1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _BCACHEFS_H 3 #define _BCACHEFS_H 4 5 /* 6 * SOME HIGH LEVEL CODE DOCUMENTATION: 7 * 8 * Bcache mostly works with cache sets, cache devices, and backing devices. 9 * 10 * Support for multiple cache devices hasn't quite been finished off yet, but 11 * it's about 95% plumbed through. A cache set and its cache devices is sort of 12 * like a md raid array and its component devices. Most of the code doesn't care 13 * about individual cache devices, the main abstraction is the cache set. 14 * 15 * Multiple cache devices is intended to give us the ability to mirror dirty 16 * cached data and metadata, without mirroring clean cached data. 17 * 18 * Backing devices are different, in that they have a lifetime independent of a 19 * cache set. When you register a newly formatted backing device it'll come up 20 * in passthrough mode, and then you can attach and detach a backing device from 21 * a cache set at runtime - while it's mounted and in use. Detaching implicitly 22 * invalidates any cached data for that backing device. 23 * 24 * A cache set can have multiple (many) backing devices attached to it. 25 * 26 * There's also flash only volumes - this is the reason for the distinction 27 * between struct cached_dev and struct bcache_device. A flash only volume 28 * works much like a bcache device that has a backing device, except the 29 * "cached" data is always dirty. The end result is that we get thin 30 * provisioning with very little additional code. 31 * 32 * Flash only volumes work but they're not production ready because the moving 33 * garbage collector needs more work. More on that later. 34 * 35 * BUCKETS/ALLOCATION: 36 * 37 * Bcache is primarily designed for caching, which means that in normal 38 * operation all of our available space will be allocated. Thus, we need an 39 * efficient way of deleting things from the cache so we can write new things to 40 * it. 41 * 42 * To do this, we first divide the cache device up into buckets. A bucket is the 43 * unit of allocation; they're typically around 1 mb - anywhere from 128k to 2M+ 44 * works efficiently. 45 * 46 * Each bucket has a 16 bit priority, and an 8 bit generation associated with 47 * it. The gens and priorities for all the buckets are stored contiguously and 48 * packed on disk (in a linked list of buckets - aside from the superblock, all 49 * of bcache's metadata is stored in buckets). 50 * 51 * The priority is used to implement an LRU. We reset a bucket's priority when 52 * we allocate it or on cache it, and every so often we decrement the priority 53 * of each bucket. It could be used to implement something more sophisticated, 54 * if anyone ever gets around to it. 55 * 56 * The generation is used for invalidating buckets. Each pointer also has an 8 57 * bit generation embedded in it; for a pointer to be considered valid, its gen 58 * must match the gen of the bucket it points into. Thus, to reuse a bucket all 59 * we have to do is increment its gen (and write its new gen to disk; we batch 60 * this up). 61 * 62 * Bcache is entirely COW - we never write twice to a bucket, even buckets that 63 * contain metadata (including btree nodes). 64 * 65 * THE BTREE: 66 * 67 * Bcache is in large part design around the btree. 68 * 69 * At a high level, the btree is just an index of key -> ptr tuples. 70 * 71 * Keys represent extents, and thus have a size field. Keys also have a variable 72 * number of pointers attached to them (potentially zero, which is handy for 73 * invalidating the cache). 74 * 75 * The key itself is an inode:offset pair. The inode number corresponds to a 76 * backing device or a flash only volume. The offset is the ending offset of the 77 * extent within the inode - not the starting offset; this makes lookups 78 * slightly more convenient. 79 * 80 * Pointers contain the cache device id, the offset on that device, and an 8 bit 81 * generation number. More on the gen later. 82 * 83 * Index lookups are not fully abstracted - cache lookups in particular are 84 * still somewhat mixed in with the btree code, but things are headed in that 85 * direction. 86 * 87 * Updates are fairly well abstracted, though. There are two different ways of 88 * updating the btree; insert and replace. 89 * 90 * BTREE_INSERT will just take a list of keys and insert them into the btree - 91 * overwriting (possibly only partially) any extents they overlap with. This is 92 * used to update the index after a write. 93 * 94 * BTREE_REPLACE is really cmpxchg(); it inserts a key into the btree iff it is 95 * overwriting a key that matches another given key. This is used for inserting 96 * data into the cache after a cache miss, and for background writeback, and for 97 * the moving garbage collector. 98 * 99 * There is no "delete" operation; deleting things from the index is 100 * accomplished by either by invalidating pointers (by incrementing a bucket's 101 * gen) or by inserting a key with 0 pointers - which will overwrite anything 102 * previously present at that location in the index. 103 * 104 * This means that there are always stale/invalid keys in the btree. They're 105 * filtered out by the code that iterates through a btree node, and removed when 106 * a btree node is rewritten. 107 * 108 * BTREE NODES: 109 * 110 * Our unit of allocation is a bucket, and we can't arbitrarily allocate and 111 * free smaller than a bucket - so, that's how big our btree nodes are. 112 * 113 * (If buckets are really big we'll only use part of the bucket for a btree node 114 * - no less than 1/4th - but a bucket still contains no more than a single 115 * btree node. I'd actually like to change this, but for now we rely on the 116 * bucket's gen for deleting btree nodes when we rewrite/split a node.) 117 * 118 * Anyways, btree nodes are big - big enough to be inefficient with a textbook 119 * btree implementation. 120 * 121 * The way this is solved is that btree nodes are internally log structured; we 122 * can append new keys to an existing btree node without rewriting it. This 123 * means each set of keys we write is sorted, but the node is not. 124 * 125 * We maintain this log structure in memory - keeping 1Mb of keys sorted would 126 * be expensive, and we have to distinguish between the keys we have written and 127 * the keys we haven't. So to do a lookup in a btree node, we have to search 128 * each sorted set. But we do merge written sets together lazily, so the cost of 129 * these extra searches is quite low (normally most of the keys in a btree node 130 * will be in one big set, and then there'll be one or two sets that are much 131 * smaller). 132 * 133 * This log structure makes bcache's btree more of a hybrid between a 134 * conventional btree and a compacting data structure, with some of the 135 * advantages of both. 136 * 137 * GARBAGE COLLECTION: 138 * 139 * We can't just invalidate any bucket - it might contain dirty data or 140 * metadata. If it once contained dirty data, other writes might overwrite it 141 * later, leaving no valid pointers into that bucket in the index. 142 * 143 * Thus, the primary purpose of garbage collection is to find buckets to reuse. 144 * It also counts how much valid data it each bucket currently contains, so that 145 * allocation can reuse buckets sooner when they've been mostly overwritten. 146 * 147 * It also does some things that are really internal to the btree 148 * implementation. If a btree node contains pointers that are stale by more than 149 * some threshold, it rewrites the btree node to avoid the bucket's generation 150 * wrapping around. It also merges adjacent btree nodes if they're empty enough. 151 * 152 * THE JOURNAL: 153 * 154 * Bcache's journal is not necessary for consistency; we always strictly 155 * order metadata writes so that the btree and everything else is consistent on 156 * disk in the event of an unclean shutdown, and in fact bcache had writeback 157 * caching (with recovery from unclean shutdown) before journalling was 158 * implemented. 159 * 160 * Rather, the journal is purely a performance optimization; we can't complete a 161 * write until we've updated the index on disk, otherwise the cache would be 162 * inconsistent in the event of an unclean shutdown. This means that without the 163 * journal, on random write workloads we constantly have to update all the leaf 164 * nodes in the btree, and those writes will be mostly empty (appending at most 165 * a few keys each) - highly inefficient in terms of amount of metadata writes, 166 * and it puts more strain on the various btree resorting/compacting code. 167 * 168 * The journal is just a log of keys we've inserted; on startup we just reinsert 169 * all the keys in the open journal entries. That means that when we're updating 170 * a node in the btree, we can wait until a 4k block of keys fills up before 171 * writing them out. 172 * 173 * For simplicity, we only journal updates to leaf nodes; updates to parent 174 * nodes are rare enough (since our leaf nodes are huge) that it wasn't worth 175 * the complexity to deal with journalling them (in particular, journal replay) 176 * - updates to non leaf nodes just happen synchronously (see btree_split()). 177 */ 178 179 #undef pr_fmt 180 #ifdef __KERNEL__ 181 #define pr_fmt(fmt) "bcachefs: %s() " fmt "\n", __func__ 182 #else 183 #define pr_fmt(fmt) "%s() " fmt "\n", __func__ 184 #endif 185 186 #include <linux/backing-dev-defs.h> 187 #include <linux/bug.h> 188 #include <linux/bio.h> 189 #include <linux/closure.h> 190 #include <linux/kobject.h> 191 #include <linux/list.h> 192 #include <linux/math64.h> 193 #include <linux/mutex.h> 194 #include <linux/percpu-refcount.h> 195 #include <linux/percpu-rwsem.h> 196 #include <linux/refcount.h> 197 #include <linux/rhashtable.h> 198 #include <linux/rwsem.h> 199 #include <linux/semaphore.h> 200 #include <linux/seqlock.h> 201 #include <linux/shrinker.h> 202 #include <linux/srcu.h> 203 #include <linux/types.h> 204 #include <linux/workqueue.h> 205 #include <linux/zstd.h> 206 #include <linux/unicode.h> 207 208 #include "bcachefs_format.h" 209 #include "btree_journal_iter_types.h" 210 #include "disk_accounting_types.h" 211 #include "errcode.h" 212 #include "fifo.h" 213 #include "nocow_locking_types.h" 214 #include "opts.h" 215 #include "recovery_passes_types.h" 216 #include "sb-errors_types.h" 217 #include "seqmutex.h" 218 #include "time_stats.h" 219 #include "util.h" 220 221 #ifdef CONFIG_BCACHEFS_DEBUG 222 #define BCH_WRITE_REF_DEBUG 223 #endif 224 225 #ifndef dynamic_fault 226 #define dynamic_fault(...) 0 227 #endif 228 229 #define race_fault(...) dynamic_fault("bcachefs:race") 230 231 #define count_event(_c, _name) this_cpu_inc((_c)->counters[BCH_COUNTER_##_name]) 232 233 #define trace_and_count(_c, _name, ...) \ 234 do { \ 235 count_event(_c, _name); \ 236 trace_##_name(__VA_ARGS__); \ 237 } while (0) 238 239 #define bch2_fs_init_fault(name) \ 240 dynamic_fault("bcachefs:bch_fs_init:" name) 241 #define bch2_meta_read_fault(name) \ 242 dynamic_fault("bcachefs:meta:read:" name) 243 #define bch2_meta_write_fault(name) \ 244 dynamic_fault("bcachefs:meta:write:" name) 245 246 #ifdef __KERNEL__ 247 #define BCACHEFS_LOG_PREFIX 248 #endif 249 250 #ifdef BCACHEFS_LOG_PREFIX 251 252 #define bch2_log_msg(_c, fmt) "bcachefs (%s): " fmt, ((_c)->name) 253 #define bch2_fmt_dev(_ca, fmt) "bcachefs (%s): " fmt "\n", ((_ca)->name) 254 #define bch2_fmt_dev_offset(_ca, _offset, fmt) "bcachefs (%s sector %llu): " fmt "\n", ((_ca)->name), (_offset) 255 #define bch2_fmt_inum(_c, _inum, fmt) "bcachefs (%s inum %llu): " fmt "\n", ((_c)->name), (_inum) 256 #define bch2_fmt_inum_offset(_c, _inum, _offset, fmt) \ 257 "bcachefs (%s inum %llu offset %llu): " fmt "\n", ((_c)->name), (_inum), (_offset) 258 259 #else 260 261 #define bch2_log_msg(_c, fmt) fmt 262 #define bch2_fmt_dev(_ca, fmt) "%s: " fmt "\n", ((_ca)->name) 263 #define bch2_fmt_dev_offset(_ca, _offset, fmt) "%s sector %llu: " fmt "\n", ((_ca)->name), (_offset) 264 #define bch2_fmt_inum(_c, _inum, fmt) "inum %llu: " fmt "\n", (_inum) 265 #define bch2_fmt_inum_offset(_c, _inum, _offset, fmt) \ 266 "inum %llu offset %llu: " fmt "\n", (_inum), (_offset) 267 268 #endif 269 270 #define bch2_fmt(_c, fmt) bch2_log_msg(_c, fmt "\n") 271 272 void bch2_print_str(struct bch_fs *, const char *); 273 274 __printf(2, 3) 275 void bch2_print_opts(struct bch_opts *, const char *, ...); 276 277 __printf(2, 3) 278 void __bch2_print(struct bch_fs *c, const char *fmt, ...); 279 280 #define maybe_dev_to_fs(_c) _Generic((_c), \ 281 struct bch_dev *: ((struct bch_dev *) (_c))->fs, \ 282 struct bch_fs *: (_c)) 283 284 #define bch2_print(_c, ...) __bch2_print(maybe_dev_to_fs(_c), __VA_ARGS__) 285 286 #define bch2_print_ratelimited(_c, ...) \ 287 do { \ 288 static DEFINE_RATELIMIT_STATE(_rs, \ 289 DEFAULT_RATELIMIT_INTERVAL, \ 290 DEFAULT_RATELIMIT_BURST); \ 291 \ 292 if (__ratelimit(&_rs)) \ 293 bch2_print(_c, __VA_ARGS__); \ 294 } while (0) 295 296 #define bch_info(c, fmt, ...) \ 297 bch2_print(c, KERN_INFO bch2_fmt(c, fmt), ##__VA_ARGS__) 298 #define bch_info_ratelimited(c, fmt, ...) \ 299 bch2_print_ratelimited(c, KERN_INFO bch2_fmt(c, fmt), ##__VA_ARGS__) 300 #define bch_notice(c, fmt, ...) \ 301 bch2_print(c, KERN_NOTICE bch2_fmt(c, fmt), ##__VA_ARGS__) 302 #define bch_warn(c, fmt, ...) \ 303 bch2_print(c, KERN_WARNING bch2_fmt(c, fmt), ##__VA_ARGS__) 304 #define bch_warn_ratelimited(c, fmt, ...) \ 305 bch2_print_ratelimited(c, KERN_WARNING bch2_fmt(c, fmt), ##__VA_ARGS__) 306 307 #define bch_err(c, fmt, ...) \ 308 bch2_print(c, KERN_ERR bch2_fmt(c, fmt), ##__VA_ARGS__) 309 #define bch_err_dev(ca, fmt, ...) \ 310 bch2_print(c, KERN_ERR bch2_fmt_dev(ca, fmt), ##__VA_ARGS__) 311 #define bch_err_dev_offset(ca, _offset, fmt, ...) \ 312 bch2_print(c, KERN_ERR bch2_fmt_dev_offset(ca, _offset, fmt), ##__VA_ARGS__) 313 #define bch_err_inum(c, _inum, fmt, ...) \ 314 bch2_print(c, KERN_ERR bch2_fmt_inum(c, _inum, fmt), ##__VA_ARGS__) 315 #define bch_err_inum_offset(c, _inum, _offset, fmt, ...) \ 316 bch2_print(c, KERN_ERR bch2_fmt_inum_offset(c, _inum, _offset, fmt), ##__VA_ARGS__) 317 318 #define bch_err_ratelimited(c, fmt, ...) \ 319 bch2_print_ratelimited(c, KERN_ERR bch2_fmt(c, fmt), ##__VA_ARGS__) 320 #define bch_err_dev_ratelimited(ca, fmt, ...) \ 321 bch2_print_ratelimited(ca, KERN_ERR bch2_fmt_dev(ca, fmt), ##__VA_ARGS__) 322 #define bch_err_dev_offset_ratelimited(ca, _offset, fmt, ...) \ 323 bch2_print_ratelimited(ca, KERN_ERR bch2_fmt_dev_offset(ca, _offset, fmt), ##__VA_ARGS__) 324 #define bch_err_inum_ratelimited(c, _inum, fmt, ...) \ 325 bch2_print_ratelimited(c, KERN_ERR bch2_fmt_inum(c, _inum, fmt), ##__VA_ARGS__) 326 #define bch_err_inum_offset_ratelimited(c, _inum, _offset, fmt, ...) \ 327 bch2_print_ratelimited(c, KERN_ERR bch2_fmt_inum_offset(c, _inum, _offset, fmt), ##__VA_ARGS__) 328 329 static inline bool should_print_err(int err) 330 { 331 return err && !bch2_err_matches(err, BCH_ERR_transaction_restart); 332 } 333 334 #define bch_err_fn(_c, _ret) \ 335 do { \ 336 if (should_print_err(_ret)) \ 337 bch_err(_c, "%s(): error %s", __func__, bch2_err_str(_ret));\ 338 } while (0) 339 340 #define bch_err_fn_ratelimited(_c, _ret) \ 341 do { \ 342 if (should_print_err(_ret)) \ 343 bch_err_ratelimited(_c, "%s(): error %s", __func__, bch2_err_str(_ret));\ 344 } while (0) 345 346 #define bch_err_msg(_c, _ret, _msg, ...) \ 347 do { \ 348 if (should_print_err(_ret)) \ 349 bch_err(_c, "%s(): error " _msg " %s", __func__, \ 350 ##__VA_ARGS__, bch2_err_str(_ret)); \ 351 } while (0) 352 353 #define bch_verbose(c, fmt, ...) \ 354 do { \ 355 if ((c)->opts.verbose) \ 356 bch_info(c, fmt, ##__VA_ARGS__); \ 357 } while (0) 358 359 #define bch_verbose_ratelimited(c, fmt, ...) \ 360 do { \ 361 if ((c)->opts.verbose) \ 362 bch_info_ratelimited(c, fmt, ##__VA_ARGS__); \ 363 } while (0) 364 365 #define pr_verbose_init(opts, fmt, ...) \ 366 do { \ 367 if (opt_get(opts, verbose)) \ 368 pr_info(fmt, ##__VA_ARGS__); \ 369 } while (0) 370 371 /* Parameters that are useful for debugging, but should always be compiled in: */ 372 #define BCH_DEBUG_PARAMS_ALWAYS() \ 373 BCH_DEBUG_PARAM(key_merging_disabled, \ 374 "Disables merging of extents") \ 375 BCH_DEBUG_PARAM(btree_node_merging_disabled, \ 376 "Disables merging of btree nodes") \ 377 BCH_DEBUG_PARAM(btree_gc_always_rewrite, \ 378 "Causes mark and sweep to compact and rewrite every " \ 379 "btree node it traverses") \ 380 BCH_DEBUG_PARAM(btree_gc_rewrite_disabled, \ 381 "Disables rewriting of btree nodes during mark and sweep")\ 382 BCH_DEBUG_PARAM(btree_shrinker_disabled, \ 383 "Disables the shrinker callback for the btree node cache")\ 384 BCH_DEBUG_PARAM(verify_btree_ondisk, \ 385 "Reread btree nodes at various points to verify the " \ 386 "mergesort in the read path against modifications " \ 387 "done in memory") \ 388 BCH_DEBUG_PARAM(verify_all_btree_replicas, \ 389 "When reading btree nodes, read all replicas and " \ 390 "compare them") \ 391 BCH_DEBUG_PARAM(backpointers_no_use_write_buffer, \ 392 "Don't use the write buffer for backpointers, enabling "\ 393 "extra runtime checks") 394 395 /* Parameters that should only be compiled in debug mode: */ 396 #define BCH_DEBUG_PARAMS_DEBUG() \ 397 BCH_DEBUG_PARAM(expensive_debug_checks, \ 398 "Enables various runtime debugging checks that " \ 399 "significantly affect performance") \ 400 BCH_DEBUG_PARAM(debug_check_iterators, \ 401 "Enables extra verification for btree iterators") \ 402 BCH_DEBUG_PARAM(debug_check_btree_accounting, \ 403 "Verify btree accounting for keys within a node") \ 404 BCH_DEBUG_PARAM(journal_seq_verify, \ 405 "Store the journal sequence number in the version " \ 406 "number of every btree key, and verify that btree " \ 407 "update ordering is preserved during recovery") \ 408 BCH_DEBUG_PARAM(inject_invalid_keys, \ 409 "Store the journal sequence number in the version " \ 410 "number of every btree key, and verify that btree " \ 411 "update ordering is preserved during recovery") \ 412 BCH_DEBUG_PARAM(test_alloc_startup, \ 413 "Force allocator startup to use the slowpath where it" \ 414 "can't find enough free buckets without invalidating" \ 415 "cached data") \ 416 BCH_DEBUG_PARAM(force_reconstruct_read, \ 417 "Force reads to use the reconstruct path, when reading" \ 418 "from erasure coded extents") \ 419 BCH_DEBUG_PARAM(test_restart_gc, \ 420 "Test restarting mark and sweep gc when bucket gens change") 421 422 #define BCH_DEBUG_PARAMS_ALL() BCH_DEBUG_PARAMS_ALWAYS() BCH_DEBUG_PARAMS_DEBUG() 423 424 #ifdef CONFIG_BCACHEFS_DEBUG 425 #define BCH_DEBUG_PARAMS() BCH_DEBUG_PARAMS_ALL() 426 #else 427 #define BCH_DEBUG_PARAMS() BCH_DEBUG_PARAMS_ALWAYS() 428 #endif 429 430 #define BCH_DEBUG_PARAM(name, description) extern bool bch2_##name; 431 BCH_DEBUG_PARAMS() 432 #undef BCH_DEBUG_PARAM 433 434 #ifndef CONFIG_BCACHEFS_DEBUG 435 #define BCH_DEBUG_PARAM(name, description) static const __maybe_unused bool bch2_##name; 436 BCH_DEBUG_PARAMS_DEBUG() 437 #undef BCH_DEBUG_PARAM 438 #endif 439 440 #define BCH_TIME_STATS() \ 441 x(btree_node_mem_alloc) \ 442 x(btree_node_split) \ 443 x(btree_node_compact) \ 444 x(btree_node_merge) \ 445 x(btree_node_sort) \ 446 x(btree_node_read) \ 447 x(btree_node_read_done) \ 448 x(btree_node_write) \ 449 x(btree_interior_update_foreground) \ 450 x(btree_interior_update_total) \ 451 x(btree_gc) \ 452 x(data_write) \ 453 x(data_read) \ 454 x(data_promote) \ 455 x(journal_flush_write) \ 456 x(journal_noflush_write) \ 457 x(journal_flush_seq) \ 458 x(blocked_journal_low_on_space) \ 459 x(blocked_journal_low_on_pin) \ 460 x(blocked_journal_max_in_flight) \ 461 x(blocked_journal_max_open) \ 462 x(blocked_key_cache_flush) \ 463 x(blocked_allocate) \ 464 x(blocked_allocate_open_bucket) \ 465 x(blocked_write_buffer_full) \ 466 x(nocow_lock_contended) 467 468 enum bch_time_stats { 469 #define x(name) BCH_TIME_##name, 470 BCH_TIME_STATS() 471 #undef x 472 BCH_TIME_STAT_NR 473 }; 474 475 #include "alloc_types.h" 476 #include "btree_gc_types.h" 477 #include "btree_types.h" 478 #include "btree_node_scan_types.h" 479 #include "btree_write_buffer_types.h" 480 #include "buckets_types.h" 481 #include "buckets_waiting_for_journal_types.h" 482 #include "clock_types.h" 483 #include "disk_groups_types.h" 484 #include "ec_types.h" 485 #include "journal_types.h" 486 #include "keylist_types.h" 487 #include "quota_types.h" 488 #include "rebalance_types.h" 489 #include "replicas_types.h" 490 #include "sb-members_types.h" 491 #include "subvolume_types.h" 492 #include "super_types.h" 493 #include "thread_with_file_types.h" 494 495 /* Number of nodes btree coalesce will try to coalesce at once */ 496 #define GC_MERGE_NODES 4U 497 498 /* Maximum number of nodes we might need to allocate atomically: */ 499 #define BTREE_RESERVE_MAX (BTREE_MAX_DEPTH + (BTREE_MAX_DEPTH - 1)) 500 501 /* Size of the freelist we allocate btree nodes from: */ 502 #define BTREE_NODE_RESERVE (BTREE_RESERVE_MAX * 4) 503 504 #define BTREE_NODE_OPEN_BUCKET_RESERVE (BTREE_RESERVE_MAX * BCH_REPLICAS_MAX) 505 506 struct btree; 507 508 struct io_count { 509 u64 sectors[2][BCH_DATA_NR]; 510 }; 511 512 struct discard_in_flight { 513 bool in_progress:1; 514 u64 bucket:63; 515 }; 516 517 struct bch_dev { 518 struct kobject kobj; 519 #ifdef CONFIG_BCACHEFS_DEBUG 520 atomic_long_t ref; 521 bool dying; 522 unsigned long last_put; 523 #else 524 struct percpu_ref ref; 525 #endif 526 struct completion ref_completion; 527 struct percpu_ref io_ref[2]; 528 struct completion io_ref_completion[2]; 529 530 struct bch_fs *fs; 531 532 u8 dev_idx; 533 /* 534 * Cached version of this device's member info from superblock 535 * Committed by bch2_write_super() -> bch_fs_mi_update() 536 */ 537 struct bch_member_cpu mi; 538 atomic64_t errors[BCH_MEMBER_ERROR_NR]; 539 unsigned long write_errors_start; 540 541 __uuid_t uuid; 542 char name[BDEVNAME_SIZE]; 543 544 struct bch_sb_handle disk_sb; 545 struct bch_sb *sb_read_scratch; 546 int sb_write_error; 547 dev_t dev; 548 atomic_t flush_seq; 549 550 struct bch_devs_mask self; 551 552 /* 553 * Buckets: 554 * Per-bucket arrays are protected by either rcu_read_lock or 555 * state_lock, for device resize. 556 */ 557 GENRADIX(struct bucket) buckets_gc; 558 struct bucket_gens __rcu *bucket_gens; 559 u8 *oldest_gen; 560 unsigned long *buckets_nouse; 561 562 unsigned long *bucket_backpointer_mismatches; 563 unsigned long *bucket_backpointer_empty; 564 565 struct bch_dev_usage_full __percpu 566 *usage; 567 568 /* Allocator: */ 569 u64 alloc_cursor[3]; 570 571 unsigned nr_open_buckets; 572 unsigned nr_partial_buckets; 573 unsigned nr_btree_reserve; 574 575 size_t inc_gen_needs_gc; 576 size_t inc_gen_really_needs_gc; 577 size_t buckets_waiting_on_journal; 578 579 struct work_struct invalidate_work; 580 struct work_struct discard_work; 581 struct mutex discard_buckets_in_flight_lock; 582 DARRAY(struct discard_in_flight) discard_buckets_in_flight; 583 struct work_struct discard_fast_work; 584 585 atomic64_t rebalance_work; 586 587 struct journal_device journal; 588 u64 prev_journal_sector; 589 590 struct work_struct io_error_work; 591 592 /* The rest of this all shows up in sysfs */ 593 atomic64_t cur_latency[2]; 594 struct bch2_time_stats_quantiles io_latency[2]; 595 596 #define CONGESTED_MAX 1024 597 atomic_t congested; 598 u64 congested_last; 599 600 struct io_count __percpu *io_done; 601 }; 602 603 /* 604 * initial_gc_unfixed 605 * error 606 * topology error 607 */ 608 609 #define BCH_FS_FLAGS() \ 610 x(new_fs) \ 611 x(started) \ 612 x(clean_recovery) \ 613 x(btree_running) \ 614 x(accounting_replay_done) \ 615 x(may_go_rw) \ 616 x(rw) \ 617 x(was_rw) \ 618 x(stopping) \ 619 x(emergency_ro) \ 620 x(going_ro) \ 621 x(write_disable_complete) \ 622 x(clean_shutdown) \ 623 x(recovery_running) \ 624 x(fsck_running) \ 625 x(initial_gc_unfixed) \ 626 x(need_delete_dead_snapshots) \ 627 x(error) \ 628 x(topology_error) \ 629 x(errors_fixed) \ 630 x(errors_not_fixed) \ 631 x(no_invalid_checks) \ 632 x(discard_mount_opt_set) \ 633 634 enum bch_fs_flags { 635 #define x(n) BCH_FS_##n, 636 BCH_FS_FLAGS() 637 #undef x 638 }; 639 640 struct btree_debug { 641 unsigned id; 642 }; 643 644 #define BCH_TRANSACTIONS_NR 128 645 646 struct btree_transaction_stats { 647 struct bch2_time_stats duration; 648 struct bch2_time_stats lock_hold_times; 649 struct mutex lock; 650 unsigned nr_max_paths; 651 unsigned journal_entries_size; 652 unsigned max_mem; 653 char *max_paths_text; 654 }; 655 656 struct bch_fs_pcpu { 657 u64 sectors_available; 658 }; 659 660 struct journal_seq_blacklist_table { 661 size_t nr; 662 struct journal_seq_blacklist_table_entry { 663 u64 start; 664 u64 end; 665 bool dirty; 666 } entries[]; 667 }; 668 669 struct btree_trans_buf { 670 struct btree_trans *trans; 671 }; 672 673 #define BCACHEFS_ROOT_SUBVOL_INUM \ 674 ((subvol_inum) { BCACHEFS_ROOT_SUBVOL, BCACHEFS_ROOT_INO }) 675 676 #define BCH_WRITE_REFS() \ 677 x(journal) \ 678 x(trans) \ 679 x(write) \ 680 x(promote) \ 681 x(node_rewrite) \ 682 x(stripe_create) \ 683 x(stripe_delete) \ 684 x(reflink) \ 685 x(fallocate) \ 686 x(fsync) \ 687 x(dio_write) \ 688 x(discard) \ 689 x(discard_fast) \ 690 x(check_discard_freespace_key) \ 691 x(invalidate) \ 692 x(delete_dead_snapshots) \ 693 x(gc_gens) \ 694 x(snapshot_delete_pagecache) \ 695 x(sysfs) \ 696 x(btree_write_buffer) \ 697 x(btree_node_scrub) 698 699 enum bch_write_ref { 700 #define x(n) BCH_WRITE_REF_##n, 701 BCH_WRITE_REFS() 702 #undef x 703 BCH_WRITE_REF_NR, 704 }; 705 706 #define BCH_FS_DEFAULT_UTF8_ENCODING UNICODE_AGE(12, 1, 0) 707 708 struct bch_fs { 709 struct closure cl; 710 711 struct list_head list; 712 struct kobject kobj; 713 struct kobject counters_kobj; 714 struct kobject internal; 715 struct kobject opts_dir; 716 struct kobject time_stats; 717 unsigned long flags; 718 719 int minor; 720 struct device *chardev; 721 struct super_block *vfs_sb; 722 dev_t dev; 723 char name[40]; 724 struct stdio_redirect *stdio; 725 struct task_struct *stdio_filter; 726 727 /* ro/rw, add/remove/resize devices: */ 728 struct rw_semaphore state_lock; 729 730 /* Counts outstanding writes, for clean transition to read-only */ 731 #ifdef BCH_WRITE_REF_DEBUG 732 atomic_long_t writes[BCH_WRITE_REF_NR]; 733 #else 734 struct percpu_ref writes; 735 #endif 736 /* 737 * Certain operations are only allowed in single threaded mode, during 738 * recovery, and we want to assert that this is the case: 739 */ 740 struct task_struct *recovery_task; 741 742 /* 743 * Analagous to c->writes, for asynchronous ops that don't necessarily 744 * need fs to be read-write 745 */ 746 refcount_t ro_ref; 747 wait_queue_head_t ro_ref_wait; 748 749 struct work_struct read_only_work; 750 751 struct bch_dev __rcu *devs[BCH_SB_MEMBERS_MAX]; 752 753 struct bch_accounting_mem accounting; 754 755 struct bch_replicas_cpu replicas; 756 struct bch_replicas_cpu replicas_gc; 757 struct mutex replicas_gc_lock; 758 759 struct journal_entry_res btree_root_journal_res; 760 struct journal_entry_res clock_journal_res; 761 762 struct bch_disk_groups_cpu __rcu *disk_groups; 763 764 struct bch_opts opts; 765 766 /* Updated by bch2_sb_update():*/ 767 struct { 768 __uuid_t uuid; 769 __uuid_t user_uuid; 770 771 u16 version; 772 u16 version_incompat; 773 u16 version_incompat_allowed; 774 u16 version_min; 775 u16 version_upgrade_complete; 776 777 u8 nr_devices; 778 u8 clean; 779 780 u8 encryption_type; 781 782 u64 time_base_lo; 783 u32 time_base_hi; 784 unsigned time_units_per_sec; 785 unsigned nsec_per_time_unit; 786 u64 features; 787 u64 compat; 788 unsigned long errors_silent[BITS_TO_LONGS(BCH_FSCK_ERR_MAX)]; 789 u64 btrees_lost_data; 790 } sb; 791 792 #ifdef CONFIG_UNICODE 793 struct unicode_map *cf_encoding; 794 #endif 795 796 struct bch_sb_handle disk_sb; 797 798 unsigned short block_bits; /* ilog2(block_size) */ 799 800 u16 btree_foreground_merge_threshold; 801 802 struct closure sb_write; 803 struct mutex sb_lock; 804 805 /* snapshot.c: */ 806 struct snapshot_table __rcu *snapshots; 807 struct mutex snapshot_table_lock; 808 struct rw_semaphore snapshot_create_lock; 809 810 struct work_struct snapshot_delete_work; 811 struct work_struct snapshot_wait_for_pagecache_and_delete_work; 812 snapshot_id_list snapshots_unlinked; 813 struct mutex snapshots_unlinked_lock; 814 815 /* BTREE CACHE */ 816 struct bio_set btree_bio; 817 struct workqueue_struct *btree_read_complete_wq; 818 struct workqueue_struct *btree_write_submit_wq; 819 820 struct btree_root btree_roots_known[BTREE_ID_NR]; 821 DARRAY(struct btree_root) btree_roots_extra; 822 struct mutex btree_root_lock; 823 824 struct btree_cache btree_cache; 825 826 /* 827 * Cache of allocated btree nodes - if we allocate a btree node and 828 * don't use it, if we free it that space can't be reused until going 829 * _all_ the way through the allocator (which exposes us to a livelock 830 * when allocating btree reserves fail halfway through) - instead, we 831 * can stick them here: 832 */ 833 struct btree_alloc btree_reserve_cache[BTREE_NODE_RESERVE * 2]; 834 unsigned btree_reserve_cache_nr; 835 struct mutex btree_reserve_cache_lock; 836 837 mempool_t btree_interior_update_pool; 838 struct list_head btree_interior_update_list; 839 struct list_head btree_interior_updates_unwritten; 840 struct mutex btree_interior_update_lock; 841 struct closure_waitlist btree_interior_update_wait; 842 843 struct workqueue_struct *btree_interior_update_worker; 844 struct work_struct btree_interior_update_work; 845 846 struct workqueue_struct *btree_node_rewrite_worker; 847 struct list_head btree_node_rewrites; 848 struct list_head btree_node_rewrites_pending; 849 spinlock_t btree_node_rewrites_lock; 850 struct closure_waitlist btree_node_rewrites_wait; 851 852 /* btree_io.c: */ 853 spinlock_t btree_write_error_lock; 854 struct btree_write_stats { 855 atomic64_t nr; 856 atomic64_t bytes; 857 } btree_write_stats[BTREE_WRITE_TYPE_NR]; 858 859 /* btree_iter.c: */ 860 struct seqmutex btree_trans_lock; 861 struct list_head btree_trans_list; 862 mempool_t btree_trans_pool; 863 mempool_t btree_trans_mem_pool; 864 struct btree_trans_buf __percpu *btree_trans_bufs; 865 866 struct srcu_struct btree_trans_barrier; 867 bool btree_trans_barrier_initialized; 868 869 struct btree_key_cache btree_key_cache; 870 unsigned btree_key_cache_btrees; 871 872 struct btree_write_buffer btree_write_buffer; 873 874 struct workqueue_struct *btree_update_wq; 875 struct workqueue_struct *btree_io_complete_wq; 876 /* copygc needs its own workqueue for index updates.. */ 877 struct workqueue_struct *copygc_wq; 878 /* 879 * Use a dedicated wq for write ref holder tasks. Required to avoid 880 * dependency problems with other wq tasks that can block on ref 881 * draining, such as read-only transition. 882 */ 883 struct workqueue_struct *write_ref_wq; 884 885 /* ALLOCATION */ 886 struct bch_devs_mask rw_devs[BCH_DATA_NR]; 887 unsigned long rw_devs_change_count; 888 889 u64 capacity; /* sectors */ 890 u64 reserved; /* sectors */ 891 892 /* 893 * When capacity _decreases_ (due to a disk being removed), we 894 * increment capacity_gen - this invalidates outstanding reservations 895 * and forces them to be revalidated 896 */ 897 u32 capacity_gen; 898 unsigned bucket_size_max; 899 900 atomic64_t sectors_available; 901 struct mutex sectors_available_lock; 902 903 struct bch_fs_pcpu __percpu *pcpu; 904 905 struct percpu_rw_semaphore mark_lock; 906 907 seqcount_t usage_lock; 908 struct bch_fs_usage_base __percpu *usage; 909 u64 __percpu *online_reserved; 910 911 unsigned long allocator_last_stuck; 912 913 struct io_clock io_clock[2]; 914 915 /* JOURNAL SEQ BLACKLIST */ 916 struct journal_seq_blacklist_table * 917 journal_seq_blacklist_table; 918 919 /* ALLOCATOR */ 920 spinlock_t freelist_lock; 921 struct closure_waitlist freelist_wait; 922 923 open_bucket_idx_t open_buckets_freelist; 924 open_bucket_idx_t open_buckets_nr_free; 925 struct closure_waitlist open_buckets_wait; 926 struct open_bucket open_buckets[OPEN_BUCKETS_COUNT]; 927 open_bucket_idx_t open_buckets_hash[OPEN_BUCKETS_COUNT]; 928 929 open_bucket_idx_t open_buckets_partial[OPEN_BUCKETS_COUNT]; 930 open_bucket_idx_t open_buckets_partial_nr; 931 932 struct write_point btree_write_point; 933 struct write_point rebalance_write_point; 934 935 struct write_point write_points[WRITE_POINT_MAX]; 936 struct hlist_head write_points_hash[WRITE_POINT_HASH_NR]; 937 struct mutex write_points_hash_lock; 938 unsigned write_points_nr; 939 940 struct buckets_waiting_for_journal buckets_waiting_for_journal; 941 942 /* GARBAGE COLLECTION */ 943 struct work_struct gc_gens_work; 944 unsigned long gc_count; 945 946 enum btree_id gc_gens_btree; 947 struct bpos gc_gens_pos; 948 949 /* 950 * Tracks GC's progress - everything in the range [ZERO_KEY..gc_cur_pos] 951 * has been marked by GC. 952 * 953 * gc_cur_phase is a superset of btree_ids (BTREE_ID_extents etc.) 954 * 955 * Protected by gc_pos_lock. Only written to by GC thread, so GC thread 956 * can read without a lock. 957 */ 958 seqcount_t gc_pos_lock; 959 struct gc_pos gc_pos; 960 961 /* 962 * The allocation code needs gc_mark in struct bucket to be correct, but 963 * it's not while a gc is in progress. 964 */ 965 struct rw_semaphore gc_lock; 966 struct mutex gc_gens_lock; 967 968 /* IO PATH */ 969 struct semaphore io_in_flight; 970 struct bio_set bio_read; 971 struct bio_set bio_read_split; 972 struct bio_set bio_write; 973 struct bio_set replica_set; 974 struct mutex bio_bounce_pages_lock; 975 mempool_t bio_bounce_pages; 976 struct bucket_nocow_lock_table 977 nocow_locks; 978 struct rhashtable promote_table; 979 980 mempool_t compression_bounce[2]; 981 mempool_t compress_workspace[BCH_COMPRESSION_OPT_NR]; 982 size_t zstd_workspace_size; 983 984 struct crypto_sync_skcipher *chacha20; 985 struct crypto_shash *poly1305; 986 987 atomic64_t key_version; 988 989 mempool_t large_bkey_pool; 990 991 /* MOVE.C */ 992 struct list_head moving_context_list; 993 struct mutex moving_context_lock; 994 995 /* REBALANCE */ 996 struct bch_fs_rebalance rebalance; 997 998 /* COPYGC */ 999 struct task_struct *copygc_thread; 1000 struct write_point copygc_write_point; 1001 s64 copygc_wait_at; 1002 s64 copygc_wait; 1003 bool copygc_running; 1004 wait_queue_head_t copygc_running_wq; 1005 1006 /* STRIPES: */ 1007 GENRADIX(struct gc_stripe) gc_stripes; 1008 1009 struct hlist_head ec_stripes_new[32]; 1010 spinlock_t ec_stripes_new_lock; 1011 1012 /* ERASURE CODING */ 1013 struct list_head ec_stripe_head_list; 1014 struct mutex ec_stripe_head_lock; 1015 1016 struct list_head ec_stripe_new_list; 1017 struct mutex ec_stripe_new_lock; 1018 wait_queue_head_t ec_stripe_new_wait; 1019 1020 struct work_struct ec_stripe_create_work; 1021 u64 ec_stripe_hint; 1022 1023 struct work_struct ec_stripe_delete_work; 1024 1025 struct bio_set ec_bioset; 1026 1027 /* REFLINK */ 1028 reflink_gc_table reflink_gc_table; 1029 size_t reflink_gc_nr; 1030 1031 /* fs.c */ 1032 struct list_head vfs_inodes_list; 1033 struct mutex vfs_inodes_lock; 1034 struct rhashtable vfs_inodes_table; 1035 struct rhltable vfs_inodes_by_inum_table; 1036 1037 /* VFS IO PATH - fs-io.c */ 1038 struct bio_set writepage_bioset; 1039 struct bio_set dio_write_bioset; 1040 struct bio_set dio_read_bioset; 1041 struct bio_set nocow_flush_bioset; 1042 1043 /* QUOTAS */ 1044 struct bch_memquota_type quotas[QTYP_NR]; 1045 1046 /* RECOVERY */ 1047 u64 journal_replay_seq_start; 1048 u64 journal_replay_seq_end; 1049 /* 1050 * Two different uses: 1051 * "Has this fsck pass?" - i.e. should this type of error be an 1052 * emergency read-only 1053 * And, in certain situations fsck will rewind to an earlier pass: used 1054 * for signaling to the toplevel code which pass we want to run now. 1055 */ 1056 enum bch_recovery_pass curr_recovery_pass; 1057 enum bch_recovery_pass next_recovery_pass; 1058 /* bitmask of recovery passes that we actually ran */ 1059 u64 recovery_passes_complete; 1060 /* never rewinds version of curr_recovery_pass */ 1061 enum bch_recovery_pass recovery_pass_done; 1062 spinlock_t recovery_pass_lock; 1063 struct semaphore online_fsck_mutex; 1064 1065 /* DEBUG JUNK */ 1066 struct dentry *fs_debug_dir; 1067 struct dentry *btree_debug_dir; 1068 struct btree_debug btree_debug[BTREE_ID_NR]; 1069 struct btree *verify_data; 1070 struct btree_node *verify_ondisk; 1071 struct mutex verify_lock; 1072 1073 /* 1074 * A btree node on disk could have too many bsets for an iterator to fit 1075 * on the stack - have to dynamically allocate them 1076 */ 1077 mempool_t fill_iter; 1078 1079 mempool_t btree_bounce_pool; 1080 1081 struct journal journal; 1082 GENRADIX(struct journal_replay *) journal_entries; 1083 u64 journal_entries_base_seq; 1084 struct journal_keys journal_keys; 1085 struct list_head journal_iters; 1086 1087 struct find_btree_nodes found_btree_nodes; 1088 1089 u64 last_bucket_seq_cleanup; 1090 1091 u64 counters_on_mount[BCH_COUNTER_NR]; 1092 u64 __percpu *counters; 1093 1094 struct bch2_time_stats times[BCH_TIME_STAT_NR]; 1095 1096 struct btree_transaction_stats btree_transaction_stats[BCH_TRANSACTIONS_NR]; 1097 1098 /* ERRORS */ 1099 struct list_head fsck_error_msgs; 1100 struct mutex fsck_error_msgs_lock; 1101 bool fsck_alloc_msgs_err; 1102 1103 bch_sb_errors_cpu fsck_error_counts; 1104 struct mutex fsck_error_counts_lock; 1105 }; 1106 1107 extern struct wait_queue_head bch2_read_only_wait; 1108 1109 static inline void bch2_write_ref_get(struct bch_fs *c, enum bch_write_ref ref) 1110 { 1111 #ifdef BCH_WRITE_REF_DEBUG 1112 atomic_long_inc(&c->writes[ref]); 1113 #else 1114 percpu_ref_get(&c->writes); 1115 #endif 1116 } 1117 1118 static inline bool __bch2_write_ref_tryget(struct bch_fs *c, enum bch_write_ref ref) 1119 { 1120 #ifdef BCH_WRITE_REF_DEBUG 1121 return !test_bit(BCH_FS_going_ro, &c->flags) && 1122 atomic_long_inc_not_zero(&c->writes[ref]); 1123 #else 1124 return percpu_ref_tryget(&c->writes); 1125 #endif 1126 } 1127 1128 static inline bool bch2_write_ref_tryget(struct bch_fs *c, enum bch_write_ref ref) 1129 { 1130 #ifdef BCH_WRITE_REF_DEBUG 1131 return !test_bit(BCH_FS_going_ro, &c->flags) && 1132 atomic_long_inc_not_zero(&c->writes[ref]); 1133 #else 1134 return percpu_ref_tryget_live(&c->writes); 1135 #endif 1136 } 1137 1138 static inline void bch2_write_ref_put(struct bch_fs *c, enum bch_write_ref ref) 1139 { 1140 #ifdef BCH_WRITE_REF_DEBUG 1141 long v = atomic_long_dec_return(&c->writes[ref]); 1142 1143 BUG_ON(v < 0); 1144 if (v) 1145 return; 1146 for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) 1147 if (atomic_long_read(&c->writes[i])) 1148 return; 1149 1150 set_bit(BCH_FS_write_disable_complete, &c->flags); 1151 wake_up(&bch2_read_only_wait); 1152 #else 1153 percpu_ref_put(&c->writes); 1154 #endif 1155 } 1156 1157 static inline bool bch2_ro_ref_tryget(struct bch_fs *c) 1158 { 1159 if (test_bit(BCH_FS_stopping, &c->flags)) 1160 return false; 1161 1162 return refcount_inc_not_zero(&c->ro_ref); 1163 } 1164 1165 static inline void bch2_ro_ref_put(struct bch_fs *c) 1166 { 1167 if (refcount_dec_and_test(&c->ro_ref)) 1168 wake_up(&c->ro_ref_wait); 1169 } 1170 1171 static inline void bch2_set_ra_pages(struct bch_fs *c, unsigned ra_pages) 1172 { 1173 #ifndef NO_BCACHEFS_FS 1174 if (c->vfs_sb) 1175 c->vfs_sb->s_bdi->ra_pages = ra_pages; 1176 #endif 1177 } 1178 1179 static inline unsigned bucket_bytes(const struct bch_dev *ca) 1180 { 1181 return ca->mi.bucket_size << 9; 1182 } 1183 1184 static inline unsigned block_bytes(const struct bch_fs *c) 1185 { 1186 return c->opts.block_size; 1187 } 1188 1189 static inline unsigned block_sectors(const struct bch_fs *c) 1190 { 1191 return c->opts.block_size >> 9; 1192 } 1193 1194 static inline bool btree_id_cached(const struct bch_fs *c, enum btree_id btree) 1195 { 1196 return c->btree_key_cache_btrees & (1U << btree); 1197 } 1198 1199 static inline struct timespec64 bch2_time_to_timespec(const struct bch_fs *c, s64 time) 1200 { 1201 struct timespec64 t; 1202 s64 sec; 1203 s32 rem; 1204 1205 time += c->sb.time_base_lo; 1206 1207 sec = div_s64_rem(time, c->sb.time_units_per_sec, &rem); 1208 1209 set_normalized_timespec64(&t, sec, rem * (s64)c->sb.nsec_per_time_unit); 1210 1211 return t; 1212 } 1213 1214 static inline s64 timespec_to_bch2_time(const struct bch_fs *c, struct timespec64 ts) 1215 { 1216 return (ts.tv_sec * c->sb.time_units_per_sec + 1217 (int) ts.tv_nsec / c->sb.nsec_per_time_unit) - c->sb.time_base_lo; 1218 } 1219 1220 static inline s64 bch2_current_time(const struct bch_fs *c) 1221 { 1222 struct timespec64 now; 1223 1224 ktime_get_coarse_real_ts64(&now); 1225 return timespec_to_bch2_time(c, now); 1226 } 1227 1228 static inline u64 bch2_current_io_time(const struct bch_fs *c, int rw) 1229 { 1230 return max(1ULL, (u64) atomic64_read(&c->io_clock[rw].now) & LRU_TIME_MAX); 1231 } 1232 1233 static inline struct stdio_redirect *bch2_fs_stdio_redirect(struct bch_fs *c) 1234 { 1235 struct stdio_redirect *stdio = c->stdio; 1236 1237 if (c->stdio_filter && c->stdio_filter != current) 1238 stdio = NULL; 1239 return stdio; 1240 } 1241 1242 static inline unsigned metadata_replicas_required(struct bch_fs *c) 1243 { 1244 return min(c->opts.metadata_replicas, 1245 c->opts.metadata_replicas_required); 1246 } 1247 1248 static inline unsigned data_replicas_required(struct bch_fs *c) 1249 { 1250 return min(c->opts.data_replicas, 1251 c->opts.data_replicas_required); 1252 } 1253 1254 #define BKEY_PADDED_ONSTACK(key, pad) \ 1255 struct { struct bkey_i key; __u64 key ## _pad[pad]; } 1256 1257 #endif /* _BCACHEFS_H */ 1258