1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bcachefs setup/teardown code, and some metadata io - read a superblock and 4 * figure out what to do with it. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcachefs.h" 11 #include "alloc_background.h" 12 #include "alloc_foreground.h" 13 #include "bkey_sort.h" 14 #include "btree_cache.h" 15 #include "btree_gc.h" 16 #include "btree_journal_iter.h" 17 #include "btree_key_cache.h" 18 #include "btree_node_scan.h" 19 #include "btree_update_interior.h" 20 #include "btree_io.h" 21 #include "btree_write_buffer.h" 22 #include "buckets_waiting_for_journal.h" 23 #include "chardev.h" 24 #include "checksum.h" 25 #include "clock.h" 26 #include "compress.h" 27 #include "debug.h" 28 #include "disk_accounting.h" 29 #include "disk_groups.h" 30 #include "ec.h" 31 #include "errcode.h" 32 #include "error.h" 33 #include "fs.h" 34 #include "fs-io.h" 35 #include "fs-io-buffered.h" 36 #include "fs-io-direct.h" 37 #include "fsck.h" 38 #include "inode.h" 39 #include "io_read.h" 40 #include "io_write.h" 41 #include "journal.h" 42 #include "journal_reclaim.h" 43 #include "journal_seq_blacklist.h" 44 #include "move.h" 45 #include "migrate.h" 46 #include "movinggc.h" 47 #include "nocow_locking.h" 48 #include "quota.h" 49 #include "rebalance.h" 50 #include "recovery.h" 51 #include "replicas.h" 52 #include "sb-clean.h" 53 #include "sb-counters.h" 54 #include "sb-errors.h" 55 #include "sb-members.h" 56 #include "snapshot.h" 57 #include "subvolume.h" 58 #include "super.h" 59 #include "super-io.h" 60 #include "sysfs.h" 61 #include "thread_with_file.h" 62 #include "trace.h" 63 64 #include <linux/backing-dev.h> 65 #include <linux/blkdev.h> 66 #include <linux/debugfs.h> 67 #include <linux/device.h> 68 #include <linux/idr.h> 69 #include <linux/module.h> 70 #include <linux/percpu.h> 71 #include <linux/random.h> 72 #include <linux/sysfs.h> 73 #include <crypto/hash.h> 74 75 MODULE_LICENSE("GPL"); 76 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>"); 77 MODULE_DESCRIPTION("bcachefs filesystem"); 78 MODULE_SOFTDEP("pre: crc32c"); 79 MODULE_SOFTDEP("pre: crc64"); 80 MODULE_SOFTDEP("pre: sha256"); 81 MODULE_SOFTDEP("pre: chacha20"); 82 MODULE_SOFTDEP("pre: poly1305"); 83 MODULE_SOFTDEP("pre: xxhash"); 84 85 const char * const bch2_fs_flag_strs[] = { 86 #define x(n) #n, 87 BCH_FS_FLAGS() 88 #undef x 89 NULL 90 }; 91 92 void bch2_print_str(struct bch_fs *c, const char *str) 93 { 94 #ifdef __KERNEL__ 95 struct stdio_redirect *stdio = bch2_fs_stdio_redirect(c); 96 97 if (unlikely(stdio)) { 98 bch2_stdio_redirect_printf(stdio, true, "%s", str); 99 return; 100 } 101 #endif 102 bch2_print_string_as_lines(KERN_ERR, str); 103 } 104 105 __printf(2, 0) 106 static void bch2_print_maybe_redirect(struct stdio_redirect *stdio, const char *fmt, va_list args) 107 { 108 #ifdef __KERNEL__ 109 if (unlikely(stdio)) { 110 if (fmt[0] == KERN_SOH[0]) 111 fmt += 2; 112 113 bch2_stdio_redirect_vprintf(stdio, true, fmt, args); 114 return; 115 } 116 #endif 117 vprintk(fmt, args); 118 } 119 120 void bch2_print_opts(struct bch_opts *opts, const char *fmt, ...) 121 { 122 struct stdio_redirect *stdio = (void *)(unsigned long)opts->stdio; 123 124 va_list args; 125 va_start(args, fmt); 126 bch2_print_maybe_redirect(stdio, fmt, args); 127 va_end(args); 128 } 129 130 void __bch2_print(struct bch_fs *c, const char *fmt, ...) 131 { 132 struct stdio_redirect *stdio = bch2_fs_stdio_redirect(c); 133 134 va_list args; 135 va_start(args, fmt); 136 bch2_print_maybe_redirect(stdio, fmt, args); 137 va_end(args); 138 } 139 140 #define KTYPE(type) \ 141 static const struct attribute_group type ## _group = { \ 142 .attrs = type ## _files \ 143 }; \ 144 \ 145 static const struct attribute_group *type ## _groups[] = { \ 146 &type ## _group, \ 147 NULL \ 148 }; \ 149 \ 150 static const struct kobj_type type ## _ktype = { \ 151 .release = type ## _release, \ 152 .sysfs_ops = &type ## _sysfs_ops, \ 153 .default_groups = type ## _groups \ 154 } 155 156 static void bch2_fs_release(struct kobject *); 157 static void bch2_dev_release(struct kobject *); 158 static void bch2_fs_counters_release(struct kobject *k) 159 { 160 } 161 162 static void bch2_fs_internal_release(struct kobject *k) 163 { 164 } 165 166 static void bch2_fs_opts_dir_release(struct kobject *k) 167 { 168 } 169 170 static void bch2_fs_time_stats_release(struct kobject *k) 171 { 172 } 173 174 KTYPE(bch2_fs); 175 KTYPE(bch2_fs_counters); 176 KTYPE(bch2_fs_internal); 177 KTYPE(bch2_fs_opts_dir); 178 KTYPE(bch2_fs_time_stats); 179 KTYPE(bch2_dev); 180 181 static struct kset *bcachefs_kset; 182 static LIST_HEAD(bch_fs_list); 183 static DEFINE_MUTEX(bch_fs_list_lock); 184 185 DECLARE_WAIT_QUEUE_HEAD(bch2_read_only_wait); 186 187 static void bch2_dev_unlink(struct bch_dev *); 188 static void bch2_dev_free(struct bch_dev *); 189 static int bch2_dev_alloc(struct bch_fs *, unsigned); 190 static int bch2_dev_sysfs_online(struct bch_fs *, struct bch_dev *); 191 static void __bch2_dev_read_only(struct bch_fs *, struct bch_dev *); 192 193 struct bch_fs *bch2_dev_to_fs(dev_t dev) 194 { 195 struct bch_fs *c; 196 197 mutex_lock(&bch_fs_list_lock); 198 rcu_read_lock(); 199 200 list_for_each_entry(c, &bch_fs_list, list) 201 for_each_member_device_rcu(c, ca, NULL) 202 if (ca->disk_sb.bdev && ca->disk_sb.bdev->bd_dev == dev) { 203 closure_get(&c->cl); 204 goto found; 205 } 206 c = NULL; 207 found: 208 rcu_read_unlock(); 209 mutex_unlock(&bch_fs_list_lock); 210 211 return c; 212 } 213 214 static struct bch_fs *__bch2_uuid_to_fs(__uuid_t uuid) 215 { 216 struct bch_fs *c; 217 218 lockdep_assert_held(&bch_fs_list_lock); 219 220 list_for_each_entry(c, &bch_fs_list, list) 221 if (!memcmp(&c->disk_sb.sb->uuid, &uuid, sizeof(uuid))) 222 return c; 223 224 return NULL; 225 } 226 227 struct bch_fs *bch2_uuid_to_fs(__uuid_t uuid) 228 { 229 struct bch_fs *c; 230 231 mutex_lock(&bch_fs_list_lock); 232 c = __bch2_uuid_to_fs(uuid); 233 if (c) 234 closure_get(&c->cl); 235 mutex_unlock(&bch_fs_list_lock); 236 237 return c; 238 } 239 240 /* Filesystem RO/RW: */ 241 242 /* 243 * For startup/shutdown of RW stuff, the dependencies are: 244 * 245 * - foreground writes depend on copygc and rebalance (to free up space) 246 * 247 * - copygc and rebalance depend on mark and sweep gc (they actually probably 248 * don't because they either reserve ahead of time or don't block if 249 * allocations fail, but allocations can require mark and sweep gc to run 250 * because of generation number wraparound) 251 * 252 * - all of the above depends on the allocator threads 253 * 254 * - allocator depends on the journal (when it rewrites prios and gens) 255 */ 256 257 static void __bch2_fs_read_only(struct bch_fs *c) 258 { 259 unsigned clean_passes = 0; 260 u64 seq = 0; 261 262 bch2_fs_ec_stop(c); 263 bch2_open_buckets_stop(c, NULL, true); 264 bch2_rebalance_stop(c); 265 bch2_copygc_stop(c); 266 bch2_fs_ec_flush(c); 267 268 bch_verbose(c, "flushing journal and stopping allocators, journal seq %llu", 269 journal_cur_seq(&c->journal)); 270 271 do { 272 clean_passes++; 273 274 if (bch2_btree_interior_updates_flush(c) || 275 bch2_btree_write_buffer_flush_going_ro(c) || 276 bch2_journal_flush_all_pins(&c->journal) || 277 bch2_btree_flush_all_writes(c) || 278 seq != atomic64_read(&c->journal.seq)) { 279 seq = atomic64_read(&c->journal.seq); 280 clean_passes = 0; 281 } 282 } while (clean_passes < 2); 283 284 bch_verbose(c, "flushing journal and stopping allocators complete, journal seq %llu", 285 journal_cur_seq(&c->journal)); 286 287 if (test_bit(JOURNAL_replay_done, &c->journal.flags) && 288 !test_bit(BCH_FS_emergency_ro, &c->flags)) 289 set_bit(BCH_FS_clean_shutdown, &c->flags); 290 291 bch2_fs_journal_stop(&c->journal); 292 293 bch_info(c, "%sclean shutdown complete, journal seq %llu", 294 test_bit(BCH_FS_clean_shutdown, &c->flags) ? "" : "un", 295 c->journal.seq_ondisk); 296 297 /* 298 * After stopping journal: 299 */ 300 for_each_member_device(c, ca) 301 bch2_dev_allocator_remove(c, ca); 302 } 303 304 #ifndef BCH_WRITE_REF_DEBUG 305 static void bch2_writes_disabled(struct percpu_ref *writes) 306 { 307 struct bch_fs *c = container_of(writes, struct bch_fs, writes); 308 309 set_bit(BCH_FS_write_disable_complete, &c->flags); 310 wake_up(&bch2_read_only_wait); 311 } 312 #endif 313 314 void bch2_fs_read_only(struct bch_fs *c) 315 { 316 if (!test_bit(BCH_FS_rw, &c->flags)) { 317 bch2_journal_reclaim_stop(&c->journal); 318 return; 319 } 320 321 BUG_ON(test_bit(BCH_FS_write_disable_complete, &c->flags)); 322 323 bch_verbose(c, "going read-only"); 324 325 /* 326 * Block new foreground-end write operations from starting - any new 327 * writes will return -EROFS: 328 */ 329 set_bit(BCH_FS_going_ro, &c->flags); 330 #ifndef BCH_WRITE_REF_DEBUG 331 percpu_ref_kill(&c->writes); 332 #else 333 for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) 334 bch2_write_ref_put(c, i); 335 #endif 336 337 /* 338 * If we're not doing an emergency shutdown, we want to wait on 339 * outstanding writes to complete so they don't see spurious errors due 340 * to shutting down the allocator: 341 * 342 * If we are doing an emergency shutdown outstanding writes may 343 * hang until we shutdown the allocator so we don't want to wait 344 * on outstanding writes before shutting everything down - but 345 * we do need to wait on them before returning and signalling 346 * that going RO is complete: 347 */ 348 wait_event(bch2_read_only_wait, 349 test_bit(BCH_FS_write_disable_complete, &c->flags) || 350 test_bit(BCH_FS_emergency_ro, &c->flags)); 351 352 bool writes_disabled = test_bit(BCH_FS_write_disable_complete, &c->flags); 353 if (writes_disabled) 354 bch_verbose(c, "finished waiting for writes to stop"); 355 356 __bch2_fs_read_only(c); 357 358 wait_event(bch2_read_only_wait, 359 test_bit(BCH_FS_write_disable_complete, &c->flags)); 360 361 if (!writes_disabled) 362 bch_verbose(c, "finished waiting for writes to stop"); 363 364 clear_bit(BCH_FS_write_disable_complete, &c->flags); 365 clear_bit(BCH_FS_going_ro, &c->flags); 366 clear_bit(BCH_FS_rw, &c->flags); 367 368 if (!bch2_journal_error(&c->journal) && 369 !test_bit(BCH_FS_error, &c->flags) && 370 !test_bit(BCH_FS_emergency_ro, &c->flags) && 371 test_bit(BCH_FS_started, &c->flags) && 372 test_bit(BCH_FS_clean_shutdown, &c->flags) && 373 c->recovery_pass_done >= BCH_RECOVERY_PASS_journal_replay) { 374 BUG_ON(c->journal.last_empty_seq != journal_cur_seq(&c->journal)); 375 BUG_ON(atomic_long_read(&c->btree_cache.nr_dirty)); 376 BUG_ON(atomic_long_read(&c->btree_key_cache.nr_dirty)); 377 BUG_ON(c->btree_write_buffer.inc.keys.nr); 378 BUG_ON(c->btree_write_buffer.flushing.keys.nr); 379 bch2_verify_accounting_clean(c); 380 381 bch_verbose(c, "marking filesystem clean"); 382 bch2_fs_mark_clean(c); 383 } else { 384 bch_verbose(c, "done going read-only, filesystem not clean"); 385 } 386 } 387 388 static void bch2_fs_read_only_work(struct work_struct *work) 389 { 390 struct bch_fs *c = 391 container_of(work, struct bch_fs, read_only_work); 392 393 down_write(&c->state_lock); 394 bch2_fs_read_only(c); 395 up_write(&c->state_lock); 396 } 397 398 static void bch2_fs_read_only_async(struct bch_fs *c) 399 { 400 queue_work(system_long_wq, &c->read_only_work); 401 } 402 403 bool bch2_fs_emergency_read_only(struct bch_fs *c) 404 { 405 bool ret = !test_and_set_bit(BCH_FS_emergency_ro, &c->flags); 406 407 bch2_journal_halt(&c->journal); 408 bch2_fs_read_only_async(c); 409 410 wake_up(&bch2_read_only_wait); 411 return ret; 412 } 413 414 static int bch2_fs_read_write_late(struct bch_fs *c) 415 { 416 int ret; 417 418 /* 419 * Data move operations can't run until after check_snapshots has 420 * completed, and bch2_snapshot_is_ancestor() is available. 421 * 422 * Ideally we'd start copygc/rebalance earlier instead of waiting for 423 * all of recovery/fsck to complete: 424 */ 425 ret = bch2_copygc_start(c); 426 if (ret) { 427 bch_err(c, "error starting copygc thread"); 428 return ret; 429 } 430 431 ret = bch2_rebalance_start(c); 432 if (ret) { 433 bch_err(c, "error starting rebalance thread"); 434 return ret; 435 } 436 437 return 0; 438 } 439 440 static int __bch2_fs_read_write(struct bch_fs *c, bool early) 441 { 442 int ret; 443 444 BUG_ON(!test_bit(BCH_FS_may_go_rw, &c->flags)); 445 446 if (test_bit(BCH_FS_initial_gc_unfixed, &c->flags)) { 447 bch_err(c, "cannot go rw, unfixed btree errors"); 448 return -BCH_ERR_erofs_unfixed_errors; 449 } 450 451 if (test_bit(BCH_FS_rw, &c->flags)) 452 return 0; 453 454 bch_info(c, "going read-write"); 455 456 ret = bch2_sb_members_v2_init(c); 457 if (ret) 458 goto err; 459 460 ret = bch2_fs_mark_dirty(c); 461 if (ret) 462 goto err; 463 464 clear_bit(BCH_FS_clean_shutdown, &c->flags); 465 466 /* 467 * First journal write must be a flush write: after a clean shutdown we 468 * don't read the journal, so the first journal write may end up 469 * overwriting whatever was there previously, and there must always be 470 * at least one non-flush write in the journal or recovery will fail: 471 */ 472 set_bit(JOURNAL_need_flush_write, &c->journal.flags); 473 set_bit(JOURNAL_running, &c->journal.flags); 474 475 for_each_rw_member(c, ca) 476 bch2_dev_allocator_add(c, ca); 477 bch2_recalc_capacity(c); 478 479 set_bit(BCH_FS_rw, &c->flags); 480 set_bit(BCH_FS_was_rw, &c->flags); 481 482 #ifndef BCH_WRITE_REF_DEBUG 483 percpu_ref_reinit(&c->writes); 484 #else 485 for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) { 486 BUG_ON(atomic_long_read(&c->writes[i])); 487 atomic_long_inc(&c->writes[i]); 488 } 489 #endif 490 491 ret = bch2_journal_reclaim_start(&c->journal); 492 if (ret) 493 goto err; 494 495 if (!early) { 496 ret = bch2_fs_read_write_late(c); 497 if (ret) 498 goto err; 499 } 500 501 bch2_do_discards(c); 502 bch2_do_invalidates(c); 503 bch2_do_stripe_deletes(c); 504 bch2_do_pending_node_rewrites(c); 505 return 0; 506 err: 507 if (test_bit(BCH_FS_rw, &c->flags)) 508 bch2_fs_read_only(c); 509 else 510 __bch2_fs_read_only(c); 511 return ret; 512 } 513 514 int bch2_fs_read_write(struct bch_fs *c) 515 { 516 if (c->opts.recovery_pass_last && 517 c->opts.recovery_pass_last < BCH_RECOVERY_PASS_journal_replay) 518 return -BCH_ERR_erofs_norecovery; 519 520 if (c->opts.nochanges) 521 return -BCH_ERR_erofs_nochanges; 522 523 return __bch2_fs_read_write(c, false); 524 } 525 526 int bch2_fs_read_write_early(struct bch_fs *c) 527 { 528 lockdep_assert_held(&c->state_lock); 529 530 return __bch2_fs_read_write(c, true); 531 } 532 533 /* Filesystem startup/shutdown: */ 534 535 static void __bch2_fs_free(struct bch_fs *c) 536 { 537 for (unsigned i = 0; i < BCH_TIME_STAT_NR; i++) 538 bch2_time_stats_exit(&c->times[i]); 539 540 bch2_find_btree_nodes_exit(&c->found_btree_nodes); 541 bch2_free_pending_node_rewrites(c); 542 bch2_fs_accounting_exit(c); 543 bch2_fs_sb_errors_exit(c); 544 bch2_fs_counters_exit(c); 545 bch2_fs_snapshots_exit(c); 546 bch2_fs_quota_exit(c); 547 bch2_fs_fs_io_direct_exit(c); 548 bch2_fs_fs_io_buffered_exit(c); 549 bch2_fs_fsio_exit(c); 550 bch2_fs_vfs_exit(c); 551 bch2_fs_ec_exit(c); 552 bch2_fs_encryption_exit(c); 553 bch2_fs_nocow_locking_exit(c); 554 bch2_fs_io_write_exit(c); 555 bch2_fs_io_read_exit(c); 556 bch2_fs_buckets_waiting_for_journal_exit(c); 557 bch2_fs_btree_interior_update_exit(c); 558 bch2_fs_btree_key_cache_exit(&c->btree_key_cache); 559 bch2_fs_btree_cache_exit(c); 560 bch2_fs_btree_iter_exit(c); 561 bch2_fs_replicas_exit(c); 562 bch2_fs_journal_exit(&c->journal); 563 bch2_io_clock_exit(&c->io_clock[WRITE]); 564 bch2_io_clock_exit(&c->io_clock[READ]); 565 bch2_fs_compress_exit(c); 566 bch2_fs_btree_gc_exit(c); 567 bch2_journal_keys_put_initial(c); 568 bch2_find_btree_nodes_exit(&c->found_btree_nodes); 569 BUG_ON(atomic_read(&c->journal_keys.ref)); 570 bch2_fs_btree_write_buffer_exit(c); 571 percpu_free_rwsem(&c->mark_lock); 572 if (c->online_reserved) { 573 u64 v = percpu_u64_get(c->online_reserved); 574 WARN(v, "online_reserved not 0 at shutdown: %lli", v); 575 free_percpu(c->online_reserved); 576 } 577 578 darray_exit(&c->btree_roots_extra); 579 free_percpu(c->pcpu); 580 free_percpu(c->usage); 581 mempool_exit(&c->large_bkey_pool); 582 mempool_exit(&c->btree_bounce_pool); 583 bioset_exit(&c->btree_bio); 584 mempool_exit(&c->fill_iter); 585 #ifndef BCH_WRITE_REF_DEBUG 586 percpu_ref_exit(&c->writes); 587 #endif 588 kfree(rcu_dereference_protected(c->disk_groups, 1)); 589 kfree(c->journal_seq_blacklist_table); 590 591 if (c->write_ref_wq) 592 destroy_workqueue(c->write_ref_wq); 593 if (c->btree_write_submit_wq) 594 destroy_workqueue(c->btree_write_submit_wq); 595 if (c->btree_read_complete_wq) 596 destroy_workqueue(c->btree_read_complete_wq); 597 if (c->copygc_wq) 598 destroy_workqueue(c->copygc_wq); 599 if (c->btree_io_complete_wq) 600 destroy_workqueue(c->btree_io_complete_wq); 601 if (c->btree_update_wq) 602 destroy_workqueue(c->btree_update_wq); 603 604 bch2_free_super(&c->disk_sb); 605 kvfree(c); 606 module_put(THIS_MODULE); 607 } 608 609 static void bch2_fs_release(struct kobject *kobj) 610 { 611 struct bch_fs *c = container_of(kobj, struct bch_fs, kobj); 612 613 __bch2_fs_free(c); 614 } 615 616 void __bch2_fs_stop(struct bch_fs *c) 617 { 618 bch_verbose(c, "shutting down"); 619 620 set_bit(BCH_FS_stopping, &c->flags); 621 622 down_write(&c->state_lock); 623 bch2_fs_read_only(c); 624 up_write(&c->state_lock); 625 626 for_each_member_device(c, ca) 627 bch2_dev_unlink(ca); 628 629 if (c->kobj.state_in_sysfs) 630 kobject_del(&c->kobj); 631 632 bch2_fs_debug_exit(c); 633 bch2_fs_chardev_exit(c); 634 635 bch2_ro_ref_put(c); 636 wait_event(c->ro_ref_wait, !refcount_read(&c->ro_ref)); 637 638 kobject_put(&c->counters_kobj); 639 kobject_put(&c->time_stats); 640 kobject_put(&c->opts_dir); 641 kobject_put(&c->internal); 642 643 /* btree prefetch might have kicked off reads in the background: */ 644 bch2_btree_flush_all_reads(c); 645 646 for_each_member_device(c, ca) 647 cancel_work_sync(&ca->io_error_work); 648 649 cancel_work_sync(&c->read_only_work); 650 } 651 652 void bch2_fs_free(struct bch_fs *c) 653 { 654 unsigned i; 655 656 mutex_lock(&bch_fs_list_lock); 657 list_del(&c->list); 658 mutex_unlock(&bch_fs_list_lock); 659 660 closure_sync(&c->cl); 661 closure_debug_destroy(&c->cl); 662 663 for (i = 0; i < c->sb.nr_devices; i++) { 664 struct bch_dev *ca = rcu_dereference_protected(c->devs[i], true); 665 666 if (ca) { 667 EBUG_ON(atomic_long_read(&ca->ref) != 1); 668 bch2_free_super(&ca->disk_sb); 669 bch2_dev_free(ca); 670 } 671 } 672 673 bch_verbose(c, "shutdown complete"); 674 675 kobject_put(&c->kobj); 676 } 677 678 void bch2_fs_stop(struct bch_fs *c) 679 { 680 __bch2_fs_stop(c); 681 bch2_fs_free(c); 682 } 683 684 static int bch2_fs_online(struct bch_fs *c) 685 { 686 int ret = 0; 687 688 lockdep_assert_held(&bch_fs_list_lock); 689 690 if (__bch2_uuid_to_fs(c->sb.uuid)) { 691 bch_err(c, "filesystem UUID already open"); 692 return -EINVAL; 693 } 694 695 ret = bch2_fs_chardev_init(c); 696 if (ret) { 697 bch_err(c, "error creating character device"); 698 return ret; 699 } 700 701 bch2_fs_debug_init(c); 702 703 ret = kobject_add(&c->kobj, NULL, "%pU", c->sb.user_uuid.b) ?: 704 kobject_add(&c->internal, &c->kobj, "internal") ?: 705 kobject_add(&c->opts_dir, &c->kobj, "options") ?: 706 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT 707 kobject_add(&c->time_stats, &c->kobj, "time_stats") ?: 708 #endif 709 kobject_add(&c->counters_kobj, &c->kobj, "counters") ?: 710 bch2_opts_create_sysfs_files(&c->opts_dir); 711 if (ret) { 712 bch_err(c, "error creating sysfs objects"); 713 return ret; 714 } 715 716 down_write(&c->state_lock); 717 718 for_each_member_device(c, ca) { 719 ret = bch2_dev_sysfs_online(c, ca); 720 if (ret) { 721 bch_err(c, "error creating sysfs objects"); 722 bch2_dev_put(ca); 723 goto err; 724 } 725 } 726 727 BUG_ON(!list_empty(&c->list)); 728 list_add(&c->list, &bch_fs_list); 729 err: 730 up_write(&c->state_lock); 731 return ret; 732 } 733 734 static struct bch_fs *bch2_fs_alloc(struct bch_sb *sb, struct bch_opts opts) 735 { 736 struct bch_fs *c; 737 struct printbuf name = PRINTBUF; 738 unsigned i, iter_size; 739 int ret = 0; 740 741 c = kvmalloc(sizeof(struct bch_fs), GFP_KERNEL|__GFP_ZERO); 742 if (!c) { 743 c = ERR_PTR(-BCH_ERR_ENOMEM_fs_alloc); 744 goto out; 745 } 746 747 c->stdio = (void *)(unsigned long) opts.stdio; 748 749 __module_get(THIS_MODULE); 750 751 closure_init(&c->cl, NULL); 752 753 c->kobj.kset = bcachefs_kset; 754 kobject_init(&c->kobj, &bch2_fs_ktype); 755 kobject_init(&c->internal, &bch2_fs_internal_ktype); 756 kobject_init(&c->opts_dir, &bch2_fs_opts_dir_ktype); 757 kobject_init(&c->time_stats, &bch2_fs_time_stats_ktype); 758 kobject_init(&c->counters_kobj, &bch2_fs_counters_ktype); 759 760 c->minor = -1; 761 c->disk_sb.fs_sb = true; 762 763 init_rwsem(&c->state_lock); 764 mutex_init(&c->sb_lock); 765 mutex_init(&c->replicas_gc_lock); 766 mutex_init(&c->btree_root_lock); 767 INIT_WORK(&c->read_only_work, bch2_fs_read_only_work); 768 769 refcount_set(&c->ro_ref, 1); 770 init_waitqueue_head(&c->ro_ref_wait); 771 spin_lock_init(&c->recovery_pass_lock); 772 sema_init(&c->online_fsck_mutex, 1); 773 774 for (i = 0; i < BCH_TIME_STAT_NR; i++) 775 bch2_time_stats_init(&c->times[i]); 776 777 bch2_fs_copygc_init(c); 778 bch2_fs_btree_key_cache_init_early(&c->btree_key_cache); 779 bch2_fs_btree_iter_init_early(c); 780 bch2_fs_btree_interior_update_init_early(c); 781 bch2_fs_journal_keys_init(c); 782 bch2_fs_allocator_background_init(c); 783 bch2_fs_allocator_foreground_init(c); 784 bch2_fs_rebalance_init(c); 785 bch2_fs_quota_init(c); 786 bch2_fs_ec_init_early(c); 787 bch2_fs_move_init(c); 788 bch2_fs_sb_errors_init_early(c); 789 790 INIT_LIST_HEAD(&c->list); 791 792 mutex_init(&c->bio_bounce_pages_lock); 793 mutex_init(&c->snapshot_table_lock); 794 init_rwsem(&c->snapshot_create_lock); 795 796 spin_lock_init(&c->btree_write_error_lock); 797 798 INIT_LIST_HEAD(&c->journal_iters); 799 800 INIT_LIST_HEAD(&c->fsck_error_msgs); 801 mutex_init(&c->fsck_error_msgs_lock); 802 803 seqcount_init(&c->usage_lock); 804 805 sema_init(&c->io_in_flight, 128); 806 807 INIT_LIST_HEAD(&c->vfs_inodes_list); 808 mutex_init(&c->vfs_inodes_lock); 809 810 c->journal.flush_write_time = &c->times[BCH_TIME_journal_flush_write]; 811 c->journal.noflush_write_time = &c->times[BCH_TIME_journal_noflush_write]; 812 c->journal.flush_seq_time = &c->times[BCH_TIME_journal_flush_seq]; 813 814 bch2_fs_btree_cache_init_early(&c->btree_cache); 815 816 mutex_init(&c->sectors_available_lock); 817 818 ret = percpu_init_rwsem(&c->mark_lock); 819 if (ret) 820 goto err; 821 822 mutex_lock(&c->sb_lock); 823 ret = bch2_sb_to_fs(c, sb); 824 mutex_unlock(&c->sb_lock); 825 826 if (ret) 827 goto err; 828 829 pr_uuid(&name, c->sb.user_uuid.b); 830 ret = name.allocation_failure ? -BCH_ERR_ENOMEM_fs_name_alloc : 0; 831 if (ret) 832 goto err; 833 834 strscpy(c->name, name.buf, sizeof(c->name)); 835 printbuf_exit(&name); 836 837 /* Compat: */ 838 if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 && 839 !BCH_SB_JOURNAL_FLUSH_DELAY(sb)) 840 SET_BCH_SB_JOURNAL_FLUSH_DELAY(sb, 1000); 841 842 if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 && 843 !BCH_SB_JOURNAL_RECLAIM_DELAY(sb)) 844 SET_BCH_SB_JOURNAL_RECLAIM_DELAY(sb, 100); 845 846 c->opts = bch2_opts_default; 847 ret = bch2_opts_from_sb(&c->opts, sb); 848 if (ret) 849 goto err; 850 851 bch2_opts_apply(&c->opts, opts); 852 853 c->btree_key_cache_btrees |= 1U << BTREE_ID_alloc; 854 if (c->opts.inodes_use_key_cache) 855 c->btree_key_cache_btrees |= 1U << BTREE_ID_inodes; 856 c->btree_key_cache_btrees |= 1U << BTREE_ID_logged_ops; 857 858 c->block_bits = ilog2(block_sectors(c)); 859 c->btree_foreground_merge_threshold = BTREE_FOREGROUND_MERGE_THRESHOLD(c); 860 861 if (bch2_fs_init_fault("fs_alloc")) { 862 bch_err(c, "fs_alloc fault injected"); 863 ret = -EFAULT; 864 goto err; 865 } 866 867 iter_size = sizeof(struct sort_iter) + 868 (btree_blocks(c) + 1) * 2 * 869 sizeof(struct sort_iter_set); 870 871 if (!(c->btree_update_wq = alloc_workqueue("bcachefs", 872 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_UNBOUND, 512)) || 873 !(c->btree_io_complete_wq = alloc_workqueue("bcachefs_btree_io", 874 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) || 875 !(c->copygc_wq = alloc_workqueue("bcachefs_copygc", 876 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 1)) || 877 !(c->btree_read_complete_wq = alloc_workqueue("bcachefs_btree_read_complete", 878 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 512)) || 879 !(c->btree_write_submit_wq = alloc_workqueue("bcachefs_btree_write_sumit", 880 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) || 881 !(c->write_ref_wq = alloc_workqueue("bcachefs_write_ref", 882 WQ_FREEZABLE, 0)) || 883 #ifndef BCH_WRITE_REF_DEBUG 884 percpu_ref_init(&c->writes, bch2_writes_disabled, 885 PERCPU_REF_INIT_DEAD, GFP_KERNEL) || 886 #endif 887 mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) || 888 bioset_init(&c->btree_bio, 1, 889 max(offsetof(struct btree_read_bio, bio), 890 offsetof(struct btree_write_bio, wbio.bio)), 891 BIOSET_NEED_BVECS) || 892 !(c->pcpu = alloc_percpu(struct bch_fs_pcpu)) || 893 !(c->usage = alloc_percpu(struct bch_fs_usage_base)) || 894 !(c->online_reserved = alloc_percpu(u64)) || 895 mempool_init_kvmalloc_pool(&c->btree_bounce_pool, 1, 896 c->opts.btree_node_size) || 897 mempool_init_kmalloc_pool(&c->large_bkey_pool, 1, 2048)) { 898 ret = -BCH_ERR_ENOMEM_fs_other_alloc; 899 goto err; 900 } 901 902 ret = bch2_fs_counters_init(c) ?: 903 bch2_fs_sb_errors_init(c) ?: 904 bch2_io_clock_init(&c->io_clock[READ]) ?: 905 bch2_io_clock_init(&c->io_clock[WRITE]) ?: 906 bch2_fs_journal_init(&c->journal) ?: 907 bch2_fs_btree_iter_init(c) ?: 908 bch2_fs_btree_cache_init(c) ?: 909 bch2_fs_btree_key_cache_init(&c->btree_key_cache) ?: 910 bch2_fs_btree_interior_update_init(c) ?: 911 bch2_fs_btree_gc_init(c) ?: 912 bch2_fs_buckets_waiting_for_journal_init(c) ?: 913 bch2_fs_btree_write_buffer_init(c) ?: 914 bch2_fs_subvolumes_init(c) ?: 915 bch2_fs_io_read_init(c) ?: 916 bch2_fs_io_write_init(c) ?: 917 bch2_fs_nocow_locking_init(c) ?: 918 bch2_fs_encryption_init(c) ?: 919 bch2_fs_compress_init(c) ?: 920 bch2_fs_ec_init(c) ?: 921 bch2_fs_vfs_init(c) ?: 922 bch2_fs_fsio_init(c) ?: 923 bch2_fs_fs_io_buffered_init(c) ?: 924 bch2_fs_fs_io_direct_init(c); 925 if (ret) 926 goto err; 927 928 for (i = 0; i < c->sb.nr_devices; i++) { 929 if (!bch2_member_exists(c->disk_sb.sb, i)) 930 continue; 931 ret = bch2_dev_alloc(c, i); 932 if (ret) 933 goto err; 934 } 935 936 bch2_journal_entry_res_resize(&c->journal, 937 &c->btree_root_journal_res, 938 BTREE_ID_NR * (JSET_KEYS_U64s + BKEY_BTREE_PTR_U64s_MAX)); 939 bch2_journal_entry_res_resize(&c->journal, 940 &c->clock_journal_res, 941 (sizeof(struct jset_entry_clock) / sizeof(u64)) * 2); 942 943 mutex_lock(&bch_fs_list_lock); 944 ret = bch2_fs_online(c); 945 mutex_unlock(&bch_fs_list_lock); 946 947 if (ret) 948 goto err; 949 out: 950 return c; 951 err: 952 bch2_fs_free(c); 953 c = ERR_PTR(ret); 954 goto out; 955 } 956 957 noinline_for_stack 958 static void print_mount_opts(struct bch_fs *c) 959 { 960 enum bch_opt_id i; 961 struct printbuf p = PRINTBUF; 962 bool first = true; 963 964 prt_str(&p, "starting version "); 965 bch2_version_to_text(&p, c->sb.version); 966 967 if (c->opts.read_only) { 968 prt_str(&p, " opts="); 969 first = false; 970 prt_printf(&p, "ro"); 971 } 972 973 for (i = 0; i < bch2_opts_nr; i++) { 974 const struct bch_option *opt = &bch2_opt_table[i]; 975 u64 v = bch2_opt_get_by_id(&c->opts, i); 976 977 if (!(opt->flags & OPT_MOUNT)) 978 continue; 979 980 if (v == bch2_opt_get_by_id(&bch2_opts_default, i)) 981 continue; 982 983 prt_str(&p, first ? " opts=" : ","); 984 first = false; 985 bch2_opt_to_text(&p, c, c->disk_sb.sb, opt, v, OPT_SHOW_MOUNT_STYLE); 986 } 987 988 bch_info(c, "%s", p.buf); 989 printbuf_exit(&p); 990 } 991 992 int bch2_fs_start(struct bch_fs *c) 993 { 994 time64_t now = ktime_get_real_seconds(); 995 int ret; 996 997 print_mount_opts(c); 998 999 down_write(&c->state_lock); 1000 1001 BUG_ON(test_bit(BCH_FS_started, &c->flags)); 1002 1003 mutex_lock(&c->sb_lock); 1004 1005 ret = bch2_sb_members_v2_init(c); 1006 if (ret) { 1007 mutex_unlock(&c->sb_lock); 1008 goto err; 1009 } 1010 1011 for_each_online_member(c, ca) 1012 bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount = cpu_to_le64(now); 1013 1014 struct bch_sb_field_ext *ext = 1015 bch2_sb_field_get_minsize(&c->disk_sb, ext, sizeof(*ext) / sizeof(u64)); 1016 mutex_unlock(&c->sb_lock); 1017 1018 if (!ext) { 1019 bch_err(c, "insufficient space in superblock for sb_field_ext"); 1020 ret = -BCH_ERR_ENOSPC_sb; 1021 goto err; 1022 } 1023 1024 for_each_rw_member(c, ca) 1025 bch2_dev_allocator_add(c, ca); 1026 bch2_recalc_capacity(c); 1027 1028 c->recovery_task = current; 1029 ret = BCH_SB_INITIALIZED(c->disk_sb.sb) 1030 ? bch2_fs_recovery(c) 1031 : bch2_fs_initialize(c); 1032 c->recovery_task = NULL; 1033 1034 if (ret) 1035 goto err; 1036 1037 ret = bch2_opts_check_may_set(c); 1038 if (ret) 1039 goto err; 1040 1041 if (bch2_fs_init_fault("fs_start")) { 1042 bch_err(c, "fs_start fault injected"); 1043 ret = -EINVAL; 1044 goto err; 1045 } 1046 1047 set_bit(BCH_FS_started, &c->flags); 1048 1049 if (c->opts.read_only) { 1050 bch2_fs_read_only(c); 1051 } else { 1052 ret = !test_bit(BCH_FS_rw, &c->flags) 1053 ? bch2_fs_read_write(c) 1054 : bch2_fs_read_write_late(c); 1055 if (ret) 1056 goto err; 1057 } 1058 1059 ret = 0; 1060 err: 1061 if (ret) 1062 bch_err_msg(c, ret, "starting filesystem"); 1063 else 1064 bch_verbose(c, "done starting filesystem"); 1065 up_write(&c->state_lock); 1066 return ret; 1067 } 1068 1069 static int bch2_dev_may_add(struct bch_sb *sb, struct bch_fs *c) 1070 { 1071 struct bch_member m = bch2_sb_member_get(sb, sb->dev_idx); 1072 1073 if (le16_to_cpu(sb->block_size) != block_sectors(c)) 1074 return -BCH_ERR_mismatched_block_size; 1075 1076 if (le16_to_cpu(m.bucket_size) < 1077 BCH_SB_BTREE_NODE_SIZE(c->disk_sb.sb)) 1078 return -BCH_ERR_bucket_size_too_small; 1079 1080 return 0; 1081 } 1082 1083 static int bch2_dev_in_fs(struct bch_sb_handle *fs, 1084 struct bch_sb_handle *sb, 1085 struct bch_opts *opts) 1086 { 1087 if (fs == sb) 1088 return 0; 1089 1090 if (!uuid_equal(&fs->sb->uuid, &sb->sb->uuid)) 1091 return -BCH_ERR_device_not_a_member_of_filesystem; 1092 1093 if (!bch2_member_exists(fs->sb, sb->sb->dev_idx)) 1094 return -BCH_ERR_device_has_been_removed; 1095 1096 if (fs->sb->block_size != sb->sb->block_size) 1097 return -BCH_ERR_mismatched_block_size; 1098 1099 if (le16_to_cpu(fs->sb->version) < bcachefs_metadata_version_member_seq || 1100 le16_to_cpu(sb->sb->version) < bcachefs_metadata_version_member_seq) 1101 return 0; 1102 1103 if (fs->sb->seq == sb->sb->seq && 1104 fs->sb->write_time != sb->sb->write_time) { 1105 struct printbuf buf = PRINTBUF; 1106 1107 prt_str(&buf, "Split brain detected between "); 1108 prt_bdevname(&buf, sb->bdev); 1109 prt_str(&buf, " and "); 1110 prt_bdevname(&buf, fs->bdev); 1111 prt_char(&buf, ':'); 1112 prt_newline(&buf); 1113 prt_printf(&buf, "seq=%llu but write_time different, got", le64_to_cpu(sb->sb->seq)); 1114 prt_newline(&buf); 1115 1116 prt_bdevname(&buf, fs->bdev); 1117 prt_char(&buf, ' '); 1118 bch2_prt_datetime(&buf, le64_to_cpu(fs->sb->write_time)); 1119 prt_newline(&buf); 1120 1121 prt_bdevname(&buf, sb->bdev); 1122 prt_char(&buf, ' '); 1123 bch2_prt_datetime(&buf, le64_to_cpu(sb->sb->write_time)); 1124 prt_newline(&buf); 1125 1126 if (!opts->no_splitbrain_check) 1127 prt_printf(&buf, "Not using older sb"); 1128 1129 pr_err("%s", buf.buf); 1130 printbuf_exit(&buf); 1131 1132 if (!opts->no_splitbrain_check) 1133 return -BCH_ERR_device_splitbrain; 1134 } 1135 1136 struct bch_member m = bch2_sb_member_get(fs->sb, sb->sb->dev_idx); 1137 u64 seq_from_fs = le64_to_cpu(m.seq); 1138 u64 seq_from_member = le64_to_cpu(sb->sb->seq); 1139 1140 if (seq_from_fs && seq_from_fs < seq_from_member) { 1141 struct printbuf buf = PRINTBUF; 1142 1143 prt_str(&buf, "Split brain detected between "); 1144 prt_bdevname(&buf, sb->bdev); 1145 prt_str(&buf, " and "); 1146 prt_bdevname(&buf, fs->bdev); 1147 prt_char(&buf, ':'); 1148 prt_newline(&buf); 1149 1150 prt_bdevname(&buf, fs->bdev); 1151 prt_str(&buf, " believes seq of "); 1152 prt_bdevname(&buf, sb->bdev); 1153 prt_printf(&buf, " to be %llu, but ", seq_from_fs); 1154 prt_bdevname(&buf, sb->bdev); 1155 prt_printf(&buf, " has %llu\n", seq_from_member); 1156 1157 if (!opts->no_splitbrain_check) { 1158 prt_str(&buf, "Not using "); 1159 prt_bdevname(&buf, sb->bdev); 1160 } 1161 1162 pr_err("%s", buf.buf); 1163 printbuf_exit(&buf); 1164 1165 if (!opts->no_splitbrain_check) 1166 return -BCH_ERR_device_splitbrain; 1167 } 1168 1169 return 0; 1170 } 1171 1172 /* Device startup/shutdown: */ 1173 1174 static void bch2_dev_release(struct kobject *kobj) 1175 { 1176 struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj); 1177 1178 kfree(ca); 1179 } 1180 1181 static void bch2_dev_free(struct bch_dev *ca) 1182 { 1183 cancel_work_sync(&ca->io_error_work); 1184 1185 bch2_dev_unlink(ca); 1186 1187 if (ca->kobj.state_in_sysfs) 1188 kobject_del(&ca->kobj); 1189 1190 bch2_free_super(&ca->disk_sb); 1191 bch2_dev_allocator_background_exit(ca); 1192 bch2_dev_journal_exit(ca); 1193 1194 free_percpu(ca->io_done); 1195 bch2_dev_buckets_free(ca); 1196 kfree(ca->sb_read_scratch); 1197 1198 bch2_time_stats_quantiles_exit(&ca->io_latency[WRITE]); 1199 bch2_time_stats_quantiles_exit(&ca->io_latency[READ]); 1200 1201 percpu_ref_exit(&ca->io_ref); 1202 #ifndef CONFIG_BCACHEFS_DEBUG 1203 percpu_ref_exit(&ca->ref); 1204 #endif 1205 kobject_put(&ca->kobj); 1206 } 1207 1208 static void __bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca) 1209 { 1210 1211 lockdep_assert_held(&c->state_lock); 1212 1213 if (percpu_ref_is_zero(&ca->io_ref)) 1214 return; 1215 1216 __bch2_dev_read_only(c, ca); 1217 1218 reinit_completion(&ca->io_ref_completion); 1219 percpu_ref_kill(&ca->io_ref); 1220 wait_for_completion(&ca->io_ref_completion); 1221 1222 bch2_dev_unlink(ca); 1223 1224 bch2_free_super(&ca->disk_sb); 1225 bch2_dev_journal_exit(ca); 1226 } 1227 1228 #ifndef CONFIG_BCACHEFS_DEBUG 1229 static void bch2_dev_ref_complete(struct percpu_ref *ref) 1230 { 1231 struct bch_dev *ca = container_of(ref, struct bch_dev, ref); 1232 1233 complete(&ca->ref_completion); 1234 } 1235 #endif 1236 1237 static void bch2_dev_io_ref_complete(struct percpu_ref *ref) 1238 { 1239 struct bch_dev *ca = container_of(ref, struct bch_dev, io_ref); 1240 1241 complete(&ca->io_ref_completion); 1242 } 1243 1244 static void bch2_dev_unlink(struct bch_dev *ca) 1245 { 1246 struct kobject *b; 1247 1248 /* 1249 * This is racy w.r.t. the underlying block device being hot-removed, 1250 * which removes it from sysfs. 1251 * 1252 * It'd be lovely if we had a way to handle this race, but the sysfs 1253 * code doesn't appear to provide a good method and block/holder.c is 1254 * susceptible as well: 1255 */ 1256 if (ca->kobj.state_in_sysfs && 1257 ca->disk_sb.bdev && 1258 (b = bdev_kobj(ca->disk_sb.bdev))->state_in_sysfs) { 1259 sysfs_remove_link(b, "bcachefs"); 1260 sysfs_remove_link(&ca->kobj, "block"); 1261 } 1262 } 1263 1264 static int bch2_dev_sysfs_online(struct bch_fs *c, struct bch_dev *ca) 1265 { 1266 int ret; 1267 1268 if (!c->kobj.state_in_sysfs) 1269 return 0; 1270 1271 if (!ca->kobj.state_in_sysfs) { 1272 ret = kobject_add(&ca->kobj, &c->kobj, 1273 "dev-%u", ca->dev_idx); 1274 if (ret) 1275 return ret; 1276 } 1277 1278 if (ca->disk_sb.bdev) { 1279 struct kobject *block = bdev_kobj(ca->disk_sb.bdev); 1280 1281 ret = sysfs_create_link(block, &ca->kobj, "bcachefs"); 1282 if (ret) 1283 return ret; 1284 1285 ret = sysfs_create_link(&ca->kobj, block, "block"); 1286 if (ret) 1287 return ret; 1288 } 1289 1290 return 0; 1291 } 1292 1293 static struct bch_dev *__bch2_dev_alloc(struct bch_fs *c, 1294 struct bch_member *member) 1295 { 1296 struct bch_dev *ca; 1297 unsigned i; 1298 1299 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 1300 if (!ca) 1301 return NULL; 1302 1303 kobject_init(&ca->kobj, &bch2_dev_ktype); 1304 init_completion(&ca->ref_completion); 1305 init_completion(&ca->io_ref_completion); 1306 1307 INIT_WORK(&ca->io_error_work, bch2_io_error_work); 1308 1309 bch2_time_stats_quantiles_init(&ca->io_latency[READ]); 1310 bch2_time_stats_quantiles_init(&ca->io_latency[WRITE]); 1311 1312 ca->mi = bch2_mi_to_cpu(member); 1313 1314 for (i = 0; i < ARRAY_SIZE(member->errors); i++) 1315 atomic64_set(&ca->errors[i], le64_to_cpu(member->errors[i])); 1316 1317 ca->uuid = member->uuid; 1318 1319 ca->nr_btree_reserve = DIV_ROUND_UP(BTREE_NODE_RESERVE, 1320 ca->mi.bucket_size / btree_sectors(c)); 1321 1322 #ifndef CONFIG_BCACHEFS_DEBUG 1323 if (percpu_ref_init(&ca->ref, bch2_dev_ref_complete, 0, GFP_KERNEL)) 1324 goto err; 1325 #else 1326 atomic_long_set(&ca->ref, 1); 1327 #endif 1328 1329 bch2_dev_allocator_background_init(ca); 1330 1331 if (percpu_ref_init(&ca->io_ref, bch2_dev_io_ref_complete, 1332 PERCPU_REF_INIT_DEAD, GFP_KERNEL) || 1333 !(ca->sb_read_scratch = kmalloc(BCH_SB_READ_SCRATCH_BUF_SIZE, GFP_KERNEL)) || 1334 bch2_dev_buckets_alloc(c, ca) || 1335 !(ca->io_done = alloc_percpu(*ca->io_done))) 1336 goto err; 1337 1338 return ca; 1339 err: 1340 bch2_dev_free(ca); 1341 return NULL; 1342 } 1343 1344 static void bch2_dev_attach(struct bch_fs *c, struct bch_dev *ca, 1345 unsigned dev_idx) 1346 { 1347 ca->dev_idx = dev_idx; 1348 __set_bit(ca->dev_idx, ca->self.d); 1349 scnprintf(ca->name, sizeof(ca->name), "dev-%u", dev_idx); 1350 1351 ca->fs = c; 1352 rcu_assign_pointer(c->devs[ca->dev_idx], ca); 1353 1354 if (bch2_dev_sysfs_online(c, ca)) 1355 pr_warn("error creating sysfs objects"); 1356 } 1357 1358 static int bch2_dev_alloc(struct bch_fs *c, unsigned dev_idx) 1359 { 1360 struct bch_member member = bch2_sb_member_get(c->disk_sb.sb, dev_idx); 1361 struct bch_dev *ca = NULL; 1362 1363 if (bch2_fs_init_fault("dev_alloc")) 1364 goto err; 1365 1366 ca = __bch2_dev_alloc(c, &member); 1367 if (!ca) 1368 goto err; 1369 1370 ca->fs = c; 1371 1372 bch2_dev_attach(c, ca, dev_idx); 1373 return 0; 1374 err: 1375 return -BCH_ERR_ENOMEM_dev_alloc; 1376 } 1377 1378 static int __bch2_dev_attach_bdev(struct bch_dev *ca, struct bch_sb_handle *sb) 1379 { 1380 unsigned ret; 1381 1382 if (bch2_dev_is_online(ca)) { 1383 bch_err(ca, "already have device online in slot %u", 1384 sb->sb->dev_idx); 1385 return -BCH_ERR_device_already_online; 1386 } 1387 1388 if (get_capacity(sb->bdev->bd_disk) < 1389 ca->mi.bucket_size * ca->mi.nbuckets) { 1390 bch_err(ca, "cannot online: device too small"); 1391 return -BCH_ERR_device_size_too_small; 1392 } 1393 1394 BUG_ON(!percpu_ref_is_zero(&ca->io_ref)); 1395 1396 ret = bch2_dev_journal_init(ca, sb->sb); 1397 if (ret) 1398 return ret; 1399 1400 /* Commit: */ 1401 ca->disk_sb = *sb; 1402 memset(sb, 0, sizeof(*sb)); 1403 1404 ca->dev = ca->disk_sb.bdev->bd_dev; 1405 1406 percpu_ref_reinit(&ca->io_ref); 1407 1408 return 0; 1409 } 1410 1411 static int bch2_dev_attach_bdev(struct bch_fs *c, struct bch_sb_handle *sb) 1412 { 1413 struct bch_dev *ca; 1414 int ret; 1415 1416 lockdep_assert_held(&c->state_lock); 1417 1418 if (le64_to_cpu(sb->sb->seq) > 1419 le64_to_cpu(c->disk_sb.sb->seq)) 1420 bch2_sb_to_fs(c, sb->sb); 1421 1422 BUG_ON(!bch2_dev_exists(c, sb->sb->dev_idx)); 1423 1424 ca = bch2_dev_locked(c, sb->sb->dev_idx); 1425 1426 ret = __bch2_dev_attach_bdev(ca, sb); 1427 if (ret) 1428 return ret; 1429 1430 bch2_dev_sysfs_online(c, ca); 1431 1432 struct printbuf name = PRINTBUF; 1433 prt_bdevname(&name, ca->disk_sb.bdev); 1434 1435 if (c->sb.nr_devices == 1) 1436 strscpy(c->name, name.buf, sizeof(c->name)); 1437 strscpy(ca->name, name.buf, sizeof(ca->name)); 1438 1439 printbuf_exit(&name); 1440 1441 rebalance_wakeup(c); 1442 return 0; 1443 } 1444 1445 /* Device management: */ 1446 1447 /* 1448 * Note: this function is also used by the error paths - when a particular 1449 * device sees an error, we call it to determine whether we can just set the 1450 * device RO, or - if this function returns false - we'll set the whole 1451 * filesystem RO: 1452 * 1453 * XXX: maybe we should be more explicit about whether we're changing state 1454 * because we got an error or what have you? 1455 */ 1456 bool bch2_dev_state_allowed(struct bch_fs *c, struct bch_dev *ca, 1457 enum bch_member_state new_state, int flags) 1458 { 1459 struct bch_devs_mask new_online_devs; 1460 int nr_rw = 0, required; 1461 1462 lockdep_assert_held(&c->state_lock); 1463 1464 switch (new_state) { 1465 case BCH_MEMBER_STATE_rw: 1466 return true; 1467 case BCH_MEMBER_STATE_ro: 1468 if (ca->mi.state != BCH_MEMBER_STATE_rw) 1469 return true; 1470 1471 /* do we have enough devices to write to? */ 1472 for_each_member_device(c, ca2) 1473 if (ca2 != ca) 1474 nr_rw += ca2->mi.state == BCH_MEMBER_STATE_rw; 1475 1476 required = max(!(flags & BCH_FORCE_IF_METADATA_DEGRADED) 1477 ? c->opts.metadata_replicas 1478 : metadata_replicas_required(c), 1479 !(flags & BCH_FORCE_IF_DATA_DEGRADED) 1480 ? c->opts.data_replicas 1481 : data_replicas_required(c)); 1482 1483 return nr_rw >= required; 1484 case BCH_MEMBER_STATE_failed: 1485 case BCH_MEMBER_STATE_spare: 1486 if (ca->mi.state != BCH_MEMBER_STATE_rw && 1487 ca->mi.state != BCH_MEMBER_STATE_ro) 1488 return true; 1489 1490 /* do we have enough devices to read from? */ 1491 new_online_devs = bch2_online_devs(c); 1492 __clear_bit(ca->dev_idx, new_online_devs.d); 1493 1494 return bch2_have_enough_devs(c, new_online_devs, flags, false); 1495 default: 1496 BUG(); 1497 } 1498 } 1499 1500 static bool bch2_fs_may_start(struct bch_fs *c) 1501 { 1502 struct bch_dev *ca; 1503 unsigned i, flags = 0; 1504 1505 if (c->opts.very_degraded) 1506 flags |= BCH_FORCE_IF_DEGRADED|BCH_FORCE_IF_LOST; 1507 1508 if (c->opts.degraded) 1509 flags |= BCH_FORCE_IF_DEGRADED; 1510 1511 if (!c->opts.degraded && 1512 !c->opts.very_degraded) { 1513 mutex_lock(&c->sb_lock); 1514 1515 for (i = 0; i < c->disk_sb.sb->nr_devices; i++) { 1516 if (!bch2_member_exists(c->disk_sb.sb, i)) 1517 continue; 1518 1519 ca = bch2_dev_locked(c, i); 1520 1521 if (!bch2_dev_is_online(ca) && 1522 (ca->mi.state == BCH_MEMBER_STATE_rw || 1523 ca->mi.state == BCH_MEMBER_STATE_ro)) { 1524 mutex_unlock(&c->sb_lock); 1525 return false; 1526 } 1527 } 1528 mutex_unlock(&c->sb_lock); 1529 } 1530 1531 return bch2_have_enough_devs(c, bch2_online_devs(c), flags, true); 1532 } 1533 1534 static void __bch2_dev_read_only(struct bch_fs *c, struct bch_dev *ca) 1535 { 1536 /* 1537 * The allocator thread itself allocates btree nodes, so stop it first: 1538 */ 1539 bch2_dev_allocator_remove(c, ca); 1540 bch2_recalc_capacity(c); 1541 bch2_dev_journal_stop(&c->journal, ca); 1542 } 1543 1544 static void __bch2_dev_read_write(struct bch_fs *c, struct bch_dev *ca) 1545 { 1546 lockdep_assert_held(&c->state_lock); 1547 1548 BUG_ON(ca->mi.state != BCH_MEMBER_STATE_rw); 1549 1550 bch2_dev_allocator_add(c, ca); 1551 bch2_recalc_capacity(c); 1552 bch2_dev_do_discards(ca); 1553 } 1554 1555 int __bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca, 1556 enum bch_member_state new_state, int flags) 1557 { 1558 struct bch_member *m; 1559 int ret = 0; 1560 1561 if (ca->mi.state == new_state) 1562 return 0; 1563 1564 if (!bch2_dev_state_allowed(c, ca, new_state, flags)) 1565 return -BCH_ERR_device_state_not_allowed; 1566 1567 if (new_state != BCH_MEMBER_STATE_rw) 1568 __bch2_dev_read_only(c, ca); 1569 1570 bch_notice(ca, "%s", bch2_member_states[new_state]); 1571 1572 mutex_lock(&c->sb_lock); 1573 m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx); 1574 SET_BCH_MEMBER_STATE(m, new_state); 1575 bch2_write_super(c); 1576 mutex_unlock(&c->sb_lock); 1577 1578 if (new_state == BCH_MEMBER_STATE_rw) 1579 __bch2_dev_read_write(c, ca); 1580 1581 rebalance_wakeup(c); 1582 1583 return ret; 1584 } 1585 1586 int bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca, 1587 enum bch_member_state new_state, int flags) 1588 { 1589 int ret; 1590 1591 down_write(&c->state_lock); 1592 ret = __bch2_dev_set_state(c, ca, new_state, flags); 1593 up_write(&c->state_lock); 1594 1595 return ret; 1596 } 1597 1598 /* Device add/removal: */ 1599 1600 int bch2_dev_remove(struct bch_fs *c, struct bch_dev *ca, int flags) 1601 { 1602 struct bch_member *m; 1603 unsigned dev_idx = ca->dev_idx, data; 1604 int ret; 1605 1606 down_write(&c->state_lock); 1607 1608 /* 1609 * We consume a reference to ca->ref, regardless of whether we succeed 1610 * or fail: 1611 */ 1612 bch2_dev_put(ca); 1613 1614 if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) { 1615 bch_err(ca, "Cannot remove without losing data"); 1616 ret = -BCH_ERR_device_state_not_allowed; 1617 goto err; 1618 } 1619 1620 __bch2_dev_read_only(c, ca); 1621 1622 ret = bch2_dev_data_drop(c, ca->dev_idx, flags); 1623 bch_err_msg(ca, ret, "bch2_dev_data_drop()"); 1624 if (ret) 1625 goto err; 1626 1627 ret = bch2_dev_remove_alloc(c, ca); 1628 bch_err_msg(ca, ret, "bch2_dev_remove_alloc()"); 1629 if (ret) 1630 goto err; 1631 1632 /* 1633 * We need to flush the entire journal to get rid of keys that reference 1634 * the device being removed before removing the superblock entry 1635 */ 1636 bch2_journal_flush_all_pins(&c->journal); 1637 1638 /* 1639 * this is really just needed for the bch2_replicas_gc_(start|end) 1640 * calls, and could be cleaned up: 1641 */ 1642 ret = bch2_journal_flush_device_pins(&c->journal, ca->dev_idx); 1643 bch_err_msg(ca, ret, "bch2_journal_flush_device_pins()"); 1644 if (ret) 1645 goto err; 1646 1647 ret = bch2_journal_flush(&c->journal); 1648 bch_err_msg(ca, ret, "bch2_journal_flush()"); 1649 if (ret) 1650 goto err; 1651 1652 ret = bch2_replicas_gc2(c); 1653 bch_err_msg(ca, ret, "bch2_replicas_gc2()"); 1654 if (ret) 1655 goto err; 1656 1657 data = bch2_dev_has_data(c, ca); 1658 if (data) { 1659 struct printbuf data_has = PRINTBUF; 1660 1661 prt_bitflags(&data_has, __bch2_data_types, data); 1662 bch_err(ca, "Remove failed, still has data (%s)", data_has.buf); 1663 printbuf_exit(&data_has); 1664 ret = -EBUSY; 1665 goto err; 1666 } 1667 1668 __bch2_dev_offline(c, ca); 1669 1670 mutex_lock(&c->sb_lock); 1671 rcu_assign_pointer(c->devs[ca->dev_idx], NULL); 1672 mutex_unlock(&c->sb_lock); 1673 1674 #ifndef CONFIG_BCACHEFS_DEBUG 1675 percpu_ref_kill(&ca->ref); 1676 #else 1677 ca->dying = true; 1678 bch2_dev_put(ca); 1679 #endif 1680 wait_for_completion(&ca->ref_completion); 1681 1682 bch2_dev_free(ca); 1683 1684 /* 1685 * Free this device's slot in the bch_member array - all pointers to 1686 * this device must be gone: 1687 */ 1688 mutex_lock(&c->sb_lock); 1689 m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx); 1690 memset(&m->uuid, 0, sizeof(m->uuid)); 1691 1692 bch2_write_super(c); 1693 1694 mutex_unlock(&c->sb_lock); 1695 up_write(&c->state_lock); 1696 return 0; 1697 err: 1698 if (ca->mi.state == BCH_MEMBER_STATE_rw && 1699 !percpu_ref_is_zero(&ca->io_ref)) 1700 __bch2_dev_read_write(c, ca); 1701 up_write(&c->state_lock); 1702 return ret; 1703 } 1704 1705 /* Add new device to running filesystem: */ 1706 int bch2_dev_add(struct bch_fs *c, const char *path) 1707 { 1708 struct bch_opts opts = bch2_opts_empty(); 1709 struct bch_sb_handle sb; 1710 struct bch_dev *ca = NULL; 1711 struct printbuf errbuf = PRINTBUF; 1712 struct printbuf label = PRINTBUF; 1713 int ret; 1714 1715 ret = bch2_read_super(path, &opts, &sb); 1716 bch_err_msg(c, ret, "reading super"); 1717 if (ret) 1718 goto err; 1719 1720 struct bch_member dev_mi = bch2_sb_member_get(sb.sb, sb.sb->dev_idx); 1721 1722 if (BCH_MEMBER_GROUP(&dev_mi)) { 1723 bch2_disk_path_to_text_sb(&label, sb.sb, BCH_MEMBER_GROUP(&dev_mi) - 1); 1724 if (label.allocation_failure) { 1725 ret = -ENOMEM; 1726 goto err; 1727 } 1728 } 1729 1730 ret = bch2_dev_may_add(sb.sb, c); 1731 if (ret) 1732 goto err; 1733 1734 ca = __bch2_dev_alloc(c, &dev_mi); 1735 if (!ca) { 1736 ret = -ENOMEM; 1737 goto err; 1738 } 1739 1740 ret = __bch2_dev_attach_bdev(ca, &sb); 1741 if (ret) 1742 goto err; 1743 1744 down_write(&c->state_lock); 1745 mutex_lock(&c->sb_lock); 1746 1747 ret = bch2_sb_from_fs(c, ca); 1748 bch_err_msg(c, ret, "setting up new superblock"); 1749 if (ret) 1750 goto err_unlock; 1751 1752 if (dynamic_fault("bcachefs:add:no_slot")) 1753 goto err_unlock; 1754 1755 ret = bch2_sb_member_alloc(c); 1756 if (ret < 0) { 1757 bch_err_msg(c, ret, "setting up new superblock"); 1758 goto err_unlock; 1759 } 1760 unsigned dev_idx = ret; 1761 1762 /* success: */ 1763 1764 dev_mi.last_mount = cpu_to_le64(ktime_get_real_seconds()); 1765 *bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx) = dev_mi; 1766 1767 ca->disk_sb.sb->dev_idx = dev_idx; 1768 bch2_dev_attach(c, ca, dev_idx); 1769 1770 if (BCH_MEMBER_GROUP(&dev_mi)) { 1771 ret = __bch2_dev_group_set(c, ca, label.buf); 1772 bch_err_msg(c, ret, "creating new label"); 1773 if (ret) 1774 goto err_unlock; 1775 } 1776 1777 bch2_write_super(c); 1778 mutex_unlock(&c->sb_lock); 1779 1780 ret = bch2_dev_usage_init(ca, false); 1781 if (ret) 1782 goto err_late; 1783 1784 ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional); 1785 bch_err_msg(ca, ret, "marking new superblock"); 1786 if (ret) 1787 goto err_late; 1788 1789 ret = bch2_fs_freespace_init(c); 1790 bch_err_msg(ca, ret, "initializing free space"); 1791 if (ret) 1792 goto err_late; 1793 1794 if (ca->mi.state == BCH_MEMBER_STATE_rw) 1795 __bch2_dev_read_write(c, ca); 1796 1797 ret = bch2_dev_journal_alloc(ca, false); 1798 bch_err_msg(c, ret, "allocating journal"); 1799 if (ret) 1800 goto err_late; 1801 1802 up_write(&c->state_lock); 1803 return 0; 1804 1805 err_unlock: 1806 mutex_unlock(&c->sb_lock); 1807 up_write(&c->state_lock); 1808 err: 1809 if (ca) 1810 bch2_dev_free(ca); 1811 bch2_free_super(&sb); 1812 printbuf_exit(&label); 1813 printbuf_exit(&errbuf); 1814 bch_err_fn(c, ret); 1815 return ret; 1816 err_late: 1817 up_write(&c->state_lock); 1818 ca = NULL; 1819 goto err; 1820 } 1821 1822 /* Hot add existing device to running filesystem: */ 1823 int bch2_dev_online(struct bch_fs *c, const char *path) 1824 { 1825 struct bch_opts opts = bch2_opts_empty(); 1826 struct bch_sb_handle sb = { NULL }; 1827 struct bch_dev *ca; 1828 unsigned dev_idx; 1829 int ret; 1830 1831 down_write(&c->state_lock); 1832 1833 ret = bch2_read_super(path, &opts, &sb); 1834 if (ret) { 1835 up_write(&c->state_lock); 1836 return ret; 1837 } 1838 1839 dev_idx = sb.sb->dev_idx; 1840 1841 ret = bch2_dev_in_fs(&c->disk_sb, &sb, &c->opts); 1842 bch_err_msg(c, ret, "bringing %s online", path); 1843 if (ret) 1844 goto err; 1845 1846 ret = bch2_dev_attach_bdev(c, &sb); 1847 if (ret) 1848 goto err; 1849 1850 ca = bch2_dev_locked(c, dev_idx); 1851 1852 ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional); 1853 bch_err_msg(c, ret, "bringing %s online: error from bch2_trans_mark_dev_sb", path); 1854 if (ret) 1855 goto err; 1856 1857 if (ca->mi.state == BCH_MEMBER_STATE_rw) 1858 __bch2_dev_read_write(c, ca); 1859 1860 if (!ca->mi.freespace_initialized) { 1861 ret = bch2_dev_freespace_init(c, ca, 0, ca->mi.nbuckets); 1862 bch_err_msg(ca, ret, "initializing free space"); 1863 if (ret) 1864 goto err; 1865 } 1866 1867 if (!ca->journal.nr) { 1868 ret = bch2_dev_journal_alloc(ca, false); 1869 bch_err_msg(ca, ret, "allocating journal"); 1870 if (ret) 1871 goto err; 1872 } 1873 1874 mutex_lock(&c->sb_lock); 1875 bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount = 1876 cpu_to_le64(ktime_get_real_seconds()); 1877 bch2_write_super(c); 1878 mutex_unlock(&c->sb_lock); 1879 1880 up_write(&c->state_lock); 1881 return 0; 1882 err: 1883 up_write(&c->state_lock); 1884 bch2_free_super(&sb); 1885 return ret; 1886 } 1887 1888 int bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca, int flags) 1889 { 1890 down_write(&c->state_lock); 1891 1892 if (!bch2_dev_is_online(ca)) { 1893 bch_err(ca, "Already offline"); 1894 up_write(&c->state_lock); 1895 return 0; 1896 } 1897 1898 if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) { 1899 bch_err(ca, "Cannot offline required disk"); 1900 up_write(&c->state_lock); 1901 return -BCH_ERR_device_state_not_allowed; 1902 } 1903 1904 __bch2_dev_offline(c, ca); 1905 1906 up_write(&c->state_lock); 1907 return 0; 1908 } 1909 1910 int bch2_dev_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets) 1911 { 1912 struct bch_member *m; 1913 u64 old_nbuckets; 1914 int ret = 0; 1915 1916 down_write(&c->state_lock); 1917 old_nbuckets = ca->mi.nbuckets; 1918 1919 if (nbuckets < ca->mi.nbuckets) { 1920 bch_err(ca, "Cannot shrink yet"); 1921 ret = -EINVAL; 1922 goto err; 1923 } 1924 1925 if (nbuckets > BCH_MEMBER_NBUCKETS_MAX) { 1926 bch_err(ca, "New device size too big (%llu greater than max %u)", 1927 nbuckets, BCH_MEMBER_NBUCKETS_MAX); 1928 ret = -BCH_ERR_device_size_too_big; 1929 goto err; 1930 } 1931 1932 if (bch2_dev_is_online(ca) && 1933 get_capacity(ca->disk_sb.bdev->bd_disk) < 1934 ca->mi.bucket_size * nbuckets) { 1935 bch_err(ca, "New size larger than device"); 1936 ret = -BCH_ERR_device_size_too_small; 1937 goto err; 1938 } 1939 1940 ret = bch2_dev_buckets_resize(c, ca, nbuckets); 1941 bch_err_msg(ca, ret, "resizing buckets"); 1942 if (ret) 1943 goto err; 1944 1945 ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional); 1946 if (ret) 1947 goto err; 1948 1949 mutex_lock(&c->sb_lock); 1950 m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx); 1951 m->nbuckets = cpu_to_le64(nbuckets); 1952 1953 bch2_write_super(c); 1954 mutex_unlock(&c->sb_lock); 1955 1956 if (ca->mi.freespace_initialized) { 1957 struct disk_accounting_pos acc = { 1958 .type = BCH_DISK_ACCOUNTING_dev_data_type, 1959 .dev_data_type.dev = ca->dev_idx, 1960 .dev_data_type.data_type = BCH_DATA_free, 1961 }; 1962 u64 v[3] = { nbuckets - old_nbuckets, 0, 0 }; 1963 1964 ret = bch2_trans_commit_do(ca->fs, NULL, NULL, 0, 1965 bch2_disk_accounting_mod(trans, &acc, v, ARRAY_SIZE(v), false)) ?: 1966 bch2_dev_freespace_init(c, ca, old_nbuckets, nbuckets); 1967 if (ret) 1968 goto err; 1969 } 1970 1971 bch2_recalc_capacity(c); 1972 err: 1973 up_write(&c->state_lock); 1974 return ret; 1975 } 1976 1977 /* return with ref on ca->ref: */ 1978 struct bch_dev *bch2_dev_lookup(struct bch_fs *c, const char *name) 1979 { 1980 if (!strncmp(name, "/dev/", strlen("/dev/"))) 1981 name += strlen("/dev/"); 1982 1983 for_each_member_device(c, ca) 1984 if (!strcmp(name, ca->name)) 1985 return ca; 1986 return ERR_PTR(-BCH_ERR_ENOENT_dev_not_found); 1987 } 1988 1989 /* Filesystem open: */ 1990 1991 static inline int sb_cmp(struct bch_sb *l, struct bch_sb *r) 1992 { 1993 return cmp_int(le64_to_cpu(l->seq), le64_to_cpu(r->seq)) ?: 1994 cmp_int(le64_to_cpu(l->write_time), le64_to_cpu(r->write_time)); 1995 } 1996 1997 struct bch_fs *bch2_fs_open(char * const *devices, unsigned nr_devices, 1998 struct bch_opts opts) 1999 { 2000 DARRAY(struct bch_sb_handle) sbs = { 0 }; 2001 struct bch_fs *c = NULL; 2002 struct bch_sb_handle *best = NULL; 2003 struct printbuf errbuf = PRINTBUF; 2004 int ret = 0; 2005 2006 if (!try_module_get(THIS_MODULE)) 2007 return ERR_PTR(-ENODEV); 2008 2009 if (!nr_devices) { 2010 ret = -EINVAL; 2011 goto err; 2012 } 2013 2014 ret = darray_make_room(&sbs, nr_devices); 2015 if (ret) 2016 goto err; 2017 2018 for (unsigned i = 0; i < nr_devices; i++) { 2019 struct bch_sb_handle sb = { NULL }; 2020 2021 ret = bch2_read_super(devices[i], &opts, &sb); 2022 if (ret) 2023 goto err; 2024 2025 BUG_ON(darray_push(&sbs, sb)); 2026 } 2027 2028 if (opts.nochanges && !opts.read_only) { 2029 ret = -BCH_ERR_erofs_nochanges; 2030 goto err_print; 2031 } 2032 2033 darray_for_each(sbs, sb) 2034 if (!best || sb_cmp(sb->sb, best->sb) > 0) 2035 best = sb; 2036 2037 darray_for_each_reverse(sbs, sb) { 2038 ret = bch2_dev_in_fs(best, sb, &opts); 2039 2040 if (ret == -BCH_ERR_device_has_been_removed || 2041 ret == -BCH_ERR_device_splitbrain) { 2042 bch2_free_super(sb); 2043 darray_remove_item(&sbs, sb); 2044 best -= best > sb; 2045 ret = 0; 2046 continue; 2047 } 2048 2049 if (ret) 2050 goto err_print; 2051 } 2052 2053 c = bch2_fs_alloc(best->sb, opts); 2054 ret = PTR_ERR_OR_ZERO(c); 2055 if (ret) 2056 goto err; 2057 2058 down_write(&c->state_lock); 2059 darray_for_each(sbs, sb) { 2060 ret = bch2_dev_attach_bdev(c, sb); 2061 if (ret) { 2062 up_write(&c->state_lock); 2063 goto err; 2064 } 2065 } 2066 up_write(&c->state_lock); 2067 2068 if (!bch2_fs_may_start(c)) { 2069 ret = -BCH_ERR_insufficient_devices_to_start; 2070 goto err_print; 2071 } 2072 2073 if (!c->opts.nostart) { 2074 ret = bch2_fs_start(c); 2075 if (ret) 2076 goto err; 2077 } 2078 out: 2079 darray_for_each(sbs, sb) 2080 bch2_free_super(sb); 2081 darray_exit(&sbs); 2082 printbuf_exit(&errbuf); 2083 module_put(THIS_MODULE); 2084 return c; 2085 err_print: 2086 pr_err("bch_fs_open err opening %s: %s", 2087 devices[0], bch2_err_str(ret)); 2088 err: 2089 if (!IS_ERR_OR_NULL(c)) 2090 bch2_fs_stop(c); 2091 c = ERR_PTR(ret); 2092 goto out; 2093 } 2094 2095 /* Global interfaces/init */ 2096 2097 static void bcachefs_exit(void) 2098 { 2099 bch2_debug_exit(); 2100 bch2_vfs_exit(); 2101 bch2_chardev_exit(); 2102 bch2_btree_key_cache_exit(); 2103 if (bcachefs_kset) 2104 kset_unregister(bcachefs_kset); 2105 } 2106 2107 static int __init bcachefs_init(void) 2108 { 2109 bch2_bkey_pack_test(); 2110 2111 if (!(bcachefs_kset = kset_create_and_add("bcachefs", NULL, fs_kobj)) || 2112 bch2_btree_key_cache_init() || 2113 bch2_chardev_init() || 2114 bch2_vfs_init() || 2115 bch2_debug_init()) 2116 goto err; 2117 2118 return 0; 2119 err: 2120 bcachefs_exit(); 2121 return -ENOMEM; 2122 } 2123 2124 #define BCH_DEBUG_PARAM(name, description) \ 2125 bool bch2_##name; \ 2126 module_param_named(name, bch2_##name, bool, 0644); \ 2127 MODULE_PARM_DESC(name, description); 2128 BCH_DEBUG_PARAMS() 2129 #undef BCH_DEBUG_PARAM 2130 2131 __maybe_unused 2132 static unsigned bch2_metadata_version = bcachefs_metadata_version_current; 2133 module_param_named(version, bch2_metadata_version, uint, 0400); 2134 2135 module_exit(bcachefs_exit); 2136 module_init(bcachefs_init); 2137