1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/buffer.c 4 * 5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 6 */ 7 8 /* 9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 10 * 11 * Removed a lot of unnecessary code and simplified things now that 12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 13 * 14 * Speed up hash, lru, and free list operations. Use gfp() for allocating 15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 16 * 17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 18 * 19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/sched/signal.h> 24 #include <linux/syscalls.h> 25 #include <linux/fs.h> 26 #include <linux/iomap.h> 27 #include <linux/mm.h> 28 #include <linux/percpu.h> 29 #include <linux/slab.h> 30 #include <linux/capability.h> 31 #include <linux/blkdev.h> 32 #include <linux/file.h> 33 #include <linux/quotaops.h> 34 #include <linux/highmem.h> 35 #include <linux/export.h> 36 #include <linux/backing-dev.h> 37 #include <linux/writeback.h> 38 #include <linux/hash.h> 39 #include <linux/suspend.h> 40 #include <linux/buffer_head.h> 41 #include <linux/task_io_accounting_ops.h> 42 #include <linux/bio.h> 43 #include <linux/cpu.h> 44 #include <linux/bitops.h> 45 #include <linux/mpage.h> 46 #include <linux/bit_spinlock.h> 47 #include <linux/pagevec.h> 48 #include <linux/sched/mm.h> 49 #include <trace/events/block.h> 50 #include <linux/fscrypt.h> 51 #include <linux/fsverity.h> 52 #include <linux/sched/isolation.h> 53 54 #include "internal.h" 55 56 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 57 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh, 58 enum rw_hint hint, struct writeback_control *wbc); 59 60 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 61 62 inline void touch_buffer(struct buffer_head *bh) 63 { 64 trace_block_touch_buffer(bh); 65 folio_mark_accessed(bh->b_folio); 66 } 67 EXPORT_SYMBOL(touch_buffer); 68 69 void __lock_buffer(struct buffer_head *bh) 70 { 71 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 72 } 73 EXPORT_SYMBOL(__lock_buffer); 74 75 void unlock_buffer(struct buffer_head *bh) 76 { 77 clear_bit_unlock(BH_Lock, &bh->b_state); 78 smp_mb__after_atomic(); 79 wake_up_bit(&bh->b_state, BH_Lock); 80 } 81 EXPORT_SYMBOL(unlock_buffer); 82 83 /* 84 * Returns if the folio has dirty or writeback buffers. If all the buffers 85 * are unlocked and clean then the folio_test_dirty information is stale. If 86 * any of the buffers are locked, it is assumed they are locked for IO. 87 */ 88 void buffer_check_dirty_writeback(struct folio *folio, 89 bool *dirty, bool *writeback) 90 { 91 struct buffer_head *head, *bh; 92 *dirty = false; 93 *writeback = false; 94 95 BUG_ON(!folio_test_locked(folio)); 96 97 head = folio_buffers(folio); 98 if (!head) 99 return; 100 101 if (folio_test_writeback(folio)) 102 *writeback = true; 103 104 bh = head; 105 do { 106 if (buffer_locked(bh)) 107 *writeback = true; 108 109 if (buffer_dirty(bh)) 110 *dirty = true; 111 112 bh = bh->b_this_page; 113 } while (bh != head); 114 } 115 116 /* 117 * Block until a buffer comes unlocked. This doesn't stop it 118 * from becoming locked again - you have to lock it yourself 119 * if you want to preserve its state. 120 */ 121 void __wait_on_buffer(struct buffer_head * bh) 122 { 123 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 124 } 125 EXPORT_SYMBOL(__wait_on_buffer); 126 127 static void buffer_io_error(struct buffer_head *bh, char *msg) 128 { 129 if (!test_bit(BH_Quiet, &bh->b_state)) 130 printk_ratelimited(KERN_ERR 131 "Buffer I/O error on dev %pg, logical block %llu%s\n", 132 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); 133 } 134 135 /* 136 * End-of-IO handler helper function which does not touch the bh after 137 * unlocking it. 138 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 139 * a race there is benign: unlock_buffer() only use the bh's address for 140 * hashing after unlocking the buffer, so it doesn't actually touch the bh 141 * itself. 142 */ 143 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 144 { 145 if (uptodate) { 146 set_buffer_uptodate(bh); 147 } else { 148 /* This happens, due to failed read-ahead attempts. */ 149 clear_buffer_uptodate(bh); 150 } 151 unlock_buffer(bh); 152 } 153 154 /* 155 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 156 * unlock the buffer. 157 */ 158 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 159 { 160 __end_buffer_read_notouch(bh, uptodate); 161 put_bh(bh); 162 } 163 EXPORT_SYMBOL(end_buffer_read_sync); 164 165 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 166 { 167 if (uptodate) { 168 set_buffer_uptodate(bh); 169 } else { 170 buffer_io_error(bh, ", lost sync page write"); 171 mark_buffer_write_io_error(bh); 172 clear_buffer_uptodate(bh); 173 } 174 unlock_buffer(bh); 175 put_bh(bh); 176 } 177 EXPORT_SYMBOL(end_buffer_write_sync); 178 179 static struct buffer_head * 180 __find_get_block_slow(struct block_device *bdev, sector_t block, bool atomic) 181 { 182 struct address_space *bd_mapping = bdev->bd_mapping; 183 const int blkbits = bd_mapping->host->i_blkbits; 184 struct buffer_head *ret = NULL; 185 pgoff_t index; 186 struct buffer_head *bh; 187 struct buffer_head *head; 188 struct folio *folio; 189 int all_mapped = 1; 190 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1); 191 192 index = ((loff_t)block << blkbits) / PAGE_SIZE; 193 folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0); 194 if (IS_ERR(folio)) 195 goto out; 196 197 /* 198 * Folio lock protects the buffers. Callers that cannot block 199 * will fallback to serializing vs try_to_free_buffers() via 200 * the i_private_lock. 201 */ 202 if (atomic) 203 spin_lock(&bd_mapping->i_private_lock); 204 else 205 folio_lock(folio); 206 207 head = folio_buffers(folio); 208 if (!head) 209 goto out_unlock; 210 /* 211 * Upon a noref migration, the folio lock serializes here; 212 * otherwise bail. 213 */ 214 if (test_bit_acquire(BH_Migrate, &head->b_state)) { 215 WARN_ON(!atomic); 216 goto out_unlock; 217 } 218 219 bh = head; 220 do { 221 if (!buffer_mapped(bh)) 222 all_mapped = 0; 223 else if (bh->b_blocknr == block) { 224 ret = bh; 225 get_bh(bh); 226 goto out_unlock; 227 } 228 bh = bh->b_this_page; 229 } while (bh != head); 230 231 /* we might be here because some of the buffers on this page are 232 * not mapped. This is due to various races between 233 * file io on the block device and getblk. It gets dealt with 234 * elsewhere, don't buffer_error if we had some unmapped buffers 235 */ 236 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE); 237 if (all_mapped && __ratelimit(&last_warned)) { 238 printk("__find_get_block_slow() failed. block=%llu, " 239 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, " 240 "device %pg blocksize: %d\n", 241 (unsigned long long)block, 242 (unsigned long long)bh->b_blocknr, 243 bh->b_state, bh->b_size, bdev, 244 1 << blkbits); 245 } 246 out_unlock: 247 if (atomic) 248 spin_unlock(&bd_mapping->i_private_lock); 249 else 250 folio_unlock(folio); 251 folio_put(folio); 252 out: 253 return ret; 254 } 255 256 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 257 { 258 unsigned long flags; 259 struct buffer_head *first; 260 struct buffer_head *tmp; 261 struct folio *folio; 262 int folio_uptodate = 1; 263 264 BUG_ON(!buffer_async_read(bh)); 265 266 folio = bh->b_folio; 267 if (uptodate) { 268 set_buffer_uptodate(bh); 269 } else { 270 clear_buffer_uptodate(bh); 271 buffer_io_error(bh, ", async page read"); 272 } 273 274 /* 275 * Be _very_ careful from here on. Bad things can happen if 276 * two buffer heads end IO at almost the same time and both 277 * decide that the page is now completely done. 278 */ 279 first = folio_buffers(folio); 280 spin_lock_irqsave(&first->b_uptodate_lock, flags); 281 clear_buffer_async_read(bh); 282 unlock_buffer(bh); 283 tmp = bh; 284 do { 285 if (!buffer_uptodate(tmp)) 286 folio_uptodate = 0; 287 if (buffer_async_read(tmp)) { 288 BUG_ON(!buffer_locked(tmp)); 289 goto still_busy; 290 } 291 tmp = tmp->b_this_page; 292 } while (tmp != bh); 293 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 294 295 folio_end_read(folio, folio_uptodate); 296 return; 297 298 still_busy: 299 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 300 } 301 302 struct postprocess_bh_ctx { 303 struct work_struct work; 304 struct buffer_head *bh; 305 }; 306 307 static void verify_bh(struct work_struct *work) 308 { 309 struct postprocess_bh_ctx *ctx = 310 container_of(work, struct postprocess_bh_ctx, work); 311 struct buffer_head *bh = ctx->bh; 312 bool valid; 313 314 valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh)); 315 end_buffer_async_read(bh, valid); 316 kfree(ctx); 317 } 318 319 static bool need_fsverity(struct buffer_head *bh) 320 { 321 struct folio *folio = bh->b_folio; 322 struct inode *inode = folio->mapping->host; 323 324 return fsverity_active(inode) && 325 /* needed by ext4 */ 326 folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); 327 } 328 329 static void decrypt_bh(struct work_struct *work) 330 { 331 struct postprocess_bh_ctx *ctx = 332 container_of(work, struct postprocess_bh_ctx, work); 333 struct buffer_head *bh = ctx->bh; 334 int err; 335 336 err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size, 337 bh_offset(bh)); 338 if (err == 0 && need_fsverity(bh)) { 339 /* 340 * We use different work queues for decryption and for verity 341 * because verity may require reading metadata pages that need 342 * decryption, and we shouldn't recurse to the same workqueue. 343 */ 344 INIT_WORK(&ctx->work, verify_bh); 345 fsverity_enqueue_verify_work(&ctx->work); 346 return; 347 } 348 end_buffer_async_read(bh, err == 0); 349 kfree(ctx); 350 } 351 352 /* 353 * I/O completion handler for block_read_full_folio() - pages 354 * which come unlocked at the end of I/O. 355 */ 356 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate) 357 { 358 struct inode *inode = bh->b_folio->mapping->host; 359 bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode); 360 bool verify = need_fsverity(bh); 361 362 /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */ 363 if (uptodate && (decrypt || verify)) { 364 struct postprocess_bh_ctx *ctx = 365 kmalloc(sizeof(*ctx), GFP_ATOMIC); 366 367 if (ctx) { 368 ctx->bh = bh; 369 if (decrypt) { 370 INIT_WORK(&ctx->work, decrypt_bh); 371 fscrypt_enqueue_decrypt_work(&ctx->work); 372 } else { 373 INIT_WORK(&ctx->work, verify_bh); 374 fsverity_enqueue_verify_work(&ctx->work); 375 } 376 return; 377 } 378 uptodate = 0; 379 } 380 end_buffer_async_read(bh, uptodate); 381 } 382 383 /* 384 * Completion handler for block_write_full_folio() - folios which are unlocked 385 * during I/O, and which have the writeback flag cleared upon I/O completion. 386 */ 387 static void end_buffer_async_write(struct buffer_head *bh, int uptodate) 388 { 389 unsigned long flags; 390 struct buffer_head *first; 391 struct buffer_head *tmp; 392 struct folio *folio; 393 394 BUG_ON(!buffer_async_write(bh)); 395 396 folio = bh->b_folio; 397 if (uptodate) { 398 set_buffer_uptodate(bh); 399 } else { 400 buffer_io_error(bh, ", lost async page write"); 401 mark_buffer_write_io_error(bh); 402 clear_buffer_uptodate(bh); 403 } 404 405 first = folio_buffers(folio); 406 spin_lock_irqsave(&first->b_uptodate_lock, flags); 407 408 clear_buffer_async_write(bh); 409 unlock_buffer(bh); 410 tmp = bh->b_this_page; 411 while (tmp != bh) { 412 if (buffer_async_write(tmp)) { 413 BUG_ON(!buffer_locked(tmp)); 414 goto still_busy; 415 } 416 tmp = tmp->b_this_page; 417 } 418 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 419 folio_end_writeback(folio); 420 return; 421 422 still_busy: 423 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 424 } 425 426 /* 427 * If a page's buffers are under async readin (end_buffer_async_read 428 * completion) then there is a possibility that another thread of 429 * control could lock one of the buffers after it has completed 430 * but while some of the other buffers have not completed. This 431 * locked buffer would confuse end_buffer_async_read() into not unlocking 432 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 433 * that this buffer is not under async I/O. 434 * 435 * The page comes unlocked when it has no locked buffer_async buffers 436 * left. 437 * 438 * PageLocked prevents anyone starting new async I/O reads any of 439 * the buffers. 440 * 441 * PageWriteback is used to prevent simultaneous writeout of the same 442 * page. 443 * 444 * PageLocked prevents anyone from starting writeback of a page which is 445 * under read I/O (PageWriteback is only ever set against a locked page). 446 */ 447 static void mark_buffer_async_read(struct buffer_head *bh) 448 { 449 bh->b_end_io = end_buffer_async_read_io; 450 set_buffer_async_read(bh); 451 } 452 453 static void mark_buffer_async_write_endio(struct buffer_head *bh, 454 bh_end_io_t *handler) 455 { 456 bh->b_end_io = handler; 457 set_buffer_async_write(bh); 458 } 459 460 void mark_buffer_async_write(struct buffer_head *bh) 461 { 462 mark_buffer_async_write_endio(bh, end_buffer_async_write); 463 } 464 EXPORT_SYMBOL(mark_buffer_async_write); 465 466 467 /* 468 * fs/buffer.c contains helper functions for buffer-backed address space's 469 * fsync functions. A common requirement for buffer-based filesystems is 470 * that certain data from the backing blockdev needs to be written out for 471 * a successful fsync(). For example, ext2 indirect blocks need to be 472 * written back and waited upon before fsync() returns. 473 * 474 * The functions mark_buffer_dirty_inode(), fsync_inode_buffers(), 475 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 476 * management of a list of dependent buffers at ->i_mapping->i_private_list. 477 * 478 * Locking is a little subtle: try_to_free_buffers() will remove buffers 479 * from their controlling inode's queue when they are being freed. But 480 * try_to_free_buffers() will be operating against the *blockdev* mapping 481 * at the time, not against the S_ISREG file which depends on those buffers. 482 * So the locking for i_private_list is via the i_private_lock in the address_space 483 * which backs the buffers. Which is different from the address_space 484 * against which the buffers are listed. So for a particular address_space, 485 * mapping->i_private_lock does *not* protect mapping->i_private_list! In fact, 486 * mapping->i_private_list will always be protected by the backing blockdev's 487 * ->i_private_lock. 488 * 489 * Which introduces a requirement: all buffers on an address_space's 490 * ->i_private_list must be from the same address_space: the blockdev's. 491 * 492 * address_spaces which do not place buffers at ->i_private_list via these 493 * utility functions are free to use i_private_lock and i_private_list for 494 * whatever they want. The only requirement is that list_empty(i_private_list) 495 * be true at clear_inode() time. 496 * 497 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 498 * filesystems should do that. invalidate_inode_buffers() should just go 499 * BUG_ON(!list_empty). 500 * 501 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 502 * take an address_space, not an inode. And it should be called 503 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 504 * queued up. 505 * 506 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 507 * list if it is already on a list. Because if the buffer is on a list, 508 * it *must* already be on the right one. If not, the filesystem is being 509 * silly. This will save a ton of locking. But first we have to ensure 510 * that buffers are taken *off* the old inode's list when they are freed 511 * (presumably in truncate). That requires careful auditing of all 512 * filesystems (do it inside bforget()). It could also be done by bringing 513 * b_inode back. 514 */ 515 516 /* 517 * The buffer's backing address_space's i_private_lock must be held 518 */ 519 static void __remove_assoc_queue(struct buffer_head *bh) 520 { 521 list_del_init(&bh->b_assoc_buffers); 522 WARN_ON(!bh->b_assoc_map); 523 bh->b_assoc_map = NULL; 524 } 525 526 int inode_has_buffers(struct inode *inode) 527 { 528 return !list_empty(&inode->i_data.i_private_list); 529 } 530 531 /* 532 * osync is designed to support O_SYNC io. It waits synchronously for 533 * all already-submitted IO to complete, but does not queue any new 534 * writes to the disk. 535 * 536 * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer 537 * as you dirty the buffers, and then use osync_inode_buffers to wait for 538 * completion. Any other dirty buffers which are not yet queued for 539 * write will not be flushed to disk by the osync. 540 */ 541 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 542 { 543 struct buffer_head *bh; 544 struct list_head *p; 545 int err = 0; 546 547 spin_lock(lock); 548 repeat: 549 list_for_each_prev(p, list) { 550 bh = BH_ENTRY(p); 551 if (buffer_locked(bh)) { 552 get_bh(bh); 553 spin_unlock(lock); 554 wait_on_buffer(bh); 555 if (!buffer_uptodate(bh)) 556 err = -EIO; 557 brelse(bh); 558 spin_lock(lock); 559 goto repeat; 560 } 561 } 562 spin_unlock(lock); 563 return err; 564 } 565 566 /** 567 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 568 * @mapping: the mapping which wants those buffers written 569 * 570 * Starts I/O against the buffers at mapping->i_private_list, and waits upon 571 * that I/O. 572 * 573 * Basically, this is a convenience function for fsync(). 574 * @mapping is a file or directory which needs those buffers to be written for 575 * a successful fsync(). 576 */ 577 int sync_mapping_buffers(struct address_space *mapping) 578 { 579 struct address_space *buffer_mapping = mapping->i_private_data; 580 581 if (buffer_mapping == NULL || list_empty(&mapping->i_private_list)) 582 return 0; 583 584 return fsync_buffers_list(&buffer_mapping->i_private_lock, 585 &mapping->i_private_list); 586 } 587 EXPORT_SYMBOL(sync_mapping_buffers); 588 589 /** 590 * generic_buffers_fsync_noflush - generic buffer fsync implementation 591 * for simple filesystems with no inode lock 592 * 593 * @file: file to synchronize 594 * @start: start offset in bytes 595 * @end: end offset in bytes (inclusive) 596 * @datasync: only synchronize essential metadata if true 597 * 598 * This is a generic implementation of the fsync method for simple 599 * filesystems which track all non-inode metadata in the buffers list 600 * hanging off the address_space structure. 601 */ 602 int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end, 603 bool datasync) 604 { 605 struct inode *inode = file->f_mapping->host; 606 int err; 607 int ret; 608 609 err = file_write_and_wait_range(file, start, end); 610 if (err) 611 return err; 612 613 ret = sync_mapping_buffers(inode->i_mapping); 614 if (!(inode->i_state & I_DIRTY_ALL)) 615 goto out; 616 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) 617 goto out; 618 619 err = sync_inode_metadata(inode, 1); 620 if (ret == 0) 621 ret = err; 622 623 out: 624 /* check and advance again to catch errors after syncing out buffers */ 625 err = file_check_and_advance_wb_err(file); 626 if (ret == 0) 627 ret = err; 628 return ret; 629 } 630 EXPORT_SYMBOL(generic_buffers_fsync_noflush); 631 632 /** 633 * generic_buffers_fsync - generic buffer fsync implementation 634 * for simple filesystems with no inode lock 635 * 636 * @file: file to synchronize 637 * @start: start offset in bytes 638 * @end: end offset in bytes (inclusive) 639 * @datasync: only synchronize essential metadata if true 640 * 641 * This is a generic implementation of the fsync method for simple 642 * filesystems which track all non-inode metadata in the buffers list 643 * hanging off the address_space structure. This also makes sure that 644 * a device cache flush operation is called at the end. 645 */ 646 int generic_buffers_fsync(struct file *file, loff_t start, loff_t end, 647 bool datasync) 648 { 649 struct inode *inode = file->f_mapping->host; 650 int ret; 651 652 ret = generic_buffers_fsync_noflush(file, start, end, datasync); 653 if (!ret) 654 ret = blkdev_issue_flush(inode->i_sb->s_bdev); 655 return ret; 656 } 657 EXPORT_SYMBOL(generic_buffers_fsync); 658 659 /* 660 * Called when we've recently written block `bblock', and it is known that 661 * `bblock' was for a buffer_boundary() buffer. This means that the block at 662 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 663 * dirty, schedule it for IO. So that indirects merge nicely with their data. 664 */ 665 void write_boundary_block(struct block_device *bdev, 666 sector_t bblock, unsigned blocksize) 667 { 668 struct buffer_head *bh; 669 670 bh = __find_get_block_nonatomic(bdev, bblock + 1, blocksize); 671 if (bh) { 672 if (buffer_dirty(bh)) 673 write_dirty_buffer(bh, 0); 674 put_bh(bh); 675 } 676 } 677 678 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 679 { 680 struct address_space *mapping = inode->i_mapping; 681 struct address_space *buffer_mapping = bh->b_folio->mapping; 682 683 mark_buffer_dirty(bh); 684 if (!mapping->i_private_data) { 685 mapping->i_private_data = buffer_mapping; 686 } else { 687 BUG_ON(mapping->i_private_data != buffer_mapping); 688 } 689 if (!bh->b_assoc_map) { 690 spin_lock(&buffer_mapping->i_private_lock); 691 list_move_tail(&bh->b_assoc_buffers, 692 &mapping->i_private_list); 693 bh->b_assoc_map = mapping; 694 spin_unlock(&buffer_mapping->i_private_lock); 695 } 696 } 697 EXPORT_SYMBOL(mark_buffer_dirty_inode); 698 699 /** 700 * block_dirty_folio - Mark a folio as dirty. 701 * @mapping: The address space containing this folio. 702 * @folio: The folio to mark dirty. 703 * 704 * Filesystems which use buffer_heads can use this function as their 705 * ->dirty_folio implementation. Some filesystems need to do a little 706 * work before calling this function. Filesystems which do not use 707 * buffer_heads should call filemap_dirty_folio() instead. 708 * 709 * If the folio has buffers, the uptodate buffers are set dirty, to 710 * preserve dirty-state coherency between the folio and the buffers. 711 * Buffers added to a dirty folio are created dirty. 712 * 713 * The buffers are dirtied before the folio is dirtied. There's a small 714 * race window in which writeback may see the folio cleanness but not the 715 * buffer dirtiness. That's fine. If this code were to set the folio 716 * dirty before the buffers, writeback could clear the folio dirty flag, 717 * see a bunch of clean buffers and we'd end up with dirty buffers/clean 718 * folio on the dirty folio list. 719 * 720 * We use i_private_lock to lock against try_to_free_buffers() while 721 * using the folio's buffer list. This also prevents clean buffers 722 * being added to the folio after it was set dirty. 723 * 724 * Context: May only be called from process context. Does not sleep. 725 * Caller must ensure that @folio cannot be truncated during this call, 726 * typically by holding the folio lock or having a page in the folio 727 * mapped and holding the page table lock. 728 * 729 * Return: True if the folio was dirtied; false if it was already dirtied. 730 */ 731 bool block_dirty_folio(struct address_space *mapping, struct folio *folio) 732 { 733 struct buffer_head *head; 734 bool newly_dirty; 735 736 spin_lock(&mapping->i_private_lock); 737 head = folio_buffers(folio); 738 if (head) { 739 struct buffer_head *bh = head; 740 741 do { 742 set_buffer_dirty(bh); 743 bh = bh->b_this_page; 744 } while (bh != head); 745 } 746 /* 747 * Lock out page's memcg migration to keep PageDirty 748 * synchronized with per-memcg dirty page counters. 749 */ 750 newly_dirty = !folio_test_set_dirty(folio); 751 spin_unlock(&mapping->i_private_lock); 752 753 if (newly_dirty) 754 __folio_mark_dirty(folio, mapping, 1); 755 756 if (newly_dirty) 757 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 758 759 return newly_dirty; 760 } 761 EXPORT_SYMBOL(block_dirty_folio); 762 763 /* 764 * Write out and wait upon a list of buffers. 765 * 766 * We have conflicting pressures: we want to make sure that all 767 * initially dirty buffers get waited on, but that any subsequently 768 * dirtied buffers don't. After all, we don't want fsync to last 769 * forever if somebody is actively writing to the file. 770 * 771 * Do this in two main stages: first we copy dirty buffers to a 772 * temporary inode list, queueing the writes as we go. Then we clean 773 * up, waiting for those writes to complete. 774 * 775 * During this second stage, any subsequent updates to the file may end 776 * up refiling the buffer on the original inode's dirty list again, so 777 * there is a chance we will end up with a buffer queued for write but 778 * not yet completed on that list. So, as a final cleanup we go through 779 * the osync code to catch these locked, dirty buffers without requeuing 780 * any newly dirty buffers for write. 781 */ 782 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 783 { 784 struct buffer_head *bh; 785 struct address_space *mapping; 786 int err = 0, err2; 787 struct blk_plug plug; 788 LIST_HEAD(tmp); 789 790 blk_start_plug(&plug); 791 792 spin_lock(lock); 793 while (!list_empty(list)) { 794 bh = BH_ENTRY(list->next); 795 mapping = bh->b_assoc_map; 796 __remove_assoc_queue(bh); 797 /* Avoid race with mark_buffer_dirty_inode() which does 798 * a lockless check and we rely on seeing the dirty bit */ 799 smp_mb(); 800 if (buffer_dirty(bh) || buffer_locked(bh)) { 801 list_add(&bh->b_assoc_buffers, &tmp); 802 bh->b_assoc_map = mapping; 803 if (buffer_dirty(bh)) { 804 get_bh(bh); 805 spin_unlock(lock); 806 /* 807 * Ensure any pending I/O completes so that 808 * write_dirty_buffer() actually writes the 809 * current contents - it is a noop if I/O is 810 * still in flight on potentially older 811 * contents. 812 */ 813 write_dirty_buffer(bh, REQ_SYNC); 814 815 /* 816 * Kick off IO for the previous mapping. Note 817 * that we will not run the very last mapping, 818 * wait_on_buffer() will do that for us 819 * through sync_buffer(). 820 */ 821 brelse(bh); 822 spin_lock(lock); 823 } 824 } 825 } 826 827 spin_unlock(lock); 828 blk_finish_plug(&plug); 829 spin_lock(lock); 830 831 while (!list_empty(&tmp)) { 832 bh = BH_ENTRY(tmp.prev); 833 get_bh(bh); 834 mapping = bh->b_assoc_map; 835 __remove_assoc_queue(bh); 836 /* Avoid race with mark_buffer_dirty_inode() which does 837 * a lockless check and we rely on seeing the dirty bit */ 838 smp_mb(); 839 if (buffer_dirty(bh)) { 840 list_add(&bh->b_assoc_buffers, 841 &mapping->i_private_list); 842 bh->b_assoc_map = mapping; 843 } 844 spin_unlock(lock); 845 wait_on_buffer(bh); 846 if (!buffer_uptodate(bh)) 847 err = -EIO; 848 brelse(bh); 849 spin_lock(lock); 850 } 851 852 spin_unlock(lock); 853 err2 = osync_buffers_list(lock, list); 854 if (err) 855 return err; 856 else 857 return err2; 858 } 859 860 /* 861 * Invalidate any and all dirty buffers on a given inode. We are 862 * probably unmounting the fs, but that doesn't mean we have already 863 * done a sync(). Just drop the buffers from the inode list. 864 * 865 * NOTE: we take the inode's blockdev's mapping's i_private_lock. Which 866 * assumes that all the buffers are against the blockdev. 867 */ 868 void invalidate_inode_buffers(struct inode *inode) 869 { 870 if (inode_has_buffers(inode)) { 871 struct address_space *mapping = &inode->i_data; 872 struct list_head *list = &mapping->i_private_list; 873 struct address_space *buffer_mapping = mapping->i_private_data; 874 875 spin_lock(&buffer_mapping->i_private_lock); 876 while (!list_empty(list)) 877 __remove_assoc_queue(BH_ENTRY(list->next)); 878 spin_unlock(&buffer_mapping->i_private_lock); 879 } 880 } 881 EXPORT_SYMBOL(invalidate_inode_buffers); 882 883 /* 884 * Remove any clean buffers from the inode's buffer list. This is called 885 * when we're trying to free the inode itself. Those buffers can pin it. 886 * 887 * Returns true if all buffers were removed. 888 */ 889 int remove_inode_buffers(struct inode *inode) 890 { 891 int ret = 1; 892 893 if (inode_has_buffers(inode)) { 894 struct address_space *mapping = &inode->i_data; 895 struct list_head *list = &mapping->i_private_list; 896 struct address_space *buffer_mapping = mapping->i_private_data; 897 898 spin_lock(&buffer_mapping->i_private_lock); 899 while (!list_empty(list)) { 900 struct buffer_head *bh = BH_ENTRY(list->next); 901 if (buffer_dirty(bh)) { 902 ret = 0; 903 break; 904 } 905 __remove_assoc_queue(bh); 906 } 907 spin_unlock(&buffer_mapping->i_private_lock); 908 } 909 return ret; 910 } 911 912 /* 913 * Create the appropriate buffers when given a folio for data area and 914 * the size of each buffer.. Use the bh->b_this_page linked list to 915 * follow the buffers created. Return NULL if unable to create more 916 * buffers. 917 * 918 * The retry flag is used to differentiate async IO (paging, swapping) 919 * which may not fail from ordinary buffer allocations. 920 */ 921 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size, 922 gfp_t gfp) 923 { 924 struct buffer_head *bh, *head; 925 long offset; 926 struct mem_cgroup *memcg, *old_memcg; 927 928 /* The folio lock pins the memcg */ 929 memcg = folio_memcg(folio); 930 old_memcg = set_active_memcg(memcg); 931 932 head = NULL; 933 offset = folio_size(folio); 934 while ((offset -= size) >= 0) { 935 bh = alloc_buffer_head(gfp); 936 if (!bh) 937 goto no_grow; 938 939 bh->b_this_page = head; 940 bh->b_blocknr = -1; 941 head = bh; 942 943 bh->b_size = size; 944 945 /* Link the buffer to its folio */ 946 folio_set_bh(bh, folio, offset); 947 } 948 out: 949 set_active_memcg(old_memcg); 950 return head; 951 /* 952 * In case anything failed, we just free everything we got. 953 */ 954 no_grow: 955 if (head) { 956 do { 957 bh = head; 958 head = head->b_this_page; 959 free_buffer_head(bh); 960 } while (head); 961 } 962 963 goto out; 964 } 965 EXPORT_SYMBOL_GPL(folio_alloc_buffers); 966 967 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size) 968 { 969 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT; 970 971 return folio_alloc_buffers(page_folio(page), size, gfp); 972 } 973 EXPORT_SYMBOL_GPL(alloc_page_buffers); 974 975 static inline void link_dev_buffers(struct folio *folio, 976 struct buffer_head *head) 977 { 978 struct buffer_head *bh, *tail; 979 980 bh = head; 981 do { 982 tail = bh; 983 bh = bh->b_this_page; 984 } while (bh); 985 tail->b_this_page = head; 986 folio_attach_private(folio, head); 987 } 988 989 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 990 { 991 sector_t retval = ~((sector_t)0); 992 loff_t sz = bdev_nr_bytes(bdev); 993 994 if (sz) { 995 unsigned int sizebits = blksize_bits(size); 996 retval = (sz >> sizebits); 997 } 998 return retval; 999 } 1000 1001 /* 1002 * Initialise the state of a blockdev folio's buffers. 1003 */ 1004 static sector_t folio_init_buffers(struct folio *folio, 1005 struct block_device *bdev, unsigned size) 1006 { 1007 struct buffer_head *head = folio_buffers(folio); 1008 struct buffer_head *bh = head; 1009 bool uptodate = folio_test_uptodate(folio); 1010 sector_t block = div_u64(folio_pos(folio), size); 1011 sector_t end_block = blkdev_max_block(bdev, size); 1012 1013 do { 1014 if (!buffer_mapped(bh)) { 1015 bh->b_end_io = NULL; 1016 bh->b_private = NULL; 1017 bh->b_bdev = bdev; 1018 bh->b_blocknr = block; 1019 if (uptodate) 1020 set_buffer_uptodate(bh); 1021 if (block < end_block) 1022 set_buffer_mapped(bh); 1023 } 1024 block++; 1025 bh = bh->b_this_page; 1026 } while (bh != head); 1027 1028 /* 1029 * Caller needs to validate requested block against end of device. 1030 */ 1031 return end_block; 1032 } 1033 1034 /* 1035 * Create the page-cache folio that contains the requested block. 1036 * 1037 * This is used purely for blockdev mappings. 1038 * 1039 * Returns false if we have a failure which cannot be cured by retrying 1040 * without sleeping. Returns true if we succeeded, or the caller should retry. 1041 */ 1042 static bool grow_dev_folio(struct block_device *bdev, sector_t block, 1043 pgoff_t index, unsigned size, gfp_t gfp) 1044 { 1045 struct address_space *mapping = bdev->bd_mapping; 1046 struct folio *folio; 1047 struct buffer_head *bh; 1048 sector_t end_block = 0; 1049 1050 folio = __filemap_get_folio(mapping, index, 1051 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp); 1052 if (IS_ERR(folio)) 1053 return false; 1054 1055 bh = folio_buffers(folio); 1056 if (bh) { 1057 if (bh->b_size == size) { 1058 end_block = folio_init_buffers(folio, bdev, size); 1059 goto unlock; 1060 } 1061 1062 /* 1063 * Retrying may succeed; for example the folio may finish 1064 * writeback, or buffers may be cleaned. This should not 1065 * happen very often; maybe we have old buffers attached to 1066 * this blockdev's page cache and we're trying to change 1067 * the block size? 1068 */ 1069 if (!try_to_free_buffers(folio)) { 1070 end_block = ~0ULL; 1071 goto unlock; 1072 } 1073 } 1074 1075 bh = folio_alloc_buffers(folio, size, gfp | __GFP_ACCOUNT); 1076 if (!bh) 1077 goto unlock; 1078 1079 /* 1080 * Link the folio to the buffers and initialise them. Take the 1081 * lock to be atomic wrt __find_get_block(), which does not 1082 * run under the folio lock. 1083 */ 1084 spin_lock(&mapping->i_private_lock); 1085 link_dev_buffers(folio, bh); 1086 end_block = folio_init_buffers(folio, bdev, size); 1087 spin_unlock(&mapping->i_private_lock); 1088 unlock: 1089 folio_unlock(folio); 1090 folio_put(folio); 1091 return block < end_block; 1092 } 1093 1094 /* 1095 * Create buffers for the specified block device block's folio. If 1096 * that folio was dirty, the buffers are set dirty also. Returns false 1097 * if we've hit a permanent error. 1098 */ 1099 static bool grow_buffers(struct block_device *bdev, sector_t block, 1100 unsigned size, gfp_t gfp) 1101 { 1102 loff_t pos; 1103 1104 /* 1105 * Check for a block which lies outside our maximum possible 1106 * pagecache index. 1107 */ 1108 if (check_mul_overflow(block, (sector_t)size, &pos) || pos > MAX_LFS_FILESIZE) { 1109 printk(KERN_ERR "%s: requested out-of-range block %llu for device %pg\n", 1110 __func__, (unsigned long long)block, 1111 bdev); 1112 return false; 1113 } 1114 1115 /* Create a folio with the proper size buffers */ 1116 return grow_dev_folio(bdev, block, pos / PAGE_SIZE, size, gfp); 1117 } 1118 1119 static struct buffer_head * 1120 __getblk_slow(struct block_device *bdev, sector_t block, 1121 unsigned size, gfp_t gfp) 1122 { 1123 bool blocking = gfpflags_allow_blocking(gfp); 1124 1125 /* Size must be multiple of hard sectorsize */ 1126 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1127 (size < 512 || size > PAGE_SIZE))) { 1128 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1129 size); 1130 printk(KERN_ERR "logical block size: %d\n", 1131 bdev_logical_block_size(bdev)); 1132 1133 dump_stack(); 1134 return NULL; 1135 } 1136 1137 for (;;) { 1138 struct buffer_head *bh; 1139 1140 if (!grow_buffers(bdev, block, size, gfp)) 1141 return NULL; 1142 1143 if (blocking) 1144 bh = __find_get_block_nonatomic(bdev, block, size); 1145 else 1146 bh = __find_get_block(bdev, block, size); 1147 if (bh) 1148 return bh; 1149 } 1150 } 1151 1152 /* 1153 * The relationship between dirty buffers and dirty pages: 1154 * 1155 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1156 * the page is tagged dirty in the page cache. 1157 * 1158 * At all times, the dirtiness of the buffers represents the dirtiness of 1159 * subsections of the page. If the page has buffers, the page dirty bit is 1160 * merely a hint about the true dirty state. 1161 * 1162 * When a page is set dirty in its entirety, all its buffers are marked dirty 1163 * (if the page has buffers). 1164 * 1165 * When a buffer is marked dirty, its page is dirtied, but the page's other 1166 * buffers are not. 1167 * 1168 * Also. When blockdev buffers are explicitly read with bread(), they 1169 * individually become uptodate. But their backing page remains not 1170 * uptodate - even if all of its buffers are uptodate. A subsequent 1171 * block_read_full_folio() against that folio will discover all the uptodate 1172 * buffers, will set the folio uptodate and will perform no I/O. 1173 */ 1174 1175 /** 1176 * mark_buffer_dirty - mark a buffer_head as needing writeout 1177 * @bh: the buffer_head to mark dirty 1178 * 1179 * mark_buffer_dirty() will set the dirty bit against the buffer, then set 1180 * its backing page dirty, then tag the page as dirty in the page cache 1181 * and then attach the address_space's inode to its superblock's dirty 1182 * inode list. 1183 * 1184 * mark_buffer_dirty() is atomic. It takes bh->b_folio->mapping->i_private_lock, 1185 * i_pages lock and mapping->host->i_lock. 1186 */ 1187 void mark_buffer_dirty(struct buffer_head *bh) 1188 { 1189 WARN_ON_ONCE(!buffer_uptodate(bh)); 1190 1191 trace_block_dirty_buffer(bh); 1192 1193 /* 1194 * Very *carefully* optimize the it-is-already-dirty case. 1195 * 1196 * Don't let the final "is it dirty" escape to before we 1197 * perhaps modified the buffer. 1198 */ 1199 if (buffer_dirty(bh)) { 1200 smp_mb(); 1201 if (buffer_dirty(bh)) 1202 return; 1203 } 1204 1205 if (!test_set_buffer_dirty(bh)) { 1206 struct folio *folio = bh->b_folio; 1207 struct address_space *mapping = NULL; 1208 1209 if (!folio_test_set_dirty(folio)) { 1210 mapping = folio->mapping; 1211 if (mapping) 1212 __folio_mark_dirty(folio, mapping, 0); 1213 } 1214 if (mapping) 1215 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1216 } 1217 } 1218 EXPORT_SYMBOL(mark_buffer_dirty); 1219 1220 void mark_buffer_write_io_error(struct buffer_head *bh) 1221 { 1222 set_buffer_write_io_error(bh); 1223 /* FIXME: do we need to set this in both places? */ 1224 if (bh->b_folio && bh->b_folio->mapping) 1225 mapping_set_error(bh->b_folio->mapping, -EIO); 1226 if (bh->b_assoc_map) 1227 mapping_set_error(bh->b_assoc_map, -EIO); 1228 } 1229 EXPORT_SYMBOL(mark_buffer_write_io_error); 1230 1231 /** 1232 * __brelse - Release a buffer. 1233 * @bh: The buffer to release. 1234 * 1235 * This variant of brelse() can be called if @bh is guaranteed to not be NULL. 1236 */ 1237 void __brelse(struct buffer_head *bh) 1238 { 1239 if (atomic_read(&bh->b_count)) { 1240 put_bh(bh); 1241 return; 1242 } 1243 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1244 } 1245 EXPORT_SYMBOL(__brelse); 1246 1247 /** 1248 * __bforget - Discard any dirty data in a buffer. 1249 * @bh: The buffer to forget. 1250 * 1251 * This variant of bforget() can be called if @bh is guaranteed to not 1252 * be NULL. 1253 */ 1254 void __bforget(struct buffer_head *bh) 1255 { 1256 clear_buffer_dirty(bh); 1257 if (bh->b_assoc_map) { 1258 struct address_space *buffer_mapping = bh->b_folio->mapping; 1259 1260 spin_lock(&buffer_mapping->i_private_lock); 1261 list_del_init(&bh->b_assoc_buffers); 1262 bh->b_assoc_map = NULL; 1263 spin_unlock(&buffer_mapping->i_private_lock); 1264 } 1265 __brelse(bh); 1266 } 1267 EXPORT_SYMBOL(__bforget); 1268 1269 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1270 { 1271 lock_buffer(bh); 1272 if (buffer_uptodate(bh)) { 1273 unlock_buffer(bh); 1274 return bh; 1275 } else { 1276 get_bh(bh); 1277 bh->b_end_io = end_buffer_read_sync; 1278 submit_bh(REQ_OP_READ, bh); 1279 wait_on_buffer(bh); 1280 if (buffer_uptodate(bh)) 1281 return bh; 1282 } 1283 brelse(bh); 1284 return NULL; 1285 } 1286 1287 /* 1288 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1289 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1290 * refcount elevated by one when they're in an LRU. A buffer can only appear 1291 * once in a particular CPU's LRU. A single buffer can be present in multiple 1292 * CPU's LRUs at the same time. 1293 * 1294 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1295 * sb_find_get_block(). 1296 * 1297 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1298 * a local interrupt disable for that. 1299 */ 1300 1301 #define BH_LRU_SIZE 16 1302 1303 struct bh_lru { 1304 struct buffer_head *bhs[BH_LRU_SIZE]; 1305 }; 1306 1307 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1308 1309 #ifdef CONFIG_SMP 1310 #define bh_lru_lock() local_irq_disable() 1311 #define bh_lru_unlock() local_irq_enable() 1312 #else 1313 #define bh_lru_lock() preempt_disable() 1314 #define bh_lru_unlock() preempt_enable() 1315 #endif 1316 1317 static inline void check_irqs_on(void) 1318 { 1319 #ifdef irqs_disabled 1320 BUG_ON(irqs_disabled()); 1321 #endif 1322 } 1323 1324 /* 1325 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is 1326 * inserted at the front, and the buffer_head at the back if any is evicted. 1327 * Or, if already in the LRU it is moved to the front. 1328 */ 1329 static void bh_lru_install(struct buffer_head *bh) 1330 { 1331 struct buffer_head *evictee = bh; 1332 struct bh_lru *b; 1333 int i; 1334 1335 check_irqs_on(); 1336 bh_lru_lock(); 1337 1338 /* 1339 * the refcount of buffer_head in bh_lru prevents dropping the 1340 * attached page(i.e., try_to_free_buffers) so it could cause 1341 * failing page migration. 1342 * Skip putting upcoming bh into bh_lru until migration is done. 1343 */ 1344 if (lru_cache_disabled() || cpu_is_isolated(smp_processor_id())) { 1345 bh_lru_unlock(); 1346 return; 1347 } 1348 1349 b = this_cpu_ptr(&bh_lrus); 1350 for (i = 0; i < BH_LRU_SIZE; i++) { 1351 swap(evictee, b->bhs[i]); 1352 if (evictee == bh) { 1353 bh_lru_unlock(); 1354 return; 1355 } 1356 } 1357 1358 get_bh(bh); 1359 bh_lru_unlock(); 1360 brelse(evictee); 1361 } 1362 1363 /* 1364 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1365 */ 1366 static struct buffer_head * 1367 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1368 { 1369 struct buffer_head *ret = NULL; 1370 unsigned int i; 1371 1372 check_irqs_on(); 1373 bh_lru_lock(); 1374 if (cpu_is_isolated(smp_processor_id())) { 1375 bh_lru_unlock(); 1376 return NULL; 1377 } 1378 for (i = 0; i < BH_LRU_SIZE; i++) { 1379 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1380 1381 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1382 bh->b_size == size) { 1383 if (i) { 1384 while (i) { 1385 __this_cpu_write(bh_lrus.bhs[i], 1386 __this_cpu_read(bh_lrus.bhs[i - 1])); 1387 i--; 1388 } 1389 __this_cpu_write(bh_lrus.bhs[0], bh); 1390 } 1391 get_bh(bh); 1392 ret = bh; 1393 break; 1394 } 1395 } 1396 bh_lru_unlock(); 1397 return ret; 1398 } 1399 1400 /* 1401 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1402 * it in the LRU and mark it as accessed. If it is not present then return 1403 * NULL. Atomic context callers may also return NULL if the buffer is being 1404 * migrated; similarly the page is not marked accessed either. 1405 */ 1406 static struct buffer_head * 1407 find_get_block_common(struct block_device *bdev, sector_t block, 1408 unsigned size, bool atomic) 1409 { 1410 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1411 1412 if (bh == NULL) { 1413 /* __find_get_block_slow will mark the page accessed */ 1414 bh = __find_get_block_slow(bdev, block, atomic); 1415 if (bh) 1416 bh_lru_install(bh); 1417 } else 1418 touch_buffer(bh); 1419 1420 return bh; 1421 } 1422 1423 struct buffer_head * 1424 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1425 { 1426 return find_get_block_common(bdev, block, size, true); 1427 } 1428 EXPORT_SYMBOL(__find_get_block); 1429 1430 /* same as __find_get_block() but allows sleeping contexts */ 1431 struct buffer_head * 1432 __find_get_block_nonatomic(struct block_device *bdev, sector_t block, 1433 unsigned size) 1434 { 1435 return find_get_block_common(bdev, block, size, false); 1436 } 1437 EXPORT_SYMBOL(__find_get_block_nonatomic); 1438 1439 /** 1440 * bdev_getblk - Get a buffer_head in a block device's buffer cache. 1441 * @bdev: The block device. 1442 * @block: The block number. 1443 * @size: The size of buffer_heads for this @bdev. 1444 * @gfp: The memory allocation flags to use. 1445 * 1446 * The returned buffer head has its reference count incremented, but is 1447 * not locked. The caller should call brelse() when it has finished 1448 * with the buffer. The buffer may not be uptodate. If needed, the 1449 * caller can bring it uptodate either by reading it or overwriting it. 1450 * 1451 * Return: The buffer head, or NULL if memory could not be allocated. 1452 */ 1453 struct buffer_head *bdev_getblk(struct block_device *bdev, sector_t block, 1454 unsigned size, gfp_t gfp) 1455 { 1456 struct buffer_head *bh; 1457 1458 if (gfpflags_allow_blocking(gfp)) 1459 bh = __find_get_block_nonatomic(bdev, block, size); 1460 else 1461 bh = __find_get_block(bdev, block, size); 1462 1463 might_alloc(gfp); 1464 if (bh) 1465 return bh; 1466 1467 return __getblk_slow(bdev, block, size, gfp); 1468 } 1469 EXPORT_SYMBOL(bdev_getblk); 1470 1471 /* 1472 * Do async read-ahead on a buffer.. 1473 */ 1474 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1475 { 1476 struct buffer_head *bh = bdev_getblk(bdev, block, size, 1477 GFP_NOWAIT | __GFP_MOVABLE); 1478 1479 if (likely(bh)) { 1480 bh_readahead(bh, REQ_RAHEAD); 1481 brelse(bh); 1482 } 1483 } 1484 EXPORT_SYMBOL(__breadahead); 1485 1486 /** 1487 * __bread_gfp() - Read a block. 1488 * @bdev: The block device to read from. 1489 * @block: Block number in units of block size. 1490 * @size: The block size of this device in bytes. 1491 * @gfp: Not page allocation flags; see below. 1492 * 1493 * You are not expected to call this function. You should use one of 1494 * sb_bread(), sb_bread_unmovable() or __bread(). 1495 * 1496 * Read a specified block, and return the buffer head that refers to it. 1497 * If @gfp is 0, the memory will be allocated using the block device's 1498 * default GFP flags. If @gfp is __GFP_MOVABLE, the memory may be 1499 * allocated from a movable area. Do not pass in a complete set of 1500 * GFP flags. 1501 * 1502 * The returned buffer head has its refcount increased. The caller should 1503 * call brelse() when it has finished with the buffer. 1504 * 1505 * Context: May sleep waiting for I/O. 1506 * Return: NULL if the block was unreadable. 1507 */ 1508 struct buffer_head *__bread_gfp(struct block_device *bdev, sector_t block, 1509 unsigned size, gfp_t gfp) 1510 { 1511 struct buffer_head *bh; 1512 1513 gfp |= mapping_gfp_constraint(bdev->bd_mapping, ~__GFP_FS); 1514 1515 /* 1516 * Prefer looping in the allocator rather than here, at least that 1517 * code knows what it's doing. 1518 */ 1519 gfp |= __GFP_NOFAIL; 1520 1521 bh = bdev_getblk(bdev, block, size, gfp); 1522 1523 if (likely(bh) && !buffer_uptodate(bh)) 1524 bh = __bread_slow(bh); 1525 return bh; 1526 } 1527 EXPORT_SYMBOL(__bread_gfp); 1528 1529 static void __invalidate_bh_lrus(struct bh_lru *b) 1530 { 1531 int i; 1532 1533 for (i = 0; i < BH_LRU_SIZE; i++) { 1534 brelse(b->bhs[i]); 1535 b->bhs[i] = NULL; 1536 } 1537 } 1538 /* 1539 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1540 * This doesn't race because it runs in each cpu either in irq 1541 * or with preempt disabled. 1542 */ 1543 static void invalidate_bh_lru(void *arg) 1544 { 1545 struct bh_lru *b = &get_cpu_var(bh_lrus); 1546 1547 __invalidate_bh_lrus(b); 1548 put_cpu_var(bh_lrus); 1549 } 1550 1551 bool has_bh_in_lru(int cpu, void *dummy) 1552 { 1553 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1554 int i; 1555 1556 for (i = 0; i < BH_LRU_SIZE; i++) { 1557 if (b->bhs[i]) 1558 return true; 1559 } 1560 1561 return false; 1562 } 1563 1564 void invalidate_bh_lrus(void) 1565 { 1566 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1); 1567 } 1568 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1569 1570 /* 1571 * It's called from workqueue context so we need a bh_lru_lock to close 1572 * the race with preemption/irq. 1573 */ 1574 void invalidate_bh_lrus_cpu(void) 1575 { 1576 struct bh_lru *b; 1577 1578 bh_lru_lock(); 1579 b = this_cpu_ptr(&bh_lrus); 1580 __invalidate_bh_lrus(b); 1581 bh_lru_unlock(); 1582 } 1583 1584 void folio_set_bh(struct buffer_head *bh, struct folio *folio, 1585 unsigned long offset) 1586 { 1587 bh->b_folio = folio; 1588 BUG_ON(offset >= folio_size(folio)); 1589 if (folio_test_highmem(folio)) 1590 /* 1591 * This catches illegal uses and preserves the offset: 1592 */ 1593 bh->b_data = (char *)(0 + offset); 1594 else 1595 bh->b_data = folio_address(folio) + offset; 1596 } 1597 EXPORT_SYMBOL(folio_set_bh); 1598 1599 /* 1600 * Called when truncating a buffer on a page completely. 1601 */ 1602 1603 /* Bits that are cleared during an invalidate */ 1604 #define BUFFER_FLAGS_DISCARD \ 1605 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1606 1 << BH_Delay | 1 << BH_Unwritten) 1607 1608 static void discard_buffer(struct buffer_head * bh) 1609 { 1610 unsigned long b_state; 1611 1612 lock_buffer(bh); 1613 clear_buffer_dirty(bh); 1614 bh->b_bdev = NULL; 1615 b_state = READ_ONCE(bh->b_state); 1616 do { 1617 } while (!try_cmpxchg_relaxed(&bh->b_state, &b_state, 1618 b_state & ~BUFFER_FLAGS_DISCARD)); 1619 unlock_buffer(bh); 1620 } 1621 1622 /** 1623 * block_invalidate_folio - Invalidate part or all of a buffer-backed folio. 1624 * @folio: The folio which is affected. 1625 * @offset: start of the range to invalidate 1626 * @length: length of the range to invalidate 1627 * 1628 * block_invalidate_folio() is called when all or part of the folio has been 1629 * invalidated by a truncate operation. 1630 * 1631 * block_invalidate_folio() does not have to release all buffers, but it must 1632 * ensure that no dirty buffer is left outside @offset and that no I/O 1633 * is underway against any of the blocks which are outside the truncation 1634 * point. Because the caller is about to free (and possibly reuse) those 1635 * blocks on-disk. 1636 */ 1637 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length) 1638 { 1639 struct buffer_head *head, *bh, *next; 1640 size_t curr_off = 0; 1641 size_t stop = length + offset; 1642 1643 BUG_ON(!folio_test_locked(folio)); 1644 1645 /* 1646 * Check for overflow 1647 */ 1648 BUG_ON(stop > folio_size(folio) || stop < length); 1649 1650 head = folio_buffers(folio); 1651 if (!head) 1652 return; 1653 1654 bh = head; 1655 do { 1656 size_t next_off = curr_off + bh->b_size; 1657 next = bh->b_this_page; 1658 1659 /* 1660 * Are we still fully in range ? 1661 */ 1662 if (next_off > stop) 1663 goto out; 1664 1665 /* 1666 * is this block fully invalidated? 1667 */ 1668 if (offset <= curr_off) 1669 discard_buffer(bh); 1670 curr_off = next_off; 1671 bh = next; 1672 } while (bh != head); 1673 1674 /* 1675 * We release buffers only if the entire folio is being invalidated. 1676 * The get_block cached value has been unconditionally invalidated, 1677 * so real IO is not possible anymore. 1678 */ 1679 if (length == folio_size(folio)) 1680 filemap_release_folio(folio, 0); 1681 out: 1682 folio_clear_mappedtodisk(folio); 1683 } 1684 EXPORT_SYMBOL(block_invalidate_folio); 1685 1686 /* 1687 * We attach and possibly dirty the buffers atomically wrt 1688 * block_dirty_folio() via i_private_lock. try_to_free_buffers 1689 * is already excluded via the folio lock. 1690 */ 1691 struct buffer_head *create_empty_buffers(struct folio *folio, 1692 unsigned long blocksize, unsigned long b_state) 1693 { 1694 struct buffer_head *bh, *head, *tail; 1695 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT | __GFP_NOFAIL; 1696 1697 head = folio_alloc_buffers(folio, blocksize, gfp); 1698 bh = head; 1699 do { 1700 bh->b_state |= b_state; 1701 tail = bh; 1702 bh = bh->b_this_page; 1703 } while (bh); 1704 tail->b_this_page = head; 1705 1706 spin_lock(&folio->mapping->i_private_lock); 1707 if (folio_test_uptodate(folio) || folio_test_dirty(folio)) { 1708 bh = head; 1709 do { 1710 if (folio_test_dirty(folio)) 1711 set_buffer_dirty(bh); 1712 if (folio_test_uptodate(folio)) 1713 set_buffer_uptodate(bh); 1714 bh = bh->b_this_page; 1715 } while (bh != head); 1716 } 1717 folio_attach_private(folio, head); 1718 spin_unlock(&folio->mapping->i_private_lock); 1719 1720 return head; 1721 } 1722 EXPORT_SYMBOL(create_empty_buffers); 1723 1724 /** 1725 * clean_bdev_aliases: clean a range of buffers in block device 1726 * @bdev: Block device to clean buffers in 1727 * @block: Start of a range of blocks to clean 1728 * @len: Number of blocks to clean 1729 * 1730 * We are taking a range of blocks for data and we don't want writeback of any 1731 * buffer-cache aliases starting from return from this function and until the 1732 * moment when something will explicitly mark the buffer dirty (hopefully that 1733 * will not happen until we will free that block ;-) We don't even need to mark 1734 * it not-uptodate - nobody can expect anything from a newly allocated buffer 1735 * anyway. We used to use unmap_buffer() for such invalidation, but that was 1736 * wrong. We definitely don't want to mark the alias unmapped, for example - it 1737 * would confuse anyone who might pick it with bread() afterwards... 1738 * 1739 * Also.. Note that bforget() doesn't lock the buffer. So there can be 1740 * writeout I/O going on against recently-freed buffers. We don't wait on that 1741 * I/O in bforget() - it's more efficient to wait on the I/O only if we really 1742 * need to. That happens here. 1743 */ 1744 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len) 1745 { 1746 struct address_space *bd_mapping = bdev->bd_mapping; 1747 const int blkbits = bd_mapping->host->i_blkbits; 1748 struct folio_batch fbatch; 1749 pgoff_t index = ((loff_t)block << blkbits) / PAGE_SIZE; 1750 pgoff_t end; 1751 int i, count; 1752 struct buffer_head *bh; 1753 struct buffer_head *head; 1754 1755 end = ((loff_t)(block + len - 1) << blkbits) / PAGE_SIZE; 1756 folio_batch_init(&fbatch); 1757 while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) { 1758 count = folio_batch_count(&fbatch); 1759 for (i = 0; i < count; i++) { 1760 struct folio *folio = fbatch.folios[i]; 1761 1762 if (!folio_buffers(folio)) 1763 continue; 1764 /* 1765 * We use folio lock instead of bd_mapping->i_private_lock 1766 * to pin buffers here since we can afford to sleep and 1767 * it scales better than a global spinlock lock. 1768 */ 1769 folio_lock(folio); 1770 /* Recheck when the folio is locked which pins bhs */ 1771 head = folio_buffers(folio); 1772 if (!head) 1773 goto unlock_page; 1774 bh = head; 1775 do { 1776 if (!buffer_mapped(bh) || (bh->b_blocknr < block)) 1777 goto next; 1778 if (bh->b_blocknr >= block + len) 1779 break; 1780 clear_buffer_dirty(bh); 1781 wait_on_buffer(bh); 1782 clear_buffer_req(bh); 1783 next: 1784 bh = bh->b_this_page; 1785 } while (bh != head); 1786 unlock_page: 1787 folio_unlock(folio); 1788 } 1789 folio_batch_release(&fbatch); 1790 cond_resched(); 1791 /* End of range already reached? */ 1792 if (index > end || !index) 1793 break; 1794 } 1795 } 1796 EXPORT_SYMBOL(clean_bdev_aliases); 1797 1798 static struct buffer_head *folio_create_buffers(struct folio *folio, 1799 struct inode *inode, 1800 unsigned int b_state) 1801 { 1802 struct buffer_head *bh; 1803 1804 BUG_ON(!folio_test_locked(folio)); 1805 1806 bh = folio_buffers(folio); 1807 if (!bh) 1808 bh = create_empty_buffers(folio, 1809 1 << READ_ONCE(inode->i_blkbits), b_state); 1810 return bh; 1811 } 1812 1813 /* 1814 * NOTE! All mapped/uptodate combinations are valid: 1815 * 1816 * Mapped Uptodate Meaning 1817 * 1818 * No No "unknown" - must do get_block() 1819 * No Yes "hole" - zero-filled 1820 * Yes No "allocated" - allocated on disk, not read in 1821 * Yes Yes "valid" - allocated and up-to-date in memory. 1822 * 1823 * "Dirty" is valid only with the last case (mapped+uptodate). 1824 */ 1825 1826 /* 1827 * While block_write_full_folio is writing back the dirty buffers under 1828 * the page lock, whoever dirtied the buffers may decide to clean them 1829 * again at any time. We handle that by only looking at the buffer 1830 * state inside lock_buffer(). 1831 * 1832 * If block_write_full_folio() is called for regular writeback 1833 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1834 * locked buffer. This only can happen if someone has written the buffer 1835 * directly, with submit_bh(). At the address_space level PageWriteback 1836 * prevents this contention from occurring. 1837 * 1838 * If block_write_full_folio() is called with wbc->sync_mode == 1839 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this 1840 * causes the writes to be flagged as synchronous writes. 1841 */ 1842 int __block_write_full_folio(struct inode *inode, struct folio *folio, 1843 get_block_t *get_block, struct writeback_control *wbc) 1844 { 1845 int err; 1846 sector_t block; 1847 sector_t last_block; 1848 struct buffer_head *bh, *head; 1849 size_t blocksize; 1850 int nr_underway = 0; 1851 blk_opf_t write_flags = wbc_to_write_flags(wbc); 1852 1853 head = folio_create_buffers(folio, inode, 1854 (1 << BH_Dirty) | (1 << BH_Uptodate)); 1855 1856 /* 1857 * Be very careful. We have no exclusion from block_dirty_folio 1858 * here, and the (potentially unmapped) buffers may become dirty at 1859 * any time. If a buffer becomes dirty here after we've inspected it 1860 * then we just miss that fact, and the folio stays dirty. 1861 * 1862 * Buffers outside i_size may be dirtied by block_dirty_folio; 1863 * handle that here by just cleaning them. 1864 */ 1865 1866 bh = head; 1867 blocksize = bh->b_size; 1868 1869 block = div_u64(folio_pos(folio), blocksize); 1870 last_block = div_u64(i_size_read(inode) - 1, blocksize); 1871 1872 /* 1873 * Get all the dirty buffers mapped to disk addresses and 1874 * handle any aliases from the underlying blockdev's mapping. 1875 */ 1876 do { 1877 if (block > last_block) { 1878 /* 1879 * mapped buffers outside i_size will occur, because 1880 * this folio can be outside i_size when there is a 1881 * truncate in progress. 1882 */ 1883 /* 1884 * The buffer was zeroed by block_write_full_folio() 1885 */ 1886 clear_buffer_dirty(bh); 1887 set_buffer_uptodate(bh); 1888 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1889 buffer_dirty(bh)) { 1890 WARN_ON(bh->b_size != blocksize); 1891 err = get_block(inode, block, bh, 1); 1892 if (err) 1893 goto recover; 1894 clear_buffer_delay(bh); 1895 if (buffer_new(bh)) { 1896 /* blockdev mappings never come here */ 1897 clear_buffer_new(bh); 1898 clean_bdev_bh_alias(bh); 1899 } 1900 } 1901 bh = bh->b_this_page; 1902 block++; 1903 } while (bh != head); 1904 1905 do { 1906 if (!buffer_mapped(bh)) 1907 continue; 1908 /* 1909 * If it's a fully non-blocking write attempt and we cannot 1910 * lock the buffer then redirty the folio. Note that this can 1911 * potentially cause a busy-wait loop from writeback threads 1912 * and kswapd activity, but those code paths have their own 1913 * higher-level throttling. 1914 */ 1915 if (wbc->sync_mode != WB_SYNC_NONE) { 1916 lock_buffer(bh); 1917 } else if (!trylock_buffer(bh)) { 1918 folio_redirty_for_writepage(wbc, folio); 1919 continue; 1920 } 1921 if (test_clear_buffer_dirty(bh)) { 1922 mark_buffer_async_write_endio(bh, 1923 end_buffer_async_write); 1924 } else { 1925 unlock_buffer(bh); 1926 } 1927 } while ((bh = bh->b_this_page) != head); 1928 1929 /* 1930 * The folio and its buffers are protected by the writeback flag, 1931 * so we can drop the bh refcounts early. 1932 */ 1933 BUG_ON(folio_test_writeback(folio)); 1934 folio_start_writeback(folio); 1935 1936 do { 1937 struct buffer_head *next = bh->b_this_page; 1938 if (buffer_async_write(bh)) { 1939 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, 1940 inode->i_write_hint, wbc); 1941 nr_underway++; 1942 } 1943 bh = next; 1944 } while (bh != head); 1945 folio_unlock(folio); 1946 1947 err = 0; 1948 done: 1949 if (nr_underway == 0) { 1950 /* 1951 * The folio was marked dirty, but the buffers were 1952 * clean. Someone wrote them back by hand with 1953 * write_dirty_buffer/submit_bh. A rare case. 1954 */ 1955 folio_end_writeback(folio); 1956 1957 /* 1958 * The folio and buffer_heads can be released at any time from 1959 * here on. 1960 */ 1961 } 1962 return err; 1963 1964 recover: 1965 /* 1966 * ENOSPC, or some other error. We may already have added some 1967 * blocks to the file, so we need to write these out to avoid 1968 * exposing stale data. 1969 * The folio is currently locked and not marked for writeback 1970 */ 1971 bh = head; 1972 /* Recovery: lock and submit the mapped buffers */ 1973 do { 1974 if (buffer_mapped(bh) && buffer_dirty(bh) && 1975 !buffer_delay(bh)) { 1976 lock_buffer(bh); 1977 mark_buffer_async_write_endio(bh, 1978 end_buffer_async_write); 1979 } else { 1980 /* 1981 * The buffer may have been set dirty during 1982 * attachment to a dirty folio. 1983 */ 1984 clear_buffer_dirty(bh); 1985 } 1986 } while ((bh = bh->b_this_page) != head); 1987 BUG_ON(folio_test_writeback(folio)); 1988 mapping_set_error(folio->mapping, err); 1989 folio_start_writeback(folio); 1990 do { 1991 struct buffer_head *next = bh->b_this_page; 1992 if (buffer_async_write(bh)) { 1993 clear_buffer_dirty(bh); 1994 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, 1995 inode->i_write_hint, wbc); 1996 nr_underway++; 1997 } 1998 bh = next; 1999 } while (bh != head); 2000 folio_unlock(folio); 2001 goto done; 2002 } 2003 EXPORT_SYMBOL(__block_write_full_folio); 2004 2005 /* 2006 * If a folio has any new buffers, zero them out here, and mark them uptodate 2007 * and dirty so they'll be written out (in order to prevent uninitialised 2008 * block data from leaking). And clear the new bit. 2009 */ 2010 void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to) 2011 { 2012 size_t block_start, block_end; 2013 struct buffer_head *head, *bh; 2014 2015 BUG_ON(!folio_test_locked(folio)); 2016 head = folio_buffers(folio); 2017 if (!head) 2018 return; 2019 2020 bh = head; 2021 block_start = 0; 2022 do { 2023 block_end = block_start + bh->b_size; 2024 2025 if (buffer_new(bh)) { 2026 if (block_end > from && block_start < to) { 2027 if (!folio_test_uptodate(folio)) { 2028 size_t start, xend; 2029 2030 start = max(from, block_start); 2031 xend = min(to, block_end); 2032 2033 folio_zero_segment(folio, start, xend); 2034 set_buffer_uptodate(bh); 2035 } 2036 2037 clear_buffer_new(bh); 2038 mark_buffer_dirty(bh); 2039 } 2040 } 2041 2042 block_start = block_end; 2043 bh = bh->b_this_page; 2044 } while (bh != head); 2045 } 2046 EXPORT_SYMBOL(folio_zero_new_buffers); 2047 2048 static int 2049 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, 2050 const struct iomap *iomap) 2051 { 2052 loff_t offset = (loff_t)block << inode->i_blkbits; 2053 2054 bh->b_bdev = iomap->bdev; 2055 2056 /* 2057 * Block points to offset in file we need to map, iomap contains 2058 * the offset at which the map starts. If the map ends before the 2059 * current block, then do not map the buffer and let the caller 2060 * handle it. 2061 */ 2062 if (offset >= iomap->offset + iomap->length) 2063 return -EIO; 2064 2065 switch (iomap->type) { 2066 case IOMAP_HOLE: 2067 /* 2068 * If the buffer is not up to date or beyond the current EOF, 2069 * we need to mark it as new to ensure sub-block zeroing is 2070 * executed if necessary. 2071 */ 2072 if (!buffer_uptodate(bh) || 2073 (offset >= i_size_read(inode))) 2074 set_buffer_new(bh); 2075 return 0; 2076 case IOMAP_DELALLOC: 2077 if (!buffer_uptodate(bh) || 2078 (offset >= i_size_read(inode))) 2079 set_buffer_new(bh); 2080 set_buffer_uptodate(bh); 2081 set_buffer_mapped(bh); 2082 set_buffer_delay(bh); 2083 return 0; 2084 case IOMAP_UNWRITTEN: 2085 /* 2086 * For unwritten regions, we always need to ensure that regions 2087 * in the block we are not writing to are zeroed. Mark the 2088 * buffer as new to ensure this. 2089 */ 2090 set_buffer_new(bh); 2091 set_buffer_unwritten(bh); 2092 fallthrough; 2093 case IOMAP_MAPPED: 2094 if ((iomap->flags & IOMAP_F_NEW) || 2095 offset >= i_size_read(inode)) { 2096 /* 2097 * This can happen if truncating the block device races 2098 * with the check in the caller as i_size updates on 2099 * block devices aren't synchronized by i_rwsem for 2100 * block devices. 2101 */ 2102 if (S_ISBLK(inode->i_mode)) 2103 return -EIO; 2104 set_buffer_new(bh); 2105 } 2106 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >> 2107 inode->i_blkbits; 2108 set_buffer_mapped(bh); 2109 return 0; 2110 default: 2111 WARN_ON_ONCE(1); 2112 return -EIO; 2113 } 2114 } 2115 2116 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len, 2117 get_block_t *get_block, const struct iomap *iomap) 2118 { 2119 size_t from = offset_in_folio(folio, pos); 2120 size_t to = from + len; 2121 struct inode *inode = folio->mapping->host; 2122 size_t block_start, block_end; 2123 sector_t block; 2124 int err = 0; 2125 size_t blocksize; 2126 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 2127 2128 BUG_ON(!folio_test_locked(folio)); 2129 BUG_ON(to > folio_size(folio)); 2130 BUG_ON(from > to); 2131 2132 head = folio_create_buffers(folio, inode, 0); 2133 blocksize = head->b_size; 2134 block = div_u64(folio_pos(folio), blocksize); 2135 2136 for (bh = head, block_start = 0; bh != head || !block_start; 2137 block++, block_start=block_end, bh = bh->b_this_page) { 2138 block_end = block_start + blocksize; 2139 if (block_end <= from || block_start >= to) { 2140 if (folio_test_uptodate(folio)) { 2141 if (!buffer_uptodate(bh)) 2142 set_buffer_uptodate(bh); 2143 } 2144 continue; 2145 } 2146 if (buffer_new(bh)) 2147 clear_buffer_new(bh); 2148 if (!buffer_mapped(bh)) { 2149 WARN_ON(bh->b_size != blocksize); 2150 if (get_block) 2151 err = get_block(inode, block, bh, 1); 2152 else 2153 err = iomap_to_bh(inode, block, bh, iomap); 2154 if (err) 2155 break; 2156 2157 if (buffer_new(bh)) { 2158 clean_bdev_bh_alias(bh); 2159 if (folio_test_uptodate(folio)) { 2160 clear_buffer_new(bh); 2161 set_buffer_uptodate(bh); 2162 mark_buffer_dirty(bh); 2163 continue; 2164 } 2165 if (block_end > to || block_start < from) 2166 folio_zero_segments(folio, 2167 to, block_end, 2168 block_start, from); 2169 continue; 2170 } 2171 } 2172 if (folio_test_uptodate(folio)) { 2173 if (!buffer_uptodate(bh)) 2174 set_buffer_uptodate(bh); 2175 continue; 2176 } 2177 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 2178 !buffer_unwritten(bh) && 2179 (block_start < from || block_end > to)) { 2180 bh_read_nowait(bh, 0); 2181 *wait_bh++=bh; 2182 } 2183 } 2184 /* 2185 * If we issued read requests - let them complete. 2186 */ 2187 while(wait_bh > wait) { 2188 wait_on_buffer(*--wait_bh); 2189 if (!buffer_uptodate(*wait_bh)) 2190 err = -EIO; 2191 } 2192 if (unlikely(err)) 2193 folio_zero_new_buffers(folio, from, to); 2194 return err; 2195 } 2196 2197 int __block_write_begin(struct folio *folio, loff_t pos, unsigned len, 2198 get_block_t *get_block) 2199 { 2200 return __block_write_begin_int(folio, pos, len, get_block, NULL); 2201 } 2202 EXPORT_SYMBOL(__block_write_begin); 2203 2204 void block_commit_write(struct folio *folio, size_t from, size_t to) 2205 { 2206 size_t block_start, block_end; 2207 bool partial = false; 2208 unsigned blocksize; 2209 struct buffer_head *bh, *head; 2210 2211 bh = head = folio_buffers(folio); 2212 if (!bh) 2213 return; 2214 blocksize = bh->b_size; 2215 2216 block_start = 0; 2217 do { 2218 block_end = block_start + blocksize; 2219 if (block_end <= from || block_start >= to) { 2220 if (!buffer_uptodate(bh)) 2221 partial = true; 2222 } else { 2223 set_buffer_uptodate(bh); 2224 mark_buffer_dirty(bh); 2225 } 2226 if (buffer_new(bh)) 2227 clear_buffer_new(bh); 2228 2229 block_start = block_end; 2230 bh = bh->b_this_page; 2231 } while (bh != head); 2232 2233 /* 2234 * If this is a partial write which happened to make all buffers 2235 * uptodate then we can optimize away a bogus read_folio() for 2236 * the next read(). Here we 'discover' whether the folio went 2237 * uptodate as a result of this (potentially partial) write. 2238 */ 2239 if (!partial) 2240 folio_mark_uptodate(folio); 2241 } 2242 EXPORT_SYMBOL(block_commit_write); 2243 2244 /* 2245 * block_write_begin takes care of the basic task of block allocation and 2246 * bringing partial write blocks uptodate first. 2247 * 2248 * The filesystem needs to handle block truncation upon failure. 2249 */ 2250 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2251 struct folio **foliop, get_block_t *get_block) 2252 { 2253 pgoff_t index = pos >> PAGE_SHIFT; 2254 struct folio *folio; 2255 int status; 2256 2257 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 2258 mapping_gfp_mask(mapping)); 2259 if (IS_ERR(folio)) 2260 return PTR_ERR(folio); 2261 2262 status = __block_write_begin_int(folio, pos, len, get_block, NULL); 2263 if (unlikely(status)) { 2264 folio_unlock(folio); 2265 folio_put(folio); 2266 folio = NULL; 2267 } 2268 2269 *foliop = folio; 2270 return status; 2271 } 2272 EXPORT_SYMBOL(block_write_begin); 2273 2274 int block_write_end(struct file *file, struct address_space *mapping, 2275 loff_t pos, unsigned len, unsigned copied, 2276 struct folio *folio, void *fsdata) 2277 { 2278 size_t start = pos - folio_pos(folio); 2279 2280 if (unlikely(copied < len)) { 2281 /* 2282 * The buffers that were written will now be uptodate, so 2283 * we don't have to worry about a read_folio reading them 2284 * and overwriting a partial write. However if we have 2285 * encountered a short write and only partially written 2286 * into a buffer, it will not be marked uptodate, so a 2287 * read_folio might come in and destroy our partial write. 2288 * 2289 * Do the simplest thing, and just treat any short write to a 2290 * non uptodate folio as a zero-length write, and force the 2291 * caller to redo the whole thing. 2292 */ 2293 if (!folio_test_uptodate(folio)) 2294 copied = 0; 2295 2296 folio_zero_new_buffers(folio, start+copied, start+len); 2297 } 2298 flush_dcache_folio(folio); 2299 2300 /* This could be a short (even 0-length) commit */ 2301 block_commit_write(folio, start, start + copied); 2302 2303 return copied; 2304 } 2305 EXPORT_SYMBOL(block_write_end); 2306 2307 int generic_write_end(struct file *file, struct address_space *mapping, 2308 loff_t pos, unsigned len, unsigned copied, 2309 struct folio *folio, void *fsdata) 2310 { 2311 struct inode *inode = mapping->host; 2312 loff_t old_size = inode->i_size; 2313 bool i_size_changed = false; 2314 2315 copied = block_write_end(file, mapping, pos, len, copied, folio, fsdata); 2316 2317 /* 2318 * No need to use i_size_read() here, the i_size cannot change under us 2319 * because we hold i_rwsem. 2320 * 2321 * But it's important to update i_size while still holding folio lock: 2322 * page writeout could otherwise come in and zero beyond i_size. 2323 */ 2324 if (pos + copied > inode->i_size) { 2325 i_size_write(inode, pos + copied); 2326 i_size_changed = true; 2327 } 2328 2329 folio_unlock(folio); 2330 folio_put(folio); 2331 2332 if (old_size < pos) 2333 pagecache_isize_extended(inode, old_size, pos); 2334 /* 2335 * Don't mark the inode dirty under page lock. First, it unnecessarily 2336 * makes the holding time of page lock longer. Second, it forces lock 2337 * ordering of page lock and transaction start for journaling 2338 * filesystems. 2339 */ 2340 if (i_size_changed) 2341 mark_inode_dirty(inode); 2342 return copied; 2343 } 2344 EXPORT_SYMBOL(generic_write_end); 2345 2346 /* 2347 * block_is_partially_uptodate checks whether buffers within a folio are 2348 * uptodate or not. 2349 * 2350 * Returns true if all buffers which correspond to the specified part 2351 * of the folio are uptodate. 2352 */ 2353 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count) 2354 { 2355 unsigned block_start, block_end, blocksize; 2356 unsigned to; 2357 struct buffer_head *bh, *head; 2358 bool ret = true; 2359 2360 head = folio_buffers(folio); 2361 if (!head) 2362 return false; 2363 blocksize = head->b_size; 2364 to = min_t(unsigned, folio_size(folio) - from, count); 2365 to = from + to; 2366 if (from < blocksize && to > folio_size(folio) - blocksize) 2367 return false; 2368 2369 bh = head; 2370 block_start = 0; 2371 do { 2372 block_end = block_start + blocksize; 2373 if (block_end > from && block_start < to) { 2374 if (!buffer_uptodate(bh)) { 2375 ret = false; 2376 break; 2377 } 2378 if (block_end >= to) 2379 break; 2380 } 2381 block_start = block_end; 2382 bh = bh->b_this_page; 2383 } while (bh != head); 2384 2385 return ret; 2386 } 2387 EXPORT_SYMBOL(block_is_partially_uptodate); 2388 2389 /* 2390 * Generic "read_folio" function for block devices that have the normal 2391 * get_block functionality. This is most of the block device filesystems. 2392 * Reads the folio asynchronously --- the unlock_buffer() and 2393 * set/clear_buffer_uptodate() functions propagate buffer state into the 2394 * folio once IO has completed. 2395 */ 2396 int block_read_full_folio(struct folio *folio, get_block_t *get_block) 2397 { 2398 struct inode *inode = folio->mapping->host; 2399 sector_t iblock, lblock; 2400 struct buffer_head *bh, *head, *prev = NULL; 2401 size_t blocksize; 2402 int fully_mapped = 1; 2403 bool page_error = false; 2404 loff_t limit = i_size_read(inode); 2405 2406 /* This is needed for ext4. */ 2407 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode)) 2408 limit = inode->i_sb->s_maxbytes; 2409 2410 head = folio_create_buffers(folio, inode, 0); 2411 blocksize = head->b_size; 2412 2413 iblock = div_u64(folio_pos(folio), blocksize); 2414 lblock = div_u64(limit + blocksize - 1, blocksize); 2415 bh = head; 2416 2417 do { 2418 if (buffer_uptodate(bh)) 2419 continue; 2420 2421 if (!buffer_mapped(bh)) { 2422 int err = 0; 2423 2424 fully_mapped = 0; 2425 if (iblock < lblock) { 2426 WARN_ON(bh->b_size != blocksize); 2427 err = get_block(inode, iblock, bh, 0); 2428 if (err) 2429 page_error = true; 2430 } 2431 if (!buffer_mapped(bh)) { 2432 folio_zero_range(folio, bh_offset(bh), 2433 blocksize); 2434 if (!err) 2435 set_buffer_uptodate(bh); 2436 continue; 2437 } 2438 /* 2439 * get_block() might have updated the buffer 2440 * synchronously 2441 */ 2442 if (buffer_uptodate(bh)) 2443 continue; 2444 } 2445 2446 lock_buffer(bh); 2447 if (buffer_uptodate(bh)) { 2448 unlock_buffer(bh); 2449 continue; 2450 } 2451 2452 mark_buffer_async_read(bh); 2453 if (prev) 2454 submit_bh(REQ_OP_READ, prev); 2455 prev = bh; 2456 } while (iblock++, (bh = bh->b_this_page) != head); 2457 2458 if (fully_mapped) 2459 folio_set_mappedtodisk(folio); 2460 2461 /* 2462 * All buffers are uptodate or get_block() returned an error 2463 * when trying to map them - we must finish the read because 2464 * end_buffer_async_read() will never be called on any buffer 2465 * in this folio. 2466 */ 2467 if (prev) 2468 submit_bh(REQ_OP_READ, prev); 2469 else 2470 folio_end_read(folio, !page_error); 2471 2472 return 0; 2473 } 2474 EXPORT_SYMBOL(block_read_full_folio); 2475 2476 /* utility function for filesystems that need to do work on expanding 2477 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2478 * deal with the hole. 2479 */ 2480 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2481 { 2482 struct address_space *mapping = inode->i_mapping; 2483 const struct address_space_operations *aops = mapping->a_ops; 2484 struct folio *folio; 2485 void *fsdata = NULL; 2486 int err; 2487 2488 err = inode_newsize_ok(inode, size); 2489 if (err) 2490 goto out; 2491 2492 err = aops->write_begin(NULL, mapping, size, 0, &folio, &fsdata); 2493 if (err) 2494 goto out; 2495 2496 err = aops->write_end(NULL, mapping, size, 0, 0, folio, fsdata); 2497 BUG_ON(err > 0); 2498 2499 out: 2500 return err; 2501 } 2502 EXPORT_SYMBOL(generic_cont_expand_simple); 2503 2504 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2505 loff_t pos, loff_t *bytes) 2506 { 2507 struct inode *inode = mapping->host; 2508 const struct address_space_operations *aops = mapping->a_ops; 2509 unsigned int blocksize = i_blocksize(inode); 2510 struct folio *folio; 2511 void *fsdata = NULL; 2512 pgoff_t index, curidx; 2513 loff_t curpos; 2514 unsigned zerofrom, offset, len; 2515 int err = 0; 2516 2517 index = pos >> PAGE_SHIFT; 2518 offset = pos & ~PAGE_MASK; 2519 2520 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { 2521 zerofrom = curpos & ~PAGE_MASK; 2522 if (zerofrom & (blocksize-1)) { 2523 *bytes |= (blocksize-1); 2524 (*bytes)++; 2525 } 2526 len = PAGE_SIZE - zerofrom; 2527 2528 err = aops->write_begin(file, mapping, curpos, len, 2529 &folio, &fsdata); 2530 if (err) 2531 goto out; 2532 folio_zero_range(folio, offset_in_folio(folio, curpos), len); 2533 err = aops->write_end(file, mapping, curpos, len, len, 2534 folio, fsdata); 2535 if (err < 0) 2536 goto out; 2537 BUG_ON(err != len); 2538 err = 0; 2539 2540 balance_dirty_pages_ratelimited(mapping); 2541 2542 if (fatal_signal_pending(current)) { 2543 err = -EINTR; 2544 goto out; 2545 } 2546 } 2547 2548 /* page covers the boundary, find the boundary offset */ 2549 if (index == curidx) { 2550 zerofrom = curpos & ~PAGE_MASK; 2551 /* if we will expand the thing last block will be filled */ 2552 if (offset <= zerofrom) { 2553 goto out; 2554 } 2555 if (zerofrom & (blocksize-1)) { 2556 *bytes |= (blocksize-1); 2557 (*bytes)++; 2558 } 2559 len = offset - zerofrom; 2560 2561 err = aops->write_begin(file, mapping, curpos, len, 2562 &folio, &fsdata); 2563 if (err) 2564 goto out; 2565 folio_zero_range(folio, offset_in_folio(folio, curpos), len); 2566 err = aops->write_end(file, mapping, curpos, len, len, 2567 folio, fsdata); 2568 if (err < 0) 2569 goto out; 2570 BUG_ON(err != len); 2571 err = 0; 2572 } 2573 out: 2574 return err; 2575 } 2576 2577 /* 2578 * For moronic filesystems that do not allow holes in file. 2579 * We may have to extend the file. 2580 */ 2581 int cont_write_begin(struct file *file, struct address_space *mapping, 2582 loff_t pos, unsigned len, 2583 struct folio **foliop, void **fsdata, 2584 get_block_t *get_block, loff_t *bytes) 2585 { 2586 struct inode *inode = mapping->host; 2587 unsigned int blocksize = i_blocksize(inode); 2588 unsigned int zerofrom; 2589 int err; 2590 2591 err = cont_expand_zero(file, mapping, pos, bytes); 2592 if (err) 2593 return err; 2594 2595 zerofrom = *bytes & ~PAGE_MASK; 2596 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2597 *bytes |= (blocksize-1); 2598 (*bytes)++; 2599 } 2600 2601 return block_write_begin(mapping, pos, len, foliop, get_block); 2602 } 2603 EXPORT_SYMBOL(cont_write_begin); 2604 2605 /* 2606 * block_page_mkwrite() is not allowed to change the file size as it gets 2607 * called from a page fault handler when a page is first dirtied. Hence we must 2608 * be careful to check for EOF conditions here. We set the page up correctly 2609 * for a written page which means we get ENOSPC checking when writing into 2610 * holes and correct delalloc and unwritten extent mapping on filesystems that 2611 * support these features. 2612 * 2613 * We are not allowed to take the i_mutex here so we have to play games to 2614 * protect against truncate races as the page could now be beyond EOF. Because 2615 * truncate writes the inode size before removing pages, once we have the 2616 * page lock we can determine safely if the page is beyond EOF. If it is not 2617 * beyond EOF, then the page is guaranteed safe against truncation until we 2618 * unlock the page. 2619 * 2620 * Direct callers of this function should protect against filesystem freezing 2621 * using sb_start_pagefault() - sb_end_pagefault() functions. 2622 */ 2623 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2624 get_block_t get_block) 2625 { 2626 struct folio *folio = page_folio(vmf->page); 2627 struct inode *inode = file_inode(vma->vm_file); 2628 unsigned long end; 2629 loff_t size; 2630 int ret; 2631 2632 folio_lock(folio); 2633 size = i_size_read(inode); 2634 if ((folio->mapping != inode->i_mapping) || 2635 (folio_pos(folio) >= size)) { 2636 /* We overload EFAULT to mean page got truncated */ 2637 ret = -EFAULT; 2638 goto out_unlock; 2639 } 2640 2641 end = folio_size(folio); 2642 /* folio is wholly or partially inside EOF */ 2643 if (folio_pos(folio) + end > size) 2644 end = size - folio_pos(folio); 2645 2646 ret = __block_write_begin_int(folio, 0, end, get_block, NULL); 2647 if (unlikely(ret)) 2648 goto out_unlock; 2649 2650 block_commit_write(folio, 0, end); 2651 2652 folio_mark_dirty(folio); 2653 folio_wait_stable(folio); 2654 return 0; 2655 out_unlock: 2656 folio_unlock(folio); 2657 return ret; 2658 } 2659 EXPORT_SYMBOL(block_page_mkwrite); 2660 2661 int block_truncate_page(struct address_space *mapping, 2662 loff_t from, get_block_t *get_block) 2663 { 2664 pgoff_t index = from >> PAGE_SHIFT; 2665 unsigned blocksize; 2666 sector_t iblock; 2667 size_t offset, length, pos; 2668 struct inode *inode = mapping->host; 2669 struct folio *folio; 2670 struct buffer_head *bh; 2671 int err = 0; 2672 2673 blocksize = i_blocksize(inode); 2674 length = from & (blocksize - 1); 2675 2676 /* Block boundary? Nothing to do */ 2677 if (!length) 2678 return 0; 2679 2680 length = blocksize - length; 2681 iblock = ((loff_t)index * PAGE_SIZE) >> inode->i_blkbits; 2682 2683 folio = filemap_grab_folio(mapping, index); 2684 if (IS_ERR(folio)) 2685 return PTR_ERR(folio); 2686 2687 bh = folio_buffers(folio); 2688 if (!bh) 2689 bh = create_empty_buffers(folio, blocksize, 0); 2690 2691 /* Find the buffer that contains "offset" */ 2692 offset = offset_in_folio(folio, from); 2693 pos = blocksize; 2694 while (offset >= pos) { 2695 bh = bh->b_this_page; 2696 iblock++; 2697 pos += blocksize; 2698 } 2699 2700 if (!buffer_mapped(bh)) { 2701 WARN_ON(bh->b_size != blocksize); 2702 err = get_block(inode, iblock, bh, 0); 2703 if (err) 2704 goto unlock; 2705 /* unmapped? It's a hole - nothing to do */ 2706 if (!buffer_mapped(bh)) 2707 goto unlock; 2708 } 2709 2710 /* Ok, it's mapped. Make sure it's up-to-date */ 2711 if (folio_test_uptodate(folio)) 2712 set_buffer_uptodate(bh); 2713 2714 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2715 err = bh_read(bh, 0); 2716 /* Uhhuh. Read error. Complain and punt. */ 2717 if (err < 0) 2718 goto unlock; 2719 } 2720 2721 folio_zero_range(folio, offset, length); 2722 mark_buffer_dirty(bh); 2723 2724 unlock: 2725 folio_unlock(folio); 2726 folio_put(folio); 2727 2728 return err; 2729 } 2730 EXPORT_SYMBOL(block_truncate_page); 2731 2732 /* 2733 * The generic write folio function for buffer-backed address_spaces 2734 */ 2735 int block_write_full_folio(struct folio *folio, struct writeback_control *wbc, 2736 void *get_block) 2737 { 2738 struct inode * const inode = folio->mapping->host; 2739 loff_t i_size = i_size_read(inode); 2740 2741 /* Is the folio fully inside i_size? */ 2742 if (folio_pos(folio) + folio_size(folio) <= i_size) 2743 return __block_write_full_folio(inode, folio, get_block, wbc); 2744 2745 /* Is the folio fully outside i_size? (truncate in progress) */ 2746 if (folio_pos(folio) >= i_size) { 2747 folio_unlock(folio); 2748 return 0; /* don't care */ 2749 } 2750 2751 /* 2752 * The folio straddles i_size. It must be zeroed out on each and every 2753 * writeback invocation because it may be mmapped. "A file is mapped 2754 * in multiples of the page size. For a file that is not a multiple of 2755 * the page size, the remaining memory is zeroed when mapped, and 2756 * writes to that region are not written out to the file." 2757 */ 2758 folio_zero_segment(folio, offset_in_folio(folio, i_size), 2759 folio_size(folio)); 2760 return __block_write_full_folio(inode, folio, get_block, wbc); 2761 } 2762 2763 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2764 get_block_t *get_block) 2765 { 2766 struct inode *inode = mapping->host; 2767 struct buffer_head tmp = { 2768 .b_size = i_blocksize(inode), 2769 }; 2770 2771 get_block(inode, block, &tmp, 0); 2772 return tmp.b_blocknr; 2773 } 2774 EXPORT_SYMBOL(generic_block_bmap); 2775 2776 static void end_bio_bh_io_sync(struct bio *bio) 2777 { 2778 struct buffer_head *bh = bio->bi_private; 2779 2780 if (unlikely(bio_flagged(bio, BIO_QUIET))) 2781 set_bit(BH_Quiet, &bh->b_state); 2782 2783 bh->b_end_io(bh, !bio->bi_status); 2784 bio_put(bio); 2785 } 2786 2787 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh, 2788 enum rw_hint write_hint, 2789 struct writeback_control *wbc) 2790 { 2791 const enum req_op op = opf & REQ_OP_MASK; 2792 struct bio *bio; 2793 2794 BUG_ON(!buffer_locked(bh)); 2795 BUG_ON(!buffer_mapped(bh)); 2796 BUG_ON(!bh->b_end_io); 2797 BUG_ON(buffer_delay(bh)); 2798 BUG_ON(buffer_unwritten(bh)); 2799 2800 /* 2801 * Only clear out a write error when rewriting 2802 */ 2803 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) 2804 clear_buffer_write_io_error(bh); 2805 2806 if (buffer_meta(bh)) 2807 opf |= REQ_META; 2808 if (buffer_prio(bh)) 2809 opf |= REQ_PRIO; 2810 2811 bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO); 2812 2813 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO); 2814 2815 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2816 bio->bi_write_hint = write_hint; 2817 2818 bio_add_folio_nofail(bio, bh->b_folio, bh->b_size, bh_offset(bh)); 2819 2820 bio->bi_end_io = end_bio_bh_io_sync; 2821 bio->bi_private = bh; 2822 2823 /* Take care of bh's that straddle the end of the device */ 2824 guard_bio_eod(bio); 2825 2826 if (wbc) { 2827 wbc_init_bio(wbc, bio); 2828 wbc_account_cgroup_owner(wbc, bh->b_folio, bh->b_size); 2829 } 2830 2831 submit_bio(bio); 2832 } 2833 2834 void submit_bh(blk_opf_t opf, struct buffer_head *bh) 2835 { 2836 submit_bh_wbc(opf, bh, WRITE_LIFE_NOT_SET, NULL); 2837 } 2838 EXPORT_SYMBOL(submit_bh); 2839 2840 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags) 2841 { 2842 lock_buffer(bh); 2843 if (!test_clear_buffer_dirty(bh)) { 2844 unlock_buffer(bh); 2845 return; 2846 } 2847 bh->b_end_io = end_buffer_write_sync; 2848 get_bh(bh); 2849 submit_bh(REQ_OP_WRITE | op_flags, bh); 2850 } 2851 EXPORT_SYMBOL(write_dirty_buffer); 2852 2853 /* 2854 * For a data-integrity writeout, we need to wait upon any in-progress I/O 2855 * and then start new I/O and then wait upon it. The caller must have a ref on 2856 * the buffer_head. 2857 */ 2858 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags) 2859 { 2860 WARN_ON(atomic_read(&bh->b_count) < 1); 2861 lock_buffer(bh); 2862 if (test_clear_buffer_dirty(bh)) { 2863 /* 2864 * The bh should be mapped, but it might not be if the 2865 * device was hot-removed. Not much we can do but fail the I/O. 2866 */ 2867 if (!buffer_mapped(bh)) { 2868 unlock_buffer(bh); 2869 return -EIO; 2870 } 2871 2872 get_bh(bh); 2873 bh->b_end_io = end_buffer_write_sync; 2874 submit_bh(REQ_OP_WRITE | op_flags, bh); 2875 wait_on_buffer(bh); 2876 if (!buffer_uptodate(bh)) 2877 return -EIO; 2878 } else { 2879 unlock_buffer(bh); 2880 } 2881 return 0; 2882 } 2883 EXPORT_SYMBOL(__sync_dirty_buffer); 2884 2885 int sync_dirty_buffer(struct buffer_head *bh) 2886 { 2887 return __sync_dirty_buffer(bh, REQ_SYNC); 2888 } 2889 EXPORT_SYMBOL(sync_dirty_buffer); 2890 2891 static inline int buffer_busy(struct buffer_head *bh) 2892 { 2893 return atomic_read(&bh->b_count) | 2894 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 2895 } 2896 2897 static bool 2898 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free) 2899 { 2900 struct buffer_head *head = folio_buffers(folio); 2901 struct buffer_head *bh; 2902 2903 bh = head; 2904 do { 2905 if (buffer_busy(bh)) 2906 goto failed; 2907 bh = bh->b_this_page; 2908 } while (bh != head); 2909 2910 do { 2911 struct buffer_head *next = bh->b_this_page; 2912 2913 if (bh->b_assoc_map) 2914 __remove_assoc_queue(bh); 2915 bh = next; 2916 } while (bh != head); 2917 *buffers_to_free = head; 2918 folio_detach_private(folio); 2919 return true; 2920 failed: 2921 return false; 2922 } 2923 2924 /** 2925 * try_to_free_buffers - Release buffers attached to this folio. 2926 * @folio: The folio. 2927 * 2928 * If any buffers are in use (dirty, under writeback, elevated refcount), 2929 * no buffers will be freed. 2930 * 2931 * If the folio is dirty but all the buffers are clean then we need to 2932 * be sure to mark the folio clean as well. This is because the folio 2933 * may be against a block device, and a later reattachment of buffers 2934 * to a dirty folio will set *all* buffers dirty. Which would corrupt 2935 * filesystem data on the same device. 2936 * 2937 * The same applies to regular filesystem folios: if all the buffers are 2938 * clean then we set the folio clean and proceed. To do that, we require 2939 * total exclusion from block_dirty_folio(). That is obtained with 2940 * i_private_lock. 2941 * 2942 * Exclusion against try_to_free_buffers may be obtained by either 2943 * locking the folio or by holding its mapping's i_private_lock. 2944 * 2945 * Context: Process context. @folio must be locked. Will not sleep. 2946 * Return: true if all buffers attached to this folio were freed. 2947 */ 2948 bool try_to_free_buffers(struct folio *folio) 2949 { 2950 struct address_space * const mapping = folio->mapping; 2951 struct buffer_head *buffers_to_free = NULL; 2952 bool ret = 0; 2953 2954 BUG_ON(!folio_test_locked(folio)); 2955 if (folio_test_writeback(folio)) 2956 return false; 2957 2958 if (mapping == NULL) { /* can this still happen? */ 2959 ret = drop_buffers(folio, &buffers_to_free); 2960 goto out; 2961 } 2962 2963 spin_lock(&mapping->i_private_lock); 2964 ret = drop_buffers(folio, &buffers_to_free); 2965 2966 /* 2967 * If the filesystem writes its buffers by hand (eg ext3) 2968 * then we can have clean buffers against a dirty folio. We 2969 * clean the folio here; otherwise the VM will never notice 2970 * that the filesystem did any IO at all. 2971 * 2972 * Also, during truncate, discard_buffer will have marked all 2973 * the folio's buffers clean. We discover that here and clean 2974 * the folio also. 2975 * 2976 * i_private_lock must be held over this entire operation in order 2977 * to synchronise against block_dirty_folio and prevent the 2978 * dirty bit from being lost. 2979 */ 2980 if (ret) 2981 folio_cancel_dirty(folio); 2982 spin_unlock(&mapping->i_private_lock); 2983 out: 2984 if (buffers_to_free) { 2985 struct buffer_head *bh = buffers_to_free; 2986 2987 do { 2988 struct buffer_head *next = bh->b_this_page; 2989 free_buffer_head(bh); 2990 bh = next; 2991 } while (bh != buffers_to_free); 2992 } 2993 return ret; 2994 } 2995 EXPORT_SYMBOL(try_to_free_buffers); 2996 2997 /* 2998 * Buffer-head allocation 2999 */ 3000 static struct kmem_cache *bh_cachep __ro_after_init; 3001 3002 /* 3003 * Once the number of bh's in the machine exceeds this level, we start 3004 * stripping them in writeback. 3005 */ 3006 static unsigned long max_buffer_heads __ro_after_init; 3007 3008 int buffer_heads_over_limit; 3009 3010 struct bh_accounting { 3011 int nr; /* Number of live bh's */ 3012 int ratelimit; /* Limit cacheline bouncing */ 3013 }; 3014 3015 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3016 3017 static void recalc_bh_state(void) 3018 { 3019 int i; 3020 int tot = 0; 3021 3022 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3023 return; 3024 __this_cpu_write(bh_accounting.ratelimit, 0); 3025 for_each_online_cpu(i) 3026 tot += per_cpu(bh_accounting, i).nr; 3027 buffer_heads_over_limit = (tot > max_buffer_heads); 3028 } 3029 3030 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3031 { 3032 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3033 if (ret) { 3034 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3035 spin_lock_init(&ret->b_uptodate_lock); 3036 preempt_disable(); 3037 __this_cpu_inc(bh_accounting.nr); 3038 recalc_bh_state(); 3039 preempt_enable(); 3040 } 3041 return ret; 3042 } 3043 EXPORT_SYMBOL(alloc_buffer_head); 3044 3045 void free_buffer_head(struct buffer_head *bh) 3046 { 3047 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3048 kmem_cache_free(bh_cachep, bh); 3049 preempt_disable(); 3050 __this_cpu_dec(bh_accounting.nr); 3051 recalc_bh_state(); 3052 preempt_enable(); 3053 } 3054 EXPORT_SYMBOL(free_buffer_head); 3055 3056 static int buffer_exit_cpu_dead(unsigned int cpu) 3057 { 3058 int i; 3059 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3060 3061 for (i = 0; i < BH_LRU_SIZE; i++) { 3062 brelse(b->bhs[i]); 3063 b->bhs[i] = NULL; 3064 } 3065 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3066 per_cpu(bh_accounting, cpu).nr = 0; 3067 return 0; 3068 } 3069 3070 /** 3071 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3072 * @bh: struct buffer_head 3073 * 3074 * Return true if the buffer is up-to-date and false, 3075 * with the buffer locked, if not. 3076 */ 3077 int bh_uptodate_or_lock(struct buffer_head *bh) 3078 { 3079 if (!buffer_uptodate(bh)) { 3080 lock_buffer(bh); 3081 if (!buffer_uptodate(bh)) 3082 return 0; 3083 unlock_buffer(bh); 3084 } 3085 return 1; 3086 } 3087 EXPORT_SYMBOL(bh_uptodate_or_lock); 3088 3089 /** 3090 * __bh_read - Submit read for a locked buffer 3091 * @bh: struct buffer_head 3092 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ 3093 * @wait: wait until reading finish 3094 * 3095 * Returns zero on success or don't wait, and -EIO on error. 3096 */ 3097 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait) 3098 { 3099 int ret = 0; 3100 3101 BUG_ON(!buffer_locked(bh)); 3102 3103 get_bh(bh); 3104 bh->b_end_io = end_buffer_read_sync; 3105 submit_bh(REQ_OP_READ | op_flags, bh); 3106 if (wait) { 3107 wait_on_buffer(bh); 3108 if (!buffer_uptodate(bh)) 3109 ret = -EIO; 3110 } 3111 return ret; 3112 } 3113 EXPORT_SYMBOL(__bh_read); 3114 3115 /** 3116 * __bh_read_batch - Submit read for a batch of unlocked buffers 3117 * @nr: entry number of the buffer batch 3118 * @bhs: a batch of struct buffer_head 3119 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ 3120 * @force_lock: force to get a lock on the buffer if set, otherwise drops any 3121 * buffer that cannot lock. 3122 * 3123 * Returns zero on success or don't wait, and -EIO on error. 3124 */ 3125 void __bh_read_batch(int nr, struct buffer_head *bhs[], 3126 blk_opf_t op_flags, bool force_lock) 3127 { 3128 int i; 3129 3130 for (i = 0; i < nr; i++) { 3131 struct buffer_head *bh = bhs[i]; 3132 3133 if (buffer_uptodate(bh)) 3134 continue; 3135 3136 if (force_lock) 3137 lock_buffer(bh); 3138 else 3139 if (!trylock_buffer(bh)) 3140 continue; 3141 3142 if (buffer_uptodate(bh)) { 3143 unlock_buffer(bh); 3144 continue; 3145 } 3146 3147 bh->b_end_io = end_buffer_read_sync; 3148 get_bh(bh); 3149 submit_bh(REQ_OP_READ | op_flags, bh); 3150 } 3151 } 3152 EXPORT_SYMBOL(__bh_read_batch); 3153 3154 void __init buffer_init(void) 3155 { 3156 unsigned long nrpages; 3157 int ret; 3158 3159 bh_cachep = KMEM_CACHE(buffer_head, 3160 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC); 3161 /* 3162 * Limit the bh occupancy to 10% of ZONE_NORMAL 3163 */ 3164 nrpages = (nr_free_buffer_pages() * 10) / 100; 3165 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3166 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead", 3167 NULL, buffer_exit_cpu_dead); 3168 WARN_ON(ret < 0); 3169 } 3170