1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * Some corrections by tytso.
10  */
11 
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17 
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/slab.h>
21 #include <linux/wordpart.h>
22 #include <linux/fs.h>
23 #include <linux/filelock.h>
24 #include <linux/namei.h>
25 #include <linux/pagemap.h>
26 #include <linux/sched/mm.h>
27 #include <linux/fsnotify.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/mount.h>
32 #include <linux/audit.h>
33 #include <linux/capability.h>
34 #include <linux/file.h>
35 #include <linux/fcntl.h>
36 #include <linux/device_cgroup.h>
37 #include <linux/fs_struct.h>
38 #include <linux/posix_acl.h>
39 #include <linux/hash.h>
40 #include <linux/bitops.h>
41 #include <linux/init_task.h>
42 #include <linux/uaccess.h>
43 
44 #include "internal.h"
45 #include "mount.h"
46 
47 /* [Feb-1997 T. Schoebel-Theuer]
48  * Fundamental changes in the pathname lookup mechanisms (namei)
49  * were necessary because of omirr.  The reason is that omirr needs
50  * to know the _real_ pathname, not the user-supplied one, in case
51  * of symlinks (and also when transname replacements occur).
52  *
53  * The new code replaces the old recursive symlink resolution with
54  * an iterative one (in case of non-nested symlink chains).  It does
55  * this with calls to <fs>_follow_link().
56  * As a side effect, dir_namei(), _namei() and follow_link() are now
57  * replaced with a single function lookup_dentry() that can handle all
58  * the special cases of the former code.
59  *
60  * With the new dcache, the pathname is stored at each inode, at least as
61  * long as the refcount of the inode is positive.  As a side effect, the
62  * size of the dcache depends on the inode cache and thus is dynamic.
63  *
64  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
65  * resolution to correspond with current state of the code.
66  *
67  * Note that the symlink resolution is not *completely* iterative.
68  * There is still a significant amount of tail- and mid- recursion in
69  * the algorithm.  Also, note that <fs>_readlink() is not used in
70  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
71  * may return different results than <fs>_follow_link().  Many virtual
72  * filesystems (including /proc) exhibit this behavior.
73  */
74 
75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
76  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
77  * and the name already exists in form of a symlink, try to create the new
78  * name indicated by the symlink. The old code always complained that the
79  * name already exists, due to not following the symlink even if its target
80  * is nonexistent.  The new semantics affects also mknod() and link() when
81  * the name is a symlink pointing to a non-existent name.
82  *
83  * I don't know which semantics is the right one, since I have no access
84  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
85  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
86  * "old" one. Personally, I think the new semantics is much more logical.
87  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
88  * file does succeed in both HP-UX and SunOs, but not in Solaris
89  * and in the old Linux semantics.
90  */
91 
92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
93  * semantics.  See the comments in "open_namei" and "do_link" below.
94  *
95  * [10-Sep-98 Alan Modra] Another symlink change.
96  */
97 
98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
99  *	inside the path - always follow.
100  *	in the last component in creation/removal/renaming - never follow.
101  *	if LOOKUP_FOLLOW passed - follow.
102  *	if the pathname has trailing slashes - follow.
103  *	otherwise - don't follow.
104  * (applied in that order).
105  *
106  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
107  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
108  * During the 2.4 we need to fix the userland stuff depending on it -
109  * hopefully we will be able to get rid of that wart in 2.5. So far only
110  * XEmacs seems to be relying on it...
111  */
112 /*
113  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
114  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
115  * any extra contention...
116  */
117 
118 /* In order to reduce some races, while at the same time doing additional
119  * checking and hopefully speeding things up, we copy filenames to the
120  * kernel data space before using them..
121  *
122  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
123  * PATH_MAX includes the nul terminator --RR.
124  */
125 
126 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
127 
128 static inline void initname(struct filename *name, const char __user *uptr)
129 {
130 	name->uptr = uptr;
131 	name->aname = NULL;
132 	atomic_set(&name->refcnt, 1);
133 }
134 
135 struct filename *
136 getname_flags(const char __user *filename, int flags)
137 {
138 	struct filename *result;
139 	char *kname;
140 	int len;
141 
142 	result = audit_reusename(filename);
143 	if (result)
144 		return result;
145 
146 	result = __getname();
147 	if (unlikely(!result))
148 		return ERR_PTR(-ENOMEM);
149 
150 	/*
151 	 * First, try to embed the struct filename inside the names_cache
152 	 * allocation
153 	 */
154 	kname = (char *)result->iname;
155 	result->name = kname;
156 
157 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
158 	/*
159 	 * Handle both empty path and copy failure in one go.
160 	 */
161 	if (unlikely(len <= 0)) {
162 		if (unlikely(len < 0)) {
163 			__putname(result);
164 			return ERR_PTR(len);
165 		}
166 
167 		/* The empty path is special. */
168 		if (!(flags & LOOKUP_EMPTY)) {
169 			__putname(result);
170 			return ERR_PTR(-ENOENT);
171 		}
172 	}
173 
174 	/*
175 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
176 	 * separate struct filename so we can dedicate the entire
177 	 * names_cache allocation for the pathname, and re-do the copy from
178 	 * userland.
179 	 */
180 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
181 		const size_t size = offsetof(struct filename, iname[1]);
182 		kname = (char *)result;
183 
184 		/*
185 		 * size is chosen that way we to guarantee that
186 		 * result->iname[0] is within the same object and that
187 		 * kname can't be equal to result->iname, no matter what.
188 		 */
189 		result = kzalloc(size, GFP_KERNEL);
190 		if (unlikely(!result)) {
191 			__putname(kname);
192 			return ERR_PTR(-ENOMEM);
193 		}
194 		result->name = kname;
195 		len = strncpy_from_user(kname, filename, PATH_MAX);
196 		if (unlikely(len < 0)) {
197 			__putname(kname);
198 			kfree(result);
199 			return ERR_PTR(len);
200 		}
201 		/* The empty path is special. */
202 		if (unlikely(!len) && !(flags & LOOKUP_EMPTY)) {
203 			__putname(kname);
204 			kfree(result);
205 			return ERR_PTR(-ENOENT);
206 		}
207 		if (unlikely(len == PATH_MAX)) {
208 			__putname(kname);
209 			kfree(result);
210 			return ERR_PTR(-ENAMETOOLONG);
211 		}
212 	}
213 	initname(result, filename);
214 	audit_getname(result);
215 	return result;
216 }
217 
218 struct filename *getname_uflags(const char __user *filename, int uflags)
219 {
220 	int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
221 
222 	return getname_flags(filename, flags);
223 }
224 
225 struct filename *__getname_maybe_null(const char __user *pathname)
226 {
227 	struct filename *name;
228 	char c;
229 
230 	/* try to save on allocations; loss on um, though */
231 	if (get_user(c, pathname))
232 		return ERR_PTR(-EFAULT);
233 	if (!c)
234 		return NULL;
235 
236 	name = getname_flags(pathname, LOOKUP_EMPTY);
237 	if (!IS_ERR(name) && !(name->name[0])) {
238 		putname(name);
239 		name = NULL;
240 	}
241 	return name;
242 }
243 
244 struct filename *getname_kernel(const char * filename)
245 {
246 	struct filename *result;
247 	int len = strlen(filename) + 1;
248 
249 	result = __getname();
250 	if (unlikely(!result))
251 		return ERR_PTR(-ENOMEM);
252 
253 	if (len <= EMBEDDED_NAME_MAX) {
254 		result->name = (char *)result->iname;
255 	} else if (len <= PATH_MAX) {
256 		const size_t size = offsetof(struct filename, iname[1]);
257 		struct filename *tmp;
258 
259 		tmp = kmalloc(size, GFP_KERNEL);
260 		if (unlikely(!tmp)) {
261 			__putname(result);
262 			return ERR_PTR(-ENOMEM);
263 		}
264 		tmp->name = (char *)result;
265 		result = tmp;
266 	} else {
267 		__putname(result);
268 		return ERR_PTR(-ENAMETOOLONG);
269 	}
270 	memcpy((char *)result->name, filename, len);
271 	initname(result, NULL);
272 	audit_getname(result);
273 	return result;
274 }
275 EXPORT_SYMBOL(getname_kernel);
276 
277 void putname(struct filename *name)
278 {
279 	int refcnt;
280 
281 	if (IS_ERR_OR_NULL(name))
282 		return;
283 
284 	refcnt = atomic_read(&name->refcnt);
285 	if (refcnt != 1) {
286 		if (WARN_ON_ONCE(!refcnt))
287 			return;
288 
289 		if (!atomic_dec_and_test(&name->refcnt))
290 			return;
291 	}
292 
293 	if (name->name != name->iname) {
294 		__putname(name->name);
295 		kfree(name);
296 	} else
297 		__putname(name);
298 }
299 EXPORT_SYMBOL(putname);
300 
301 /**
302  * check_acl - perform ACL permission checking
303  * @idmap:	idmap of the mount the inode was found from
304  * @inode:	inode to check permissions on
305  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
306  *
307  * This function performs the ACL permission checking. Since this function
308  * retrieve POSIX acls it needs to know whether it is called from a blocking or
309  * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
310  *
311  * If the inode has been found through an idmapped mount the idmap of
312  * the vfsmount must be passed through @idmap. This function will then take
313  * care to map the inode according to @idmap before checking permissions.
314  * On non-idmapped mounts or if permission checking is to be performed on the
315  * raw inode simply pass @nop_mnt_idmap.
316  */
317 static int check_acl(struct mnt_idmap *idmap,
318 		     struct inode *inode, int mask)
319 {
320 #ifdef CONFIG_FS_POSIX_ACL
321 	struct posix_acl *acl;
322 
323 	if (mask & MAY_NOT_BLOCK) {
324 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
325 	        if (!acl)
326 	                return -EAGAIN;
327 		/* no ->get_inode_acl() calls in RCU mode... */
328 		if (is_uncached_acl(acl))
329 			return -ECHILD;
330 	        return posix_acl_permission(idmap, inode, acl, mask);
331 	}
332 
333 	acl = get_inode_acl(inode, ACL_TYPE_ACCESS);
334 	if (IS_ERR(acl))
335 		return PTR_ERR(acl);
336 	if (acl) {
337 	        int error = posix_acl_permission(idmap, inode, acl, mask);
338 	        posix_acl_release(acl);
339 	        return error;
340 	}
341 #endif
342 
343 	return -EAGAIN;
344 }
345 
346 /*
347  * Very quick optimistic "we know we have no ACL's" check.
348  *
349  * Note that this is purely for ACL_TYPE_ACCESS, and purely
350  * for the "we have cached that there are no ACLs" case.
351  *
352  * If this returns true, we know there are no ACLs. But if
353  * it returns false, we might still not have ACLs (it could
354  * be the is_uncached_acl() case).
355  */
356 static inline bool no_acl_inode(struct inode *inode)
357 {
358 #ifdef CONFIG_FS_POSIX_ACL
359 	return likely(!READ_ONCE(inode->i_acl));
360 #else
361 	return true;
362 #endif
363 }
364 
365 /**
366  * acl_permission_check - perform basic UNIX permission checking
367  * @idmap:	idmap of the mount the inode was found from
368  * @inode:	inode to check permissions on
369  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
370  *
371  * This function performs the basic UNIX permission checking. Since this
372  * function may retrieve POSIX acls it needs to know whether it is called from a
373  * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
374  *
375  * If the inode has been found through an idmapped mount the idmap of
376  * the vfsmount must be passed through @idmap. This function will then take
377  * care to map the inode according to @idmap before checking permissions.
378  * On non-idmapped mounts or if permission checking is to be performed on the
379  * raw inode simply pass @nop_mnt_idmap.
380  */
381 static int acl_permission_check(struct mnt_idmap *idmap,
382 				struct inode *inode, int mask)
383 {
384 	unsigned int mode = inode->i_mode;
385 	vfsuid_t vfsuid;
386 
387 	/*
388 	 * Common cheap case: everybody has the requested
389 	 * rights, and there are no ACLs to check. No need
390 	 * to do any owner/group checks in that case.
391 	 *
392 	 *  - 'mask&7' is the requested permission bit set
393 	 *  - multiplying by 0111 spreads them out to all of ugo
394 	 *  - '& ~mode' looks for missing inode permission bits
395 	 *  - the '!' is for "no missing permissions"
396 	 *
397 	 * After that, we just need to check that there are no
398 	 * ACL's on the inode - do the 'IS_POSIXACL()' check last
399 	 * because it will dereference the ->i_sb pointer and we
400 	 * want to avoid that if at all possible.
401 	 */
402 	if (!((mask & 7) * 0111 & ~mode)) {
403 		if (no_acl_inode(inode))
404 			return 0;
405 		if (!IS_POSIXACL(inode))
406 			return 0;
407 	}
408 
409 	/* Are we the owner? If so, ACL's don't matter */
410 	vfsuid = i_uid_into_vfsuid(idmap, inode);
411 	if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) {
412 		mask &= 7;
413 		mode >>= 6;
414 		return (mask & ~mode) ? -EACCES : 0;
415 	}
416 
417 	/* Do we have ACL's? */
418 	if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
419 		int error = check_acl(idmap, inode, mask);
420 		if (error != -EAGAIN)
421 			return error;
422 	}
423 
424 	/* Only RWX matters for group/other mode bits */
425 	mask &= 7;
426 
427 	/*
428 	 * Are the group permissions different from
429 	 * the other permissions in the bits we care
430 	 * about? Need to check group ownership if so.
431 	 */
432 	if (mask & (mode ^ (mode >> 3))) {
433 		vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
434 		if (vfsgid_in_group_p(vfsgid))
435 			mode >>= 3;
436 	}
437 
438 	/* Bits in 'mode' clear that we require? */
439 	return (mask & ~mode) ? -EACCES : 0;
440 }
441 
442 /**
443  * generic_permission -  check for access rights on a Posix-like filesystem
444  * @idmap:	idmap of the mount the inode was found from
445  * @inode:	inode to check access rights for
446  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
447  *		%MAY_NOT_BLOCK ...)
448  *
449  * Used to check for read/write/execute permissions on a file.
450  * We use "fsuid" for this, letting us set arbitrary permissions
451  * for filesystem access without changing the "normal" uids which
452  * are used for other things.
453  *
454  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
455  * request cannot be satisfied (eg. requires blocking or too much complexity).
456  * It would then be called again in ref-walk mode.
457  *
458  * If the inode has been found through an idmapped mount the idmap of
459  * the vfsmount must be passed through @idmap. This function will then take
460  * care to map the inode according to @idmap before checking permissions.
461  * On non-idmapped mounts or if permission checking is to be performed on the
462  * raw inode simply pass @nop_mnt_idmap.
463  */
464 int generic_permission(struct mnt_idmap *idmap, struct inode *inode,
465 		       int mask)
466 {
467 	int ret;
468 
469 	/*
470 	 * Do the basic permission checks.
471 	 */
472 	ret = acl_permission_check(idmap, inode, mask);
473 	if (ret != -EACCES)
474 		return ret;
475 
476 	if (S_ISDIR(inode->i_mode)) {
477 		/* DACs are overridable for directories */
478 		if (!(mask & MAY_WRITE))
479 			if (capable_wrt_inode_uidgid(idmap, inode,
480 						     CAP_DAC_READ_SEARCH))
481 				return 0;
482 		if (capable_wrt_inode_uidgid(idmap, inode,
483 					     CAP_DAC_OVERRIDE))
484 			return 0;
485 		return -EACCES;
486 	}
487 
488 	/*
489 	 * Searching includes executable on directories, else just read.
490 	 */
491 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
492 	if (mask == MAY_READ)
493 		if (capable_wrt_inode_uidgid(idmap, inode,
494 					     CAP_DAC_READ_SEARCH))
495 			return 0;
496 	/*
497 	 * Read/write DACs are always overridable.
498 	 * Executable DACs are overridable when there is
499 	 * at least one exec bit set.
500 	 */
501 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
502 		if (capable_wrt_inode_uidgid(idmap, inode,
503 					     CAP_DAC_OVERRIDE))
504 			return 0;
505 
506 	return -EACCES;
507 }
508 EXPORT_SYMBOL(generic_permission);
509 
510 /**
511  * do_inode_permission - UNIX permission checking
512  * @idmap:	idmap of the mount the inode was found from
513  * @inode:	inode to check permissions on
514  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
515  *
516  * We _really_ want to just do "generic_permission()" without
517  * even looking at the inode->i_op values. So we keep a cache
518  * flag in inode->i_opflags, that says "this has not special
519  * permission function, use the fast case".
520  */
521 static inline int do_inode_permission(struct mnt_idmap *idmap,
522 				      struct inode *inode, int mask)
523 {
524 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
525 		if (likely(inode->i_op->permission))
526 			return inode->i_op->permission(idmap, inode, mask);
527 
528 		/* This gets set once for the inode lifetime */
529 		spin_lock(&inode->i_lock);
530 		inode->i_opflags |= IOP_FASTPERM;
531 		spin_unlock(&inode->i_lock);
532 	}
533 	return generic_permission(idmap, inode, mask);
534 }
535 
536 /**
537  * sb_permission - Check superblock-level permissions
538  * @sb: Superblock of inode to check permission on
539  * @inode: Inode to check permission on
540  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
541  *
542  * Separate out file-system wide checks from inode-specific permission checks.
543  */
544 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
545 {
546 	if (unlikely(mask & MAY_WRITE)) {
547 		umode_t mode = inode->i_mode;
548 
549 		/* Nobody gets write access to a read-only fs. */
550 		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
551 			return -EROFS;
552 	}
553 	return 0;
554 }
555 
556 /**
557  * inode_permission - Check for access rights to a given inode
558  * @idmap:	idmap of the mount the inode was found from
559  * @inode:	Inode to check permission on
560  * @mask:	Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
561  *
562  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
563  * this, letting us set arbitrary permissions for filesystem access without
564  * changing the "normal" UIDs which are used for other things.
565  *
566  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
567  */
568 int inode_permission(struct mnt_idmap *idmap,
569 		     struct inode *inode, int mask)
570 {
571 	int retval;
572 
573 	retval = sb_permission(inode->i_sb, inode, mask);
574 	if (unlikely(retval))
575 		return retval;
576 
577 	if (unlikely(mask & MAY_WRITE)) {
578 		/*
579 		 * Nobody gets write access to an immutable file.
580 		 */
581 		if (unlikely(IS_IMMUTABLE(inode)))
582 			return -EPERM;
583 
584 		/*
585 		 * Updating mtime will likely cause i_uid and i_gid to be
586 		 * written back improperly if their true value is unknown
587 		 * to the vfs.
588 		 */
589 		if (unlikely(HAS_UNMAPPED_ID(idmap, inode)))
590 			return -EACCES;
591 	}
592 
593 	retval = do_inode_permission(idmap, inode, mask);
594 	if (unlikely(retval))
595 		return retval;
596 
597 	retval = devcgroup_inode_permission(inode, mask);
598 	if (unlikely(retval))
599 		return retval;
600 
601 	return security_inode_permission(inode, mask);
602 }
603 EXPORT_SYMBOL(inode_permission);
604 
605 /**
606  * path_get - get a reference to a path
607  * @path: path to get the reference to
608  *
609  * Given a path increment the reference count to the dentry and the vfsmount.
610  */
611 void path_get(const struct path *path)
612 {
613 	mntget(path->mnt);
614 	dget(path->dentry);
615 }
616 EXPORT_SYMBOL(path_get);
617 
618 /**
619  * path_put - put a reference to a path
620  * @path: path to put the reference to
621  *
622  * Given a path decrement the reference count to the dentry and the vfsmount.
623  */
624 void path_put(const struct path *path)
625 {
626 	dput(path->dentry);
627 	mntput(path->mnt);
628 }
629 EXPORT_SYMBOL(path_put);
630 
631 #define EMBEDDED_LEVELS 2
632 struct nameidata {
633 	struct path	path;
634 	struct qstr	last;
635 	struct path	root;
636 	struct inode	*inode; /* path.dentry.d_inode */
637 	unsigned int	flags, state;
638 	unsigned	seq, next_seq, m_seq, r_seq;
639 	int		last_type;
640 	unsigned	depth;
641 	int		total_link_count;
642 	struct saved {
643 		struct path link;
644 		struct delayed_call done;
645 		const char *name;
646 		unsigned seq;
647 	} *stack, internal[EMBEDDED_LEVELS];
648 	struct filename	*name;
649 	const char *pathname;
650 	struct nameidata *saved;
651 	unsigned	root_seq;
652 	int		dfd;
653 	vfsuid_t	dir_vfsuid;
654 	umode_t		dir_mode;
655 } __randomize_layout;
656 
657 #define ND_ROOT_PRESET 1
658 #define ND_ROOT_GRABBED 2
659 #define ND_JUMPED 4
660 
661 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
662 {
663 	struct nameidata *old = current->nameidata;
664 	p->stack = p->internal;
665 	p->depth = 0;
666 	p->dfd = dfd;
667 	p->name = name;
668 	p->pathname = likely(name) ? name->name : "";
669 	p->path.mnt = NULL;
670 	p->path.dentry = NULL;
671 	p->total_link_count = old ? old->total_link_count : 0;
672 	p->saved = old;
673 	current->nameidata = p;
674 }
675 
676 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
677 			  const struct path *root)
678 {
679 	__set_nameidata(p, dfd, name);
680 	p->state = 0;
681 	if (unlikely(root)) {
682 		p->state = ND_ROOT_PRESET;
683 		p->root = *root;
684 	}
685 }
686 
687 static void restore_nameidata(void)
688 {
689 	struct nameidata *now = current->nameidata, *old = now->saved;
690 
691 	current->nameidata = old;
692 	if (old)
693 		old->total_link_count = now->total_link_count;
694 	if (now->stack != now->internal)
695 		kfree(now->stack);
696 }
697 
698 static bool nd_alloc_stack(struct nameidata *nd)
699 {
700 	struct saved *p;
701 
702 	p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
703 			 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
704 	if (unlikely(!p))
705 		return false;
706 	memcpy(p, nd->internal, sizeof(nd->internal));
707 	nd->stack = p;
708 	return true;
709 }
710 
711 /**
712  * path_connected - Verify that a dentry is below mnt.mnt_root
713  * @mnt: The mountpoint to check.
714  * @dentry: The dentry to check.
715  *
716  * Rename can sometimes move a file or directory outside of a bind
717  * mount, path_connected allows those cases to be detected.
718  */
719 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
720 {
721 	struct super_block *sb = mnt->mnt_sb;
722 
723 	/* Bind mounts can have disconnected paths */
724 	if (mnt->mnt_root == sb->s_root)
725 		return true;
726 
727 	return is_subdir(dentry, mnt->mnt_root);
728 }
729 
730 static void drop_links(struct nameidata *nd)
731 {
732 	int i = nd->depth;
733 	while (i--) {
734 		struct saved *last = nd->stack + i;
735 		do_delayed_call(&last->done);
736 		clear_delayed_call(&last->done);
737 	}
738 }
739 
740 static void leave_rcu(struct nameidata *nd)
741 {
742 	nd->flags &= ~LOOKUP_RCU;
743 	nd->seq = nd->next_seq = 0;
744 	rcu_read_unlock();
745 }
746 
747 static void terminate_walk(struct nameidata *nd)
748 {
749 	drop_links(nd);
750 	if (!(nd->flags & LOOKUP_RCU)) {
751 		int i;
752 		path_put(&nd->path);
753 		for (i = 0; i < nd->depth; i++)
754 			path_put(&nd->stack[i].link);
755 		if (nd->state & ND_ROOT_GRABBED) {
756 			path_put(&nd->root);
757 			nd->state &= ~ND_ROOT_GRABBED;
758 		}
759 	} else {
760 		leave_rcu(nd);
761 	}
762 	nd->depth = 0;
763 	nd->path.mnt = NULL;
764 	nd->path.dentry = NULL;
765 }
766 
767 /* path_put is needed afterwards regardless of success or failure */
768 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
769 {
770 	int res = __legitimize_mnt(path->mnt, mseq);
771 	if (unlikely(res)) {
772 		if (res > 0)
773 			path->mnt = NULL;
774 		path->dentry = NULL;
775 		return false;
776 	}
777 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
778 		path->dentry = NULL;
779 		return false;
780 	}
781 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
782 }
783 
784 static inline bool legitimize_path(struct nameidata *nd,
785 			    struct path *path, unsigned seq)
786 {
787 	return __legitimize_path(path, seq, nd->m_seq);
788 }
789 
790 static bool legitimize_links(struct nameidata *nd)
791 {
792 	int i;
793 	if (unlikely(nd->flags & LOOKUP_CACHED)) {
794 		drop_links(nd);
795 		nd->depth = 0;
796 		return false;
797 	}
798 	for (i = 0; i < nd->depth; i++) {
799 		struct saved *last = nd->stack + i;
800 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
801 			drop_links(nd);
802 			nd->depth = i + 1;
803 			return false;
804 		}
805 	}
806 	return true;
807 }
808 
809 static bool legitimize_root(struct nameidata *nd)
810 {
811 	/* Nothing to do if nd->root is zero or is managed by the VFS user. */
812 	if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
813 		return true;
814 	nd->state |= ND_ROOT_GRABBED;
815 	return legitimize_path(nd, &nd->root, nd->root_seq);
816 }
817 
818 /*
819  * Path walking has 2 modes, rcu-walk and ref-walk (see
820  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
821  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
822  * normal reference counts on dentries and vfsmounts to transition to ref-walk
823  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
824  * got stuck, so ref-walk may continue from there. If this is not successful
825  * (eg. a seqcount has changed), then failure is returned and it's up to caller
826  * to restart the path walk from the beginning in ref-walk mode.
827  */
828 
829 /**
830  * try_to_unlazy - try to switch to ref-walk mode.
831  * @nd: nameidata pathwalk data
832  * Returns: true on success, false on failure
833  *
834  * try_to_unlazy attempts to legitimize the current nd->path and nd->root
835  * for ref-walk mode.
836  * Must be called from rcu-walk context.
837  * Nothing should touch nameidata between try_to_unlazy() failure and
838  * terminate_walk().
839  */
840 static bool try_to_unlazy(struct nameidata *nd)
841 {
842 	struct dentry *parent = nd->path.dentry;
843 
844 	BUG_ON(!(nd->flags & LOOKUP_RCU));
845 
846 	if (unlikely(!legitimize_links(nd)))
847 		goto out1;
848 	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
849 		goto out;
850 	if (unlikely(!legitimize_root(nd)))
851 		goto out;
852 	leave_rcu(nd);
853 	BUG_ON(nd->inode != parent->d_inode);
854 	return true;
855 
856 out1:
857 	nd->path.mnt = NULL;
858 	nd->path.dentry = NULL;
859 out:
860 	leave_rcu(nd);
861 	return false;
862 }
863 
864 /**
865  * try_to_unlazy_next - try to switch to ref-walk mode.
866  * @nd: nameidata pathwalk data
867  * @dentry: next dentry to step into
868  * Returns: true on success, false on failure
869  *
870  * Similar to try_to_unlazy(), but here we have the next dentry already
871  * picked by rcu-walk and want to legitimize that in addition to the current
872  * nd->path and nd->root for ref-walk mode.  Must be called from rcu-walk context.
873  * Nothing should touch nameidata between try_to_unlazy_next() failure and
874  * terminate_walk().
875  */
876 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry)
877 {
878 	int res;
879 	BUG_ON(!(nd->flags & LOOKUP_RCU));
880 
881 	if (unlikely(!legitimize_links(nd)))
882 		goto out2;
883 	res = __legitimize_mnt(nd->path.mnt, nd->m_seq);
884 	if (unlikely(res)) {
885 		if (res > 0)
886 			goto out2;
887 		goto out1;
888 	}
889 	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
890 		goto out1;
891 
892 	/*
893 	 * We need to move both the parent and the dentry from the RCU domain
894 	 * to be properly refcounted. And the sequence number in the dentry
895 	 * validates *both* dentry counters, since we checked the sequence
896 	 * number of the parent after we got the child sequence number. So we
897 	 * know the parent must still be valid if the child sequence number is
898 	 */
899 	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
900 		goto out;
901 	if (read_seqcount_retry(&dentry->d_seq, nd->next_seq))
902 		goto out_dput;
903 	/*
904 	 * Sequence counts matched. Now make sure that the root is
905 	 * still valid and get it if required.
906 	 */
907 	if (unlikely(!legitimize_root(nd)))
908 		goto out_dput;
909 	leave_rcu(nd);
910 	return true;
911 
912 out2:
913 	nd->path.mnt = NULL;
914 out1:
915 	nd->path.dentry = NULL;
916 out:
917 	leave_rcu(nd);
918 	return false;
919 out_dput:
920 	leave_rcu(nd);
921 	dput(dentry);
922 	return false;
923 }
924 
925 static inline int d_revalidate(struct inode *dir, const struct qstr *name,
926 			       struct dentry *dentry, unsigned int flags)
927 {
928 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
929 		return dentry->d_op->d_revalidate(dir, name, dentry, flags);
930 	else
931 		return 1;
932 }
933 
934 /**
935  * complete_walk - successful completion of path walk
936  * @nd:  pointer nameidata
937  *
938  * If we had been in RCU mode, drop out of it and legitimize nd->path.
939  * Revalidate the final result, unless we'd already done that during
940  * the path walk or the filesystem doesn't ask for it.  Return 0 on
941  * success, -error on failure.  In case of failure caller does not
942  * need to drop nd->path.
943  */
944 static int complete_walk(struct nameidata *nd)
945 {
946 	struct dentry *dentry = nd->path.dentry;
947 	int status;
948 
949 	if (nd->flags & LOOKUP_RCU) {
950 		/*
951 		 * We don't want to zero nd->root for scoped-lookups or
952 		 * externally-managed nd->root.
953 		 */
954 		if (!(nd->state & ND_ROOT_PRESET))
955 			if (!(nd->flags & LOOKUP_IS_SCOPED))
956 				nd->root.mnt = NULL;
957 		nd->flags &= ~LOOKUP_CACHED;
958 		if (!try_to_unlazy(nd))
959 			return -ECHILD;
960 	}
961 
962 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
963 		/*
964 		 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
965 		 * ever step outside the root during lookup" and should already
966 		 * be guaranteed by the rest of namei, we want to avoid a namei
967 		 * BUG resulting in userspace being given a path that was not
968 		 * scoped within the root at some point during the lookup.
969 		 *
970 		 * So, do a final sanity-check to make sure that in the
971 		 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
972 		 * we won't silently return an fd completely outside of the
973 		 * requested root to userspace.
974 		 *
975 		 * Userspace could move the path outside the root after this
976 		 * check, but as discussed elsewhere this is not a concern (the
977 		 * resolved file was inside the root at some point).
978 		 */
979 		if (!path_is_under(&nd->path, &nd->root))
980 			return -EXDEV;
981 	}
982 
983 	if (likely(!(nd->state & ND_JUMPED)))
984 		return 0;
985 
986 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
987 		return 0;
988 
989 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
990 	if (status > 0)
991 		return 0;
992 
993 	if (!status)
994 		status = -ESTALE;
995 
996 	return status;
997 }
998 
999 static int set_root(struct nameidata *nd)
1000 {
1001 	struct fs_struct *fs = current->fs;
1002 
1003 	/*
1004 	 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
1005 	 * still have to ensure it doesn't happen because it will cause a breakout
1006 	 * from the dirfd.
1007 	 */
1008 	if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
1009 		return -ENOTRECOVERABLE;
1010 
1011 	if (nd->flags & LOOKUP_RCU) {
1012 		unsigned seq;
1013 
1014 		do {
1015 			seq = read_seqcount_begin(&fs->seq);
1016 			nd->root = fs->root;
1017 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
1018 		} while (read_seqcount_retry(&fs->seq, seq));
1019 	} else {
1020 		get_fs_root(fs, &nd->root);
1021 		nd->state |= ND_ROOT_GRABBED;
1022 	}
1023 	return 0;
1024 }
1025 
1026 static int nd_jump_root(struct nameidata *nd)
1027 {
1028 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1029 		return -EXDEV;
1030 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1031 		/* Absolute path arguments to path_init() are allowed. */
1032 		if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
1033 			return -EXDEV;
1034 	}
1035 	if (!nd->root.mnt) {
1036 		int error = set_root(nd);
1037 		if (error)
1038 			return error;
1039 	}
1040 	if (nd->flags & LOOKUP_RCU) {
1041 		struct dentry *d;
1042 		nd->path = nd->root;
1043 		d = nd->path.dentry;
1044 		nd->inode = d->d_inode;
1045 		nd->seq = nd->root_seq;
1046 		if (read_seqcount_retry(&d->d_seq, nd->seq))
1047 			return -ECHILD;
1048 	} else {
1049 		path_put(&nd->path);
1050 		nd->path = nd->root;
1051 		path_get(&nd->path);
1052 		nd->inode = nd->path.dentry->d_inode;
1053 	}
1054 	nd->state |= ND_JUMPED;
1055 	return 0;
1056 }
1057 
1058 /*
1059  * Helper to directly jump to a known parsed path from ->get_link,
1060  * caller must have taken a reference to path beforehand.
1061  */
1062 int nd_jump_link(const struct path *path)
1063 {
1064 	int error = -ELOOP;
1065 	struct nameidata *nd = current->nameidata;
1066 
1067 	if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
1068 		goto err;
1069 
1070 	error = -EXDEV;
1071 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1072 		if (nd->path.mnt != path->mnt)
1073 			goto err;
1074 	}
1075 	/* Not currently safe for scoped-lookups. */
1076 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1077 		goto err;
1078 
1079 	path_put(&nd->path);
1080 	nd->path = *path;
1081 	nd->inode = nd->path.dentry->d_inode;
1082 	nd->state |= ND_JUMPED;
1083 	return 0;
1084 
1085 err:
1086 	path_put(path);
1087 	return error;
1088 }
1089 
1090 static inline void put_link(struct nameidata *nd)
1091 {
1092 	struct saved *last = nd->stack + --nd->depth;
1093 	do_delayed_call(&last->done);
1094 	if (!(nd->flags & LOOKUP_RCU))
1095 		path_put(&last->link);
1096 }
1097 
1098 static int sysctl_protected_symlinks __read_mostly;
1099 static int sysctl_protected_hardlinks __read_mostly;
1100 static int sysctl_protected_fifos __read_mostly;
1101 static int sysctl_protected_regular __read_mostly;
1102 
1103 #ifdef CONFIG_SYSCTL
1104 static const struct ctl_table namei_sysctls[] = {
1105 	{
1106 		.procname	= "protected_symlinks",
1107 		.data		= &sysctl_protected_symlinks,
1108 		.maxlen		= sizeof(int),
1109 		.mode		= 0644,
1110 		.proc_handler	= proc_dointvec_minmax,
1111 		.extra1		= SYSCTL_ZERO,
1112 		.extra2		= SYSCTL_ONE,
1113 	},
1114 	{
1115 		.procname	= "protected_hardlinks",
1116 		.data		= &sysctl_protected_hardlinks,
1117 		.maxlen		= sizeof(int),
1118 		.mode		= 0644,
1119 		.proc_handler	= proc_dointvec_minmax,
1120 		.extra1		= SYSCTL_ZERO,
1121 		.extra2		= SYSCTL_ONE,
1122 	},
1123 	{
1124 		.procname	= "protected_fifos",
1125 		.data		= &sysctl_protected_fifos,
1126 		.maxlen		= sizeof(int),
1127 		.mode		= 0644,
1128 		.proc_handler	= proc_dointvec_minmax,
1129 		.extra1		= SYSCTL_ZERO,
1130 		.extra2		= SYSCTL_TWO,
1131 	},
1132 	{
1133 		.procname	= "protected_regular",
1134 		.data		= &sysctl_protected_regular,
1135 		.maxlen		= sizeof(int),
1136 		.mode		= 0644,
1137 		.proc_handler	= proc_dointvec_minmax,
1138 		.extra1		= SYSCTL_ZERO,
1139 		.extra2		= SYSCTL_TWO,
1140 	},
1141 };
1142 
1143 static int __init init_fs_namei_sysctls(void)
1144 {
1145 	register_sysctl_init("fs", namei_sysctls);
1146 	return 0;
1147 }
1148 fs_initcall(init_fs_namei_sysctls);
1149 
1150 #endif /* CONFIG_SYSCTL */
1151 
1152 /**
1153  * may_follow_link - Check symlink following for unsafe situations
1154  * @nd: nameidata pathwalk data
1155  * @inode: Used for idmapping.
1156  *
1157  * In the case of the sysctl_protected_symlinks sysctl being enabled,
1158  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1159  * in a sticky world-writable directory. This is to protect privileged
1160  * processes from failing races against path names that may change out
1161  * from under them by way of other users creating malicious symlinks.
1162  * It will permit symlinks to be followed only when outside a sticky
1163  * world-writable directory, or when the uid of the symlink and follower
1164  * match, or when the directory owner matches the symlink's owner.
1165  *
1166  * Returns 0 if following the symlink is allowed, -ve on error.
1167  */
1168 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1169 {
1170 	struct mnt_idmap *idmap;
1171 	vfsuid_t vfsuid;
1172 
1173 	if (!sysctl_protected_symlinks)
1174 		return 0;
1175 
1176 	idmap = mnt_idmap(nd->path.mnt);
1177 	vfsuid = i_uid_into_vfsuid(idmap, inode);
1178 	/* Allowed if owner and follower match. */
1179 	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
1180 		return 0;
1181 
1182 	/* Allowed if parent directory not sticky and world-writable. */
1183 	if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1184 		return 0;
1185 
1186 	/* Allowed if parent directory and link owner match. */
1187 	if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid))
1188 		return 0;
1189 
1190 	if (nd->flags & LOOKUP_RCU)
1191 		return -ECHILD;
1192 
1193 	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1194 	audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1195 	return -EACCES;
1196 }
1197 
1198 /**
1199  * safe_hardlink_source - Check for safe hardlink conditions
1200  * @idmap: idmap of the mount the inode was found from
1201  * @inode: the source inode to hardlink from
1202  *
1203  * Return false if at least one of the following conditions:
1204  *    - inode is not a regular file
1205  *    - inode is setuid
1206  *    - inode is setgid and group-exec
1207  *    - access failure for read and write
1208  *
1209  * Otherwise returns true.
1210  */
1211 static bool safe_hardlink_source(struct mnt_idmap *idmap,
1212 				 struct inode *inode)
1213 {
1214 	umode_t mode = inode->i_mode;
1215 
1216 	/* Special files should not get pinned to the filesystem. */
1217 	if (!S_ISREG(mode))
1218 		return false;
1219 
1220 	/* Setuid files should not get pinned to the filesystem. */
1221 	if (mode & S_ISUID)
1222 		return false;
1223 
1224 	/* Executable setgid files should not get pinned to the filesystem. */
1225 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1226 		return false;
1227 
1228 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
1229 	if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE))
1230 		return false;
1231 
1232 	return true;
1233 }
1234 
1235 /**
1236  * may_linkat - Check permissions for creating a hardlink
1237  * @idmap: idmap of the mount the inode was found from
1238  * @link:  the source to hardlink from
1239  *
1240  * Block hardlink when all of:
1241  *  - sysctl_protected_hardlinks enabled
1242  *  - fsuid does not match inode
1243  *  - hardlink source is unsafe (see safe_hardlink_source() above)
1244  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
1245  *
1246  * If the inode has been found through an idmapped mount the idmap of
1247  * the vfsmount must be passed through @idmap. This function will then take
1248  * care to map the inode according to @idmap before checking permissions.
1249  * On non-idmapped mounts or if permission checking is to be performed on the
1250  * raw inode simply pass @nop_mnt_idmap.
1251  *
1252  * Returns 0 if successful, -ve on error.
1253  */
1254 int may_linkat(struct mnt_idmap *idmap, const struct path *link)
1255 {
1256 	struct inode *inode = link->dentry->d_inode;
1257 
1258 	/* Inode writeback is not safe when the uid or gid are invalid. */
1259 	if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
1260 	    !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
1261 		return -EOVERFLOW;
1262 
1263 	if (!sysctl_protected_hardlinks)
1264 		return 0;
1265 
1266 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1267 	 * otherwise, it must be a safe source.
1268 	 */
1269 	if (safe_hardlink_source(idmap, inode) ||
1270 	    inode_owner_or_capable(idmap, inode))
1271 		return 0;
1272 
1273 	audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1274 	return -EPERM;
1275 }
1276 
1277 /**
1278  * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1279  *			  should be allowed, or not, on files that already
1280  *			  exist.
1281  * @idmap: idmap of the mount the inode was found from
1282  * @nd: nameidata pathwalk data
1283  * @inode: the inode of the file to open
1284  *
1285  * Block an O_CREAT open of a FIFO (or a regular file) when:
1286  *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1287  *   - the file already exists
1288  *   - we are in a sticky directory
1289  *   - we don't own the file
1290  *   - the owner of the directory doesn't own the file
1291  *   - the directory is world writable
1292  * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1293  * the directory doesn't have to be world writable: being group writable will
1294  * be enough.
1295  *
1296  * If the inode has been found through an idmapped mount the idmap of
1297  * the vfsmount must be passed through @idmap. This function will then take
1298  * care to map the inode according to @idmap before checking permissions.
1299  * On non-idmapped mounts or if permission checking is to be performed on the
1300  * raw inode simply pass @nop_mnt_idmap.
1301  *
1302  * Returns 0 if the open is allowed, -ve on error.
1303  */
1304 static int may_create_in_sticky(struct mnt_idmap *idmap, struct nameidata *nd,
1305 				struct inode *const inode)
1306 {
1307 	umode_t dir_mode = nd->dir_mode;
1308 	vfsuid_t dir_vfsuid = nd->dir_vfsuid, i_vfsuid;
1309 
1310 	if (likely(!(dir_mode & S_ISVTX)))
1311 		return 0;
1312 
1313 	if (S_ISREG(inode->i_mode) && !sysctl_protected_regular)
1314 		return 0;
1315 
1316 	if (S_ISFIFO(inode->i_mode) && !sysctl_protected_fifos)
1317 		return 0;
1318 
1319 	i_vfsuid = i_uid_into_vfsuid(idmap, inode);
1320 
1321 	if (vfsuid_eq(i_vfsuid, dir_vfsuid))
1322 		return 0;
1323 
1324 	if (vfsuid_eq_kuid(i_vfsuid, current_fsuid()))
1325 		return 0;
1326 
1327 	if (likely(dir_mode & 0002)) {
1328 		audit_log_path_denied(AUDIT_ANOM_CREAT, "sticky_create");
1329 		return -EACCES;
1330 	}
1331 
1332 	if (dir_mode & 0020) {
1333 		if (sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) {
1334 			audit_log_path_denied(AUDIT_ANOM_CREAT,
1335 					      "sticky_create_fifo");
1336 			return -EACCES;
1337 		}
1338 
1339 		if (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode)) {
1340 			audit_log_path_denied(AUDIT_ANOM_CREAT,
1341 					      "sticky_create_regular");
1342 			return -EACCES;
1343 		}
1344 	}
1345 
1346 	return 0;
1347 }
1348 
1349 /*
1350  * follow_up - Find the mountpoint of path's vfsmount
1351  *
1352  * Given a path, find the mountpoint of its source file system.
1353  * Replace @path with the path of the mountpoint in the parent mount.
1354  * Up is towards /.
1355  *
1356  * Return 1 if we went up a level and 0 if we were already at the
1357  * root.
1358  */
1359 int follow_up(struct path *path)
1360 {
1361 	struct mount *mnt = real_mount(path->mnt);
1362 	struct mount *parent;
1363 	struct dentry *mountpoint;
1364 
1365 	read_seqlock_excl(&mount_lock);
1366 	parent = mnt->mnt_parent;
1367 	if (parent == mnt) {
1368 		read_sequnlock_excl(&mount_lock);
1369 		return 0;
1370 	}
1371 	mntget(&parent->mnt);
1372 	mountpoint = dget(mnt->mnt_mountpoint);
1373 	read_sequnlock_excl(&mount_lock);
1374 	dput(path->dentry);
1375 	path->dentry = mountpoint;
1376 	mntput(path->mnt);
1377 	path->mnt = &parent->mnt;
1378 	return 1;
1379 }
1380 EXPORT_SYMBOL(follow_up);
1381 
1382 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1383 				  struct path *path, unsigned *seqp)
1384 {
1385 	while (mnt_has_parent(m)) {
1386 		struct dentry *mountpoint = m->mnt_mountpoint;
1387 
1388 		m = m->mnt_parent;
1389 		if (unlikely(root->dentry == mountpoint &&
1390 			     root->mnt == &m->mnt))
1391 			break;
1392 		if (mountpoint != m->mnt.mnt_root) {
1393 			path->mnt = &m->mnt;
1394 			path->dentry = mountpoint;
1395 			*seqp = read_seqcount_begin(&mountpoint->d_seq);
1396 			return true;
1397 		}
1398 	}
1399 	return false;
1400 }
1401 
1402 static bool choose_mountpoint(struct mount *m, const struct path *root,
1403 			      struct path *path)
1404 {
1405 	bool found;
1406 
1407 	rcu_read_lock();
1408 	while (1) {
1409 		unsigned seq, mseq = read_seqbegin(&mount_lock);
1410 
1411 		found = choose_mountpoint_rcu(m, root, path, &seq);
1412 		if (unlikely(!found)) {
1413 			if (!read_seqretry(&mount_lock, mseq))
1414 				break;
1415 		} else {
1416 			if (likely(__legitimize_path(path, seq, mseq)))
1417 				break;
1418 			rcu_read_unlock();
1419 			path_put(path);
1420 			rcu_read_lock();
1421 		}
1422 	}
1423 	rcu_read_unlock();
1424 	return found;
1425 }
1426 
1427 /*
1428  * Perform an automount
1429  * - return -EISDIR to tell follow_managed() to stop and return the path we
1430  *   were called with.
1431  */
1432 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1433 {
1434 	struct dentry *dentry = path->dentry;
1435 
1436 	/* We don't want to mount if someone's just doing a stat -
1437 	 * unless they're stat'ing a directory and appended a '/' to
1438 	 * the name.
1439 	 *
1440 	 * We do, however, want to mount if someone wants to open or
1441 	 * create a file of any type under the mountpoint, wants to
1442 	 * traverse through the mountpoint or wants to open the
1443 	 * mounted directory.  Also, autofs may mark negative dentries
1444 	 * as being automount points.  These will need the attentions
1445 	 * of the daemon to instantiate them before they can be used.
1446 	 */
1447 	if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1448 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1449 	    dentry->d_inode)
1450 		return -EISDIR;
1451 
1452 	if (count && (*count)++ >= MAXSYMLINKS)
1453 		return -ELOOP;
1454 
1455 	return finish_automount(dentry->d_op->d_automount(path), path);
1456 }
1457 
1458 /*
1459  * mount traversal - out-of-line part.  One note on ->d_flags accesses -
1460  * dentries are pinned but not locked here, so negative dentry can go
1461  * positive right under us.  Use of smp_load_acquire() provides a barrier
1462  * sufficient for ->d_inode and ->d_flags consistency.
1463  */
1464 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1465 			     int *count, unsigned lookup_flags)
1466 {
1467 	struct vfsmount *mnt = path->mnt;
1468 	bool need_mntput = false;
1469 	int ret = 0;
1470 
1471 	while (flags & DCACHE_MANAGED_DENTRY) {
1472 		/* Allow the filesystem to manage the transit without i_mutex
1473 		 * being held. */
1474 		if (flags & DCACHE_MANAGE_TRANSIT) {
1475 			ret = path->dentry->d_op->d_manage(path, false);
1476 			flags = smp_load_acquire(&path->dentry->d_flags);
1477 			if (ret < 0)
1478 				break;
1479 		}
1480 
1481 		if (flags & DCACHE_MOUNTED) {	// something's mounted on it..
1482 			struct vfsmount *mounted = lookup_mnt(path);
1483 			if (mounted) {		// ... in our namespace
1484 				dput(path->dentry);
1485 				if (need_mntput)
1486 					mntput(path->mnt);
1487 				path->mnt = mounted;
1488 				path->dentry = dget(mounted->mnt_root);
1489 				// here we know it's positive
1490 				flags = path->dentry->d_flags;
1491 				need_mntput = true;
1492 				continue;
1493 			}
1494 		}
1495 
1496 		if (!(flags & DCACHE_NEED_AUTOMOUNT))
1497 			break;
1498 
1499 		// uncovered automount point
1500 		ret = follow_automount(path, count, lookup_flags);
1501 		flags = smp_load_acquire(&path->dentry->d_flags);
1502 		if (ret < 0)
1503 			break;
1504 	}
1505 
1506 	if (ret == -EISDIR)
1507 		ret = 0;
1508 	// possible if you race with several mount --move
1509 	if (need_mntput && path->mnt == mnt)
1510 		mntput(path->mnt);
1511 	if (!ret && unlikely(d_flags_negative(flags)))
1512 		ret = -ENOENT;
1513 	*jumped = need_mntput;
1514 	return ret;
1515 }
1516 
1517 static inline int traverse_mounts(struct path *path, bool *jumped,
1518 				  int *count, unsigned lookup_flags)
1519 {
1520 	unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1521 
1522 	/* fastpath */
1523 	if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1524 		*jumped = false;
1525 		if (unlikely(d_flags_negative(flags)))
1526 			return -ENOENT;
1527 		return 0;
1528 	}
1529 	return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1530 }
1531 
1532 int follow_down_one(struct path *path)
1533 {
1534 	struct vfsmount *mounted;
1535 
1536 	mounted = lookup_mnt(path);
1537 	if (mounted) {
1538 		dput(path->dentry);
1539 		mntput(path->mnt);
1540 		path->mnt = mounted;
1541 		path->dentry = dget(mounted->mnt_root);
1542 		return 1;
1543 	}
1544 	return 0;
1545 }
1546 EXPORT_SYMBOL(follow_down_one);
1547 
1548 /*
1549  * Follow down to the covering mount currently visible to userspace.  At each
1550  * point, the filesystem owning that dentry may be queried as to whether the
1551  * caller is permitted to proceed or not.
1552  */
1553 int follow_down(struct path *path, unsigned int flags)
1554 {
1555 	struct vfsmount *mnt = path->mnt;
1556 	bool jumped;
1557 	int ret = traverse_mounts(path, &jumped, NULL, flags);
1558 
1559 	if (path->mnt != mnt)
1560 		mntput(mnt);
1561 	return ret;
1562 }
1563 EXPORT_SYMBOL(follow_down);
1564 
1565 /*
1566  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1567  * we meet a managed dentry that would need blocking.
1568  */
1569 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path)
1570 {
1571 	struct dentry *dentry = path->dentry;
1572 	unsigned int flags = dentry->d_flags;
1573 
1574 	if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1575 		return true;
1576 
1577 	if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1578 		return false;
1579 
1580 	for (;;) {
1581 		/*
1582 		 * Don't forget we might have a non-mountpoint managed dentry
1583 		 * that wants to block transit.
1584 		 */
1585 		if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1586 			int res = dentry->d_op->d_manage(path, true);
1587 			if (res)
1588 				return res == -EISDIR;
1589 			flags = dentry->d_flags;
1590 		}
1591 
1592 		if (flags & DCACHE_MOUNTED) {
1593 			struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1594 			if (mounted) {
1595 				path->mnt = &mounted->mnt;
1596 				dentry = path->dentry = mounted->mnt.mnt_root;
1597 				nd->state |= ND_JUMPED;
1598 				nd->next_seq = read_seqcount_begin(&dentry->d_seq);
1599 				flags = dentry->d_flags;
1600 				// makes sure that non-RCU pathwalk could reach
1601 				// this state.
1602 				if (read_seqretry(&mount_lock, nd->m_seq))
1603 					return false;
1604 				continue;
1605 			}
1606 			if (read_seqretry(&mount_lock, nd->m_seq))
1607 				return false;
1608 		}
1609 		return !(flags & DCACHE_NEED_AUTOMOUNT);
1610 	}
1611 }
1612 
1613 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1614 			  struct path *path)
1615 {
1616 	bool jumped;
1617 	int ret;
1618 
1619 	path->mnt = nd->path.mnt;
1620 	path->dentry = dentry;
1621 	if (nd->flags & LOOKUP_RCU) {
1622 		unsigned int seq = nd->next_seq;
1623 		if (likely(__follow_mount_rcu(nd, path)))
1624 			return 0;
1625 		// *path and nd->next_seq might've been clobbered
1626 		path->mnt = nd->path.mnt;
1627 		path->dentry = dentry;
1628 		nd->next_seq = seq;
1629 		if (!try_to_unlazy_next(nd, dentry))
1630 			return -ECHILD;
1631 	}
1632 	ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1633 	if (jumped) {
1634 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1635 			ret = -EXDEV;
1636 		else
1637 			nd->state |= ND_JUMPED;
1638 	}
1639 	if (unlikely(ret)) {
1640 		dput(path->dentry);
1641 		if (path->mnt != nd->path.mnt)
1642 			mntput(path->mnt);
1643 	}
1644 	return ret;
1645 }
1646 
1647 /*
1648  * This looks up the name in dcache and possibly revalidates the found dentry.
1649  * NULL is returned if the dentry does not exist in the cache.
1650  */
1651 static struct dentry *lookup_dcache(const struct qstr *name,
1652 				    struct dentry *dir,
1653 				    unsigned int flags)
1654 {
1655 	struct dentry *dentry = d_lookup(dir, name);
1656 	if (dentry) {
1657 		int error = d_revalidate(dir->d_inode, name, dentry, flags);
1658 		if (unlikely(error <= 0)) {
1659 			if (!error)
1660 				d_invalidate(dentry);
1661 			dput(dentry);
1662 			return ERR_PTR(error);
1663 		}
1664 	}
1665 	return dentry;
1666 }
1667 
1668 static struct dentry *lookup_one_qstr_excl_raw(const struct qstr *name,
1669 					       struct dentry *base,
1670 					       unsigned int flags)
1671 {
1672 	struct dentry *dentry;
1673 	struct dentry *old;
1674 	struct inode *dir;
1675 
1676 	dentry = lookup_dcache(name, base, flags);
1677 	if (dentry)
1678 		return dentry;
1679 
1680 	/* Don't create child dentry for a dead directory. */
1681 	dir = base->d_inode;
1682 	if (unlikely(IS_DEADDIR(dir)))
1683 		return ERR_PTR(-ENOENT);
1684 
1685 	dentry = d_alloc(base, name);
1686 	if (unlikely(!dentry))
1687 		return ERR_PTR(-ENOMEM);
1688 
1689 	old = dir->i_op->lookup(dir, dentry, flags);
1690 	if (unlikely(old)) {
1691 		dput(dentry);
1692 		dentry = old;
1693 	}
1694 	return dentry;
1695 }
1696 
1697 /*
1698  * Parent directory has inode locked exclusive.  This is one
1699  * and only case when ->lookup() gets called on non in-lookup
1700  * dentries - as the matter of fact, this only gets called
1701  * when directory is guaranteed to have no in-lookup children
1702  * at all.
1703  * Will return -ENOENT if name isn't found and LOOKUP_CREATE wasn't passed.
1704  * Will return -EEXIST if name is found and LOOKUP_EXCL was passed.
1705  */
1706 struct dentry *lookup_one_qstr_excl(const struct qstr *name,
1707 				    struct dentry *base, unsigned int flags)
1708 {
1709 	struct dentry *dentry;
1710 
1711 	dentry = lookup_one_qstr_excl_raw(name, base, flags);
1712 	if (IS_ERR(dentry))
1713 		return dentry;
1714 	if (d_is_negative(dentry) && !(flags & LOOKUP_CREATE)) {
1715 		dput(dentry);
1716 		return ERR_PTR(-ENOENT);
1717 	}
1718 	if (d_is_positive(dentry) && (flags & LOOKUP_EXCL)) {
1719 		dput(dentry);
1720 		return ERR_PTR(-EEXIST);
1721 	}
1722 	return dentry;
1723 }
1724 EXPORT_SYMBOL(lookup_one_qstr_excl);
1725 
1726 /**
1727  * lookup_fast - do fast lockless (but racy) lookup of a dentry
1728  * @nd: current nameidata
1729  *
1730  * Do a fast, but racy lookup in the dcache for the given dentry, and
1731  * revalidate it. Returns a valid dentry pointer or NULL if one wasn't
1732  * found. On error, an ERR_PTR will be returned.
1733  *
1734  * If this function returns a valid dentry and the walk is no longer
1735  * lazy, the dentry will carry a reference that must later be put. If
1736  * RCU mode is still in force, then this is not the case and the dentry
1737  * must be legitimized before use. If this returns NULL, then the walk
1738  * will no longer be in RCU mode.
1739  */
1740 static struct dentry *lookup_fast(struct nameidata *nd)
1741 {
1742 	struct dentry *dentry, *parent = nd->path.dentry;
1743 	int status = 1;
1744 
1745 	/*
1746 	 * Rename seqlock is not required here because in the off chance
1747 	 * of a false negative due to a concurrent rename, the caller is
1748 	 * going to fall back to non-racy lookup.
1749 	 */
1750 	if (nd->flags & LOOKUP_RCU) {
1751 		dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq);
1752 		if (unlikely(!dentry)) {
1753 			if (!try_to_unlazy(nd))
1754 				return ERR_PTR(-ECHILD);
1755 			return NULL;
1756 		}
1757 
1758 		/*
1759 		 * This sequence count validates that the parent had no
1760 		 * changes while we did the lookup of the dentry above.
1761 		 */
1762 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
1763 			return ERR_PTR(-ECHILD);
1764 
1765 		status = d_revalidate(nd->inode, &nd->last, dentry, nd->flags);
1766 		if (likely(status > 0))
1767 			return dentry;
1768 		if (!try_to_unlazy_next(nd, dentry))
1769 			return ERR_PTR(-ECHILD);
1770 		if (status == -ECHILD)
1771 			/* we'd been told to redo it in non-rcu mode */
1772 			status = d_revalidate(nd->inode, &nd->last,
1773 					      dentry, nd->flags);
1774 	} else {
1775 		dentry = __d_lookup(parent, &nd->last);
1776 		if (unlikely(!dentry))
1777 			return NULL;
1778 		status = d_revalidate(nd->inode, &nd->last, dentry, nd->flags);
1779 	}
1780 	if (unlikely(status <= 0)) {
1781 		if (!status)
1782 			d_invalidate(dentry);
1783 		dput(dentry);
1784 		return ERR_PTR(status);
1785 	}
1786 	return dentry;
1787 }
1788 
1789 /* Fast lookup failed, do it the slow way */
1790 static struct dentry *__lookup_slow(const struct qstr *name,
1791 				    struct dentry *dir,
1792 				    unsigned int flags)
1793 {
1794 	struct dentry *dentry, *old;
1795 	struct inode *inode = dir->d_inode;
1796 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1797 
1798 	/* Don't go there if it's already dead */
1799 	if (unlikely(IS_DEADDIR(inode)))
1800 		return ERR_PTR(-ENOENT);
1801 again:
1802 	dentry = d_alloc_parallel(dir, name, &wq);
1803 	if (IS_ERR(dentry))
1804 		return dentry;
1805 	if (unlikely(!d_in_lookup(dentry))) {
1806 		int error = d_revalidate(inode, name, dentry, flags);
1807 		if (unlikely(error <= 0)) {
1808 			if (!error) {
1809 				d_invalidate(dentry);
1810 				dput(dentry);
1811 				goto again;
1812 			}
1813 			dput(dentry);
1814 			dentry = ERR_PTR(error);
1815 		}
1816 	} else {
1817 		old = inode->i_op->lookup(inode, dentry, flags);
1818 		d_lookup_done(dentry);
1819 		if (unlikely(old)) {
1820 			dput(dentry);
1821 			dentry = old;
1822 		}
1823 	}
1824 	return dentry;
1825 }
1826 
1827 static struct dentry *lookup_slow(const struct qstr *name,
1828 				  struct dentry *dir,
1829 				  unsigned int flags)
1830 {
1831 	struct inode *inode = dir->d_inode;
1832 	struct dentry *res;
1833 	inode_lock_shared(inode);
1834 	res = __lookup_slow(name, dir, flags);
1835 	inode_unlock_shared(inode);
1836 	return res;
1837 }
1838 
1839 static inline int may_lookup(struct mnt_idmap *idmap,
1840 			     struct nameidata *restrict nd)
1841 {
1842 	int err, mask;
1843 
1844 	mask = nd->flags & LOOKUP_RCU ? MAY_NOT_BLOCK : 0;
1845 	err = inode_permission(idmap, nd->inode, mask | MAY_EXEC);
1846 	if (likely(!err))
1847 		return 0;
1848 
1849 	// If we failed, and we weren't in LOOKUP_RCU, it's final
1850 	if (!(nd->flags & LOOKUP_RCU))
1851 		return err;
1852 
1853 	// Drop out of RCU mode to make sure it wasn't transient
1854 	if (!try_to_unlazy(nd))
1855 		return -ECHILD;	// redo it all non-lazy
1856 
1857 	if (err != -ECHILD)	// hard error
1858 		return err;
1859 
1860 	return inode_permission(idmap, nd->inode, MAY_EXEC);
1861 }
1862 
1863 static int reserve_stack(struct nameidata *nd, struct path *link)
1864 {
1865 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1866 		return -ELOOP;
1867 
1868 	if (likely(nd->depth != EMBEDDED_LEVELS))
1869 		return 0;
1870 	if (likely(nd->stack != nd->internal))
1871 		return 0;
1872 	if (likely(nd_alloc_stack(nd)))
1873 		return 0;
1874 
1875 	if (nd->flags & LOOKUP_RCU) {
1876 		// we need to grab link before we do unlazy.  And we can't skip
1877 		// unlazy even if we fail to grab the link - cleanup needs it
1878 		bool grabbed_link = legitimize_path(nd, link, nd->next_seq);
1879 
1880 		if (!try_to_unlazy(nd) || !grabbed_link)
1881 			return -ECHILD;
1882 
1883 		if (nd_alloc_stack(nd))
1884 			return 0;
1885 	}
1886 	return -ENOMEM;
1887 }
1888 
1889 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1890 
1891 static const char *pick_link(struct nameidata *nd, struct path *link,
1892 		     struct inode *inode, int flags)
1893 {
1894 	struct saved *last;
1895 	const char *res;
1896 	int error = reserve_stack(nd, link);
1897 
1898 	if (unlikely(error)) {
1899 		if (!(nd->flags & LOOKUP_RCU))
1900 			path_put(link);
1901 		return ERR_PTR(error);
1902 	}
1903 	last = nd->stack + nd->depth++;
1904 	last->link = *link;
1905 	clear_delayed_call(&last->done);
1906 	last->seq = nd->next_seq;
1907 
1908 	if (flags & WALK_TRAILING) {
1909 		error = may_follow_link(nd, inode);
1910 		if (unlikely(error))
1911 			return ERR_PTR(error);
1912 	}
1913 
1914 	if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1915 			unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1916 		return ERR_PTR(-ELOOP);
1917 
1918 	if (unlikely(atime_needs_update(&last->link, inode))) {
1919 		if (nd->flags & LOOKUP_RCU) {
1920 			if (!try_to_unlazy(nd))
1921 				return ERR_PTR(-ECHILD);
1922 		}
1923 		touch_atime(&last->link);
1924 		cond_resched();
1925 	}
1926 
1927 	error = security_inode_follow_link(link->dentry, inode,
1928 					   nd->flags & LOOKUP_RCU);
1929 	if (unlikely(error))
1930 		return ERR_PTR(error);
1931 
1932 	res = READ_ONCE(inode->i_link);
1933 	if (!res) {
1934 		const char * (*get)(struct dentry *, struct inode *,
1935 				struct delayed_call *);
1936 		get = inode->i_op->get_link;
1937 		if (nd->flags & LOOKUP_RCU) {
1938 			res = get(NULL, inode, &last->done);
1939 			if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1940 				res = get(link->dentry, inode, &last->done);
1941 		} else {
1942 			res = get(link->dentry, inode, &last->done);
1943 		}
1944 		if (!res)
1945 			goto all_done;
1946 		if (IS_ERR(res))
1947 			return res;
1948 	}
1949 	if (*res == '/') {
1950 		error = nd_jump_root(nd);
1951 		if (unlikely(error))
1952 			return ERR_PTR(error);
1953 		while (unlikely(*++res == '/'))
1954 			;
1955 	}
1956 	if (*res)
1957 		return res;
1958 all_done: // pure jump
1959 	put_link(nd);
1960 	return NULL;
1961 }
1962 
1963 /*
1964  * Do we need to follow links? We _really_ want to be able
1965  * to do this check without having to look at inode->i_op,
1966  * so we keep a cache of "no, this doesn't need follow_link"
1967  * for the common case.
1968  *
1969  * NOTE: dentry must be what nd->next_seq had been sampled from.
1970  */
1971 static const char *step_into(struct nameidata *nd, int flags,
1972 		     struct dentry *dentry)
1973 {
1974 	struct path path;
1975 	struct inode *inode;
1976 	int err = handle_mounts(nd, dentry, &path);
1977 
1978 	if (err < 0)
1979 		return ERR_PTR(err);
1980 	inode = path.dentry->d_inode;
1981 	if (likely(!d_is_symlink(path.dentry)) ||
1982 	   ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1983 	   (flags & WALK_NOFOLLOW)) {
1984 		/* not a symlink or should not follow */
1985 		if (nd->flags & LOOKUP_RCU) {
1986 			if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1987 				return ERR_PTR(-ECHILD);
1988 			if (unlikely(!inode))
1989 				return ERR_PTR(-ENOENT);
1990 		} else {
1991 			dput(nd->path.dentry);
1992 			if (nd->path.mnt != path.mnt)
1993 				mntput(nd->path.mnt);
1994 		}
1995 		nd->path = path;
1996 		nd->inode = inode;
1997 		nd->seq = nd->next_seq;
1998 		return NULL;
1999 	}
2000 	if (nd->flags & LOOKUP_RCU) {
2001 		/* make sure that d_is_symlink above matches inode */
2002 		if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
2003 			return ERR_PTR(-ECHILD);
2004 	} else {
2005 		if (path.mnt == nd->path.mnt)
2006 			mntget(path.mnt);
2007 	}
2008 	return pick_link(nd, &path, inode, flags);
2009 }
2010 
2011 static struct dentry *follow_dotdot_rcu(struct nameidata *nd)
2012 {
2013 	struct dentry *parent, *old;
2014 
2015 	if (path_equal(&nd->path, &nd->root))
2016 		goto in_root;
2017 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
2018 		struct path path;
2019 		unsigned seq;
2020 		if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
2021 					   &nd->root, &path, &seq))
2022 			goto in_root;
2023 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
2024 			return ERR_PTR(-ECHILD);
2025 		nd->path = path;
2026 		nd->inode = path.dentry->d_inode;
2027 		nd->seq = seq;
2028 		// makes sure that non-RCU pathwalk could reach this state
2029 		if (read_seqretry(&mount_lock, nd->m_seq))
2030 			return ERR_PTR(-ECHILD);
2031 		/* we know that mountpoint was pinned */
2032 	}
2033 	old = nd->path.dentry;
2034 	parent = old->d_parent;
2035 	nd->next_seq = read_seqcount_begin(&parent->d_seq);
2036 	// makes sure that non-RCU pathwalk could reach this state
2037 	if (read_seqcount_retry(&old->d_seq, nd->seq))
2038 		return ERR_PTR(-ECHILD);
2039 	if (unlikely(!path_connected(nd->path.mnt, parent)))
2040 		return ERR_PTR(-ECHILD);
2041 	return parent;
2042 in_root:
2043 	if (read_seqretry(&mount_lock, nd->m_seq))
2044 		return ERR_PTR(-ECHILD);
2045 	if (unlikely(nd->flags & LOOKUP_BENEATH))
2046 		return ERR_PTR(-ECHILD);
2047 	nd->next_seq = nd->seq;
2048 	return nd->path.dentry;
2049 }
2050 
2051 static struct dentry *follow_dotdot(struct nameidata *nd)
2052 {
2053 	struct dentry *parent;
2054 
2055 	if (path_equal(&nd->path, &nd->root))
2056 		goto in_root;
2057 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
2058 		struct path path;
2059 
2060 		if (!choose_mountpoint(real_mount(nd->path.mnt),
2061 				       &nd->root, &path))
2062 			goto in_root;
2063 		path_put(&nd->path);
2064 		nd->path = path;
2065 		nd->inode = path.dentry->d_inode;
2066 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
2067 			return ERR_PTR(-EXDEV);
2068 	}
2069 	/* rare case of legitimate dget_parent()... */
2070 	parent = dget_parent(nd->path.dentry);
2071 	if (unlikely(!path_connected(nd->path.mnt, parent))) {
2072 		dput(parent);
2073 		return ERR_PTR(-ENOENT);
2074 	}
2075 	return parent;
2076 
2077 in_root:
2078 	if (unlikely(nd->flags & LOOKUP_BENEATH))
2079 		return ERR_PTR(-EXDEV);
2080 	return dget(nd->path.dentry);
2081 }
2082 
2083 static const char *handle_dots(struct nameidata *nd, int type)
2084 {
2085 	if (type == LAST_DOTDOT) {
2086 		const char *error = NULL;
2087 		struct dentry *parent;
2088 
2089 		if (!nd->root.mnt) {
2090 			error = ERR_PTR(set_root(nd));
2091 			if (error)
2092 				return error;
2093 		}
2094 		if (nd->flags & LOOKUP_RCU)
2095 			parent = follow_dotdot_rcu(nd);
2096 		else
2097 			parent = follow_dotdot(nd);
2098 		if (IS_ERR(parent))
2099 			return ERR_CAST(parent);
2100 		error = step_into(nd, WALK_NOFOLLOW, parent);
2101 		if (unlikely(error))
2102 			return error;
2103 
2104 		if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
2105 			/*
2106 			 * If there was a racing rename or mount along our
2107 			 * path, then we can't be sure that ".." hasn't jumped
2108 			 * above nd->root (and so userspace should retry or use
2109 			 * some fallback).
2110 			 */
2111 			smp_rmb();
2112 			if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))
2113 				return ERR_PTR(-EAGAIN);
2114 			if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))
2115 				return ERR_PTR(-EAGAIN);
2116 		}
2117 	}
2118 	return NULL;
2119 }
2120 
2121 static const char *walk_component(struct nameidata *nd, int flags)
2122 {
2123 	struct dentry *dentry;
2124 	/*
2125 	 * "." and ".." are special - ".." especially so because it has
2126 	 * to be able to know about the current root directory and
2127 	 * parent relationships.
2128 	 */
2129 	if (unlikely(nd->last_type != LAST_NORM)) {
2130 		if (!(flags & WALK_MORE) && nd->depth)
2131 			put_link(nd);
2132 		return handle_dots(nd, nd->last_type);
2133 	}
2134 	dentry = lookup_fast(nd);
2135 	if (IS_ERR(dentry))
2136 		return ERR_CAST(dentry);
2137 	if (unlikely(!dentry)) {
2138 		dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
2139 		if (IS_ERR(dentry))
2140 			return ERR_CAST(dentry);
2141 	}
2142 	if (!(flags & WALK_MORE) && nd->depth)
2143 		put_link(nd);
2144 	return step_into(nd, flags, dentry);
2145 }
2146 
2147 /*
2148  * We can do the critical dentry name comparison and hashing
2149  * operations one word at a time, but we are limited to:
2150  *
2151  * - Architectures with fast unaligned word accesses. We could
2152  *   do a "get_unaligned()" if this helps and is sufficiently
2153  *   fast.
2154  *
2155  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2156  *   do not trap on the (extremely unlikely) case of a page
2157  *   crossing operation.
2158  *
2159  * - Furthermore, we need an efficient 64-bit compile for the
2160  *   64-bit case in order to generate the "number of bytes in
2161  *   the final mask". Again, that could be replaced with a
2162  *   efficient population count instruction or similar.
2163  */
2164 #ifdef CONFIG_DCACHE_WORD_ACCESS
2165 
2166 #include <asm/word-at-a-time.h>
2167 
2168 #ifdef HASH_MIX
2169 
2170 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2171 
2172 #elif defined(CONFIG_64BIT)
2173 /*
2174  * Register pressure in the mixing function is an issue, particularly
2175  * on 32-bit x86, but almost any function requires one state value and
2176  * one temporary.  Instead, use a function designed for two state values
2177  * and no temporaries.
2178  *
2179  * This function cannot create a collision in only two iterations, so
2180  * we have two iterations to achieve avalanche.  In those two iterations,
2181  * we have six layers of mixing, which is enough to spread one bit's
2182  * influence out to 2^6 = 64 state bits.
2183  *
2184  * Rotate constants are scored by considering either 64 one-bit input
2185  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2186  * probability of that delta causing a change to each of the 128 output
2187  * bits, using a sample of random initial states.
2188  *
2189  * The Shannon entropy of the computed probabilities is then summed
2190  * to produce a score.  Ideally, any input change has a 50% chance of
2191  * toggling any given output bit.
2192  *
2193  * Mixing scores (in bits) for (12,45):
2194  * Input delta: 1-bit      2-bit
2195  * 1 round:     713.3    42542.6
2196  * 2 rounds:   2753.7   140389.8
2197  * 3 rounds:   5954.1   233458.2
2198  * 4 rounds:   7862.6   256672.2
2199  * Perfect:    8192     258048
2200  *            (64*128) (64*63/2 * 128)
2201  */
2202 #define HASH_MIX(x, y, a)	\
2203 	(	x ^= (a),	\
2204 	y ^= x,	x = rol64(x,12),\
2205 	x += y,	y = rol64(y,45),\
2206 	y *= 9			)
2207 
2208 /*
2209  * Fold two longs into one 32-bit hash value.  This must be fast, but
2210  * latency isn't quite as critical, as there is a fair bit of additional
2211  * work done before the hash value is used.
2212  */
2213 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2214 {
2215 	y ^= x * GOLDEN_RATIO_64;
2216 	y *= GOLDEN_RATIO_64;
2217 	return y >> 32;
2218 }
2219 
2220 #else	/* 32-bit case */
2221 
2222 /*
2223  * Mixing scores (in bits) for (7,20):
2224  * Input delta: 1-bit      2-bit
2225  * 1 round:     330.3     9201.6
2226  * 2 rounds:   1246.4    25475.4
2227  * 3 rounds:   1907.1    31295.1
2228  * 4 rounds:   2042.3    31718.6
2229  * Perfect:    2048      31744
2230  *            (32*64)   (32*31/2 * 64)
2231  */
2232 #define HASH_MIX(x, y, a)	\
2233 	(	x ^= (a),	\
2234 	y ^= x,	x = rol32(x, 7),\
2235 	x += y,	y = rol32(y,20),\
2236 	y *= 9			)
2237 
2238 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2239 {
2240 	/* Use arch-optimized multiply if one exists */
2241 	return __hash_32(y ^ __hash_32(x));
2242 }
2243 
2244 #endif
2245 
2246 /*
2247  * Return the hash of a string of known length.  This is carfully
2248  * designed to match hash_name(), which is the more critical function.
2249  * In particular, we must end by hashing a final word containing 0..7
2250  * payload bytes, to match the way that hash_name() iterates until it
2251  * finds the delimiter after the name.
2252  */
2253 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2254 {
2255 	unsigned long a, x = 0, y = (unsigned long)salt;
2256 
2257 	for (;;) {
2258 		if (!len)
2259 			goto done;
2260 		a = load_unaligned_zeropad(name);
2261 		if (len < sizeof(unsigned long))
2262 			break;
2263 		HASH_MIX(x, y, a);
2264 		name += sizeof(unsigned long);
2265 		len -= sizeof(unsigned long);
2266 	}
2267 	x ^= a & bytemask_from_count(len);
2268 done:
2269 	return fold_hash(x, y);
2270 }
2271 EXPORT_SYMBOL(full_name_hash);
2272 
2273 /* Return the "hash_len" (hash and length) of a null-terminated string */
2274 u64 hashlen_string(const void *salt, const char *name)
2275 {
2276 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
2277 	unsigned long adata, mask, len;
2278 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2279 
2280 	len = 0;
2281 	goto inside;
2282 
2283 	do {
2284 		HASH_MIX(x, y, a);
2285 		len += sizeof(unsigned long);
2286 inside:
2287 		a = load_unaligned_zeropad(name+len);
2288 	} while (!has_zero(a, &adata, &constants));
2289 
2290 	adata = prep_zero_mask(a, adata, &constants);
2291 	mask = create_zero_mask(adata);
2292 	x ^= a & zero_bytemask(mask);
2293 
2294 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2295 }
2296 EXPORT_SYMBOL(hashlen_string);
2297 
2298 /*
2299  * Calculate the length and hash of the path component, and
2300  * return the length as the result.
2301  */
2302 static inline const char *hash_name(struct nameidata *nd,
2303 				    const char *name,
2304 				    unsigned long *lastword)
2305 {
2306 	unsigned long a, b, x, y = (unsigned long)nd->path.dentry;
2307 	unsigned long adata, bdata, mask, len;
2308 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2309 
2310 	/*
2311 	 * The first iteration is special, because it can result in
2312 	 * '.' and '..' and has no mixing other than the final fold.
2313 	 */
2314 	a = load_unaligned_zeropad(name);
2315 	b = a ^ REPEAT_BYTE('/');
2316 	if (has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)) {
2317 		adata = prep_zero_mask(a, adata, &constants);
2318 		bdata = prep_zero_mask(b, bdata, &constants);
2319 		mask = create_zero_mask(adata | bdata);
2320 		a &= zero_bytemask(mask);
2321 		*lastword = a;
2322 		len = find_zero(mask);
2323 		nd->last.hash = fold_hash(a, y);
2324 		nd->last.len = len;
2325 		return name + len;
2326 	}
2327 
2328 	len = 0;
2329 	x = 0;
2330 	do {
2331 		HASH_MIX(x, y, a);
2332 		len += sizeof(unsigned long);
2333 		a = load_unaligned_zeropad(name+len);
2334 		b = a ^ REPEAT_BYTE('/');
2335 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2336 
2337 	adata = prep_zero_mask(a, adata, &constants);
2338 	bdata = prep_zero_mask(b, bdata, &constants);
2339 	mask = create_zero_mask(adata | bdata);
2340 	a &= zero_bytemask(mask);
2341 	x ^= a;
2342 	len += find_zero(mask);
2343 	*lastword = 0;		// Multi-word components cannot be DOT or DOTDOT
2344 
2345 	nd->last.hash = fold_hash(x, y);
2346 	nd->last.len = len;
2347 	return name + len;
2348 }
2349 
2350 /*
2351  * Note that the 'last' word is always zero-masked, but
2352  * was loaded as a possibly big-endian word.
2353  */
2354 #ifdef __BIG_ENDIAN
2355   #define LAST_WORD_IS_DOT	(0x2eul << (BITS_PER_LONG-8))
2356   #define LAST_WORD_IS_DOTDOT	(0x2e2eul << (BITS_PER_LONG-16))
2357 #endif
2358 
2359 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2360 
2361 /* Return the hash of a string of known length */
2362 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2363 {
2364 	unsigned long hash = init_name_hash(salt);
2365 	while (len--)
2366 		hash = partial_name_hash((unsigned char)*name++, hash);
2367 	return end_name_hash(hash);
2368 }
2369 EXPORT_SYMBOL(full_name_hash);
2370 
2371 /* Return the "hash_len" (hash and length) of a null-terminated string */
2372 u64 hashlen_string(const void *salt, const char *name)
2373 {
2374 	unsigned long hash = init_name_hash(salt);
2375 	unsigned long len = 0, c;
2376 
2377 	c = (unsigned char)*name;
2378 	while (c) {
2379 		len++;
2380 		hash = partial_name_hash(c, hash);
2381 		c = (unsigned char)name[len];
2382 	}
2383 	return hashlen_create(end_name_hash(hash), len);
2384 }
2385 EXPORT_SYMBOL(hashlen_string);
2386 
2387 /*
2388  * We know there's a real path component here of at least
2389  * one character.
2390  */
2391 static inline const char *hash_name(struct nameidata *nd, const char *name, unsigned long *lastword)
2392 {
2393 	unsigned long hash = init_name_hash(nd->path.dentry);
2394 	unsigned long len = 0, c, last = 0;
2395 
2396 	c = (unsigned char)*name;
2397 	do {
2398 		last = (last << 8) + c;
2399 		len++;
2400 		hash = partial_name_hash(c, hash);
2401 		c = (unsigned char)name[len];
2402 	} while (c && c != '/');
2403 
2404 	// This is reliable for DOT or DOTDOT, since the component
2405 	// cannot contain NUL characters - top bits being zero means
2406 	// we cannot have had any other pathnames.
2407 	*lastword = last;
2408 	nd->last.hash = end_name_hash(hash);
2409 	nd->last.len = len;
2410 	return name + len;
2411 }
2412 
2413 #endif
2414 
2415 #ifndef LAST_WORD_IS_DOT
2416   #define LAST_WORD_IS_DOT	0x2e
2417   #define LAST_WORD_IS_DOTDOT	0x2e2e
2418 #endif
2419 
2420 /*
2421  * Name resolution.
2422  * This is the basic name resolution function, turning a pathname into
2423  * the final dentry. We expect 'base' to be positive and a directory.
2424  *
2425  * Returns 0 and nd will have valid dentry and mnt on success.
2426  * Returns error and drops reference to input namei data on failure.
2427  */
2428 static int link_path_walk(const char *name, struct nameidata *nd)
2429 {
2430 	int depth = 0; // depth <= nd->depth
2431 	int err;
2432 
2433 	nd->last_type = LAST_ROOT;
2434 	nd->flags |= LOOKUP_PARENT;
2435 	if (IS_ERR(name))
2436 		return PTR_ERR(name);
2437 	if (*name == '/') {
2438 		do {
2439 			name++;
2440 		} while (unlikely(*name == '/'));
2441 	}
2442 	if (unlikely(!*name)) {
2443 		nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2444 		return 0;
2445 	}
2446 
2447 	/* At this point we know we have a real path component. */
2448 	for(;;) {
2449 		struct mnt_idmap *idmap;
2450 		const char *link;
2451 		unsigned long lastword;
2452 
2453 		idmap = mnt_idmap(nd->path.mnt);
2454 		err = may_lookup(idmap, nd);
2455 		if (unlikely(err))
2456 			return err;
2457 
2458 		nd->last.name = name;
2459 		name = hash_name(nd, name, &lastword);
2460 
2461 		switch(lastword) {
2462 		case LAST_WORD_IS_DOTDOT:
2463 			nd->last_type = LAST_DOTDOT;
2464 			nd->state |= ND_JUMPED;
2465 			break;
2466 
2467 		case LAST_WORD_IS_DOT:
2468 			nd->last_type = LAST_DOT;
2469 			break;
2470 
2471 		default:
2472 			nd->last_type = LAST_NORM;
2473 			nd->state &= ~ND_JUMPED;
2474 
2475 			struct dentry *parent = nd->path.dentry;
2476 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2477 				err = parent->d_op->d_hash(parent, &nd->last);
2478 				if (err < 0)
2479 					return err;
2480 			}
2481 		}
2482 
2483 		if (!*name)
2484 			goto OK;
2485 		/*
2486 		 * If it wasn't NUL, we know it was '/'. Skip that
2487 		 * slash, and continue until no more slashes.
2488 		 */
2489 		do {
2490 			name++;
2491 		} while (unlikely(*name == '/'));
2492 		if (unlikely(!*name)) {
2493 OK:
2494 			/* pathname or trailing symlink, done */
2495 			if (!depth) {
2496 				nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode);
2497 				nd->dir_mode = nd->inode->i_mode;
2498 				nd->flags &= ~LOOKUP_PARENT;
2499 				return 0;
2500 			}
2501 			/* last component of nested symlink */
2502 			name = nd->stack[--depth].name;
2503 			link = walk_component(nd, 0);
2504 		} else {
2505 			/* not the last component */
2506 			link = walk_component(nd, WALK_MORE);
2507 		}
2508 		if (unlikely(link)) {
2509 			if (IS_ERR(link))
2510 				return PTR_ERR(link);
2511 			/* a symlink to follow */
2512 			nd->stack[depth++].name = name;
2513 			name = link;
2514 			continue;
2515 		}
2516 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2517 			if (nd->flags & LOOKUP_RCU) {
2518 				if (!try_to_unlazy(nd))
2519 					return -ECHILD;
2520 			}
2521 			return -ENOTDIR;
2522 		}
2523 	}
2524 }
2525 
2526 /* must be paired with terminate_walk() */
2527 static const char *path_init(struct nameidata *nd, unsigned flags)
2528 {
2529 	int error;
2530 	const char *s = nd->pathname;
2531 
2532 	/* LOOKUP_CACHED requires RCU, ask caller to retry */
2533 	if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2534 		return ERR_PTR(-EAGAIN);
2535 
2536 	if (!*s)
2537 		flags &= ~LOOKUP_RCU;
2538 	if (flags & LOOKUP_RCU)
2539 		rcu_read_lock();
2540 	else
2541 		nd->seq = nd->next_seq = 0;
2542 
2543 	nd->flags = flags;
2544 	nd->state |= ND_JUMPED;
2545 
2546 	nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2547 	nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2548 	smp_rmb();
2549 
2550 	if (nd->state & ND_ROOT_PRESET) {
2551 		struct dentry *root = nd->root.dentry;
2552 		struct inode *inode = root->d_inode;
2553 		if (*s && unlikely(!d_can_lookup(root)))
2554 			return ERR_PTR(-ENOTDIR);
2555 		nd->path = nd->root;
2556 		nd->inode = inode;
2557 		if (flags & LOOKUP_RCU) {
2558 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2559 			nd->root_seq = nd->seq;
2560 		} else {
2561 			path_get(&nd->path);
2562 		}
2563 		return s;
2564 	}
2565 
2566 	nd->root.mnt = NULL;
2567 
2568 	/* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2569 	if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2570 		error = nd_jump_root(nd);
2571 		if (unlikely(error))
2572 			return ERR_PTR(error);
2573 		return s;
2574 	}
2575 
2576 	/* Relative pathname -- get the starting-point it is relative to. */
2577 	if (nd->dfd == AT_FDCWD) {
2578 		if (flags & LOOKUP_RCU) {
2579 			struct fs_struct *fs = current->fs;
2580 			unsigned seq;
2581 
2582 			do {
2583 				seq = read_seqcount_begin(&fs->seq);
2584 				nd->path = fs->pwd;
2585 				nd->inode = nd->path.dentry->d_inode;
2586 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2587 			} while (read_seqcount_retry(&fs->seq, seq));
2588 		} else {
2589 			get_fs_pwd(current->fs, &nd->path);
2590 			nd->inode = nd->path.dentry->d_inode;
2591 		}
2592 	} else {
2593 		/* Caller must check execute permissions on the starting path component */
2594 		CLASS(fd_raw, f)(nd->dfd);
2595 		struct dentry *dentry;
2596 
2597 		if (fd_empty(f))
2598 			return ERR_PTR(-EBADF);
2599 
2600 		if (flags & LOOKUP_LINKAT_EMPTY) {
2601 			if (fd_file(f)->f_cred != current_cred() &&
2602 			    !ns_capable(fd_file(f)->f_cred->user_ns, CAP_DAC_READ_SEARCH))
2603 				return ERR_PTR(-ENOENT);
2604 		}
2605 
2606 		dentry = fd_file(f)->f_path.dentry;
2607 
2608 		if (*s && unlikely(!d_can_lookup(dentry)))
2609 			return ERR_PTR(-ENOTDIR);
2610 
2611 		nd->path = fd_file(f)->f_path;
2612 		if (flags & LOOKUP_RCU) {
2613 			nd->inode = nd->path.dentry->d_inode;
2614 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2615 		} else {
2616 			path_get(&nd->path);
2617 			nd->inode = nd->path.dentry->d_inode;
2618 		}
2619 	}
2620 
2621 	/* For scoped-lookups we need to set the root to the dirfd as well. */
2622 	if (flags & LOOKUP_IS_SCOPED) {
2623 		nd->root = nd->path;
2624 		if (flags & LOOKUP_RCU) {
2625 			nd->root_seq = nd->seq;
2626 		} else {
2627 			path_get(&nd->root);
2628 			nd->state |= ND_ROOT_GRABBED;
2629 		}
2630 	}
2631 	return s;
2632 }
2633 
2634 static inline const char *lookup_last(struct nameidata *nd)
2635 {
2636 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2637 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2638 
2639 	return walk_component(nd, WALK_TRAILING);
2640 }
2641 
2642 static int handle_lookup_down(struct nameidata *nd)
2643 {
2644 	if (!(nd->flags & LOOKUP_RCU))
2645 		dget(nd->path.dentry);
2646 	nd->next_seq = nd->seq;
2647 	return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry));
2648 }
2649 
2650 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
2651 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2652 {
2653 	const char *s = path_init(nd, flags);
2654 	int err;
2655 
2656 	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2657 		err = handle_lookup_down(nd);
2658 		if (unlikely(err < 0))
2659 			s = ERR_PTR(err);
2660 	}
2661 
2662 	while (!(err = link_path_walk(s, nd)) &&
2663 	       (s = lookup_last(nd)) != NULL)
2664 		;
2665 	if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2666 		err = handle_lookup_down(nd);
2667 		nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2668 	}
2669 	if (!err)
2670 		err = complete_walk(nd);
2671 
2672 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2673 		if (!d_can_lookup(nd->path.dentry))
2674 			err = -ENOTDIR;
2675 	if (!err) {
2676 		*path = nd->path;
2677 		nd->path.mnt = NULL;
2678 		nd->path.dentry = NULL;
2679 	}
2680 	terminate_walk(nd);
2681 	return err;
2682 }
2683 
2684 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2685 		    struct path *path, struct path *root)
2686 {
2687 	int retval;
2688 	struct nameidata nd;
2689 	if (IS_ERR(name))
2690 		return PTR_ERR(name);
2691 	set_nameidata(&nd, dfd, name, root);
2692 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2693 	if (unlikely(retval == -ECHILD))
2694 		retval = path_lookupat(&nd, flags, path);
2695 	if (unlikely(retval == -ESTALE))
2696 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2697 
2698 	if (likely(!retval))
2699 		audit_inode(name, path->dentry,
2700 			    flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2701 	restore_nameidata();
2702 	return retval;
2703 }
2704 
2705 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
2706 static int path_parentat(struct nameidata *nd, unsigned flags,
2707 				struct path *parent)
2708 {
2709 	const char *s = path_init(nd, flags);
2710 	int err = link_path_walk(s, nd);
2711 	if (!err)
2712 		err = complete_walk(nd);
2713 	if (!err) {
2714 		*parent = nd->path;
2715 		nd->path.mnt = NULL;
2716 		nd->path.dentry = NULL;
2717 	}
2718 	terminate_walk(nd);
2719 	return err;
2720 }
2721 
2722 /* Note: this does not consume "name" */
2723 static int __filename_parentat(int dfd, struct filename *name,
2724 			       unsigned int flags, struct path *parent,
2725 			       struct qstr *last, int *type,
2726 			       const struct path *root)
2727 {
2728 	int retval;
2729 	struct nameidata nd;
2730 
2731 	if (IS_ERR(name))
2732 		return PTR_ERR(name);
2733 	set_nameidata(&nd, dfd, name, root);
2734 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2735 	if (unlikely(retval == -ECHILD))
2736 		retval = path_parentat(&nd, flags, parent);
2737 	if (unlikely(retval == -ESTALE))
2738 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2739 	if (likely(!retval)) {
2740 		*last = nd.last;
2741 		*type = nd.last_type;
2742 		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2743 	}
2744 	restore_nameidata();
2745 	return retval;
2746 }
2747 
2748 static int filename_parentat(int dfd, struct filename *name,
2749 			     unsigned int flags, struct path *parent,
2750 			     struct qstr *last, int *type)
2751 {
2752 	return __filename_parentat(dfd, name, flags, parent, last, type, NULL);
2753 }
2754 
2755 /* does lookup, returns the object with parent locked */
2756 static struct dentry *__kern_path_locked(int dfd, struct filename *name, struct path *path)
2757 {
2758 	struct path parent_path __free(path_put) = {};
2759 	struct dentry *d;
2760 	struct qstr last;
2761 	int type, error;
2762 
2763 	error = filename_parentat(dfd, name, 0, &parent_path, &last, &type);
2764 	if (error)
2765 		return ERR_PTR(error);
2766 	if (unlikely(type != LAST_NORM))
2767 		return ERR_PTR(-EINVAL);
2768 	inode_lock_nested(parent_path.dentry->d_inode, I_MUTEX_PARENT);
2769 	d = lookup_one_qstr_excl(&last, parent_path.dentry, 0);
2770 	if (IS_ERR(d)) {
2771 		inode_unlock(parent_path.dentry->d_inode);
2772 		return d;
2773 	}
2774 	path->dentry = no_free_ptr(parent_path.dentry);
2775 	path->mnt = no_free_ptr(parent_path.mnt);
2776 	return d;
2777 }
2778 
2779 struct dentry *kern_path_locked_negative(const char *name, struct path *path)
2780 {
2781 	struct path parent_path __free(path_put) = {};
2782 	struct filename *filename __free(putname) = getname_kernel(name);
2783 	struct dentry *d;
2784 	struct qstr last;
2785 	int type, error;
2786 
2787 	error = filename_parentat(AT_FDCWD, filename, 0, &parent_path, &last, &type);
2788 	if (error)
2789 		return ERR_PTR(error);
2790 	if (unlikely(type != LAST_NORM))
2791 		return ERR_PTR(-EINVAL);
2792 	inode_lock_nested(parent_path.dentry->d_inode, I_MUTEX_PARENT);
2793 	d = lookup_one_qstr_excl_raw(&last, parent_path.dentry, 0);
2794 	if (IS_ERR(d)) {
2795 		inode_unlock(parent_path.dentry->d_inode);
2796 		return d;
2797 	}
2798 	path->dentry = no_free_ptr(parent_path.dentry);
2799 	path->mnt = no_free_ptr(parent_path.mnt);
2800 	return d;
2801 }
2802 
2803 struct dentry *kern_path_locked(const char *name, struct path *path)
2804 {
2805 	struct filename *filename = getname_kernel(name);
2806 	struct dentry *res = __kern_path_locked(AT_FDCWD, filename, path);
2807 
2808 	putname(filename);
2809 	return res;
2810 }
2811 
2812 struct dentry *user_path_locked_at(int dfd, const char __user *name, struct path *path)
2813 {
2814 	struct filename *filename = getname(name);
2815 	struct dentry *res = __kern_path_locked(dfd, filename, path);
2816 
2817 	putname(filename);
2818 	return res;
2819 }
2820 EXPORT_SYMBOL(user_path_locked_at);
2821 
2822 int kern_path(const char *name, unsigned int flags, struct path *path)
2823 {
2824 	struct filename *filename = getname_kernel(name);
2825 	int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2826 
2827 	putname(filename);
2828 	return ret;
2829 
2830 }
2831 EXPORT_SYMBOL(kern_path);
2832 
2833 /**
2834  * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair
2835  * @filename: filename structure
2836  * @flags: lookup flags
2837  * @parent: pointer to struct path to fill
2838  * @last: last component
2839  * @type: type of the last component
2840  * @root: pointer to struct path of the base directory
2841  */
2842 int vfs_path_parent_lookup(struct filename *filename, unsigned int flags,
2843 			   struct path *parent, struct qstr *last, int *type,
2844 			   const struct path *root)
2845 {
2846 	return  __filename_parentat(AT_FDCWD, filename, flags, parent, last,
2847 				    type, root);
2848 }
2849 EXPORT_SYMBOL(vfs_path_parent_lookup);
2850 
2851 /**
2852  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2853  * @dentry:  pointer to dentry of the base directory
2854  * @mnt: pointer to vfs mount of the base directory
2855  * @name: pointer to file name
2856  * @flags: lookup flags
2857  * @path: pointer to struct path to fill
2858  */
2859 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2860 		    const char *name, unsigned int flags,
2861 		    struct path *path)
2862 {
2863 	struct filename *filename;
2864 	struct path root = {.mnt = mnt, .dentry = dentry};
2865 	int ret;
2866 
2867 	filename = getname_kernel(name);
2868 	/* the first argument of filename_lookup() is ignored with root */
2869 	ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
2870 	putname(filename);
2871 	return ret;
2872 }
2873 EXPORT_SYMBOL(vfs_path_lookup);
2874 
2875 static int lookup_noperm_common(struct qstr *qname, struct dentry *base)
2876 {
2877 	const char *name = qname->name;
2878 	u32 len = qname->len;
2879 
2880 	qname->hash = full_name_hash(base, name, len);
2881 	if (!len)
2882 		return -EACCES;
2883 
2884 	if (is_dot_dotdot(name, len))
2885 		return -EACCES;
2886 
2887 	while (len--) {
2888 		unsigned int c = *(const unsigned char *)name++;
2889 		if (c == '/' || c == '\0')
2890 			return -EACCES;
2891 	}
2892 	/*
2893 	 * See if the low-level filesystem might want
2894 	 * to use its own hash..
2895 	 */
2896 	if (base->d_flags & DCACHE_OP_HASH) {
2897 		int err = base->d_op->d_hash(base, qname);
2898 		if (err < 0)
2899 			return err;
2900 	}
2901 	return 0;
2902 }
2903 
2904 static int lookup_one_common(struct mnt_idmap *idmap,
2905 			     struct qstr *qname, struct dentry *base)
2906 {
2907 	int err;
2908 	err = lookup_noperm_common(qname, base);
2909 	if (err < 0)
2910 		return err;
2911 	return inode_permission(idmap, base->d_inode, MAY_EXEC);
2912 }
2913 
2914 /**
2915  * try_lookup_noperm - filesystem helper to lookup single pathname component
2916  * @name:	qstr storing pathname component to lookup
2917  * @base:	base directory to lookup from
2918  *
2919  * Look up a dentry by name in the dcache, returning NULL if it does not
2920  * currently exist.  The function does not try to create a dentry.
2921  *
2922  * Note that this routine is purely a helper for filesystem usage and should
2923  * not be called by generic code.  It does no permission checking.
2924  *
2925  * No locks need be held - only a counted reference to @base is needed.
2926  *
2927  */
2928 struct dentry *try_lookup_noperm(struct qstr *name, struct dentry *base)
2929 {
2930 	int err;
2931 
2932 	err = lookup_noperm_common(name, base);
2933 	if (err)
2934 		return ERR_PTR(err);
2935 
2936 	return lookup_dcache(name, base, 0);
2937 }
2938 EXPORT_SYMBOL(try_lookup_noperm);
2939 
2940 /**
2941  * lookup_noperm - filesystem helper to lookup single pathname component
2942  * @name:	qstr storing pathname component to lookup
2943  * @base:	base directory to lookup from
2944  *
2945  * Note that this routine is purely a helper for filesystem usage and should
2946  * not be called by generic code.  It does no permission checking.
2947  *
2948  * The caller must hold base->i_mutex.
2949  */
2950 struct dentry *lookup_noperm(struct qstr *name, struct dentry *base)
2951 {
2952 	struct dentry *dentry;
2953 	int err;
2954 
2955 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2956 
2957 	err = lookup_noperm_common(name, base);
2958 	if (err)
2959 		return ERR_PTR(err);
2960 
2961 	dentry = lookup_dcache(name, base, 0);
2962 	return dentry ? dentry : __lookup_slow(name, base, 0);
2963 }
2964 EXPORT_SYMBOL(lookup_noperm);
2965 
2966 /**
2967  * lookup_one - lookup single pathname component
2968  * @idmap:	idmap of the mount the lookup is performed from
2969  * @name:	qstr holding pathname component to lookup
2970  * @base:	base directory to lookup from
2971  *
2972  * This can be used for in-kernel filesystem clients such as file servers.
2973  *
2974  * The caller must hold base->i_mutex.
2975  */
2976 struct dentry *lookup_one(struct mnt_idmap *idmap, struct qstr *name,
2977 			  struct dentry *base)
2978 {
2979 	struct dentry *dentry;
2980 	int err;
2981 
2982 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2983 
2984 	err = lookup_one_common(idmap, name, base);
2985 	if (err)
2986 		return ERR_PTR(err);
2987 
2988 	dentry = lookup_dcache(name, base, 0);
2989 	return dentry ? dentry : __lookup_slow(name, base, 0);
2990 }
2991 EXPORT_SYMBOL(lookup_one);
2992 
2993 /**
2994  * lookup_one_unlocked - lookup single pathname component
2995  * @idmap:	idmap of the mount the lookup is performed from
2996  * @name:	qstr olding pathname component to lookup
2997  * @base:	base directory to lookup from
2998  *
2999  * This can be used for in-kernel filesystem clients such as file servers.
3000  *
3001  * Unlike lookup_one, it should be called without the parent
3002  * i_rwsem held, and will take the i_rwsem itself if necessary.
3003  */
3004 struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap, struct qstr *name,
3005 				   struct dentry *base)
3006 {
3007 	int err;
3008 	struct dentry *ret;
3009 
3010 	err = lookup_one_common(idmap, name, base);
3011 	if (err)
3012 		return ERR_PTR(err);
3013 
3014 	ret = lookup_dcache(name, base, 0);
3015 	if (!ret)
3016 		ret = lookup_slow(name, base, 0);
3017 	return ret;
3018 }
3019 EXPORT_SYMBOL(lookup_one_unlocked);
3020 
3021 /**
3022  * lookup_one_positive_unlocked - lookup single pathname component
3023  * @idmap:	idmap of the mount the lookup is performed from
3024  * @name:	qstr holding pathname component to lookup
3025  * @base:	base directory to lookup from
3026  *
3027  * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
3028  * known positive or ERR_PTR(). This is what most of the users want.
3029  *
3030  * Note that pinned negative with unlocked parent _can_ become positive at any
3031  * time, so callers of lookup_one_unlocked() need to be very careful; pinned
3032  * positives have >d_inode stable, so this one avoids such problems.
3033  *
3034  * This can be used for in-kernel filesystem clients such as file servers.
3035  *
3036  * The helper should be called without i_rwsem held.
3037  */
3038 struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap,
3039 					    struct qstr *name,
3040 					    struct dentry *base)
3041 {
3042 	struct dentry *ret = lookup_one_unlocked(idmap, name, base);
3043 
3044 	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
3045 		dput(ret);
3046 		ret = ERR_PTR(-ENOENT);
3047 	}
3048 	return ret;
3049 }
3050 EXPORT_SYMBOL(lookup_one_positive_unlocked);
3051 
3052 /**
3053  * lookup_noperm_unlocked - filesystem helper to lookup single pathname component
3054  * @name:	pathname component to lookup
3055  * @base:	base directory to lookup from
3056  *
3057  * Note that this routine is purely a helper for filesystem usage and should
3058  * not be called by generic code. It does no permission checking.
3059  *
3060  * Unlike lookup_noperm, it should be called without the parent
3061  * i_rwsem held, and will take the i_rwsem itself if necessary.
3062  */
3063 struct dentry *lookup_noperm_unlocked(struct qstr *name, struct dentry *base)
3064 {
3065 	struct dentry *ret;
3066 
3067 	ret = try_lookup_noperm(name, base);
3068 	if (!ret)
3069 		ret = lookup_slow(name, base, 0);
3070 	return ret;
3071 }
3072 EXPORT_SYMBOL(lookup_noperm_unlocked);
3073 
3074 /*
3075  * Like lookup_noperm_unlocked(), except that it yields ERR_PTR(-ENOENT)
3076  * on negatives.  Returns known positive or ERR_PTR(); that's what
3077  * most of the users want.  Note that pinned negative with unlocked parent
3078  * _can_ become positive at any time, so callers of lookup_noperm_unlocked()
3079  * need to be very careful; pinned positives have ->d_inode stable, so
3080  * this one avoids such problems.
3081  */
3082 struct dentry *lookup_noperm_positive_unlocked(struct qstr *name,
3083 					       struct dentry *base)
3084 {
3085 	struct dentry *ret;
3086 
3087 	ret = lookup_noperm_unlocked(name, base);
3088 	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
3089 		dput(ret);
3090 		ret = ERR_PTR(-ENOENT);
3091 	}
3092 	return ret;
3093 }
3094 EXPORT_SYMBOL(lookup_noperm_positive_unlocked);
3095 
3096 #ifdef CONFIG_UNIX98_PTYS
3097 int path_pts(struct path *path)
3098 {
3099 	/* Find something mounted on "pts" in the same directory as
3100 	 * the input path.
3101 	 */
3102 	struct dentry *parent = dget_parent(path->dentry);
3103 	struct dentry *child;
3104 	struct qstr this = QSTR_INIT("pts", 3);
3105 
3106 	if (unlikely(!path_connected(path->mnt, parent))) {
3107 		dput(parent);
3108 		return -ENOENT;
3109 	}
3110 	dput(path->dentry);
3111 	path->dentry = parent;
3112 	child = d_hash_and_lookup(parent, &this);
3113 	if (IS_ERR_OR_NULL(child))
3114 		return -ENOENT;
3115 
3116 	path->dentry = child;
3117 	dput(parent);
3118 	follow_down(path, 0);
3119 	return 0;
3120 }
3121 #endif
3122 
3123 int user_path_at(int dfd, const char __user *name, unsigned flags,
3124 		 struct path *path)
3125 {
3126 	struct filename *filename = getname_flags(name, flags);
3127 	int ret = filename_lookup(dfd, filename, flags, path, NULL);
3128 
3129 	putname(filename);
3130 	return ret;
3131 }
3132 EXPORT_SYMBOL(user_path_at);
3133 
3134 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
3135 		   struct inode *inode)
3136 {
3137 	kuid_t fsuid = current_fsuid();
3138 
3139 	if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid))
3140 		return 0;
3141 	if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid))
3142 		return 0;
3143 	return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER);
3144 }
3145 EXPORT_SYMBOL(__check_sticky);
3146 
3147 /*
3148  *	Check whether we can remove a link victim from directory dir, check
3149  *  whether the type of victim is right.
3150  *  1. We can't do it if dir is read-only (done in permission())
3151  *  2. We should have write and exec permissions on dir
3152  *  3. We can't remove anything from append-only dir
3153  *  4. We can't do anything with immutable dir (done in permission())
3154  *  5. If the sticky bit on dir is set we should either
3155  *	a. be owner of dir, or
3156  *	b. be owner of victim, or
3157  *	c. have CAP_FOWNER capability
3158  *  6. If the victim is append-only or immutable we can't do antyhing with
3159  *     links pointing to it.
3160  *  7. If the victim has an unknown uid or gid we can't change the inode.
3161  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
3162  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
3163  * 10. We can't remove a root or mountpoint.
3164  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
3165  *     nfs_async_unlink().
3166  */
3167 static int may_delete(struct mnt_idmap *idmap, struct inode *dir,
3168 		      struct dentry *victim, bool isdir)
3169 {
3170 	struct inode *inode = d_backing_inode(victim);
3171 	int error;
3172 
3173 	if (d_is_negative(victim))
3174 		return -ENOENT;
3175 	BUG_ON(!inode);
3176 
3177 	BUG_ON(victim->d_parent->d_inode != dir);
3178 
3179 	/* Inode writeback is not safe when the uid or gid are invalid. */
3180 	if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
3181 	    !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
3182 		return -EOVERFLOW;
3183 
3184 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
3185 
3186 	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3187 	if (error)
3188 		return error;
3189 	if (IS_APPEND(dir))
3190 		return -EPERM;
3191 
3192 	if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) ||
3193 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
3194 	    HAS_UNMAPPED_ID(idmap, inode))
3195 		return -EPERM;
3196 	if (isdir) {
3197 		if (!d_is_dir(victim))
3198 			return -ENOTDIR;
3199 		if (IS_ROOT(victim))
3200 			return -EBUSY;
3201 	} else if (d_is_dir(victim))
3202 		return -EISDIR;
3203 	if (IS_DEADDIR(dir))
3204 		return -ENOENT;
3205 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
3206 		return -EBUSY;
3207 	return 0;
3208 }
3209 
3210 /*	Check whether we can create an object with dentry child in directory
3211  *  dir.
3212  *  1. We can't do it if child already exists (open has special treatment for
3213  *     this case, but since we are inlined it's OK)
3214  *  2. We can't do it if dir is read-only (done in permission())
3215  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
3216  *  4. We should have write and exec permissions on dir
3217  *  5. We can't do it if dir is immutable (done in permission())
3218  */
3219 static inline int may_create(struct mnt_idmap *idmap,
3220 			     struct inode *dir, struct dentry *child)
3221 {
3222 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
3223 	if (child->d_inode)
3224 		return -EEXIST;
3225 	if (IS_DEADDIR(dir))
3226 		return -ENOENT;
3227 	if (!fsuidgid_has_mapping(dir->i_sb, idmap))
3228 		return -EOVERFLOW;
3229 
3230 	return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3231 }
3232 
3233 // p1 != p2, both are on the same filesystem, ->s_vfs_rename_mutex is held
3234 static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2)
3235 {
3236 	struct dentry *p = p1, *q = p2, *r;
3237 
3238 	while ((r = p->d_parent) != p2 && r != p)
3239 		p = r;
3240 	if (r == p2) {
3241 		// p is a child of p2 and an ancestor of p1 or p1 itself
3242 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3243 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2);
3244 		return p;
3245 	}
3246 	// p is the root of connected component that contains p1
3247 	// p2 does not occur on the path from p to p1
3248 	while ((r = q->d_parent) != p1 && r != p && r != q)
3249 		q = r;
3250 	if (r == p1) {
3251 		// q is a child of p1 and an ancestor of p2 or p2 itself
3252 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3253 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3254 		return q;
3255 	} else if (likely(r == p)) {
3256 		// both p2 and p1 are descendents of p
3257 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3258 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3259 		return NULL;
3260 	} else { // no common ancestor at the time we'd been called
3261 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3262 		return ERR_PTR(-EXDEV);
3263 	}
3264 }
3265 
3266 /*
3267  * p1 and p2 should be directories on the same fs.
3268  */
3269 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
3270 {
3271 	if (p1 == p2) {
3272 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3273 		return NULL;
3274 	}
3275 
3276 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
3277 	return lock_two_directories(p1, p2);
3278 }
3279 EXPORT_SYMBOL(lock_rename);
3280 
3281 /*
3282  * c1 and p2 should be on the same fs.
3283  */
3284 struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2)
3285 {
3286 	if (READ_ONCE(c1->d_parent) == p2) {
3287 		/*
3288 		 * hopefully won't need to touch ->s_vfs_rename_mutex at all.
3289 		 */
3290 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3291 		/*
3292 		 * now that p2 is locked, nobody can move in or out of it,
3293 		 * so the test below is safe.
3294 		 */
3295 		if (likely(c1->d_parent == p2))
3296 			return NULL;
3297 
3298 		/*
3299 		 * c1 got moved out of p2 while we'd been taking locks;
3300 		 * unlock and fall back to slow case.
3301 		 */
3302 		inode_unlock(p2->d_inode);
3303 	}
3304 
3305 	mutex_lock(&c1->d_sb->s_vfs_rename_mutex);
3306 	/*
3307 	 * nobody can move out of any directories on this fs.
3308 	 */
3309 	if (likely(c1->d_parent != p2))
3310 		return lock_two_directories(c1->d_parent, p2);
3311 
3312 	/*
3313 	 * c1 got moved into p2 while we were taking locks;
3314 	 * we need p2 locked and ->s_vfs_rename_mutex unlocked,
3315 	 * for consistency with lock_rename().
3316 	 */
3317 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3318 	mutex_unlock(&c1->d_sb->s_vfs_rename_mutex);
3319 	return NULL;
3320 }
3321 EXPORT_SYMBOL(lock_rename_child);
3322 
3323 void unlock_rename(struct dentry *p1, struct dentry *p2)
3324 {
3325 	inode_unlock(p1->d_inode);
3326 	if (p1 != p2) {
3327 		inode_unlock(p2->d_inode);
3328 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3329 	}
3330 }
3331 EXPORT_SYMBOL(unlock_rename);
3332 
3333 /**
3334  * vfs_prepare_mode - prepare the mode to be used for a new inode
3335  * @idmap:	idmap of the mount the inode was found from
3336  * @dir:	parent directory of the new inode
3337  * @mode:	mode of the new inode
3338  * @mask_perms:	allowed permission by the vfs
3339  * @type:	type of file to be created
3340  *
3341  * This helper consolidates and enforces vfs restrictions on the @mode of a new
3342  * object to be created.
3343  *
3344  * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
3345  * the kernel documentation for mode_strip_umask()). Moving umask stripping
3346  * after setgid stripping allows the same ordering for both non-POSIX ACL and
3347  * POSIX ACL supporting filesystems.
3348  *
3349  * Note that it's currently valid for @type to be 0 if a directory is created.
3350  * Filesystems raise that flag individually and we need to check whether each
3351  * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
3352  * non-zero type.
3353  *
3354  * Returns: mode to be passed to the filesystem
3355  */
3356 static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap,
3357 				       const struct inode *dir, umode_t mode,
3358 				       umode_t mask_perms, umode_t type)
3359 {
3360 	mode = mode_strip_sgid(idmap, dir, mode);
3361 	mode = mode_strip_umask(dir, mode);
3362 
3363 	/*
3364 	 * Apply the vfs mandated allowed permission mask and set the type of
3365 	 * file to be created before we call into the filesystem.
3366 	 */
3367 	mode &= (mask_perms & ~S_IFMT);
3368 	mode |= (type & S_IFMT);
3369 
3370 	return mode;
3371 }
3372 
3373 /**
3374  * vfs_create - create new file
3375  * @idmap:	idmap of the mount the inode was found from
3376  * @dir:	inode of the parent directory
3377  * @dentry:	dentry of the child file
3378  * @mode:	mode of the child file
3379  * @want_excl:	whether the file must not yet exist
3380  *
3381  * Create a new file.
3382  *
3383  * If the inode has been found through an idmapped mount the idmap of
3384  * the vfsmount must be passed through @idmap. This function will then take
3385  * care to map the inode according to @idmap before checking permissions.
3386  * On non-idmapped mounts or if permission checking is to be performed on the
3387  * raw inode simply pass @nop_mnt_idmap.
3388  */
3389 int vfs_create(struct mnt_idmap *idmap, struct inode *dir,
3390 	       struct dentry *dentry, umode_t mode, bool want_excl)
3391 {
3392 	int error;
3393 
3394 	error = may_create(idmap, dir, dentry);
3395 	if (error)
3396 		return error;
3397 
3398 	if (!dir->i_op->create)
3399 		return -EACCES;	/* shouldn't it be ENOSYS? */
3400 
3401 	mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG);
3402 	error = security_inode_create(dir, dentry, mode);
3403 	if (error)
3404 		return error;
3405 	error = dir->i_op->create(idmap, dir, dentry, mode, want_excl);
3406 	if (!error)
3407 		fsnotify_create(dir, dentry);
3408 	return error;
3409 }
3410 EXPORT_SYMBOL(vfs_create);
3411 
3412 int vfs_mkobj(struct dentry *dentry, umode_t mode,
3413 		int (*f)(struct dentry *, umode_t, void *),
3414 		void *arg)
3415 {
3416 	struct inode *dir = dentry->d_parent->d_inode;
3417 	int error = may_create(&nop_mnt_idmap, dir, dentry);
3418 	if (error)
3419 		return error;
3420 
3421 	mode &= S_IALLUGO;
3422 	mode |= S_IFREG;
3423 	error = security_inode_create(dir, dentry, mode);
3424 	if (error)
3425 		return error;
3426 	error = f(dentry, mode, arg);
3427 	if (!error)
3428 		fsnotify_create(dir, dentry);
3429 	return error;
3430 }
3431 EXPORT_SYMBOL(vfs_mkobj);
3432 
3433 bool may_open_dev(const struct path *path)
3434 {
3435 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
3436 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3437 }
3438 
3439 static int may_open(struct mnt_idmap *idmap, const struct path *path,
3440 		    int acc_mode, int flag)
3441 {
3442 	struct dentry *dentry = path->dentry;
3443 	struct inode *inode = dentry->d_inode;
3444 	int error;
3445 
3446 	if (!inode)
3447 		return -ENOENT;
3448 
3449 	switch (inode->i_mode & S_IFMT) {
3450 	case S_IFLNK:
3451 		return -ELOOP;
3452 	case S_IFDIR:
3453 		if (acc_mode & MAY_WRITE)
3454 			return -EISDIR;
3455 		if (acc_mode & MAY_EXEC)
3456 			return -EACCES;
3457 		break;
3458 	case S_IFBLK:
3459 	case S_IFCHR:
3460 		if (!may_open_dev(path))
3461 			return -EACCES;
3462 		fallthrough;
3463 	case S_IFIFO:
3464 	case S_IFSOCK:
3465 		if (acc_mode & MAY_EXEC)
3466 			return -EACCES;
3467 		flag &= ~O_TRUNC;
3468 		break;
3469 	case S_IFREG:
3470 		if ((acc_mode & MAY_EXEC) && path_noexec(path))
3471 			return -EACCES;
3472 		break;
3473 	default:
3474 		VFS_BUG_ON_INODE(1, inode);
3475 	}
3476 
3477 	error = inode_permission(idmap, inode, MAY_OPEN | acc_mode);
3478 	if (error)
3479 		return error;
3480 
3481 	/*
3482 	 * An append-only file must be opened in append mode for writing.
3483 	 */
3484 	if (IS_APPEND(inode)) {
3485 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3486 			return -EPERM;
3487 		if (flag & O_TRUNC)
3488 			return -EPERM;
3489 	}
3490 
3491 	/* O_NOATIME can only be set by the owner or superuser */
3492 	if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode))
3493 		return -EPERM;
3494 
3495 	return 0;
3496 }
3497 
3498 static int handle_truncate(struct mnt_idmap *idmap, struct file *filp)
3499 {
3500 	const struct path *path = &filp->f_path;
3501 	struct inode *inode = path->dentry->d_inode;
3502 	int error = get_write_access(inode);
3503 	if (error)
3504 		return error;
3505 
3506 	error = security_file_truncate(filp);
3507 	if (!error) {
3508 		error = do_truncate(idmap, path->dentry, 0,
3509 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3510 				    filp);
3511 	}
3512 	put_write_access(inode);
3513 	return error;
3514 }
3515 
3516 static inline int open_to_namei_flags(int flag)
3517 {
3518 	if ((flag & O_ACCMODE) == 3)
3519 		flag--;
3520 	return flag;
3521 }
3522 
3523 static int may_o_create(struct mnt_idmap *idmap,
3524 			const struct path *dir, struct dentry *dentry,
3525 			umode_t mode)
3526 {
3527 	int error = security_path_mknod(dir, dentry, mode, 0);
3528 	if (error)
3529 		return error;
3530 
3531 	if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap))
3532 		return -EOVERFLOW;
3533 
3534 	error = inode_permission(idmap, dir->dentry->d_inode,
3535 				 MAY_WRITE | MAY_EXEC);
3536 	if (error)
3537 		return error;
3538 
3539 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3540 }
3541 
3542 /*
3543  * Attempt to atomically look up, create and open a file from a negative
3544  * dentry.
3545  *
3546  * Returns 0 if successful.  The file will have been created and attached to
3547  * @file by the filesystem calling finish_open().
3548  *
3549  * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3550  * be set.  The caller will need to perform the open themselves.  @path will
3551  * have been updated to point to the new dentry.  This may be negative.
3552  *
3553  * Returns an error code otherwise.
3554  */
3555 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3556 				  struct file *file,
3557 				  int open_flag, umode_t mode)
3558 {
3559 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3560 	struct inode *dir =  nd->path.dentry->d_inode;
3561 	int error;
3562 
3563 	if (nd->flags & LOOKUP_DIRECTORY)
3564 		open_flag |= O_DIRECTORY;
3565 
3566 	file->f_path.dentry = DENTRY_NOT_SET;
3567 	file->f_path.mnt = nd->path.mnt;
3568 	error = dir->i_op->atomic_open(dir, dentry, file,
3569 				       open_to_namei_flags(open_flag), mode);
3570 	d_lookup_done(dentry);
3571 	if (!error) {
3572 		if (file->f_mode & FMODE_OPENED) {
3573 			if (unlikely(dentry != file->f_path.dentry)) {
3574 				dput(dentry);
3575 				dentry = dget(file->f_path.dentry);
3576 			}
3577 		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3578 			error = -EIO;
3579 		} else {
3580 			if (file->f_path.dentry) {
3581 				dput(dentry);
3582 				dentry = file->f_path.dentry;
3583 			}
3584 			if (unlikely(d_is_negative(dentry)))
3585 				error = -ENOENT;
3586 		}
3587 	}
3588 	if (error) {
3589 		dput(dentry);
3590 		dentry = ERR_PTR(error);
3591 	}
3592 	return dentry;
3593 }
3594 
3595 /*
3596  * Look up and maybe create and open the last component.
3597  *
3598  * Must be called with parent locked (exclusive in O_CREAT case).
3599  *
3600  * Returns 0 on success, that is, if
3601  *  the file was successfully atomically created (if necessary) and opened, or
3602  *  the file was not completely opened at this time, though lookups and
3603  *  creations were performed.
3604  * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3605  * In the latter case dentry returned in @path might be negative if O_CREAT
3606  * hadn't been specified.
3607  *
3608  * An error code is returned on failure.
3609  */
3610 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3611 				  const struct open_flags *op,
3612 				  bool got_write)
3613 {
3614 	struct mnt_idmap *idmap;
3615 	struct dentry *dir = nd->path.dentry;
3616 	struct inode *dir_inode = dir->d_inode;
3617 	int open_flag = op->open_flag;
3618 	struct dentry *dentry;
3619 	int error, create_error = 0;
3620 	umode_t mode = op->mode;
3621 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3622 
3623 	if (unlikely(IS_DEADDIR(dir_inode)))
3624 		return ERR_PTR(-ENOENT);
3625 
3626 	file->f_mode &= ~FMODE_CREATED;
3627 	dentry = d_lookup(dir, &nd->last);
3628 	for (;;) {
3629 		if (!dentry) {
3630 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3631 			if (IS_ERR(dentry))
3632 				return dentry;
3633 		}
3634 		if (d_in_lookup(dentry))
3635 			break;
3636 
3637 		error = d_revalidate(dir_inode, &nd->last, dentry, nd->flags);
3638 		if (likely(error > 0))
3639 			break;
3640 		if (error)
3641 			goto out_dput;
3642 		d_invalidate(dentry);
3643 		dput(dentry);
3644 		dentry = NULL;
3645 	}
3646 	if (dentry->d_inode) {
3647 		/* Cached positive dentry: will open in f_op->open */
3648 		return dentry;
3649 	}
3650 
3651 	if (open_flag & O_CREAT)
3652 		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3653 
3654 	/*
3655 	 * Checking write permission is tricky, bacuse we don't know if we are
3656 	 * going to actually need it: O_CREAT opens should work as long as the
3657 	 * file exists.  But checking existence breaks atomicity.  The trick is
3658 	 * to check access and if not granted clear O_CREAT from the flags.
3659 	 *
3660 	 * Another problem is returing the "right" error value (e.g. for an
3661 	 * O_EXCL open we want to return EEXIST not EROFS).
3662 	 */
3663 	if (unlikely(!got_write))
3664 		open_flag &= ~O_TRUNC;
3665 	idmap = mnt_idmap(nd->path.mnt);
3666 	if (open_flag & O_CREAT) {
3667 		if (open_flag & O_EXCL)
3668 			open_flag &= ~O_TRUNC;
3669 		mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode);
3670 		if (likely(got_write))
3671 			create_error = may_o_create(idmap, &nd->path,
3672 						    dentry, mode);
3673 		else
3674 			create_error = -EROFS;
3675 	}
3676 	if (create_error)
3677 		open_flag &= ~O_CREAT;
3678 	if (dir_inode->i_op->atomic_open) {
3679 		dentry = atomic_open(nd, dentry, file, open_flag, mode);
3680 		if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3681 			dentry = ERR_PTR(create_error);
3682 		return dentry;
3683 	}
3684 
3685 	if (d_in_lookup(dentry)) {
3686 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3687 							     nd->flags);
3688 		d_lookup_done(dentry);
3689 		if (unlikely(res)) {
3690 			if (IS_ERR(res)) {
3691 				error = PTR_ERR(res);
3692 				goto out_dput;
3693 			}
3694 			dput(dentry);
3695 			dentry = res;
3696 		}
3697 	}
3698 
3699 	/* Negative dentry, just create the file */
3700 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3701 		file->f_mode |= FMODE_CREATED;
3702 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3703 		if (!dir_inode->i_op->create) {
3704 			error = -EACCES;
3705 			goto out_dput;
3706 		}
3707 
3708 		error = dir_inode->i_op->create(idmap, dir_inode, dentry,
3709 						mode, open_flag & O_EXCL);
3710 		if (error)
3711 			goto out_dput;
3712 	}
3713 	if (unlikely(create_error) && !dentry->d_inode) {
3714 		error = create_error;
3715 		goto out_dput;
3716 	}
3717 	return dentry;
3718 
3719 out_dput:
3720 	dput(dentry);
3721 	return ERR_PTR(error);
3722 }
3723 
3724 static inline bool trailing_slashes(struct nameidata *nd)
3725 {
3726 	return (bool)nd->last.name[nd->last.len];
3727 }
3728 
3729 static struct dentry *lookup_fast_for_open(struct nameidata *nd, int open_flag)
3730 {
3731 	struct dentry *dentry;
3732 
3733 	if (open_flag & O_CREAT) {
3734 		if (trailing_slashes(nd))
3735 			return ERR_PTR(-EISDIR);
3736 
3737 		/* Don't bother on an O_EXCL create */
3738 		if (open_flag & O_EXCL)
3739 			return NULL;
3740 	}
3741 
3742 	if (trailing_slashes(nd))
3743 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3744 
3745 	dentry = lookup_fast(nd);
3746 	if (IS_ERR_OR_NULL(dentry))
3747 		return dentry;
3748 
3749 	if (open_flag & O_CREAT) {
3750 		/* Discard negative dentries. Need inode_lock to do the create */
3751 		if (!dentry->d_inode) {
3752 			if (!(nd->flags & LOOKUP_RCU))
3753 				dput(dentry);
3754 			dentry = NULL;
3755 		}
3756 	}
3757 	return dentry;
3758 }
3759 
3760 static const char *open_last_lookups(struct nameidata *nd,
3761 		   struct file *file, const struct open_flags *op)
3762 {
3763 	struct dentry *dir = nd->path.dentry;
3764 	int open_flag = op->open_flag;
3765 	bool got_write = false;
3766 	struct dentry *dentry;
3767 	const char *res;
3768 
3769 	nd->flags |= op->intent;
3770 
3771 	if (nd->last_type != LAST_NORM) {
3772 		if (nd->depth)
3773 			put_link(nd);
3774 		return handle_dots(nd, nd->last_type);
3775 	}
3776 
3777 	/* We _can_ be in RCU mode here */
3778 	dentry = lookup_fast_for_open(nd, open_flag);
3779 	if (IS_ERR(dentry))
3780 		return ERR_CAST(dentry);
3781 
3782 	if (likely(dentry))
3783 		goto finish_lookup;
3784 
3785 	if (!(open_flag & O_CREAT)) {
3786 		if (WARN_ON_ONCE(nd->flags & LOOKUP_RCU))
3787 			return ERR_PTR(-ECHILD);
3788 	} else {
3789 		if (nd->flags & LOOKUP_RCU) {
3790 			if (!try_to_unlazy(nd))
3791 				return ERR_PTR(-ECHILD);
3792 		}
3793 	}
3794 
3795 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3796 		got_write = !mnt_want_write(nd->path.mnt);
3797 		/*
3798 		 * do _not_ fail yet - we might not need that or fail with
3799 		 * a different error; let lookup_open() decide; we'll be
3800 		 * dropping this one anyway.
3801 		 */
3802 	}
3803 	if (open_flag & O_CREAT)
3804 		inode_lock(dir->d_inode);
3805 	else
3806 		inode_lock_shared(dir->d_inode);
3807 	dentry = lookup_open(nd, file, op, got_write);
3808 	if (!IS_ERR(dentry)) {
3809 		if (file->f_mode & FMODE_CREATED)
3810 			fsnotify_create(dir->d_inode, dentry);
3811 		if (file->f_mode & FMODE_OPENED)
3812 			fsnotify_open(file);
3813 	}
3814 	if (open_flag & O_CREAT)
3815 		inode_unlock(dir->d_inode);
3816 	else
3817 		inode_unlock_shared(dir->d_inode);
3818 
3819 	if (got_write)
3820 		mnt_drop_write(nd->path.mnt);
3821 
3822 	if (IS_ERR(dentry))
3823 		return ERR_CAST(dentry);
3824 
3825 	if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3826 		dput(nd->path.dentry);
3827 		nd->path.dentry = dentry;
3828 		return NULL;
3829 	}
3830 
3831 finish_lookup:
3832 	if (nd->depth)
3833 		put_link(nd);
3834 	res = step_into(nd, WALK_TRAILING, dentry);
3835 	if (unlikely(res))
3836 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3837 	return res;
3838 }
3839 
3840 /*
3841  * Handle the last step of open()
3842  */
3843 static int do_open(struct nameidata *nd,
3844 		   struct file *file, const struct open_flags *op)
3845 {
3846 	struct mnt_idmap *idmap;
3847 	int open_flag = op->open_flag;
3848 	bool do_truncate;
3849 	int acc_mode;
3850 	int error;
3851 
3852 	if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3853 		error = complete_walk(nd);
3854 		if (error)
3855 			return error;
3856 	}
3857 	if (!(file->f_mode & FMODE_CREATED))
3858 		audit_inode(nd->name, nd->path.dentry, 0);
3859 	idmap = mnt_idmap(nd->path.mnt);
3860 	if (open_flag & O_CREAT) {
3861 		if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3862 			return -EEXIST;
3863 		if (d_is_dir(nd->path.dentry))
3864 			return -EISDIR;
3865 		error = may_create_in_sticky(idmap, nd,
3866 					     d_backing_inode(nd->path.dentry));
3867 		if (unlikely(error))
3868 			return error;
3869 	}
3870 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3871 		return -ENOTDIR;
3872 
3873 	do_truncate = false;
3874 	acc_mode = op->acc_mode;
3875 	if (file->f_mode & FMODE_CREATED) {
3876 		/* Don't check for write permission, don't truncate */
3877 		open_flag &= ~O_TRUNC;
3878 		acc_mode = 0;
3879 	} else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3880 		error = mnt_want_write(nd->path.mnt);
3881 		if (error)
3882 			return error;
3883 		do_truncate = true;
3884 	}
3885 	error = may_open(idmap, &nd->path, acc_mode, open_flag);
3886 	if (!error && !(file->f_mode & FMODE_OPENED))
3887 		error = vfs_open(&nd->path, file);
3888 	if (!error)
3889 		error = security_file_post_open(file, op->acc_mode);
3890 	if (!error && do_truncate)
3891 		error = handle_truncate(idmap, file);
3892 	if (unlikely(error > 0)) {
3893 		WARN_ON(1);
3894 		error = -EINVAL;
3895 	}
3896 	if (do_truncate)
3897 		mnt_drop_write(nd->path.mnt);
3898 	return error;
3899 }
3900 
3901 /**
3902  * vfs_tmpfile - create tmpfile
3903  * @idmap:	idmap of the mount the inode was found from
3904  * @parentpath:	pointer to the path of the base directory
3905  * @file:	file descriptor of the new tmpfile
3906  * @mode:	mode of the new tmpfile
3907  *
3908  * Create a temporary file.
3909  *
3910  * If the inode has been found through an idmapped mount the idmap of
3911  * the vfsmount must be passed through @idmap. This function will then take
3912  * care to map the inode according to @idmap before checking permissions.
3913  * On non-idmapped mounts or if permission checking is to be performed on the
3914  * raw inode simply pass @nop_mnt_idmap.
3915  */
3916 int vfs_tmpfile(struct mnt_idmap *idmap,
3917 		const struct path *parentpath,
3918 		struct file *file, umode_t mode)
3919 {
3920 	struct dentry *child;
3921 	struct inode *dir = d_inode(parentpath->dentry);
3922 	struct inode *inode;
3923 	int error;
3924 	int open_flag = file->f_flags;
3925 
3926 	/* we want directory to be writable */
3927 	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3928 	if (error)
3929 		return error;
3930 	if (!dir->i_op->tmpfile)
3931 		return -EOPNOTSUPP;
3932 	child = d_alloc(parentpath->dentry, &slash_name);
3933 	if (unlikely(!child))
3934 		return -ENOMEM;
3935 	file->f_path.mnt = parentpath->mnt;
3936 	file->f_path.dentry = child;
3937 	mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
3938 	error = dir->i_op->tmpfile(idmap, dir, file, mode);
3939 	dput(child);
3940 	if (file->f_mode & FMODE_OPENED)
3941 		fsnotify_open(file);
3942 	if (error)
3943 		return error;
3944 	/* Don't check for other permissions, the inode was just created */
3945 	error = may_open(idmap, &file->f_path, 0, file->f_flags);
3946 	if (error)
3947 		return error;
3948 	inode = file_inode(file);
3949 	if (!(open_flag & O_EXCL)) {
3950 		spin_lock(&inode->i_lock);
3951 		inode->i_state |= I_LINKABLE;
3952 		spin_unlock(&inode->i_lock);
3953 	}
3954 	security_inode_post_create_tmpfile(idmap, inode);
3955 	return 0;
3956 }
3957 
3958 /**
3959  * kernel_tmpfile_open - open a tmpfile for kernel internal use
3960  * @idmap:	idmap of the mount the inode was found from
3961  * @parentpath:	path of the base directory
3962  * @mode:	mode of the new tmpfile
3963  * @open_flag:	flags
3964  * @cred:	credentials for open
3965  *
3966  * Create and open a temporary file.  The file is not accounted in nr_files,
3967  * hence this is only for kernel internal use, and must not be installed into
3968  * file tables or such.
3969  */
3970 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
3971 				 const struct path *parentpath,
3972 				 umode_t mode, int open_flag,
3973 				 const struct cred *cred)
3974 {
3975 	struct file *file;
3976 	int error;
3977 
3978 	file = alloc_empty_file_noaccount(open_flag, cred);
3979 	if (IS_ERR(file))
3980 		return file;
3981 
3982 	error = vfs_tmpfile(idmap, parentpath, file, mode);
3983 	if (error) {
3984 		fput(file);
3985 		file = ERR_PTR(error);
3986 	}
3987 	return file;
3988 }
3989 EXPORT_SYMBOL(kernel_tmpfile_open);
3990 
3991 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3992 		const struct open_flags *op,
3993 		struct file *file)
3994 {
3995 	struct path path;
3996 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3997 
3998 	if (unlikely(error))
3999 		return error;
4000 	error = mnt_want_write(path.mnt);
4001 	if (unlikely(error))
4002 		goto out;
4003 	error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode);
4004 	if (error)
4005 		goto out2;
4006 	audit_inode(nd->name, file->f_path.dentry, 0);
4007 out2:
4008 	mnt_drop_write(path.mnt);
4009 out:
4010 	path_put(&path);
4011 	return error;
4012 }
4013 
4014 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
4015 {
4016 	struct path path;
4017 	int error = path_lookupat(nd, flags, &path);
4018 	if (!error) {
4019 		audit_inode(nd->name, path.dentry, 0);
4020 		error = vfs_open(&path, file);
4021 		path_put(&path);
4022 	}
4023 	return error;
4024 }
4025 
4026 static struct file *path_openat(struct nameidata *nd,
4027 			const struct open_flags *op, unsigned flags)
4028 {
4029 	struct file *file;
4030 	int error;
4031 
4032 	file = alloc_empty_file(op->open_flag, current_cred());
4033 	if (IS_ERR(file))
4034 		return file;
4035 
4036 	if (unlikely(file->f_flags & __O_TMPFILE)) {
4037 		error = do_tmpfile(nd, flags, op, file);
4038 	} else if (unlikely(file->f_flags & O_PATH)) {
4039 		error = do_o_path(nd, flags, file);
4040 	} else {
4041 		const char *s = path_init(nd, flags);
4042 		while (!(error = link_path_walk(s, nd)) &&
4043 		       (s = open_last_lookups(nd, file, op)) != NULL)
4044 			;
4045 		if (!error)
4046 			error = do_open(nd, file, op);
4047 		terminate_walk(nd);
4048 	}
4049 	if (likely(!error)) {
4050 		if (likely(file->f_mode & FMODE_OPENED))
4051 			return file;
4052 		WARN_ON(1);
4053 		error = -EINVAL;
4054 	}
4055 	fput_close(file);
4056 	if (error == -EOPENSTALE) {
4057 		if (flags & LOOKUP_RCU)
4058 			error = -ECHILD;
4059 		else
4060 			error = -ESTALE;
4061 	}
4062 	return ERR_PTR(error);
4063 }
4064 
4065 struct file *do_filp_open(int dfd, struct filename *pathname,
4066 		const struct open_flags *op)
4067 {
4068 	struct nameidata nd;
4069 	int flags = op->lookup_flags;
4070 	struct file *filp;
4071 
4072 	set_nameidata(&nd, dfd, pathname, NULL);
4073 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
4074 	if (unlikely(filp == ERR_PTR(-ECHILD)))
4075 		filp = path_openat(&nd, op, flags);
4076 	if (unlikely(filp == ERR_PTR(-ESTALE)))
4077 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
4078 	restore_nameidata();
4079 	return filp;
4080 }
4081 
4082 struct file *do_file_open_root(const struct path *root,
4083 		const char *name, const struct open_flags *op)
4084 {
4085 	struct nameidata nd;
4086 	struct file *file;
4087 	struct filename *filename;
4088 	int flags = op->lookup_flags;
4089 
4090 	if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
4091 		return ERR_PTR(-ELOOP);
4092 
4093 	filename = getname_kernel(name);
4094 	if (IS_ERR(filename))
4095 		return ERR_CAST(filename);
4096 
4097 	set_nameidata(&nd, -1, filename, root);
4098 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
4099 	if (unlikely(file == ERR_PTR(-ECHILD)))
4100 		file = path_openat(&nd, op, flags);
4101 	if (unlikely(file == ERR_PTR(-ESTALE)))
4102 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
4103 	restore_nameidata();
4104 	putname(filename);
4105 	return file;
4106 }
4107 
4108 static struct dentry *filename_create(int dfd, struct filename *name,
4109 				      struct path *path, unsigned int lookup_flags)
4110 {
4111 	struct dentry *dentry = ERR_PTR(-EEXIST);
4112 	struct qstr last;
4113 	bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
4114 	unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
4115 	unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
4116 	int type;
4117 	int err2;
4118 	int error;
4119 
4120 	error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
4121 	if (error)
4122 		return ERR_PTR(error);
4123 
4124 	/*
4125 	 * Yucky last component or no last component at all?
4126 	 * (foo/., foo/.., /////)
4127 	 */
4128 	if (unlikely(type != LAST_NORM))
4129 		goto out;
4130 
4131 	/* don't fail immediately if it's r/o, at least try to report other errors */
4132 	err2 = mnt_want_write(path->mnt);
4133 	/*
4134 	 * Do the final lookup.  Suppress 'create' if there is a trailing
4135 	 * '/', and a directory wasn't requested.
4136 	 */
4137 	if (last.name[last.len] && !want_dir)
4138 		create_flags &= ~LOOKUP_CREATE;
4139 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
4140 	dentry = lookup_one_qstr_excl(&last, path->dentry,
4141 				      reval_flag | create_flags);
4142 	if (IS_ERR(dentry))
4143 		goto unlock;
4144 
4145 	if (unlikely(err2)) {
4146 		error = err2;
4147 		goto fail;
4148 	}
4149 	return dentry;
4150 fail:
4151 	dput(dentry);
4152 	dentry = ERR_PTR(error);
4153 unlock:
4154 	inode_unlock(path->dentry->d_inode);
4155 	if (!err2)
4156 		mnt_drop_write(path->mnt);
4157 out:
4158 	path_put(path);
4159 	return dentry;
4160 }
4161 
4162 struct dentry *kern_path_create(int dfd, const char *pathname,
4163 				struct path *path, unsigned int lookup_flags)
4164 {
4165 	struct filename *filename = getname_kernel(pathname);
4166 	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
4167 
4168 	putname(filename);
4169 	return res;
4170 }
4171 EXPORT_SYMBOL(kern_path_create);
4172 
4173 void done_path_create(struct path *path, struct dentry *dentry)
4174 {
4175 	if (!IS_ERR(dentry))
4176 		dput(dentry);
4177 	inode_unlock(path->dentry->d_inode);
4178 	mnt_drop_write(path->mnt);
4179 	path_put(path);
4180 }
4181 EXPORT_SYMBOL(done_path_create);
4182 
4183 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
4184 				struct path *path, unsigned int lookup_flags)
4185 {
4186 	struct filename *filename = getname(pathname);
4187 	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
4188 
4189 	putname(filename);
4190 	return res;
4191 }
4192 EXPORT_SYMBOL(user_path_create);
4193 
4194 /**
4195  * vfs_mknod - create device node or file
4196  * @idmap:	idmap of the mount the inode was found from
4197  * @dir:	inode of the parent directory
4198  * @dentry:	dentry of the child device node
4199  * @mode:	mode of the child device node
4200  * @dev:	device number of device to create
4201  *
4202  * Create a device node or file.
4203  *
4204  * If the inode has been found through an idmapped mount the idmap of
4205  * the vfsmount must be passed through @idmap. This function will then take
4206  * care to map the inode according to @idmap before checking permissions.
4207  * On non-idmapped mounts or if permission checking is to be performed on the
4208  * raw inode simply pass @nop_mnt_idmap.
4209  */
4210 int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
4211 	      struct dentry *dentry, umode_t mode, dev_t dev)
4212 {
4213 	bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
4214 	int error = may_create(idmap, dir, dentry);
4215 
4216 	if (error)
4217 		return error;
4218 
4219 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
4220 	    !capable(CAP_MKNOD))
4221 		return -EPERM;
4222 
4223 	if (!dir->i_op->mknod)
4224 		return -EPERM;
4225 
4226 	mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
4227 	error = devcgroup_inode_mknod(mode, dev);
4228 	if (error)
4229 		return error;
4230 
4231 	error = security_inode_mknod(dir, dentry, mode, dev);
4232 	if (error)
4233 		return error;
4234 
4235 	error = dir->i_op->mknod(idmap, dir, dentry, mode, dev);
4236 	if (!error)
4237 		fsnotify_create(dir, dentry);
4238 	return error;
4239 }
4240 EXPORT_SYMBOL(vfs_mknod);
4241 
4242 static int may_mknod(umode_t mode)
4243 {
4244 	switch (mode & S_IFMT) {
4245 	case S_IFREG:
4246 	case S_IFCHR:
4247 	case S_IFBLK:
4248 	case S_IFIFO:
4249 	case S_IFSOCK:
4250 	case 0: /* zero mode translates to S_IFREG */
4251 		return 0;
4252 	case S_IFDIR:
4253 		return -EPERM;
4254 	default:
4255 		return -EINVAL;
4256 	}
4257 }
4258 
4259 static int do_mknodat(int dfd, struct filename *name, umode_t mode,
4260 		unsigned int dev)
4261 {
4262 	struct mnt_idmap *idmap;
4263 	struct dentry *dentry;
4264 	struct path path;
4265 	int error;
4266 	unsigned int lookup_flags = 0;
4267 
4268 	error = may_mknod(mode);
4269 	if (error)
4270 		goto out1;
4271 retry:
4272 	dentry = filename_create(dfd, name, &path, lookup_flags);
4273 	error = PTR_ERR(dentry);
4274 	if (IS_ERR(dentry))
4275 		goto out1;
4276 
4277 	error = security_path_mknod(&path, dentry,
4278 			mode_strip_umask(path.dentry->d_inode, mode), dev);
4279 	if (error)
4280 		goto out2;
4281 
4282 	idmap = mnt_idmap(path.mnt);
4283 	switch (mode & S_IFMT) {
4284 		case 0: case S_IFREG:
4285 			error = vfs_create(idmap, path.dentry->d_inode,
4286 					   dentry, mode, true);
4287 			if (!error)
4288 				security_path_post_mknod(idmap, dentry);
4289 			break;
4290 		case S_IFCHR: case S_IFBLK:
4291 			error = vfs_mknod(idmap, path.dentry->d_inode,
4292 					  dentry, mode, new_decode_dev(dev));
4293 			break;
4294 		case S_IFIFO: case S_IFSOCK:
4295 			error = vfs_mknod(idmap, path.dentry->d_inode,
4296 					  dentry, mode, 0);
4297 			break;
4298 	}
4299 out2:
4300 	done_path_create(&path, dentry);
4301 	if (retry_estale(error, lookup_flags)) {
4302 		lookup_flags |= LOOKUP_REVAL;
4303 		goto retry;
4304 	}
4305 out1:
4306 	putname(name);
4307 	return error;
4308 }
4309 
4310 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
4311 		unsigned int, dev)
4312 {
4313 	return do_mknodat(dfd, getname(filename), mode, dev);
4314 }
4315 
4316 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
4317 {
4318 	return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
4319 }
4320 
4321 /**
4322  * vfs_mkdir - create directory returning correct dentry if possible
4323  * @idmap:	idmap of the mount the inode was found from
4324  * @dir:	inode of the parent directory
4325  * @dentry:	dentry of the child directory
4326  * @mode:	mode of the child directory
4327  *
4328  * Create a directory.
4329  *
4330  * If the inode has been found through an idmapped mount the idmap of
4331  * the vfsmount must be passed through @idmap. This function will then take
4332  * care to map the inode according to @idmap before checking permissions.
4333  * On non-idmapped mounts or if permission checking is to be performed on the
4334  * raw inode simply pass @nop_mnt_idmap.
4335  *
4336  * In the event that the filesystem does not use the *@dentry but leaves it
4337  * negative or unhashes it and possibly splices a different one returning it,
4338  * the original dentry is dput() and the alternate is returned.
4339  *
4340  * In case of an error the dentry is dput() and an ERR_PTR() is returned.
4341  */
4342 struct dentry *vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
4343 			 struct dentry *dentry, umode_t mode)
4344 {
4345 	int error;
4346 	unsigned max_links = dir->i_sb->s_max_links;
4347 	struct dentry *de;
4348 
4349 	error = may_create(idmap, dir, dentry);
4350 	if (error)
4351 		goto err;
4352 
4353 	error = -EPERM;
4354 	if (!dir->i_op->mkdir)
4355 		goto err;
4356 
4357 	mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0);
4358 	error = security_inode_mkdir(dir, dentry, mode);
4359 	if (error)
4360 		goto err;
4361 
4362 	error = -EMLINK;
4363 	if (max_links && dir->i_nlink >= max_links)
4364 		goto err;
4365 
4366 	de = dir->i_op->mkdir(idmap, dir, dentry, mode);
4367 	error = PTR_ERR(de);
4368 	if (IS_ERR(de))
4369 		goto err;
4370 	if (de) {
4371 		dput(dentry);
4372 		dentry = de;
4373 	}
4374 	fsnotify_mkdir(dir, dentry);
4375 	return dentry;
4376 
4377 err:
4378 	dput(dentry);
4379 	return ERR_PTR(error);
4380 }
4381 EXPORT_SYMBOL(vfs_mkdir);
4382 
4383 int do_mkdirat(int dfd, struct filename *name, umode_t mode)
4384 {
4385 	struct dentry *dentry;
4386 	struct path path;
4387 	int error;
4388 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
4389 
4390 retry:
4391 	dentry = filename_create(dfd, name, &path, lookup_flags);
4392 	error = PTR_ERR(dentry);
4393 	if (IS_ERR(dentry))
4394 		goto out_putname;
4395 
4396 	error = security_path_mkdir(&path, dentry,
4397 			mode_strip_umask(path.dentry->d_inode, mode));
4398 	if (!error) {
4399 		dentry = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode,
4400 				  dentry, mode);
4401 		if (IS_ERR(dentry))
4402 			error = PTR_ERR(dentry);
4403 	}
4404 	done_path_create(&path, dentry);
4405 	if (retry_estale(error, lookup_flags)) {
4406 		lookup_flags |= LOOKUP_REVAL;
4407 		goto retry;
4408 	}
4409 out_putname:
4410 	putname(name);
4411 	return error;
4412 }
4413 
4414 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
4415 {
4416 	return do_mkdirat(dfd, getname(pathname), mode);
4417 }
4418 
4419 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
4420 {
4421 	return do_mkdirat(AT_FDCWD, getname(pathname), mode);
4422 }
4423 
4424 /**
4425  * vfs_rmdir - remove directory
4426  * @idmap:	idmap of the mount the inode was found from
4427  * @dir:	inode of the parent directory
4428  * @dentry:	dentry of the child directory
4429  *
4430  * Remove a directory.
4431  *
4432  * If the inode has been found through an idmapped mount the idmap of
4433  * the vfsmount must be passed through @idmap. This function will then take
4434  * care to map the inode according to @idmap before checking permissions.
4435  * On non-idmapped mounts or if permission checking is to be performed on the
4436  * raw inode simply pass @nop_mnt_idmap.
4437  */
4438 int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir,
4439 		     struct dentry *dentry)
4440 {
4441 	int error = may_delete(idmap, dir, dentry, 1);
4442 
4443 	if (error)
4444 		return error;
4445 
4446 	if (!dir->i_op->rmdir)
4447 		return -EPERM;
4448 
4449 	dget(dentry);
4450 	inode_lock(dentry->d_inode);
4451 
4452 	error = -EBUSY;
4453 	if (is_local_mountpoint(dentry) ||
4454 	    (dentry->d_inode->i_flags & S_KERNEL_FILE))
4455 		goto out;
4456 
4457 	error = security_inode_rmdir(dir, dentry);
4458 	if (error)
4459 		goto out;
4460 
4461 	error = dir->i_op->rmdir(dir, dentry);
4462 	if (error)
4463 		goto out;
4464 
4465 	shrink_dcache_parent(dentry);
4466 	dentry->d_inode->i_flags |= S_DEAD;
4467 	dont_mount(dentry);
4468 	detach_mounts(dentry);
4469 
4470 out:
4471 	inode_unlock(dentry->d_inode);
4472 	dput(dentry);
4473 	if (!error)
4474 		d_delete_notify(dir, dentry);
4475 	return error;
4476 }
4477 EXPORT_SYMBOL(vfs_rmdir);
4478 
4479 int do_rmdir(int dfd, struct filename *name)
4480 {
4481 	int error;
4482 	struct dentry *dentry;
4483 	struct path path;
4484 	struct qstr last;
4485 	int type;
4486 	unsigned int lookup_flags = 0;
4487 retry:
4488 	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4489 	if (error)
4490 		goto exit1;
4491 
4492 	switch (type) {
4493 	case LAST_DOTDOT:
4494 		error = -ENOTEMPTY;
4495 		goto exit2;
4496 	case LAST_DOT:
4497 		error = -EINVAL;
4498 		goto exit2;
4499 	case LAST_ROOT:
4500 		error = -EBUSY;
4501 		goto exit2;
4502 	}
4503 
4504 	error = mnt_want_write(path.mnt);
4505 	if (error)
4506 		goto exit2;
4507 
4508 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4509 	dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4510 	error = PTR_ERR(dentry);
4511 	if (IS_ERR(dentry))
4512 		goto exit3;
4513 	error = security_path_rmdir(&path, dentry);
4514 	if (error)
4515 		goto exit4;
4516 	error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry);
4517 exit4:
4518 	dput(dentry);
4519 exit3:
4520 	inode_unlock(path.dentry->d_inode);
4521 	mnt_drop_write(path.mnt);
4522 exit2:
4523 	path_put(&path);
4524 	if (retry_estale(error, lookup_flags)) {
4525 		lookup_flags |= LOOKUP_REVAL;
4526 		goto retry;
4527 	}
4528 exit1:
4529 	putname(name);
4530 	return error;
4531 }
4532 
4533 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4534 {
4535 	return do_rmdir(AT_FDCWD, getname(pathname));
4536 }
4537 
4538 /**
4539  * vfs_unlink - unlink a filesystem object
4540  * @idmap:	idmap of the mount the inode was found from
4541  * @dir:	parent directory
4542  * @dentry:	victim
4543  * @delegated_inode: returns victim inode, if the inode is delegated.
4544  *
4545  * The caller must hold dir->i_mutex.
4546  *
4547  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4548  * return a reference to the inode in delegated_inode.  The caller
4549  * should then break the delegation on that inode and retry.  Because
4550  * breaking a delegation may take a long time, the caller should drop
4551  * dir->i_mutex before doing so.
4552  *
4553  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4554  * be appropriate for callers that expect the underlying filesystem not
4555  * to be NFS exported.
4556  *
4557  * If the inode has been found through an idmapped mount the idmap of
4558  * the vfsmount must be passed through @idmap. This function will then take
4559  * care to map the inode according to @idmap before checking permissions.
4560  * On non-idmapped mounts or if permission checking is to be performed on the
4561  * raw inode simply pass @nop_mnt_idmap.
4562  */
4563 int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir,
4564 	       struct dentry *dentry, struct inode **delegated_inode)
4565 {
4566 	struct inode *target = dentry->d_inode;
4567 	int error = may_delete(idmap, dir, dentry, 0);
4568 
4569 	if (error)
4570 		return error;
4571 
4572 	if (!dir->i_op->unlink)
4573 		return -EPERM;
4574 
4575 	inode_lock(target);
4576 	if (IS_SWAPFILE(target))
4577 		error = -EPERM;
4578 	else if (is_local_mountpoint(dentry))
4579 		error = -EBUSY;
4580 	else {
4581 		error = security_inode_unlink(dir, dentry);
4582 		if (!error) {
4583 			error = try_break_deleg(target, delegated_inode);
4584 			if (error)
4585 				goto out;
4586 			error = dir->i_op->unlink(dir, dentry);
4587 			if (!error) {
4588 				dont_mount(dentry);
4589 				detach_mounts(dentry);
4590 			}
4591 		}
4592 	}
4593 out:
4594 	inode_unlock(target);
4595 
4596 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
4597 	if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4598 		fsnotify_unlink(dir, dentry);
4599 	} else if (!error) {
4600 		fsnotify_link_count(target);
4601 		d_delete_notify(dir, dentry);
4602 	}
4603 
4604 	return error;
4605 }
4606 EXPORT_SYMBOL(vfs_unlink);
4607 
4608 /*
4609  * Make sure that the actual truncation of the file will occur outside its
4610  * directory's i_mutex.  Truncate can take a long time if there is a lot of
4611  * writeout happening, and we don't want to prevent access to the directory
4612  * while waiting on the I/O.
4613  */
4614 int do_unlinkat(int dfd, struct filename *name)
4615 {
4616 	int error;
4617 	struct dentry *dentry;
4618 	struct path path;
4619 	struct qstr last;
4620 	int type;
4621 	struct inode *inode = NULL;
4622 	struct inode *delegated_inode = NULL;
4623 	unsigned int lookup_flags = 0;
4624 retry:
4625 	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4626 	if (error)
4627 		goto exit1;
4628 
4629 	error = -EISDIR;
4630 	if (type != LAST_NORM)
4631 		goto exit2;
4632 
4633 	error = mnt_want_write(path.mnt);
4634 	if (error)
4635 		goto exit2;
4636 retry_deleg:
4637 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4638 	dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4639 	error = PTR_ERR(dentry);
4640 	if (!IS_ERR(dentry)) {
4641 
4642 		/* Why not before? Because we want correct error value */
4643 		if (last.name[last.len])
4644 			goto slashes;
4645 		inode = dentry->d_inode;
4646 		ihold(inode);
4647 		error = security_path_unlink(&path, dentry);
4648 		if (error)
4649 			goto exit3;
4650 		error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4651 				   dentry, &delegated_inode);
4652 exit3:
4653 		dput(dentry);
4654 	}
4655 	inode_unlock(path.dentry->d_inode);
4656 	if (inode)
4657 		iput(inode);	/* truncate the inode here */
4658 	inode = NULL;
4659 	if (delegated_inode) {
4660 		error = break_deleg_wait(&delegated_inode);
4661 		if (!error)
4662 			goto retry_deleg;
4663 	}
4664 	mnt_drop_write(path.mnt);
4665 exit2:
4666 	path_put(&path);
4667 	if (retry_estale(error, lookup_flags)) {
4668 		lookup_flags |= LOOKUP_REVAL;
4669 		inode = NULL;
4670 		goto retry;
4671 	}
4672 exit1:
4673 	putname(name);
4674 	return error;
4675 
4676 slashes:
4677 	if (d_is_dir(dentry))
4678 		error = -EISDIR;
4679 	else
4680 		error = -ENOTDIR;
4681 	goto exit3;
4682 }
4683 
4684 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4685 {
4686 	if ((flag & ~AT_REMOVEDIR) != 0)
4687 		return -EINVAL;
4688 
4689 	if (flag & AT_REMOVEDIR)
4690 		return do_rmdir(dfd, getname(pathname));
4691 	return do_unlinkat(dfd, getname(pathname));
4692 }
4693 
4694 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4695 {
4696 	return do_unlinkat(AT_FDCWD, getname(pathname));
4697 }
4698 
4699 /**
4700  * vfs_symlink - create symlink
4701  * @idmap:	idmap of the mount the inode was found from
4702  * @dir:	inode of the parent directory
4703  * @dentry:	dentry of the child symlink file
4704  * @oldname:	name of the file to link to
4705  *
4706  * Create a symlink.
4707  *
4708  * If the inode has been found through an idmapped mount the idmap of
4709  * the vfsmount must be passed through @idmap. This function will then take
4710  * care to map the inode according to @idmap before checking permissions.
4711  * On non-idmapped mounts or if permission checking is to be performed on the
4712  * raw inode simply pass @nop_mnt_idmap.
4713  */
4714 int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
4715 		struct dentry *dentry, const char *oldname)
4716 {
4717 	int error;
4718 
4719 	error = may_create(idmap, dir, dentry);
4720 	if (error)
4721 		return error;
4722 
4723 	if (!dir->i_op->symlink)
4724 		return -EPERM;
4725 
4726 	error = security_inode_symlink(dir, dentry, oldname);
4727 	if (error)
4728 		return error;
4729 
4730 	error = dir->i_op->symlink(idmap, dir, dentry, oldname);
4731 	if (!error)
4732 		fsnotify_create(dir, dentry);
4733 	return error;
4734 }
4735 EXPORT_SYMBOL(vfs_symlink);
4736 
4737 int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
4738 {
4739 	int error;
4740 	struct dentry *dentry;
4741 	struct path path;
4742 	unsigned int lookup_flags = 0;
4743 
4744 	if (IS_ERR(from)) {
4745 		error = PTR_ERR(from);
4746 		goto out_putnames;
4747 	}
4748 retry:
4749 	dentry = filename_create(newdfd, to, &path, lookup_flags);
4750 	error = PTR_ERR(dentry);
4751 	if (IS_ERR(dentry))
4752 		goto out_putnames;
4753 
4754 	error = security_path_symlink(&path, dentry, from->name);
4755 	if (!error)
4756 		error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4757 				    dentry, from->name);
4758 	done_path_create(&path, dentry);
4759 	if (retry_estale(error, lookup_flags)) {
4760 		lookup_flags |= LOOKUP_REVAL;
4761 		goto retry;
4762 	}
4763 out_putnames:
4764 	putname(to);
4765 	putname(from);
4766 	return error;
4767 }
4768 
4769 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4770 		int, newdfd, const char __user *, newname)
4771 {
4772 	return do_symlinkat(getname(oldname), newdfd, getname(newname));
4773 }
4774 
4775 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4776 {
4777 	return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
4778 }
4779 
4780 /**
4781  * vfs_link - create a new link
4782  * @old_dentry:	object to be linked
4783  * @idmap:	idmap of the mount
4784  * @dir:	new parent
4785  * @new_dentry:	where to create the new link
4786  * @delegated_inode: returns inode needing a delegation break
4787  *
4788  * The caller must hold dir->i_mutex
4789  *
4790  * If vfs_link discovers a delegation on the to-be-linked file in need
4791  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4792  * inode in delegated_inode.  The caller should then break the delegation
4793  * and retry.  Because breaking a delegation may take a long time, the
4794  * caller should drop the i_mutex before doing so.
4795  *
4796  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4797  * be appropriate for callers that expect the underlying filesystem not
4798  * to be NFS exported.
4799  *
4800  * If the inode has been found through an idmapped mount the idmap of
4801  * the vfsmount must be passed through @idmap. This function will then take
4802  * care to map the inode according to @idmap before checking permissions.
4803  * On non-idmapped mounts or if permission checking is to be performed on the
4804  * raw inode simply pass @nop_mnt_idmap.
4805  */
4806 int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap,
4807 	     struct inode *dir, struct dentry *new_dentry,
4808 	     struct inode **delegated_inode)
4809 {
4810 	struct inode *inode = old_dentry->d_inode;
4811 	unsigned max_links = dir->i_sb->s_max_links;
4812 	int error;
4813 
4814 	if (!inode)
4815 		return -ENOENT;
4816 
4817 	error = may_create(idmap, dir, new_dentry);
4818 	if (error)
4819 		return error;
4820 
4821 	if (dir->i_sb != inode->i_sb)
4822 		return -EXDEV;
4823 
4824 	/*
4825 	 * A link to an append-only or immutable file cannot be created.
4826 	 */
4827 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4828 		return -EPERM;
4829 	/*
4830 	 * Updating the link count will likely cause i_uid and i_gid to
4831 	 * be writen back improperly if their true value is unknown to
4832 	 * the vfs.
4833 	 */
4834 	if (HAS_UNMAPPED_ID(idmap, inode))
4835 		return -EPERM;
4836 	if (!dir->i_op->link)
4837 		return -EPERM;
4838 	if (S_ISDIR(inode->i_mode))
4839 		return -EPERM;
4840 
4841 	error = security_inode_link(old_dentry, dir, new_dentry);
4842 	if (error)
4843 		return error;
4844 
4845 	inode_lock(inode);
4846 	/* Make sure we don't allow creating hardlink to an unlinked file */
4847 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4848 		error =  -ENOENT;
4849 	else if (max_links && inode->i_nlink >= max_links)
4850 		error = -EMLINK;
4851 	else {
4852 		error = try_break_deleg(inode, delegated_inode);
4853 		if (!error)
4854 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4855 	}
4856 
4857 	if (!error && (inode->i_state & I_LINKABLE)) {
4858 		spin_lock(&inode->i_lock);
4859 		inode->i_state &= ~I_LINKABLE;
4860 		spin_unlock(&inode->i_lock);
4861 	}
4862 	inode_unlock(inode);
4863 	if (!error)
4864 		fsnotify_link(dir, inode, new_dentry);
4865 	return error;
4866 }
4867 EXPORT_SYMBOL(vfs_link);
4868 
4869 /*
4870  * Hardlinks are often used in delicate situations.  We avoid
4871  * security-related surprises by not following symlinks on the
4872  * newname.  --KAB
4873  *
4874  * We don't follow them on the oldname either to be compatible
4875  * with linux 2.0, and to avoid hard-linking to directories
4876  * and other special files.  --ADM
4877  */
4878 int do_linkat(int olddfd, struct filename *old, int newdfd,
4879 	      struct filename *new, int flags)
4880 {
4881 	struct mnt_idmap *idmap;
4882 	struct dentry *new_dentry;
4883 	struct path old_path, new_path;
4884 	struct inode *delegated_inode = NULL;
4885 	int how = 0;
4886 	int error;
4887 
4888 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
4889 		error = -EINVAL;
4890 		goto out_putnames;
4891 	}
4892 	/*
4893 	 * To use null names we require CAP_DAC_READ_SEARCH or
4894 	 * that the open-time creds of the dfd matches current.
4895 	 * This ensures that not everyone will be able to create
4896 	 * a hardlink using the passed file descriptor.
4897 	 */
4898 	if (flags & AT_EMPTY_PATH)
4899 		how |= LOOKUP_LINKAT_EMPTY;
4900 
4901 	if (flags & AT_SYMLINK_FOLLOW)
4902 		how |= LOOKUP_FOLLOW;
4903 retry:
4904 	error = filename_lookup(olddfd, old, how, &old_path, NULL);
4905 	if (error)
4906 		goto out_putnames;
4907 
4908 	new_dentry = filename_create(newdfd, new, &new_path,
4909 					(how & LOOKUP_REVAL));
4910 	error = PTR_ERR(new_dentry);
4911 	if (IS_ERR(new_dentry))
4912 		goto out_putpath;
4913 
4914 	error = -EXDEV;
4915 	if (old_path.mnt != new_path.mnt)
4916 		goto out_dput;
4917 	idmap = mnt_idmap(new_path.mnt);
4918 	error = may_linkat(idmap, &old_path);
4919 	if (unlikely(error))
4920 		goto out_dput;
4921 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4922 	if (error)
4923 		goto out_dput;
4924 	error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode,
4925 			 new_dentry, &delegated_inode);
4926 out_dput:
4927 	done_path_create(&new_path, new_dentry);
4928 	if (delegated_inode) {
4929 		error = break_deleg_wait(&delegated_inode);
4930 		if (!error) {
4931 			path_put(&old_path);
4932 			goto retry;
4933 		}
4934 	}
4935 	if (retry_estale(error, how)) {
4936 		path_put(&old_path);
4937 		how |= LOOKUP_REVAL;
4938 		goto retry;
4939 	}
4940 out_putpath:
4941 	path_put(&old_path);
4942 out_putnames:
4943 	putname(old);
4944 	putname(new);
4945 
4946 	return error;
4947 }
4948 
4949 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4950 		int, newdfd, const char __user *, newname, int, flags)
4951 {
4952 	return do_linkat(olddfd, getname_uflags(oldname, flags),
4953 		newdfd, getname(newname), flags);
4954 }
4955 
4956 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4957 {
4958 	return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
4959 }
4960 
4961 /**
4962  * vfs_rename - rename a filesystem object
4963  * @rd:		pointer to &struct renamedata info
4964  *
4965  * The caller must hold multiple mutexes--see lock_rename()).
4966  *
4967  * If vfs_rename discovers a delegation in need of breaking at either
4968  * the source or destination, it will return -EWOULDBLOCK and return a
4969  * reference to the inode in delegated_inode.  The caller should then
4970  * break the delegation and retry.  Because breaking a delegation may
4971  * take a long time, the caller should drop all locks before doing
4972  * so.
4973  *
4974  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4975  * be appropriate for callers that expect the underlying filesystem not
4976  * to be NFS exported.
4977  *
4978  * The worst of all namespace operations - renaming directory. "Perverted"
4979  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4980  * Problems:
4981  *
4982  *	a) we can get into loop creation.
4983  *	b) race potential - two innocent renames can create a loop together.
4984  *	   That's where 4.4BSD screws up. Current fix: serialization on
4985  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4986  *	   story.
4987  *	c) we may have to lock up to _four_ objects - parents and victim (if it exists),
4988  *	   and source (if it's a non-directory or a subdirectory that moves to
4989  *	   different parent).
4990  *	   And that - after we got ->i_mutex on parents (until then we don't know
4991  *	   whether the target exists).  Solution: try to be smart with locking
4992  *	   order for inodes.  We rely on the fact that tree topology may change
4993  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4994  *	   move will be locked.  Thus we can rank directories by the tree
4995  *	   (ancestors first) and rank all non-directories after them.
4996  *	   That works since everybody except rename does "lock parent, lookup,
4997  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4998  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4999  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
5000  *	   we'd better make sure that there's no link(2) for them.
5001  *	d) conversion from fhandle to dentry may come in the wrong moment - when
5002  *	   we are removing the target. Solution: we will have to grab ->i_mutex
5003  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
5004  *	   ->i_mutex on parents, which works but leads to some truly excessive
5005  *	   locking].
5006  */
5007 int vfs_rename(struct renamedata *rd)
5008 {
5009 	int error;
5010 	struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
5011 	struct dentry *old_dentry = rd->old_dentry;
5012 	struct dentry *new_dentry = rd->new_dentry;
5013 	struct inode **delegated_inode = rd->delegated_inode;
5014 	unsigned int flags = rd->flags;
5015 	bool is_dir = d_is_dir(old_dentry);
5016 	struct inode *source = old_dentry->d_inode;
5017 	struct inode *target = new_dentry->d_inode;
5018 	bool new_is_dir = false;
5019 	unsigned max_links = new_dir->i_sb->s_max_links;
5020 	struct name_snapshot old_name;
5021 	bool lock_old_subdir, lock_new_subdir;
5022 
5023 	if (source == target)
5024 		return 0;
5025 
5026 	error = may_delete(rd->old_mnt_idmap, old_dir, old_dentry, is_dir);
5027 	if (error)
5028 		return error;
5029 
5030 	if (!target) {
5031 		error = may_create(rd->new_mnt_idmap, new_dir, new_dentry);
5032 	} else {
5033 		new_is_dir = d_is_dir(new_dentry);
5034 
5035 		if (!(flags & RENAME_EXCHANGE))
5036 			error = may_delete(rd->new_mnt_idmap, new_dir,
5037 					   new_dentry, is_dir);
5038 		else
5039 			error = may_delete(rd->new_mnt_idmap, new_dir,
5040 					   new_dentry, new_is_dir);
5041 	}
5042 	if (error)
5043 		return error;
5044 
5045 	if (!old_dir->i_op->rename)
5046 		return -EPERM;
5047 
5048 	/*
5049 	 * If we are going to change the parent - check write permissions,
5050 	 * we'll need to flip '..'.
5051 	 */
5052 	if (new_dir != old_dir) {
5053 		if (is_dir) {
5054 			error = inode_permission(rd->old_mnt_idmap, source,
5055 						 MAY_WRITE);
5056 			if (error)
5057 				return error;
5058 		}
5059 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
5060 			error = inode_permission(rd->new_mnt_idmap, target,
5061 						 MAY_WRITE);
5062 			if (error)
5063 				return error;
5064 		}
5065 	}
5066 
5067 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
5068 				      flags);
5069 	if (error)
5070 		return error;
5071 
5072 	take_dentry_name_snapshot(&old_name, old_dentry);
5073 	dget(new_dentry);
5074 	/*
5075 	 * Lock children.
5076 	 * The source subdirectory needs to be locked on cross-directory
5077 	 * rename or cross-directory exchange since its parent changes.
5078 	 * The target subdirectory needs to be locked on cross-directory
5079 	 * exchange due to parent change and on any rename due to becoming
5080 	 * a victim.
5081 	 * Non-directories need locking in all cases (for NFS reasons);
5082 	 * they get locked after any subdirectories (in inode address order).
5083 	 *
5084 	 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE.
5085 	 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex.
5086 	 */
5087 	lock_old_subdir = new_dir != old_dir;
5088 	lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE);
5089 	if (is_dir) {
5090 		if (lock_old_subdir)
5091 			inode_lock_nested(source, I_MUTEX_CHILD);
5092 		if (target && (!new_is_dir || lock_new_subdir))
5093 			inode_lock(target);
5094 	} else if (new_is_dir) {
5095 		if (lock_new_subdir)
5096 			inode_lock_nested(target, I_MUTEX_CHILD);
5097 		inode_lock(source);
5098 	} else {
5099 		lock_two_nondirectories(source, target);
5100 	}
5101 
5102 	error = -EPERM;
5103 	if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
5104 		goto out;
5105 
5106 	error = -EBUSY;
5107 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
5108 		goto out;
5109 
5110 	if (max_links && new_dir != old_dir) {
5111 		error = -EMLINK;
5112 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
5113 			goto out;
5114 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
5115 		    old_dir->i_nlink >= max_links)
5116 			goto out;
5117 	}
5118 	if (!is_dir) {
5119 		error = try_break_deleg(source, delegated_inode);
5120 		if (error)
5121 			goto out;
5122 	}
5123 	if (target && !new_is_dir) {
5124 		error = try_break_deleg(target, delegated_inode);
5125 		if (error)
5126 			goto out;
5127 	}
5128 	error = old_dir->i_op->rename(rd->new_mnt_idmap, old_dir, old_dentry,
5129 				      new_dir, new_dentry, flags);
5130 	if (error)
5131 		goto out;
5132 
5133 	if (!(flags & RENAME_EXCHANGE) && target) {
5134 		if (is_dir) {
5135 			shrink_dcache_parent(new_dentry);
5136 			target->i_flags |= S_DEAD;
5137 		}
5138 		dont_mount(new_dentry);
5139 		detach_mounts(new_dentry);
5140 	}
5141 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
5142 		if (!(flags & RENAME_EXCHANGE))
5143 			d_move(old_dentry, new_dentry);
5144 		else
5145 			d_exchange(old_dentry, new_dentry);
5146 	}
5147 out:
5148 	if (!is_dir || lock_old_subdir)
5149 		inode_unlock(source);
5150 	if (target && (!new_is_dir || lock_new_subdir))
5151 		inode_unlock(target);
5152 	dput(new_dentry);
5153 	if (!error) {
5154 		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
5155 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
5156 		if (flags & RENAME_EXCHANGE) {
5157 			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
5158 				      new_is_dir, NULL, new_dentry);
5159 		}
5160 	}
5161 	release_dentry_name_snapshot(&old_name);
5162 
5163 	return error;
5164 }
5165 EXPORT_SYMBOL(vfs_rename);
5166 
5167 int do_renameat2(int olddfd, struct filename *from, int newdfd,
5168 		 struct filename *to, unsigned int flags)
5169 {
5170 	struct renamedata rd;
5171 	struct dentry *old_dentry, *new_dentry;
5172 	struct dentry *trap;
5173 	struct path old_path, new_path;
5174 	struct qstr old_last, new_last;
5175 	int old_type, new_type;
5176 	struct inode *delegated_inode = NULL;
5177 	unsigned int lookup_flags = 0, target_flags =
5178 		LOOKUP_RENAME_TARGET | LOOKUP_CREATE;
5179 	bool should_retry = false;
5180 	int error = -EINVAL;
5181 
5182 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
5183 		goto put_names;
5184 
5185 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
5186 	    (flags & RENAME_EXCHANGE))
5187 		goto put_names;
5188 
5189 	if (flags & RENAME_EXCHANGE)
5190 		target_flags = 0;
5191 	if (flags & RENAME_NOREPLACE)
5192 		target_flags |= LOOKUP_EXCL;
5193 
5194 retry:
5195 	error = filename_parentat(olddfd, from, lookup_flags, &old_path,
5196 				  &old_last, &old_type);
5197 	if (error)
5198 		goto put_names;
5199 
5200 	error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
5201 				  &new_type);
5202 	if (error)
5203 		goto exit1;
5204 
5205 	error = -EXDEV;
5206 	if (old_path.mnt != new_path.mnt)
5207 		goto exit2;
5208 
5209 	error = -EBUSY;
5210 	if (old_type != LAST_NORM)
5211 		goto exit2;
5212 
5213 	if (flags & RENAME_NOREPLACE)
5214 		error = -EEXIST;
5215 	if (new_type != LAST_NORM)
5216 		goto exit2;
5217 
5218 	error = mnt_want_write(old_path.mnt);
5219 	if (error)
5220 		goto exit2;
5221 
5222 retry_deleg:
5223 	trap = lock_rename(new_path.dentry, old_path.dentry);
5224 	if (IS_ERR(trap)) {
5225 		error = PTR_ERR(trap);
5226 		goto exit_lock_rename;
5227 	}
5228 
5229 	old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry,
5230 					  lookup_flags);
5231 	error = PTR_ERR(old_dentry);
5232 	if (IS_ERR(old_dentry))
5233 		goto exit3;
5234 	new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry,
5235 					  lookup_flags | target_flags);
5236 	error = PTR_ERR(new_dentry);
5237 	if (IS_ERR(new_dentry))
5238 		goto exit4;
5239 	if (flags & RENAME_EXCHANGE) {
5240 		if (!d_is_dir(new_dentry)) {
5241 			error = -ENOTDIR;
5242 			if (new_last.name[new_last.len])
5243 				goto exit5;
5244 		}
5245 	}
5246 	/* unless the source is a directory trailing slashes give -ENOTDIR */
5247 	if (!d_is_dir(old_dentry)) {
5248 		error = -ENOTDIR;
5249 		if (old_last.name[old_last.len])
5250 			goto exit5;
5251 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
5252 			goto exit5;
5253 	}
5254 	/* source should not be ancestor of target */
5255 	error = -EINVAL;
5256 	if (old_dentry == trap)
5257 		goto exit5;
5258 	/* target should not be an ancestor of source */
5259 	if (!(flags & RENAME_EXCHANGE))
5260 		error = -ENOTEMPTY;
5261 	if (new_dentry == trap)
5262 		goto exit5;
5263 
5264 	error = security_path_rename(&old_path, old_dentry,
5265 				     &new_path, new_dentry, flags);
5266 	if (error)
5267 		goto exit5;
5268 
5269 	rd.old_dir	   = old_path.dentry->d_inode;
5270 	rd.old_dentry	   = old_dentry;
5271 	rd.old_mnt_idmap   = mnt_idmap(old_path.mnt);
5272 	rd.new_dir	   = new_path.dentry->d_inode;
5273 	rd.new_dentry	   = new_dentry;
5274 	rd.new_mnt_idmap   = mnt_idmap(new_path.mnt);
5275 	rd.delegated_inode = &delegated_inode;
5276 	rd.flags	   = flags;
5277 	error = vfs_rename(&rd);
5278 exit5:
5279 	dput(new_dentry);
5280 exit4:
5281 	dput(old_dentry);
5282 exit3:
5283 	unlock_rename(new_path.dentry, old_path.dentry);
5284 exit_lock_rename:
5285 	if (delegated_inode) {
5286 		error = break_deleg_wait(&delegated_inode);
5287 		if (!error)
5288 			goto retry_deleg;
5289 	}
5290 	mnt_drop_write(old_path.mnt);
5291 exit2:
5292 	if (retry_estale(error, lookup_flags))
5293 		should_retry = true;
5294 	path_put(&new_path);
5295 exit1:
5296 	path_put(&old_path);
5297 	if (should_retry) {
5298 		should_retry = false;
5299 		lookup_flags |= LOOKUP_REVAL;
5300 		goto retry;
5301 	}
5302 put_names:
5303 	putname(from);
5304 	putname(to);
5305 	return error;
5306 }
5307 
5308 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
5309 		int, newdfd, const char __user *, newname, unsigned int, flags)
5310 {
5311 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5312 				flags);
5313 }
5314 
5315 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
5316 		int, newdfd, const char __user *, newname)
5317 {
5318 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5319 				0);
5320 }
5321 
5322 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
5323 {
5324 	return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
5325 				getname(newname), 0);
5326 }
5327 
5328 int readlink_copy(char __user *buffer, int buflen, const char *link, int linklen)
5329 {
5330 	int copylen;
5331 
5332 	copylen = linklen;
5333 	if (unlikely(copylen > (unsigned) buflen))
5334 		copylen = buflen;
5335 	if (copy_to_user(buffer, link, copylen))
5336 		copylen = -EFAULT;
5337 	return copylen;
5338 }
5339 
5340 /**
5341  * vfs_readlink - copy symlink body into userspace buffer
5342  * @dentry: dentry on which to get symbolic link
5343  * @buffer: user memory pointer
5344  * @buflen: size of buffer
5345  *
5346  * Does not touch atime.  That's up to the caller if necessary
5347  *
5348  * Does not call security hook.
5349  */
5350 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5351 {
5352 	struct inode *inode = d_inode(dentry);
5353 	DEFINE_DELAYED_CALL(done);
5354 	const char *link;
5355 	int res;
5356 
5357 	if (inode->i_opflags & IOP_CACHED_LINK)
5358 		return readlink_copy(buffer, buflen, inode->i_link, inode->i_linklen);
5359 
5360 	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
5361 		if (unlikely(inode->i_op->readlink))
5362 			return inode->i_op->readlink(dentry, buffer, buflen);
5363 
5364 		if (!d_is_symlink(dentry))
5365 			return -EINVAL;
5366 
5367 		spin_lock(&inode->i_lock);
5368 		inode->i_opflags |= IOP_DEFAULT_READLINK;
5369 		spin_unlock(&inode->i_lock);
5370 	}
5371 
5372 	link = READ_ONCE(inode->i_link);
5373 	if (!link) {
5374 		link = inode->i_op->get_link(dentry, inode, &done);
5375 		if (IS_ERR(link))
5376 			return PTR_ERR(link);
5377 	}
5378 	res = readlink_copy(buffer, buflen, link, strlen(link));
5379 	do_delayed_call(&done);
5380 	return res;
5381 }
5382 EXPORT_SYMBOL(vfs_readlink);
5383 
5384 /**
5385  * vfs_get_link - get symlink body
5386  * @dentry: dentry on which to get symbolic link
5387  * @done: caller needs to free returned data with this
5388  *
5389  * Calls security hook and i_op->get_link() on the supplied inode.
5390  *
5391  * It does not touch atime.  That's up to the caller if necessary.
5392  *
5393  * Does not work on "special" symlinks like /proc/$$/fd/N
5394  */
5395 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
5396 {
5397 	const char *res = ERR_PTR(-EINVAL);
5398 	struct inode *inode = d_inode(dentry);
5399 
5400 	if (d_is_symlink(dentry)) {
5401 		res = ERR_PTR(security_inode_readlink(dentry));
5402 		if (!res)
5403 			res = inode->i_op->get_link(dentry, inode, done);
5404 	}
5405 	return res;
5406 }
5407 EXPORT_SYMBOL(vfs_get_link);
5408 
5409 /* get the link contents into pagecache */
5410 static char *__page_get_link(struct dentry *dentry, struct inode *inode,
5411 			     struct delayed_call *callback)
5412 {
5413 	struct folio *folio;
5414 	struct address_space *mapping = inode->i_mapping;
5415 
5416 	if (!dentry) {
5417 		folio = filemap_get_folio(mapping, 0);
5418 		if (IS_ERR(folio))
5419 			return ERR_PTR(-ECHILD);
5420 		if (!folio_test_uptodate(folio)) {
5421 			folio_put(folio);
5422 			return ERR_PTR(-ECHILD);
5423 		}
5424 	} else {
5425 		folio = read_mapping_folio(mapping, 0, NULL);
5426 		if (IS_ERR(folio))
5427 			return ERR_CAST(folio);
5428 	}
5429 	set_delayed_call(callback, page_put_link, folio);
5430 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
5431 	return folio_address(folio);
5432 }
5433 
5434 const char *page_get_link_raw(struct dentry *dentry, struct inode *inode,
5435 			      struct delayed_call *callback)
5436 {
5437 	return __page_get_link(dentry, inode, callback);
5438 }
5439 EXPORT_SYMBOL_GPL(page_get_link_raw);
5440 
5441 /**
5442  * page_get_link() - An implementation of the get_link inode_operation.
5443  * @dentry: The directory entry which is the symlink.
5444  * @inode: The inode for the symlink.
5445  * @callback: Used to drop the reference to the symlink.
5446  *
5447  * Filesystems which store their symlinks in the page cache should use
5448  * this to implement the get_link() member of their inode_operations.
5449  *
5450  * Return: A pointer to the NUL-terminated symlink.
5451  */
5452 const char *page_get_link(struct dentry *dentry, struct inode *inode,
5453 					struct delayed_call *callback)
5454 {
5455 	char *kaddr = __page_get_link(dentry, inode, callback);
5456 
5457 	if (!IS_ERR(kaddr))
5458 		nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
5459 	return kaddr;
5460 }
5461 EXPORT_SYMBOL(page_get_link);
5462 
5463 /**
5464  * page_put_link() - Drop the reference to the symlink.
5465  * @arg: The folio which contains the symlink.
5466  *
5467  * This is used internally by page_get_link().  It is exported for use
5468  * by filesystems which need to implement a variant of page_get_link()
5469  * themselves.  Despite the apparent symmetry, filesystems which use
5470  * page_get_link() do not need to call page_put_link().
5471  *
5472  * The argument, while it has a void pointer type, must be a pointer to
5473  * the folio which was retrieved from the page cache.  The delayed_call
5474  * infrastructure is used to drop the reference count once the caller
5475  * is done with the symlink.
5476  */
5477 void page_put_link(void *arg)
5478 {
5479 	folio_put(arg);
5480 }
5481 EXPORT_SYMBOL(page_put_link);
5482 
5483 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5484 {
5485 	const char *link;
5486 	int res;
5487 
5488 	DEFINE_DELAYED_CALL(done);
5489 	link = page_get_link(dentry, d_inode(dentry), &done);
5490 	res = PTR_ERR(link);
5491 	if (!IS_ERR(link))
5492 		res = readlink_copy(buffer, buflen, link, strlen(link));
5493 	do_delayed_call(&done);
5494 	return res;
5495 }
5496 EXPORT_SYMBOL(page_readlink);
5497 
5498 int page_symlink(struct inode *inode, const char *symname, int len)
5499 {
5500 	struct address_space *mapping = inode->i_mapping;
5501 	const struct address_space_operations *aops = mapping->a_ops;
5502 	bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS);
5503 	struct folio *folio;
5504 	void *fsdata = NULL;
5505 	int err;
5506 	unsigned int flags;
5507 
5508 retry:
5509 	if (nofs)
5510 		flags = memalloc_nofs_save();
5511 	err = aops->write_begin(NULL, mapping, 0, len-1, &folio, &fsdata);
5512 	if (nofs)
5513 		memalloc_nofs_restore(flags);
5514 	if (err)
5515 		goto fail;
5516 
5517 	memcpy(folio_address(folio), symname, len - 1);
5518 
5519 	err = aops->write_end(NULL, mapping, 0, len - 1, len - 1,
5520 						folio, fsdata);
5521 	if (err < 0)
5522 		goto fail;
5523 	if (err < len-1)
5524 		goto retry;
5525 
5526 	mark_inode_dirty(inode);
5527 	return 0;
5528 fail:
5529 	return err;
5530 }
5531 EXPORT_SYMBOL(page_symlink);
5532 
5533 const struct inode_operations page_symlink_inode_operations = {
5534 	.get_link	= page_get_link,
5535 };
5536 EXPORT_SYMBOL(page_symlink_inode_operations);
5537