed through @idmap. This function will then take 313 * care to map the inode according to @idmap before checking permissions. 314 * On non-idmapped mounts or if permission checking is to be performed on the 315 * raw inode simply pass @nop_mnt_idmap. 316 */ 317 static int check_acl(struct mnt_idmap *idmap, 318 struct inode *inode, int mask) 319 { 320 #ifdef CONFIG_FS_POSIX_ACL 321 struct posix_acl *acl; 322 323 if (mask & MAY_NOT_BLOCK) { 324 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 325 if (!acl) 326 return -EAGAIN; 327 /* no ->get_inode_acl() calls in RCU mode... */ 328 if (is_uncached_acl(acl)) 329 return -ECHILD; 330 return posix_acl_permission(idmap, inode, acl, mask); 331 } 332 333 acl = get_inode_acl(inode, ACL_TYPE_ACCESS); 334 if (IS_ERR(acl)) 335 return PTR_ERR(acl); 336 if (acl) { 337 int error = posix_acl_permission(idmap, inode, acl, mask); 338 posix_acl_release(acl); 339 return error; 340 } 341 #endif 342 343 return -EAGAIN; 344 } 345 346 /* 347 * Very quick optimistic "we know we have no ACL's" check. 348 * 349 * Note that this is purely for ACL_TYPE_ACCESS, and purely 350 * for the "we have cached that there are no ACLs" case. 351 * 352 * If this returns true, we know there are no ACLs. But if 353 * it returns false, we might still not have ACLs (it could 354 * be the is_uncached_acl() case). 355 */ 356 static inline bool no_acl_inode(struct inode *inode) 357 { 358 #ifdef CONFIG_FS_POSIX_ACL 359 return likely(!READ_ONCE(inode->i_acl)); 360 #else 361 return true; 362 #endif 363 } 364 365 /** 366 * acl_permission_check - perform basic UNIX permission checking 367 * @idmap: idmap of the mount the inode was found from 368 * @inode: inode to check permissions on 369 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 370 * 371 * This function performs the basic UNIX permission checking. Since this 372 * function may retrieve POSIX acls it needs to know whether it is called from a 373 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 374 * 375 * If the inode has been found through an idmapped mount the idmap of 376 * the vfsmount must be passed through @idmap. This function will then take 377 * care to map the inode according to @idmap before checking permissions. 378 * On non-idmapped mounts or if permission checking is to be performed on the 379 * raw inode simply pass @nop_mnt_idmap. 380 */ 381 static int acl_permission_check(struct mnt_idmap *idmap, 382 struct inode *inode, int mask) 383 { 384 unsigned int mode = inode->i_mode; 385 vfsuid_t vfsuid; 386 387 /* 388 * Common cheap case: everybody has the requested 389 * rights, and there are no ACLs to check. No need 390 * to do any owner/group checks in that case. 391 * 392 * - 'mask&7' is the requested permission bit set 393 * - multiplying by 0111 spreads them out to all of ugo 394 * - '& ~mode' looks for missing inode permission bits 395 * - the '!' is for "no missing permissions" 396 * 397 * After that, we just need to check that there are no 398 * ACL's on the inode - do the 'IS_POSIXACL()' check last 399 * because it will dereference the ->i_sb pointer and we 400 * want to avoid that if at all possible. 401 */ 402 if (!((mask & 7) * 0111 & ~mode)) { 403 if (no_acl_inode(inode)) 404 return 0; 405 if (!IS_POSIXACL(inode)) 406 return 0; 407 } 408 409 /* Are we the owner? If so, ACL's don't matter */ 410 vfsuid = i_uid_into_vfsuid(idmap, inode); 411 if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) { 412 mask &= 7; 413 mode >>= 6; 414 return (mask & ~mode) ? -EACCES : 0; 415 } 416 417 /* Do we have ACL's? */ 418 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 419 int error = check_acl(idmap, inode, mask); 420 if (error != -EAGAIN) 421 return error; 422 } 423 424 /* Only RWX matters for group/other mode bits */ 425 mask &= 7; 426 427 /* 428 * Are the group permissions different from 429 * the other permissions in the bits we care 430 * about? Need to check group ownership if so. 431 */ 432 if (mask & (mode ^ (mode >> 3))) { 433 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode); 434 if (vfsgid_in_group_p(vfsgid)) 435 mode >>= 3; 436 } 437 438 /* Bits in 'mode' clear that we require? */ 439 return (mask & ~mode) ? -EACCES : 0; 440 } 441 442 /** 443 * generic_permission - check for access rights on a Posix-like filesystem 444 * @idmap: idmap of the mount the inode was found from 445 * @inode: inode to check access rights for 446 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, 447 * %MAY_NOT_BLOCK ...) 448 * 449 * Used to check for read/write/execute permissions on a file. 450 * We use "fsuid" for this, letting us set arbitrary permissions 451 * for filesystem access without changing the "normal" uids which 452 * are used for other things. 453 * 454 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 455 * request cannot be satisfied (eg. requires blocking or too much complexity). 456 * It would then be called again in ref-walk mode. 457 * 458 * If the inode has been found through an idmapped mount the idmap of 459 * the vfsmount must be passed through @idmap. This function will then take 460 * care to map the inode according to @idmap before checking permissions. 461 * On non-idmapped mounts or if permission checking is to be performed on the 462 * raw inode simply pass @nop_mnt_idmap. 463 */ 464 int generic_permission(struct mnt_idmap *idmap, struct inode *inode, 465 int mask) 466 { 467 int ret; 468 469 /* 470 * Do the basic permission checks. 471 */ 472 ret = acl_permission_check(idmap, inode, mask); 473 if (ret != -EACCES) 474 return ret; 475 476 if (S_ISDIR(inode->i_mode)) { 477 /* DACs are overridable for directories */ 478 if (!(mask & MAY_WRITE)) 479 if (capable_wrt_inode_uidgid(idmap, inode, 480 CAP_DAC_READ_SEARCH)) 481 return 0; 482 if (capable_wrt_inode_uidgid(idmap, inode, 483 CAP_DAC_OVERRIDE)) 484 return 0; 485 return -EACCES; 486 } 487 488 /* 489 * Searching includes executable on directories, else just read. 490 */ 491 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 492 if (mask == MAY_READ) 493 if (capable_wrt_inode_uidgid(idmap, inode, 494 CAP_DAC_READ_SEARCH)) 495 return 0; 496 /* 497 * Read/write DACs are always overridable. 498 * Executable DACs are overridable when there is 499 * at least one exec bit set. 500 */ 501 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 502 if (capable_wrt_inode_uidgid(idmap, inode, 503 CAP_DAC_OVERRIDE)) 504 return 0; 505 506 return -EACCES; 507 } 508 EXPORT_SYMBOL(generic_permission); 509 510 /** 511 * do_inode_permission - UNIX permission checking 512 * @idmap: idmap of the mount the inode was found from 513 * @inode: inode to check permissions on 514 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 515 * 516 * We _really_ want to just do "generic_permission()" without 517 * even looking at the inode->i_op values. So we keep a cache 518 * flag in inode->i_opflags, that says "this has not special 519 * permission function, use the fast case". 520 */ 521 static inline int do_inode_permission(struct mnt_idmap *idmap, 522 struct inode *inode, int mask) 523 { 524 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 525 if (likely(inode->i_op->permission)) 526 return inode->i_op->permission(idmap, inode, mask); 527 528 /* This gets set once for the inode lifetime */ 529 spin_lock(&inode->i_lock); 530 inode->i_opflags |= IOP_FASTPERM; 531 spin_unlock(&inode->i_lock); 532 } 533 return generic_permission(idmap, inode, mask); 534 } 535 536 /** 537 * sb_permission - Check superblock-level permissions 538 * @sb: Superblock of inode to check permission on 539 * @inode: Inode to check permission on 540 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 541 * 542 * Separate out file-system wide checks from inode-specific permission checks. 543 */ 544 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 545 { 546 if (unlikely(mask & MAY_WRITE)) { 547 umode_t mode = inode->i_mode; 548 549 /* Nobody gets write access to a read-only fs. */ 550 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 551 return -EROFS; 552 } 553 return 0; 554 } 555 556 /** 557 * inode_permission - Check for access rights to a given inode 558 * @idmap: idmap of the mount the inode was found from 559 * @inode: Inode to check permission on 560 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 561 * 562 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 563 * this, letting us set arbitrary permissions for filesystem access without 564 * changing the "normal" UIDs which are used for other things. 565 * 566 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 567 */ 568 int inode_permission(struct mnt_idmap *idmap, 569 struct inode *inode, int mask) 570 { 571 int retval; 572 573 retval = sb_permission(inode->i_sb, inode, mask); 574 if (unlikely(retval)) 575 return retval; 576 577 if (unlikely(mask & MAY_WRITE)) { 578 /* 579 * Nobody gets write access to an immutable file. 580 */ 581 if (unlikely(IS_IMMUTABLE(inode))) 582 return -EPERM; 583 584 /* 585 * Updating mtime will likely cause i_uid and i_gid to be 586 * written back improperly if their true value is unknown 587 * to the vfs. 588 */ 589 if (unlikely(HAS_UNMAPPED_ID(idmap, inode))) 590 return -EACCES; 591 } 592 593 retval = do_inode_permission(idmap, inode, mask); 594 if (unlikely(retval)) 595 return retval; 596 597 retval = devcgroup_inode_permission(inode, mask); 598 if (unlikely(retval)) 599 return retval; 600 601 return security_inode_permission(inode, mask); 602 } 603 EXPORT_SYMBOL(inode_permission); 604 605 /** 606 * path_get - get a reference to a path 607 * @path: path to get the reference to 608 * 609 * Given a path increment the reference count to the dentry and the vfsmount. 610 */ 611 void path_get(const struct path *path) 612 { 613 mntget(path->mnt); 614 dget(path->dentry); 615 } 616 EXPORT_SYMBOL(path_get); 617 618 /** 619 * path_put - put a reference to a path 620 * @path: path to put the reference to 621 * 622 * Given a path decrement the reference count to the dentry and the vfsmount. 623 */ 624 void path_put(const struct path *path) 625 { 626 dput(path->dentry); 627 mntput(path->mnt); 628 } 629 EXPORT_SYMBOL(path_put); 630 631 #define EMBEDDED_LEVELS 2 632 struct nameidata { 633 struct path path; 634 struct qstr last; 635 struct path root; 636 struct inode *inode; /* path.dentry.d_inode */ 637 unsigned int flags, state; 638 unsigned seq, next_seq, m_seq, r_seq; 639 int last_type; 640 unsigned depth; 641 int total_link_count; 642 struct saved { 643 struct path link; 644 struct delayed_call done; 645 const char *name; 646 unsigned seq; 647 } *stack, internal[EMBEDDED_LEVELS]; 648 struct filename *name; 649 const char *pathname; 650 struct nameidata *saved; 651 unsigned root_seq; 652 int dfd; 653 vfsuid_t dir_vfsuid; 654 umode_t dir_mode; 655 } __randomize_layout; 656 657 #define ND_ROOT_PRESET 1 658 #define ND_ROOT_GRABBED 2 659 #define ND_JUMPED 4 660 661 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name) 662 { 663 struct nameidata *old = current->nameidata; 664 p->stack = p->internal; 665 p->depth = 0; 666 p->dfd = dfd; 667 p->name = name; 668 p->pathname = likely(name) ? name->name : ""; 669 p->path.mnt = NULL; 670 p->path.dentry = NULL; 671 p->total_link_count = old ? old->total_link_count : 0; 672 p->saved = old; 673 current->nameidata = p; 674 } 675 676 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name, 677 const struct path *root) 678 { 679 __set_nameidata(p, dfd, name); 680 p->state = 0; 681 if (unlikely(root)) { 682 p->state = ND_ROOT_PRESET; 683 p->root = *root; 684 } 685 } 686 687 static void restore_nameidata(void) 688 { 689 struct nameidata *now = current->nameidata, *old = now->saved; 690 691 current->nameidata = old; 692 if (old) 693 old->total_link_count = now->total_link_count; 694 if (now->stack != now->internal) 695 kfree(now->stack); 696 } 697 698 static bool nd_alloc_stack(struct nameidata *nd) 699 { 700 struct saved *p; 701 702 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 703 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL); 704 if (unlikely(!p)) 705 return false; 706 memcpy(p, nd->internal, sizeof(nd->internal)); 707 nd->stack = p; 708 return true; 709 } 710 711 /** 712 * path_connected - Verify that a dentry is below mnt.mnt_root 713 * @mnt: The mountpoint to check. 714 * @dentry: The dentry to check. 715 * 716 * Rename can sometimes move a file or directory outside of a bind 717 * mount, path_connected allows those cases to be detected. 718 */ 719 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry) 720 { 721 struct super_block *sb = mnt->mnt_sb; 722 723 /* Bind mounts can have disconnected paths */ 724 if (mnt->mnt_root == sb->s_root) 725 return true; 726 727 return is_subdir(dentry, mnt->mnt_root); 728 } 729 730 static void drop_links(struct nameidata *nd) 731 { 732 int i = nd->depth; 733 while (i--) { 734 struct saved *last = nd->stack + i; 735 do_delayed_call(&last->done); 736 clear_delayed_call(&last->done); 737 } 738 } 739 740 static void leave_rcu(struct nameidata *nd) 741 { 742 nd->flags &= ~LOOKUP_RCU; 743 nd->seq = nd->next_seq = 0; 744 rcu_read_unlock(); 745 } 746 747 static void terminate_walk(struct nameidata *nd) 748 { 749 drop_links(nd); 750 if (!(nd->flags & LOOKUP_RCU)) { 751 int i; 752 path_put(&nd->path); 753 for (i = 0; i < nd->depth; i++) 754 path_put(&nd->stack[i].link); 755 if (nd->state & ND_ROOT_GRABBED) { 756 path_put(&nd->root); 757 nd->state &= ~ND_ROOT_GRABBED; 758 } 759 } else { 760 leave_rcu(nd); 761 } 762 nd->depth = 0; 763 nd->path.mnt = NULL; 764 nd->path.dentry = NULL; 765 } 766 767 /* path_put is needed afterwards regardless of success or failure */ 768 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq) 769 { 770 int res = __legitimize_mnt(path->mnt, mseq); 771 if (unlikely(res)) { 772 if (res > 0) 773 path->mnt = NULL; 774 path->dentry = NULL; 775 return false; 776 } 777 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 778 path->dentry = NULL; 779 return false; 780 } 781 return !read_seqcount_retry(&path->dentry->d_seq, seq); 782 } 783 784 static inline bool legitimize_path(struct nameidata *nd, 785 struct path *path, unsigned seq) 786 { 787 return __legitimize_path(path, seq, nd->m_seq); 788 } 789 790 static bool legitimize_links(struct nameidata *nd) 791 { 792 int i; 793 if (unlikely(nd->flags & LOOKUP_CACHED)) { 794 drop_links(nd); 795 nd->depth = 0; 796 return false; 797 } 798 for (i = 0; i < nd->depth; i++) { 799 struct saved *last = nd->stack + i; 800 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 801 drop_links(nd); 802 nd->depth = i + 1; 803 return false; 804 } 805 } 806 return true; 807 } 808 809 static bool legitimize_root(struct nameidata *nd) 810 { 811 /* Nothing to do if nd->root is zero or is managed by the VFS user. */ 812 if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET)) 813 return true; 814 nd->state |= ND_ROOT_GRABBED; 815 return legitimize_path(nd, &nd->root, nd->root_seq); 816 } 817 818 /* 819 * Path walking has 2 modes, rcu-walk and ref-walk (see 820 * Documentation/filesystems/path-lookup.txt). In situations when we can't 821 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 822 * normal reference counts on dentries and vfsmounts to transition to ref-walk 823 * mode. Refcounts are grabbed at the last known good point before rcu-walk 824 * got stuck, so ref-walk may continue from there. If this is not successful 825 * (eg. a seqcount has changed), then failure is returned and it's up to caller 826 * to restart the path walk from the beginning in ref-walk mode. 827 */ 828 829 /** 830 * try_to_unlazy - try to switch to ref-walk mode. 831 * @nd: nameidata pathwalk data 832 * Returns: true on success, false on failure 833 * 834 * try_to_unlazy attempts to legitimize the current nd->path and nd->root 835 * for ref-walk mode. 836 * Must be called from rcu-walk context. 837 * Nothing should touch nameidata between try_to_unlazy() failure and 838 * terminate_walk(). 839 */ 840 static bool try_to_unlazy(struct nameidata *nd) 841 { 842 struct dentry *parent = nd->path.dentry; 843 844 BUG_ON(!(nd->flags & LOOKUP_RCU)); 845 846 if (unlikely(!legitimize_links(nd))) 847 goto out1; 848 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) 849 goto out; 850 if (unlikely(!legitimize_root(nd))) 851 goto out; 852 leave_rcu(nd); 853 BUG_ON(nd->inode != parent->d_inode); 854 return true; 855 856 out1: 857 nd->path.mnt = NULL; 858 nd->path.dentry = NULL; 859 out: 860 leave_rcu(nd); 861 return false; 862 } 863 864 /** 865 * try_to_unlazy_next - try to switch to ref-walk mode. 866 * @nd: nameidata pathwalk data 867 * @dentry: next dentry to step into 868 * Returns: true on success, false on failure 869 * 870 * Similar to try_to_unlazy(), but here we have the next dentry already 871 * picked by rcu-walk and want to legitimize that in addition to the current 872 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context. 873 * Nothing should touch nameidata between try_to_unlazy_next() failure and 874 * terminate_walk(). 875 */ 876 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry) 877 { 878 int res; 879 BUG_ON(!(nd->flags & LOOKUP_RCU)); 880 881 if (unlikely(!legitimize_links(nd))) 882 goto out2; 883 res = __legitimize_mnt(nd->path.mnt, nd->m_seq); 884 if (unlikely(res)) { 885 if (res > 0) 886 goto out2; 887 goto out1; 888 } 889 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) 890 goto out1; 891 892 /* 893 * We need to move both the parent and the dentry from the RCU domain 894 * to be properly refcounted. And the sequence number in the dentry 895 * validates *both* dentry counters, since we checked the sequence 896 * number of the parent after we got the child sequence number. So we 897 * know the parent must still be valid if the child sequence number is 898 */ 899 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) 900 goto out; 901 if (read_seqcount_retry(&dentry->d_seq, nd->next_seq)) 902 goto out_dput; 903 /* 904 * Sequence counts matched. Now make sure that the root is 905 * still valid and get it if required. 906 */ 907 if (unlikely(!legitimize_root(nd))) 908 goto out_dput; 909 leave_rcu(nd); 910 return true; 911 912 out2: 913 nd->path.mnt = NULL; 914 out1: 915 nd->path.dentry = NULL; 916 out: 917 leave_rcu(nd); 918 return false; 919 out_dput: 920 leave_rcu(nd); 921 dput(dentry); 922 return false; 923 } 924 925 static inline int d_revalidate(struct inode *dir, const struct qstr *name, 926 struct dentry *dentry, unsigned int flags) 927 { 928 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 929 return dentry->d_op->d_revalidate(dir, name, dentry, flags); 930 else 931 return 1; 932 } 933 934 /** 935 * complete_walk - successful completion of path walk 936 * @nd: pointer nameidata 937 * 938 * If we had been in RCU mode, drop out of it and legitimize nd->path. 939 * Revalidate the final result, unless we'd already done that during 940 * the path walk or the filesystem doesn't ask for it. Return 0 on 941 * success, -error on failure. In case of failure caller does not 942 * need to drop nd->path. 943 */ 944 static int complete_walk(struct nameidata *nd) 945 { 946 struct dentry *dentry = nd->path.dentry; 947 int status; 948 949 if (nd->flags & LOOKUP_RCU) { 950 /* 951 * We don't want to zero nd->root for scoped-lookups or 952 * externally-managed nd->root. 953 */ 954 if (!(nd->state & ND_ROOT_PRESET)) 955 if (!(nd->flags & LOOKUP_IS_SCOPED)) 956 nd->root.mnt = NULL; 957 nd->flags &= ~LOOKUP_CACHED; 958 if (!try_to_unlazy(nd)) 959 return -ECHILD; 960 } 961 962 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 963 /* 964 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't 965 * ever step outside the root during lookup" and should already 966 * be guaranteed by the rest of namei, we want to avoid a namei 967 * BUG resulting in userspace being given a path that was not 968 * scoped within the root at some point during the lookup. 969 * 970 * So, do a final sanity-check to make sure that in the 971 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED) 972 * we won't silently return an fd completely outside of the 973 * requested root to userspace. 974 * 975 * Userspace could move the path outside the root after this 976 * check, but as discussed elsewhere this is not a concern (the 977 * resolved file was inside the root at some point). 978 */ 979 if (!path_is_under(&nd->path, &nd->root)) 980 return -EXDEV; 981 } 982 983 if (likely(!(nd->state & ND_JUMPED))) 984 return 0; 985 986 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 987 return 0; 988 989 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 990 if (status > 0) 991 return 0; 992 993 if (!status) 994 status = -ESTALE; 995 996 return status; 997 } 998 999 static int set_root(struct nameidata *nd) 1000 { 1001 struct fs_struct *fs = current->fs; 1002 1003 /* 1004 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we 1005 * still have to ensure it doesn't happen because it will cause a breakout 1006 * from the dirfd. 1007 */ 1008 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED)) 1009 return -ENOTRECOVERABLE; 1010 1011 if (nd->flags & LOOKUP_RCU) { 1012 unsigned seq; 1013 1014 do { 1015 seq = read_seqcount_begin(&fs->seq); 1016 nd->root = fs->root; 1017 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 1018 } while (read_seqcount_retry(&fs->seq, seq)); 1019 } else { 1020 get_fs_root(fs, &nd->root); 1021 nd->state |= ND_ROOT_GRABBED; 1022 } 1023 return 0; 1024 } 1025 1026 static int nd_jump_root(struct nameidata *nd) 1027 { 1028 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1029 return -EXDEV; 1030 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 1031 /* Absolute path arguments to path_init() are allowed. */ 1032 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt) 1033 return -EXDEV; 1034 } 1035 if (!nd->root.mnt) { 1036 int error = set_root(nd); 1037 if (error) 1038 return error; 1039 } 1040 if (nd->flags & LOOKUP_RCU) { 1041 struct dentry *d; 1042 nd->path = nd->root; 1043 d = nd->path.dentry; 1044 nd->inode = d->d_inode; 1045 nd->seq = nd->root_seq; 1046 if (read_seqcount_retry(&d->d_seq, nd->seq)) 1047 return -ECHILD; 1048 } else { 1049 path_put(&nd->path); 1050 nd->path = nd->root; 1051 path_get(&nd->path); 1052 nd->inode = nd->path.dentry->d_inode; 1053 } 1054 nd->state |= ND_JUMPED; 1055 return 0; 1056 } 1057 1058 /* 1059 * Helper to directly jump to a known parsed path from ->get_link, 1060 * caller must have taken a reference to path beforehand. 1061 */ 1062 int nd_jump_link(const struct path *path) 1063 { 1064 int error = -ELOOP; 1065 struct nameidata *nd = current->nameidata; 1066 1067 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS)) 1068 goto err; 1069 1070 error = -EXDEV; 1071 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 1072 if (nd->path.mnt != path->mnt) 1073 goto err; 1074 } 1075 /* Not currently safe for scoped-lookups. */ 1076 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) 1077 goto err; 1078 1079 path_put(&nd->path); 1080 nd->path = *path; 1081 nd->inode = nd->path.dentry->d_inode; 1082 nd->state |= ND_JUMPED; 1083 return 0; 1084 1085 err: 1086 path_put(path); 1087 return error; 1088 } 1089 1090 static inline void put_link(struct nameidata *nd) 1091 { 1092 struct saved *last = nd->stack + --nd->depth; 1093 do_delayed_call(&last->done); 1094 if (!(nd->flags & LOOKUP_RCU)) 1095 path_put(&last->link); 1096 } 1097 1098 static int sysctl_protected_symlinks __read_mostly; 1099 static int sysctl_protected_hardlinks __read_mostly; 1100 static int sysctl_protected_fifos __read_mostly; 1101 static int sysctl_protected_regular __read_mostly; 1102 1103 #ifdef CONFIG_SYSCTL 1104 static const struct ctl_table namei_sysctls[] = { 1105 { 1106 .procname = "protected_symlinks", 1107 .data = &sysctl_protected_symlinks, 1108 .maxlen = sizeof(int), 1109 .mode = 0644, 1110 .proc_handler = proc_dointvec_minmax, 1111 .extra1 = SYSCTL_ZERO, 1112 .extra2 = SYSCTL_ONE, 1113 }, 1114 { 1115 .procname = "protected_hardlinks", 1116 .data = &sysctl_protected_hardlinks, 1117 .maxlen = sizeof(int), 1118 .mode = 0644, 1119 .proc_handler = proc_dointvec_minmax, 1120 .extra1 = SYSCTL_ZERO, 1121 .extra2 = SYSCTL_ONE, 1122 }, 1123 { 1124 .procname = "protected_fifos", 1125 .data = &sysctl_protected_fifos, 1126 .maxlen = sizeof(int), 1127 .mode = 0644, 1128 .proc_handler = proc_dointvec_minmax, 1129 .extra1 = SYSCTL_ZERO, 1130 .extra2 = SYSCTL_TWO, 1131 }, 1132 { 1133 .procname = "protected_regular", 1134 .data = &sysctl_protected_regular, 1135 .maxlen = sizeof(int), 1136 .mode = 0644, 1137 .proc_handler = proc_dointvec_minmax, 1138 .extra1 = SYSCTL_ZERO, 1139 .extra2 = SYSCTL_TWO, 1140 }, 1141 }; 1142 1143 static int __init init_fs_namei_sysctls(void) 1144 { 1145 register_sysctl_init("fs", namei_sysctls); 1146 return 0; 1147 } 1148 fs_initcall(init_fs_namei_sysctls); 1149 1150 #endif /* CONFIG_SYSCTL */ 1151 1152 /** 1153 * may_follow_link - Check symlink following for unsafe situations 1154 * @nd: nameidata pathwalk data 1155 * @inode: Used for idmapping. 1156 * 1157 * In the case of the sysctl_protected_symlinks sysctl being enabled, 1158 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 1159 * in a sticky world-writable directory. This is to protect privileged 1160 * processes from failing races against path names that may change out 1161 * from under them by way of other users creating malicious symlinks. 1162 * It will permit symlinks to be followed only when outside a sticky 1163 * world-writable directory, or when the uid of the symlink and follower 1164 * match, or when the directory owner matches the symlink's owner. 1165 * 1166 * Returns 0 if following the symlink is allowed, -ve on error. 1167 */ 1168 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode) 1169 { 1170 struct mnt_idmap *idmap; 1171 vfsuid_t vfsuid; 1172 1173 if (!sysctl_protected_symlinks) 1174 return 0; 1175 1176 idmap = mnt_idmap(nd->path.mnt); 1177 vfsuid = i_uid_into_vfsuid(idmap, inode); 1178 /* Allowed if owner and follower match. */ 1179 if (vfsuid_eq_kuid(vfsuid, current_fsuid())) 1180 return 0; 1181 1182 /* Allowed if parent directory not sticky and world-writable. */ 1183 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 1184 return 0; 1185 1186 /* Allowed if parent directory and link owner match. */ 1187 if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid)) 1188 return 0; 1189 1190 if (nd->flags & LOOKUP_RCU) 1191 return -ECHILD; 1192 1193 audit_inode(nd->name, nd->stack[0].link.dentry, 0); 1194 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link"); 1195 return -EACCES; 1196 } 1197 1198 /** 1199 * safe_hardlink_source - Check for safe hardlink conditions 1200 * @idmap: idmap of the mount the inode was found from 1201 * @inode: the source inode to hardlink from 1202 * 1203 * Return false if at least one of the following conditions: 1204 * - inode is not a regular file 1205 * - inode is setuid 1206 * - inode is setgid and group-exec 1207 * - access failure for read and write 1208 * 1209 * Otherwise returns true. 1210 */ 1211 static bool safe_hardlink_source(struct mnt_idmap *idmap, 1212 struct inode *inode) 1213 { 1214 umode_t mode = inode->i_mode; 1215 1216 /* Special files should not get pinned to the filesystem. */ 1217 if (!S_ISREG(mode)) 1218 return false; 1219 1220 /* Setuid files should not get pinned to the filesystem. */ 1221 if (mode & S_ISUID) 1222 return false; 1223 1224 /* Executable setgid files should not get pinned to the filesystem. */ 1225 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 1226 return false; 1227 1228 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 1229 if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE)) 1230 return false; 1231 1232 return true; 1233 } 1234 1235 /** 1236 * may_linkat - Check permissions for creating a hardlink 1237 * @idmap: idmap of the mount the inode was found from 1238 * @link: the source to hardlink from 1239 * 1240 * Block hardlink when all of: 1241 * - sysctl_protected_hardlinks enabled 1242 * - fsuid does not match inode 1243 * - hardlink source is unsafe (see safe_hardlink_source() above) 1244 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 1245 * 1246 * If the inode has been found through an idmapped mount the idmap of 1247 * the vfsmount must be passed through @idmap. This function will then take 1248 * care to map the inode according to @idmap before checking permissions. 1249 * On non-idmapped mounts or if permission checking is to be performed on the 1250 * raw inode simply pass @nop_mnt_idmap. 1251 * 1252 * Returns 0 if successful, -ve on error. 1253 */ 1254 int may_linkat(struct mnt_idmap *idmap, const struct path *link) 1255 { 1256 struct inode *inode = link->dentry->d_inode; 1257 1258 /* Inode writeback is not safe when the uid or gid are invalid. */ 1259 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || 1260 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode))) 1261 return -EOVERFLOW; 1262 1263 if (!sysctl_protected_hardlinks) 1264 return 0; 1265 1266 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 1267 * otherwise, it must be a safe source. 1268 */ 1269 if (safe_hardlink_source(idmap, inode) || 1270 inode_owner_or_capable(idmap, inode)) 1271 return 0; 1272 1273 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat"); 1274 return -EPERM; 1275 } 1276 1277 /** 1278 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory 1279 * should be allowed, or not, on files that already 1280 * exist. 1281 * @idmap: idmap of the mount the inode was found from 1282 * @nd: nameidata pathwalk data 1283 * @inode: the inode of the file to open 1284 * 1285 * Block an O_CREAT open of a FIFO (or a regular file) when: 1286 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled 1287 * - the file already exists 1288 * - we are in a sticky directory 1289 * - we don't own the file 1290 * - the owner of the directory doesn't own the file 1291 * - the directory is world writable 1292 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2 1293 * the directory doesn't have to be world writable: being group writable will 1294 * be enough. 1295 * 1296 * If the inode has been found through an idmapped mount the idmap of 1297 * the vfsmount must be passed through @idmap. This function will then take 1298 * care to map the inode according to @idmap before checking permissions. 1299 * On non-idmapped mounts or if permission checking is to be performed on the 1300 * raw inode simply pass @nop_mnt_idmap. 1301 * 1302 * Returns 0 if the open is allowed, -ve on error. 1303 */ 1304 static int may_create_in_sticky(struct mnt_idmap *idmap, struct nameidata *nd, 1305 struct inode *const inode) 1306 { 1307 umode_t dir_mode = nd->dir_mode; 1308 vfsuid_t dir_vfsuid = nd->dir_vfsuid, i_vfsuid; 1309 1310 if (likely(!(dir_mode & S_ISVTX))) 1311 return 0; 1312 1313 if (S_ISREG(inode->i_mode) && !sysctl_protected_regular) 1314 return 0; 1315 1316 if (S_ISFIFO(inode->i_mode) && !sysctl_protected_fifos) 1317 return 0; 1318 1319 i_vfsuid = i_uid_into_vfsuid(idmap, inode); 1320 1321 if (vfsuid_eq(i_vfsuid, dir_vfsuid)) 1322 return 0; 1323 1324 if (vfsuid_eq_kuid(i_vfsuid, current_fsuid())) 1325 return 0; 1326 1327 if (likely(dir_mode & 0002)) { 1328 audit_log_path_denied(AUDIT_ANOM_CREAT, "sticky_create"); 1329 return -EACCES; 1330 } 1331 1332 if (dir_mode & 0020) { 1333 if (sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) { 1334 audit_log_path_denied(AUDIT_ANOM_CREAT, 1335 "sticky_create_fifo"); 1336 return -EACCES; 1337 } 1338 1339 if (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode)) { 1340 audit_log_path_denied(AUDIT_ANOM_CREAT, 1341 "sticky_create_regular"); 1342 return -EACCES; 1343 } 1344 } 1345 1346 return 0; 1347 } 1348 1349 /* 1350 * follow_up - Find the mountpoint of path's vfsmount 1351 * 1352 * Given a path, find the mountpoint of its source file system. 1353 * Replace @path with the path of the mountpoint in the parent mount. 1354 * Up is towards /. 1355 * 1356 * Return 1 if we went up a level and 0 if we were already at the 1357 * root. 1358 */ 1359 int follow_up(struct path *path) 1360 { 1361 struct mount *mnt = real_mount(path->mnt); 1362 struct mount *parent; 1363 struct dentry *mountpoint; 1364 1365 read_seqlock_excl(&mount_lock); 1366 parent = mnt->mnt_parent; 1367 if (parent == mnt) { 1368 read_sequnlock_excl(&mount_lock); 1369 return 0; 1370 } 1371 mntget(&parent->mnt); 1372 mountpoint = dget(mnt->mnt_mountpoint); 1373 read_sequnlock_excl(&mount_lock); 1374 dput(path->dentry); 1375 path->dentry = mountpoint; 1376 mntput(path->mnt); 1377 path->mnt = &parent->mnt; 1378 return 1; 1379 } 1380 EXPORT_SYMBOL(follow_up); 1381 1382 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root, 1383 struct path *path, unsigned *seqp) 1384 { 1385 while (mnt_has_parent(m)) { 1386 struct dentry *mountpoint = m->mnt_mountpoint; 1387 1388 m = m->mnt_parent; 1389 if (unlikely(root->dentry == mountpoint && 1390 root->mnt == &m->mnt)) 1391 break; 1392 if (mountpoint != m->mnt.mnt_root) { 1393 path->mnt = &m->mnt; 1394 path->dentry = mountpoint; 1395 *seqp = read_seqcount_begin(&mountpoint->d_seq); 1396 return true; 1397 } 1398 } 1399 return false; 1400 } 1401 1402 static bool choose_mountpoint(struct mount *m, const struct path *root, 1403 struct path *path) 1404 { 1405 bool found; 1406 1407 rcu_read_lock(); 1408 while (1) { 1409 unsigned seq, mseq = read_seqbegin(&mount_lock); 1410 1411 found = choose_mountpoint_rcu(m, root, path, &seq); 1412 if (unlikely(!found)) { 1413 if (!read_seqretry(&mount_lock, mseq)) 1414 break; 1415 } else { 1416 if (likely(__legitimize_path(path, seq, mseq))) 1417 break; 1418 rcu_read_unlock(); 1419 path_put(path); 1420 rcu_read_lock(); 1421 } 1422 } 1423 rcu_read_unlock(); 1424 return found; 1425 } 1426 1427 /* 1428 * Perform an automount 1429 * - return -EISDIR to tell follow_managed() to stop and return the path we 1430 * were called with. 1431 */ 1432 static int follow_automount(struct path *path, int *count, unsigned lookup_flags) 1433 { 1434 struct dentry *dentry = path->dentry; 1435 1436 /* We don't want to mount if someone's just doing a stat - 1437 * unless they're stat'ing a directory and appended a '/' to 1438 * the name. 1439 * 1440 * We do, however, want to mount if someone wants to open or 1441 * create a file of any type under the mountpoint, wants to 1442 * traverse through the mountpoint or wants to open the 1443 * mounted directory. Also, autofs may mark negative dentries 1444 * as being automount points. These will need the attentions 1445 * of the daemon to instantiate them before they can be used. 1446 */ 1447 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1448 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1449 dentry->d_inode) 1450 return -EISDIR; 1451 1452 if (count && (*count)++ >= MAXSYMLINKS) 1453 return -ELOOP; 1454 1455 return finish_automount(dentry->d_op->d_automount(path), path); 1456 } 1457 1458 /* 1459 * mount traversal - out-of-line part. One note on ->d_flags accesses - 1460 * dentries are pinned but not locked here, so negative dentry can go 1461 * positive right under us. Use of smp_load_acquire() provides a barrier 1462 * sufficient for ->d_inode and ->d_flags consistency. 1463 */ 1464 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped, 1465 int *count, unsigned lookup_flags) 1466 { 1467 struct vfsmount *mnt = path->mnt; 1468 bool need_mntput = false; 1469 int ret = 0; 1470 1471 while (flags & DCACHE_MANAGED_DENTRY) { 1472 /* Allow the filesystem to manage the transit without i_mutex 1473 * being held. */ 1474 if (flags & DCACHE_MANAGE_TRANSIT) { 1475 ret = path->dentry->d_op->d_manage(path, false); 1476 flags = smp_load_acquire(&path->dentry->d_flags); 1477 if (ret < 0) 1478 break; 1479 } 1480 1481 if (flags & DCACHE_MOUNTED) { // something's mounted on it.. 1482 struct vfsmount *mounted = lookup_mnt(path); 1483 if (mounted) { // ... in our namespace 1484 dput(path->dentry); 1485 if (need_mntput) 1486 mntput(path->mnt); 1487 path->mnt = mounted; 1488 path->dentry = dget(mounted->mnt_root); 1489 // here we know it's positive 1490 flags = path->dentry->d_flags; 1491 need_mntput = true; 1492 continue; 1493 } 1494 } 1495 1496 if (!(flags & DCACHE_NEED_AUTOMOUNT)) 1497 break; 1498 1499 // uncovered automount point 1500 ret = follow_automount(path, count, lookup_flags); 1501 flags = smp_load_acquire(&path->dentry->d_flags); 1502 if (ret < 0) 1503 break; 1504 } 1505 1506 if (ret == -EISDIR) 1507 ret = 0; 1508 // possible if you race with several mount --move 1509 if (need_mntput && path->mnt == mnt) 1510 mntput(path->mnt); 1511 if (!ret && unlikely(d_flags_negative(flags))) 1512 ret = -ENOENT; 1513 *jumped = need_mntput; 1514 return ret; 1515 } 1516 1517 static inline int traverse_mounts(struct path *path, bool *jumped, 1518 int *count, unsigned lookup_flags) 1519 { 1520 unsigned flags = smp_load_acquire(&path->dentry->d_flags); 1521 1522 /* fastpath */ 1523 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) { 1524 *jumped = false; 1525 if (unlikely(d_flags_negative(flags))) 1526 return -ENOENT; 1527 return 0; 1528 } 1529 return __traverse_mounts(path, flags, jumped, count, lookup_flags); 1530 } 1531 1532 int follow_down_one(struct path *path) 1533 { 1534 struct vfsmount *mounted; 1535 1536 mounted = lookup_mnt(path); 1537 if (mounted) { 1538 dput(path->dentry); 1539 mntput(path->mnt); 1540 path->mnt = mounted; 1541 path->dentry = dget(mounted->mnt_root); 1542 return 1; 1543 } 1544 return 0; 1545 } 1546 EXPORT_SYMBOL(follow_down_one); 1547 1548 /* 1549 * Follow down to the covering mount currently visible to userspace. At each 1550 * point, the filesystem owning that dentry may be queried as to whether the 1551 * caller is permitted to proceed or not. 1552 */ 1553 int follow_down(struct path *path, unsigned int flags) 1554 { 1555 struct vfsmount *mnt = path->mnt; 1556 bool jumped; 1557 int ret = traverse_mounts(path, &jumped, NULL, flags); 1558 1559 if (path->mnt != mnt) 1560 mntput(mnt); 1561 return ret; 1562 } 1563 EXPORT_SYMBOL(follow_down); 1564 1565 /* 1566 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1567 * we meet a managed dentry that would need blocking. 1568 */ 1569 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path) 1570 { 1571 struct dentry *dentry = path->dentry; 1572 unsigned int flags = dentry->d_flags; 1573 1574 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) 1575 return true; 1576 1577 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1578 return false; 1579 1580 for (;;) { 1581 /* 1582 * Don't forget we might have a non-mountpoint managed dentry 1583 * that wants to block transit. 1584 */ 1585 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) { 1586 int res = dentry->d_op->d_manage(path, true); 1587 if (res) 1588 return res == -EISDIR; 1589 flags = dentry->d_flags; 1590 } 1591 1592 if (flags & DCACHE_MOUNTED) { 1593 struct mount *mounted = __lookup_mnt(path->mnt, dentry); 1594 if (mounted) { 1595 path->mnt = &mounted->mnt; 1596 dentry = path->dentry = mounted->mnt.mnt_root; 1597 nd->state |= ND_JUMPED; 1598 nd->next_seq = read_seqcount_begin(&dentry->d_seq); 1599 flags = dentry->d_flags; 1600 // makes sure that non-RCU pathwalk could reach 1601 // this state. 1602 if (read_seqretry(&mount_lock, nd->m_seq)) 1603 return false; 1604 continue; 1605 } 1606 if (read_seqretry(&mount_lock, nd->m_seq)) 1607 return false; 1608 } 1609 return !(flags & DCACHE_NEED_AUTOMOUNT); 1610 } 1611 } 1612 1613 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry, 1614 struct path *path) 1615 { 1616 bool jumped; 1617 int ret; 1618 1619 path->mnt = nd->path.mnt; 1620 path->dentry = dentry; 1621 if (nd->flags & LOOKUP_RCU) { 1622 unsigned int seq = nd->next_seq; 1623 if (likely(__follow_mount_rcu(nd, path))) 1624 return 0; 1625 // *path and nd->next_seq might've been clobbered 1626 path->mnt = nd->path.mnt; 1627 path->dentry = dentry; 1628 nd->next_seq = seq; 1629 if (!try_to_unlazy_next(nd, dentry)) 1630 return -ECHILD; 1631 } 1632 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags); 1633 if (jumped) { 1634 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1635 ret = -EXDEV; 1636 else 1637 nd->state |= ND_JUMPED; 1638 } 1639 if (unlikely(ret)) { 1640 dput(path->dentry); 1641 if (path->mnt != nd->path.mnt) 1642 mntput(path->mnt); 1643 } 1644 return ret; 1645 } 1646 1647 /* 1648 * This looks up the name in dcache and possibly revalidates the found dentry. 1649 * NULL is returned if the dentry does not exist in the cache. 1650 */ 1651 static struct dentry *lookup_dcache(const struct qstr *name, 1652 struct dentry *dir, 1653 unsigned int flags) 1654 { 1655 struct dentry *dentry = d_lookup(dir, name); 1656 if (dentry) { 1657 int error = d_revalidate(dir->d_inode, name, dentry, flags); 1658 if (unlikely(error <= 0)) { 1659 if (!error) 1660 d_invalidate(dentry); 1661 dput(dentry); 1662 return ERR_PTR(error); 1663 } 1664 } 1665 return dentry; 1666 } 1667 1668 static struct dentry *lookup_one_qstr_excl_raw(const struct qstr *name, 1669 struct dentry *base, 1670 unsigned int flags) 1671 { 1672 struct dentry *dentry; 1673 struct dentry *old; 1674 struct inode *dir; 1675 1676 dentry = lookup_dcache(name, base, flags); 1677 if (dentry) 1678 return dentry; 1679 1680 /* Don't create child dentry for a dead directory. */ 1681 dir = base->d_inode; 1682 if (unlikely(IS_DEADDIR(dir))) 1683 return ERR_PTR(-ENOENT); 1684 1685 dentry = d_alloc(base, name); 1686 if (unlikely(!dentry)) 1687 return ERR_PTR(-ENOMEM); 1688 1689 old = dir->i_op->lookup(dir, dentry, flags); 1690 if (unlikely(old)) { 1691 dput(dentry); 1692 dentry = old; 1693 } 1694 return dentry; 1695 } 1696 1697 /* 1698 * Parent directory has inode locked exclusive. This is one 1699 * and only case when ->lookup() gets called on non in-lookup 1700 * dentries - as the matter of fact, this only gets called 1701 * when directory is guaranteed to have no in-lookup children 1702 * at all. 1703 * Will return -ENOENT if name isn't found and LOOKUP_CREATE wasn't passed. 1704 * Will return -EEXIST if name is found and LOOKUP_EXCL was passed. 1705 */ 1706 struct dentry *lookup_one_qstr_excl(const struct qstr *name, 1707 struct dentry *base, unsigned int flags) 1708 { 1709 struct dentry *dentry; 1710 1711 dentry = lookup_one_qstr_excl_raw(name, base, flags); 1712 if (IS_ERR(dentry)) 1713 return dentry; 1714 if (d_is_negative(dentry) && !(flags & LOOKUP_CREATE)) { 1715 dput(dentry); 1716 return ERR_PTR(-ENOENT); 1717 } 1718 if (d_is_positive(dentry) && (flags & LOOKUP_EXCL)) { 1719 dput(dentry); 1720 return ERR_PTR(-EEXIST); 1721 } 1722 return dentry; 1723 } 1724 EXPORT_SYMBOL(lookup_one_qstr_excl); 1725 1726 /** 1727 * lookup_fast - do fast lockless (but racy) lookup of a dentry 1728 * @nd: current nameidata 1729 * 1730 * Do a fast, but racy lookup in the dcache for the given dentry, and 1731 * revalidate it. Returns a valid dentry pointer or NULL if one wasn't 1732 * found. On error, an ERR_PTR will be returned. 1733 * 1734 * If this function returns a valid dentry and the walk is no longer 1735 * lazy, the dentry will carry a reference that must later be put. If 1736 * RCU mode is still in force, then this is not the case and the dentry 1737 * must be legitimized before use. If this returns NULL, then the walk 1738 * will no longer be in RCU mode. 1739 */ 1740 static struct dentry *lookup_fast(struct nameidata *nd) 1741 { 1742 struct dentry *dentry, *parent = nd->path.dentry; 1743 int status = 1; 1744 1745 /* 1746 * Rename seqlock is not required here because in the off chance 1747 * of a false negative due to a concurrent rename, the caller is 1748 * going to fall back to non-racy lookup. 1749 */ 1750 if (nd->flags & LOOKUP_RCU) { 1751 dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq); 1752 if (unlikely(!dentry)) { 1753 if (!try_to_unlazy(nd)) 1754 return ERR_PTR(-ECHILD); 1755 return NULL; 1756 } 1757 1758 /* 1759 * This sequence count validates that the parent had no 1760 * changes while we did the lookup of the dentry above. 1761 */ 1762 if (read_seqcount_retry(&parent->d_seq, nd->seq)) 1763 return ERR_PTR(-ECHILD); 1764 1765 status = d_revalidate(nd->inode, &nd->last, dentry, nd->flags); 1766 if (likely(status > 0)) 1767 return dentry; 1768 if (!try_to_unlazy_next(nd, dentry)) 1769 return ERR_PTR(-ECHILD); 1770 if (status == -ECHILD) 1771 /* we'd been told to redo it in non-rcu mode */ 1772 status = d_revalidate(nd->inode, &nd->last, 1773 dentry, nd->flags); 1774 } else { 1775 dentry = __d_lookup(parent, &nd->last); 1776 if (unlikely(!dentry)) 1777 return NULL; 1778 status = d_revalidate(nd->inode, &nd->last, dentry, nd->flags); 1779 } 1780 if (unlikely(status <= 0)) { 1781 if (!status) 1782 d_invalidate(dentry); 1783 dput(dentry); 1784 return ERR_PTR(status); 1785 } 1786 return dentry; 1787 } 1788 1789 /* Fast lookup failed, do it the slow way */ 1790 static struct dentry *__lookup_slow(const struct qstr *name, 1791 struct dentry *dir, 1792 unsigned int flags) 1793 { 1794 struct dentry *dentry, *old; 1795 struct inode *inode = dir->d_inode; 1796 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1797 1798 /* Don't go there if it's already dead */ 1799 if (unlikely(IS_DEADDIR(inode))) 1800 return ERR_PTR(-ENOENT); 1801 again: 1802 dentry = d_alloc_parallel(dir, name, &wq); 1803 if (IS_ERR(dentry)) 1804 return dentry; 1805 if (unlikely(!d_in_lookup(dentry))) { 1806 int error = d_revalidate(inode, name, dentry, flags); 1807 if (unlikely(error <= 0)) { 1808 if (!error) { 1809 d_invalidate(dentry); 1810 dput(dentry); 1811 goto again; 1812 } 1813 dput(dentry); 1814 dentry = ERR_PTR(error); 1815 } 1816 } else { 1817 old = inode->i_op->lookup(inode, dentry, flags); 1818 d_lookup_done(dentry); 1819 if (unlikely(old)) { 1820 dput(dentry); 1821 dentry = old; 1822 } 1823 } 1824 return dentry; 1825 } 1826 1827 static struct dentry *lookup_slow(const struct qstr *name, 1828 struct dentry *dir, 1829 unsigned int flags) 1830 { 1831 struct inode *inode = dir->d_inode; 1832 struct dentry *res; 1833 inode_lock_shared(inode); 1834 res = __lookup_slow(name, dir, flags); 1835 inode_unlock_shared(inode); 1836 return res; 1837 } 1838 1839 static inline int may_lookup(struct mnt_idmap *idmap, 1840 struct nameidata *restrict nd) 1841 { 1842 int err, mask; 1843 1844 mask = nd->flags & LOOKUP_RCU ? MAY_NOT_BLOCK : 0; 1845 err = inode_permission(idmap, nd->inode, mask | MAY_EXEC); 1846 if (likely(!err)) 1847 return 0; 1848 1849 // If we failed, and we weren't in LOOKUP_RCU, it's final 1850 if (!(nd->flags & LOOKUP_RCU)) 1851 return err; 1852 1853 // Drop out of RCU mode to make sure it wasn't transient 1854 if (!try_to_unlazy(nd)) 1855 return -ECHILD; // redo it all non-lazy 1856 1857 if (err != -ECHILD) // hard error 1858 return err; 1859 1860 return inode_permission(idmap, nd->inode, MAY_EXEC); 1861 } 1862 1863 static int reserve_stack(struct nameidata *nd, struct path *link) 1864 { 1865 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) 1866 return -ELOOP; 1867 1868 if (likely(nd->depth != EMBEDDED_LEVELS)) 1869 return 0; 1870 if (likely(nd->stack != nd->internal)) 1871 return 0; 1872 if (likely(nd_alloc_stack(nd))) 1873 return 0; 1874 1875 if (nd->flags & LOOKUP_RCU) { 1876 // we need to grab link before we do unlazy. And we can't skip 1877 // unlazy even if we fail to grab the link - cleanup needs it 1878 bool grabbed_link = legitimize_path(nd, link, nd->next_seq); 1879 1880 if (!try_to_unlazy(nd) || !grabbed_link) 1881 return -ECHILD; 1882 1883 if (nd_alloc_stack(nd)) 1884 return 0; 1885 } 1886 return -ENOMEM; 1887 } 1888 1889 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4}; 1890 1891 static const char *pick_link(struct nameidata *nd, struct path *link, 1892 struct inode *inode, int flags) 1893 { 1894 struct saved *last; 1895 const char *res; 1896 int error = reserve_stack(nd, link); 1897 1898 if (unlikely(error)) { 1899 if (!(nd->flags & LOOKUP_RCU)) 1900 path_put(link); 1901 return ERR_PTR(error); 1902 } 1903 last = nd->stack + nd->depth++; 1904 last->link = *link; 1905 clear_delayed_call(&last->done); 1906 last->seq = nd->next_seq; 1907 1908 if (flags & WALK_TRAILING) { 1909 error = may_follow_link(nd, inode); 1910 if (unlikely(error)) 1911 return ERR_PTR(error); 1912 } 1913 1914 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) || 1915 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW)) 1916 return ERR_PTR(-ELOOP); 1917 1918 if (unlikely(atime_needs_update(&last->link, inode))) { 1919 if (nd->flags & LOOKUP_RCU) { 1920 if (!try_to_unlazy(nd)) 1921 return ERR_PTR(-ECHILD); 1922 } 1923 touch_atime(&last->link); 1924 cond_resched(); 1925 } 1926 1927 error = security_inode_follow_link(link->dentry, inode, 1928 nd->flags & LOOKUP_RCU); 1929 if (unlikely(error)) 1930 return ERR_PTR(error); 1931 1932 res = READ_ONCE(inode->i_link); 1933 if (!res) { 1934 const char * (*get)(struct dentry *, struct inode *, 1935 struct delayed_call *); 1936 get = inode->i_op->get_link; 1937 if (nd->flags & LOOKUP_RCU) { 1938 res = get(NULL, inode, &last->done); 1939 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd)) 1940 res = get(link->dentry, inode, &last->done); 1941 } else { 1942 res = get(link->dentry, inode, &last->done); 1943 } 1944 if (!res) 1945 goto all_done; 1946 if (IS_ERR(res)) 1947 return res; 1948 } 1949 if (*res == '/') { 1950 error = nd_jump_root(nd); 1951 if (unlikely(error)) 1952 return ERR_PTR(error); 1953 while (unlikely(*++res == '/')) 1954 ; 1955 } 1956 if (*res) 1957 return res; 1958 all_done: // pure jump 1959 put_link(nd); 1960 return NULL; 1961 } 1962 1963 /* 1964 * Do we need to follow links? We _really_ want to be able 1965 * to do this check without having to look at inode->i_op, 1966 * so we keep a cache of "no, this doesn't need follow_link" 1967 * for the common case. 1968 * 1969 * NOTE: dentry must be what nd->next_seq had been sampled from. 1970 */ 1971 static const char *step_into(struct nameidata *nd, int flags, 1972 struct dentry *dentry) 1973 { 1974 struct path path; 1975 struct inode *inode; 1976 int err = handle_mounts(nd, dentry, &path); 1977 1978 if (err < 0) 1979 return ERR_PTR(err); 1980 inode = path.dentry->d_inode; 1981 if (likely(!d_is_symlink(path.dentry)) || 1982 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) || 1983 (flags & WALK_NOFOLLOW)) { 1984 /* not a symlink or should not follow */ 1985 if (nd->flags & LOOKUP_RCU) { 1986 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq)) 1987 return ERR_PTR(-ECHILD); 1988 if (unlikely(!inode)) 1989 return ERR_PTR(-ENOENT); 1990 } else { 1991 dput(nd->path.dentry); 1992 if (nd->path.mnt != path.mnt) 1993 mntput(nd->path.mnt); 1994 } 1995 nd->path = path; 1996 nd->inode = inode; 1997 nd->seq = nd->next_seq; 1998 return NULL; 1999 } 2000 if (nd->flags & LOOKUP_RCU) { 2001 /* make sure that d_is_symlink above matches inode */ 2002 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq)) 2003 return ERR_PTR(-ECHILD); 2004 } else { 2005 if (path.mnt == nd->path.mnt) 2006 mntget(path.mnt); 2007 } 2008 return pick_link(nd, &path, inode, flags); 2009 } 2010 2011 static struct dentry *follow_dotdot_rcu(struct nameidata *nd) 2012 { 2013 struct dentry *parent, *old; 2014 2015 if (path_equal(&nd->path, &nd->root)) 2016 goto in_root; 2017 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 2018 struct path path; 2019 unsigned seq; 2020 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt), 2021 &nd->root, &path, &seq)) 2022 goto in_root; 2023 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 2024 return ERR_PTR(-ECHILD); 2025 nd->path = path; 2026 nd->inode = path.dentry->d_inode; 2027 nd->seq = seq; 2028 // makes sure that non-RCU pathwalk could reach this state 2029 if (read_seqretry(&mount_lock, nd->m_seq)) 2030 return ERR_PTR(-ECHILD); 2031 /* we know that mountpoint was pinned */ 2032 } 2033 old = nd->path.dentry; 2034 parent = old->d_parent; 2035 nd->next_seq = read_seqcount_begin(&parent->d_seq); 2036 // makes sure that non-RCU pathwalk could reach this state 2037 if (read_seqcount_retry(&old->d_seq, nd->seq)) 2038 return ERR_PTR(-ECHILD); 2039 if (unlikely(!path_connected(nd->path.mnt, parent))) 2040 return ERR_PTR(-ECHILD); 2041 return parent; 2042 in_root: 2043 if (read_seqretry(&mount_lock, nd->m_seq)) 2044 return ERR_PTR(-ECHILD); 2045 if (unlikely(nd->flags & LOOKUP_BENEATH)) 2046 return ERR_PTR(-ECHILD); 2047 nd->next_seq = nd->seq; 2048 return nd->path.dentry; 2049 } 2050 2051 static struct dentry *follow_dotdot(struct nameidata *nd) 2052 { 2053 struct dentry *parent; 2054 2055 if (path_equal(&nd->path, &nd->root)) 2056 goto in_root; 2057 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 2058 struct path path; 2059 2060 if (!choose_mountpoint(real_mount(nd->path.mnt), 2061 &nd->root, &path)) 2062 goto in_root; 2063 path_put(&nd->path); 2064 nd->path = path; 2065 nd->inode = path.dentry->d_inode; 2066 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 2067 return ERR_PTR(-EXDEV); 2068 } 2069 /* rare case of legitimate dget_parent()... */ 2070 parent = dget_parent(nd->path.dentry); 2071 if (unlikely(!path_connected(nd->path.mnt, parent))) { 2072 dput(parent); 2073 return ERR_PTR(-ENOENT); 2074 } 2075 return parent; 2076 2077 in_root: 2078 if (unlikely(nd->flags & LOOKUP_BENEATH)) 2079 return ERR_PTR(-EXDEV); 2080 return dget(nd->path.dentry); 2081 } 2082 2083 static const char *handle_dots(struct nameidata *nd, int type) 2084 { 2085 if (type == LAST_DOTDOT) { 2086 const char *error = NULL; 2087 struct dentry *parent; 2088 2089 if (!nd->root.mnt) { 2090 error = ERR_PTR(set_root(nd)); 2091 if (error) 2092 return error; 2093 } 2094 if (nd->flags & LOOKUP_RCU) 2095 parent = follow_dotdot_rcu(nd); 2096 else 2097 parent = follow_dotdot(nd); 2098 if (IS_ERR(parent)) 2099 return ERR_CAST(parent); 2100 error = step_into(nd, WALK_NOFOLLOW, parent); 2101 if (unlikely(error)) 2102 return error; 2103 2104 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 2105 /* 2106 * If there was a racing rename or mount along our 2107 * path, then we can't be sure that ".." hasn't jumped 2108 * above nd->root (and so userspace should retry or use 2109 * some fallback). 2110 */ 2111 smp_rmb(); 2112 if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)) 2113 return ERR_PTR(-EAGAIN); 2114 if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)) 2115 return ERR_PTR(-EAGAIN); 2116 } 2117 } 2118 return NULL; 2119 } 2120 2121 static const char *walk_component(struct nameidata *nd, int flags) 2122 { 2123 struct dentry *dentry; 2124 /* 2125 * "." and ".." are special - ".." especially so because it has 2126 * to be able to know about the current root directory and 2127 * parent relationships. 2128 */ 2129 if (unlikely(nd->last_type != LAST_NORM)) { 2130 if (!(flags & WALK_MORE) && nd->depth) 2131 put_link(nd); 2132 return handle_dots(nd, nd->last_type); 2133 } 2134 dentry = lookup_fast(nd); 2135 if (IS_ERR(dentry)) 2136 return ERR_CAST(dentry); 2137 if (unlikely(!dentry)) { 2138 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags); 2139 if (IS_ERR(dentry)) 2140 return ERR_CAST(dentry); 2141 } 2142 if (!(flags & WALK_MORE) && nd->depth) 2143 put_link(nd); 2144 return step_into(nd, flags, dentry); 2145 } 2146 2147 /* 2148 * We can do the critical dentry name comparison and hashing 2149 * operations one word at a time, but we are limited to: 2150 * 2151 * - Architectures with fast unaligned word accesses. We could 2152 * do a "get_unaligned()" if this helps and is sufficiently 2153 * fast. 2154 * 2155 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 2156 * do not trap on the (extremely unlikely) case of a page 2157 * crossing operation. 2158 * 2159 * - Furthermore, we need an efficient 64-bit compile for the 2160 * 64-bit case in order to generate the "number of bytes in 2161 * the final mask". Again, that could be replaced with a 2162 * efficient population count instruction or similar. 2163 */ 2164 #ifdef CONFIG_DCACHE_WORD_ACCESS 2165 2166 #include <asm/word-at-a-time.h> 2167 2168 #ifdef HASH_MIX 2169 2170 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 2171 2172 #elif defined(CONFIG_64BIT) 2173 /* 2174 * Register pressure in the mixing function is an issue, particularly 2175 * on 32-bit x86, but almost any function requires one state value and 2176 * one temporary. Instead, use a function designed for two state values 2177 * and no temporaries. 2178 * 2179 * This function cannot create a collision in only two iterations, so 2180 * we have two iterations to achieve avalanche. In those two iterations, 2181 * we have six layers of mixing, which is enough to spread one bit's 2182 * influence out to 2^6 = 64 state bits. 2183 * 2184 * Rotate constants are scored by considering either 64 one-bit input 2185 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 2186 * probability of that delta causing a change to each of the 128 output 2187 * bits, using a sample of random initial states. 2188 * 2189 * The Shannon entropy of the computed probabilities is then summed 2190 * to produce a score. Ideally, any input change has a 50% chance of 2191 * toggling any given output bit. 2192 * 2193 * Mixing scores (in bits) for (12,45): 2194 * Input delta: 1-bit 2-bit 2195 * 1 round: 713.3 42542.6 2196 * 2 rounds: 2753.7 140389.8 2197 * 3 rounds: 5954.1 233458.2 2198 * 4 rounds: 7862.6 256672.2 2199 * Perfect: 8192 258048 2200 * (64*128) (64*63/2 * 128) 2201 */ 2202 #define HASH_MIX(x, y, a) \ 2203 ( x ^= (a), \ 2204 y ^= x, x = rol64(x,12),\ 2205 x += y, y = rol64(y,45),\ 2206 y *= 9 ) 2207 2208 /* 2209 * Fold two longs into one 32-bit hash value. This must be fast, but 2210 * latency isn't quite as critical, as there is a fair bit of additional 2211 * work done before the hash value is used. 2212 */ 2213 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2214 { 2215 y ^= x * GOLDEN_RATIO_64; 2216 y *= GOLDEN_RATIO_64; 2217 return y >> 32; 2218 } 2219 2220 #else /* 32-bit case */ 2221 2222 /* 2223 * Mixing scores (in bits) for (7,20): 2224 * Input delta: 1-bit 2-bit 2225 * 1 round: 330.3 9201.6 2226 * 2 rounds: 1246.4 25475.4 2227 * 3 rounds: 1907.1 31295.1 2228 * 4 rounds: 2042.3 31718.6 2229 * Perfect: 2048 31744 2230 * (32*64) (32*31/2 * 64) 2231 */ 2232 #define HASH_MIX(x, y, a) \ 2233 ( x ^= (a), \ 2234 y ^= x, x = rol32(x, 7),\ 2235 x += y, y = rol32(y,20),\ 2236 y *= 9 ) 2237 2238 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2239 { 2240 /* Use arch-optimized multiply if one exists */ 2241 return __hash_32(y ^ __hash_32(x)); 2242 } 2243 2244 #endif 2245 2246 /* 2247 * Return the hash of a string of known length. This is carfully 2248 * designed to match hash_name(), which is the more critical function. 2249 * In particular, we must end by hashing a final word containing 0..7 2250 * payload bytes, to match the way that hash_name() iterates until it 2251 * finds the delimiter after the name. 2252 */ 2253 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2254 { 2255 unsigned long a, x = 0, y = (unsigned long)salt; 2256 2257 for (;;) { 2258 if (!len) 2259 goto done; 2260 a = load_unaligned_zeropad(name); 2261 if (len < sizeof(unsigned long)) 2262 break; 2263 HASH_MIX(x, y, a); 2264 name += sizeof(unsigned long); 2265 len -= sizeof(unsigned long); 2266 } 2267 x ^= a & bytemask_from_count(len); 2268 done: 2269 return fold_hash(x, y); 2270 } 2271 EXPORT_SYMBOL(full_name_hash); 2272 2273 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2274 u64 hashlen_string(const void *salt, const char *name) 2275 { 2276 unsigned long a = 0, x = 0, y = (unsigned long)salt; 2277 unsigned long adata, mask, len; 2278 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2279 2280 len = 0; 2281 goto inside; 2282 2283 do { 2284 HASH_MIX(x, y, a); 2285 len += sizeof(unsigned long); 2286 inside: 2287 a = load_unaligned_zeropad(name+len); 2288 } while (!has_zero(a, &adata, &constants)); 2289 2290 adata = prep_zero_mask(a, adata, &constants); 2291 mask = create_zero_mask(adata); 2292 x ^= a & zero_bytemask(mask); 2293 2294 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2295 } 2296 EXPORT_SYMBOL(hashlen_string); 2297 2298 /* 2299 * Calculate the length and hash of the path component, and 2300 * return the length as the result. 2301 */ 2302 static inline const char *hash_name(struct nameidata *nd, 2303 const char *name, 2304 unsigned long *lastword) 2305 { 2306 unsigned long a, b, x, y = (unsigned long)nd->path.dentry; 2307 unsigned long adata, bdata, mask, len; 2308 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2309 2310 /* 2311 * The first iteration is special, because it can result in 2312 * '.' and '..' and has no mixing other than the final fold. 2313 */ 2314 a = load_unaligned_zeropad(name); 2315 b = a ^ REPEAT_BYTE('/'); 2316 if (has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)) { 2317 adata = prep_zero_mask(a, adata, &constants); 2318 bdata = prep_zero_mask(b, bdata, &constants); 2319 mask = create_zero_mask(adata | bdata); 2320 a &= zero_bytemask(mask); 2321 *lastword = a; 2322 len = find_zero(mask); 2323 nd->last.hash = fold_hash(a, y); 2324 nd->last.len = len; 2325 return name + len; 2326 } 2327 2328 len = 0; 2329 x = 0; 2330 do { 2331 HASH_MIX(x, y, a); 2332 len += sizeof(unsigned long); 2333 a = load_unaligned_zeropad(name+len); 2334 b = a ^ REPEAT_BYTE('/'); 2335 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 2336 2337 adata = prep_zero_mask(a, adata, &constants); 2338 bdata = prep_zero_mask(b, bdata, &constants); 2339 mask = create_zero_mask(adata | bdata); 2340 a &= zero_bytemask(mask); 2341 x ^= a; 2342 len += find_zero(mask); 2343 *lastword = 0; // Multi-word components cannot be DOT or DOTDOT 2344 2345 nd->last.hash = fold_hash(x, y); 2346 nd->last.len = len; 2347 return name + len; 2348 } 2349 2350 /* 2351 * Note that the 'last' word is always zero-masked, but 2352 * was loaded as a possibly big-endian word. 2353 */ 2354 #ifdef __BIG_ENDIAN 2355 #define LAST_WORD_IS_DOT (0x2eul << (BITS_PER_LONG-8)) 2356 #define LAST_WORD_IS_DOTDOT (0x2e2eul << (BITS_PER_LONG-16)) 2357 #endif 2358 2359 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 2360 2361 /* Return the hash of a string of known length */ 2362 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2363 { 2364 unsigned long hash = init_name_hash(salt); 2365 while (len--) 2366 hash = partial_name_hash((unsigned char)*name++, hash); 2367 return end_name_hash(hash); 2368 } 2369 EXPORT_SYMBOL(full_name_hash); 2370 2371 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2372 u64 hashlen_string(const void *salt, const char *name) 2373 { 2374 unsigned long hash = init_name_hash(salt); 2375 unsigned long len = 0, c; 2376 2377 c = (unsigned char)*name; 2378 while (c) { 2379 len++; 2380 hash = partial_name_hash(c, hash); 2381 c = (unsigned char)name[len]; 2382 } 2383 return hashlen_create(end_name_hash(hash), len); 2384 } 2385 EXPORT_SYMBOL(hashlen_string); 2386 2387 /* 2388 * We know there's a real path component here of at least 2389 * one character. 2390 */ 2391 static inline const char *hash_name(struct nameidata *nd, const char *name, unsigned long *lastword) 2392 { 2393 unsigned long hash = init_name_hash(nd->path.dentry); 2394 unsigned long len = 0, c, last = 0; 2395 2396 c = (unsigned char)*name; 2397 do { 2398 last = (last << 8) + c; 2399 len++; 2400 hash = partial_name_hash(c, hash); 2401 c = (unsigned char)name[len]; 2402 } while (c && c != '/'); 2403 2404 // This is reliable for DOT or DOTDOT, since the component 2405 // cannot contain NUL characters - top bits being zero means 2406 // we cannot have had any other pathnames. 2407 *lastword = last; 2408 nd->last.hash = end_name_hash(hash); 2409 nd->last.len = len; 2410 return name + len; 2411 } 2412 2413 #endif 2414 2415 #ifndef LAST_WORD_IS_DOT 2416 #define LAST_WORD_IS_DOT 0x2e 2417 #define LAST_WORD_IS_DOTDOT 0x2e2e 2418 #endif 2419 2420 /* 2421 * Name resolution. 2422 * This is the basic name resolution function, turning a pathname into 2423 * the final dentry. We expect 'base' to be positive and a directory. 2424 * 2425 * Returns 0 and nd will have valid dentry and mnt on success. 2426 * Returns error and drops reference to input namei data on failure. 2427 */ 2428 static int link_path_walk(const char *name, struct nameidata *nd) 2429 { 2430 int depth = 0; // depth <= nd->depth 2431 int err; 2432 2433 nd->last_type = LAST_ROOT; 2434 nd->flags |= LOOKUP_PARENT; 2435 if (IS_ERR(name)) 2436 return PTR_ERR(name); 2437 if (*name == '/') { 2438 do { 2439 name++; 2440 } while (unlikely(*name == '/')); 2441 } 2442 if (unlikely(!*name)) { 2443 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy 2444 return 0; 2445 } 2446 2447 /* At this point we know we have a real path component. */ 2448 for(;;) { 2449 struct mnt_idmap *idmap; 2450 const char *link; 2451 unsigned long lastword; 2452 2453 idmap = mnt_idmap(nd->path.mnt); 2454 err = may_lookup(idmap, nd); 2455 if (unlikely(err)) 2456 return err; 2457 2458 nd->last.name = name; 2459 name = hash_name(nd, name, &lastword); 2460 2461 switch(lastword) { 2462 case LAST_WORD_IS_DOTDOT: 2463 nd->last_type = LAST_DOTDOT; 2464 nd->state |= ND_JUMPED; 2465 break; 2466 2467 case LAST_WORD_IS_DOT: 2468 nd->last_type = LAST_DOT; 2469 break; 2470 2471 default: 2472 nd->last_type = LAST_NORM; 2473 nd->state &= ~ND_JUMPED; 2474 2475 struct dentry *parent = nd->path.dentry; 2476 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2477 err = parent->d_op->d_hash(parent, &nd->last); 2478 if (err < 0) 2479 return err; 2480 } 2481 } 2482 2483 if (!*name) 2484 goto OK; 2485 /* 2486 * If it wasn't NUL, we know it was '/'. Skip that 2487 * slash, and continue until no more slashes. 2488 */ 2489 do { 2490 name++; 2491 } while (unlikely(*name == '/')); 2492 if (unlikely(!*name)) { 2493 OK: 2494 /* pathname or trailing symlink, done */ 2495 if (!depth) { 2496 nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode); 2497 nd->dir_mode = nd->inode->i_mode; 2498 nd->flags &= ~LOOKUP_PARENT; 2499 return 0; 2500 } 2501 /* last component of nested symlink */ 2502 name = nd->stack[--depth].name; 2503 link = walk_component(nd, 0); 2504 } else { 2505 /* not the last component */ 2506 link = walk_component(nd, WALK_MORE); 2507 } 2508 if (unlikely(link)) { 2509 if (IS_ERR(link)) 2510 return PTR_ERR(link); 2511 /* a symlink to follow */ 2512 nd->stack[depth++].name = name; 2513 name = link; 2514 continue; 2515 } 2516 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2517 if (nd->flags & LOOKUP_RCU) { 2518 if (!try_to_unlazy(nd)) 2519 return -ECHILD; 2520 } 2521 return -ENOTDIR; 2522 } 2523 } 2524 } 2525 2526 /* must be paired with terminate_walk() */ 2527 static const char *path_init(struct nameidata *nd, unsigned flags) 2528 { 2529 int error; 2530 const char *s = nd->pathname; 2531 2532 /* LOOKUP_CACHED requires RCU, ask caller to retry */ 2533 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED) 2534 return ERR_PTR(-EAGAIN); 2535 2536 if (!*s) 2537 flags &= ~LOOKUP_RCU; 2538 if (flags & LOOKUP_RCU) 2539 rcu_read_lock(); 2540 else 2541 nd->seq = nd->next_seq = 0; 2542 2543 nd->flags = flags; 2544 nd->state |= ND_JUMPED; 2545 2546 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount); 2547 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount); 2548 smp_rmb(); 2549 2550 if (nd->state & ND_ROOT_PRESET) { 2551 struct dentry *root = nd->root.dentry; 2552 struct inode *inode = root->d_inode; 2553 if (*s && unlikely(!d_can_lookup(root))) 2554 return ERR_PTR(-ENOTDIR); 2555 nd->path = nd->root; 2556 nd->inode = inode; 2557 if (flags & LOOKUP_RCU) { 2558 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2559 nd->root_seq = nd->seq; 2560 } else { 2561 path_get(&nd->path); 2562 } 2563 return s; 2564 } 2565 2566 nd->root.mnt = NULL; 2567 2568 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */ 2569 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) { 2570 error = nd_jump_root(nd); 2571 if (unlikely(error)) 2572 return ERR_PTR(error); 2573 return s; 2574 } 2575 2576 /* Relative pathname -- get the starting-point it is relative to. */ 2577 if (nd->dfd == AT_FDCWD) { 2578 if (flags & LOOKUP_RCU) { 2579 struct fs_struct *fs = current->fs; 2580 unsigned seq; 2581 2582 do { 2583 seq = read_seqcount_begin(&fs->seq); 2584 nd->path = fs->pwd; 2585 nd->inode = nd->path.dentry->d_inode; 2586 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2587 } while (read_seqcount_retry(&fs->seq, seq)); 2588 } else { 2589 get_fs_pwd(current->fs, &nd->path); 2590 nd->inode = nd->path.dentry->d_inode; 2591 } 2592 } else { 2593 /* Caller must check execute permissions on the starting path component */ 2594 CLASS(fd_raw, f)(nd->dfd); 2595 struct dentry *dentry; 2596 2597 if (fd_empty(f)) 2598 return ERR_PTR(-EBADF); 2599 2600 if (flags & LOOKUP_LINKAT_EMPTY) { 2601 if (fd_file(f)->f_cred != current_cred() && 2602 !ns_capable(fd_file(f)->f_cred->user_ns, CAP_DAC_READ_SEARCH)) 2603 return ERR_PTR(-ENOENT); 2604 } 2605 2606 dentry = fd_file(f)->f_path.dentry; 2607 2608 if (*s && unlikely(!d_can_lookup(dentry))) 2609 return ERR_PTR(-ENOTDIR); 2610 2611 nd->path = fd_file(f)->f_path; 2612 if (flags & LOOKUP_RCU) { 2613 nd->inode = nd->path.dentry->d_inode; 2614 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2615 } else { 2616 path_get(&nd->path); 2617 nd->inode = nd->path.dentry->d_inode; 2618 } 2619 } 2620 2621 /* For scoped-lookups we need to set the root to the dirfd as well. */ 2622 if (flags & LOOKUP_IS_SCOPED) { 2623 nd->root = nd->path; 2624 if (flags & LOOKUP_RCU) { 2625 nd->root_seq = nd->seq; 2626 } else { 2627 path_get(&nd->root); 2628 nd->state |= ND_ROOT_GRABBED; 2629 } 2630 } 2631 return s; 2632 } 2633 2634 static inline const char *lookup_last(struct nameidata *nd) 2635 { 2636 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2637 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2638 2639 return walk_component(nd, WALK_TRAILING); 2640 } 2641 2642 static int handle_lookup_down(struct nameidata *nd) 2643 { 2644 if (!(nd->flags & LOOKUP_RCU)) 2645 dget(nd->path.dentry); 2646 nd->next_seq = nd->seq; 2647 return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry)); 2648 } 2649 2650 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */ 2651 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2652 { 2653 const char *s = path_init(nd, flags); 2654 int err; 2655 2656 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) { 2657 err = handle_lookup_down(nd); 2658 if (unlikely(err < 0)) 2659 s = ERR_PTR(err); 2660 } 2661 2662 while (!(err = link_path_walk(s, nd)) && 2663 (s = lookup_last(nd)) != NULL) 2664 ; 2665 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) { 2666 err = handle_lookup_down(nd); 2667 nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please... 2668 } 2669 if (!err) 2670 err = complete_walk(nd); 2671 2672 if (!err && nd->flags & LOOKUP_DIRECTORY) 2673 if (!d_can_lookup(nd->path.dentry)) 2674 err = -ENOTDIR; 2675 if (!err) { 2676 *path = nd->path; 2677 nd->path.mnt = NULL; 2678 nd->path.dentry = NULL; 2679 } 2680 terminate_walk(nd); 2681 return err; 2682 } 2683 2684 int filename_lookup(int dfd, struct filename *name, unsigned flags, 2685 struct path *path, struct path *root) 2686 { 2687 int retval; 2688 struct nameidata nd; 2689 if (IS_ERR(name)) 2690 return PTR_ERR(name); 2691 set_nameidata(&nd, dfd, name, root); 2692 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2693 if (unlikely(retval == -ECHILD)) 2694 retval = path_lookupat(&nd, flags, path); 2695 if (unlikely(retval == -ESTALE)) 2696 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2697 2698 if (likely(!retval)) 2699 audit_inode(name, path->dentry, 2700 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0); 2701 restore_nameidata(); 2702 return retval; 2703 } 2704 2705 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */ 2706 static int path_parentat(struct nameidata *nd, unsigned flags, 2707 struct path *parent) 2708 { 2709 const char *s = path_init(nd, flags); 2710 int err = link_path_walk(s, nd); 2711 if (!err) 2712 err = complete_walk(nd); 2713 if (!err) { 2714 *parent = nd->path; 2715 nd->path.mnt = NULL; 2716 nd->path.dentry = NULL; 2717 } 2718 terminate_walk(nd); 2719 return err; 2720 } 2721 2722 /* Note: this does not consume "name" */ 2723 static int __filename_parentat(int dfd, struct filename *name, 2724 unsigned int flags, struct path *parent, 2725 struct qstr *last, int *type, 2726 const struct path *root) 2727 { 2728 int retval; 2729 struct nameidata nd; 2730 2731 if (IS_ERR(name)) 2732 return PTR_ERR(name); 2733 set_nameidata(&nd, dfd, name, root); 2734 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2735 if (unlikely(retval == -ECHILD)) 2736 retval = path_parentat(&nd, flags, parent); 2737 if (unlikely(retval == -ESTALE)) 2738 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2739 if (likely(!retval)) { 2740 *last = nd.last; 2741 *type = nd.last_type; 2742 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT); 2743 } 2744 restore_nameidata(); 2745 return retval; 2746 } 2747 2748 static int filename_parentat(int dfd, struct filename *name, 2749 unsigned int flags, struct path *parent, 2750 struct qstr *last, int *type) 2751 { 2752 return __filename_parentat(dfd, name, flags, parent, last, type, NULL); 2753 } 2754 2755 /* does lookup, returns the object with parent locked */ 2756 static struct dentry *__kern_path_locked(int dfd, struct filename *name, struct path *path) 2757 { 2758 struct path parent_path __free(path_put) = {}; 2759 struct dentry *d; 2760 struct qstr last; 2761 int type, error; 2762 2763 error = filename_parentat(dfd, name, 0, &parent_path, &last, &type); 2764 if (error) 2765 return ERR_PTR(error); 2766 if (unlikely(type != LAST_NORM)) 2767 return ERR_PTR(-EINVAL); 2768 inode_lock_nested(parent_path.dentry->d_inode, I_MUTEX_PARENT); 2769 d = lookup_one_qstr_excl(&last, parent_path.dentry, 0); 2770 if (IS_ERR(d)) { 2771 inode_unlock(parent_path.dentry->d_inode); 2772 return d; 2773 } 2774 path->dentry = no_free_ptr(parent_path.dentry); 2775 path->mnt = no_free_ptr(parent_path.mnt); 2776 return d; 2777 } 2778 2779 struct dentry *kern_path_locked_negative(const char *name, struct path *path) 2780 { 2781 struct path parent_path __free(path_put) = {}; 2782 struct filename *filename __free(putname) = getname_kernel(name); 2783 struct dentry *d; 2784 struct qstr last; 2785 int type, error; 2786 2787 error = filename_parentat(AT_FDCWD, filename, 0, &parent_path, &last, &type); 2788 if (error) 2789 return ERR_PTR(error); 2790 if (unlikely(type != LAST_NORM)) 2791 return ERR_PTR(-EINVAL); 2792 inode_lock_nested(parent_path.dentry->d_inode, I_MUTEX_PARENT); 2793 d = lookup_one_qstr_excl_raw(&last, parent_path.dentry, 0); 2794 if (IS_ERR(d)) { 2795 inode_unlock(parent_path.dentry->d_inode); 2796 return d; 2797 } 2798 path->dentry = no_free_ptr(parent_path.dentry); 2799 path->mnt = no_free_ptr(parent_path.mnt); 2800 return d; 2801 } 2802 2803 struct dentry *kern_path_locked(const char *name, struct path *path) 2804 { 2805 struct filename *filename = getname_kernel(name); 2806 struct dentry *res = __kern_path_locked(AT_FDCWD, filename, path); 2807 2808 putname(filename); 2809 return res; 2810 } 2811 2812 struct dentry *user_path_locked_at(int dfd, const char __user *name, struct path *path) 2813 { 2814 struct filename *filename = getname(name); 2815 struct dentry *res = __kern_path_locked(dfd, filename, path); 2816 2817 putname(filename); 2818 return res; 2819 } 2820 EXPORT_SYMBOL(user_path_locked_at); 2821 2822 int kern_path(const char *name, unsigned int flags, struct path *path) 2823 { 2824 struct filename *filename = getname_kernel(name); 2825 int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL); 2826 2827 putname(filename); 2828 return ret; 2829 2830 } 2831 EXPORT_SYMBOL(kern_path); 2832 2833 /** 2834 * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair 2835 * @filename: filename structure 2836 * @flags: lookup flags 2837 * @parent: pointer to struct path to fill 2838 * @last: last component 2839 * @type: type of the last component 2840 * @root: pointer to struct path of the base directory 2841 */ 2842 int vfs_path_parent_lookup(struct filename *filename, unsigned int flags, 2843 struct path *parent, struct qstr *last, int *type, 2844 const struct path *root) 2845 { 2846 return __filename_parentat(AT_FDCWD, filename, flags, parent, last, 2847 type, root); 2848 } 2849 EXPORT_SYMBOL(vfs_path_parent_lookup); 2850 2851 /** 2852 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2853 * @dentry: pointer to dentry of the base directory 2854 * @mnt: pointer to vfs mount of the base directory 2855 * @name: pointer to file name 2856 * @flags: lookup flags 2857 * @path: pointer to struct path to fill 2858 */ 2859 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2860 const char *name, unsigned int flags, 2861 struct path *path) 2862 { 2863 struct filename *filename; 2864 struct path root = {.mnt = mnt, .dentry = dentry}; 2865 int ret; 2866 2867 filename = getname_kernel(name); 2868 /* the first argument of filename_lookup() is ignored with root */ 2869 ret = filename_lookup(AT_FDCWD, filename, flags, path, &root); 2870 putname(filename); 2871 return ret; 2872 } 2873 EXPORT_SYMBOL(vfs_path_lookup); 2874 2875 static int lookup_noperm_common(struct qstr *qname, struct dentry *base) 2876 { 2877 const char *name = qname->name; 2878 u32 len = qname->len; 2879 2880 qname->hash = full_name_hash(base, name, len); 2881 if (!len) 2882 return -EACCES; 2883 2884 if (is_dot_dotdot(name, len)) 2885 return -EACCES; 2886 2887 while (len--) { 2888 unsigned int c = *(const unsigned char *)name++; 2889 if (c == '/' || c == '\0') 2890 return -EACCES; 2891 } 2892 /* 2893 * See if the low-level filesystem might want 2894 * to use its own hash.. 2895 */ 2896 if (base->d_flags & DCACHE_OP_HASH) { 2897 int err = base->d_op->d_hash(base, qname); 2898 if (err < 0) 2899 return err; 2900 } 2901 return 0; 2902 } 2903 2904 static int lookup_one_common(struct mnt_idmap *idmap, 2905 struct qstr *qname, struct dentry *base) 2906 { 2907 int err; 2908 err = lookup_noperm_common(qname, base); 2909 if (err < 0) 2910 return err; 2911 return inode_permission(idmap, base->d_inode, MAY_EXEC); 2912 } 2913 2914 /** 2915 * try_lookup_noperm - filesystem helper to lookup single pathname component 2916 * @name: qstr storing pathname component to lookup 2917 * @base: base directory to lookup from 2918 * 2919 * Look up a dentry by name in the dcache, returning NULL if it does not 2920 * currently exist. The function does not try to create a dentry. 2921 * 2922 * Note that this routine is purely a helper for filesystem usage and should 2923 * not be called by generic code. It does no permission checking. 2924 * 2925 * No locks need be held - only a counted reference to @base is needed. 2926 * 2927 */ 2928 struct dentry *try_lookup_noperm(struct qstr *name, struct dentry *base) 2929 { 2930 int err; 2931 2932 err = lookup_noperm_common(name, base); 2933 if (err) 2934 return ERR_PTR(err); 2935 2936 return lookup_dcache(name, base, 0); 2937 } 2938 EXPORT_SYMBOL(try_lookup_noperm); 2939 2940 /** 2941 * lookup_noperm - filesystem helper to lookup single pathname component 2942 * @name: qstr storing pathname component to lookup 2943 * @base: base directory to lookup from 2944 * 2945 * Note that this routine is purely a helper for filesystem usage and should 2946 * not be called by generic code. It does no permission checking. 2947 * 2948 * The caller must hold base->i_mutex. 2949 */ 2950 struct dentry *lookup_noperm(struct qstr *name, struct dentry *base) 2951 { 2952 struct dentry *dentry; 2953 int err; 2954 2955 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2956 2957 err = lookup_noperm_common(name, base); 2958 if (err) 2959 return ERR_PTR(err); 2960 2961 dentry = lookup_dcache(name, base, 0); 2962 return dentry ? dentry : __lookup_slow(name, base, 0); 2963 } 2964 EXPORT_SYMBOL(lookup_noperm); 2965 2966 /** 2967 * lookup_one - lookup single pathname component 2968 * @idmap: idmap of the mount the lookup is performed from 2969 * @name: qstr holding pathname component to lookup 2970 * @base: base directory to lookup from 2971 * 2972 * This can be used for in-kernel filesystem clients such as file servers. 2973 * 2974 * The caller must hold base->i_mutex. 2975 */ 2976 struct dentry *lookup_one(struct mnt_idmap *idmap, struct qstr *name, 2977 struct dentry *base) 2978 { 2979 struct dentry *dentry; 2980 int err; 2981 2982 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2983 2984 err = lookup_one_common(idmap, name, base); 2985 if (err) 2986 return ERR_PTR(err); 2987 2988 dentry = lookup_dcache(name, base, 0); 2989 return dentry ? dentry : __lookup_slow(name, base, 0); 2990 } 2991 EXPORT_SYMBOL(lookup_one); 2992 2993 /** 2994 * lookup_one_unlocked - lookup single pathname component 2995 * @idmap: idmap of the mount the lookup is performed from 2996 * @name: qstr olding pathname component to lookup 2997 * @base: base directory to lookup from 2998 * 2999 * This can be used for in-kernel filesystem clients such as file servers. 3000 * 3001 * Unlike lookup_one, it should be called without the parent 3002 * i_rwsem held, and will take the i_rwsem itself if necessary. 3003 */ 3004 struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap, struct qstr *name, 3005 struct dentry *base) 3006 { 3007 int err; 3008 struct dentry *ret; 3009 3010 err = lookup_one_common(idmap, name, base); 3011 if (err) 3012 return ERR_PTR(err); 3013 3014 ret = lookup_dcache(name, base, 0); 3015 if (!ret) 3016 ret = lookup_slow(name, base, 0); 3017 return ret; 3018 } 3019 EXPORT_SYMBOL(lookup_one_unlocked); 3020 3021 /** 3022 * lookup_one_positive_unlocked - lookup single pathname component 3023 * @idmap: idmap of the mount the lookup is performed from 3024 * @name: qstr holding pathname component to lookup 3025 * @base: base directory to lookup from 3026 * 3027 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns 3028 * known positive or ERR_PTR(). This is what most of the users want. 3029 * 3030 * Note that pinned negative with unlocked parent _can_ become positive at any 3031 * time, so callers of lookup_one_unlocked() need to be very careful; pinned 3032 * positives have >d_inode stable, so this one avoids such problems. 3033 * 3034 * This can be used for in-kernel filesystem clients such as file servers. 3035 * 3036 * The helper should be called without i_rwsem held. 3037 */ 3038 struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap, 3039 struct qstr *name, 3040 struct dentry *base) 3041 { 3042 struct dentry *ret = lookup_one_unlocked(idmap, name, base); 3043 3044 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) { 3045 dput(ret); 3046 ret = ERR_PTR(-ENOENT); 3047 } 3048 return ret; 3049 } 3050 EXPORT_SYMBOL(lookup_one_positive_unlocked); 3051 3052 /** 3053 * lookup_noperm_unlocked - filesystem helper to lookup single pathname component 3054 * @name: pathname component to lookup 3055 * @base: base directory to lookup from 3056 * 3057 * Note that this routine is purely a helper for filesystem usage and should 3058 * not be called by generic code. It does no permission checking. 3059 * 3060 * Unlike lookup_noperm, it should be called without the parent 3061 * i_rwsem held, and will take the i_rwsem itself if necessary. 3062 */ 3063 struct dentry *lookup_noperm_unlocked(struct qstr *name, struct dentry *base) 3064 { 3065 struct dentry *ret; 3066 3067 ret = try_lookup_noperm(name, base); 3068 if (!ret) 3069 ret = lookup_slow(name, base, 0); 3070 return ret; 3071 } 3072 EXPORT_SYMBOL(lookup_noperm_unlocked); 3073 3074 /* 3075 * Like lookup_noperm_unlocked(), except that it yields ERR_PTR(-ENOENT) 3076 * on negatives. Returns known positive or ERR_PTR(); that's what 3077 * most of the users want. Note that pinned negative with unlocked parent 3078 * _can_ become positive at any time, so callers of lookup_noperm_unlocked() 3079 * need to be very careful; pinned positives have ->d_inode stable, so 3080 * this one avoids such problems. 3081 */ 3082 struct dentry *lookup_noperm_positive_unlocked(struct qstr *name, 3083 struct dentry *base) 3084 { 3085 struct dentry *ret; 3086 3087 ret = lookup_noperm_unlocked(name, base); 3088 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) { 3089 dput(ret); 3090 ret = ERR_PTR(-ENOENT); 3091 } 3092 return ret; 3093 } 3094 EXPORT_SYMBOL(lookup_noperm_positive_unlocked); 3095 3096 #ifdef CONFIG_UNIX98_PTYS 3097 int path_pts(struct path *path) 3098 { 3099 /* Find something mounted on "pts" in the same directory as 3100 * the input path. 3101 */ 3102 struct dentry *parent = dget_parent(path->dentry); 3103 struct dentry *child; 3104 struct qstr this = QSTR_INIT("pts", 3); 3105 3106 if (unlikely(!path_connected(path->mnt, parent))) { 3107 dput(parent); 3108 return -ENOENT; 3109 } 3110 dput(path->dentry); 3111 path->dentry = parent; 3112 child = d_hash_and_lookup(parent, &this); 3113 if (IS_ERR_OR_NULL(child)) 3114 return -ENOENT; 3115 3116 path->dentry = child; 3117 dput(parent); 3118 follow_down(path, 0); 3119 return 0; 3120 } 3121 #endif 3122 3123 int user_path_at(int dfd, const char __user *name, unsigned flags, 3124 struct path *path) 3125 { 3126 struct filename *filename = getname_flags(name, flags); 3127 int ret = filename_lookup(dfd, filename, flags, path, NULL); 3128 3129 putname(filename); 3130 return ret; 3131 } 3132 EXPORT_SYMBOL(user_path_at); 3133 3134 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir, 3135 struct inode *inode) 3136 { 3137 kuid_t fsuid = current_fsuid(); 3138 3139 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid)) 3140 return 0; 3141 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid)) 3142 return 0; 3143 return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER); 3144 } 3145 EXPORT_SYMBOL(__check_sticky); 3146 3147 /* 3148 * Check whether we can remove a link victim from directory dir, check 3149 * whether the type of victim is right. 3150 * 1. We can't do it if dir is read-only (done in permission()) 3151 * 2. We should have write and exec permissions on dir 3152 * 3. We can't remove anything from append-only dir 3153 * 4. We can't do anything with immutable dir (done in permission()) 3154 * 5. If the sticky bit on dir is set we should either 3155 * a. be owner of dir, or 3156 * b. be owner of victim, or 3157 * c. have CAP_FOWNER capability 3158 * 6. If the victim is append-only or immutable we can't do antyhing with 3159 * links pointing to it. 3160 * 7. If the victim has an unknown uid or gid we can't change the inode. 3161 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 3162 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 3163 * 10. We can't remove a root or mountpoint. 3164 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 3165 * nfs_async_unlink(). 3166 */ 3167 static int may_delete(struct mnt_idmap *idmap, struct inode *dir, 3168 struct dentry *victim, bool isdir) 3169 { 3170 struct inode *inode = d_backing_inode(victim); 3171 int error; 3172 3173 if (d_is_negative(victim)) 3174 return -ENOENT; 3175 BUG_ON(!inode); 3176 3177 BUG_ON(victim->d_parent->d_inode != dir); 3178 3179 /* Inode writeback is not safe when the uid or gid are invalid. */ 3180 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || 3181 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode))) 3182 return -EOVERFLOW; 3183 3184 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 3185 3186 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 3187 if (error) 3188 return error; 3189 if (IS_APPEND(dir)) 3190 return -EPERM; 3191 3192 if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) || 3193 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || 3194 HAS_UNMAPPED_ID(idmap, inode)) 3195 return -EPERM; 3196 if (isdir) { 3197 if (!d_is_dir(victim)) 3198 return -ENOTDIR; 3199 if (IS_ROOT(victim)) 3200 return -EBUSY; 3201 } else if (d_is_dir(victim)) 3202 return -EISDIR; 3203 if (IS_DEADDIR(dir)) 3204 return -ENOENT; 3205 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 3206 return -EBUSY; 3207 return 0; 3208 } 3209 3210 /* Check whether we can create an object with dentry child in directory 3211 * dir. 3212 * 1. We can't do it if child already exists (open has special treatment for 3213 * this case, but since we are inlined it's OK) 3214 * 2. We can't do it if dir is read-only (done in permission()) 3215 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 3216 * 4. We should have write and exec permissions on dir 3217 * 5. We can't do it if dir is immutable (done in permission()) 3218 */ 3219 static inline int may_create(struct mnt_idmap *idmap, 3220 struct inode *dir, struct dentry *child) 3221 { 3222 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 3223 if (child->d_inode) 3224 return -EEXIST; 3225 if (IS_DEADDIR(dir)) 3226 return -ENOENT; 3227 if (!fsuidgid_has_mapping(dir->i_sb, idmap)) 3228 return -EOVERFLOW; 3229 3230 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 3231 } 3232 3233 // p1 != p2, both are on the same filesystem, ->s_vfs_rename_mutex is held 3234 static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2) 3235 { 3236 struct dentry *p = p1, *q = p2, *r; 3237 3238 while ((r = p->d_parent) != p2 && r != p) 3239 p = r; 3240 if (r == p2) { 3241 // p is a child of p2 and an ancestor of p1 or p1 itself 3242 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 3243 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2); 3244 return p; 3245 } 3246 // p is the root of connected component that contains p1 3247 // p2 does not occur on the path from p to p1 3248 while ((r = q->d_parent) != p1 && r != p && r != q) 3249 q = r; 3250 if (r == p1) { 3251 // q is a child of p1 and an ancestor of p2 or p2 itself 3252 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3253 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 3254 return q; 3255 } else if (likely(r == p)) { 3256 // both p2 and p1 are descendents of p 3257 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3258 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 3259 return NULL; 3260 } else { // no common ancestor at the time we'd been called 3261 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 3262 return ERR_PTR(-EXDEV); 3263 } 3264 } 3265 3266 /* 3267 * p1 and p2 should be directories on the same fs. 3268 */ 3269 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 3270 { 3271 if (p1 == p2) { 3272 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3273 return NULL; 3274 } 3275 3276 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 3277 return lock_two_directories(p1, p2); 3278 } 3279 EXPORT_SYMBOL(lock_rename); 3280 3281 /* 3282 * c1 and p2 should be on the same fs. 3283 */ 3284 struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2) 3285 { 3286 if (READ_ONCE(c1->d_parent) == p2) { 3287 /* 3288 * hopefully won't need to touch ->s_vfs_rename_mutex at all. 3289 */ 3290 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 3291 /* 3292 * now that p2 is locked, nobody can move in or out of it, 3293 * so the test below is safe. 3294 */ 3295 if (likely(c1->d_parent == p2)) 3296 return NULL; 3297 3298 /* 3299 * c1 got moved out of p2 while we'd been taking locks; 3300 * unlock and fall back to slow case. 3301 */ 3302 inode_unlock(p2->d_inode); 3303 } 3304 3305 mutex_lock(&c1->d_sb->s_vfs_rename_mutex); 3306 /* 3307 * nobody can move out of any directories on this fs. 3308 */ 3309 if (likely(c1->d_parent != p2)) 3310 return lock_two_directories(c1->d_parent, p2); 3311 3312 /* 3313 * c1 got moved into p2 while we were taking locks; 3314 * we need p2 locked and ->s_vfs_rename_mutex unlocked, 3315 * for consistency with lock_rename(). 3316 */ 3317 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 3318 mutex_unlock(&c1->d_sb->s_vfs_rename_mutex); 3319 return NULL; 3320 } 3321 EXPORT_SYMBOL(lock_rename_child); 3322 3323 void unlock_rename(struct dentry *p1, struct dentry *p2) 3324 { 3325 inode_unlock(p1->d_inode); 3326 if (p1 != p2) { 3327 inode_unlock(p2->d_inode); 3328 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 3329 } 3330 } 3331 EXPORT_SYMBOL(unlock_rename); 3332 3333 /** 3334 * vfs_prepare_mode - prepare the mode to be used for a new inode 3335 * @idmap: idmap of the mount the inode was found from 3336 * @dir: parent directory of the new inode 3337 * @mode: mode of the new inode 3338 * @mask_perms: allowed permission by the vfs 3339 * @type: type of file to be created 3340 * 3341 * This helper consolidates and enforces vfs restrictions on the @mode of a new 3342 * object to be created. 3343 * 3344 * Umask stripping depends on whether the filesystem supports POSIX ACLs (see 3345 * the kernel documentation for mode_strip_umask()). Moving umask stripping 3346 * after setgid stripping allows the same ordering for both non-POSIX ACL and 3347 * POSIX ACL supporting filesystems. 3348 * 3349 * Note that it's currently valid for @type to be 0 if a directory is created. 3350 * Filesystems raise that flag individually and we need to check whether each 3351 * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a 3352 * non-zero type. 3353 * 3354 * Returns: mode to be passed to the filesystem 3355 */ 3356 static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap, 3357 const struct inode *dir, umode_t mode, 3358 umode_t mask_perms, umode_t type) 3359 { 3360 mode = mode_strip_sgid(idmap, dir, mode); 3361 mode = mode_strip_umask(dir, mode); 3362 3363 /* 3364 * Apply the vfs mandated allowed permission mask and set the type of 3365 * file to be created before we call into the filesystem. 3366 */ 3367 mode &= (mask_perms & ~S_IFMT); 3368 mode |= (type & S_IFMT); 3369 3370 return mode; 3371 } 3372 3373 /** 3374 * vfs_create - create new file 3375 * @idmap: idmap of the mount the inode was found from 3376 * @dir: inode of the parent directory 3377 * @dentry: dentry of the child file 3378 * @mode: mode of the child file 3379 * @want_excl: whether the file must not yet exist 3380 * 3381 * Create a new file. 3382 * 3383 * If the inode has been found through an idmapped mount the idmap of 3384 * the vfsmount must be passed through @idmap. This function will then take 3385 * care to map the inode according to @idmap before checking permissions. 3386 * On non-idmapped mounts or if permission checking is to be performed on the 3387 * raw inode simply pass @nop_mnt_idmap. 3388 */ 3389 int vfs_create(struct mnt_idmap *idmap, struct inode *dir, 3390 struct dentry *dentry, umode_t mode, bool want_excl) 3391 { 3392 int error; 3393 3394 error = may_create(idmap, dir, dentry); 3395 if (error) 3396 return error; 3397 3398 if (!dir->i_op->create) 3399 return -EACCES; /* shouldn't it be ENOSYS? */ 3400 3401 mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG); 3402 error = security_inode_create(dir, dentry, mode); 3403 if (error) 3404 return error; 3405 error = dir->i_op->create(idmap, dir, dentry, mode, want_excl); 3406 if (!error) 3407 fsnotify_create(dir, dentry); 3408 return error; 3409 } 3410 EXPORT_SYMBOL(vfs_create); 3411 3412 int vfs_mkobj(struct dentry *dentry, umode_t mode, 3413 int (*f)(struct dentry *, umode_t, void *), 3414 void *arg) 3415 { 3416 struct inode *dir = dentry->d_parent->d_inode; 3417 int error = may_create(&nop_mnt_idmap, dir, dentry); 3418 if (error) 3419 return error; 3420 3421 mode &= S_IALLUGO; 3422 mode |= S_IFREG; 3423 error = security_inode_create(dir, dentry, mode); 3424 if (error) 3425 return error; 3426 error = f(dentry, mode, arg); 3427 if (!error) 3428 fsnotify_create(dir, dentry); 3429 return error; 3430 } 3431 EXPORT_SYMBOL(vfs_mkobj); 3432 3433 bool may_open_dev(const struct path *path) 3434 { 3435 return !(path->mnt->mnt_flags & MNT_NODEV) && 3436 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 3437 } 3438 3439 static int may_open(struct mnt_idmap *idmap, const struct path *path, 3440 int acc_mode, int flag) 3441 { 3442 struct dentry *dentry = path->dentry; 3443 struct inode *inode = dentry->d_inode; 3444 int error; 3445 3446 if (!inode) 3447 return -ENOENT; 3448 3449 switch (inode->i_mode & S_IFMT) { 3450 case S_IFLNK: 3451 return -ELOOP; 3452 case S_IFDIR: 3453 if (acc_mode & MAY_WRITE) 3454 return -EISDIR; 3455 if (acc_mode & MAY_EXEC) 3456 return -EACCES; 3457 break; 3458 case S_IFBLK: 3459 case S_IFCHR: 3460 if (!may_open_dev(path)) 3461 return -EACCES; 3462 fallthrough; 3463 case S_IFIFO: 3464 case S_IFSOCK: 3465 if (acc_mode & MAY_EXEC) 3466 return -EACCES; 3467 flag &= ~O_TRUNC; 3468 break; 3469 case S_IFREG: 3470 if ((acc_mode & MAY_EXEC) && path_noexec(path)) 3471 return -EACCES; 3472 break; 3473 default: 3474 VFS_BUG_ON_INODE(1, inode); 3475 } 3476 3477 error = inode_permission(idmap, inode, MAY_OPEN | acc_mode); 3478 if (error) 3479 return error; 3480 3481 /* 3482 * An append-only file must be opened in append mode for writing. 3483 */ 3484 if (IS_APPEND(inode)) { 3485 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 3486 return -EPERM; 3487 if (flag & O_TRUNC) 3488 return -EPERM; 3489 } 3490 3491 /* O_NOATIME can only be set by the owner or superuser */ 3492 if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode)) 3493 return -EPERM; 3494 3495 return 0; 3496 } 3497 3498 static int handle_truncate(struct mnt_idmap *idmap, struct file *filp) 3499 { 3500 const struct path *path = &filp->f_path; 3501 struct inode *inode = path->dentry->d_inode; 3502 int error = get_write_access(inode); 3503 if (error) 3504 return error; 3505 3506 error = security_file_truncate(filp); 3507 if (!error) { 3508 error = do_truncate(idmap, path->dentry, 0, 3509 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 3510 filp); 3511 } 3512 put_write_access(inode); 3513 return error; 3514 } 3515 3516 static inline int open_to_namei_flags(int flag) 3517 { 3518 if ((flag & O_ACCMODE) == 3) 3519 flag--; 3520 return flag; 3521 } 3522 3523 static int may_o_create(struct mnt_idmap *idmap, 3524 const struct path *dir, struct dentry *dentry, 3525 umode_t mode) 3526 { 3527 int error = security_path_mknod(dir, dentry, mode, 0); 3528 if (error) 3529 return error; 3530 3531 if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap)) 3532 return -EOVERFLOW; 3533 3534 error = inode_permission(idmap, dir->dentry->d_inode, 3535 MAY_WRITE | MAY_EXEC); 3536 if (error) 3537 return error; 3538 3539 return security_inode_create(dir->dentry->d_inode, dentry, mode); 3540 } 3541 3542 /* 3543 * Attempt to atomically look up, create and open a file from a negative 3544 * dentry. 3545 * 3546 * Returns 0 if successful. The file will have been created and attached to 3547 * @file by the filesystem calling finish_open(). 3548 * 3549 * If the file was looked up only or didn't need creating, FMODE_OPENED won't 3550 * be set. The caller will need to perform the open themselves. @path will 3551 * have been updated to point to the new dentry. This may be negative. 3552 * 3553 * Returns an error code otherwise. 3554 */ 3555 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry, 3556 struct file *file, 3557 int open_flag, umode_t mode) 3558 { 3559 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 3560 struct inode *dir = nd->path.dentry->d_inode; 3561 int error; 3562 3563 if (nd->flags & LOOKUP_DIRECTORY) 3564 open_flag |= O_DIRECTORY; 3565 3566 file->f_path.dentry = DENTRY_NOT_SET; 3567 file->f_path.mnt = nd->path.mnt; 3568 error = dir->i_op->atomic_open(dir, dentry, file, 3569 open_to_namei_flags(open_flag), mode); 3570 d_lookup_done(dentry); 3571 if (!error) { 3572 if (file->f_mode & FMODE_OPENED) { 3573 if (unlikely(dentry != file->f_path.dentry)) { 3574 dput(dentry); 3575 dentry = dget(file->f_path.dentry); 3576 } 3577 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 3578 error = -EIO; 3579 } else { 3580 if (file->f_path.dentry) { 3581 dput(dentry); 3582 dentry = file->f_path.dentry; 3583 } 3584 if (unlikely(d_is_negative(dentry))) 3585 error = -ENOENT; 3586 } 3587 } 3588 if (error) { 3589 dput(dentry); 3590 dentry = ERR_PTR(error); 3591 } 3592 return dentry; 3593 } 3594 3595 /* 3596 * Look up and maybe create and open the last component. 3597 * 3598 * Must be called with parent locked (exclusive in O_CREAT case). 3599 * 3600 * Returns 0 on success, that is, if 3601 * the file was successfully atomically created (if necessary) and opened, or 3602 * the file was not completely opened at this time, though lookups and 3603 * creations were performed. 3604 * These case are distinguished by presence of FMODE_OPENED on file->f_mode. 3605 * In the latter case dentry returned in @path might be negative if O_CREAT 3606 * hadn't been specified. 3607 * 3608 * An error code is returned on failure. 3609 */ 3610 static struct dentry *lookup_open(struct nameidata *nd, struct file *file, 3611 const struct open_flags *op, 3612 bool got_write) 3613 { 3614 struct mnt_idmap *idmap; 3615 struct dentry *dir = nd->path.dentry; 3616 struct inode *dir_inode = dir->d_inode; 3617 int open_flag = op->open_flag; 3618 struct dentry *dentry; 3619 int error, create_error = 0; 3620 umode_t mode = op->mode; 3621 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3622 3623 if (unlikely(IS_DEADDIR(dir_inode))) 3624 return ERR_PTR(-ENOENT); 3625 3626 file->f_mode &= ~FMODE_CREATED; 3627 dentry = d_lookup(dir, &nd->last); 3628 for (;;) { 3629 if (!dentry) { 3630 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3631 if (IS_ERR(dentry)) 3632 return dentry; 3633 } 3634 if (d_in_lookup(dentry)) 3635 break; 3636 3637 error = d_revalidate(dir_inode, &nd->last, dentry, nd->flags); 3638 if (likely(error > 0)) 3639 break; 3640 if (error) 3641 goto out_dput; 3642 d_invalidate(dentry); 3643 dput(dentry); 3644 dentry = NULL; 3645 } 3646 if (dentry->d_inode) { 3647 /* Cached positive dentry: will open in f_op->open */ 3648 return dentry; 3649 } 3650 3651 if (open_flag & O_CREAT) 3652 audit_inode(nd->name, dir, AUDIT_INODE_PARENT); 3653 3654 /* 3655 * Checking write permission is tricky, bacuse we don't know if we are 3656 * going to actually need it: O_CREAT opens should work as long as the 3657 * file exists. But checking existence breaks atomicity. The trick is 3658 * to check access and if not granted clear O_CREAT from the flags. 3659 * 3660 * Another problem is returing the "right" error value (e.g. for an 3661 * O_EXCL open we want to return EEXIST not EROFS). 3662 */ 3663 if (unlikely(!got_write)) 3664 open_flag &= ~O_TRUNC; 3665 idmap = mnt_idmap(nd->path.mnt); 3666 if (open_flag & O_CREAT) { 3667 if (open_flag & O_EXCL) 3668 open_flag &= ~O_TRUNC; 3669 mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode); 3670 if (likely(got_write)) 3671 create_error = may_o_create(idmap, &nd->path, 3672 dentry, mode); 3673 else 3674 create_error = -EROFS; 3675 } 3676 if (create_error) 3677 open_flag &= ~O_CREAT; 3678 if (dir_inode->i_op->atomic_open) { 3679 dentry = atomic_open(nd, dentry, file, open_flag, mode); 3680 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT)) 3681 dentry = ERR_PTR(create_error); 3682 return dentry; 3683 } 3684 3685 if (d_in_lookup(dentry)) { 3686 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3687 nd->flags); 3688 d_lookup_done(dentry); 3689 if (unlikely(res)) { 3690 if (IS_ERR(res)) { 3691 error = PTR_ERR(res); 3692 goto out_dput; 3693 } 3694 dput(dentry); 3695 dentry = res; 3696 } 3697 } 3698 3699 /* Negative dentry, just create the file */ 3700 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3701 file->f_mode |= FMODE_CREATED; 3702 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3703 if (!dir_inode->i_op->create) { 3704 error = -EACCES; 3705 goto out_dput; 3706 } 3707 3708 error = dir_inode->i_op->create(idmap, dir_inode, dentry, 3709 mode, open_flag & O_EXCL); 3710 if (error) 3711 goto out_dput; 3712 } 3713 if (unlikely(create_error) && !dentry->d_inode) { 3714 error = create_error; 3715 goto out_dput; 3716 } 3717 return dentry; 3718 3719 out_dput: 3720 dput(dentry); 3721 return ERR_PTR(error); 3722 } 3723 3724 static inline bool trailing_slashes(struct nameidata *nd) 3725 { 3726 return (bool)nd->last.name[nd->last.len]; 3727 } 3728 3729 static struct dentry *lookup_fast_for_open(struct nameidata *nd, int open_flag) 3730 { 3731 struct dentry *dentry; 3732 3733 if (open_flag & O_CREAT) { 3734 if (trailing_slashes(nd)) 3735 return ERR_PTR(-EISDIR); 3736 3737 /* Don't bother on an O_EXCL create */ 3738 if (open_flag & O_EXCL) 3739 return NULL; 3740 } 3741 3742 if (trailing_slashes(nd)) 3743 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3744 3745 dentry = lookup_fast(nd); 3746 if (IS_ERR_OR_NULL(dentry)) 3747 return dentry; 3748 3749 if (open_flag & O_CREAT) { 3750 /* Discard negative dentries. Need inode_lock to do the create */ 3751 if (!dentry->d_inode) { 3752 if (!(nd->flags & LOOKUP_RCU)) 3753 dput(dentry); 3754 dentry = NULL; 3755 } 3756 } 3757 return dentry; 3758 } 3759 3760 static const char *open_last_lookups(struct nameidata *nd, 3761 struct file *file, const struct open_flags *op) 3762 { 3763 struct dentry *dir = nd->path.dentry; 3764 int open_flag = op->open_flag; 3765 bool got_write = false; 3766 struct dentry *dentry; 3767 const char *res; 3768 3769 nd->flags |= op->intent; 3770 3771 if (nd->last_type != LAST_NORM) { 3772 if (nd->depth) 3773 put_link(nd); 3774 return handle_dots(nd, nd->last_type); 3775 } 3776 3777 /* We _can_ be in RCU mode here */ 3778 dentry = lookup_fast_for_open(nd, open_flag); 3779 if (IS_ERR(dentry)) 3780 return ERR_CAST(dentry); 3781 3782 if (likely(dentry)) 3783 goto finish_lookup; 3784 3785 if (!(open_flag & O_CREAT)) { 3786 if (WARN_ON_ONCE(nd->flags & LOOKUP_RCU)) 3787 return ERR_PTR(-ECHILD); 3788 } else { 3789 if (nd->flags & LOOKUP_RCU) { 3790 if (!try_to_unlazy(nd)) 3791 return ERR_PTR(-ECHILD); 3792 } 3793 } 3794 3795 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3796 got_write = !mnt_want_write(nd->path.mnt); 3797 /* 3798 * do _not_ fail yet - we might not need that or fail with 3799 * a different error; let lookup_open() decide; we'll be 3800 * dropping this one anyway. 3801 */ 3802 } 3803 if (open_flag & O_CREAT) 3804 inode_lock(dir->d_inode); 3805 else 3806 inode_lock_shared(dir->d_inode); 3807 dentry = lookup_open(nd, file, op, got_write); 3808 if (!IS_ERR(dentry)) { 3809 if (file->f_mode & FMODE_CREATED) 3810 fsnotify_create(dir->d_inode, dentry); 3811 if (file->f_mode & FMODE_OPENED) 3812 fsnotify_open(file); 3813 } 3814 if (open_flag & O_CREAT) 3815 inode_unlock(dir->d_inode); 3816 else 3817 inode_unlock_shared(dir->d_inode); 3818 3819 if (got_write) 3820 mnt_drop_write(nd->path.mnt); 3821 3822 if (IS_ERR(dentry)) 3823 return ERR_CAST(dentry); 3824 3825 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) { 3826 dput(nd->path.dentry); 3827 nd->path.dentry = dentry; 3828 return NULL; 3829 } 3830 3831 finish_lookup: 3832 if (nd->depth) 3833 put_link(nd); 3834 res = step_into(nd, WALK_TRAILING, dentry); 3835 if (unlikely(res)) 3836 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3837 return res; 3838 } 3839 3840 /* 3841 * Handle the last step of open() 3842 */ 3843 static int do_open(struct nameidata *nd, 3844 struct file *file, const struct open_flags *op) 3845 { 3846 struct mnt_idmap *idmap; 3847 int open_flag = op->open_flag; 3848 bool do_truncate; 3849 int acc_mode; 3850 int error; 3851 3852 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) { 3853 error = complete_walk(nd); 3854 if (error) 3855 return error; 3856 } 3857 if (!(file->f_mode & FMODE_CREATED)) 3858 audit_inode(nd->name, nd->path.dentry, 0); 3859 idmap = mnt_idmap(nd->path.mnt); 3860 if (open_flag & O_CREAT) { 3861 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED)) 3862 return -EEXIST; 3863 if (d_is_dir(nd->path.dentry)) 3864 return -EISDIR; 3865 error = may_create_in_sticky(idmap, nd, 3866 d_backing_inode(nd->path.dentry)); 3867 if (unlikely(error)) 3868 return error; 3869 } 3870 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3871 return -ENOTDIR; 3872 3873 do_truncate = false; 3874 acc_mode = op->acc_mode; 3875 if (file->f_mode & FMODE_CREATED) { 3876 /* Don't check for write permission, don't truncate */ 3877 open_flag &= ~O_TRUNC; 3878 acc_mode = 0; 3879 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) { 3880 error = mnt_want_write(nd->path.mnt); 3881 if (error) 3882 return error; 3883 do_truncate = true; 3884 } 3885 error = may_open(idmap, &nd->path, acc_mode, open_flag); 3886 if (!error && !(file->f_mode & FMODE_OPENED)) 3887 error = vfs_open(&nd->path, file); 3888 if (!error) 3889 error = security_file_post_open(file, op->acc_mode); 3890 if (!error && do_truncate) 3891 error = handle_truncate(idmap, file); 3892 if (unlikely(error > 0)) { 3893 WARN_ON(1); 3894 error = -EINVAL; 3895 } 3896 if (do_truncate) 3897 mnt_drop_write(nd->path.mnt); 3898 return error; 3899 } 3900 3901 /** 3902 * vfs_tmpfile - create tmpfile 3903 * @idmap: idmap of the mount the inode was found from 3904 * @parentpath: pointer to the path of the base directory 3905 * @file: file descriptor of the new tmpfile 3906 * @mode: mode of the new tmpfile 3907 * 3908 * Create a temporary file. 3909 * 3910 * If the inode has been found through an idmapped mount the idmap of 3911 * the vfsmount must be passed through @idmap. This function will then take 3912 * care to map the inode according to @idmap before checking permissions. 3913 * On non-idmapped mounts or if permission checking is to be performed on the 3914 * raw inode simply pass @nop_mnt_idmap. 3915 */ 3916 int vfs_tmpfile(struct mnt_idmap *idmap, 3917 const struct path *parentpath, 3918 struct file *file, umode_t mode) 3919 { 3920 struct dentry *child; 3921 struct inode *dir = d_inode(parentpath->dentry); 3922 struct inode *inode; 3923 int error; 3924 int open_flag = file->f_flags; 3925 3926 /* we want directory to be writable */ 3927 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 3928 if (error) 3929 return error; 3930 if (!dir->i_op->tmpfile) 3931 return -EOPNOTSUPP; 3932 child = d_alloc(parentpath->dentry, &slash_name); 3933 if (unlikely(!child)) 3934 return -ENOMEM; 3935 file->f_path.mnt = parentpath->mnt; 3936 file->f_path.dentry = child; 3937 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode); 3938 error = dir->i_op->tmpfile(idmap, dir, file, mode); 3939 dput(child); 3940 if (file->f_mode & FMODE_OPENED) 3941 fsnotify_open(file); 3942 if (error) 3943 return error; 3944 /* Don't check for other permissions, the inode was just created */ 3945 error = may_open(idmap, &file->f_path, 0, file->f_flags); 3946 if (error) 3947 return error; 3948 inode = file_inode(file); 3949 if (!(open_flag & O_EXCL)) { 3950 spin_lock(&inode->i_lock); 3951 inode->i_state |= I_LINKABLE; 3952 spin_unlock(&inode->i_lock); 3953 } 3954 security_inode_post_create_tmpfile(idmap, inode); 3955 return 0; 3956 } 3957 3958 /** 3959 * kernel_tmpfile_open - open a tmpfile for kernel internal use 3960 * @idmap: idmap of the mount the inode was found from 3961 * @parentpath: path of the base directory 3962 * @mode: mode of the new tmpfile 3963 * @open_flag: flags 3964 * @cred: credentials for open 3965 * 3966 * Create and open a temporary file. The file is not accounted in nr_files, 3967 * hence this is only for kernel internal use, and must not be installed into 3968 * file tables or such. 3969 */ 3970 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap, 3971 const struct path *parentpath, 3972 umode_t mode, int open_flag, 3973 const struct cred *cred) 3974 { 3975 struct file *file; 3976 int error; 3977 3978 file = alloc_empty_file_noaccount(open_flag, cred); 3979 if (IS_ERR(file)) 3980 return file; 3981 3982 error = vfs_tmpfile(idmap, parentpath, file, mode); 3983 if (error) { 3984 fput(file); 3985 file = ERR_PTR(error); 3986 } 3987 return file; 3988 } 3989 EXPORT_SYMBOL(kernel_tmpfile_open); 3990 3991 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3992 const struct open_flags *op, 3993 struct file *file) 3994 { 3995 struct path path; 3996 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3997 3998 if (unlikely(error)) 3999 return error; 4000 error = mnt_want_write(path.mnt); 4001 if (unlikely(error)) 4002 goto out; 4003 error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode); 4004 if (error) 4005 goto out2; 4006 audit_inode(nd->name, file->f_path.dentry, 0); 4007 out2: 4008 mnt_drop_write(path.mnt); 4009 out: 4010 path_put(&path); 4011 return error; 4012 } 4013 4014 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 4015 { 4016 struct path path; 4017 int error = path_lookupat(nd, flags, &path); 4018 if (!error) { 4019 audit_inode(nd->name, path.dentry, 0); 4020 error = vfs_open(&path, file); 4021 path_put(&path); 4022 } 4023 return error; 4024 } 4025 4026 static struct file *path_openat(struct nameidata *nd, 4027 const struct open_flags *op, unsigned flags) 4028 { 4029 struct file *file; 4030 int error; 4031 4032 file = alloc_empty_file(op->open_flag, current_cred()); 4033 if (IS_ERR(file)) 4034 return file; 4035 4036 if (unlikely(file->f_flags & __O_TMPFILE)) { 4037 error = do_tmpfile(nd, flags, op, file); 4038 } else if (unlikely(file->f_flags & O_PATH)) { 4039 error = do_o_path(nd, flags, file); 4040 } else { 4041 const char *s = path_init(nd, flags); 4042 while (!(error = link_path_walk(s, nd)) && 4043 (s = open_last_lookups(nd, file, op)) != NULL) 4044 ; 4045 if (!error) 4046 error = do_open(nd, file, op); 4047 terminate_walk(nd); 4048 } 4049 if (likely(!error)) { 4050 if (likely(file->f_mode & FMODE_OPENED)) 4051 return file; 4052 WARN_ON(1); 4053 error = -EINVAL; 4054 } 4055 fput_close(file); 4056 if (error == -EOPENSTALE) { 4057 if (flags & LOOKUP_RCU) 4058 error = -ECHILD; 4059 else 4060 error = -ESTALE; 4061 } 4062 return ERR_PTR(error); 4063 } 4064 4065 struct file *do_filp_open(int dfd, struct filename *pathname, 4066 const struct open_flags *op) 4067 { 4068 struct nameidata nd; 4069 int flags = op->lookup_flags; 4070 struct file *filp; 4071 4072 set_nameidata(&nd, dfd, pathname, NULL); 4073 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 4074 if (unlikely(filp == ERR_PTR(-ECHILD))) 4075 filp = path_openat(&nd, op, flags); 4076 if (unlikely(filp == ERR_PTR(-ESTALE))) 4077 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 4078 restore_nameidata(); 4079 return filp; 4080 } 4081 4082 struct file *do_file_open_root(const struct path *root, 4083 const char *name, const struct open_flags *op) 4084 { 4085 struct nameidata nd; 4086 struct file *file; 4087 struct filename *filename; 4088 int flags = op->lookup_flags; 4089 4090 if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN) 4091 return ERR_PTR(-ELOOP); 4092 4093 filename = getname_kernel(name); 4094 if (IS_ERR(filename)) 4095 return ERR_CAST(filename); 4096 4097 set_nameidata(&nd, -1, filename, root); 4098 file = path_openat(&nd, op, flags | LOOKUP_RCU); 4099 if (unlikely(file == ERR_PTR(-ECHILD))) 4100 file = path_openat(&nd, op, flags); 4101 if (unlikely(file == ERR_PTR(-ESTALE))) 4102 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 4103 restore_nameidata(); 4104 putname(filename); 4105 return file; 4106 } 4107 4108 static struct dentry *filename_create(int dfd, struct filename *name, 4109 struct path *path, unsigned int lookup_flags) 4110 { 4111 struct dentry *dentry = ERR_PTR(-EEXIST); 4112 struct qstr last; 4113 bool want_dir = lookup_flags & LOOKUP_DIRECTORY; 4114 unsigned int reval_flag = lookup_flags & LOOKUP_REVAL; 4115 unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL; 4116 int type; 4117 int err2; 4118 int error; 4119 4120 error = filename_parentat(dfd, name, reval_flag, path, &last, &type); 4121 if (error) 4122 return ERR_PTR(error); 4123 4124 /* 4125 * Yucky last component or no last component at all? 4126 * (foo/., foo/.., /////) 4127 */ 4128 if (unlikely(type != LAST_NORM)) 4129 goto out; 4130 4131 /* don't fail immediately if it's r/o, at least try to report other errors */ 4132 err2 = mnt_want_write(path->mnt); 4133 /* 4134 * Do the final lookup. Suppress 'create' if there is a trailing 4135 * '/', and a directory wasn't requested. 4136 */ 4137 if (last.name[last.len] && !want_dir) 4138 create_flags &= ~LOOKUP_CREATE; 4139 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 4140 dentry = lookup_one_qstr_excl(&last, path->dentry, 4141 reval_flag | create_flags); 4142 if (IS_ERR(dentry)) 4143 goto unlock; 4144 4145 if (unlikely(err2)) { 4146 error = err2; 4147 goto fail; 4148 } 4149 return dentry; 4150 fail: 4151 dput(dentry); 4152 dentry = ERR_PTR(error); 4153 unlock: 4154 inode_unlock(path->dentry->d_inode); 4155 if (!err2) 4156 mnt_drop_write(path->mnt); 4157 out: 4158 path_put(path); 4159 return dentry; 4160 } 4161 4162 struct dentry *kern_path_create(int dfd, const char *pathname, 4163 struct path *path, unsigned int lookup_flags) 4164 { 4165 struct filename *filename = getname_kernel(pathname); 4166 struct dentry *res = filename_create(dfd, filename, path, lookup_flags); 4167 4168 putname(filename); 4169 return res; 4170 } 4171 EXPORT_SYMBOL(kern_path_create); 4172 4173 void done_path_create(struct path *path, struct dentry *dentry) 4174 { 4175 if (!IS_ERR(dentry)) 4176 dput(dentry); 4177 inode_unlock(path->dentry->d_inode); 4178 mnt_drop_write(path->mnt); 4179 path_put(path); 4180 } 4181 EXPORT_SYMBOL(done_path_create); 4182 4183 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 4184 struct path *path, unsigned int lookup_flags) 4185 { 4186 struct filename *filename = getname(pathname); 4187 struct dentry *res = filename_create(dfd, filename, path, lookup_flags); 4188 4189 putname(filename); 4190 return res; 4191 } 4192 EXPORT_SYMBOL(user_path_create); 4193 4194 /** 4195 * vfs_mknod - create device node or file 4196 * @idmap: idmap of the mount the inode was found from 4197 * @dir: inode of the parent directory 4198 * @dentry: dentry of the child device node 4199 * @mode: mode of the child device node 4200 * @dev: device number of device to create 4201 * 4202 * Create a device node or file. 4203 * 4204 * If the inode has been found through an idmapped mount the idmap of 4205 * the vfsmount must be passed through @idmap. This function will then take 4206 * care to map the inode according to @idmap before checking permissions. 4207 * On non-idmapped mounts or if permission checking is to be performed on the 4208 * raw inode simply pass @nop_mnt_idmap. 4209 */ 4210 int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 4211 struct dentry *dentry, umode_t mode, dev_t dev) 4212 { 4213 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV; 4214 int error = may_create(idmap, dir, dentry); 4215 4216 if (error) 4217 return error; 4218 4219 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout && 4220 !capable(CAP_MKNOD)) 4221 return -EPERM; 4222 4223 if (!dir->i_op->mknod) 4224 return -EPERM; 4225 4226 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode); 4227 error = devcgroup_inode_mknod(mode, dev); 4228 if (error) 4229 return error; 4230 4231 error = security_inode_mknod(dir, dentry, mode, dev); 4232 if (error) 4233 return error; 4234 4235 error = dir->i_op->mknod(idmap, dir, dentry, mode, dev); 4236 if (!error) 4237 fsnotify_create(dir, dentry); 4238 return error; 4239 } 4240 EXPORT_SYMBOL(vfs_mknod); 4241 4242 static int may_mknod(umode_t mode) 4243 { 4244 switch (mode & S_IFMT) { 4245 case S_IFREG: 4246 case S_IFCHR: 4247 case S_IFBLK: 4248 case S_IFIFO: 4249 case S_IFSOCK: 4250 case 0: /* zero mode translates to S_IFREG */ 4251 return 0; 4252 case S_IFDIR: 4253 return -EPERM; 4254 default: 4255 return -EINVAL; 4256 } 4257 } 4258 4259 static int do_mknodat(int dfd, struct filename *name, umode_t mode, 4260 unsigned int dev) 4261 { 4262 struct mnt_idmap *idmap; 4263 struct dentry *dentry; 4264 struct path path; 4265 int error; 4266 unsigned int lookup_flags = 0; 4267 4268 error = may_mknod(mode); 4269 if (error) 4270 goto out1; 4271 retry: 4272 dentry = filename_create(dfd, name, &path, lookup_flags); 4273 error = PTR_ERR(dentry); 4274 if (IS_ERR(dentry)) 4275 goto out1; 4276 4277 error = security_path_mknod(&path, dentry, 4278 mode_strip_umask(path.dentry->d_inode, mode), dev); 4279 if (error) 4280 goto out2; 4281 4282 idmap = mnt_idmap(path.mnt); 4283 switch (mode & S_IFMT) { 4284 case 0: case S_IFREG: 4285 error = vfs_create(idmap, path.dentry->d_inode, 4286 dentry, mode, true); 4287 if (!error) 4288 security_path_post_mknod(idmap, dentry); 4289 break; 4290 case S_IFCHR: case S_IFBLK: 4291 error = vfs_mknod(idmap, path.dentry->d_inode, 4292 dentry, mode, new_decode_dev(dev)); 4293 break; 4294 case S_IFIFO: case S_IFSOCK: 4295 error = vfs_mknod(idmap, path.dentry->d_inode, 4296 dentry, mode, 0); 4297 break; 4298 } 4299 out2: 4300 done_path_create(&path, dentry); 4301 if (retry_estale(error, lookup_flags)) { 4302 lookup_flags |= LOOKUP_REVAL; 4303 goto retry; 4304 } 4305 out1: 4306 putname(name); 4307 return error; 4308 } 4309 4310 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 4311 unsigned int, dev) 4312 { 4313 return do_mknodat(dfd, getname(filename), mode, dev); 4314 } 4315 4316 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 4317 { 4318 return do_mknodat(AT_FDCWD, getname(filename), mode, dev); 4319 } 4320 4321 /** 4322 * vfs_mkdir - create directory returning correct dentry if possible 4323 * @idmap: idmap of the mount the inode was found from 4324 * @dir: inode of the parent directory 4325 * @dentry: dentry of the child directory 4326 * @mode: mode of the child directory 4327 * 4328 * Create a directory. 4329 * 4330 * If the inode has been found through an idmapped mount the idmap of 4331 * the vfsmount must be passed through @idmap. This function will then take 4332 * care to map the inode according to @idmap before checking permissions. 4333 * On non-idmapped mounts or if permission checking is to be performed on the 4334 * raw inode simply pass @nop_mnt_idmap. 4335 * 4336 * In the event that the filesystem does not use the *@dentry but leaves it 4337 * negative or unhashes it and possibly splices a different one returning it, 4338 * the original dentry is dput() and the alternate is returned. 4339 * 4340 * In case of an error the dentry is dput() and an ERR_PTR() is returned. 4341 */ 4342 struct dentry *vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 4343 struct dentry *dentry, umode_t mode) 4344 { 4345 int error; 4346 unsigned max_links = dir->i_sb->s_max_links; 4347 struct dentry *de; 4348 4349 error = may_create(idmap, dir, dentry); 4350 if (error) 4351 goto err; 4352 4353 error = -EPERM; 4354 if (!dir->i_op->mkdir) 4355 goto err; 4356 4357 mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0); 4358 error = security_inode_mkdir(dir, dentry, mode); 4359 if (error) 4360 goto err; 4361 4362 error = -EMLINK; 4363 if (max_links && dir->i_nlink >= max_links) 4364 goto err; 4365 4366 de = dir->i_op->mkdir(idmap, dir, dentry, mode); 4367 error = PTR_ERR(de); 4368 if (IS_ERR(de)) 4369 goto err; 4370 if (de) { 4371 dput(dentry); 4372 dentry = de; 4373 } 4374 fsnotify_mkdir(dir, dentry); 4375 return dentry; 4376 4377 err: 4378 dput(dentry); 4379 return ERR_PTR(error); 4380 } 4381 EXPORT_SYMBOL(vfs_mkdir); 4382 4383 int do_mkdirat(int dfd, struct filename *name, umode_t mode) 4384 { 4385 struct dentry *dentry; 4386 struct path path; 4387 int error; 4388 unsigned int lookup_flags = LOOKUP_DIRECTORY; 4389 4390 retry: 4391 dentry = filename_create(dfd, name, &path, lookup_flags); 4392 error = PTR_ERR(dentry); 4393 if (IS_ERR(dentry)) 4394 goto out_putname; 4395 4396 error = security_path_mkdir(&path, dentry, 4397 mode_strip_umask(path.dentry->d_inode, mode)); 4398 if (!error) { 4399 dentry = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode, 4400 dentry, mode); 4401 if (IS_ERR(dentry)) 4402 error = PTR_ERR(dentry); 4403 } 4404 done_path_create(&path, dentry); 4405 if (retry_estale(error, lookup_flags)) { 4406 lookup_flags |= LOOKUP_REVAL; 4407 goto retry; 4408 } 4409 out_putname: 4410 putname(name); 4411 return error; 4412 } 4413 4414 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 4415 { 4416 return do_mkdirat(dfd, getname(pathname), mode); 4417 } 4418 4419 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 4420 { 4421 return do_mkdirat(AT_FDCWD, getname(pathname), mode); 4422 } 4423 4424 /** 4425 * vfs_rmdir - remove directory 4426 * @idmap: idmap of the mount the inode was found from 4427 * @dir: inode of the parent directory 4428 * @dentry: dentry of the child directory 4429 * 4430 * Remove a directory. 4431 * 4432 * If the inode has been found through an idmapped mount the idmap of 4433 * the vfsmount must be passed through @idmap. This function will then take 4434 * care to map the inode according to @idmap before checking permissions. 4435 * On non-idmapped mounts or if permission checking is to be performed on the 4436 * raw inode simply pass @nop_mnt_idmap. 4437 */ 4438 int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir, 4439 struct dentry *dentry) 4440 { 4441 int error = may_delete(idmap, dir, dentry, 1); 4442 4443 if (error) 4444 return error; 4445 4446 if (!dir->i_op->rmdir) 4447 return -EPERM; 4448 4449 dget(dentry); 4450 inode_lock(dentry->d_inode); 4451 4452 error = -EBUSY; 4453 if (is_local_mountpoint(dentry) || 4454 (dentry->d_inode->i_flags & S_KERNEL_FILE)) 4455 goto out; 4456 4457 error = security_inode_rmdir(dir, dentry); 4458 if (error) 4459 goto out; 4460 4461 error = dir->i_op->rmdir(dir, dentry); 4462 if (error) 4463 goto out; 4464 4465 shrink_dcache_parent(dentry); 4466 dentry->d_inode->i_flags |= S_DEAD; 4467 dont_mount(dentry); 4468 detach_mounts(dentry); 4469 4470 out: 4471 inode_unlock(dentry->d_inode); 4472 dput(dentry); 4473 if (!error) 4474 d_delete_notify(dir, dentry); 4475 return error; 4476 } 4477 EXPORT_SYMBOL(vfs_rmdir); 4478 4479 int do_rmdir(int dfd, struct filename *name) 4480 { 4481 int error; 4482 struct dentry *dentry; 4483 struct path path; 4484 struct qstr last; 4485 int type; 4486 unsigned int lookup_flags = 0; 4487 retry: 4488 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4489 if (error) 4490 goto exit1; 4491 4492 switch (type) { 4493 case LAST_DOTDOT: 4494 error = -ENOTEMPTY; 4495 goto exit2; 4496 case LAST_DOT: 4497 error = -EINVAL; 4498 goto exit2; 4499 case LAST_ROOT: 4500 error = -EBUSY; 4501 goto exit2; 4502 } 4503 4504 error = mnt_want_write(path.mnt); 4505 if (error) 4506 goto exit2; 4507 4508 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4509 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags); 4510 error = PTR_ERR(dentry); 4511 if (IS_ERR(dentry)) 4512 goto exit3; 4513 error = security_path_rmdir(&path, dentry); 4514 if (error) 4515 goto exit4; 4516 error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry); 4517 exit4: 4518 dput(dentry); 4519 exit3: 4520 inode_unlock(path.dentry->d_inode); 4521 mnt_drop_write(path.mnt); 4522 exit2: 4523 path_put(&path); 4524 if (retry_estale(error, lookup_flags)) { 4525 lookup_flags |= LOOKUP_REVAL; 4526 goto retry; 4527 } 4528 exit1: 4529 putname(name); 4530 return error; 4531 } 4532 4533 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 4534 { 4535 return do_rmdir(AT_FDCWD, getname(pathname)); 4536 } 4537 4538 /** 4539 * vfs_unlink - unlink a filesystem object 4540 * @idmap: idmap of the mount the inode was found from 4541 * @dir: parent directory 4542 * @dentry: victim 4543 * @delegated_inode: returns victim inode, if the inode is delegated. 4544 * 4545 * The caller must hold dir->i_mutex. 4546 * 4547 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 4548 * return a reference to the inode in delegated_inode. The caller 4549 * should then break the delegation on that inode and retry. Because 4550 * breaking a delegation may take a long time, the caller should drop 4551 * dir->i_mutex before doing so. 4552 * 4553 * Alternatively, a caller may pass NULL for delegated_inode. This may 4554 * be appropriate for callers that expect the underlying filesystem not 4555 * to be NFS exported. 4556 * 4557 * If the inode has been found through an idmapped mount the idmap of 4558 * the vfsmount must be passed through @idmap. This function will then take 4559 * care to map the inode according to @idmap before checking permissions. 4560 * On non-idmapped mounts or if permission checking is to be performed on the 4561 * raw inode simply pass @nop_mnt_idmap. 4562 */ 4563 int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir, 4564 struct dentry *dentry, struct inode **delegated_inode) 4565 { 4566 struct inode *target = dentry->d_inode; 4567 int error = may_delete(idmap, dir, dentry, 0); 4568 4569 if (error) 4570 return error; 4571 4572 if (!dir->i_op->unlink) 4573 return -EPERM; 4574 4575 inode_lock(target); 4576 if (IS_SWAPFILE(target)) 4577 error = -EPERM; 4578 else if (is_local_mountpoint(dentry)) 4579 error = -EBUSY; 4580 else { 4581 error = security_inode_unlink(dir, dentry); 4582 if (!error) { 4583 error = try_break_deleg(target, delegated_inode); 4584 if (error) 4585 goto out; 4586 error = dir->i_op->unlink(dir, dentry); 4587 if (!error) { 4588 dont_mount(dentry); 4589 detach_mounts(dentry); 4590 } 4591 } 4592 } 4593 out: 4594 inode_unlock(target); 4595 4596 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 4597 if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) { 4598 fsnotify_unlink(dir, dentry); 4599 } else if (!error) { 4600 fsnotify_link_count(target); 4601 d_delete_notify(dir, dentry); 4602 } 4603 4604 return error; 4605 } 4606 EXPORT_SYMBOL(vfs_unlink); 4607 4608 /* 4609 * Make sure that the actual truncation of the file will occur outside its 4610 * directory's i_mutex. Truncate can take a long time if there is a lot of 4611 * writeout happening, and we don't want to prevent access to the directory 4612 * while waiting on the I/O. 4613 */ 4614 int do_unlinkat(int dfd, struct filename *name) 4615 { 4616 int error; 4617 struct dentry *dentry; 4618 struct path path; 4619 struct qstr last; 4620 int type; 4621 struct inode *inode = NULL; 4622 struct inode *delegated_inode = NULL; 4623 unsigned int lookup_flags = 0; 4624 retry: 4625 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4626 if (error) 4627 goto exit1; 4628 4629 error = -EISDIR; 4630 if (type != LAST_NORM) 4631 goto exit2; 4632 4633 error = mnt_want_write(path.mnt); 4634 if (error) 4635 goto exit2; 4636 retry_deleg: 4637 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4638 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags); 4639 error = PTR_ERR(dentry); 4640 if (!IS_ERR(dentry)) { 4641 4642 /* Why not before? Because we want correct error value */ 4643 if (last.name[last.len]) 4644 goto slashes; 4645 inode = dentry->d_inode; 4646 ihold(inode); 4647 error = security_path_unlink(&path, dentry); 4648 if (error) 4649 goto exit3; 4650 error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode, 4651 dentry, &delegated_inode); 4652 exit3: 4653 dput(dentry); 4654 } 4655 inode_unlock(path.dentry->d_inode); 4656 if (inode) 4657 iput(inode); /* truncate the inode here */ 4658 inode = NULL; 4659 if (delegated_inode) { 4660 error = break_deleg_wait(&delegated_inode); 4661 if (!error) 4662 goto retry_deleg; 4663 } 4664 mnt_drop_write(path.mnt); 4665 exit2: 4666 path_put(&path); 4667 if (retry_estale(error, lookup_flags)) { 4668 lookup_flags |= LOOKUP_REVAL; 4669 inode = NULL; 4670 goto retry; 4671 } 4672 exit1: 4673 putname(name); 4674 return error; 4675 4676 slashes: 4677 if (d_is_dir(dentry)) 4678 error = -EISDIR; 4679 else 4680 error = -ENOTDIR; 4681 goto exit3; 4682 } 4683 4684 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 4685 { 4686 if ((flag & ~AT_REMOVEDIR) != 0) 4687 return -EINVAL; 4688 4689 if (flag & AT_REMOVEDIR) 4690 return do_rmdir(dfd, getname(pathname)); 4691 return do_unlinkat(dfd, getname(pathname)); 4692 } 4693 4694 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 4695 { 4696 return do_unlinkat(AT_FDCWD, getname(pathname)); 4697 } 4698 4699 /** 4700 * vfs_symlink - create symlink 4701 * @idmap: idmap of the mount the inode was found from 4702 * @dir: inode of the parent directory 4703 * @dentry: dentry of the child symlink file 4704 * @oldname: name of the file to link to 4705 * 4706 * Create a symlink. 4707 * 4708 * If the inode has been found through an idmapped mount the idmap of 4709 * the vfsmount must be passed through @idmap. This function will then take 4710 * care to map the inode according to @idmap before checking permissions. 4711 * On non-idmapped mounts or if permission checking is to be performed on the 4712 * raw inode simply pass @nop_mnt_idmap. 4713 */ 4714 int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 4715 struct dentry *dentry, const char *oldname) 4716 { 4717 int error; 4718 4719 error = may_create(idmap, dir, dentry); 4720 if (error) 4721 return error; 4722 4723 if (!dir->i_op->symlink) 4724 return -EPERM; 4725 4726 error = security_inode_symlink(dir, dentry, oldname); 4727 if (error) 4728 return error; 4729 4730 error = dir->i_op->symlink(idmap, dir, dentry, oldname); 4731 if (!error) 4732 fsnotify_create(dir, dentry); 4733 return error; 4734 } 4735 EXPORT_SYMBOL(vfs_symlink); 4736 4737 int do_symlinkat(struct filename *from, int newdfd, struct filename *to) 4738 { 4739 int error; 4740 struct dentry *dentry; 4741 struct path path; 4742 unsigned int lookup_flags = 0; 4743 4744 if (IS_ERR(from)) { 4745 error = PTR_ERR(from); 4746 goto out_putnames; 4747 } 4748 retry: 4749 dentry = filename_create(newdfd, to, &path, lookup_flags); 4750 error = PTR_ERR(dentry); 4751 if (IS_ERR(dentry)) 4752 goto out_putnames; 4753 4754 error = security_path_symlink(&path, dentry, from->name); 4755 if (!error) 4756 error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode, 4757 dentry, from->name); 4758 done_path_create(&path, dentry); 4759 if (retry_estale(error, lookup_flags)) { 4760 lookup_flags |= LOOKUP_REVAL; 4761 goto retry; 4762 } 4763 out_putnames: 4764 putname(to); 4765 putname(from); 4766 return error; 4767 } 4768 4769 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4770 int, newdfd, const char __user *, newname) 4771 { 4772 return do_symlinkat(getname(oldname), newdfd, getname(newname)); 4773 } 4774 4775 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4776 { 4777 return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname)); 4778 } 4779 4780 /** 4781 * vfs_link - create a new link 4782 * @old_dentry: object to be linked 4783 * @idmap: idmap of the mount 4784 * @dir: new parent 4785 * @new_dentry: where to create the new link 4786 * @delegated_inode: returns inode needing a delegation break 4787 * 4788 * The caller must hold dir->i_mutex 4789 * 4790 * If vfs_link discovers a delegation on the to-be-linked file in need 4791 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4792 * inode in delegated_inode. The caller should then break the delegation 4793 * and retry. Because breaking a delegation may take a long time, the 4794 * caller should drop the i_mutex before doing so. 4795 * 4796 * Alternatively, a caller may pass NULL for delegated_inode. This may 4797 * be appropriate for callers that expect the underlying filesystem not 4798 * to be NFS exported. 4799 * 4800 * If the inode has been found through an idmapped mount the idmap of 4801 * the vfsmount must be passed through @idmap. This function will then take 4802 * care to map the inode according to @idmap before checking permissions. 4803 * On non-idmapped mounts or if permission checking is to be performed on the 4804 * raw inode simply pass @nop_mnt_idmap. 4805 */ 4806 int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap, 4807 struct inode *dir, struct dentry *new_dentry, 4808 struct inode **delegated_inode) 4809 { 4810 struct inode *inode = old_dentry->d_inode; 4811 unsigned max_links = dir->i_sb->s_max_links; 4812 int error; 4813 4814 if (!inode) 4815 return -ENOENT; 4816 4817 error = may_create(idmap, dir, new_dentry); 4818 if (error) 4819 return error; 4820 4821 if (dir->i_sb != inode->i_sb) 4822 return -EXDEV; 4823 4824 /* 4825 * A link to an append-only or immutable file cannot be created. 4826 */ 4827 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4828 return -EPERM; 4829 /* 4830 * Updating the link count will likely cause i_uid and i_gid to 4831 * be writen back improperly if their true value is unknown to 4832 * the vfs. 4833 */ 4834 if (HAS_UNMAPPED_ID(idmap, inode)) 4835 return -EPERM; 4836 if (!dir->i_op->link) 4837 return -EPERM; 4838 if (S_ISDIR(inode->i_mode)) 4839 return -EPERM; 4840 4841 error = security_inode_link(old_dentry, dir, new_dentry); 4842 if (error) 4843 return error; 4844 4845 inode_lock(inode); 4846 /* Make sure we don't allow creating hardlink to an unlinked file */ 4847 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4848 error = -ENOENT; 4849 else if (max_links && inode->i_nlink >= max_links) 4850 error = -EMLINK; 4851 else { 4852 error = try_break_deleg(inode, delegated_inode); 4853 if (!error) 4854 error = dir->i_op->link(old_dentry, dir, new_dentry); 4855 } 4856 4857 if (!error && (inode->i_state & I_LINKABLE)) { 4858 spin_lock(&inode->i_lock); 4859 inode->i_state &= ~I_LINKABLE; 4860 spin_unlock(&inode->i_lock); 4861 } 4862 inode_unlock(inode); 4863 if (!error) 4864 fsnotify_link(dir, inode, new_dentry); 4865 return error; 4866 } 4867 EXPORT_SYMBOL(vfs_link); 4868 4869 /* 4870 * Hardlinks are often used in delicate situations. We avoid 4871 * security-related surprises by not following symlinks on the 4872 * newname. --KAB 4873 * 4874 * We don't follow them on the oldname either to be compatible 4875 * with linux 2.0, and to avoid hard-linking to directories 4876 * and other special files. --ADM 4877 */ 4878 int do_linkat(int olddfd, struct filename *old, int newdfd, 4879 struct filename *new, int flags) 4880 { 4881 struct mnt_idmap *idmap; 4882 struct dentry *new_dentry; 4883 struct path old_path, new_path; 4884 struct inode *delegated_inode = NULL; 4885 int how = 0; 4886 int error; 4887 4888 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) { 4889 error = -EINVAL; 4890 goto out_putnames; 4891 } 4892 /* 4893 * To use null names we require CAP_DAC_READ_SEARCH or 4894 * that the open-time creds of the dfd matches current. 4895 * This ensures that not everyone will be able to create 4896 * a hardlink using the passed file descriptor. 4897 */ 4898 if (flags & AT_EMPTY_PATH) 4899 how |= LOOKUP_LINKAT_EMPTY; 4900 4901 if (flags & AT_SYMLINK_FOLLOW) 4902 how |= LOOKUP_FOLLOW; 4903 retry: 4904 error = filename_lookup(olddfd, old, how, &old_path, NULL); 4905 if (error) 4906 goto out_putnames; 4907 4908 new_dentry = filename_create(newdfd, new, &new_path, 4909 (how & LOOKUP_REVAL)); 4910 error = PTR_ERR(new_dentry); 4911 if (IS_ERR(new_dentry)) 4912 goto out_putpath; 4913 4914 error = -EXDEV; 4915 if (old_path.mnt != new_path.mnt) 4916 goto out_dput; 4917 idmap = mnt_idmap(new_path.mnt); 4918 error = may_linkat(idmap, &old_path); 4919 if (unlikely(error)) 4920 goto out_dput; 4921 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4922 if (error) 4923 goto out_dput; 4924 error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode, 4925 new_dentry, &delegated_inode); 4926 out_dput: 4927 done_path_create(&new_path, new_dentry); 4928 if (delegated_inode) { 4929 error = break_deleg_wait(&delegated_inode); 4930 if (!error) { 4931 path_put(&old_path); 4932 goto retry; 4933 } 4934 } 4935 if (retry_estale(error, how)) { 4936 path_put(&old_path); 4937 how |= LOOKUP_REVAL; 4938 goto retry; 4939 } 4940 out_putpath: 4941 path_put(&old_path); 4942 out_putnames: 4943 putname(old); 4944 putname(new); 4945 4946 return error; 4947 } 4948 4949 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4950 int, newdfd, const char __user *, newname, int, flags) 4951 { 4952 return do_linkat(olddfd, getname_uflags(oldname, flags), 4953 newdfd, getname(newname), flags); 4954 } 4955 4956 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4957 { 4958 return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0); 4959 } 4960 4961 /** 4962 * vfs_rename - rename a filesystem object 4963 * @rd: pointer to &struct renamedata info 4964 * 4965 * The caller must hold multiple mutexes--see lock_rename()). 4966 * 4967 * If vfs_rename discovers a delegation in need of breaking at either 4968 * the source or destination, it will return -EWOULDBLOCK and return a 4969 * reference to the inode in delegated_inode. The caller should then 4970 * break the delegation and retry. Because breaking a delegation may 4971 * take a long time, the caller should drop all locks before doing 4972 * so. 4973 * 4974 * Alternatively, a caller may pass NULL for delegated_inode. This may 4975 * be appropriate for callers that expect the underlying filesystem not 4976 * to be NFS exported. 4977 * 4978 * The worst of all namespace operations - renaming directory. "Perverted" 4979 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4980 * Problems: 4981 * 4982 * a) we can get into loop creation. 4983 * b) race potential - two innocent renames can create a loop together. 4984 * That's where 4.4BSD screws up. Current fix: serialization on 4985 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4986 * story. 4987 * c) we may have to lock up to _four_ objects - parents and victim (if it exists), 4988 * and source (if it's a non-directory or a subdirectory that moves to 4989 * different parent). 4990 * And that - after we got ->i_mutex on parents (until then we don't know 4991 * whether the target exists). Solution: try to be smart with locking 4992 * order for inodes. We rely on the fact that tree topology may change 4993 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4994 * move will be locked. Thus we can rank directories by the tree 4995 * (ancestors first) and rank all non-directories after them. 4996 * That works since everybody except rename does "lock parent, lookup, 4997 * lock child" and rename is under ->s_vfs_rename_mutex. 4998 * HOWEVER, it relies on the assumption that any object with ->lookup() 4999 * has no more than 1 dentry. If "hybrid" objects will ever appear, 5000 * we'd better make sure that there's no link(2) for them. 5001 * d) conversion from fhandle to dentry may come in the wrong moment - when 5002 * we are removing the target. Solution: we will have to grab ->i_mutex 5003 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 5004 * ->i_mutex on parents, which works but leads to some truly excessive 5005 * locking]. 5006 */ 5007 int vfs_rename(struct renamedata *rd) 5008 { 5009 int error; 5010 struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir; 5011 struct dentry *old_dentry = rd->old_dentry; 5012 struct dentry *new_dentry = rd->new_dentry; 5013 struct inode **delegated_inode = rd->delegated_inode; 5014 unsigned int flags = rd->flags; 5015 bool is_dir = d_is_dir(old_dentry); 5016 struct inode *source = old_dentry->d_inode; 5017 struct inode *target = new_dentry->d_inode; 5018 bool new_is_dir = false; 5019 unsigned max_links = new_dir->i_sb->s_max_links; 5020 struct name_snapshot old_name; 5021 bool lock_old_subdir, lock_new_subdir; 5022 5023 if (source == target) 5024 return 0; 5025 5026 error = may_delete(rd->old_mnt_idmap, old_dir, old_dentry, is_dir); 5027 if (error) 5028 return error; 5029 5030 if (!target) { 5031 error = may_create(rd->new_mnt_idmap, new_dir, new_dentry); 5032 } else { 5033 new_is_dir = d_is_dir(new_dentry); 5034 5035 if (!(flags & RENAME_EXCHANGE)) 5036 error = may_delete(rd->new_mnt_idmap, new_dir, 5037 new_dentry, is_dir); 5038 else 5039 error = may_delete(rd->new_mnt_idmap, new_dir, 5040 new_dentry, new_is_dir); 5041 } 5042 if (error) 5043 return error; 5044 5045 if (!old_dir->i_op->rename) 5046 return -EPERM; 5047 5048 /* 5049 * If we are going to change the parent - check write permissions, 5050 * we'll need to flip '..'. 5051 */ 5052 if (new_dir != old_dir) { 5053 if (is_dir) { 5054 error = inode_permission(rd->old_mnt_idmap, source, 5055 MAY_WRITE); 5056 if (error) 5057 return error; 5058 } 5059 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 5060 error = inode_permission(rd->new_mnt_idmap, target, 5061 MAY_WRITE); 5062 if (error) 5063 return error; 5064 } 5065 } 5066 5067 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 5068 flags); 5069 if (error) 5070 return error; 5071 5072 take_dentry_name_snapshot(&old_name, old_dentry); 5073 dget(new_dentry); 5074 /* 5075 * Lock children. 5076 * The source subdirectory needs to be locked on cross-directory 5077 * rename or cross-directory exchange since its parent changes. 5078 * The target subdirectory needs to be locked on cross-directory 5079 * exchange due to parent change and on any rename due to becoming 5080 * a victim. 5081 * Non-directories need locking in all cases (for NFS reasons); 5082 * they get locked after any subdirectories (in inode address order). 5083 * 5084 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE. 5085 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex. 5086 */ 5087 lock_old_subdir = new_dir != old_dir; 5088 lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE); 5089 if (is_dir) { 5090 if (lock_old_subdir) 5091 inode_lock_nested(source, I_MUTEX_CHILD); 5092 if (target && (!new_is_dir || lock_new_subdir)) 5093 inode_lock(target); 5094 } else if (new_is_dir) { 5095 if (lock_new_subdir) 5096 inode_lock_nested(target, I_MUTEX_CHILD); 5097 inode_lock(source); 5098 } else { 5099 lock_two_nondirectories(source, target); 5100 } 5101 5102 error = -EPERM; 5103 if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target))) 5104 goto out; 5105 5106 error = -EBUSY; 5107 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 5108 goto out; 5109 5110 if (max_links && new_dir != old_dir) { 5111 error = -EMLINK; 5112 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 5113 goto out; 5114 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 5115 old_dir->i_nlink >= max_links) 5116 goto out; 5117 } 5118 if (!is_dir) { 5119 error = try_break_deleg(source, delegated_inode); 5120 if (error) 5121 goto out; 5122 } 5123 if (target && !new_is_dir) { 5124 error = try_break_deleg(target, delegated_inode); 5125 if (error) 5126 goto out; 5127 } 5128 error = old_dir->i_op->rename(rd->new_mnt_idmap, old_dir, old_dentry, 5129 new_dir, new_dentry, flags); 5130 if (error) 5131 goto out; 5132 5133 if (!(flags & RENAME_EXCHANGE) && target) { 5134 if (is_dir) { 5135 shrink_dcache_parent(new_dentry); 5136 target->i_flags |= S_DEAD; 5137 } 5138 dont_mount(new_dentry); 5139 detach_mounts(new_dentry); 5140 } 5141 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 5142 if (!(flags & RENAME_EXCHANGE)) 5143 d_move(old_dentry, new_dentry); 5144 else 5145 d_exchange(old_dentry, new_dentry); 5146 } 5147 out: 5148 if (!is_dir || lock_old_subdir) 5149 inode_unlock(source); 5150 if (target && (!new_is_dir || lock_new_subdir)) 5151 inode_unlock(target); 5152 dput(new_dentry); 5153 if (!error) { 5154 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir, 5155 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 5156 if (flags & RENAME_EXCHANGE) { 5157 fsnotify_move(new_dir, old_dir, &old_dentry->d_name, 5158 new_is_dir, NULL, new_dentry); 5159 } 5160 } 5161 release_dentry_name_snapshot(&old_name); 5162 5163 return error; 5164 } 5165 EXPORT_SYMBOL(vfs_rename); 5166 5167 int do_renameat2(int olddfd, struct filename *from, int newdfd, 5168 struct filename *to, unsigned int flags) 5169 { 5170 struct renamedata rd; 5171 struct dentry *old_dentry, *new_dentry; 5172 struct dentry *trap; 5173 struct path old_path, new_path; 5174 struct qstr old_last, new_last; 5175 int old_type, new_type; 5176 struct inode *delegated_inode = NULL; 5177 unsigned int lookup_flags = 0, target_flags = 5178 LOOKUP_RENAME_TARGET | LOOKUP_CREATE; 5179 bool should_retry = false; 5180 int error = -EINVAL; 5181 5182 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 5183 goto put_names; 5184 5185 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 5186 (flags & RENAME_EXCHANGE)) 5187 goto put_names; 5188 5189 if (flags & RENAME_EXCHANGE) 5190 target_flags = 0; 5191 if (flags & RENAME_NOREPLACE) 5192 target_flags |= LOOKUP_EXCL; 5193 5194 retry: 5195 error = filename_parentat(olddfd, from, lookup_flags, &old_path, 5196 &old_last, &old_type); 5197 if (error) 5198 goto put_names; 5199 5200 error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last, 5201 &new_type); 5202 if (error) 5203 goto exit1; 5204 5205 error = -EXDEV; 5206 if (old_path.mnt != new_path.mnt) 5207 goto exit2; 5208 5209 error = -EBUSY; 5210 if (old_type != LAST_NORM) 5211 goto exit2; 5212 5213 if (flags & RENAME_NOREPLACE) 5214 error = -EEXIST; 5215 if (new_type != LAST_NORM) 5216 goto exit2; 5217 5218 error = mnt_want_write(old_path.mnt); 5219 if (error) 5220 goto exit2; 5221 5222 retry_deleg: 5223 trap = lock_rename(new_path.dentry, old_path.dentry); 5224 if (IS_ERR(trap)) { 5225 error = PTR_ERR(trap); 5226 goto exit_lock_rename; 5227 } 5228 5229 old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry, 5230 lookup_flags); 5231 error = PTR_ERR(old_dentry); 5232 if (IS_ERR(old_dentry)) 5233 goto exit3; 5234 new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry, 5235 lookup_flags | target_flags); 5236 error = PTR_ERR(new_dentry); 5237 if (IS_ERR(new_dentry)) 5238 goto exit4; 5239 if (flags & RENAME_EXCHANGE) { 5240 if (!d_is_dir(new_dentry)) { 5241 error = -ENOTDIR; 5242 if (new_last.name[new_last.len]) 5243 goto exit5; 5244 } 5245 } 5246 /* unless the source is a directory trailing slashes give -ENOTDIR */ 5247 if (!d_is_dir(old_dentry)) { 5248 error = -ENOTDIR; 5249 if (old_last.name[old_last.len]) 5250 goto exit5; 5251 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 5252 goto exit5; 5253 } 5254 /* source should not be ancestor of target */ 5255 error = -EINVAL; 5256 if (old_dentry == trap) 5257 goto exit5; 5258 /* target should not be an ancestor of source */ 5259 if (!(flags & RENAME_EXCHANGE)) 5260 error = -ENOTEMPTY; 5261 if (new_dentry == trap) 5262 goto exit5; 5263 5264 error = security_path_rename(&old_path, old_dentry, 5265 &new_path, new_dentry, flags); 5266 if (error) 5267 goto exit5; 5268 5269 rd.old_dir = old_path.dentry->d_inode; 5270 rd.old_dentry = old_dentry; 5271 rd.old_mnt_idmap = mnt_idmap(old_path.mnt); 5272 rd.new_dir = new_path.dentry->d_inode; 5273 rd.new_dentry = new_dentry; 5274 rd.new_mnt_idmap = mnt_idmap(new_path.mnt); 5275 rd.delegated_inode = &delegated_inode; 5276 rd.flags = flags; 5277 error = vfs_rename(&rd); 5278 exit5: 5279 dput(new_dentry); 5280 exit4: 5281 dput(old_dentry); 5282 exit3: 5283 unlock_rename(new_path.dentry, old_path.dentry); 5284 exit_lock_rename: 5285 if (delegated_inode) { 5286 error = break_deleg_wait(&delegated_inode); 5287 if (!error) 5288 goto retry_deleg; 5289 } 5290 mnt_drop_write(old_path.mnt); 5291 exit2: 5292 if (retry_estale(error, lookup_flags)) 5293 should_retry = true; 5294 path_put(&new_path); 5295 exit1: 5296 path_put(&old_path); 5297 if (should_retry) { 5298 should_retry = false; 5299 lookup_flags |= LOOKUP_REVAL; 5300 goto retry; 5301 } 5302 put_names: 5303 putname(from); 5304 putname(to); 5305 return error; 5306 } 5307 5308 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 5309 int, newdfd, const char __user *, newname, unsigned int, flags) 5310 { 5311 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 5312 flags); 5313 } 5314 5315 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 5316 int, newdfd, const char __user *, newname) 5317 { 5318 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 5319 0); 5320 } 5321 5322 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 5323 { 5324 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD, 5325 getname(newname), 0); 5326 } 5327 5328 int readlink_copy(char __user *buffer, int buflen, const char *link, int linklen) 5329 { 5330 int copylen; 5331 5332 copylen = linklen; 5333 if (unlikely(copylen > (unsigned) buflen)) 5334 copylen = buflen; 5335 if (copy_to_user(buffer, link, copylen)) 5336 copylen = -EFAULT; 5337 return copylen; 5338 } 5339 5340 /** 5341 * vfs_readlink - copy symlink body into userspace buffer 5342 * @dentry: dentry on which to get symbolic link 5343 * @buffer: user memory pointer 5344 * @buflen: size of buffer 5345 * 5346 * Does not touch atime. That's up to the caller if necessary 5347 * 5348 * Does not call security hook. 5349 */ 5350 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) 5351 { 5352 struct inode *inode = d_inode(dentry); 5353 DEFINE_DELAYED_CALL(done); 5354 const char *link; 5355 int res; 5356 5357 if (inode->i_opflags & IOP_CACHED_LINK) 5358 return readlink_copy(buffer, buflen, inode->i_link, inode->i_linklen); 5359 5360 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { 5361 if (unlikely(inode->i_op->readlink)) 5362 return inode->i_op->readlink(dentry, buffer, buflen); 5363 5364 if (!d_is_symlink(dentry)) 5365 return -EINVAL; 5366 5367 spin_lock(&inode->i_lock); 5368 inode->i_opflags |= IOP_DEFAULT_READLINK; 5369 spin_unlock(&inode->i_lock); 5370 } 5371 5372 link = READ_ONCE(inode->i_link); 5373 if (!link) { 5374 link = inode->i_op->get_link(dentry, inode, &done); 5375 if (IS_ERR(link)) 5376 return PTR_ERR(link); 5377 } 5378 res = readlink_copy(buffer, buflen, link, strlen(link)); 5379 do_delayed_call(&done); 5380 return res; 5381 } 5382 EXPORT_SYMBOL(vfs_readlink); 5383 5384 /** 5385 * vfs_get_link - get symlink body 5386 * @dentry: dentry on which to get symbolic link 5387 * @done: caller needs to free returned data with this 5388 * 5389 * Calls security hook and i_op->get_link() on the supplied inode. 5390 * 5391 * It does not touch atime. That's up to the caller if necessary. 5392 * 5393 * Does not work on "special" symlinks like /proc/$$/fd/N 5394 */ 5395 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) 5396 { 5397 const char *res = ERR_PTR(-EINVAL); 5398 struct inode *inode = d_inode(dentry); 5399 5400 if (d_is_symlink(dentry)) { 5401 res = ERR_PTR(security_inode_readlink(dentry)); 5402 if (!res) 5403 res = inode->i_op->get_link(dentry, inode, done); 5404 } 5405 return res; 5406 } 5407 EXPORT_SYMBOL(vfs_get_link); 5408 5409 /* get the link contents into pagecache */ 5410 static char *__page_get_link(struct dentry *dentry, struct inode *inode, 5411 struct delayed_call *callback) 5412 { 5413 struct folio *folio; 5414 struct address_space *mapping = inode->i_mapping; 5415 5416 if (!dentry) { 5417 folio = filemap_get_folio(mapping, 0); 5418 if (IS_ERR(folio)) 5419 return ERR_PTR(-ECHILD); 5420 if (!folio_test_uptodate(folio)) { 5421 folio_put(folio); 5422 return ERR_PTR(-ECHILD); 5423 } 5424 } else { 5425 folio = read_mapping_folio(mapping, 0, NULL); 5426 if (IS_ERR(folio)) 5427 return ERR_CAST(folio); 5428 } 5429 set_delayed_call(callback, page_put_link, folio); 5430 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 5431 return folio_address(folio); 5432 } 5433 5434 const char *page_get_link_raw(struct dentry *dentry, struct inode *inode, 5435 struct delayed_call *callback) 5436 { 5437 return __page_get_link(dentry, inode, callback); 5438 } 5439 EXPORT_SYMBOL_GPL(page_get_link_raw); 5440 5441 /** 5442 * page_get_link() - An implementation of the get_link inode_operation. 5443 * @dentry: The directory entry which is the symlink. 5444 * @inode: The inode for the symlink. 5445 * @callback: Used to drop the reference to the symlink. 5446 * 5447 * Filesystems which store their symlinks in the page cache should use 5448 * this to implement the get_link() member of their inode_operations. 5449 * 5450 * Return: A pointer to the NUL-terminated symlink. 5451 */ 5452 const char *page_get_link(struct dentry *dentry, struct inode *inode, 5453 struct delayed_call *callback) 5454 { 5455 char *kaddr = __page_get_link(dentry, inode, callback); 5456 5457 if (!IS_ERR(kaddr)) 5458 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 5459 return kaddr; 5460 } 5461 EXPORT_SYMBOL(page_get_link); 5462 5463 /** 5464 * page_put_link() - Drop the reference to the symlink. 5465 * @arg: The folio which contains the symlink. 5466 * 5467 * This is used internally by page_get_link(). It is exported for use 5468 * by filesystems which need to implement a variant of page_get_link() 5469 * themselves. Despite the apparent symmetry, filesystems which use 5470 * page_get_link() do not need to call page_put_link(). 5471 * 5472 * The argument, while it has a void pointer type, must be a pointer to 5473 * the folio which was retrieved from the page cache. The delayed_call 5474 * infrastructure is used to drop the reference count once the caller 5475 * is done with the symlink. 5476 */ 5477 void page_put_link(void *arg) 5478 { 5479 folio_put(arg); 5480 } 5481 EXPORT_SYMBOL(page_put_link); 5482 5483 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 5484 { 5485 const char *link; 5486 int res; 5487 5488 DEFINE_DELAYED_CALL(done); 5489 link = page_get_link(dentry, d_inode(dentry), &done); 5490 res = PTR_ERR(link); 5491 if (!IS_ERR(link)) 5492 res = readlink_copy(buffer, buflen, link, strlen(link)); 5493 do_delayed_call(&done); 5494 return res; 5495 } 5496 EXPORT_SYMBOL(page_readlink); 5497 5498 int page_symlink(struct inode *inode, const char *symname, int len) 5499 { 5500 struct address_space *mapping = inode->i_mapping; 5501 const struct address_space_operations *aops = mapping->a_ops; 5502 bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS); 5503 struct folio *folio; 5504 void *fsdata = NULL; 5505 int err; 5506 unsigned int flags; 5507 5508 retry: 5509 if (nofs) 5510 flags = memalloc_nofs_save(); 5511 err = aops->write_begin(NULL, mapping, 0, len-1, &folio, &fsdata); 5512 if (nofs) 5513 memalloc_nofs_restore(flags); 5514 if (err) 5515 goto fail; 5516 5517 memcpy(folio_address(folio), symname, len - 1); 5518 5519 err = aops->write_end(NULL, mapping, 0, len - 1, len - 1, 5520 folio, fsdata); 5521 if (err < 0) 5522 goto fail; 5523 if (err < len-1) 5524 goto retry; 5525 5526 mark_inode_dirty(inode); 5527 return 0; 5528 fail: 5529 return err; 5530 } 5531 EXPORT_SYMBOL(page_symlink); 5532 5533 const struct inode_operations page_symlink_inode_operations = { 5534 .get_link = page_get_link, 5535 }; 5536 EXPORT_SYMBOL(page_symlink_inode_operations); 5537