1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/file.c 4 * 5 * Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes 6 * 7 * Manage the dynamic fd arrays in the process files_struct. 8 */ 9 10 #include <linux/syscalls.h> 11 #include <linux/export.h> 12 #include <linux/fs.h> 13 #include <linux/kernel.h> 14 #include <linux/mm.h> 15 #include <linux/sched/signal.h> 16 #include <linux/slab.h> 17 #include <linux/file.h> 18 #include <linux/fdtable.h> 19 #include <linux/bitops.h> 20 #include <linux/spinlock.h> 21 #include <linux/rcupdate.h> 22 #include <linux/close_range.h> 23 #include <linux/file_ref.h> 24 #include <net/sock.h> 25 #include <linux/init_task.h> 26 27 #include "internal.h" 28 29 bool __file_ref_put_badval(file_ref_t *ref, unsigned long cnt) 30 { 31 /* 32 * If the reference count was already in the dead zone, then this 33 * put() operation is imbalanced. Warn, put the reference count back to 34 * DEAD and tell the caller to not deconstruct the object. 35 */ 36 if (WARN_ONCE(cnt >= FILE_REF_RELEASED, "imbalanced put on file reference count")) { 37 atomic_long_set(&ref->refcnt, FILE_REF_DEAD); 38 return false; 39 } 40 41 /* 42 * This is a put() operation on a saturated refcount. Restore the 43 * mean saturation value and tell the caller to not deconstruct the 44 * object. 45 */ 46 if (cnt > FILE_REF_MAXREF) 47 atomic_long_set(&ref->refcnt, FILE_REF_SATURATED); 48 return false; 49 } 50 51 /** 52 * __file_ref_put - Slowpath of file_ref_put() 53 * @ref: Pointer to the reference count 54 * @cnt: Current reference count 55 * 56 * Invoked when the reference count is outside of the valid zone. 57 * 58 * Return: 59 * True if this was the last reference with no future references 60 * possible. This signals the caller that it can safely schedule the 61 * object, which is protected by the reference counter, for 62 * deconstruction. 63 * 64 * False if there are still active references or the put() raced 65 * with a concurrent get()/put() pair. Caller is not allowed to 66 * deconstruct the protected object. 67 */ 68 bool __file_ref_put(file_ref_t *ref, unsigned long cnt) 69 { 70 /* Did this drop the last reference? */ 71 if (likely(cnt == FILE_REF_NOREF)) { 72 /* 73 * Carefully try to set the reference count to FILE_REF_DEAD. 74 * 75 * This can fail if a concurrent get() operation has 76 * elevated it again or the corresponding put() even marked 77 * it dead already. Both are valid situations and do not 78 * require a retry. If this fails the caller is not 79 * allowed to deconstruct the object. 80 */ 81 if (!atomic_long_try_cmpxchg_release(&ref->refcnt, &cnt, FILE_REF_DEAD)) 82 return false; 83 84 /* 85 * The caller can safely schedule the object for 86 * deconstruction. Provide acquire ordering. 87 */ 88 smp_acquire__after_ctrl_dep(); 89 return true; 90 } 91 92 return __file_ref_put_badval(ref, cnt); 93 } 94 EXPORT_SYMBOL_GPL(__file_ref_put); 95 96 unsigned int sysctl_nr_open __read_mostly = 1024*1024; 97 unsigned int sysctl_nr_open_min = BITS_PER_LONG; 98 /* our min() is unusable in constant expressions ;-/ */ 99 #define __const_min(x, y) ((x) < (y) ? (x) : (y)) 100 unsigned int sysctl_nr_open_max = 101 __const_min(INT_MAX, ~(size_t)0/sizeof(void *)) & -BITS_PER_LONG; 102 103 static void __free_fdtable(struct fdtable *fdt) 104 { 105 kvfree(fdt->fd); 106 kvfree(fdt->open_fds); 107 kfree(fdt); 108 } 109 110 static void free_fdtable_rcu(struct rcu_head *rcu) 111 { 112 __free_fdtable(container_of(rcu, struct fdtable, rcu)); 113 } 114 115 #define BITBIT_NR(nr) BITS_TO_LONGS(BITS_TO_LONGS(nr)) 116 #define BITBIT_SIZE(nr) (BITBIT_NR(nr) * sizeof(long)) 117 118 #define fdt_words(fdt) ((fdt)->max_fds / BITS_PER_LONG) // words in ->open_fds 119 /* 120 * Copy 'count' fd bits from the old table to the new table and clear the extra 121 * space if any. This does not copy the file pointers. Called with the files 122 * spinlock held for write. 123 */ 124 static inline void copy_fd_bitmaps(struct fdtable *nfdt, struct fdtable *ofdt, 125 unsigned int copy_words) 126 { 127 unsigned int nwords = fdt_words(nfdt); 128 129 bitmap_copy_and_extend(nfdt->open_fds, ofdt->open_fds, 130 copy_words * BITS_PER_LONG, nwords * BITS_PER_LONG); 131 bitmap_copy_and_extend(nfdt->close_on_exec, ofdt->close_on_exec, 132 copy_words * BITS_PER_LONG, nwords * BITS_PER_LONG); 133 bitmap_copy_and_extend(nfdt->full_fds_bits, ofdt->full_fds_bits, 134 copy_words, nwords); 135 } 136 137 /* 138 * Copy all file descriptors from the old table to the new, expanded table and 139 * clear the extra space. Called with the files spinlock held for write. 140 */ 141 static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt) 142 { 143 size_t cpy, set; 144 145 BUG_ON(nfdt->max_fds < ofdt->max_fds); 146 147 cpy = ofdt->max_fds * sizeof(struct file *); 148 set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *); 149 memcpy(nfdt->fd, ofdt->fd, cpy); 150 memset((char *)nfdt->fd + cpy, 0, set); 151 152 copy_fd_bitmaps(nfdt, ofdt, fdt_words(ofdt)); 153 } 154 155 /* 156 * Note how the fdtable bitmap allocations very much have to be a multiple of 157 * BITS_PER_LONG. This is not only because we walk those things in chunks of 158 * 'unsigned long' in some places, but simply because that is how the Linux 159 * kernel bitmaps are defined to work: they are not "bits in an array of bytes", 160 * they are very much "bits in an array of unsigned long". 161 */ 162 static struct fdtable *alloc_fdtable(unsigned int slots_wanted) 163 { 164 struct fdtable *fdt; 165 unsigned int nr; 166 void *data; 167 168 /* 169 * Figure out how many fds we actually want to support in this fdtable. 170 * Allocation steps are keyed to the size of the fdarray, since it 171 * grows far faster than any of the other dynamic data. We try to fit 172 * the fdarray into comfortable page-tuned chunks: starting at 1024B 173 * and growing in powers of two from there on. Since we called only 174 * with slots_wanted > BITS_PER_LONG (embedded instance in files->fdtab 175 * already gives BITS_PER_LONG slots), the above boils down to 176 * 1. use the smallest power of two large enough to give us that many 177 * slots. 178 * 2. on 32bit skip 64 and 128 - the minimal capacity we want there is 179 * 256 slots (i.e. 1Kb fd array). 180 * 3. on 64bit don't skip anything, 1Kb fd array means 128 slots there 181 * and we are never going to be asked for 64 or less. 182 */ 183 if (IS_ENABLED(CONFIG_32BIT) && slots_wanted < 256) 184 nr = 256; 185 else 186 nr = roundup_pow_of_two(slots_wanted); 187 /* 188 * Note that this can drive nr *below* what we had passed if sysctl_nr_open 189 * had been set lower between the check in expand_files() and here. 190 * 191 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise 192 * bitmaps handling below becomes unpleasant, to put it mildly... 193 */ 194 if (unlikely(nr > sysctl_nr_open)) { 195 nr = round_down(sysctl_nr_open, BITS_PER_LONG); 196 if (nr < slots_wanted) 197 return ERR_PTR(-EMFILE); 198 } 199 200 fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL_ACCOUNT); 201 if (!fdt) 202 goto out; 203 fdt->max_fds = nr; 204 data = kvmalloc_array(nr, sizeof(struct file *), GFP_KERNEL_ACCOUNT); 205 if (!data) 206 goto out_fdt; 207 fdt->fd = data; 208 209 data = kvmalloc(max_t(size_t, 210 2 * nr / BITS_PER_BYTE + BITBIT_SIZE(nr), L1_CACHE_BYTES), 211 GFP_KERNEL_ACCOUNT); 212 if (!data) 213 goto out_arr; 214 fdt->open_fds = data; 215 data += nr / BITS_PER_BYTE; 216 fdt->close_on_exec = data; 217 data += nr / BITS_PER_BYTE; 218 fdt->full_fds_bits = data; 219 220 return fdt; 221 222 out_arr: 223 kvfree(fdt->fd); 224 out_fdt: 225 kfree(fdt); 226 out: 227 return ERR_PTR(-ENOMEM); 228 } 229 230 /* 231 * Expand the file descriptor table. 232 * This function will allocate a new fdtable and both fd array and fdset, of 233 * the given size. 234 * Return <0 error code on error; 0 on successful completion. 235 * The files->file_lock should be held on entry, and will be held on exit. 236 */ 237 static int expand_fdtable(struct files_struct *files, unsigned int nr) 238 __releases(files->file_lock) 239 __acquires(files->file_lock) 240 { 241 struct fdtable *new_fdt, *cur_fdt; 242 243 spin_unlock(&files->file_lock); 244 new_fdt = alloc_fdtable(nr + 1); 245 246 /* make sure all fd_install() have seen resize_in_progress 247 * or have finished their rcu_read_lock_sched() section. 248 */ 249 if (atomic_read(&files->count) > 1) 250 synchronize_rcu(); 251 252 spin_lock(&files->file_lock); 253 if (IS_ERR(new_fdt)) 254 return PTR_ERR(new_fdt); 255 cur_fdt = files_fdtable(files); 256 BUG_ON(nr < cur_fdt->max_fds); 257 copy_fdtable(new_fdt, cur_fdt); 258 rcu_assign_pointer(files->fdt, new_fdt); 259 if (cur_fdt != &files->fdtab) 260 call_rcu(&cur_fdt->rcu, free_fdtable_rcu); 261 /* coupled with smp_rmb() in fd_install() */ 262 smp_wmb(); 263 return 0; 264 } 265 266 /* 267 * Expand files. 268 * This function will expand the file structures, if the requested size exceeds 269 * the current capacity and there is room for expansion. 270 * Return <0 error code on error; 0 on success. 271 * The files->file_lock should be held on entry, and will be held on exit. 272 */ 273 static int expand_files(struct files_struct *files, unsigned int nr) 274 __releases(files->file_lock) 275 __acquires(files->file_lock) 276 { 277 struct fdtable *fdt; 278 int error; 279 280 repeat: 281 fdt = files_fdtable(files); 282 283 /* Do we need to expand? */ 284 if (nr < fdt->max_fds) 285 return 0; 286 287 if (unlikely(files->resize_in_progress)) { 288 spin_unlock(&files->file_lock); 289 wait_event(files->resize_wait, !files->resize_in_progress); 290 spin_lock(&files->file_lock); 291 goto repeat; 292 } 293 294 /* Can we expand? */ 295 if (unlikely(nr >= sysctl_nr_open)) 296 return -EMFILE; 297 298 /* All good, so we try */ 299 files->resize_in_progress = true; 300 error = expand_fdtable(files, nr); 301 files->resize_in_progress = false; 302 303 wake_up_all(&files->resize_wait); 304 return error; 305 } 306 307 static inline void __set_close_on_exec(unsigned int fd, struct fdtable *fdt, 308 bool set) 309 { 310 if (set) { 311 __set_bit(fd, fdt->close_on_exec); 312 } else { 313 if (test_bit(fd, fdt->close_on_exec)) 314 __clear_bit(fd, fdt->close_on_exec); 315 } 316 } 317 318 static inline void __set_open_fd(unsigned int fd, struct fdtable *fdt, bool set) 319 { 320 __set_bit(fd, fdt->open_fds); 321 __set_close_on_exec(fd, fdt, set); 322 fd /= BITS_PER_LONG; 323 if (!~fdt->open_fds[fd]) 324 __set_bit(fd, fdt->full_fds_bits); 325 } 326 327 static inline void __clear_open_fd(unsigned int fd, struct fdtable *fdt) 328 { 329 __clear_bit(fd, fdt->open_fds); 330 fd /= BITS_PER_LONG; 331 if (test_bit(fd, fdt->full_fds_bits)) 332 __clear_bit(fd, fdt->full_fds_bits); 333 } 334 335 static inline bool fd_is_open(unsigned int fd, const struct fdtable *fdt) 336 { 337 return test_bit(fd, fdt->open_fds); 338 } 339 340 /* 341 * Note that a sane fdtable size always has to be a multiple of 342 * BITS_PER_LONG, since we have bitmaps that are sized by this. 343 * 344 * punch_hole is optional - when close_range() is asked to unshare 345 * and close, we don't need to copy descriptors in that range, so 346 * a smaller cloned descriptor table might suffice if the last 347 * currently opened descriptor falls into that range. 348 */ 349 static unsigned int sane_fdtable_size(struct fdtable *fdt, struct fd_range *punch_hole) 350 { 351 unsigned int last = find_last_bit(fdt->open_fds, fdt->max_fds); 352 353 if (last == fdt->max_fds) 354 return NR_OPEN_DEFAULT; 355 if (punch_hole && punch_hole->to >= last && punch_hole->from <= last) { 356 last = find_last_bit(fdt->open_fds, punch_hole->from); 357 if (last == punch_hole->from) 358 return NR_OPEN_DEFAULT; 359 } 360 return ALIGN(last + 1, BITS_PER_LONG); 361 } 362 363 /* 364 * Allocate a new descriptor table and copy contents from the passed in 365 * instance. Returns a pointer to cloned table on success, ERR_PTR() 366 * on failure. For 'punch_hole' see sane_fdtable_size(). 367 */ 368 struct files_struct *dup_fd(struct files_struct *oldf, struct fd_range *punch_hole) 369 { 370 struct files_struct *newf; 371 struct file **old_fds, **new_fds; 372 unsigned int open_files, i; 373 struct fdtable *old_fdt, *new_fdt; 374 375 newf = kmem_cache_alloc(files_cachep, GFP_KERNEL); 376 if (!newf) 377 return ERR_PTR(-ENOMEM); 378 379 atomic_set(&newf->count, 1); 380 381 spin_lock_init(&newf->file_lock); 382 newf->resize_in_progress = false; 383 init_waitqueue_head(&newf->resize_wait); 384 newf->next_fd = 0; 385 new_fdt = &newf->fdtab; 386 new_fdt->max_fds = NR_OPEN_DEFAULT; 387 new_fdt->close_on_exec = newf->close_on_exec_init; 388 new_fdt->open_fds = newf->open_fds_init; 389 new_fdt->full_fds_bits = newf->full_fds_bits_init; 390 new_fdt->fd = &newf->fd_array[0]; 391 392 spin_lock(&oldf->file_lock); 393 old_fdt = files_fdtable(oldf); 394 open_files = sane_fdtable_size(old_fdt, punch_hole); 395 396 /* 397 * Check whether we need to allocate a larger fd array and fd set. 398 */ 399 while (unlikely(open_files > new_fdt->max_fds)) { 400 spin_unlock(&oldf->file_lock); 401 402 if (new_fdt != &newf->fdtab) 403 __free_fdtable(new_fdt); 404 405 new_fdt = alloc_fdtable(open_files); 406 if (IS_ERR(new_fdt)) { 407 kmem_cache_free(files_cachep, newf); 408 return ERR_CAST(new_fdt); 409 } 410 411 /* 412 * Reacquire the oldf lock and a pointer to its fd table 413 * who knows it may have a new bigger fd table. We need 414 * the latest pointer. 415 */ 416 spin_lock(&oldf->file_lock); 417 old_fdt = files_fdtable(oldf); 418 open_files = sane_fdtable_size(old_fdt, punch_hole); 419 } 420 421 copy_fd_bitmaps(new_fdt, old_fdt, open_files / BITS_PER_LONG); 422 423 old_fds = old_fdt->fd; 424 new_fds = new_fdt->fd; 425 426 /* 427 * We may be racing against fd allocation from other threads using this 428 * files_struct, despite holding ->file_lock. 429 * 430 * alloc_fd() might have already claimed a slot, while fd_install() 431 * did not populate it yet. Note the latter operates locklessly, so 432 * the file can show up as we are walking the array below. 433 * 434 * At the same time we know no files will disappear as all other 435 * operations take the lock. 436 * 437 * Instead of trying to placate userspace racing with itself, we 438 * ref the file if we see it and mark the fd slot as unused otherwise. 439 */ 440 for (i = open_files; i != 0; i--) { 441 struct file *f = rcu_dereference_raw(*old_fds++); 442 if (f) { 443 get_file(f); 444 } else { 445 __clear_open_fd(open_files - i, new_fdt); 446 } 447 rcu_assign_pointer(*new_fds++, f); 448 } 449 spin_unlock(&oldf->file_lock); 450 451 /* clear the remainder */ 452 memset(new_fds, 0, (new_fdt->max_fds - open_files) * sizeof(struct file *)); 453 454 rcu_assign_pointer(newf->fdt, new_fdt); 455 456 return newf; 457 } 458 459 static struct fdtable *close_files(struct files_struct * files) 460 { 461 /* 462 * It is safe to dereference the fd table without RCU or 463 * ->file_lock because this is the last reference to the 464 * files structure. 465 */ 466 struct fdtable *fdt = rcu_dereference_raw(files->fdt); 467 unsigned int i, j = 0; 468 469 for (;;) { 470 unsigned long set; 471 i = j * BITS_PER_LONG; 472 if (i >= fdt->max_fds) 473 break; 474 set = fdt->open_fds[j++]; 475 while (set) { 476 if (set & 1) { 477 struct file *file = fdt->fd[i]; 478 if (file) { 479 filp_close(file, files); 480 cond_resched(); 481 } 482 } 483 i++; 484 set >>= 1; 485 } 486 } 487 488 return fdt; 489 } 490 491 void put_files_struct(struct files_struct *files) 492 { 493 if (atomic_dec_and_test(&files->count)) { 494 struct fdtable *fdt = close_files(files); 495 496 /* free the arrays if they are not embedded */ 497 if (fdt != &files->fdtab) 498 __free_fdtable(fdt); 499 kmem_cache_free(files_cachep, files); 500 } 501 } 502 503 void exit_files(struct task_struct *tsk) 504 { 505 struct files_struct * files = tsk->files; 506 507 if (files) { 508 task_lock(tsk); 509 tsk->files = NULL; 510 task_unlock(tsk); 511 put_files_struct(files); 512 } 513 } 514 515 struct files_struct init_files = { 516 .count = ATOMIC_INIT(1), 517 .fdt = &init_files.fdtab, 518 .fdtab = { 519 .max_fds = NR_OPEN_DEFAULT, 520 .fd = &init_files.fd_array[0], 521 .close_on_exec = init_files.close_on_exec_init, 522 .open_fds = init_files.open_fds_init, 523 .full_fds_bits = init_files.full_fds_bits_init, 524 }, 525 .file_lock = __SPIN_LOCK_UNLOCKED(init_files.file_lock), 526 .resize_wait = __WAIT_QUEUE_HEAD_INITIALIZER(init_files.resize_wait), 527 }; 528 529 static unsigned int find_next_fd(struct fdtable *fdt, unsigned int start) 530 { 531 unsigned int maxfd = fdt->max_fds; /* always multiple of BITS_PER_LONG */ 532 unsigned int maxbit = maxfd / BITS_PER_LONG; 533 unsigned int bitbit = start / BITS_PER_LONG; 534 unsigned int bit; 535 536 /* 537 * Try to avoid looking at the second level bitmap 538 */ 539 bit = find_next_zero_bit(&fdt->open_fds[bitbit], BITS_PER_LONG, 540 start & (BITS_PER_LONG - 1)); 541 if (bit < BITS_PER_LONG) 542 return bit + bitbit * BITS_PER_LONG; 543 544 bitbit = find_next_zero_bit(fdt->full_fds_bits, maxbit, bitbit) * BITS_PER_LONG; 545 if (bitbit >= maxfd) 546 return maxfd; 547 if (bitbit > start) 548 start = bitbit; 549 return find_next_zero_bit(fdt->open_fds, maxfd, start); 550 } 551 552 /* 553 * allocate a file descriptor, mark it busy. 554 */ 555 static int alloc_fd(unsigned start, unsigned end, unsigned flags) 556 { 557 struct files_struct *files = current->files; 558 unsigned int fd; 559 int error; 560 struct fdtable *fdt; 561 562 spin_lock(&files->file_lock); 563 repeat: 564 fdt = files_fdtable(files); 565 fd = start; 566 if (fd < files->next_fd) 567 fd = files->next_fd; 568 569 if (likely(fd < fdt->max_fds)) 570 fd = find_next_fd(fdt, fd); 571 572 /* 573 * N.B. For clone tasks sharing a files structure, this test 574 * will limit the total number of files that can be opened. 575 */ 576 error = -EMFILE; 577 if (unlikely(fd >= end)) 578 goto out; 579 580 if (unlikely(fd >= fdt->max_fds)) { 581 error = expand_files(files, fd); 582 if (error < 0) 583 goto out; 584 585 goto repeat; 586 } 587 588 if (start <= files->next_fd) 589 files->next_fd = fd + 1; 590 591 __set_open_fd(fd, fdt, flags & O_CLOEXEC); 592 error = fd; 593 VFS_BUG_ON(rcu_access_pointer(fdt->fd[fd]) != NULL); 594 595 out: 596 spin_unlock(&files->file_lock); 597 return error; 598 } 599 600 int __get_unused_fd_flags(unsigned flags, unsigned long nofile) 601 { 602 return alloc_fd(0, nofile, flags); 603 } 604 605 int get_unused_fd_flags(unsigned flags) 606 { 607 return __get_unused_fd_flags(flags, rlimit(RLIMIT_NOFILE)); 608 } 609 EXPORT_SYMBOL(get_unused_fd_flags); 610 611 static void __put_unused_fd(struct files_struct *files, unsigned int fd) 612 { 613 struct fdtable *fdt = files_fdtable(files); 614 __clear_open_fd(fd, fdt); 615 if (fd < files->next_fd) 616 files->next_fd = fd; 617 } 618 619 void put_unused_fd(unsigned int fd) 620 { 621 struct files_struct *files = current->files; 622 spin_lock(&files->file_lock); 623 __put_unused_fd(files, fd); 624 spin_unlock(&files->file_lock); 625 } 626 627 EXPORT_SYMBOL(put_unused_fd); 628 629 /** 630 * fd_install - install a file pointer in the fd array 631 * @fd: file descriptor to install the file in 632 * @file: the file to install 633 * 634 * This consumes the "file" refcount, so callers should treat it 635 * as if they had called fput(file). 636 */ 637 void fd_install(unsigned int fd, struct file *file) 638 { 639 struct files_struct *files = current->files; 640 struct fdtable *fdt; 641 642 if (WARN_ON_ONCE(unlikely(file->f_mode & FMODE_BACKING))) 643 return; 644 645 rcu_read_lock_sched(); 646 647 if (unlikely(files->resize_in_progress)) { 648 rcu_read_unlock_sched(); 649 spin_lock(&files->file_lock); 650 fdt = files_fdtable(files); 651 VFS_BUG_ON(rcu_access_pointer(fdt->fd[fd]) != NULL); 652 rcu_assign_pointer(fdt->fd[fd], file); 653 spin_unlock(&files->file_lock); 654 return; 655 } 656 /* coupled with smp_wmb() in expand_fdtable() */ 657 smp_rmb(); 658 fdt = rcu_dereference_sched(files->fdt); 659 VFS_BUG_ON(rcu_access_pointer(fdt->fd[fd]) != NULL); 660 rcu_assign_pointer(fdt->fd[fd], file); 661 rcu_read_unlock_sched(); 662 } 663 664 EXPORT_SYMBOL(fd_install); 665 666 /** 667 * file_close_fd_locked - return file associated with fd 668 * @files: file struct to retrieve file from 669 * @fd: file descriptor to retrieve file for 670 * 671 * Doesn't take a separate reference count. 672 * 673 * Context: files_lock must be held. 674 * 675 * Returns: The file associated with @fd (NULL if @fd is not open) 676 */ 677 struct file *file_close_fd_locked(struct files_struct *files, unsigned fd) 678 { 679 struct fdtable *fdt = files_fdtable(files); 680 struct file *file; 681 682 lockdep_assert_held(&files->file_lock); 683 684 if (fd >= fdt->max_fds) 685 return NULL; 686 687 fd = array_index_nospec(fd, fdt->max_fds); 688 file = rcu_dereference_raw(fdt->fd[fd]); 689 if (file) { 690 rcu_assign_pointer(fdt->fd[fd], NULL); 691 __put_unused_fd(files, fd); 692 } 693 return file; 694 } 695 696 int close_fd(unsigned fd) 697 { 698 struct files_struct *files = current->files; 699 struct file *file; 700 701 spin_lock(&files->file_lock); 702 file = file_close_fd_locked(files, fd); 703 spin_unlock(&files->file_lock); 704 if (!file) 705 return -EBADF; 706 707 return filp_close(file, files); 708 } 709 EXPORT_SYMBOL(close_fd); 710 711 /** 712 * last_fd - return last valid index into fd table 713 * @fdt: File descriptor table. 714 * 715 * Context: Either rcu read lock or files_lock must be held. 716 * 717 * Returns: Last valid index into fdtable. 718 */ 719 static inline unsigned last_fd(struct fdtable *fdt) 720 { 721 return fdt->max_fds - 1; 722 } 723 724 static inline void __range_cloexec(struct files_struct *cur_fds, 725 unsigned int fd, unsigned int max_fd) 726 { 727 struct fdtable *fdt; 728 729 /* make sure we're using the correct maximum value */ 730 spin_lock(&cur_fds->file_lock); 731 fdt = files_fdtable(cur_fds); 732 max_fd = min(last_fd(fdt), max_fd); 733 if (fd <= max_fd) 734 bitmap_set(fdt->close_on_exec, fd, max_fd - fd + 1); 735 spin_unlock(&cur_fds->file_lock); 736 } 737 738 static inline void __range_close(struct files_struct *files, unsigned int fd, 739 unsigned int max_fd) 740 { 741 struct file *file; 742 unsigned n; 743 744 spin_lock(&files->file_lock); 745 n = last_fd(files_fdtable(files)); 746 max_fd = min(max_fd, n); 747 748 for (; fd <= max_fd; fd++) { 749 file = file_close_fd_locked(files, fd); 750 if (file) { 751 spin_unlock(&files->file_lock); 752 filp_close(file, files); 753 cond_resched(); 754 spin_lock(&files->file_lock); 755 } else if (need_resched()) { 756 spin_unlock(&files->file_lock); 757 cond_resched(); 758 spin_lock(&files->file_lock); 759 } 760 } 761 spin_unlock(&files->file_lock); 762 } 763 764 /** 765 * sys_close_range() - Close all file descriptors in a given range. 766 * 767 * @fd: starting file descriptor to close 768 * @max_fd: last file descriptor to close 769 * @flags: CLOSE_RANGE flags. 770 * 771 * This closes a range of file descriptors. All file descriptors 772 * from @fd up to and including @max_fd are closed. 773 * Currently, errors to close a given file descriptor are ignored. 774 */ 775 SYSCALL_DEFINE3(close_range, unsigned int, fd, unsigned int, max_fd, 776 unsigned int, flags) 777 { 778 struct task_struct *me = current; 779 struct files_struct *cur_fds = me->files, *fds = NULL; 780 781 if (flags & ~(CLOSE_RANGE_UNSHARE | CLOSE_RANGE_CLOEXEC)) 782 return -EINVAL; 783 784 if (fd > max_fd) 785 return -EINVAL; 786 787 if ((flags & CLOSE_RANGE_UNSHARE) && atomic_read(&cur_fds->count) > 1) { 788 struct fd_range range = {fd, max_fd}, *punch_hole = ⦥ 789 790 /* 791 * If the caller requested all fds to be made cloexec we always 792 * copy all of the file descriptors since they still want to 793 * use them. 794 */ 795 if (flags & CLOSE_RANGE_CLOEXEC) 796 punch_hole = NULL; 797 798 fds = dup_fd(cur_fds, punch_hole); 799 if (IS_ERR(fds)) 800 return PTR_ERR(fds); 801 /* 802 * We used to share our file descriptor table, and have now 803 * created a private one, make sure we're using it below. 804 */ 805 swap(cur_fds, fds); 806 } 807 808 if (flags & CLOSE_RANGE_CLOEXEC) 809 __range_cloexec(cur_fds, fd, max_fd); 810 else 811 __range_close(cur_fds, fd, max_fd); 812 813 if (fds) { 814 /* 815 * We're done closing the files we were supposed to. Time to install 816 * the new file descriptor table and drop the old one. 817 */ 818 task_lock(me); 819 me->files = cur_fds; 820 task_unlock(me); 821 put_files_struct(fds); 822 } 823 824 return 0; 825 } 826 827 /** 828 * file_close_fd - return file associated with fd 829 * @fd: file descriptor to retrieve file for 830 * 831 * Doesn't take a separate reference count. 832 * 833 * Returns: The file associated with @fd (NULL if @fd is not open) 834 */ 835 struct file *file_close_fd(unsigned int fd) 836 { 837 struct files_struct *files = current->files; 838 struct file *file; 839 840 spin_lock(&files->file_lock); 841 file = file_close_fd_locked(files, fd); 842 spin_unlock(&files->file_lock); 843 844 return file; 845 } 846 847 void do_close_on_exec(struct files_struct *files) 848 { 849 unsigned i; 850 struct fdtable *fdt; 851 852 /* exec unshares first */ 853 spin_lock(&files->file_lock); 854 for (i = 0; ; i++) { 855 unsigned long set; 856 unsigned fd = i * BITS_PER_LONG; 857 fdt = files_fdtable(files); 858 if (fd >= fdt->max_fds) 859 break; 860 set = fdt->close_on_exec[i]; 861 if (!set) 862 continue; 863 fdt->close_on_exec[i] = 0; 864 for ( ; set ; fd++, set >>= 1) { 865 struct file *file; 866 if (!(set & 1)) 867 continue; 868 file = fdt->fd[fd]; 869 if (!file) 870 continue; 871 rcu_assign_pointer(fdt->fd[fd], NULL); 872 __put_unused_fd(files, fd); 873 spin_unlock(&files->file_lock); 874 filp_close(file, files); 875 cond_resched(); 876 spin_lock(&files->file_lock); 877 } 878 879 } 880 spin_unlock(&files->file_lock); 881 } 882 883 static struct file *__get_file_rcu(struct file __rcu **f) 884 { 885 struct file __rcu *file; 886 struct file __rcu *file_reloaded; 887 struct file __rcu *file_reloaded_cmp; 888 889 file = rcu_dereference_raw(*f); 890 if (!file) 891 return NULL; 892 893 if (unlikely(!file_ref_get(&file->f_ref))) 894 return ERR_PTR(-EAGAIN); 895 896 file_reloaded = rcu_dereference_raw(*f); 897 898 /* 899 * Ensure that all accesses have a dependency on the load from 900 * rcu_dereference_raw() above so we get correct ordering 901 * between reuse/allocation and the pointer check below. 902 */ 903 file_reloaded_cmp = file_reloaded; 904 OPTIMIZER_HIDE_VAR(file_reloaded_cmp); 905 906 /* 907 * file_ref_get() above provided a full memory barrier when we 908 * acquired a reference. 909 * 910 * This is paired with the write barrier from assigning to the 911 * __rcu protected file pointer so that if that pointer still 912 * matches the current file, we know we have successfully 913 * acquired a reference to the right file. 914 * 915 * If the pointers don't match the file has been reallocated by 916 * SLAB_TYPESAFE_BY_RCU. 917 */ 918 if (file == file_reloaded_cmp) 919 return file_reloaded; 920 921 fput(file); 922 return ERR_PTR(-EAGAIN); 923 } 924 925 /** 926 * get_file_rcu - try go get a reference to a file under rcu 927 * @f: the file to get a reference on 928 * 929 * This function tries to get a reference on @f carefully verifying that 930 * @f hasn't been reused. 931 * 932 * This function should rarely have to be used and only by users who 933 * understand the implications of SLAB_TYPESAFE_BY_RCU. Try to avoid it. 934 * 935 * Return: Returns @f with the reference count increased or NULL. 936 */ 937 struct file *get_file_rcu(struct file __rcu **f) 938 { 939 for (;;) { 940 struct file __rcu *file; 941 942 file = __get_file_rcu(f); 943 if (!IS_ERR(file)) 944 return file; 945 } 946 } 947 EXPORT_SYMBOL_GPL(get_file_rcu); 948 949 /** 950 * get_file_active - try go get a reference to a file 951 * @f: the file to get a reference on 952 * 953 * In contast to get_file_rcu() the pointer itself isn't part of the 954 * reference counting. 955 * 956 * This function should rarely have to be used and only by users who 957 * understand the implications of SLAB_TYPESAFE_BY_RCU. Try to avoid it. 958 * 959 * Return: Returns @f with the reference count increased or NULL. 960 */ 961 struct file *get_file_active(struct file **f) 962 { 963 struct file __rcu *file; 964 965 rcu_read_lock(); 966 file = __get_file_rcu(f); 967 rcu_read_unlock(); 968 if (IS_ERR(file)) 969 file = NULL; 970 return file; 971 } 972 EXPORT_SYMBOL_GPL(get_file_active); 973 974 static inline struct file *__fget_files_rcu(struct files_struct *files, 975 unsigned int fd, fmode_t mask) 976 { 977 for (;;) { 978 struct file *file; 979 struct fdtable *fdt = rcu_dereference_raw(files->fdt); 980 struct file __rcu **fdentry; 981 unsigned long nospec_mask; 982 983 /* Mask is a 0 for invalid fd's, ~0 for valid ones */ 984 nospec_mask = array_index_mask_nospec(fd, fdt->max_fds); 985 986 /* 987 * fdentry points to the 'fd' offset, or fdt->fd[0]. 988 * Loading from fdt->fd[0] is always safe, because the 989 * array always exists. 990 */ 991 fdentry = fdt->fd + (fd & nospec_mask); 992 993 /* Do the load, then mask any invalid result */ 994 file = rcu_dereference_raw(*fdentry); 995 file = (void *)(nospec_mask & (unsigned long)file); 996 if (unlikely(!file)) 997 return NULL; 998 999 /* 1000 * Ok, we have a file pointer that was valid at 1001 * some point, but it might have become stale since. 1002 * 1003 * We need to confirm it by incrementing the refcount 1004 * and then check the lookup again. 1005 * 1006 * file_ref_get() gives us a full memory barrier. We 1007 * only really need an 'acquire' one to protect the 1008 * loads below, but we don't have that. 1009 */ 1010 if (unlikely(!file_ref_get(&file->f_ref))) 1011 continue; 1012 1013 /* 1014 * Such a race can take two forms: 1015 * 1016 * (a) the file ref already went down to zero and the 1017 * file hasn't been reused yet or the file count 1018 * isn't zero but the file has already been reused. 1019 * 1020 * (b) the file table entry has changed under us. 1021 * Note that we don't need to re-check the 'fdt->fd' 1022 * pointer having changed, because it always goes 1023 * hand-in-hand with 'fdt'. 1024 * 1025 * If so, we need to put our ref and try again. 1026 */ 1027 if (unlikely(file != rcu_dereference_raw(*fdentry)) || 1028 unlikely(rcu_dereference_raw(files->fdt) != fdt)) { 1029 fput(file); 1030 continue; 1031 } 1032 1033 /* 1034 * This isn't the file we're looking for or we're not 1035 * allowed to get a reference to it. 1036 */ 1037 if (unlikely(file->f_mode & mask)) { 1038 fput(file); 1039 return NULL; 1040 } 1041 1042 /* 1043 * Ok, we have a ref to the file, and checked that it 1044 * still exists. 1045 */ 1046 return file; 1047 } 1048 } 1049 1050 static struct file *__fget_files(struct files_struct *files, unsigned int fd, 1051 fmode_t mask) 1052 { 1053 struct file *file; 1054 1055 rcu_read_lock(); 1056 file = __fget_files_rcu(files, fd, mask); 1057 rcu_read_unlock(); 1058 1059 return file; 1060 } 1061 1062 static inline struct file *__fget(unsigned int fd, fmode_t mask) 1063 { 1064 return __fget_files(current->files, fd, mask); 1065 } 1066 1067 struct file *fget(unsigned int fd) 1068 { 1069 return __fget(fd, FMODE_PATH); 1070 } 1071 EXPORT_SYMBOL(fget); 1072 1073 struct file *fget_raw(unsigned int fd) 1074 { 1075 return __fget(fd, 0); 1076 } 1077 EXPORT_SYMBOL(fget_raw); 1078 1079 struct file *fget_task(struct task_struct *task, unsigned int fd) 1080 { 1081 struct file *file = NULL; 1082 1083 task_lock(task); 1084 if (task->files) 1085 file = __fget_files(task->files, fd, 0); 1086 task_unlock(task); 1087 1088 return file; 1089 } 1090 1091 struct file *fget_task_next(struct task_struct *task, unsigned int *ret_fd) 1092 { 1093 /* Must be called with rcu_read_lock held */ 1094 struct files_struct *files; 1095 unsigned int fd = *ret_fd; 1096 struct file *file = NULL; 1097 1098 task_lock(task); 1099 files = task->files; 1100 if (files) { 1101 rcu_read_lock(); 1102 for (; fd < files_fdtable(files)->max_fds; fd++) { 1103 file = __fget_files_rcu(files, fd, 0); 1104 if (file) 1105 break; 1106 } 1107 rcu_read_unlock(); 1108 } 1109 task_unlock(task); 1110 *ret_fd = fd; 1111 return file; 1112 } 1113 EXPORT_SYMBOL(fget_task_next); 1114 1115 /* 1116 * Lightweight file lookup - no refcnt increment if fd table isn't shared. 1117 * 1118 * You can use this instead of fget if you satisfy all of the following 1119 * conditions: 1120 * 1) You must call fput_light before exiting the syscall and returning control 1121 * to userspace (i.e. you cannot remember the returned struct file * after 1122 * returning to userspace). 1123 * 2) You must not call filp_close on the returned struct file * in between 1124 * calls to fget_light and fput_light. 1125 * 3) You must not clone the current task in between the calls to fget_light 1126 * and fput_light. 1127 * 1128 * The fput_needed flag returned by fget_light should be passed to the 1129 * corresponding fput_light. 1130 * 1131 * (As an exception to rule 2, you can call filp_close between fget_light and 1132 * fput_light provided that you capture a real refcount with get_file before 1133 * the call to filp_close, and ensure that this real refcount is fput *after* 1134 * the fput_light call.) 1135 * 1136 * See also the documentation in rust/kernel/file.rs. 1137 */ 1138 static inline struct fd __fget_light(unsigned int fd, fmode_t mask) 1139 { 1140 struct files_struct *files = current->files; 1141 struct file *file; 1142 1143 /* 1144 * If another thread is concurrently calling close_fd() followed 1145 * by put_files_struct(), we must not observe the old table 1146 * entry combined with the new refcount - otherwise we could 1147 * return a file that is concurrently being freed. 1148 * 1149 * atomic_read_acquire() pairs with atomic_dec_and_test() in 1150 * put_files_struct(). 1151 */ 1152 if (likely(atomic_read_acquire(&files->count) == 1)) { 1153 file = files_lookup_fd_raw(files, fd); 1154 if (!file || unlikely(file->f_mode & mask)) 1155 return EMPTY_FD; 1156 return BORROWED_FD(file); 1157 } else { 1158 file = __fget_files(files, fd, mask); 1159 if (!file) 1160 return EMPTY_FD; 1161 return CLONED_FD(file); 1162 } 1163 } 1164 struct fd fdget(unsigned int fd) 1165 { 1166 return __fget_light(fd, FMODE_PATH); 1167 } 1168 EXPORT_SYMBOL(fdget); 1169 1170 struct fd fdget_raw(unsigned int fd) 1171 { 1172 return __fget_light(fd, 0); 1173 } 1174 1175 /* 1176 * Try to avoid f_pos locking. We only need it if the 1177 * file is marked for FMODE_ATOMIC_POS, and it can be 1178 * accessed multiple ways. 1179 * 1180 * Always do it for directories, because pidfd_getfd() 1181 * can make a file accessible even if it otherwise would 1182 * not be, and for directories this is a correctness 1183 * issue, not a "POSIX requirement". 1184 */ 1185 static inline bool file_needs_f_pos_lock(struct file *file) 1186 { 1187 if (!(file->f_mode & FMODE_ATOMIC_POS)) 1188 return false; 1189 if (__file_ref_read_raw(&file->f_ref) != FILE_REF_ONEREF) 1190 return true; 1191 if (file->f_op->iterate_shared) 1192 return true; 1193 return false; 1194 } 1195 1196 bool file_seek_cur_needs_f_lock(struct file *file) 1197 { 1198 if (!(file->f_mode & FMODE_ATOMIC_POS) && !file->f_op->iterate_shared) 1199 return false; 1200 1201 VFS_WARN_ON_ONCE((file_count(file) > 1) && 1202 !mutex_is_locked(&file->f_pos_lock)); 1203 return true; 1204 } 1205 1206 struct fd fdget_pos(unsigned int fd) 1207 { 1208 struct fd f = fdget(fd); 1209 struct file *file = fd_file(f); 1210 1211 if (likely(file) && file_needs_f_pos_lock(file)) { 1212 f.word |= FDPUT_POS_UNLOCK; 1213 mutex_lock(&file->f_pos_lock); 1214 } 1215 return f; 1216 } 1217 1218 void __f_unlock_pos(struct file *f) 1219 { 1220 mutex_unlock(&f->f_pos_lock); 1221 } 1222 1223 /* 1224 * We only lock f_pos if we have threads or if the file might be 1225 * shared with another process. In both cases we'll have an elevated 1226 * file count (done either by fdget() or by fork()). 1227 */ 1228 1229 void set_close_on_exec(unsigned int fd, int flag) 1230 { 1231 struct files_struct *files = current->files; 1232 spin_lock(&files->file_lock); 1233 __set_close_on_exec(fd, files_fdtable(files), flag); 1234 spin_unlock(&files->file_lock); 1235 } 1236 1237 bool get_close_on_exec(unsigned int fd) 1238 { 1239 bool res; 1240 rcu_read_lock(); 1241 res = close_on_exec(fd, current->files); 1242 rcu_read_unlock(); 1243 return res; 1244 } 1245 1246 static int do_dup2(struct files_struct *files, 1247 struct file *file, unsigned fd, unsigned flags) 1248 __releases(&files->file_lock) 1249 { 1250 struct file *tofree; 1251 struct fdtable *fdt; 1252 1253 /* 1254 * dup2() is expected to close the file installed in the target fd slot 1255 * (if any). However, userspace hand-picking a fd may be racing against 1256 * its own threads which happened to allocate it in open() et al but did 1257 * not populate it yet. 1258 * 1259 * Broadly speaking we may be racing against the following: 1260 * fd = get_unused_fd_flags(); // fd slot reserved, ->fd[fd] == NULL 1261 * file = hard_work_goes_here(); 1262 * fd_install(fd, file); // only now ->fd[fd] == file 1263 * 1264 * It is an invariant that a successfully allocated fd has a NULL entry 1265 * in the array until the matching fd_install(). 1266 * 1267 * If we fit the window, we have the fd to populate, yet no target file 1268 * to close. Trying to ignore it and install our new file would violate 1269 * the invariant and make fd_install() overwrite our file. 1270 * 1271 * Things can be done(tm) to handle this. However, the issue does not 1272 * concern legitimate programs and we only need to make sure the kernel 1273 * does not trip over it. 1274 * 1275 * The simplest way out is to return an error if we find ourselves here. 1276 * 1277 * POSIX is silent on the issue, we return -EBUSY. 1278 */ 1279 fdt = files_fdtable(files); 1280 fd = array_index_nospec(fd, fdt->max_fds); 1281 tofree = rcu_dereference_raw(fdt->fd[fd]); 1282 if (!tofree && fd_is_open(fd, fdt)) 1283 goto Ebusy; 1284 get_file(file); 1285 rcu_assign_pointer(fdt->fd[fd], file); 1286 __set_open_fd(fd, fdt, flags & O_CLOEXEC); 1287 spin_unlock(&files->file_lock); 1288 1289 if (tofree) 1290 filp_close(tofree, files); 1291 1292 return fd; 1293 1294 Ebusy: 1295 spin_unlock(&files->file_lock); 1296 return -EBUSY; 1297 } 1298 1299 int replace_fd(unsigned fd, struct file *file, unsigned flags) 1300 { 1301 int err; 1302 struct files_struct *files = current->files; 1303 1304 if (!file) 1305 return close_fd(fd); 1306 1307 if (fd >= rlimit(RLIMIT_NOFILE)) 1308 return -EBADF; 1309 1310 spin_lock(&files->file_lock); 1311 err = expand_files(files, fd); 1312 if (unlikely(err < 0)) 1313 goto out_unlock; 1314 return do_dup2(files, file, fd, flags); 1315 1316 out_unlock: 1317 spin_unlock(&files->file_lock); 1318 return err; 1319 } 1320 1321 /** 1322 * receive_fd() - Install received file into file descriptor table 1323 * @file: struct file that was received from another process 1324 * @ufd: __user pointer to write new fd number to 1325 * @o_flags: the O_* flags to apply to the new fd entry 1326 * 1327 * Installs a received file into the file descriptor table, with appropriate 1328 * checks and count updates. Optionally writes the fd number to userspace, if 1329 * @ufd is non-NULL. 1330 * 1331 * This helper handles its own reference counting of the incoming 1332 * struct file. 1333 * 1334 * Returns newly install fd or -ve on error. 1335 */ 1336 int receive_fd(struct file *file, int __user *ufd, unsigned int o_flags) 1337 { 1338 int new_fd; 1339 int error; 1340 1341 error = security_file_receive(file); 1342 if (error) 1343 return error; 1344 1345 new_fd = get_unused_fd_flags(o_flags); 1346 if (new_fd < 0) 1347 return new_fd; 1348 1349 if (ufd) { 1350 error = put_user(new_fd, ufd); 1351 if (error) { 1352 put_unused_fd(new_fd); 1353 return error; 1354 } 1355 } 1356 1357 fd_install(new_fd, get_file(file)); 1358 __receive_sock(file); 1359 return new_fd; 1360 } 1361 EXPORT_SYMBOL_GPL(receive_fd); 1362 1363 int receive_fd_replace(int new_fd, struct file *file, unsigned int o_flags) 1364 { 1365 int error; 1366 1367 error = security_file_receive(file); 1368 if (error) 1369 return error; 1370 error = replace_fd(new_fd, file, o_flags); 1371 if (error) 1372 return error; 1373 __receive_sock(file); 1374 return new_fd; 1375 } 1376 1377 static int ksys_dup3(unsigned int oldfd, unsigned int newfd, int flags) 1378 { 1379 int err = -EBADF; 1380 struct file *file; 1381 struct files_struct *files = current->files; 1382 1383 if ((flags & ~O_CLOEXEC) != 0) 1384 return -EINVAL; 1385 1386 if (unlikely(oldfd == newfd)) 1387 return -EINVAL; 1388 1389 if (newfd >= rlimit(RLIMIT_NOFILE)) 1390 return -EBADF; 1391 1392 spin_lock(&files->file_lock); 1393 err = expand_files(files, newfd); 1394 file = files_lookup_fd_locked(files, oldfd); 1395 if (unlikely(!file)) 1396 goto Ebadf; 1397 if (unlikely(err < 0)) { 1398 if (err == -EMFILE) 1399 goto Ebadf; 1400 goto out_unlock; 1401 } 1402 return do_dup2(files, file, newfd, flags); 1403 1404 Ebadf: 1405 err = -EBADF; 1406 out_unlock: 1407 spin_unlock(&files->file_lock); 1408 return err; 1409 } 1410 1411 SYSCALL_DEFINE3(dup3, unsigned int, oldfd, unsigned int, newfd, int, flags) 1412 { 1413 return ksys_dup3(oldfd, newfd, flags); 1414 } 1415 1416 SYSCALL_DEFINE2(dup2, unsigned int, oldfd, unsigned int, newfd) 1417 { 1418 if (unlikely(newfd == oldfd)) { /* corner case */ 1419 struct files_struct *files = current->files; 1420 struct file *f; 1421 int retval = oldfd; 1422 1423 rcu_read_lock(); 1424 f = __fget_files_rcu(files, oldfd, 0); 1425 if (!f) 1426 retval = -EBADF; 1427 rcu_read_unlock(); 1428 if (f) 1429 fput(f); 1430 return retval; 1431 } 1432 return ksys_dup3(oldfd, newfd, 0); 1433 } 1434 1435 SYSCALL_DEFINE1(dup, unsigned int, fildes) 1436 { 1437 int ret = -EBADF; 1438 struct file *file = fget_raw(fildes); 1439 1440 if (file) { 1441 ret = get_unused_fd_flags(0); 1442 if (ret >= 0) 1443 fd_install(ret, file); 1444 else 1445 fput(file); 1446 } 1447 return ret; 1448 } 1449 1450 int f_dupfd(unsigned int from, struct file *file, unsigned flags) 1451 { 1452 unsigned long nofile = rlimit(RLIMIT_NOFILE); 1453 int err; 1454 if (from >= nofile) 1455 return -EINVAL; 1456 err = alloc_fd(from, nofile, flags); 1457 if (err >= 0) { 1458 get_file(file); 1459 fd_install(err, file); 1460 } 1461 return err; 1462 } 1463 1464 int iterate_fd(struct files_struct *files, unsigned n, 1465 int (*f)(const void *, struct file *, unsigned), 1466 const void *p) 1467 { 1468 struct fdtable *fdt; 1469 int res = 0; 1470 if (!files) 1471 return 0; 1472 spin_lock(&files->file_lock); 1473 for (fdt = files_fdtable(files); n < fdt->max_fds; n++) { 1474 struct file *file; 1475 file = rcu_dereference_check_fdtable(files, fdt->fd[n]); 1476 if (!file) 1477 continue; 1478 res = f(p, file, n); 1479 if (res) 1480 break; 1481 } 1482 spin_unlock(&files->file_lock); 1483 return res; 1484 } 1485 EXPORT_SYMBOL(iterate_fd); 1486