1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Red Hat, Inc. 4 * Copyright (C) 2016-2023 Christoph Hellwig. 5 */ 6 #include <linux/module.h> 7 #include <linux/compiler.h> 8 #include <linux/fs.h> 9 #include <linux/iomap.h> 10 #include <linux/pagemap.h> 11 #include <linux/uio.h> 12 #include <linux/buffer_head.h> 13 #include <linux/dax.h> 14 #include <linux/writeback.h> 15 #include <linux/swap.h> 16 #include <linux/bio.h> 17 #include <linux/sched/signal.h> 18 #include <linux/migrate.h> 19 #include "internal.h" 20 #include "trace.h" 21 22 #include "../internal.h" 23 24 /* 25 * Structure allocated for each folio to track per-block uptodate, dirty state 26 * and I/O completions. 27 */ 28 struct iomap_folio_state { 29 spinlock_t state_lock; 30 unsigned int read_bytes_pending; 31 atomic_t write_bytes_pending; 32 33 /* 34 * Each block has two bits in this bitmap: 35 * Bits [0..blocks_per_folio) has the uptodate status. 36 * Bits [b_p_f...(2*b_p_f)) has the dirty status. 37 */ 38 unsigned long state[]; 39 }; 40 41 static inline bool ifs_is_fully_uptodate(struct folio *folio, 42 struct iomap_folio_state *ifs) 43 { 44 struct inode *inode = folio->mapping->host; 45 46 return bitmap_full(ifs->state, i_blocks_per_folio(inode, folio)); 47 } 48 49 static inline bool ifs_block_is_uptodate(struct iomap_folio_state *ifs, 50 unsigned int block) 51 { 52 return test_bit(block, ifs->state); 53 } 54 55 static bool ifs_set_range_uptodate(struct folio *folio, 56 struct iomap_folio_state *ifs, size_t off, size_t len) 57 { 58 struct inode *inode = folio->mapping->host; 59 unsigned int first_blk = off >> inode->i_blkbits; 60 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits; 61 unsigned int nr_blks = last_blk - first_blk + 1; 62 63 bitmap_set(ifs->state, first_blk, nr_blks); 64 return ifs_is_fully_uptodate(folio, ifs); 65 } 66 67 static void iomap_set_range_uptodate(struct folio *folio, size_t off, 68 size_t len) 69 { 70 struct iomap_folio_state *ifs = folio->private; 71 unsigned long flags; 72 bool uptodate = true; 73 74 if (ifs) { 75 spin_lock_irqsave(&ifs->state_lock, flags); 76 uptodate = ifs_set_range_uptodate(folio, ifs, off, len); 77 spin_unlock_irqrestore(&ifs->state_lock, flags); 78 } 79 80 if (uptodate) 81 folio_mark_uptodate(folio); 82 } 83 84 static inline bool ifs_block_is_dirty(struct folio *folio, 85 struct iomap_folio_state *ifs, int block) 86 { 87 struct inode *inode = folio->mapping->host; 88 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio); 89 90 return test_bit(block + blks_per_folio, ifs->state); 91 } 92 93 static unsigned ifs_find_dirty_range(struct folio *folio, 94 struct iomap_folio_state *ifs, u64 *range_start, u64 range_end) 95 { 96 struct inode *inode = folio->mapping->host; 97 unsigned start_blk = 98 offset_in_folio(folio, *range_start) >> inode->i_blkbits; 99 unsigned end_blk = min_not_zero( 100 offset_in_folio(folio, range_end) >> inode->i_blkbits, 101 i_blocks_per_folio(inode, folio)); 102 unsigned nblks = 1; 103 104 while (!ifs_block_is_dirty(folio, ifs, start_blk)) 105 if (++start_blk == end_blk) 106 return 0; 107 108 while (start_blk + nblks < end_blk) { 109 if (!ifs_block_is_dirty(folio, ifs, start_blk + nblks)) 110 break; 111 nblks++; 112 } 113 114 *range_start = folio_pos(folio) + (start_blk << inode->i_blkbits); 115 return nblks << inode->i_blkbits; 116 } 117 118 static unsigned iomap_find_dirty_range(struct folio *folio, u64 *range_start, 119 u64 range_end) 120 { 121 struct iomap_folio_state *ifs = folio->private; 122 123 if (*range_start >= range_end) 124 return 0; 125 126 if (ifs) 127 return ifs_find_dirty_range(folio, ifs, range_start, range_end); 128 return range_end - *range_start; 129 } 130 131 static void ifs_clear_range_dirty(struct folio *folio, 132 struct iomap_folio_state *ifs, size_t off, size_t len) 133 { 134 struct inode *inode = folio->mapping->host; 135 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio); 136 unsigned int first_blk = (off >> inode->i_blkbits); 137 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits; 138 unsigned int nr_blks = last_blk - first_blk + 1; 139 unsigned long flags; 140 141 spin_lock_irqsave(&ifs->state_lock, flags); 142 bitmap_clear(ifs->state, first_blk + blks_per_folio, nr_blks); 143 spin_unlock_irqrestore(&ifs->state_lock, flags); 144 } 145 146 static void iomap_clear_range_dirty(struct folio *folio, size_t off, size_t len) 147 { 148 struct iomap_folio_state *ifs = folio->private; 149 150 if (ifs) 151 ifs_clear_range_dirty(folio, ifs, off, len); 152 } 153 154 static void ifs_set_range_dirty(struct folio *folio, 155 struct iomap_folio_state *ifs, size_t off, size_t len) 156 { 157 struct inode *inode = folio->mapping->host; 158 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio); 159 unsigned int first_blk = (off >> inode->i_blkbits); 160 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits; 161 unsigned int nr_blks = last_blk - first_blk + 1; 162 unsigned long flags; 163 164 spin_lock_irqsave(&ifs->state_lock, flags); 165 bitmap_set(ifs->state, first_blk + blks_per_folio, nr_blks); 166 spin_unlock_irqrestore(&ifs->state_lock, flags); 167 } 168 169 static void iomap_set_range_dirty(struct folio *folio, size_t off, size_t len) 170 { 171 struct iomap_folio_state *ifs = folio->private; 172 173 if (ifs) 174 ifs_set_range_dirty(folio, ifs, off, len); 175 } 176 177 static struct iomap_folio_state *ifs_alloc(struct inode *inode, 178 struct folio *folio, unsigned int flags) 179 { 180 struct iomap_folio_state *ifs = folio->private; 181 unsigned int nr_blocks = i_blocks_per_folio(inode, folio); 182 gfp_t gfp; 183 184 if (ifs || nr_blocks <= 1) 185 return ifs; 186 187 if (flags & IOMAP_NOWAIT) 188 gfp = GFP_NOWAIT; 189 else 190 gfp = GFP_NOFS | __GFP_NOFAIL; 191 192 /* 193 * ifs->state tracks two sets of state flags when the 194 * filesystem block size is smaller than the folio size. 195 * The first state tracks per-block uptodate and the 196 * second tracks per-block dirty state. 197 */ 198 ifs = kzalloc(struct_size(ifs, state, 199 BITS_TO_LONGS(2 * nr_blocks)), gfp); 200 if (!ifs) 201 return ifs; 202 203 spin_lock_init(&ifs->state_lock); 204 if (folio_test_uptodate(folio)) 205 bitmap_set(ifs->state, 0, nr_blocks); 206 if (folio_test_dirty(folio)) 207 bitmap_set(ifs->state, nr_blocks, nr_blocks); 208 folio_attach_private(folio, ifs); 209 210 return ifs; 211 } 212 213 static void ifs_free(struct folio *folio) 214 { 215 struct iomap_folio_state *ifs = folio_detach_private(folio); 216 217 if (!ifs) 218 return; 219 WARN_ON_ONCE(ifs->read_bytes_pending != 0); 220 WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending)); 221 WARN_ON_ONCE(ifs_is_fully_uptodate(folio, ifs) != 222 folio_test_uptodate(folio)); 223 kfree(ifs); 224 } 225 226 /* 227 * Calculate the range inside the folio that we actually need to read. 228 */ 229 static void iomap_adjust_read_range(struct inode *inode, struct folio *folio, 230 loff_t *pos, loff_t length, size_t *offp, size_t *lenp) 231 { 232 struct iomap_folio_state *ifs = folio->private; 233 loff_t orig_pos = *pos; 234 loff_t isize = i_size_read(inode); 235 unsigned block_bits = inode->i_blkbits; 236 unsigned block_size = (1 << block_bits); 237 size_t poff = offset_in_folio(folio, *pos); 238 size_t plen = min_t(loff_t, folio_size(folio) - poff, length); 239 size_t orig_plen = plen; 240 unsigned first = poff >> block_bits; 241 unsigned last = (poff + plen - 1) >> block_bits; 242 243 /* 244 * If the block size is smaller than the page size, we need to check the 245 * per-block uptodate status and adjust the offset and length if needed 246 * to avoid reading in already uptodate ranges. 247 */ 248 if (ifs) { 249 unsigned int i; 250 251 /* move forward for each leading block marked uptodate */ 252 for (i = first; i <= last; i++) { 253 if (!ifs_block_is_uptodate(ifs, i)) 254 break; 255 *pos += block_size; 256 poff += block_size; 257 plen -= block_size; 258 first++; 259 } 260 261 /* truncate len if we find any trailing uptodate block(s) */ 262 for ( ; i <= last; i++) { 263 if (ifs_block_is_uptodate(ifs, i)) { 264 plen -= (last - i + 1) * block_size; 265 last = i - 1; 266 break; 267 } 268 } 269 } 270 271 /* 272 * If the extent spans the block that contains the i_size, we need to 273 * handle both halves separately so that we properly zero data in the 274 * page cache for blocks that are entirely outside of i_size. 275 */ 276 if (orig_pos <= isize && orig_pos + orig_plen > isize) { 277 unsigned end = offset_in_folio(folio, isize - 1) >> block_bits; 278 279 if (first <= end && last > end) 280 plen -= (last - end) * block_size; 281 } 282 283 *offp = poff; 284 *lenp = plen; 285 } 286 287 static void iomap_finish_folio_read(struct folio *folio, size_t off, 288 size_t len, int error) 289 { 290 struct iomap_folio_state *ifs = folio->private; 291 bool uptodate = !error; 292 bool finished = true; 293 294 if (ifs) { 295 unsigned long flags; 296 297 spin_lock_irqsave(&ifs->state_lock, flags); 298 if (!error) 299 uptodate = ifs_set_range_uptodate(folio, ifs, off, len); 300 ifs->read_bytes_pending -= len; 301 finished = !ifs->read_bytes_pending; 302 spin_unlock_irqrestore(&ifs->state_lock, flags); 303 } 304 305 if (finished) 306 folio_end_read(folio, uptodate); 307 } 308 309 static void iomap_read_end_io(struct bio *bio) 310 { 311 int error = blk_status_to_errno(bio->bi_status); 312 struct folio_iter fi; 313 314 bio_for_each_folio_all(fi, bio) 315 iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error); 316 bio_put(bio); 317 } 318 319 struct iomap_readpage_ctx { 320 struct folio *cur_folio; 321 bool cur_folio_in_bio; 322 struct bio *bio; 323 struct readahead_control *rac; 324 }; 325 326 /** 327 * iomap_read_inline_data - copy inline data into the page cache 328 * @iter: iteration structure 329 * @folio: folio to copy to 330 * 331 * Copy the inline data in @iter into @folio and zero out the rest of the folio. 332 * Only a single IOMAP_INLINE extent is allowed at the end of each file. 333 * Returns zero for success to complete the read, or the usual negative errno. 334 */ 335 static int iomap_read_inline_data(const struct iomap_iter *iter, 336 struct folio *folio) 337 { 338 const struct iomap *iomap = iomap_iter_srcmap(iter); 339 size_t size = i_size_read(iter->inode) - iomap->offset; 340 size_t offset = offset_in_folio(folio, iomap->offset); 341 342 if (folio_test_uptodate(folio)) 343 return 0; 344 345 if (WARN_ON_ONCE(size > iomap->length)) 346 return -EIO; 347 if (offset > 0) 348 ifs_alloc(iter->inode, folio, iter->flags); 349 350 folio_fill_tail(folio, offset, iomap->inline_data, size); 351 iomap_set_range_uptodate(folio, offset, folio_size(folio) - offset); 352 return 0; 353 } 354 355 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter, 356 loff_t pos) 357 { 358 const struct iomap *srcmap = iomap_iter_srcmap(iter); 359 360 return srcmap->type != IOMAP_MAPPED || 361 (srcmap->flags & IOMAP_F_NEW) || 362 pos >= i_size_read(iter->inode); 363 } 364 365 static int iomap_readpage_iter(struct iomap_iter *iter, 366 struct iomap_readpage_ctx *ctx) 367 { 368 const struct iomap *iomap = &iter->iomap; 369 loff_t pos = iter->pos; 370 loff_t length = iomap_length(iter); 371 struct folio *folio = ctx->cur_folio; 372 struct iomap_folio_state *ifs; 373 size_t poff, plen; 374 sector_t sector; 375 int ret; 376 377 if (iomap->type == IOMAP_INLINE) { 378 ret = iomap_read_inline_data(iter, folio); 379 if (ret) 380 return ret; 381 return iomap_iter_advance(iter, &length); 382 } 383 384 /* zero post-eof blocks as the page may be mapped */ 385 ifs = ifs_alloc(iter->inode, folio, iter->flags); 386 iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen); 387 if (plen == 0) 388 goto done; 389 390 if (iomap_block_needs_zeroing(iter, pos)) { 391 folio_zero_range(folio, poff, plen); 392 iomap_set_range_uptodate(folio, poff, plen); 393 goto done; 394 } 395 396 ctx->cur_folio_in_bio = true; 397 if (ifs) { 398 spin_lock_irq(&ifs->state_lock); 399 ifs->read_bytes_pending += plen; 400 spin_unlock_irq(&ifs->state_lock); 401 } 402 403 sector = iomap_sector(iomap, pos); 404 if (!ctx->bio || 405 bio_end_sector(ctx->bio) != sector || 406 !bio_add_folio(ctx->bio, folio, plen, poff)) { 407 gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL); 408 gfp_t orig_gfp = gfp; 409 unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE); 410 411 if (ctx->bio) 412 submit_bio(ctx->bio); 413 414 if (ctx->rac) /* same as readahead_gfp_mask */ 415 gfp |= __GFP_NORETRY | __GFP_NOWARN; 416 ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs), 417 REQ_OP_READ, gfp); 418 /* 419 * If the bio_alloc fails, try it again for a single page to 420 * avoid having to deal with partial page reads. This emulates 421 * what do_mpage_read_folio does. 422 */ 423 if (!ctx->bio) { 424 ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ, 425 orig_gfp); 426 } 427 if (ctx->rac) 428 ctx->bio->bi_opf |= REQ_RAHEAD; 429 ctx->bio->bi_iter.bi_sector = sector; 430 ctx->bio->bi_end_io = iomap_read_end_io; 431 bio_add_folio_nofail(ctx->bio, folio, plen, poff); 432 } 433 434 done: 435 /* 436 * Move the caller beyond our range so that it keeps making progress. 437 * For that, we have to include any leading non-uptodate ranges, but 438 * we can skip trailing ones as they will be handled in the next 439 * iteration. 440 */ 441 length = pos - iter->pos + plen; 442 return iomap_iter_advance(iter, &length); 443 } 444 445 static int iomap_read_folio_iter(struct iomap_iter *iter, 446 struct iomap_readpage_ctx *ctx) 447 { 448 int ret; 449 450 while (iomap_length(iter)) { 451 ret = iomap_readpage_iter(iter, ctx); 452 if (ret) 453 return ret; 454 } 455 456 return 0; 457 } 458 459 int iomap_read_folio(struct folio *folio, const struct iomap_ops *ops) 460 { 461 struct iomap_iter iter = { 462 .inode = folio->mapping->host, 463 .pos = folio_pos(folio), 464 .len = folio_size(folio), 465 }; 466 struct iomap_readpage_ctx ctx = { 467 .cur_folio = folio, 468 }; 469 int ret; 470 471 trace_iomap_readpage(iter.inode, 1); 472 473 while ((ret = iomap_iter(&iter, ops)) > 0) 474 iter.status = iomap_read_folio_iter(&iter, &ctx); 475 476 if (ctx.bio) { 477 submit_bio(ctx.bio); 478 WARN_ON_ONCE(!ctx.cur_folio_in_bio); 479 } else { 480 WARN_ON_ONCE(ctx.cur_folio_in_bio); 481 folio_unlock(folio); 482 } 483 484 /* 485 * Just like mpage_readahead and block_read_full_folio, we always 486 * return 0 and just set the folio error flag on errors. This 487 * should be cleaned up throughout the stack eventually. 488 */ 489 return 0; 490 } 491 EXPORT_SYMBOL_GPL(iomap_read_folio); 492 493 static int iomap_readahead_iter(struct iomap_iter *iter, 494 struct iomap_readpage_ctx *ctx) 495 { 496 int ret; 497 498 while (iomap_length(iter)) { 499 if (ctx->cur_folio && 500 offset_in_folio(ctx->cur_folio, iter->pos) == 0) { 501 if (!ctx->cur_folio_in_bio) 502 folio_unlock(ctx->cur_folio); 503 ctx->cur_folio = NULL; 504 } 505 if (!ctx->cur_folio) { 506 ctx->cur_folio = readahead_folio(ctx->rac); 507 ctx->cur_folio_in_bio = false; 508 } 509 ret = iomap_readpage_iter(iter, ctx); 510 if (ret) 511 return ret; 512 } 513 514 return 0; 515 } 516 517 /** 518 * iomap_readahead - Attempt to read pages from a file. 519 * @rac: Describes the pages to be read. 520 * @ops: The operations vector for the filesystem. 521 * 522 * This function is for filesystems to call to implement their readahead 523 * address_space operation. 524 * 525 * Context: The @ops callbacks may submit I/O (eg to read the addresses of 526 * blocks from disc), and may wait for it. The caller may be trying to 527 * access a different page, and so sleeping excessively should be avoided. 528 * It may allocate memory, but should avoid costly allocations. This 529 * function is called with memalloc_nofs set, so allocations will not cause 530 * the filesystem to be reentered. 531 */ 532 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops) 533 { 534 struct iomap_iter iter = { 535 .inode = rac->mapping->host, 536 .pos = readahead_pos(rac), 537 .len = readahead_length(rac), 538 }; 539 struct iomap_readpage_ctx ctx = { 540 .rac = rac, 541 }; 542 543 trace_iomap_readahead(rac->mapping->host, readahead_count(rac)); 544 545 while (iomap_iter(&iter, ops) > 0) 546 iter.status = iomap_readahead_iter(&iter, &ctx); 547 548 if (ctx.bio) 549 submit_bio(ctx.bio); 550 if (ctx.cur_folio) { 551 if (!ctx.cur_folio_in_bio) 552 folio_unlock(ctx.cur_folio); 553 } 554 } 555 EXPORT_SYMBOL_GPL(iomap_readahead); 556 557 /* 558 * iomap_is_partially_uptodate checks whether blocks within a folio are 559 * uptodate or not. 560 * 561 * Returns true if all blocks which correspond to the specified part 562 * of the folio are uptodate. 563 */ 564 bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count) 565 { 566 struct iomap_folio_state *ifs = folio->private; 567 struct inode *inode = folio->mapping->host; 568 unsigned first, last, i; 569 570 if (!ifs) 571 return false; 572 573 /* Caller's range may extend past the end of this folio */ 574 count = min(folio_size(folio) - from, count); 575 576 /* First and last blocks in range within folio */ 577 first = from >> inode->i_blkbits; 578 last = (from + count - 1) >> inode->i_blkbits; 579 580 for (i = first; i <= last; i++) 581 if (!ifs_block_is_uptodate(ifs, i)) 582 return false; 583 return true; 584 } 585 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate); 586 587 /** 588 * iomap_get_folio - get a folio reference for writing 589 * @iter: iteration structure 590 * @pos: start offset of write 591 * @len: Suggested size of folio to create. 592 * 593 * Returns a locked reference to the folio at @pos, or an error pointer if the 594 * folio could not be obtained. 595 */ 596 struct folio *iomap_get_folio(struct iomap_iter *iter, loff_t pos, size_t len) 597 { 598 fgf_t fgp = FGP_WRITEBEGIN | FGP_NOFS; 599 600 if (iter->flags & IOMAP_NOWAIT) 601 fgp |= FGP_NOWAIT; 602 if (iter->flags & IOMAP_DONTCACHE) 603 fgp |= FGP_DONTCACHE; 604 fgp |= fgf_set_order(len); 605 606 return __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT, 607 fgp, mapping_gfp_mask(iter->inode->i_mapping)); 608 } 609 EXPORT_SYMBOL_GPL(iomap_get_folio); 610 611 bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags) 612 { 613 trace_iomap_release_folio(folio->mapping->host, folio_pos(folio), 614 folio_size(folio)); 615 616 /* 617 * If the folio is dirty, we refuse to release our metadata because 618 * it may be partially dirty. Once we track per-block dirty state, 619 * we can release the metadata if every block is dirty. 620 */ 621 if (folio_test_dirty(folio)) 622 return false; 623 ifs_free(folio); 624 return true; 625 } 626 EXPORT_SYMBOL_GPL(iomap_release_folio); 627 628 void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len) 629 { 630 trace_iomap_invalidate_folio(folio->mapping->host, 631 folio_pos(folio) + offset, len); 632 633 /* 634 * If we're invalidating the entire folio, clear the dirty state 635 * from it and release it to avoid unnecessary buildup of the LRU. 636 */ 637 if (offset == 0 && len == folio_size(folio)) { 638 WARN_ON_ONCE(folio_test_writeback(folio)); 639 folio_cancel_dirty(folio); 640 ifs_free(folio); 641 } 642 } 643 EXPORT_SYMBOL_GPL(iomap_invalidate_folio); 644 645 bool iomap_dirty_folio(struct address_space *mapping, struct folio *folio) 646 { 647 struct inode *inode = mapping->host; 648 size_t len = folio_size(folio); 649 650 ifs_alloc(inode, folio, 0); 651 iomap_set_range_dirty(folio, 0, len); 652 return filemap_dirty_folio(mapping, folio); 653 } 654 EXPORT_SYMBOL_GPL(iomap_dirty_folio); 655 656 static void 657 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len) 658 { 659 loff_t i_size = i_size_read(inode); 660 661 /* 662 * Only truncate newly allocated pages beyoned EOF, even if the 663 * write started inside the existing inode size. 664 */ 665 if (pos + len > i_size) 666 truncate_pagecache_range(inode, max(pos, i_size), 667 pos + len - 1); 668 } 669 670 static int iomap_read_folio_sync(loff_t block_start, struct folio *folio, 671 size_t poff, size_t plen, const struct iomap *iomap) 672 { 673 struct bio_vec bvec; 674 struct bio bio; 675 676 bio_init(&bio, iomap->bdev, &bvec, 1, REQ_OP_READ); 677 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start); 678 bio_add_folio_nofail(&bio, folio, plen, poff); 679 return submit_bio_wait(&bio); 680 } 681 682 static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos, 683 size_t len, struct folio *folio) 684 { 685 const struct iomap *srcmap = iomap_iter_srcmap(iter); 686 struct iomap_folio_state *ifs; 687 loff_t block_size = i_blocksize(iter->inode); 688 loff_t block_start = round_down(pos, block_size); 689 loff_t block_end = round_up(pos + len, block_size); 690 unsigned int nr_blocks = i_blocks_per_folio(iter->inode, folio); 691 size_t from = offset_in_folio(folio, pos), to = from + len; 692 size_t poff, plen; 693 694 /* 695 * If the write or zeroing completely overlaps the current folio, then 696 * entire folio will be dirtied so there is no need for 697 * per-block state tracking structures to be attached to this folio. 698 * For the unshare case, we must read in the ondisk contents because we 699 * are not changing pagecache contents. 700 */ 701 if (!(iter->flags & IOMAP_UNSHARE) && pos <= folio_pos(folio) && 702 pos + len >= folio_pos(folio) + folio_size(folio)) 703 return 0; 704 705 ifs = ifs_alloc(iter->inode, folio, iter->flags); 706 if ((iter->flags & IOMAP_NOWAIT) && !ifs && nr_blocks > 1) 707 return -EAGAIN; 708 709 if (folio_test_uptodate(folio)) 710 return 0; 711 712 do { 713 iomap_adjust_read_range(iter->inode, folio, &block_start, 714 block_end - block_start, &poff, &plen); 715 if (plen == 0) 716 break; 717 718 if (!(iter->flags & IOMAP_UNSHARE) && 719 (from <= poff || from >= poff + plen) && 720 (to <= poff || to >= poff + plen)) 721 continue; 722 723 if (iomap_block_needs_zeroing(iter, block_start)) { 724 if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE)) 725 return -EIO; 726 folio_zero_segments(folio, poff, from, to, poff + plen); 727 } else { 728 int status; 729 730 if (iter->flags & IOMAP_NOWAIT) 731 return -EAGAIN; 732 733 status = iomap_read_folio_sync(block_start, folio, 734 poff, plen, srcmap); 735 if (status) 736 return status; 737 } 738 iomap_set_range_uptodate(folio, poff, plen); 739 } while ((block_start += plen) < block_end); 740 741 return 0; 742 } 743 744 static struct folio *__iomap_get_folio(struct iomap_iter *iter, loff_t pos, 745 size_t len) 746 { 747 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops; 748 749 if (folio_ops && folio_ops->get_folio) 750 return folio_ops->get_folio(iter, pos, len); 751 else 752 return iomap_get_folio(iter, pos, len); 753 } 754 755 static void __iomap_put_folio(struct iomap_iter *iter, loff_t pos, size_t ret, 756 struct folio *folio) 757 { 758 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops; 759 760 if (folio_ops && folio_ops->put_folio) { 761 folio_ops->put_folio(iter->inode, pos, ret, folio); 762 } else { 763 folio_unlock(folio); 764 folio_put(folio); 765 } 766 } 767 768 static int iomap_write_begin_inline(const struct iomap_iter *iter, 769 struct folio *folio) 770 { 771 /* needs more work for the tailpacking case; disable for now */ 772 if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0)) 773 return -EIO; 774 return iomap_read_inline_data(iter, folio); 775 } 776 777 static int iomap_write_begin(struct iomap_iter *iter, loff_t pos, 778 size_t len, struct folio **foliop) 779 { 780 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops; 781 const struct iomap *srcmap = iomap_iter_srcmap(iter); 782 struct folio *folio; 783 int status = 0; 784 785 BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length); 786 if (srcmap != &iter->iomap) 787 BUG_ON(pos + len > srcmap->offset + srcmap->length); 788 789 if (fatal_signal_pending(current)) 790 return -EINTR; 791 792 if (!mapping_large_folio_support(iter->inode->i_mapping)) 793 len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos)); 794 795 folio = __iomap_get_folio(iter, pos, len); 796 if (IS_ERR(folio)) 797 return PTR_ERR(folio); 798 799 /* 800 * Now we have a locked folio, before we do anything with it we need to 801 * check that the iomap we have cached is not stale. The inode extent 802 * mapping can change due to concurrent IO in flight (e.g. 803 * IOMAP_UNWRITTEN state can change and memory reclaim could have 804 * reclaimed a previously partially written page at this index after IO 805 * completion before this write reaches this file offset) and hence we 806 * could do the wrong thing here (zero a page range incorrectly or fail 807 * to zero) and corrupt data. 808 */ 809 if (folio_ops && folio_ops->iomap_valid) { 810 bool iomap_valid = folio_ops->iomap_valid(iter->inode, 811 &iter->iomap); 812 if (!iomap_valid) { 813 iter->iomap.flags |= IOMAP_F_STALE; 814 status = 0; 815 goto out_unlock; 816 } 817 } 818 819 if (pos + len > folio_pos(folio) + folio_size(folio)) 820 len = folio_pos(folio) + folio_size(folio) - pos; 821 822 if (srcmap->type == IOMAP_INLINE) 823 status = iomap_write_begin_inline(iter, folio); 824 else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) 825 status = __block_write_begin_int(folio, pos, len, NULL, srcmap); 826 else 827 status = __iomap_write_begin(iter, pos, len, folio); 828 829 if (unlikely(status)) 830 goto out_unlock; 831 832 *foliop = folio; 833 return 0; 834 835 out_unlock: 836 __iomap_put_folio(iter, pos, 0, folio); 837 838 return status; 839 } 840 841 static bool __iomap_write_end(struct inode *inode, loff_t pos, size_t len, 842 size_t copied, struct folio *folio) 843 { 844 flush_dcache_folio(folio); 845 846 /* 847 * The blocks that were entirely written will now be uptodate, so we 848 * don't have to worry about a read_folio reading them and overwriting a 849 * partial write. However, if we've encountered a short write and only 850 * partially written into a block, it will not be marked uptodate, so a 851 * read_folio might come in and destroy our partial write. 852 * 853 * Do the simplest thing and just treat any short write to a 854 * non-uptodate page as a zero-length write, and force the caller to 855 * redo the whole thing. 856 */ 857 if (unlikely(copied < len && !folio_test_uptodate(folio))) 858 return false; 859 iomap_set_range_uptodate(folio, offset_in_folio(folio, pos), len); 860 iomap_set_range_dirty(folio, offset_in_folio(folio, pos), copied); 861 filemap_dirty_folio(inode->i_mapping, folio); 862 return true; 863 } 864 865 static void iomap_write_end_inline(const struct iomap_iter *iter, 866 struct folio *folio, loff_t pos, size_t copied) 867 { 868 const struct iomap *iomap = &iter->iomap; 869 void *addr; 870 871 WARN_ON_ONCE(!folio_test_uptodate(folio)); 872 BUG_ON(!iomap_inline_data_valid(iomap)); 873 874 flush_dcache_folio(folio); 875 addr = kmap_local_folio(folio, pos); 876 memcpy(iomap_inline_data(iomap, pos), addr, copied); 877 kunmap_local(addr); 878 879 mark_inode_dirty(iter->inode); 880 } 881 882 /* 883 * Returns true if all copied bytes have been written to the pagecache, 884 * otherwise return false. 885 */ 886 static bool iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len, 887 size_t copied, struct folio *folio) 888 { 889 const struct iomap *srcmap = iomap_iter_srcmap(iter); 890 891 if (srcmap->type == IOMAP_INLINE) { 892 iomap_write_end_inline(iter, folio, pos, copied); 893 return true; 894 } 895 896 if (srcmap->flags & IOMAP_F_BUFFER_HEAD) { 897 size_t bh_written; 898 899 bh_written = block_write_end(NULL, iter->inode->i_mapping, pos, 900 len, copied, folio, NULL); 901 WARN_ON_ONCE(bh_written != copied && bh_written != 0); 902 return bh_written == copied; 903 } 904 905 return __iomap_write_end(iter->inode, pos, len, copied, folio); 906 } 907 908 static int iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i) 909 { 910 ssize_t total_written = 0; 911 int status = 0; 912 struct address_space *mapping = iter->inode->i_mapping; 913 size_t chunk = mapping_max_folio_size(mapping); 914 unsigned int bdp_flags = (iter->flags & IOMAP_NOWAIT) ? BDP_ASYNC : 0; 915 916 do { 917 struct folio *folio; 918 loff_t old_size; 919 size_t offset; /* Offset into folio */ 920 size_t bytes; /* Bytes to write to folio */ 921 size_t copied; /* Bytes copied from user */ 922 u64 written; /* Bytes have been written */ 923 loff_t pos = iter->pos; 924 925 bytes = iov_iter_count(i); 926 retry: 927 offset = pos & (chunk - 1); 928 bytes = min(chunk - offset, bytes); 929 status = balance_dirty_pages_ratelimited_flags(mapping, 930 bdp_flags); 931 if (unlikely(status)) 932 break; 933 934 if (bytes > iomap_length(iter)) 935 bytes = iomap_length(iter); 936 937 /* 938 * Bring in the user page that we'll copy from _first_. 939 * Otherwise there's a nasty deadlock on copying from the 940 * same page as we're writing to, without it being marked 941 * up-to-date. 942 * 943 * For async buffered writes the assumption is that the user 944 * page has already been faulted in. This can be optimized by 945 * faulting the user page. 946 */ 947 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { 948 status = -EFAULT; 949 break; 950 } 951 952 status = iomap_write_begin(iter, pos, bytes, &folio); 953 if (unlikely(status)) { 954 iomap_write_failed(iter->inode, pos, bytes); 955 break; 956 } 957 if (iter->iomap.flags & IOMAP_F_STALE) 958 break; 959 960 offset = offset_in_folio(folio, pos); 961 if (bytes > folio_size(folio) - offset) 962 bytes = folio_size(folio) - offset; 963 964 if (mapping_writably_mapped(mapping)) 965 flush_dcache_folio(folio); 966 967 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i); 968 written = iomap_write_end(iter, pos, bytes, copied, folio) ? 969 copied : 0; 970 971 /* 972 * Update the in-memory inode size after copying the data into 973 * the page cache. It's up to the file system to write the 974 * updated size to disk, preferably after I/O completion so that 975 * no stale data is exposed. Only once that's done can we 976 * unlock and release the folio. 977 */ 978 old_size = iter->inode->i_size; 979 if (pos + written > old_size) { 980 i_size_write(iter->inode, pos + written); 981 iter->iomap.flags |= IOMAP_F_SIZE_CHANGED; 982 } 983 __iomap_put_folio(iter, pos, written, folio); 984 985 if (old_size < pos) 986 pagecache_isize_extended(iter->inode, old_size, pos); 987 988 cond_resched(); 989 if (unlikely(written == 0)) { 990 /* 991 * A short copy made iomap_write_end() reject the 992 * thing entirely. Might be memory poisoning 993 * halfway through, might be a race with munmap, 994 * might be severe memory pressure. 995 */ 996 iomap_write_failed(iter->inode, pos, bytes); 997 iov_iter_revert(i, copied); 998 999 if (chunk > PAGE_SIZE) 1000 chunk /= 2; 1001 if (copied) { 1002 bytes = copied; 1003 goto retry; 1004 } 1005 } else { 1006 total_written += written; 1007 iomap_iter_advance(iter, &written); 1008 } 1009 } while (iov_iter_count(i) && iomap_length(iter)); 1010 1011 return total_written ? 0 : status; 1012 } 1013 1014 ssize_t 1015 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i, 1016 const struct iomap_ops *ops, void *private) 1017 { 1018 struct iomap_iter iter = { 1019 .inode = iocb->ki_filp->f_mapping->host, 1020 .pos = iocb->ki_pos, 1021 .len = iov_iter_count(i), 1022 .flags = IOMAP_WRITE, 1023 .private = private, 1024 }; 1025 ssize_t ret; 1026 1027 if (iocb->ki_flags & IOCB_NOWAIT) 1028 iter.flags |= IOMAP_NOWAIT; 1029 if (iocb->ki_flags & IOCB_DONTCACHE) 1030 iter.flags |= IOMAP_DONTCACHE; 1031 1032 while ((ret = iomap_iter(&iter, ops)) > 0) 1033 iter.status = iomap_write_iter(&iter, i); 1034 1035 if (unlikely(iter.pos == iocb->ki_pos)) 1036 return ret; 1037 ret = iter.pos - iocb->ki_pos; 1038 iocb->ki_pos = iter.pos; 1039 return ret; 1040 } 1041 EXPORT_SYMBOL_GPL(iomap_file_buffered_write); 1042 1043 static void iomap_write_delalloc_ifs_punch(struct inode *inode, 1044 struct folio *folio, loff_t start_byte, loff_t end_byte, 1045 struct iomap *iomap, iomap_punch_t punch) 1046 { 1047 unsigned int first_blk, last_blk, i; 1048 loff_t last_byte; 1049 u8 blkbits = inode->i_blkbits; 1050 struct iomap_folio_state *ifs; 1051 1052 /* 1053 * When we have per-block dirty tracking, there can be 1054 * blocks within a folio which are marked uptodate 1055 * but not dirty. In that case it is necessary to punch 1056 * out such blocks to avoid leaking any delalloc blocks. 1057 */ 1058 ifs = folio->private; 1059 if (!ifs) 1060 return; 1061 1062 last_byte = min_t(loff_t, end_byte - 1, 1063 folio_pos(folio) + folio_size(folio) - 1); 1064 first_blk = offset_in_folio(folio, start_byte) >> blkbits; 1065 last_blk = offset_in_folio(folio, last_byte) >> blkbits; 1066 for (i = first_blk; i <= last_blk; i++) { 1067 if (!ifs_block_is_dirty(folio, ifs, i)) 1068 punch(inode, folio_pos(folio) + (i << blkbits), 1069 1 << blkbits, iomap); 1070 } 1071 } 1072 1073 static void iomap_write_delalloc_punch(struct inode *inode, struct folio *folio, 1074 loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte, 1075 struct iomap *iomap, iomap_punch_t punch) 1076 { 1077 if (!folio_test_dirty(folio)) 1078 return; 1079 1080 /* if dirty, punch up to offset */ 1081 if (start_byte > *punch_start_byte) { 1082 punch(inode, *punch_start_byte, start_byte - *punch_start_byte, 1083 iomap); 1084 } 1085 1086 /* Punch non-dirty blocks within folio */ 1087 iomap_write_delalloc_ifs_punch(inode, folio, start_byte, end_byte, 1088 iomap, punch); 1089 1090 /* 1091 * Make sure the next punch start is correctly bound to 1092 * the end of this data range, not the end of the folio. 1093 */ 1094 *punch_start_byte = min_t(loff_t, end_byte, 1095 folio_pos(folio) + folio_size(folio)); 1096 } 1097 1098 /* 1099 * Scan the data range passed to us for dirty page cache folios. If we find a 1100 * dirty folio, punch out the preceding range and update the offset from which 1101 * the next punch will start from. 1102 * 1103 * We can punch out storage reservations under clean pages because they either 1104 * contain data that has been written back - in which case the delalloc punch 1105 * over that range is a no-op - or they have been read faults in which case they 1106 * contain zeroes and we can remove the delalloc backing range and any new 1107 * writes to those pages will do the normal hole filling operation... 1108 * 1109 * This makes the logic simple: we only need to keep the delalloc extents only 1110 * over the dirty ranges of the page cache. 1111 * 1112 * This function uses [start_byte, end_byte) intervals (i.e. open ended) to 1113 * simplify range iterations. 1114 */ 1115 static void iomap_write_delalloc_scan(struct inode *inode, 1116 loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte, 1117 struct iomap *iomap, iomap_punch_t punch) 1118 { 1119 while (start_byte < end_byte) { 1120 struct folio *folio; 1121 1122 /* grab locked page */ 1123 folio = filemap_lock_folio(inode->i_mapping, 1124 start_byte >> PAGE_SHIFT); 1125 if (IS_ERR(folio)) { 1126 start_byte = ALIGN_DOWN(start_byte, PAGE_SIZE) + 1127 PAGE_SIZE; 1128 continue; 1129 } 1130 1131 iomap_write_delalloc_punch(inode, folio, punch_start_byte, 1132 start_byte, end_byte, iomap, punch); 1133 1134 /* move offset to start of next folio in range */ 1135 start_byte = folio_pos(folio) + folio_size(folio); 1136 folio_unlock(folio); 1137 folio_put(folio); 1138 } 1139 } 1140 1141 /* 1142 * When a short write occurs, the filesystem might need to use ->iomap_end 1143 * to remove space reservations created in ->iomap_begin. 1144 * 1145 * For filesystems that use delayed allocation, there can be dirty pages over 1146 * the delalloc extent outside the range of a short write but still within the 1147 * delalloc extent allocated for this iomap if the write raced with page 1148 * faults. 1149 * 1150 * Punch out all the delalloc blocks in the range given except for those that 1151 * have dirty data still pending in the page cache - those are going to be 1152 * written and so must still retain the delalloc backing for writeback. 1153 * 1154 * The punch() callback *must* only punch delalloc extents in the range passed 1155 * to it. It must skip over all other types of extents in the range and leave 1156 * them completely unchanged. It must do this punch atomically with respect to 1157 * other extent modifications. 1158 * 1159 * The punch() callback may be called with a folio locked to prevent writeback 1160 * extent allocation racing at the edge of the range we are currently punching. 1161 * The locked folio may or may not cover the range being punched, so it is not 1162 * safe for the punch() callback to lock folios itself. 1163 * 1164 * Lock order is: 1165 * 1166 * inode->i_rwsem (shared or exclusive) 1167 * inode->i_mapping->invalidate_lock (exclusive) 1168 * folio_lock() 1169 * ->punch 1170 * internal filesystem allocation lock 1171 * 1172 * As we are scanning the page cache for data, we don't need to reimplement the 1173 * wheel - mapping_seek_hole_data() does exactly what we need to identify the 1174 * start and end of data ranges correctly even for sub-folio block sizes. This 1175 * byte range based iteration is especially convenient because it means we 1176 * don't have to care about variable size folios, nor where the start or end of 1177 * the data range lies within a folio, if they lie within the same folio or even 1178 * if there are multiple discontiguous data ranges within the folio. 1179 * 1180 * It should be noted that mapping_seek_hole_data() is not aware of EOF, and so 1181 * can return data ranges that exist in the cache beyond EOF. e.g. a page fault 1182 * spanning EOF will initialise the post-EOF data to zeroes and mark it up to 1183 * date. A write page fault can then mark it dirty. If we then fail a write() 1184 * beyond EOF into that up to date cached range, we allocate a delalloc block 1185 * beyond EOF and then have to punch it out. Because the range is up to date, 1186 * mapping_seek_hole_data() will return it, and we will skip the punch because 1187 * the folio is dirty. THis is incorrect - we always need to punch out delalloc 1188 * beyond EOF in this case as writeback will never write back and covert that 1189 * delalloc block beyond EOF. Hence we limit the cached data scan range to EOF, 1190 * resulting in always punching out the range from the EOF to the end of the 1191 * range the iomap spans. 1192 * 1193 * Intervals are of the form [start_byte, end_byte) (i.e. open ended) because it 1194 * matches the intervals returned by mapping_seek_hole_data(). i.e. SEEK_DATA 1195 * returns the start of a data range (start_byte), and SEEK_HOLE(start_byte) 1196 * returns the end of the data range (data_end). Using closed intervals would 1197 * require sprinkling this code with magic "+ 1" and "- 1" arithmetic and expose 1198 * the code to subtle off-by-one bugs.... 1199 */ 1200 void iomap_write_delalloc_release(struct inode *inode, loff_t start_byte, 1201 loff_t end_byte, unsigned flags, struct iomap *iomap, 1202 iomap_punch_t punch) 1203 { 1204 loff_t punch_start_byte = start_byte; 1205 loff_t scan_end_byte = min(i_size_read(inode), end_byte); 1206 1207 /* 1208 * The caller must hold invalidate_lock to avoid races with page faults 1209 * re-instantiating folios and dirtying them via ->page_mkwrite whilst 1210 * we walk the cache and perform delalloc extent removal. Failing to do 1211 * this can leave dirty pages with no space reservation in the cache. 1212 */ 1213 lockdep_assert_held_write(&inode->i_mapping->invalidate_lock); 1214 1215 while (start_byte < scan_end_byte) { 1216 loff_t data_end; 1217 1218 start_byte = mapping_seek_hole_data(inode->i_mapping, 1219 start_byte, scan_end_byte, SEEK_DATA); 1220 /* 1221 * If there is no more data to scan, all that is left is to 1222 * punch out the remaining range. 1223 * 1224 * Note that mapping_seek_hole_data is only supposed to return 1225 * either an offset or -ENXIO, so WARN on any other error as 1226 * that would be an API change without updating the callers. 1227 */ 1228 if (start_byte == -ENXIO || start_byte == scan_end_byte) 1229 break; 1230 if (WARN_ON_ONCE(start_byte < 0)) 1231 return; 1232 WARN_ON_ONCE(start_byte < punch_start_byte); 1233 WARN_ON_ONCE(start_byte > scan_end_byte); 1234 1235 /* 1236 * We find the end of this contiguous cached data range by 1237 * seeking from start_byte to the beginning of the next hole. 1238 */ 1239 data_end = mapping_seek_hole_data(inode->i_mapping, start_byte, 1240 scan_end_byte, SEEK_HOLE); 1241 if (WARN_ON_ONCE(data_end < 0)) 1242 return; 1243 1244 /* 1245 * If we race with post-direct I/O invalidation of the page cache, 1246 * there might be no data left at start_byte. 1247 */ 1248 if (data_end == start_byte) 1249 continue; 1250 1251 WARN_ON_ONCE(data_end < start_byte); 1252 WARN_ON_ONCE(data_end > scan_end_byte); 1253 1254 iomap_write_delalloc_scan(inode, &punch_start_byte, start_byte, 1255 data_end, iomap, punch); 1256 1257 /* The next data search starts at the end of this one. */ 1258 start_byte = data_end; 1259 } 1260 1261 if (punch_start_byte < end_byte) 1262 punch(inode, punch_start_byte, end_byte - punch_start_byte, 1263 iomap); 1264 } 1265 EXPORT_SYMBOL_GPL(iomap_write_delalloc_release); 1266 1267 static int iomap_unshare_iter(struct iomap_iter *iter) 1268 { 1269 struct iomap *iomap = &iter->iomap; 1270 u64 bytes = iomap_length(iter); 1271 int status; 1272 1273 if (!iomap_want_unshare_iter(iter)) 1274 return iomap_iter_advance(iter, &bytes); 1275 1276 do { 1277 struct folio *folio; 1278 size_t offset; 1279 loff_t pos = iter->pos; 1280 bool ret; 1281 1282 bytes = min_t(u64, SIZE_MAX, bytes); 1283 status = iomap_write_begin(iter, pos, bytes, &folio); 1284 if (unlikely(status)) 1285 return status; 1286 if (iomap->flags & IOMAP_F_STALE) 1287 break; 1288 1289 offset = offset_in_folio(folio, pos); 1290 if (bytes > folio_size(folio) - offset) 1291 bytes = folio_size(folio) - offset; 1292 1293 ret = iomap_write_end(iter, pos, bytes, bytes, folio); 1294 __iomap_put_folio(iter, pos, bytes, folio); 1295 if (WARN_ON_ONCE(!ret)) 1296 return -EIO; 1297 1298 cond_resched(); 1299 1300 balance_dirty_pages_ratelimited(iter->inode->i_mapping); 1301 1302 status = iomap_iter_advance(iter, &bytes); 1303 if (status) 1304 break; 1305 } while (bytes > 0); 1306 1307 return status; 1308 } 1309 1310 int 1311 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len, 1312 const struct iomap_ops *ops) 1313 { 1314 struct iomap_iter iter = { 1315 .inode = inode, 1316 .pos = pos, 1317 .flags = IOMAP_WRITE | IOMAP_UNSHARE, 1318 }; 1319 loff_t size = i_size_read(inode); 1320 int ret; 1321 1322 if (pos < 0 || pos >= size) 1323 return 0; 1324 1325 iter.len = min(len, size - pos); 1326 while ((ret = iomap_iter(&iter, ops)) > 0) 1327 iter.status = iomap_unshare_iter(&iter); 1328 return ret; 1329 } 1330 EXPORT_SYMBOL_GPL(iomap_file_unshare); 1331 1332 /* 1333 * Flush the remaining range of the iter and mark the current mapping stale. 1334 * This is used when zero range sees an unwritten mapping that may have had 1335 * dirty pagecache over it. 1336 */ 1337 static inline int iomap_zero_iter_flush_and_stale(struct iomap_iter *i) 1338 { 1339 struct address_space *mapping = i->inode->i_mapping; 1340 loff_t end = i->pos + i->len - 1; 1341 1342 i->iomap.flags |= IOMAP_F_STALE; 1343 return filemap_write_and_wait_range(mapping, i->pos, end); 1344 } 1345 1346 static int iomap_zero_iter(struct iomap_iter *iter, bool *did_zero) 1347 { 1348 u64 bytes = iomap_length(iter); 1349 int status; 1350 1351 do { 1352 struct folio *folio; 1353 size_t offset; 1354 loff_t pos = iter->pos; 1355 bool ret; 1356 1357 bytes = min_t(u64, SIZE_MAX, bytes); 1358 status = iomap_write_begin(iter, pos, bytes, &folio); 1359 if (status) 1360 return status; 1361 if (iter->iomap.flags & IOMAP_F_STALE) 1362 break; 1363 1364 /* warn about zeroing folios beyond eof that won't write back */ 1365 WARN_ON_ONCE(folio_pos(folio) > iter->inode->i_size); 1366 offset = offset_in_folio(folio, pos); 1367 if (bytes > folio_size(folio) - offset) 1368 bytes = folio_size(folio) - offset; 1369 1370 folio_zero_range(folio, offset, bytes); 1371 folio_mark_accessed(folio); 1372 1373 ret = iomap_write_end(iter, pos, bytes, bytes, folio); 1374 __iomap_put_folio(iter, pos, bytes, folio); 1375 if (WARN_ON_ONCE(!ret)) 1376 return -EIO; 1377 1378 status = iomap_iter_advance(iter, &bytes); 1379 if (status) 1380 break; 1381 } while (bytes > 0); 1382 1383 if (did_zero) 1384 *did_zero = true; 1385 return status; 1386 } 1387 1388 int 1389 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero, 1390 const struct iomap_ops *ops, void *private) 1391 { 1392 struct iomap_iter iter = { 1393 .inode = inode, 1394 .pos = pos, 1395 .len = len, 1396 .flags = IOMAP_ZERO, 1397 .private = private, 1398 }; 1399 struct address_space *mapping = inode->i_mapping; 1400 unsigned int blocksize = i_blocksize(inode); 1401 unsigned int off = pos & (blocksize - 1); 1402 loff_t plen = min_t(loff_t, len, blocksize - off); 1403 int ret; 1404 bool range_dirty; 1405 1406 /* 1407 * Zero range can skip mappings that are zero on disk so long as 1408 * pagecache is clean. If pagecache was dirty prior to zero range, the 1409 * mapping converts on writeback completion and so must be zeroed. 1410 * 1411 * The simplest way to deal with this across a range is to flush 1412 * pagecache and process the updated mappings. To avoid excessive 1413 * flushing on partial eof zeroing, special case it to zero the 1414 * unaligned start portion if already dirty in pagecache. 1415 */ 1416 if (off && 1417 filemap_range_needs_writeback(mapping, pos, pos + plen - 1)) { 1418 iter.len = plen; 1419 while ((ret = iomap_iter(&iter, ops)) > 0) 1420 iter.status = iomap_zero_iter(&iter, did_zero); 1421 1422 iter.len = len - (iter.pos - pos); 1423 if (ret || !iter.len) 1424 return ret; 1425 } 1426 1427 /* 1428 * To avoid an unconditional flush, check pagecache state and only flush 1429 * if dirty and the fs returns a mapping that might convert on 1430 * writeback. 1431 */ 1432 range_dirty = filemap_range_needs_writeback(inode->i_mapping, 1433 iter.pos, iter.pos + iter.len - 1); 1434 while ((ret = iomap_iter(&iter, ops)) > 0) { 1435 const struct iomap *srcmap = iomap_iter_srcmap(&iter); 1436 1437 if (srcmap->type == IOMAP_HOLE || 1438 srcmap->type == IOMAP_UNWRITTEN) { 1439 s64 status; 1440 1441 if (range_dirty) { 1442 range_dirty = false; 1443 status = iomap_zero_iter_flush_and_stale(&iter); 1444 } else { 1445 status = iomap_iter_advance_full(&iter); 1446 } 1447 iter.status = status; 1448 continue; 1449 } 1450 1451 iter.status = iomap_zero_iter(&iter, did_zero); 1452 } 1453 return ret; 1454 } 1455 EXPORT_SYMBOL_GPL(iomap_zero_range); 1456 1457 int 1458 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero, 1459 const struct iomap_ops *ops, void *private) 1460 { 1461 unsigned int blocksize = i_blocksize(inode); 1462 unsigned int off = pos & (blocksize - 1); 1463 1464 /* Block boundary? Nothing to do */ 1465 if (!off) 1466 return 0; 1467 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops, 1468 private); 1469 } 1470 EXPORT_SYMBOL_GPL(iomap_truncate_page); 1471 1472 static int iomap_folio_mkwrite_iter(struct iomap_iter *iter, 1473 struct folio *folio) 1474 { 1475 loff_t length = iomap_length(iter); 1476 int ret; 1477 1478 if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) { 1479 ret = __block_write_begin_int(folio, iter->pos, length, NULL, 1480 &iter->iomap); 1481 if (ret) 1482 return ret; 1483 block_commit_write(folio, 0, length); 1484 } else { 1485 WARN_ON_ONCE(!folio_test_uptodate(folio)); 1486 folio_mark_dirty(folio); 1487 } 1488 1489 return iomap_iter_advance(iter, &length); 1490 } 1491 1492 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops, 1493 void *private) 1494 { 1495 struct iomap_iter iter = { 1496 .inode = file_inode(vmf->vma->vm_file), 1497 .flags = IOMAP_WRITE | IOMAP_FAULT, 1498 .private = private, 1499 }; 1500 struct folio *folio = page_folio(vmf->page); 1501 ssize_t ret; 1502 1503 folio_lock(folio); 1504 ret = folio_mkwrite_check_truncate(folio, iter.inode); 1505 if (ret < 0) 1506 goto out_unlock; 1507 iter.pos = folio_pos(folio); 1508 iter.len = ret; 1509 while ((ret = iomap_iter(&iter, ops)) > 0) 1510 iter.status = iomap_folio_mkwrite_iter(&iter, folio); 1511 1512 if (ret < 0) 1513 goto out_unlock; 1514 folio_wait_stable(folio); 1515 return VM_FAULT_LOCKED; 1516 out_unlock: 1517 folio_unlock(folio); 1518 return vmf_fs_error(ret); 1519 } 1520 EXPORT_SYMBOL_GPL(iomap_page_mkwrite); 1521 1522 static void iomap_finish_folio_write(struct inode *inode, struct folio *folio, 1523 size_t len) 1524 { 1525 struct iomap_folio_state *ifs = folio->private; 1526 1527 WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !ifs); 1528 WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) <= 0); 1529 1530 if (!ifs || atomic_sub_and_test(len, &ifs->write_bytes_pending)) 1531 folio_end_writeback(folio); 1532 } 1533 1534 /* 1535 * We're now finished for good with this ioend structure. Update the page 1536 * state, release holds on bios, and finally free up memory. Do not use the 1537 * ioend after this. 1538 */ 1539 u32 iomap_finish_ioend_buffered(struct iomap_ioend *ioend) 1540 { 1541 struct inode *inode = ioend->io_inode; 1542 struct bio *bio = &ioend->io_bio; 1543 struct folio_iter fi; 1544 u32 folio_count = 0; 1545 1546 if (ioend->io_error) { 1547 mapping_set_error(inode->i_mapping, ioend->io_error); 1548 if (!bio_flagged(bio, BIO_QUIET)) { 1549 pr_err_ratelimited( 1550 "%s: writeback error on inode %lu, offset %lld, sector %llu", 1551 inode->i_sb->s_id, inode->i_ino, 1552 ioend->io_offset, ioend->io_sector); 1553 } 1554 } 1555 1556 /* walk all folios in bio, ending page IO on them */ 1557 bio_for_each_folio_all(fi, bio) { 1558 iomap_finish_folio_write(inode, fi.folio, fi.length); 1559 folio_count++; 1560 } 1561 1562 bio_put(bio); /* frees the ioend */ 1563 return folio_count; 1564 } 1565 1566 static void iomap_writepage_end_bio(struct bio *bio) 1567 { 1568 struct iomap_ioend *ioend = iomap_ioend_from_bio(bio); 1569 1570 ioend->io_error = blk_status_to_errno(bio->bi_status); 1571 iomap_finish_ioend_buffered(ioend); 1572 } 1573 1574 /* 1575 * Submit an ioend. 1576 * 1577 * If @error is non-zero, it means that we have a situation where some part of 1578 * the submission process has failed after we've marked pages for writeback. 1579 * We cannot cancel ioend directly in that case, so call the bio end I/O handler 1580 * with the error status here to run the normal I/O completion handler to clear 1581 * the writeback bit and let the file system proess the errors. 1582 */ 1583 static int iomap_submit_ioend(struct iomap_writepage_ctx *wpc, int error) 1584 { 1585 if (!wpc->ioend) 1586 return error; 1587 1588 /* 1589 * Let the file systems prepare the I/O submission and hook in an I/O 1590 * comletion handler. This also needs to happen in case after a 1591 * failure happened so that the file system end I/O handler gets called 1592 * to clean up. 1593 */ 1594 if (wpc->ops->submit_ioend) { 1595 error = wpc->ops->submit_ioend(wpc, error); 1596 } else { 1597 if (WARN_ON_ONCE(wpc->iomap.flags & IOMAP_F_ANON_WRITE)) 1598 error = -EIO; 1599 if (!error) 1600 submit_bio(&wpc->ioend->io_bio); 1601 } 1602 1603 if (error) { 1604 wpc->ioend->io_bio.bi_status = errno_to_blk_status(error); 1605 bio_endio(&wpc->ioend->io_bio); 1606 } 1607 1608 wpc->ioend = NULL; 1609 return error; 1610 } 1611 1612 static struct iomap_ioend *iomap_alloc_ioend(struct iomap_writepage_ctx *wpc, 1613 struct writeback_control *wbc, struct inode *inode, loff_t pos, 1614 u16 ioend_flags) 1615 { 1616 struct bio *bio; 1617 1618 bio = bio_alloc_bioset(wpc->iomap.bdev, BIO_MAX_VECS, 1619 REQ_OP_WRITE | wbc_to_write_flags(wbc), 1620 GFP_NOFS, &iomap_ioend_bioset); 1621 bio->bi_iter.bi_sector = iomap_sector(&wpc->iomap, pos); 1622 bio->bi_end_io = iomap_writepage_end_bio; 1623 bio->bi_write_hint = inode->i_write_hint; 1624 wbc_init_bio(wbc, bio); 1625 wpc->nr_folios = 0; 1626 return iomap_init_ioend(inode, bio, pos, ioend_flags); 1627 } 1628 1629 static bool iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t pos, 1630 u16 ioend_flags) 1631 { 1632 if (ioend_flags & IOMAP_IOEND_BOUNDARY) 1633 return false; 1634 if ((ioend_flags & IOMAP_IOEND_NOMERGE_FLAGS) != 1635 (wpc->ioend->io_flags & IOMAP_IOEND_NOMERGE_FLAGS)) 1636 return false; 1637 if (pos != wpc->ioend->io_offset + wpc->ioend->io_size) 1638 return false; 1639 if (!(wpc->iomap.flags & IOMAP_F_ANON_WRITE) && 1640 iomap_sector(&wpc->iomap, pos) != 1641 bio_end_sector(&wpc->ioend->io_bio)) 1642 return false; 1643 /* 1644 * Limit ioend bio chain lengths to minimise IO completion latency. This 1645 * also prevents long tight loops ending page writeback on all the 1646 * folios in the ioend. 1647 */ 1648 if (wpc->nr_folios >= IOEND_BATCH_SIZE) 1649 return false; 1650 return true; 1651 } 1652 1653 /* 1654 * Test to see if we have an existing ioend structure that we could append to 1655 * first; otherwise finish off the current ioend and start another. 1656 * 1657 * If a new ioend is created and cached, the old ioend is submitted to the block 1658 * layer instantly. Batching optimisations are provided by higher level block 1659 * plugging. 1660 * 1661 * At the end of a writeback pass, there will be a cached ioend remaining on the 1662 * writepage context that the caller will need to submit. 1663 */ 1664 static int iomap_add_to_ioend(struct iomap_writepage_ctx *wpc, 1665 struct writeback_control *wbc, struct folio *folio, 1666 struct inode *inode, loff_t pos, loff_t end_pos, 1667 unsigned len) 1668 { 1669 struct iomap_folio_state *ifs = folio->private; 1670 size_t poff = offset_in_folio(folio, pos); 1671 unsigned int ioend_flags = 0; 1672 int error; 1673 1674 if (wpc->iomap.type == IOMAP_UNWRITTEN) 1675 ioend_flags |= IOMAP_IOEND_UNWRITTEN; 1676 if (wpc->iomap.flags & IOMAP_F_SHARED) 1677 ioend_flags |= IOMAP_IOEND_SHARED; 1678 if (pos == wpc->iomap.offset && (wpc->iomap.flags & IOMAP_F_BOUNDARY)) 1679 ioend_flags |= IOMAP_IOEND_BOUNDARY; 1680 1681 if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos, ioend_flags)) { 1682 new_ioend: 1683 error = iomap_submit_ioend(wpc, 0); 1684 if (error) 1685 return error; 1686 wpc->ioend = iomap_alloc_ioend(wpc, wbc, inode, pos, 1687 ioend_flags); 1688 } 1689 1690 if (!bio_add_folio(&wpc->ioend->io_bio, folio, len, poff)) 1691 goto new_ioend; 1692 1693 if (ifs) 1694 atomic_add(len, &ifs->write_bytes_pending); 1695 1696 /* 1697 * Clamp io_offset and io_size to the incore EOF so that ondisk 1698 * file size updates in the ioend completion are byte-accurate. 1699 * This avoids recovering files with zeroed tail regions when 1700 * writeback races with appending writes: 1701 * 1702 * Thread 1: Thread 2: 1703 * ------------ ----------- 1704 * write [A, A+B] 1705 * update inode size to A+B 1706 * submit I/O [A, A+BS] 1707 * write [A+B, A+B+C] 1708 * update inode size to A+B+C 1709 * <I/O completes, updates disk size to min(A+B+C, A+BS)> 1710 * <power failure> 1711 * 1712 * After reboot: 1713 * 1) with A+B+C < A+BS, the file has zero padding in range 1714 * [A+B, A+B+C] 1715 * 1716 * |< Block Size (BS) >| 1717 * |DDDDDDDDDDDD0000000000000| 1718 * ^ ^ ^ 1719 * A A+B A+B+C 1720 * (EOF) 1721 * 1722 * 2) with A+B+C > A+BS, the file has zero padding in range 1723 * [A+B, A+BS] 1724 * 1725 * |< Block Size (BS) >|< Block Size (BS) >| 1726 * |DDDDDDDDDDDD0000000000000|00000000000000000000000000| 1727 * ^ ^ ^ ^ 1728 * A A+B A+BS A+B+C 1729 * (EOF) 1730 * 1731 * D = Valid Data 1732 * 0 = Zero Padding 1733 * 1734 * Note that this defeats the ability to chain the ioends of 1735 * appending writes. 1736 */ 1737 wpc->ioend->io_size += len; 1738 if (wpc->ioend->io_offset + wpc->ioend->io_size > end_pos) 1739 wpc->ioend->io_size = end_pos - wpc->ioend->io_offset; 1740 1741 wbc_account_cgroup_owner(wbc, folio, len); 1742 return 0; 1743 } 1744 1745 static int iomap_writepage_map_blocks(struct iomap_writepage_ctx *wpc, 1746 struct writeback_control *wbc, struct folio *folio, 1747 struct inode *inode, u64 pos, u64 end_pos, 1748 unsigned dirty_len, unsigned *count) 1749 { 1750 int error; 1751 1752 do { 1753 unsigned map_len; 1754 1755 error = wpc->ops->map_blocks(wpc, inode, pos, dirty_len); 1756 if (error) 1757 break; 1758 trace_iomap_writepage_map(inode, pos, dirty_len, &wpc->iomap); 1759 1760 map_len = min_t(u64, dirty_len, 1761 wpc->iomap.offset + wpc->iomap.length - pos); 1762 WARN_ON_ONCE(!folio->private && map_len < dirty_len); 1763 1764 switch (wpc->iomap.type) { 1765 case IOMAP_INLINE: 1766 WARN_ON_ONCE(1); 1767 error = -EIO; 1768 break; 1769 case IOMAP_HOLE: 1770 break; 1771 default: 1772 error = iomap_add_to_ioend(wpc, wbc, folio, inode, pos, 1773 end_pos, map_len); 1774 if (!error) 1775 (*count)++; 1776 break; 1777 } 1778 dirty_len -= map_len; 1779 pos += map_len; 1780 } while (dirty_len && !error); 1781 1782 /* 1783 * We cannot cancel the ioend directly here on error. We may have 1784 * already set other pages under writeback and hence we have to run I/O 1785 * completion to mark the error state of the pages under writeback 1786 * appropriately. 1787 * 1788 * Just let the file system know what portion of the folio failed to 1789 * map. 1790 */ 1791 if (error && wpc->ops->discard_folio) 1792 wpc->ops->discard_folio(folio, pos); 1793 return error; 1794 } 1795 1796 /* 1797 * Check interaction of the folio with the file end. 1798 * 1799 * If the folio is entirely beyond i_size, return false. If it straddles 1800 * i_size, adjust end_pos and zero all data beyond i_size. 1801 */ 1802 static bool iomap_writepage_handle_eof(struct folio *folio, struct inode *inode, 1803 u64 *end_pos) 1804 { 1805 u64 isize = i_size_read(inode); 1806 1807 if (*end_pos > isize) { 1808 size_t poff = offset_in_folio(folio, isize); 1809 pgoff_t end_index = isize >> PAGE_SHIFT; 1810 1811 /* 1812 * If the folio is entirely ouside of i_size, skip it. 1813 * 1814 * This can happen due to a truncate operation that is in 1815 * progress and in that case truncate will finish it off once 1816 * we've dropped the folio lock. 1817 * 1818 * Note that the pgoff_t used for end_index is an unsigned long. 1819 * If the given offset is greater than 16TB on a 32-bit system, 1820 * then if we checked if the folio is fully outside i_size with 1821 * "if (folio->index >= end_index + 1)", "end_index + 1" would 1822 * overflow and evaluate to 0. Hence this folio would be 1823 * redirtied and written out repeatedly, which would result in 1824 * an infinite loop; the user program performing this operation 1825 * would hang. Instead, we can detect this situation by 1826 * checking if the folio is totally beyond i_size or if its 1827 * offset is just equal to the EOF. 1828 */ 1829 if (folio->index > end_index || 1830 (folio->index == end_index && poff == 0)) 1831 return false; 1832 1833 /* 1834 * The folio straddles i_size. 1835 * 1836 * It must be zeroed out on each and every writepage invocation 1837 * because it may be mmapped: 1838 * 1839 * A file is mapped in multiples of the page size. For a 1840 * file that is not a multiple of the page size, the 1841 * remaining memory is zeroed when mapped, and writes to that 1842 * region are not written out to the file. 1843 * 1844 * Also adjust the end_pos to the end of file and skip writeback 1845 * for all blocks entirely beyond i_size. 1846 */ 1847 folio_zero_segment(folio, poff, folio_size(folio)); 1848 *end_pos = isize; 1849 } 1850 1851 return true; 1852 } 1853 1854 static int iomap_writepage_map(struct iomap_writepage_ctx *wpc, 1855 struct writeback_control *wbc, struct folio *folio) 1856 { 1857 struct iomap_folio_state *ifs = folio->private; 1858 struct inode *inode = folio->mapping->host; 1859 u64 pos = folio_pos(folio); 1860 u64 end_pos = pos + folio_size(folio); 1861 u64 end_aligned = 0; 1862 unsigned count = 0; 1863 int error = 0; 1864 u32 rlen; 1865 1866 WARN_ON_ONCE(!folio_test_locked(folio)); 1867 WARN_ON_ONCE(folio_test_dirty(folio)); 1868 WARN_ON_ONCE(folio_test_writeback(folio)); 1869 1870 trace_iomap_writepage(inode, pos, folio_size(folio)); 1871 1872 if (!iomap_writepage_handle_eof(folio, inode, &end_pos)) { 1873 folio_unlock(folio); 1874 return 0; 1875 } 1876 WARN_ON_ONCE(end_pos <= pos); 1877 1878 if (i_blocks_per_folio(inode, folio) > 1) { 1879 if (!ifs) { 1880 ifs = ifs_alloc(inode, folio, 0); 1881 iomap_set_range_dirty(folio, 0, end_pos - pos); 1882 } 1883 1884 /* 1885 * Keep the I/O completion handler from clearing the writeback 1886 * bit until we have submitted all blocks by adding a bias to 1887 * ifs->write_bytes_pending, which is dropped after submitting 1888 * all blocks. 1889 */ 1890 WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending) != 0); 1891 atomic_inc(&ifs->write_bytes_pending); 1892 } 1893 1894 /* 1895 * Set the writeback bit ASAP, as the I/O completion for the single 1896 * block per folio case happen hit as soon as we're submitting the bio. 1897 */ 1898 folio_start_writeback(folio); 1899 1900 /* 1901 * Walk through the folio to find dirty areas to write back. 1902 */ 1903 end_aligned = round_up(end_pos, i_blocksize(inode)); 1904 while ((rlen = iomap_find_dirty_range(folio, &pos, end_aligned))) { 1905 error = iomap_writepage_map_blocks(wpc, wbc, folio, inode, 1906 pos, end_pos, rlen, &count); 1907 if (error) 1908 break; 1909 pos += rlen; 1910 } 1911 1912 if (count) 1913 wpc->nr_folios++; 1914 1915 /* 1916 * We can have dirty bits set past end of file in page_mkwrite path 1917 * while mapping the last partial folio. Hence it's better to clear 1918 * all the dirty bits in the folio here. 1919 */ 1920 iomap_clear_range_dirty(folio, 0, folio_size(folio)); 1921 1922 /* 1923 * Usually the writeback bit is cleared by the I/O completion handler. 1924 * But we may end up either not actually writing any blocks, or (when 1925 * there are multiple blocks in a folio) all I/O might have finished 1926 * already at this point. In that case we need to clear the writeback 1927 * bit ourselves right after unlocking the page. 1928 */ 1929 folio_unlock(folio); 1930 if (ifs) { 1931 if (atomic_dec_and_test(&ifs->write_bytes_pending)) 1932 folio_end_writeback(folio); 1933 } else { 1934 if (!count) 1935 folio_end_writeback(folio); 1936 } 1937 mapping_set_error(inode->i_mapping, error); 1938 return error; 1939 } 1940 1941 int 1942 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc, 1943 struct iomap_writepage_ctx *wpc, 1944 const struct iomap_writeback_ops *ops) 1945 { 1946 struct folio *folio = NULL; 1947 int error; 1948 1949 /* 1950 * Writeback from reclaim context should never happen except in the case 1951 * of a VM regression so warn about it and refuse to write the data. 1952 */ 1953 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC | PF_KSWAPD)) == 1954 PF_MEMALLOC)) 1955 return -EIO; 1956 1957 wpc->ops = ops; 1958 while ((folio = writeback_iter(mapping, wbc, folio, &error))) 1959 error = iomap_writepage_map(wpc, wbc, folio); 1960 return iomap_submit_ioend(wpc, error); 1961 } 1962 EXPORT_SYMBOL_GPL(iomap_writepages); 1963