xref: /linux/drivers/thermal/mediatek/lvts_thermal.c (revision 19ad9f29751ca385262c63f513f75610962c40a0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2023 MediaTek Inc.
4  * Author: Balsam CHIHI <bchihi@baylibre.com>
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/clk-provider.h>
9 #include <linux/delay.h>
10 #include <linux/debugfs.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/kernel.h>
15 #include <linux/nvmem-consumer.h>
16 #include <linux/of.h>
17 #include <linux/platform_device.h>
18 #include <linux/reset.h>
19 #include <linux/thermal.h>
20 #include <dt-bindings/thermal/mediatek,lvts-thermal.h>
21 
22 #include "../thermal_hwmon.h"
23 
24 #define LVTS_MONCTL0(__base)	(__base + 0x0000)
25 #define LVTS_MONCTL1(__base)	(__base + 0x0004)
26 #define LVTS_MONCTL2(__base)	(__base + 0x0008)
27 #define LVTS_MONINT(__base)		(__base + 0x000C)
28 #define LVTS_MONINTSTS(__base)	(__base + 0x0010)
29 #define LVTS_MONIDET0(__base)	(__base + 0x0014)
30 #define LVTS_MONIDET1(__base)	(__base + 0x0018)
31 #define LVTS_MONIDET2(__base)	(__base + 0x001C)
32 #define LVTS_MONIDET3(__base)	(__base + 0x0020)
33 #define LVTS_H2NTHRE(__base)	(__base + 0x0024)
34 #define LVTS_HTHRE(__base)		(__base + 0x0028)
35 #define LVTS_OFFSETH(__base)	(__base + 0x0030)
36 #define LVTS_OFFSETL(__base)	(__base + 0x0034)
37 #define LVTS_MSRCTL0(__base)	(__base + 0x0038)
38 #define LVTS_MSRCTL1(__base)	(__base + 0x003C)
39 #define LVTS_TSSEL(__base)		(__base + 0x0040)
40 #define LVTS_CALSCALE(__base)	(__base + 0x0048)
41 #define LVTS_ID(__base)			(__base + 0x004C)
42 #define LVTS_CONFIG(__base)		(__base + 0x0050)
43 #define LVTS_EDATA00(__base)	(__base + 0x0054)
44 #define LVTS_EDATA01(__base)	(__base + 0x0058)
45 #define LVTS_EDATA02(__base)	(__base + 0x005C)
46 #define LVTS_EDATA03(__base)	(__base + 0x0060)
47 #define LVTS_MSR0(__base)		(__base + 0x0090)
48 #define LVTS_MSR1(__base)		(__base + 0x0094)
49 #define LVTS_MSR2(__base)		(__base + 0x0098)
50 #define LVTS_MSR3(__base)		(__base + 0x009C)
51 #define LVTS_IMMD0(__base)		(__base + 0x00A0)
52 #define LVTS_IMMD1(__base)		(__base + 0x00A4)
53 #define LVTS_IMMD2(__base)		(__base + 0x00A8)
54 #define LVTS_IMMD3(__base)		(__base + 0x00AC)
55 #define LVTS_PROTCTL(__base)	(__base + 0x00C0)
56 #define LVTS_PROTTA(__base)		(__base + 0x00C4)
57 #define LVTS_PROTTB(__base)		(__base + 0x00C8)
58 #define LVTS_PROTTC(__base)		(__base + 0x00CC)
59 #define LVTS_CLKEN(__base)		(__base + 0x00E4)
60 
61 #define LVTS_PERIOD_UNIT			((118 * 1000) / (256 * 38))
62 #define LVTS_GROUP_INTERVAL			1
63 #define LVTS_FILTER_INTERVAL		1
64 #define LVTS_SENSOR_INTERVAL		1
65 #define LVTS_HW_FILTER				0x2
66 #define LVTS_TSSEL_CONF				0x13121110
67 #define LVTS_CALSCALE_CONF			0x300
68 #define LVTS_MONINT_CONF			0x8300318C
69 
70 #define LVTS_MONINT_OFFSET_SENSOR0		0xC
71 #define LVTS_MONINT_OFFSET_SENSOR1		0x180
72 #define LVTS_MONINT_OFFSET_SENSOR2		0x3000
73 #define LVTS_MONINT_OFFSET_SENSOR3		0x3000000
74 
75 #define LVTS_INT_SENSOR0			0x0009001F
76 #define LVTS_INT_SENSOR1			0x001203E0
77 #define LVTS_INT_SENSOR2			0x00247C00
78 #define LVTS_INT_SENSOR3			0x1FC00000
79 
80 #define LVTS_SENSOR_MAX				4
81 #define LVTS_GOLDEN_TEMP_MAX		62
82 #define LVTS_GOLDEN_TEMP_DEFAULT	50
83 #define LVTS_COEFF_A				-250460
84 #define LVTS_COEFF_B				250460
85 
86 #define LVTS_MSR_IMMEDIATE_MODE		0
87 #define LVTS_MSR_FILTERED_MODE		1
88 
89 #define LVTS_HW_SHUTDOWN_MT8195		105000
90 
91 #define LVTS_MINIMUM_THRESHOLD		20000
92 
93 static int golden_temp = LVTS_GOLDEN_TEMP_DEFAULT;
94 static int coeff_b = LVTS_COEFF_B;
95 
96 struct lvts_sensor_data {
97 	int dt_id;
98 };
99 
100 struct lvts_ctrl_data {
101 	struct lvts_sensor_data lvts_sensor[LVTS_SENSOR_MAX];
102 	int cal_offset[LVTS_SENSOR_MAX];
103 	int hw_tshut_temp;
104 	int num_lvts_sensor;
105 	int offset;
106 	int mode;
107 };
108 
109 struct lvts_data {
110 	const struct lvts_ctrl_data *lvts_ctrl;
111 	int num_lvts_ctrl;
112 };
113 
114 struct lvts_sensor {
115 	struct thermal_zone_device *tz;
116 	void __iomem *msr;
117 	void __iomem *base;
118 	int id;
119 	int dt_id;
120 	int low_thresh;
121 	int high_thresh;
122 };
123 
124 struct lvts_ctrl {
125 	struct lvts_sensor sensors[LVTS_SENSOR_MAX];
126 	u32 calibration[LVTS_SENSOR_MAX];
127 	u32 hw_tshut_raw_temp;
128 	int num_lvts_sensor;
129 	int mode;
130 	void __iomem *base;
131 	int low_thresh;
132 	int high_thresh;
133 };
134 
135 struct lvts_domain {
136 	struct lvts_ctrl *lvts_ctrl;
137 	struct reset_control *reset;
138 	struct clk *clk;
139 	int num_lvts_ctrl;
140 	void __iomem *base;
141 	size_t calib_len;
142 	u8 *calib;
143 #ifdef CONFIG_DEBUG_FS
144 	struct dentry *dom_dentry;
145 #endif
146 };
147 
148 #ifdef CONFIG_MTK_LVTS_THERMAL_DEBUGFS
149 
150 #define LVTS_DEBUG_FS_REGS(__reg)		\
151 {						\
152 	.name = __stringify(__reg),		\
153 	.offset = __reg(0),			\
154 }
155 
156 static const struct debugfs_reg32 lvts_regs[] = {
157 	LVTS_DEBUG_FS_REGS(LVTS_MONCTL0),
158 	LVTS_DEBUG_FS_REGS(LVTS_MONCTL1),
159 	LVTS_DEBUG_FS_REGS(LVTS_MONCTL2),
160 	LVTS_DEBUG_FS_REGS(LVTS_MONINT),
161 	LVTS_DEBUG_FS_REGS(LVTS_MONINTSTS),
162 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET0),
163 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET1),
164 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET2),
165 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET3),
166 	LVTS_DEBUG_FS_REGS(LVTS_H2NTHRE),
167 	LVTS_DEBUG_FS_REGS(LVTS_HTHRE),
168 	LVTS_DEBUG_FS_REGS(LVTS_OFFSETH),
169 	LVTS_DEBUG_FS_REGS(LVTS_OFFSETL),
170 	LVTS_DEBUG_FS_REGS(LVTS_MSRCTL0),
171 	LVTS_DEBUG_FS_REGS(LVTS_MSRCTL1),
172 	LVTS_DEBUG_FS_REGS(LVTS_TSSEL),
173 	LVTS_DEBUG_FS_REGS(LVTS_CALSCALE),
174 	LVTS_DEBUG_FS_REGS(LVTS_ID),
175 	LVTS_DEBUG_FS_REGS(LVTS_CONFIG),
176 	LVTS_DEBUG_FS_REGS(LVTS_EDATA00),
177 	LVTS_DEBUG_FS_REGS(LVTS_EDATA01),
178 	LVTS_DEBUG_FS_REGS(LVTS_EDATA02),
179 	LVTS_DEBUG_FS_REGS(LVTS_EDATA03),
180 	LVTS_DEBUG_FS_REGS(LVTS_MSR0),
181 	LVTS_DEBUG_FS_REGS(LVTS_MSR1),
182 	LVTS_DEBUG_FS_REGS(LVTS_MSR2),
183 	LVTS_DEBUG_FS_REGS(LVTS_MSR3),
184 	LVTS_DEBUG_FS_REGS(LVTS_IMMD0),
185 	LVTS_DEBUG_FS_REGS(LVTS_IMMD1),
186 	LVTS_DEBUG_FS_REGS(LVTS_IMMD2),
187 	LVTS_DEBUG_FS_REGS(LVTS_IMMD3),
188 	LVTS_DEBUG_FS_REGS(LVTS_PROTCTL),
189 	LVTS_DEBUG_FS_REGS(LVTS_PROTTA),
190 	LVTS_DEBUG_FS_REGS(LVTS_PROTTB),
191 	LVTS_DEBUG_FS_REGS(LVTS_PROTTC),
192 	LVTS_DEBUG_FS_REGS(LVTS_CLKEN),
193 };
194 
195 static int lvts_debugfs_init(struct device *dev, struct lvts_domain *lvts_td)
196 {
197 	struct debugfs_regset32 *regset;
198 	struct lvts_ctrl *lvts_ctrl;
199 	struct dentry *dentry;
200 	char name[64];
201 	int i;
202 
203 	lvts_td->dom_dentry = debugfs_create_dir(dev_name(dev), NULL);
204 	if (IS_ERR(lvts_td->dom_dentry))
205 		return 0;
206 
207 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
208 
209 		lvts_ctrl = &lvts_td->lvts_ctrl[i];
210 
211 		sprintf(name, "controller%d", i);
212 		dentry = debugfs_create_dir(name, lvts_td->dom_dentry);
213 		if (!dentry)
214 			continue;
215 
216 		regset = devm_kzalloc(dev, sizeof(*regset), GFP_KERNEL);
217 		if (!regset)
218 			continue;
219 
220 		regset->base = lvts_ctrl->base;
221 		regset->regs = lvts_regs;
222 		regset->nregs = ARRAY_SIZE(lvts_regs);
223 
224 		debugfs_create_regset32("registers", 0400, dentry, regset);
225 	}
226 
227 	return 0;
228 }
229 
230 static void lvts_debugfs_exit(struct lvts_domain *lvts_td)
231 {
232 	debugfs_remove_recursive(lvts_td->dom_dentry);
233 }
234 
235 #else
236 
237 static inline int lvts_debugfs_init(struct device *dev,
238 				    struct lvts_domain *lvts_td)
239 {
240 	return 0;
241 }
242 
243 static void lvts_debugfs_exit(struct lvts_domain *lvts_td) { }
244 
245 #endif
246 
247 static int lvts_raw_to_temp(u32 raw_temp)
248 {
249 	int temperature;
250 
251 	temperature = ((s64)(raw_temp & 0xFFFF) * LVTS_COEFF_A) >> 14;
252 	temperature += coeff_b;
253 
254 	return temperature;
255 }
256 
257 static u32 lvts_temp_to_raw(int temperature)
258 {
259 	u32 raw_temp = ((s64)(coeff_b - temperature)) << 14;
260 
261 	raw_temp = div_s64(raw_temp, -LVTS_COEFF_A);
262 
263 	return raw_temp;
264 }
265 
266 static int lvts_get_temp(struct thermal_zone_device *tz, int *temp)
267 {
268 	struct lvts_sensor *lvts_sensor = thermal_zone_device_priv(tz);
269 	void __iomem *msr = lvts_sensor->msr;
270 	u32 value;
271 
272 	/*
273 	 * Measurement registers:
274 	 *
275 	 * LVTS_MSR[0-3] / LVTS_IMMD[0-3]
276 	 *
277 	 * Bits:
278 	 *
279 	 * 32-17: Unused
280 	 * 16	: Valid temperature
281 	 * 15-0	: Raw temperature
282 	 */
283 	value = readl(msr);
284 
285 	/*
286 	 * As the thermal zone temperature will read before the
287 	 * hardware sensor is fully initialized, we have to check the
288 	 * validity of the temperature returned when reading the
289 	 * measurement register. The thermal controller will set the
290 	 * valid bit temperature only when it is totally initialized.
291 	 *
292 	 * Otherwise, we may end up with garbage values out of the
293 	 * functionning temperature and directly jump to a system
294 	 * shutdown.
295 	 */
296 	if (!(value & BIT(16)))
297 		return -EAGAIN;
298 
299 	*temp = lvts_raw_to_temp(value & 0xFFFF);
300 
301 	return 0;
302 }
303 
304 static void lvts_update_irq_mask(struct lvts_ctrl *lvts_ctrl)
305 {
306 	u32 masks[] = {
307 		LVTS_MONINT_OFFSET_SENSOR0,
308 		LVTS_MONINT_OFFSET_SENSOR1,
309 		LVTS_MONINT_OFFSET_SENSOR2,
310 		LVTS_MONINT_OFFSET_SENSOR3,
311 	};
312 	u32 value = 0;
313 	int i;
314 
315 	value = readl(LVTS_MONINT(lvts_ctrl->base));
316 
317 	for (i = 0; i < ARRAY_SIZE(masks); i++) {
318 		if (lvts_ctrl->sensors[i].high_thresh == lvts_ctrl->high_thresh
319 		    && lvts_ctrl->sensors[i].low_thresh == lvts_ctrl->low_thresh)
320 			value |= masks[i];
321 		else
322 			value &= ~masks[i];
323 	}
324 
325 	writel(value, LVTS_MONINT(lvts_ctrl->base));
326 }
327 
328 static bool lvts_should_update_thresh(struct lvts_ctrl *lvts_ctrl, int high)
329 {
330 	int i;
331 
332 	if (high > lvts_ctrl->high_thresh)
333 		return true;
334 
335 	for (i = 0; i < lvts_ctrl->num_lvts_sensor; i++)
336 		if (lvts_ctrl->sensors[i].high_thresh == lvts_ctrl->high_thresh
337 		    && lvts_ctrl->sensors[i].low_thresh == lvts_ctrl->low_thresh)
338 			return false;
339 
340 	return true;
341 }
342 
343 static int lvts_set_trips(struct thermal_zone_device *tz, int low, int high)
344 {
345 	struct lvts_sensor *lvts_sensor = thermal_zone_device_priv(tz);
346 	struct lvts_ctrl *lvts_ctrl = container_of(lvts_sensor, struct lvts_ctrl, sensors[lvts_sensor->id]);
347 	void __iomem *base = lvts_sensor->base;
348 	u32 raw_low = lvts_temp_to_raw(low != -INT_MAX ? low : LVTS_MINIMUM_THRESHOLD);
349 	u32 raw_high = lvts_temp_to_raw(high);
350 	bool should_update_thresh;
351 
352 	lvts_sensor->low_thresh = low;
353 	lvts_sensor->high_thresh = high;
354 
355 	should_update_thresh = lvts_should_update_thresh(lvts_ctrl, high);
356 	if (should_update_thresh) {
357 		lvts_ctrl->high_thresh = high;
358 		lvts_ctrl->low_thresh = low;
359 	}
360 	lvts_update_irq_mask(lvts_ctrl);
361 
362 	if (!should_update_thresh)
363 		return 0;
364 
365 	/*
366 	 * Low offset temperature threshold
367 	 *
368 	 * LVTS_OFFSETL
369 	 *
370 	 * Bits:
371 	 *
372 	 * 14-0 : Raw temperature for threshold
373 	 */
374 	pr_debug("%s: Setting low limit temperature interrupt: %d\n",
375 		 thermal_zone_device_type(tz), low);
376 	writel(raw_low, LVTS_OFFSETL(base));
377 
378 	/*
379 	 * High offset temperature threshold
380 	 *
381 	 * LVTS_OFFSETH
382 	 *
383 	 * Bits:
384 	 *
385 	 * 14-0 : Raw temperature for threshold
386 	 */
387 	pr_debug("%s: Setting high limit temperature interrupt: %d\n",
388 		 thermal_zone_device_type(tz), high);
389 	writel(raw_high, LVTS_OFFSETH(base));
390 
391 	return 0;
392 }
393 
394 static irqreturn_t lvts_ctrl_irq_handler(struct lvts_ctrl *lvts_ctrl)
395 {
396 	irqreturn_t iret = IRQ_NONE;
397 	u32 value;
398 	u32 masks[] = {
399 		LVTS_INT_SENSOR0,
400 		LVTS_INT_SENSOR1,
401 		LVTS_INT_SENSOR2,
402 		LVTS_INT_SENSOR3
403 	};
404 	int i;
405 
406 	/*
407 	 * Interrupt monitoring status
408 	 *
409 	 * LVTS_MONINTST
410 	 *
411 	 * Bits:
412 	 *
413 	 * 31 : Interrupt for stage 3
414 	 * 30 : Interrupt for stage 2
415 	 * 29 : Interrupt for state 1
416 	 * 28 : Interrupt using filter on sensor 3
417 	 *
418 	 * 27 : Interrupt using immediate on sensor 3
419 	 * 26 : Interrupt normal to hot on sensor 3
420 	 * 25 : Interrupt high offset on sensor 3
421 	 * 24 : Interrupt low offset on sensor 3
422 	 *
423 	 * 23 : Interrupt hot threshold on sensor 3
424 	 * 22 : Interrupt cold threshold on sensor 3
425 	 * 21 : Interrupt using filter on sensor 2
426 	 * 20 : Interrupt using filter on sensor 1
427 	 *
428 	 * 19 : Interrupt using filter on sensor 0
429 	 * 18 : Interrupt using immediate on sensor 2
430 	 * 17 : Interrupt using immediate on sensor 1
431 	 * 16 : Interrupt using immediate on sensor 0
432 	 *
433 	 * 15 : Interrupt device access timeout interrupt
434 	 * 14 : Interrupt normal to hot on sensor 2
435 	 * 13 : Interrupt high offset interrupt on sensor 2
436 	 * 12 : Interrupt low offset interrupt on sensor 2
437 	 *
438 	 * 11 : Interrupt hot threshold on sensor 2
439 	 * 10 : Interrupt cold threshold on sensor 2
440 	 *  9 : Interrupt normal to hot on sensor 1
441 	 *  8 : Interrupt high offset interrupt on sensor 1
442 	 *
443 	 *  7 : Interrupt low offset interrupt on sensor 1
444 	 *  6 : Interrupt hot threshold on sensor 1
445 	 *  5 : Interrupt cold threshold on sensor 1
446 	 *  4 : Interrupt normal to hot on sensor 0
447 	 *
448 	 *  3 : Interrupt high offset interrupt on sensor 0
449 	 *  2 : Interrupt low offset interrupt on sensor 0
450 	 *  1 : Interrupt hot threshold on sensor 0
451 	 *  0 : Interrupt cold threshold on sensor 0
452 	 *
453 	 * We are interested in the sensor(s) responsible of the
454 	 * interrupt event. We update the thermal framework with the
455 	 * thermal zone associated with the sensor. The framework will
456 	 * take care of the rest whatever the kind of interrupt, we
457 	 * are only interested in which sensor raised the interrupt.
458 	 *
459 	 * sensor 3 interrupt: 0001 1111 1100 0000 0000 0000 0000 0000
460 	 *                  => 0x1FC00000
461 	 * sensor 2 interrupt: 0000 0000 0010 0100 0111 1100 0000 0000
462 	 *                  => 0x00247C00
463 	 * sensor 1 interrupt: 0000 0000 0001 0010 0000 0011 1110 0000
464 	 *                  => 0X001203E0
465 	 * sensor 0 interrupt: 0000 0000 0000 1001 0000 0000 0001 1111
466 	 *                  => 0x0009001F
467 	 */
468 	value = readl(LVTS_MONINTSTS(lvts_ctrl->base));
469 
470 	/*
471 	 * Let's figure out which sensors raised the interrupt
472 	 *
473 	 * NOTE: the masks array must be ordered with the index
474 	 * corresponding to the sensor id eg. index=0, mask for
475 	 * sensor0.
476 	 */
477 	for (i = 0; i < ARRAY_SIZE(masks); i++) {
478 
479 		if (!(value & masks[i]))
480 			continue;
481 
482 		thermal_zone_device_update(lvts_ctrl->sensors[i].tz,
483 					   THERMAL_TRIP_VIOLATED);
484 		iret = IRQ_HANDLED;
485 	}
486 
487 	/*
488 	 * Write back to clear the interrupt status (W1C)
489 	 */
490 	writel(value, LVTS_MONINTSTS(lvts_ctrl->base));
491 
492 	return iret;
493 }
494 
495 /*
496  * Temperature interrupt handler. Even if the driver supports more
497  * interrupt modes, we use the interrupt when the temperature crosses
498  * the hot threshold the way up and the way down (modulo the
499  * hysteresis).
500  *
501  * Each thermal domain has a couple of interrupts, one for hardware
502  * reset and another one for all the thermal events happening on the
503  * different sensors.
504  *
505  * The interrupt is configured for thermal events when crossing the
506  * hot temperature limit. At each interrupt, we check in every
507  * controller if there is an interrupt pending.
508  */
509 static irqreturn_t lvts_irq_handler(int irq, void *data)
510 {
511 	struct lvts_domain *lvts_td = data;
512 	irqreturn_t aux, iret = IRQ_NONE;
513 	int i;
514 
515 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
516 
517 		aux = lvts_ctrl_irq_handler(&lvts_td->lvts_ctrl[i]);
518 		if (aux != IRQ_HANDLED)
519 			continue;
520 
521 		iret = IRQ_HANDLED;
522 	}
523 
524 	return iret;
525 }
526 
527 static struct thermal_zone_device_ops lvts_ops = {
528 	.get_temp = lvts_get_temp,
529 	.set_trips = lvts_set_trips,
530 };
531 
532 static int lvts_sensor_init(struct device *dev, struct lvts_ctrl *lvts_ctrl,
533 					const struct lvts_ctrl_data *lvts_ctrl_data)
534 {
535 	struct lvts_sensor *lvts_sensor = lvts_ctrl->sensors;
536 	void __iomem *msr_regs[] = {
537 		LVTS_MSR0(lvts_ctrl->base),
538 		LVTS_MSR1(lvts_ctrl->base),
539 		LVTS_MSR2(lvts_ctrl->base),
540 		LVTS_MSR3(lvts_ctrl->base)
541 	};
542 
543 	void __iomem *imm_regs[] = {
544 		LVTS_IMMD0(lvts_ctrl->base),
545 		LVTS_IMMD1(lvts_ctrl->base),
546 		LVTS_IMMD2(lvts_ctrl->base),
547 		LVTS_IMMD3(lvts_ctrl->base)
548 	};
549 
550 	int i;
551 
552 	for (i = 0; i < lvts_ctrl_data->num_lvts_sensor; i++) {
553 
554 		int dt_id = lvts_ctrl_data->lvts_sensor[i].dt_id;
555 
556 		/*
557 		 * At this point, we don't know which id matches which
558 		 * sensor. Let's set arbitrally the id from the index.
559 		 */
560 		lvts_sensor[i].id = i;
561 
562 		/*
563 		 * The thermal zone registration will set the trip
564 		 * point interrupt in the thermal controller
565 		 * register. But this one will be reset in the
566 		 * initialization after. So we need to post pone the
567 		 * thermal zone creation after the controller is
568 		 * setup. For this reason, we store the device tree
569 		 * node id from the data in the sensor structure
570 		 */
571 		lvts_sensor[i].dt_id = dt_id;
572 
573 		/*
574 		 * We assign the base address of the thermal
575 		 * controller as a back pointer. So it will be
576 		 * accessible from the different thermal framework ops
577 		 * as we pass the lvts_sensor pointer as thermal zone
578 		 * private data.
579 		 */
580 		lvts_sensor[i].base = lvts_ctrl->base;
581 
582 		/*
583 		 * Each sensor has its own register address to read from.
584 		 */
585 		lvts_sensor[i].msr = lvts_ctrl_data->mode == LVTS_MSR_IMMEDIATE_MODE ?
586 			imm_regs[i] : msr_regs[i];
587 
588 		lvts_sensor[i].low_thresh = INT_MIN;
589 		lvts_sensor[i].high_thresh = INT_MIN;
590 	};
591 
592 	lvts_ctrl->num_lvts_sensor = lvts_ctrl_data->num_lvts_sensor;
593 
594 	return 0;
595 }
596 
597 /*
598  * The efuse blob values follows the sensor enumeration per thermal
599  * controller. The decoding of the stream is as follow:
600  *
601  * stream index map for MCU Domain :
602  *
603  * <-----mcu-tc#0-----> <-----sensor#0-----> <-----sensor#1----->
604  *  0x01 | 0x02 | 0x03 | 0x04 | 0x05 | 0x06 | 0x07 | 0x08 | 0x09
605  *
606  * <-----mcu-tc#1-----> <-----sensor#2-----> <-----sensor#3----->
607  *  0x0A | 0x0B | 0x0C | 0x0D | 0x0E | 0x0F | 0x10 | 0x11 | 0x12
608  *
609  * <-----mcu-tc#2-----> <-----sensor#4-----> <-----sensor#5-----> <-----sensor#6-----> <-----sensor#7----->
610  *  0x13 | 0x14 | 0x15 | 0x16 | 0x17 | 0x18 | 0x19 | 0x1A | 0x1B | 0x1C | 0x1D | 0x1E | 0x1F | 0x20 | 0x21
611  *
612  * stream index map for AP Domain :
613  *
614  * <-----ap--tc#0-----> <-----sensor#0-----> <-----sensor#1----->
615  *  0x22 | 0x23 | 0x24 | 0x25 | 0x26 | 0x27 | 0x28 | 0x29 | 0x2A
616  *
617  * <-----ap--tc#1-----> <-----sensor#2-----> <-----sensor#3----->
618  *  0x2B | 0x2C | 0x2D | 0x2E | 0x2F | 0x30 | 0x31 | 0x32 | 0x33
619  *
620  * <-----ap--tc#2-----> <-----sensor#4-----> <-----sensor#5-----> <-----sensor#6----->
621  *  0x34 | 0x35 | 0x36 | 0x37 | 0x38 | 0x39 | 0x3A | 0x3B | 0x3C | 0x3D | 0x3E | 0x3F
622  *
623  * <-----ap--tc#3-----> <-----sensor#7-----> <-----sensor#8----->
624  *  0x40 | 0x41 | 0x42 | 0x43 | 0x44 | 0x45 | 0x46 | 0x47 | 0x48
625  *
626  * The data description gives the offset of the calibration data in
627  * this bytes stream for each sensor.
628  */
629 static int lvts_calibration_init(struct device *dev, struct lvts_ctrl *lvts_ctrl,
630 					const struct lvts_ctrl_data *lvts_ctrl_data,
631 					u8 *efuse_calibration)
632 {
633 	int i;
634 
635 	for (i = 0; i < lvts_ctrl_data->num_lvts_sensor; i++)
636 		memcpy(&lvts_ctrl->calibration[i],
637 		       efuse_calibration + lvts_ctrl_data->cal_offset[i], 2);
638 
639 	return 0;
640 }
641 
642 /*
643  * The efuse bytes stream can be split into different chunk of
644  * nvmems. This function reads and concatenate those into a single
645  * buffer so it can be read sequentially when initializing the
646  * calibration data.
647  */
648 static int lvts_calibration_read(struct device *dev, struct lvts_domain *lvts_td,
649 					const struct lvts_data *lvts_data)
650 {
651 	struct device_node *np = dev_of_node(dev);
652 	struct nvmem_cell *cell;
653 	struct property *prop;
654 	const char *cell_name;
655 
656 	of_property_for_each_string(np, "nvmem-cell-names", prop, cell_name) {
657 		size_t len;
658 		u8 *efuse;
659 
660 		cell = of_nvmem_cell_get(np, cell_name);
661 		if (IS_ERR(cell)) {
662 			dev_err(dev, "Failed to get cell '%s'\n", cell_name);
663 			return PTR_ERR(cell);
664 		}
665 
666 		efuse = nvmem_cell_read(cell, &len);
667 
668 		nvmem_cell_put(cell);
669 
670 		if (IS_ERR(efuse)) {
671 			dev_err(dev, "Failed to read cell '%s'\n", cell_name);
672 			return PTR_ERR(efuse);
673 		}
674 
675 		lvts_td->calib = devm_krealloc(dev, lvts_td->calib,
676 					       lvts_td->calib_len + len, GFP_KERNEL);
677 		if (!lvts_td->calib)
678 			return -ENOMEM;
679 
680 		memcpy(lvts_td->calib + lvts_td->calib_len, efuse, len);
681 
682 		lvts_td->calib_len += len;
683 
684 		kfree(efuse);
685 	}
686 
687 	return 0;
688 }
689 
690 static int lvts_golden_temp_init(struct device *dev, u32 *value)
691 {
692 	u32 gt;
693 
694 	gt = (*value) >> 24;
695 
696 	if (gt && gt < LVTS_GOLDEN_TEMP_MAX)
697 		golden_temp = gt;
698 
699 	coeff_b = golden_temp * 500 + LVTS_COEFF_B;
700 
701 	return 0;
702 }
703 
704 static int lvts_ctrl_init(struct device *dev, struct lvts_domain *lvts_td,
705 					const struct lvts_data *lvts_data)
706 {
707 	size_t size = sizeof(*lvts_td->lvts_ctrl) * lvts_data->num_lvts_ctrl;
708 	struct lvts_ctrl *lvts_ctrl;
709 	int i, ret;
710 
711 	/*
712 	 * Create the calibration bytes stream from efuse data
713 	 */
714 	ret = lvts_calibration_read(dev, lvts_td, lvts_data);
715 	if (ret)
716 		return ret;
717 
718 	/*
719 	 * The golden temp information is contained in the first chunk
720 	 * of efuse data.
721 	 */
722 	ret = lvts_golden_temp_init(dev, (u32 *)lvts_td->calib);
723 	if (ret)
724 		return ret;
725 
726 	lvts_ctrl = devm_kzalloc(dev, size, GFP_KERNEL);
727 	if (!lvts_ctrl)
728 		return -ENOMEM;
729 
730 	for (i = 0; i < lvts_data->num_lvts_ctrl; i++) {
731 
732 		lvts_ctrl[i].base = lvts_td->base + lvts_data->lvts_ctrl[i].offset;
733 
734 		ret = lvts_sensor_init(dev, &lvts_ctrl[i],
735 				       &lvts_data->lvts_ctrl[i]);
736 		if (ret)
737 			return ret;
738 
739 		ret = lvts_calibration_init(dev, &lvts_ctrl[i],
740 					    &lvts_data->lvts_ctrl[i],
741 					    lvts_td->calib);
742 		if (ret)
743 			return ret;
744 
745 		/*
746 		 * The mode the ctrl will use to read the temperature
747 		 * (filtered or immediate)
748 		 */
749 		lvts_ctrl[i].mode = lvts_data->lvts_ctrl[i].mode;
750 
751 		/*
752 		 * The temperature to raw temperature must be done
753 		 * after initializing the calibration.
754 		 */
755 		lvts_ctrl[i].hw_tshut_raw_temp =
756 			lvts_temp_to_raw(lvts_data->lvts_ctrl[i].hw_tshut_temp);
757 
758 		lvts_ctrl[i].low_thresh = INT_MIN;
759 		lvts_ctrl[i].high_thresh = INT_MIN;
760 	}
761 
762 	/*
763 	 * We no longer need the efuse bytes stream, let's free it
764 	 */
765 	devm_kfree(dev, lvts_td->calib);
766 
767 	lvts_td->lvts_ctrl = lvts_ctrl;
768 	lvts_td->num_lvts_ctrl = lvts_data->num_lvts_ctrl;
769 
770 	return 0;
771 }
772 
773 /*
774  * At this point the configuration register is the only place in the
775  * driver where we write multiple values. Per hardware constraint,
776  * each write in the configuration register must be separated by a
777  * delay of 2 us.
778  */
779 static void lvts_write_config(struct lvts_ctrl *lvts_ctrl, u32 *cmds, int nr_cmds)
780 {
781 	int i;
782 
783 	/*
784 	 * Configuration register
785 	 */
786 	for (i = 0; i < nr_cmds; i++) {
787 		writel(cmds[i], LVTS_CONFIG(lvts_ctrl->base));
788 		usleep_range(2, 4);
789 	}
790 }
791 
792 static int lvts_irq_init(struct lvts_ctrl *lvts_ctrl)
793 {
794 	/*
795 	 * LVTS_PROTCTL : Thermal Protection Sensor Selection
796 	 *
797 	 * Bits:
798 	 *
799 	 * 19-18 : Sensor to base the protection on
800 	 * 17-16 : Strategy:
801 	 *         00 : Average of 4 sensors
802 	 *         01 : Max of 4 sensors
803 	 *         10 : Selected sensor with bits 19-18
804 	 *         11 : Reserved
805 	 */
806 	writel(BIT(16), LVTS_PROTCTL(lvts_ctrl->base));
807 
808 	/*
809 	 * LVTS_PROTTA : Stage 1 temperature threshold
810 	 * LVTS_PROTTB : Stage 2 temperature threshold
811 	 * LVTS_PROTTC : Stage 3 temperature threshold
812 	 *
813 	 * Bits:
814 	 *
815 	 * 14-0: Raw temperature threshold
816 	 *
817 	 * writel(0x0, LVTS_PROTTA(lvts_ctrl->base));
818 	 * writel(0x0, LVTS_PROTTB(lvts_ctrl->base));
819 	 */
820 	writel(lvts_ctrl->hw_tshut_raw_temp, LVTS_PROTTC(lvts_ctrl->base));
821 
822 	/*
823 	 * LVTS_MONINT : Interrupt configuration register
824 	 *
825 	 * The LVTS_MONINT register layout is the same as the LVTS_MONINTSTS
826 	 * register, except we set the bits to enable the interrupt.
827 	 */
828 	writel(LVTS_MONINT_CONF, LVTS_MONINT(lvts_ctrl->base));
829 
830 	return 0;
831 }
832 
833 static int lvts_domain_reset(struct device *dev, struct reset_control *reset)
834 {
835 	int ret;
836 
837 	ret = reset_control_assert(reset);
838 	if (ret)
839 		return ret;
840 
841 	return reset_control_deassert(reset);
842 }
843 
844 /*
845  * Enable or disable the clocks of a specified thermal controller
846  */
847 static int lvts_ctrl_set_enable(struct lvts_ctrl *lvts_ctrl, int enable)
848 {
849 	/*
850 	 * LVTS_CLKEN : Internal LVTS clock
851 	 *
852 	 * Bits:
853 	 *
854 	 * 0 : enable / disable clock
855 	 */
856 	writel(enable, LVTS_CLKEN(lvts_ctrl->base));
857 
858 	return 0;
859 }
860 
861 static int lvts_ctrl_connect(struct device *dev, struct lvts_ctrl *lvts_ctrl)
862 {
863 	u32 id, cmds[] = { 0xC103FFFF, 0xC502FF55 };
864 
865 	lvts_write_config(lvts_ctrl, cmds, ARRAY_SIZE(cmds));
866 
867 	/*
868 	 * LVTS_ID : Get ID and status of the thermal controller
869 	 *
870 	 * Bits:
871 	 *
872 	 * 0-5	: thermal controller id
873 	 *   7	: thermal controller connection is valid
874 	 */
875 	id = readl(LVTS_ID(lvts_ctrl->base));
876 	if (!(id & BIT(7)))
877 		return -EIO;
878 
879 	return 0;
880 }
881 
882 static int lvts_ctrl_initialize(struct device *dev, struct lvts_ctrl *lvts_ctrl)
883 {
884 	/*
885 	 * Write device mask: 0xC1030000
886 	 */
887 	u32 cmds[] = {
888 		0xC1030E01, 0xC1030CFC, 0xC1030A8C, 0xC103098D, 0xC10308F1,
889 		0xC10307A6, 0xC10306B8, 0xC1030500, 0xC1030420, 0xC1030300,
890 		0xC1030030, 0xC10300F6, 0xC1030050, 0xC1030060, 0xC10300AC,
891 		0xC10300FC, 0xC103009D, 0xC10300F1, 0xC10300E1
892 	};
893 
894 	lvts_write_config(lvts_ctrl, cmds, ARRAY_SIZE(cmds));
895 
896 	return 0;
897 }
898 
899 static int lvts_ctrl_calibrate(struct device *dev, struct lvts_ctrl *lvts_ctrl)
900 {
901 	int i;
902 	void __iomem *lvts_edata[] = {
903 		LVTS_EDATA00(lvts_ctrl->base),
904 		LVTS_EDATA01(lvts_ctrl->base),
905 		LVTS_EDATA02(lvts_ctrl->base),
906 		LVTS_EDATA03(lvts_ctrl->base)
907 	};
908 
909 	/*
910 	 * LVTS_EDATA0X : Efuse calibration reference value for sensor X
911 	 *
912 	 * Bits:
913 	 *
914 	 * 20-0 : Efuse value for normalization data
915 	 */
916 	for (i = 0; i < LVTS_SENSOR_MAX; i++)
917 		writel(lvts_ctrl->calibration[i], lvts_edata[i]);
918 
919 	return 0;
920 }
921 
922 static int lvts_ctrl_configure(struct device *dev, struct lvts_ctrl *lvts_ctrl)
923 {
924 	u32 value;
925 
926 	/*
927 	 * LVTS_TSSEL : Sensing point index numbering
928 	 *
929 	 * Bits:
930 	 *
931 	 * 31-24: ADC Sense 3
932 	 * 23-16: ADC Sense 2
933 	 * 15-8	: ADC Sense 1
934 	 * 7-0	: ADC Sense 0
935 	 */
936 	value = LVTS_TSSEL_CONF;
937 	writel(value, LVTS_TSSEL(lvts_ctrl->base));
938 
939 	/*
940 	 * LVTS_CALSCALE : ADC voltage round
941 	 */
942 	value = 0x300;
943 	value = LVTS_CALSCALE_CONF;
944 
945 	/*
946 	 * LVTS_MSRCTL0 : Sensor filtering strategy
947 	 *
948 	 * Filters:
949 	 *
950 	 * 000 : One sample
951 	 * 001 : Avg 2 samples
952 	 * 010 : 4 samples, drop min and max, avg 2 samples
953 	 * 011 : 6 samples, drop min and max, avg 4 samples
954 	 * 100 : 10 samples, drop min and max, avg 8 samples
955 	 * 101 : 18 samples, drop min and max, avg 16 samples
956 	 *
957 	 * Bits:
958 	 *
959 	 * 0-2  : Sensor0 filter
960 	 * 3-5  : Sensor1 filter
961 	 * 6-8  : Sensor2 filter
962 	 * 9-11 : Sensor3 filter
963 	 */
964 	value = LVTS_HW_FILTER << 9 |  LVTS_HW_FILTER << 6 |
965 			LVTS_HW_FILTER << 3 | LVTS_HW_FILTER;
966 	writel(value, LVTS_MSRCTL0(lvts_ctrl->base));
967 
968 	/*
969 	 * LVTS_MONCTL1 : Period unit and group interval configuration
970 	 *
971 	 * The clock source of LVTS thermal controller is 26MHz.
972 	 *
973 	 * The period unit is a time base for all the interval delays
974 	 * specified in the registers. By default we use 12. The time
975 	 * conversion is done by multiplying by 256 and 1/26.10^6
976 	 *
977 	 * An interval delay multiplied by the period unit gives the
978 	 * duration in seconds.
979 	 *
980 	 * - Filter interval delay is a delay between two samples of
981 	 * the same sensor.
982 	 *
983 	 * - Sensor interval delay is a delay between two samples of
984 	 * different sensors.
985 	 *
986 	 * - Group interval delay is a delay between different rounds.
987 	 *
988 	 * For example:
989 	 *     If Period unit = C, filter delay = 1, sensor delay = 2, group delay = 1,
990 	 *     and two sensors, TS1 and TS2, are in a LVTS thermal controller
991 	 *     and then
992 	 *     Period unit time = C * 1/26M * 256 = 12 * 38.46ns * 256 = 118.149us
993 	 *     Filter interval delay = 1 * Period unit = 118.149us
994 	 *     Sensor interval delay = 2 * Period unit = 236.298us
995 	 *     Group interval delay = 1 * Period unit = 118.149us
996 	 *
997 	 *     TS1    TS1 ... TS1    TS2    TS2 ... TS2    TS1...
998 	 *        <--> Filter interval delay
999 	 *                       <--> Sensor interval delay
1000 	 *                                             <--> Group interval delay
1001 	 * Bits:
1002 	 *      29 - 20 : Group interval
1003 	 *      16 - 13 : Send a single interrupt when crossing the hot threshold (1)
1004 	 *                or an interrupt everytime the hot threshold is crossed (0)
1005 	 *       9 - 0  : Period unit
1006 	 *
1007 	 */
1008 	value = LVTS_GROUP_INTERVAL << 20 | LVTS_PERIOD_UNIT;
1009 	writel(value, LVTS_MONCTL1(lvts_ctrl->base));
1010 
1011 	/*
1012 	 * LVTS_MONCTL2 : Filtering and sensor interval
1013 	 *
1014 	 * Bits:
1015 	 *
1016 	 *      25-16 : Interval unit in PERIOD_UNIT between sample on
1017 	 *              the same sensor, filter interval
1018 	 *       9-0  : Interval unit in PERIOD_UNIT between each sensor
1019 	 *
1020 	 */
1021 	value = LVTS_FILTER_INTERVAL << 16 | LVTS_SENSOR_INTERVAL;
1022 	writel(value, LVTS_MONCTL2(lvts_ctrl->base));
1023 
1024 	return lvts_irq_init(lvts_ctrl);
1025 }
1026 
1027 static int lvts_ctrl_start(struct device *dev, struct lvts_ctrl *lvts_ctrl)
1028 {
1029 	struct lvts_sensor *lvts_sensors = lvts_ctrl->sensors;
1030 	struct thermal_zone_device *tz;
1031 	u32 sensor_map = 0;
1032 	int i;
1033 	/*
1034 	 * Bitmaps to enable each sensor on immediate and filtered modes, as
1035 	 * described in MSRCTL1 and MONCTL0 registers below, respectively.
1036 	 */
1037 	u32 sensor_imm_bitmap[] = { BIT(4), BIT(5), BIT(6), BIT(9) };
1038 	u32 sensor_filt_bitmap[] = { BIT(0), BIT(1), BIT(2), BIT(3) };
1039 
1040 	u32 *sensor_bitmap = lvts_ctrl->mode == LVTS_MSR_IMMEDIATE_MODE ?
1041 			     sensor_imm_bitmap : sensor_filt_bitmap;
1042 
1043 	for (i = 0; i < lvts_ctrl->num_lvts_sensor; i++) {
1044 
1045 		int dt_id = lvts_sensors[i].dt_id;
1046 
1047 		tz = devm_thermal_of_zone_register(dev, dt_id, &lvts_sensors[i],
1048 						   &lvts_ops);
1049 		if (IS_ERR(tz)) {
1050 			/*
1051 			 * This thermal zone is not described in the
1052 			 * device tree. It is not an error from the
1053 			 * thermal OF code POV, we just continue.
1054 			 */
1055 			if (PTR_ERR(tz) == -ENODEV)
1056 				continue;
1057 
1058 			return PTR_ERR(tz);
1059 		}
1060 
1061 		devm_thermal_add_hwmon_sysfs(dev, tz);
1062 
1063 		/*
1064 		 * The thermal zone pointer will be needed in the
1065 		 * interrupt handler, we store it in the sensor
1066 		 * structure. The thermal domain structure will be
1067 		 * passed to the interrupt handler private data as the
1068 		 * interrupt is shared for all the controller
1069 		 * belonging to the thermal domain.
1070 		 */
1071 		lvts_sensors[i].tz = tz;
1072 
1073 		/*
1074 		 * This sensor was correctly associated with a thermal
1075 		 * zone, let's set the corresponding bit in the sensor
1076 		 * map, so we can enable the temperature monitoring in
1077 		 * the hardware thermal controller.
1078 		 */
1079 		sensor_map |= sensor_bitmap[i];
1080 	}
1081 
1082 	/*
1083 	 * The initialization of the thermal zones give us
1084 	 * which sensor point to enable. If any thermal zone
1085 	 * was not described in the device tree, it won't be
1086 	 * enabled here in the sensor map.
1087 	 */
1088 	if (lvts_ctrl->mode == LVTS_MSR_IMMEDIATE_MODE) {
1089 		/*
1090 		 * LVTS_MSRCTL1 : Measurement control
1091 		 *
1092 		 * Bits:
1093 		 *
1094 		 * 9: Ignore MSRCTL0 config and do immediate measurement on sensor3
1095 		 * 6: Ignore MSRCTL0 config and do immediate measurement on sensor2
1096 		 * 5: Ignore MSRCTL0 config and do immediate measurement on sensor1
1097 		 * 4: Ignore MSRCTL0 config and do immediate measurement on sensor0
1098 		 *
1099 		 * That configuration will ignore the filtering and the delays
1100 		 * introduced in MONCTL1 and MONCTL2
1101 		 */
1102 		writel(sensor_map, LVTS_MSRCTL1(lvts_ctrl->base));
1103 	} else {
1104 		/*
1105 		 * Bits:
1106 		 *      9: Single point access flow
1107 		 *    0-3: Enable sensing point 0-3
1108 		 */
1109 		writel(sensor_map | BIT(9), LVTS_MONCTL0(lvts_ctrl->base));
1110 	}
1111 
1112 	return 0;
1113 }
1114 
1115 static int lvts_domain_init(struct device *dev, struct lvts_domain *lvts_td,
1116 					const struct lvts_data *lvts_data)
1117 {
1118 	struct lvts_ctrl *lvts_ctrl;
1119 	int i, ret;
1120 
1121 	ret = lvts_ctrl_init(dev, lvts_td, lvts_data);
1122 	if (ret)
1123 		return ret;
1124 
1125 	ret = lvts_domain_reset(dev, lvts_td->reset);
1126 	if (ret) {
1127 		dev_dbg(dev, "Failed to reset domain");
1128 		return ret;
1129 	}
1130 
1131 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
1132 
1133 		lvts_ctrl = &lvts_td->lvts_ctrl[i];
1134 
1135 		/*
1136 		 * Initialization steps:
1137 		 *
1138 		 * - Enable the clock
1139 		 * - Connect to the LVTS
1140 		 * - Initialize the LVTS
1141 		 * - Prepare the calibration data
1142 		 * - Select monitored sensors
1143 		 * [ Configure sampling ]
1144 		 * [ Configure the interrupt ]
1145 		 * - Start measurement
1146 		 */
1147 		ret = lvts_ctrl_set_enable(lvts_ctrl, true);
1148 		if (ret) {
1149 			dev_dbg(dev, "Failed to enable LVTS clock");
1150 			return ret;
1151 		}
1152 
1153 		ret = lvts_ctrl_connect(dev, lvts_ctrl);
1154 		if (ret) {
1155 			dev_dbg(dev, "Failed to connect to LVTS controller");
1156 			return ret;
1157 		}
1158 
1159 		ret = lvts_ctrl_initialize(dev, lvts_ctrl);
1160 		if (ret) {
1161 			dev_dbg(dev, "Failed to initialize controller");
1162 			return ret;
1163 		}
1164 
1165 		ret = lvts_ctrl_calibrate(dev, lvts_ctrl);
1166 		if (ret) {
1167 			dev_dbg(dev, "Failed to calibrate controller");
1168 			return ret;
1169 		}
1170 
1171 		ret = lvts_ctrl_configure(dev, lvts_ctrl);
1172 		if (ret) {
1173 			dev_dbg(dev, "Failed to configure controller");
1174 			return ret;
1175 		}
1176 
1177 		ret = lvts_ctrl_start(dev, lvts_ctrl);
1178 		if (ret) {
1179 			dev_dbg(dev, "Failed to start controller");
1180 			return ret;
1181 		}
1182 	}
1183 
1184 	return lvts_debugfs_init(dev, lvts_td);
1185 }
1186 
1187 static int lvts_probe(struct platform_device *pdev)
1188 {
1189 	const struct lvts_data *lvts_data;
1190 	struct lvts_domain *lvts_td;
1191 	struct device *dev = &pdev->dev;
1192 	struct resource *res;
1193 	int irq, ret;
1194 
1195 	lvts_td = devm_kzalloc(dev, sizeof(*lvts_td), GFP_KERNEL);
1196 	if (!lvts_td)
1197 		return -ENOMEM;
1198 
1199 	lvts_data = of_device_get_match_data(dev);
1200 
1201 	lvts_td->clk = devm_clk_get_enabled(dev, NULL);
1202 	if (IS_ERR(lvts_td->clk))
1203 		return dev_err_probe(dev, PTR_ERR(lvts_td->clk), "Failed to retrieve clock\n");
1204 
1205 	res = platform_get_mem_or_io(pdev, 0);
1206 	if (!res)
1207 		return dev_err_probe(dev, (-ENXIO), "No IO resource\n");
1208 
1209 	lvts_td->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1210 	if (IS_ERR(lvts_td->base))
1211 		return dev_err_probe(dev, PTR_ERR(lvts_td->base), "Failed to map io resource\n");
1212 
1213 	lvts_td->reset = devm_reset_control_get_by_index(dev, 0);
1214 	if (IS_ERR(lvts_td->reset))
1215 		return dev_err_probe(dev, PTR_ERR(lvts_td->reset), "Failed to get reset control\n");
1216 
1217 	irq = platform_get_irq(pdev, 0);
1218 	if (irq < 0)
1219 		return dev_err_probe(dev, irq, "No irq resource\n");
1220 
1221 	ret = lvts_domain_init(dev, lvts_td, lvts_data);
1222 	if (ret)
1223 		return dev_err_probe(dev, ret, "Failed to initialize the lvts domain\n");
1224 
1225 	/*
1226 	 * At this point the LVTS is initialized and enabled. We can
1227 	 * safely enable the interrupt.
1228 	 */
1229 	ret = devm_request_threaded_irq(dev, irq, NULL, lvts_irq_handler,
1230 					IRQF_ONESHOT, dev_name(dev), lvts_td);
1231 	if (ret)
1232 		return dev_err_probe(dev, ret, "Failed to request interrupt\n");
1233 
1234 	platform_set_drvdata(pdev, lvts_td);
1235 
1236 	return 0;
1237 }
1238 
1239 static int lvts_remove(struct platform_device *pdev)
1240 {
1241 	struct lvts_domain *lvts_td;
1242 	int i;
1243 
1244 	lvts_td = platform_get_drvdata(pdev);
1245 
1246 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++)
1247 		lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], false);
1248 
1249 	lvts_debugfs_exit(lvts_td);
1250 
1251 	return 0;
1252 }
1253 
1254 static const struct lvts_ctrl_data mt8195_lvts_mcu_data_ctrl[] = {
1255 	{
1256 		.cal_offset = { 0x04, 0x07 },
1257 		.lvts_sensor = {
1258 			{ .dt_id = MT8195_MCU_BIG_CPU0 },
1259 			{ .dt_id = MT8195_MCU_BIG_CPU1 }
1260 		},
1261 		.num_lvts_sensor = 2,
1262 		.offset = 0x0,
1263 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1264 	},
1265 	{
1266 		.cal_offset = { 0x0d, 0x10 },
1267 		.lvts_sensor = {
1268 			{ .dt_id = MT8195_MCU_BIG_CPU2 },
1269 			{ .dt_id = MT8195_MCU_BIG_CPU3 }
1270 		},
1271 		.num_lvts_sensor = 2,
1272 		.offset = 0x100,
1273 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1274 	},
1275 	{
1276 		.cal_offset = { 0x16, 0x19, 0x1c, 0x1f },
1277 		.lvts_sensor = {
1278 			{ .dt_id = MT8195_MCU_LITTLE_CPU0 },
1279 			{ .dt_id = MT8195_MCU_LITTLE_CPU1 },
1280 			{ .dt_id = MT8195_MCU_LITTLE_CPU2 },
1281 			{ .dt_id = MT8195_MCU_LITTLE_CPU3 }
1282 		},
1283 		.num_lvts_sensor = 4,
1284 		.offset = 0x200,
1285 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1286 	}
1287 };
1288 
1289 static const struct lvts_ctrl_data mt8195_lvts_ap_data_ctrl[] = {
1290 		{
1291 		.cal_offset = { 0x25, 0x28 },
1292 		.lvts_sensor = {
1293 			{ .dt_id = MT8195_AP_VPU0 },
1294 			{ .dt_id = MT8195_AP_VPU1 }
1295 		},
1296 		.num_lvts_sensor = 2,
1297 		.offset = 0x0,
1298 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1299 	},
1300 	{
1301 		.cal_offset = { 0x2e, 0x31 },
1302 		.lvts_sensor = {
1303 			{ .dt_id = MT8195_AP_GPU0 },
1304 			{ .dt_id = MT8195_AP_GPU1 }
1305 		},
1306 		.num_lvts_sensor = 2,
1307 		.offset = 0x100,
1308 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1309 	},
1310 	{
1311 		.cal_offset = { 0x37, 0x3a, 0x3d },
1312 		.lvts_sensor = {
1313 			{ .dt_id = MT8195_AP_VDEC },
1314 			{ .dt_id = MT8195_AP_IMG },
1315 			{ .dt_id = MT8195_AP_INFRA },
1316 		},
1317 		.num_lvts_sensor = 3,
1318 		.offset = 0x200,
1319 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1320 	},
1321 	{
1322 		.cal_offset = { 0x43, 0x46 },
1323 		.lvts_sensor = {
1324 			{ .dt_id = MT8195_AP_CAM0 },
1325 			{ .dt_id = MT8195_AP_CAM1 }
1326 		},
1327 		.num_lvts_sensor = 2,
1328 		.offset = 0x300,
1329 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1330 	}
1331 };
1332 
1333 static const struct lvts_data mt8195_lvts_mcu_data = {
1334 	.lvts_ctrl	= mt8195_lvts_mcu_data_ctrl,
1335 	.num_lvts_ctrl	= ARRAY_SIZE(mt8195_lvts_mcu_data_ctrl),
1336 };
1337 
1338 static const struct lvts_data mt8195_lvts_ap_data = {
1339 	.lvts_ctrl	= mt8195_lvts_ap_data_ctrl,
1340 	.num_lvts_ctrl	= ARRAY_SIZE(mt8195_lvts_ap_data_ctrl),
1341 };
1342 
1343 static const struct of_device_id lvts_of_match[] = {
1344 	{ .compatible = "mediatek,mt8195-lvts-mcu", .data = &mt8195_lvts_mcu_data },
1345 	{ .compatible = "mediatek,mt8195-lvts-ap", .data = &mt8195_lvts_ap_data },
1346 	{},
1347 };
1348 MODULE_DEVICE_TABLE(of, lvts_of_match);
1349 
1350 static struct platform_driver lvts_driver = {
1351 	.probe = lvts_probe,
1352 	.remove = lvts_remove,
1353 	.driver = {
1354 		.name = "mtk-lvts-thermal",
1355 		.of_match_table = lvts_of_match,
1356 	},
1357 };
1358 module_platform_driver(lvts_driver);
1359 
1360 MODULE_AUTHOR("Balsam CHIHI <bchihi@baylibre.com>");
1361 MODULE_DESCRIPTION("MediaTek LVTS Thermal Driver");
1362 MODULE_LICENSE("GPL");
1363