1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * TI K3 R5F (MCU) Remote Processor driver 4 * 5 * Copyright (C) 2017-2022 Texas Instruments Incorporated - https://www.ti.com/ 6 * Suman Anna <s-anna@ti.com> 7 */ 8 9 #include <linux/dma-mapping.h> 10 #include <linux/err.h> 11 #include <linux/interrupt.h> 12 #include <linux/kernel.h> 13 #include <linux/mailbox_client.h> 14 #include <linux/module.h> 15 #include <linux/of.h> 16 #include <linux/of_address.h> 17 #include <linux/of_reserved_mem.h> 18 #include <linux/of_platform.h> 19 #include <linux/omap-mailbox.h> 20 #include <linux/platform_device.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/remoteproc.h> 23 #include <linux/reset.h> 24 #include <linux/slab.h> 25 26 #include "omap_remoteproc.h" 27 #include "remoteproc_internal.h" 28 #include "ti_sci_proc.h" 29 #include "ti_k3_common.h" 30 31 /* This address can either be for ATCM or BTCM with the other at address 0x0 */ 32 #define K3_R5_TCM_DEV_ADDR 0x41010000 33 34 /* R5 TI-SCI Processor Configuration Flags */ 35 #define PROC_BOOT_CFG_FLAG_R5_DBG_EN 0x00000001 36 #define PROC_BOOT_CFG_FLAG_R5_DBG_NIDEN 0x00000002 37 #define PROC_BOOT_CFG_FLAG_R5_LOCKSTEP 0x00000100 38 #define PROC_BOOT_CFG_FLAG_R5_TEINIT 0x00000200 39 #define PROC_BOOT_CFG_FLAG_R5_NMFI_EN 0x00000400 40 #define PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE 0x00000800 41 #define PROC_BOOT_CFG_FLAG_R5_BTCM_EN 0x00001000 42 #define PROC_BOOT_CFG_FLAG_R5_ATCM_EN 0x00002000 43 /* Available from J7200 SoCs onwards */ 44 #define PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS 0x00004000 45 /* Applicable to only AM64x SoCs */ 46 #define PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE 0x00008000 47 48 /* R5 TI-SCI Processor Control Flags */ 49 #define PROC_BOOT_CTRL_FLAG_R5_CORE_HALT 0x00000001 50 51 /* R5 TI-SCI Processor Status Flags */ 52 #define PROC_BOOT_STATUS_FLAG_R5_WFE 0x00000001 53 #define PROC_BOOT_STATUS_FLAG_R5_WFI 0x00000002 54 #define PROC_BOOT_STATUS_FLAG_R5_CLK_GATED 0x00000004 55 #define PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED 0x00000100 56 /* Applicable to only AM64x SoCs */ 57 #define PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY 0x00000200 58 59 /* 60 * All cluster mode values are not applicable on all SoCs. The following 61 * are the modes supported on various SoCs: 62 * Split mode : AM65x, J721E, J7200 and AM64x SoCs 63 * LockStep mode : AM65x, J721E and J7200 SoCs 64 * Single-CPU mode : AM64x SoCs only 65 * Single-Core mode : AM62x, AM62A SoCs 66 */ 67 enum cluster_mode { 68 CLUSTER_MODE_SPLIT = 0, 69 CLUSTER_MODE_LOCKSTEP, 70 CLUSTER_MODE_SINGLECPU, 71 CLUSTER_MODE_SINGLECORE 72 }; 73 74 /** 75 * struct k3_r5_soc_data - match data to handle SoC variations 76 * @tcm_is_double: flag to denote the larger unified TCMs in certain modes 77 * @tcm_ecc_autoinit: flag to denote the auto-initialization of TCMs for ECC 78 * @single_cpu_mode: flag to denote if SoC/IP supports Single-CPU mode 79 * @is_single_core: flag to denote if SoC/IP has only single core R5 80 * @core_data: pointer to R5-core-specific device data 81 */ 82 struct k3_r5_soc_data { 83 bool tcm_is_double; 84 bool tcm_ecc_autoinit; 85 bool single_cpu_mode; 86 bool is_single_core; 87 const struct k3_rproc_dev_data *core_data; 88 }; 89 90 /** 91 * struct k3_r5_cluster - K3 R5F Cluster structure 92 * @dev: cached device pointer 93 * @mode: Mode to configure the Cluster - Split or LockStep 94 * @cores: list of R5 cores within the cluster 95 * @core_transition: wait queue to sync core state changes 96 * @soc_data: SoC-specific feature data for a R5FSS 97 */ 98 struct k3_r5_cluster { 99 struct device *dev; 100 enum cluster_mode mode; 101 struct list_head cores; 102 wait_queue_head_t core_transition; 103 const struct k3_r5_soc_data *soc_data; 104 }; 105 106 /** 107 * struct k3_r5_core - K3 R5 core structure 108 * @elem: linked list item 109 * @dev: cached device pointer 110 * @kproc: K3 rproc handle representing this core 111 * @cluster: cached pointer to parent cluster structure 112 * @sram: on-chip SRAM memory regions data 113 * @num_sram: number of on-chip SRAM memory regions 114 * @atcm_enable: flag to control ATCM enablement 115 * @btcm_enable: flag to control BTCM enablement 116 * @loczrama: flag to dictate which TCM is at device address 0x0 117 * @released_from_reset: flag to signal when core is out of reset 118 */ 119 struct k3_r5_core { 120 struct list_head elem; 121 struct device *dev; 122 struct k3_rproc *kproc; 123 struct k3_r5_cluster *cluster; 124 struct k3_rproc_mem *sram; 125 int num_sram; 126 u32 atcm_enable; 127 u32 btcm_enable; 128 u32 loczrama; 129 bool released_from_reset; 130 }; 131 132 static int k3_r5_split_reset(struct k3_rproc *kproc) 133 { 134 int ret; 135 136 ret = reset_control_assert(kproc->reset); 137 if (ret) { 138 dev_err(kproc->dev, "local-reset assert failed, ret = %d\n", 139 ret); 140 return ret; 141 } 142 143 ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, 144 kproc->ti_sci_id); 145 if (ret) { 146 dev_err(kproc->dev, "module-reset assert failed, ret = %d\n", 147 ret); 148 if (reset_control_deassert(kproc->reset)) 149 dev_warn(kproc->dev, "local-reset deassert back failed\n"); 150 } 151 152 return ret; 153 } 154 155 static int k3_r5_split_release(struct k3_rproc *kproc) 156 { 157 int ret; 158 159 ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci, 160 kproc->ti_sci_id); 161 if (ret) { 162 dev_err(kproc->dev, "module-reset deassert failed, ret = %d\n", 163 ret); 164 return ret; 165 } 166 167 ret = reset_control_deassert(kproc->reset); 168 if (ret) { 169 dev_err(kproc->dev, "local-reset deassert failed, ret = %d\n", 170 ret); 171 if (kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, 172 kproc->ti_sci_id)) 173 dev_warn(kproc->dev, "module-reset assert back failed\n"); 174 } 175 176 return ret; 177 } 178 179 static int k3_r5_lockstep_reset(struct k3_r5_cluster *cluster) 180 { 181 struct k3_r5_core *core; 182 struct k3_rproc *kproc; 183 int ret; 184 185 /* assert local reset on all applicable cores */ 186 list_for_each_entry(core, &cluster->cores, elem) { 187 ret = reset_control_assert(core->kproc->reset); 188 if (ret) { 189 dev_err(core->dev, "local-reset assert failed, ret = %d\n", 190 ret); 191 core = list_prev_entry(core, elem); 192 goto unroll_local_reset; 193 } 194 } 195 196 /* disable PSC modules on all applicable cores */ 197 list_for_each_entry(core, &cluster->cores, elem) { 198 kproc = core->kproc; 199 ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, 200 kproc->ti_sci_id); 201 if (ret) { 202 dev_err(core->dev, "module-reset assert failed, ret = %d\n", 203 ret); 204 goto unroll_module_reset; 205 } 206 } 207 208 return 0; 209 210 unroll_module_reset: 211 list_for_each_entry_continue_reverse(core, &cluster->cores, elem) { 212 kproc = core->kproc; 213 if (kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, 214 kproc->ti_sci_id)) 215 dev_warn(core->dev, "module-reset assert back failed\n"); 216 } 217 core = list_last_entry(&cluster->cores, struct k3_r5_core, elem); 218 unroll_local_reset: 219 list_for_each_entry_from_reverse(core, &cluster->cores, elem) { 220 if (reset_control_deassert(core->kproc->reset)) 221 dev_warn(core->dev, "local-reset deassert back failed\n"); 222 } 223 224 return ret; 225 } 226 227 static int k3_r5_lockstep_release(struct k3_r5_cluster *cluster) 228 { 229 struct k3_r5_core *core; 230 struct k3_rproc *kproc; 231 int ret; 232 233 /* enable PSC modules on all applicable cores */ 234 list_for_each_entry_reverse(core, &cluster->cores, elem) { 235 kproc = core->kproc; 236 ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci, 237 kproc->ti_sci_id); 238 if (ret) { 239 dev_err(core->dev, "module-reset deassert failed, ret = %d\n", 240 ret); 241 core = list_next_entry(core, elem); 242 goto unroll_module_reset; 243 } 244 } 245 246 /* deassert local reset on all applicable cores */ 247 list_for_each_entry_reverse(core, &cluster->cores, elem) { 248 ret = reset_control_deassert(core->kproc->reset); 249 if (ret) { 250 dev_err(core->dev, "module-reset deassert failed, ret = %d\n", 251 ret); 252 goto unroll_local_reset; 253 } 254 } 255 256 return 0; 257 258 unroll_local_reset: 259 list_for_each_entry_continue(core, &cluster->cores, elem) { 260 if (reset_control_assert(core->kproc->reset)) 261 dev_warn(core->dev, "local-reset assert back failed\n"); 262 } 263 core = list_first_entry(&cluster->cores, struct k3_r5_core, elem); 264 unroll_module_reset: 265 list_for_each_entry_from(core, &cluster->cores, elem) { 266 kproc = core->kproc; 267 if (kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, 268 kproc->ti_sci_id)) 269 dev_warn(core->dev, "module-reset assert back failed\n"); 270 } 271 272 return ret; 273 } 274 275 static inline int k3_r5_core_halt(struct k3_rproc *kproc) 276 { 277 return ti_sci_proc_set_control(kproc->tsp, 278 PROC_BOOT_CTRL_FLAG_R5_CORE_HALT, 0); 279 } 280 281 static inline int k3_r5_core_run(struct k3_rproc *kproc) 282 { 283 return ti_sci_proc_set_control(kproc->tsp, 284 0, PROC_BOOT_CTRL_FLAG_R5_CORE_HALT); 285 } 286 287 /* 288 * The R5F cores have controls for both a reset and a halt/run. The code 289 * execution from DDR requires the initial boot-strapping code to be run 290 * from the internal TCMs. This function is used to release the resets on 291 * applicable cores to allow loading into the TCMs. The .prepare() ops is 292 * invoked by remoteproc core before any firmware loading, and is followed 293 * by the .start() ops after loading to actually let the R5 cores run. 294 * 295 * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to 296 * execute code, but combines the TCMs from both cores. The resets for both 297 * cores need to be released to make this possible, as the TCMs are in general 298 * private to each core. Only Core0 needs to be unhalted for running the 299 * cluster in this mode. The function uses the same reset logic as LockStep 300 * mode for this (though the behavior is agnostic of the reset release order). 301 * This callback is invoked only in remoteproc mode. 302 */ 303 static int k3_r5_rproc_prepare(struct rproc *rproc) 304 { 305 struct k3_rproc *kproc = rproc->priv; 306 struct k3_r5_core *core = kproc->priv, *core0, *core1; 307 struct k3_r5_cluster *cluster = core->cluster; 308 struct device *dev = kproc->dev; 309 u32 ctrl = 0, cfg = 0, stat = 0; 310 u64 boot_vec = 0; 311 bool mem_init_dis; 312 int ret; 313 314 /* 315 * R5 cores require to be powered on sequentially, core0 should be in 316 * higher power state than core1 in a cluster. So, wait for core0 to 317 * power up before proceeding to core1 and put timeout of 2sec. This 318 * waiting mechanism is necessary because rproc_auto_boot_callback() for 319 * core1 can be called before core0 due to thread execution order. 320 * 321 * By placing the wait mechanism here in .prepare() ops, this condition 322 * is enforced for rproc boot requests from sysfs as well. 323 */ 324 core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem); 325 core1 = list_last_entry(&cluster->cores, struct k3_r5_core, elem); 326 if (cluster->mode == CLUSTER_MODE_SPLIT && core == core1 && 327 !core0->released_from_reset) { 328 ret = wait_event_interruptible_timeout(cluster->core_transition, 329 core0->released_from_reset, 330 msecs_to_jiffies(2000)); 331 if (ret <= 0) { 332 dev_err(dev, "can not power up core1 before core0"); 333 return -EPERM; 334 } 335 } 336 337 ret = ti_sci_proc_get_status(kproc->tsp, &boot_vec, &cfg, &ctrl, &stat); 338 if (ret < 0) 339 return ret; 340 mem_init_dis = !!(cfg & PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS); 341 342 /* Re-use LockStep-mode reset logic for Single-CPU mode */ 343 ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP || 344 cluster->mode == CLUSTER_MODE_SINGLECPU) ? 345 k3_r5_lockstep_release(cluster) : k3_r5_split_release(kproc); 346 if (ret) { 347 dev_err(dev, "unable to enable cores for TCM loading, ret = %d\n", 348 ret); 349 return ret; 350 } 351 352 /* 353 * Notify all threads in the wait queue when core0 state has changed so 354 * that threads waiting for this condition can be executed. 355 */ 356 core->released_from_reset = true; 357 if (core == core0) 358 wake_up_interruptible(&cluster->core_transition); 359 360 /* 361 * Newer IP revisions like on J7200 SoCs support h/w auto-initialization 362 * of TCMs, so there is no need to perform the s/w memzero. This bit is 363 * configurable through System Firmware, the default value does perform 364 * auto-init, but account for it in case it is disabled 365 */ 366 if (cluster->soc_data->tcm_ecc_autoinit && !mem_init_dis) { 367 dev_dbg(dev, "leveraging h/w init for TCM memories\n"); 368 return 0; 369 } 370 371 /* 372 * Zero out both TCMs unconditionally (access from v8 Arm core is not 373 * affected by ATCM & BTCM enable configuration values) so that ECC 374 * can be effective on all TCM addresses. 375 */ 376 dev_dbg(dev, "zeroing out ATCM memory\n"); 377 memset_io(kproc->mem[0].cpu_addr, 0x00, kproc->mem[0].size); 378 379 dev_dbg(dev, "zeroing out BTCM memory\n"); 380 memset_io(kproc->mem[1].cpu_addr, 0x00, kproc->mem[1].size); 381 382 return 0; 383 } 384 385 /* 386 * This function implements the .unprepare() ops and performs the complimentary 387 * operations to that of the .prepare() ops. The function is used to assert the 388 * resets on all applicable cores for the rproc device (depending on LockStep 389 * or Split mode). This completes the second portion of powering down the R5F 390 * cores. The cores themselves are only halted in the .stop() ops, and the 391 * .unprepare() ops is invoked by the remoteproc core after the remoteproc is 392 * stopped. 393 * 394 * The Single-CPU mode on applicable SoCs (eg: AM64x) combines the TCMs from 395 * both cores. The access is made possible only with releasing the resets for 396 * both cores, but with only Core0 unhalted. This function re-uses the same 397 * reset assert logic as LockStep mode for this mode (though the behavior is 398 * agnostic of the reset assert order). This callback is invoked only in 399 * remoteproc mode. 400 */ 401 static int k3_r5_rproc_unprepare(struct rproc *rproc) 402 { 403 struct k3_rproc *kproc = rproc->priv; 404 struct k3_r5_core *core = kproc->priv, *core0, *core1; 405 struct k3_r5_cluster *cluster = core->cluster; 406 struct device *dev = kproc->dev; 407 int ret; 408 409 /* 410 * Ensure power-down of cores is sequential in split mode. Core1 must 411 * power down before Core0 to maintain the expected state. By placing 412 * the wait mechanism here in .unprepare() ops, this condition is 413 * enforced for rproc stop or shutdown requests from sysfs and device 414 * removal as well. 415 */ 416 core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem); 417 core1 = list_last_entry(&cluster->cores, struct k3_r5_core, elem); 418 if (cluster->mode == CLUSTER_MODE_SPLIT && core == core0 && 419 core1->released_from_reset) { 420 ret = wait_event_interruptible_timeout(cluster->core_transition, 421 !core1->released_from_reset, 422 msecs_to_jiffies(2000)); 423 if (ret <= 0) { 424 dev_err(dev, "can not power down core0 before core1"); 425 return -EPERM; 426 } 427 } 428 429 /* Re-use LockStep-mode reset logic for Single-CPU mode */ 430 ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP || 431 cluster->mode == CLUSTER_MODE_SINGLECPU) ? 432 k3_r5_lockstep_reset(cluster) : k3_r5_split_reset(kproc); 433 if (ret) 434 dev_err(dev, "unable to disable cores, ret = %d\n", ret); 435 436 /* 437 * Notify all threads in the wait queue when core1 state has changed so 438 * that threads waiting for this condition can be executed. 439 */ 440 core->released_from_reset = false; 441 if (core == core1) 442 wake_up_interruptible(&cluster->core_transition); 443 444 return ret; 445 } 446 447 /* 448 * The R5F start sequence includes two different operations 449 * 1. Configure the boot vector for R5F core(s) 450 * 2. Unhalt/Run the R5F core(s) 451 * 452 * The sequence is different between LockStep and Split modes. The LockStep 453 * mode requires the boot vector to be configured only for Core0, and then 454 * unhalt both the cores to start the execution - Core1 needs to be unhalted 455 * first followed by Core0. The Split-mode requires that Core0 to be maintained 456 * always in a higher power state that Core1 (implying Core1 needs to be started 457 * always only after Core0 is started). 458 * 459 * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute 460 * code, so only Core0 needs to be unhalted. The function uses the same logic 461 * flow as Split-mode for this. This callback is invoked only in remoteproc 462 * mode. 463 */ 464 static int k3_r5_rproc_start(struct rproc *rproc) 465 { 466 struct k3_rproc *kproc = rproc->priv; 467 struct k3_r5_core *core = kproc->priv; 468 struct k3_r5_cluster *cluster = core->cluster; 469 struct device *dev = kproc->dev; 470 u32 boot_addr; 471 int ret; 472 473 boot_addr = rproc->bootaddr; 474 /* TODO: add boot_addr sanity checking */ 475 dev_dbg(dev, "booting R5F core using boot addr = 0x%x\n", boot_addr); 476 477 /* boot vector need not be programmed for Core1 in LockStep mode */ 478 ret = ti_sci_proc_set_config(kproc->tsp, boot_addr, 0, 0); 479 if (ret) 480 return ret; 481 482 /* unhalt/run all applicable cores */ 483 if (cluster->mode == CLUSTER_MODE_LOCKSTEP) { 484 list_for_each_entry_reverse(core, &cluster->cores, elem) { 485 ret = k3_r5_core_run(core->kproc); 486 if (ret) 487 goto unroll_core_run; 488 } 489 } else { 490 ret = k3_r5_core_run(core->kproc); 491 if (ret) 492 return ret; 493 } 494 495 return 0; 496 497 unroll_core_run: 498 list_for_each_entry_continue(core, &cluster->cores, elem) { 499 if (k3_r5_core_halt(core->kproc)) 500 dev_warn(core->dev, "core halt back failed\n"); 501 } 502 return ret; 503 } 504 505 /* 506 * The R5F stop function includes the following operations 507 * 1. Halt R5F core(s) 508 * 509 * The sequence is different between LockStep and Split modes, and the order 510 * of cores the operations are performed are also in general reverse to that 511 * of the start function. The LockStep mode requires each operation to be 512 * performed first on Core0 followed by Core1. The Split-mode requires that 513 * Core0 to be maintained always in a higher power state that Core1 (implying 514 * Core1 needs to be stopped first before Core0). 515 * 516 * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute 517 * code, so only Core0 needs to be halted. The function uses the same logic 518 * flow as Split-mode for this. 519 * 520 * Note that the R5F halt operation in general is not effective when the R5F 521 * core is running, but is needed to make sure the core won't run after 522 * deasserting the reset the subsequent time. The asserting of reset can 523 * be done here, but is preferred to be done in the .unprepare() ops - this 524 * maintains the symmetric behavior between the .start(), .stop(), .prepare() 525 * and .unprepare() ops, and also balances them well between sysfs 'state' 526 * flow and device bind/unbind or module removal. This callback is invoked 527 * only in remoteproc mode. 528 */ 529 static int k3_r5_rproc_stop(struct rproc *rproc) 530 { 531 struct k3_rproc *kproc = rproc->priv; 532 struct k3_r5_core *core = kproc->priv; 533 struct k3_r5_cluster *cluster = core->cluster; 534 int ret; 535 536 /* halt all applicable cores */ 537 if (cluster->mode == CLUSTER_MODE_LOCKSTEP) { 538 list_for_each_entry(core, &cluster->cores, elem) { 539 ret = k3_r5_core_halt(core->kproc); 540 if (ret) { 541 core = list_prev_entry(core, elem); 542 goto unroll_core_halt; 543 } 544 } 545 } else { 546 ret = k3_r5_core_halt(core->kproc); 547 if (ret) 548 goto out; 549 } 550 551 return 0; 552 553 unroll_core_halt: 554 list_for_each_entry_from_reverse(core, &cluster->cores, elem) { 555 if (k3_r5_core_run(core->kproc)) 556 dev_warn(core->dev, "core run back failed\n"); 557 } 558 out: 559 return ret; 560 } 561 562 /* 563 * Internal Memory translation helper 564 * 565 * Custom function implementing the rproc .da_to_va ops to provide address 566 * translation (device address to kernel virtual address) for internal RAMs 567 * present in a DSP or IPU device). The translated addresses can be used 568 * either by the remoteproc core for loading, or by any rpmsg bus drivers. 569 */ 570 static void *k3_r5_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) 571 { 572 struct k3_rproc *kproc = rproc->priv; 573 struct k3_r5_core *core = kproc->priv; 574 void __iomem *va = NULL; 575 u32 dev_addr, offset; 576 size_t size; 577 int i; 578 579 if (len == 0) 580 return NULL; 581 582 /* handle any SRAM regions using SoC-view addresses */ 583 for (i = 0; i < core->num_sram; i++) { 584 dev_addr = core->sram[i].dev_addr; 585 size = core->sram[i].size; 586 587 if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { 588 offset = da - dev_addr; 589 va = core->sram[i].cpu_addr + offset; 590 return (__force void *)va; 591 } 592 } 593 594 /* handle both TCM and DDR memory regions */ 595 return k3_rproc_da_to_va(rproc, da, len, is_iomem); 596 } 597 598 static const struct rproc_ops k3_r5_rproc_ops = { 599 .prepare = k3_r5_rproc_prepare, 600 .unprepare = k3_r5_rproc_unprepare, 601 .start = k3_r5_rproc_start, 602 .stop = k3_r5_rproc_stop, 603 .kick = k3_rproc_kick, 604 .da_to_va = k3_r5_rproc_da_to_va, 605 }; 606 607 /* 608 * Internal R5F Core configuration 609 * 610 * Each R5FSS has a cluster-level setting for configuring the processor 611 * subsystem either in a safety/fault-tolerant LockStep mode or a performance 612 * oriented Split mode on most SoCs. A fewer SoCs support a non-safety mode 613 * as an alternate for LockStep mode that exercises only a single R5F core 614 * called Single-CPU mode. Each R5F core has a number of settings to either 615 * enable/disable each of the TCMs, control which TCM appears at the R5F core's 616 * address 0x0. These settings need to be configured before the resets for the 617 * corresponding core are released. These settings are all protected and managed 618 * by the System Processor. 619 * 620 * This function is used to pre-configure these settings for each R5F core, and 621 * the configuration is all done through various ti_sci_proc functions that 622 * communicate with the System Processor. The function also ensures that both 623 * the cores are halted before the .prepare() step. 624 * 625 * The function is called from k3_r5_cluster_rproc_init() and is invoked either 626 * once (in LockStep mode or Single-CPU modes) or twice (in Split mode). Support 627 * for LockStep-mode is dictated by an eFUSE register bit, and the config 628 * settings retrieved from DT are adjusted accordingly as per the permitted 629 * cluster mode. Another eFUSE register bit dictates if the R5F cluster only 630 * supports a Single-CPU mode. All cluster level settings like Cluster mode and 631 * TEINIT (exception handling state dictating ARM or Thumb mode) can only be set 632 * and retrieved using Core0. 633 * 634 * The function behavior is different based on the cluster mode. The R5F cores 635 * are configured independently as per their individual settings in Split mode. 636 * They are identically configured in LockStep mode using the primary Core0 637 * settings. However, some individual settings cannot be set in LockStep mode. 638 * This is overcome by switching to Split-mode initially and then programming 639 * both the cores with the same settings, before reconfiguing again for 640 * LockStep mode. 641 */ 642 static int k3_r5_rproc_configure(struct k3_rproc *kproc) 643 { 644 struct k3_r5_core *temp, *core0, *core = kproc->priv; 645 struct k3_r5_cluster *cluster = core->cluster; 646 struct device *dev = kproc->dev; 647 u32 ctrl = 0, cfg = 0, stat = 0; 648 u32 set_cfg = 0, clr_cfg = 0; 649 u64 boot_vec = 0; 650 bool lockstep_en; 651 bool single_cpu; 652 int ret; 653 654 core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem); 655 if (cluster->mode == CLUSTER_MODE_LOCKSTEP || 656 cluster->mode == CLUSTER_MODE_SINGLECPU || 657 cluster->mode == CLUSTER_MODE_SINGLECORE) { 658 core = core0; 659 } else { 660 core = kproc->priv; 661 } 662 663 ret = ti_sci_proc_get_status(core->kproc->tsp, &boot_vec, &cfg, &ctrl, 664 &stat); 665 if (ret < 0) 666 return ret; 667 668 dev_dbg(dev, "boot_vector = 0x%llx, cfg = 0x%x ctrl = 0x%x stat = 0x%x\n", 669 boot_vec, cfg, ctrl, stat); 670 671 single_cpu = !!(stat & PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY); 672 lockstep_en = !!(stat & PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED); 673 674 /* Override to single CPU mode if set in status flag */ 675 if (single_cpu && cluster->mode == CLUSTER_MODE_SPLIT) { 676 dev_err(cluster->dev, "split-mode not permitted, force configuring for single-cpu mode\n"); 677 cluster->mode = CLUSTER_MODE_SINGLECPU; 678 } 679 680 /* Override to split mode if lockstep enable bit is not set in status flag */ 681 if (!lockstep_en && cluster->mode == CLUSTER_MODE_LOCKSTEP) { 682 dev_err(cluster->dev, "lockstep mode not permitted, force configuring for split-mode\n"); 683 cluster->mode = CLUSTER_MODE_SPLIT; 684 } 685 686 /* always enable ARM mode and set boot vector to 0 */ 687 boot_vec = 0x0; 688 if (core == core0) { 689 clr_cfg = PROC_BOOT_CFG_FLAG_R5_TEINIT; 690 /* 691 * Single-CPU configuration bit can only be configured 692 * on Core0 and system firmware will NACK any requests 693 * with the bit configured, so program it only on 694 * permitted cores 695 */ 696 if (cluster->mode == CLUSTER_MODE_SINGLECPU || 697 cluster->mode == CLUSTER_MODE_SINGLECORE) { 698 set_cfg = PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE; 699 } else { 700 /* 701 * LockStep configuration bit is Read-only on Split-mode 702 * _only_ devices and system firmware will NACK any 703 * requests with the bit configured, so program it only 704 * on permitted devices 705 */ 706 if (lockstep_en) 707 clr_cfg |= PROC_BOOT_CFG_FLAG_R5_LOCKSTEP; 708 } 709 } 710 711 if (core->atcm_enable) 712 set_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN; 713 else 714 clr_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN; 715 716 if (core->btcm_enable) 717 set_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN; 718 else 719 clr_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN; 720 721 if (core->loczrama) 722 set_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE; 723 else 724 clr_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE; 725 726 if (cluster->mode == CLUSTER_MODE_LOCKSTEP) { 727 /* 728 * work around system firmware limitations to make sure both 729 * cores are programmed symmetrically in LockStep. LockStep 730 * and TEINIT config is only allowed with Core0. 731 */ 732 list_for_each_entry(temp, &cluster->cores, elem) { 733 ret = k3_r5_core_halt(temp->kproc); 734 if (ret) 735 goto out; 736 737 if (temp != core) { 738 clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_LOCKSTEP; 739 clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_TEINIT; 740 } 741 ret = ti_sci_proc_set_config(temp->kproc->tsp, boot_vec, 742 set_cfg, clr_cfg); 743 if (ret) 744 goto out; 745 } 746 747 set_cfg = PROC_BOOT_CFG_FLAG_R5_LOCKSTEP; 748 clr_cfg = 0; 749 ret = ti_sci_proc_set_config(core->kproc->tsp, boot_vec, 750 set_cfg, clr_cfg); 751 } else { 752 ret = k3_r5_core_halt(core->kproc); 753 if (ret) 754 goto out; 755 756 ret = ti_sci_proc_set_config(core->kproc->tsp, boot_vec, 757 set_cfg, clr_cfg); 758 } 759 760 out: 761 return ret; 762 } 763 764 /* 765 * Each R5F core within a typical R5FSS instance has a total of 64 KB of TCMs, 766 * split equally into two 32 KB banks between ATCM and BTCM. The TCMs from both 767 * cores are usable in Split-mode, but only the Core0 TCMs can be used in 768 * LockStep-mode. The newer revisions of the R5FSS IP maximizes these TCMs by 769 * leveraging the Core1 TCMs as well in certain modes where they would have 770 * otherwise been unusable (Eg: LockStep-mode on J7200 SoCs, Single-CPU mode on 771 * AM64x SoCs). This is done by making a Core1 TCM visible immediately after the 772 * corresponding Core0 TCM. The SoC memory map uses the larger 64 KB sizes for 773 * the Core0 TCMs, and the dts representation reflects this increased size on 774 * supported SoCs. The Core0 TCM sizes therefore have to be adjusted to only 775 * half the original size in Split mode. 776 */ 777 static void k3_r5_adjust_tcm_sizes(struct k3_rproc *kproc) 778 { 779 struct k3_r5_core *core0, *core = kproc->priv; 780 struct k3_r5_cluster *cluster = core->cluster; 781 struct device *cdev = core->dev; 782 783 if (cluster->mode == CLUSTER_MODE_LOCKSTEP || 784 cluster->mode == CLUSTER_MODE_SINGLECPU || 785 cluster->mode == CLUSTER_MODE_SINGLECORE || 786 !cluster->soc_data->tcm_is_double) 787 return; 788 789 core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem); 790 if (core == core0) { 791 WARN_ON(kproc->mem[0].size != SZ_64K); 792 WARN_ON(kproc->mem[1].size != SZ_64K); 793 794 kproc->mem[0].size /= 2; 795 kproc->mem[1].size /= 2; 796 797 dev_dbg(cdev, "adjusted TCM sizes, ATCM = 0x%zx BTCM = 0x%zx\n", 798 kproc->mem[0].size, kproc->mem[1].size); 799 } 800 } 801 802 /* 803 * This function checks and configures a R5F core for IPC-only or remoteproc 804 * mode. The driver is configured to be in IPC-only mode for a R5F core when 805 * the core has been loaded and started by a bootloader. The IPC-only mode is 806 * detected by querying the System Firmware for reset, power on and halt status 807 * and ensuring that the core is running. Any incomplete steps at bootloader 808 * are validated and errored out. 809 * 810 * In IPC-only mode, the driver state flags for ATCM, BTCM and LOCZRAMA settings 811 * and cluster mode parsed originally from kernel DT are updated to reflect the 812 * actual values configured by bootloader. The driver internal device memory 813 * addresses for TCMs are also updated. 814 */ 815 static int k3_r5_rproc_configure_mode(struct k3_rproc *kproc) 816 { 817 struct k3_r5_core *core0, *core = kproc->priv; 818 struct k3_r5_cluster *cluster = core->cluster; 819 struct device *cdev = core->dev; 820 bool r_state = false, c_state = false, lockstep_en = false, single_cpu = false; 821 u32 ctrl = 0, cfg = 0, stat = 0, halted = 0; 822 u64 boot_vec = 0; 823 u32 atcm_enable, btcm_enable, loczrama; 824 enum cluster_mode mode = cluster->mode; 825 int reset_ctrl_status; 826 int ret; 827 828 core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem); 829 830 ret = kproc->ti_sci->ops.dev_ops.is_on(kproc->ti_sci, kproc->ti_sci_id, 831 &r_state, &c_state); 832 if (ret) { 833 dev_err(cdev, "failed to get initial state, mode cannot be determined, ret = %d\n", 834 ret); 835 return ret; 836 } 837 if (r_state != c_state) { 838 dev_warn(cdev, "R5F core may have been powered on by a different host, programmed state (%d) != actual state (%d)\n", 839 r_state, c_state); 840 } 841 842 reset_ctrl_status = reset_control_status(kproc->reset); 843 if (reset_ctrl_status < 0) { 844 dev_err(cdev, "failed to get initial local reset status, ret = %d\n", 845 reset_ctrl_status); 846 return reset_ctrl_status; 847 } 848 849 /* 850 * Skip the waiting mechanism for sequential power-on of cores if the 851 * core has already been booted by another entity. 852 */ 853 core->released_from_reset = c_state; 854 855 ret = ti_sci_proc_get_status(kproc->tsp, &boot_vec, &cfg, &ctrl, 856 &stat); 857 if (ret < 0) { 858 dev_err(cdev, "failed to get initial processor status, ret = %d\n", 859 ret); 860 return ret; 861 } 862 atcm_enable = cfg & PROC_BOOT_CFG_FLAG_R5_ATCM_EN ? 1 : 0; 863 btcm_enable = cfg & PROC_BOOT_CFG_FLAG_R5_BTCM_EN ? 1 : 0; 864 loczrama = cfg & PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE ? 1 : 0; 865 single_cpu = cfg & PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE ? 1 : 0; 866 lockstep_en = cfg & PROC_BOOT_CFG_FLAG_R5_LOCKSTEP ? 1 : 0; 867 868 if (single_cpu && mode != CLUSTER_MODE_SINGLECORE) 869 mode = CLUSTER_MODE_SINGLECPU; 870 if (lockstep_en) 871 mode = CLUSTER_MODE_LOCKSTEP; 872 873 halted = ctrl & PROC_BOOT_CTRL_FLAG_R5_CORE_HALT; 874 875 /* 876 * IPC-only mode detection requires both local and module resets to 877 * be deasserted and R5F core to be unhalted. Local reset status is 878 * irrelevant if module reset is asserted (POR value has local reset 879 * deasserted), and is deemed as remoteproc mode 880 */ 881 if (c_state && !reset_ctrl_status && !halted) { 882 dev_info(cdev, "configured R5F for IPC-only mode\n"); 883 kproc->rproc->state = RPROC_DETACHED; 884 ret = 1; 885 /* override rproc ops with only required IPC-only mode ops */ 886 kproc->rproc->ops->prepare = NULL; 887 kproc->rproc->ops->unprepare = NULL; 888 kproc->rproc->ops->start = NULL; 889 kproc->rproc->ops->stop = NULL; 890 kproc->rproc->ops->attach = k3_rproc_attach; 891 kproc->rproc->ops->detach = k3_rproc_detach; 892 kproc->rproc->ops->get_loaded_rsc_table = 893 k3_get_loaded_rsc_table; 894 } else if (!c_state) { 895 dev_info(cdev, "configured R5F for remoteproc mode\n"); 896 ret = 0; 897 } else { 898 dev_err(cdev, "mismatched mode: local_reset = %s, module_reset = %s, core_state = %s\n", 899 !reset_ctrl_status ? "deasserted" : "asserted", 900 c_state ? "deasserted" : "asserted", 901 halted ? "halted" : "unhalted"); 902 ret = -EINVAL; 903 } 904 905 /* fixup TCMs, cluster & core flags to actual values in IPC-only mode */ 906 if (ret > 0) { 907 if (core == core0) 908 cluster->mode = mode; 909 core->atcm_enable = atcm_enable; 910 core->btcm_enable = btcm_enable; 911 core->loczrama = loczrama; 912 kproc->mem[0].dev_addr = loczrama ? 0 : K3_R5_TCM_DEV_ADDR; 913 kproc->mem[1].dev_addr = loczrama ? K3_R5_TCM_DEV_ADDR : 0; 914 } 915 916 return ret; 917 } 918 919 static int k3_r5_core_of_get_internal_memories(struct platform_device *pdev, 920 struct k3_rproc *kproc) 921 { 922 const struct k3_rproc_dev_data *data = kproc->data; 923 struct device *dev = &pdev->dev; 924 struct k3_r5_core *core = kproc->priv; 925 int num_mems; 926 int i, ret; 927 928 num_mems = data->num_mems; 929 kproc->mem = devm_kcalloc(kproc->dev, num_mems, sizeof(*kproc->mem), 930 GFP_KERNEL); 931 if (!kproc->mem) 932 return -ENOMEM; 933 934 ret = k3_rproc_of_get_memories(pdev, kproc); 935 if (ret) 936 return ret; 937 938 for (i = 0; i < num_mems; i++) { 939 /* 940 * TODO: 941 * The R5F cores can place ATCM & BTCM anywhere in its address 942 * based on the corresponding Region Registers in the System 943 * Control coprocessor. For now, place ATCM and BTCM at 944 * addresses 0 and 0x41010000 (same as the bus address on AM65x 945 * SoCs) based on loczrama setting overriding default assignment 946 * done by k3_rproc_of_get_memories(). 947 */ 948 if (!strcmp(data->mems[i].name, "atcm")) { 949 kproc->mem[i].dev_addr = core->loczrama ? 950 0 : K3_R5_TCM_DEV_ADDR; 951 } else { 952 kproc->mem[i].dev_addr = core->loczrama ? 953 K3_R5_TCM_DEV_ADDR : 0; 954 } 955 956 dev_dbg(dev, "Updating bus addr %pa of memory %5s\n", 957 &kproc->mem[i].bus_addr, data->mems[i].name); 958 } 959 960 return 0; 961 } 962 963 static int k3_r5_core_of_get_sram_memories(struct platform_device *pdev, 964 struct k3_r5_core *core) 965 { 966 struct device_node *np = pdev->dev.of_node; 967 struct device *dev = &pdev->dev; 968 struct device_node *sram_np; 969 struct resource res; 970 int num_sram; 971 int i, ret; 972 973 num_sram = of_property_count_elems_of_size(np, "sram", sizeof(phandle)); 974 if (num_sram <= 0) { 975 dev_dbg(dev, "device does not use reserved on-chip memories, num_sram = %d\n", 976 num_sram); 977 return 0; 978 } 979 980 core->sram = devm_kcalloc(dev, num_sram, sizeof(*core->sram), GFP_KERNEL); 981 if (!core->sram) 982 return -ENOMEM; 983 984 for (i = 0; i < num_sram; i++) { 985 sram_np = of_parse_phandle(np, "sram", i); 986 if (!sram_np) 987 return -EINVAL; 988 989 if (!of_device_is_available(sram_np)) { 990 of_node_put(sram_np); 991 return -EINVAL; 992 } 993 994 ret = of_address_to_resource(sram_np, 0, &res); 995 of_node_put(sram_np); 996 if (ret) 997 return -EINVAL; 998 999 core->sram[i].bus_addr = res.start; 1000 core->sram[i].dev_addr = res.start; 1001 core->sram[i].size = resource_size(&res); 1002 core->sram[i].cpu_addr = devm_ioremap_wc(dev, res.start, 1003 resource_size(&res)); 1004 if (!core->sram[i].cpu_addr) { 1005 dev_err(dev, "failed to parse and map sram%d memory at %pad\n", 1006 i, &res.start); 1007 return -ENOMEM; 1008 } 1009 1010 dev_dbg(dev, "memory sram%d: bus addr %pa size 0x%zx va %pK da 0x%x\n", 1011 i, &core->sram[i].bus_addr, 1012 core->sram[i].size, core->sram[i].cpu_addr, 1013 core->sram[i].dev_addr); 1014 } 1015 core->num_sram = num_sram; 1016 1017 return 0; 1018 } 1019 1020 static int k3_r5_cluster_rproc_init(struct platform_device *pdev) 1021 { 1022 struct k3_r5_cluster *cluster = platform_get_drvdata(pdev); 1023 struct device *dev = &pdev->dev; 1024 struct k3_rproc *kproc; 1025 struct k3_r5_core *core, *core1; 1026 struct device_node *np; 1027 struct device *cdev; 1028 const char *fw_name; 1029 struct rproc *rproc; 1030 int ret, ret1; 1031 1032 core1 = list_last_entry(&cluster->cores, struct k3_r5_core, elem); 1033 list_for_each_entry(core, &cluster->cores, elem) { 1034 cdev = core->dev; 1035 np = dev_of_node(cdev); 1036 ret = rproc_of_parse_firmware(cdev, 0, &fw_name); 1037 if (ret) { 1038 dev_err(dev, "failed to parse firmware-name property, ret = %d\n", 1039 ret); 1040 goto out; 1041 } 1042 1043 rproc = devm_rproc_alloc(cdev, dev_name(cdev), &k3_r5_rproc_ops, 1044 fw_name, sizeof(*kproc)); 1045 if (!rproc) { 1046 ret = -ENOMEM; 1047 goto out; 1048 } 1049 1050 /* K3 R5s have a Region Address Translator (RAT) but no MMU */ 1051 rproc->has_iommu = false; 1052 /* error recovery is not supported at present */ 1053 rproc->recovery_disabled = true; 1054 1055 kproc = rproc->priv; 1056 kproc->priv = core; 1057 kproc->dev = cdev; 1058 kproc->rproc = rproc; 1059 kproc->data = cluster->soc_data->core_data; 1060 core->kproc = kproc; 1061 1062 kproc->ti_sci = devm_ti_sci_get_by_phandle(cdev, "ti,sci"); 1063 if (IS_ERR(kproc->ti_sci)) { 1064 ret = dev_err_probe(cdev, PTR_ERR(kproc->ti_sci), 1065 "failed to get ti-sci handle\n"); 1066 kproc->ti_sci = NULL; 1067 goto out; 1068 } 1069 1070 ret = of_property_read_u32(np, "ti,sci-dev-id", &kproc->ti_sci_id); 1071 if (ret) { 1072 dev_err(cdev, "missing 'ti,sci-dev-id' property\n"); 1073 goto out; 1074 } 1075 1076 kproc->reset = devm_reset_control_get_exclusive(cdev, NULL); 1077 if (IS_ERR_OR_NULL(kproc->reset)) { 1078 ret = PTR_ERR_OR_ZERO(kproc->reset); 1079 if (!ret) 1080 ret = -ENODEV; 1081 dev_err_probe(cdev, ret, "failed to get reset handle\n"); 1082 goto out; 1083 } 1084 1085 kproc->tsp = ti_sci_proc_of_get_tsp(cdev, kproc->ti_sci); 1086 if (IS_ERR(kproc->tsp)) { 1087 ret = dev_err_probe(cdev, PTR_ERR(kproc->tsp), 1088 "failed to construct ti-sci proc control\n"); 1089 goto out; 1090 } 1091 1092 ret = k3_r5_core_of_get_internal_memories(to_platform_device(cdev), kproc); 1093 if (ret) { 1094 dev_err(cdev, "failed to get internal memories, ret = %d\n", 1095 ret); 1096 goto out; 1097 } 1098 1099 ret = ti_sci_proc_request(kproc->tsp); 1100 if (ret < 0) { 1101 dev_err(cdev, "ti_sci_proc_request failed, ret = %d\n", ret); 1102 goto out; 1103 } 1104 1105 ret = devm_add_action_or_reset(cdev, k3_release_tsp, kproc->tsp); 1106 if (ret) 1107 goto out; 1108 } 1109 1110 list_for_each_entry(core, &cluster->cores, elem) { 1111 cdev = core->dev; 1112 kproc = core->kproc; 1113 rproc = kproc->rproc; 1114 1115 ret = k3_rproc_request_mbox(rproc); 1116 if (ret) 1117 return ret; 1118 1119 ret = k3_r5_rproc_configure_mode(kproc); 1120 if (ret < 0) 1121 goto out; 1122 if (ret) 1123 goto init_rmem; 1124 1125 ret = k3_r5_rproc_configure(kproc); 1126 if (ret) { 1127 dev_err(cdev, "initial configure failed, ret = %d\n", 1128 ret); 1129 goto out; 1130 } 1131 1132 init_rmem: 1133 k3_r5_adjust_tcm_sizes(kproc); 1134 1135 ret = k3_reserved_mem_init(kproc); 1136 if (ret) { 1137 dev_err(cdev, "reserved memory init failed, ret = %d\n", 1138 ret); 1139 goto out; 1140 } 1141 1142 ret = devm_rproc_add(cdev, rproc); 1143 if (ret) { 1144 dev_err_probe(cdev, ret, "rproc_add failed\n"); 1145 goto out; 1146 } 1147 1148 /* create only one rproc in lockstep, single-cpu or 1149 * single core mode 1150 */ 1151 if (cluster->mode == CLUSTER_MODE_LOCKSTEP || 1152 cluster->mode == CLUSTER_MODE_SINGLECPU || 1153 cluster->mode == CLUSTER_MODE_SINGLECORE) 1154 break; 1155 } 1156 1157 return 0; 1158 1159 err_split: 1160 if (rproc->state == RPROC_ATTACHED) { 1161 ret1 = rproc_detach(rproc); 1162 if (ret1) { 1163 dev_err(kproc->dev, "failed to detach rproc, ret = %d\n", 1164 ret1); 1165 return ret1; 1166 } 1167 } 1168 1169 out: 1170 /* undo core0 upon any failures on core1 in split-mode */ 1171 if (cluster->mode == CLUSTER_MODE_SPLIT && core == core1) { 1172 core = list_prev_entry(core, elem); 1173 kproc = core->kproc; 1174 rproc = kproc->rproc; 1175 goto err_split; 1176 } 1177 return ret; 1178 } 1179 1180 static void k3_r5_cluster_rproc_exit(void *data) 1181 { 1182 struct k3_r5_cluster *cluster = platform_get_drvdata(data); 1183 struct k3_rproc *kproc; 1184 struct k3_r5_core *core; 1185 struct rproc *rproc; 1186 int ret; 1187 1188 /* 1189 * lockstep mode and single-cpu modes have only one rproc associated 1190 * with first core, whereas split-mode has two rprocs associated with 1191 * each core, and requires that core1 be powered down first 1192 */ 1193 core = (cluster->mode == CLUSTER_MODE_LOCKSTEP || 1194 cluster->mode == CLUSTER_MODE_SINGLECPU) ? 1195 list_first_entry(&cluster->cores, struct k3_r5_core, elem) : 1196 list_last_entry(&cluster->cores, struct k3_r5_core, elem); 1197 1198 list_for_each_entry_from_reverse(core, &cluster->cores, elem) { 1199 kproc = core->kproc; 1200 rproc = kproc->rproc; 1201 1202 if (rproc->state == RPROC_ATTACHED) { 1203 ret = rproc_detach(rproc); 1204 if (ret) { 1205 dev_err(kproc->dev, "failed to detach rproc, ret = %d\n", ret); 1206 return; 1207 } 1208 } 1209 1210 mbox_free_channel(kproc->mbox); 1211 } 1212 } 1213 1214 static int k3_r5_core_of_init(struct platform_device *pdev) 1215 { 1216 struct device *dev = &pdev->dev; 1217 struct device_node *np = dev_of_node(dev); 1218 struct k3_r5_core *core; 1219 int ret; 1220 1221 if (!devres_open_group(dev, k3_r5_core_of_init, GFP_KERNEL)) 1222 return -ENOMEM; 1223 1224 core = devm_kzalloc(dev, sizeof(*core), GFP_KERNEL); 1225 if (!core) { 1226 ret = -ENOMEM; 1227 goto err; 1228 } 1229 1230 core->dev = dev; 1231 /* 1232 * Use SoC Power-on-Reset values as default if no DT properties are 1233 * used to dictate the TCM configurations 1234 */ 1235 core->atcm_enable = 0; 1236 core->btcm_enable = 1; 1237 core->loczrama = 1; 1238 1239 ret = of_property_read_u32(np, "ti,atcm-enable", &core->atcm_enable); 1240 if (ret < 0 && ret != -EINVAL) { 1241 dev_err(dev, "invalid format for ti,atcm-enable, ret = %d\n", 1242 ret); 1243 goto err; 1244 } 1245 1246 ret = of_property_read_u32(np, "ti,btcm-enable", &core->btcm_enable); 1247 if (ret < 0 && ret != -EINVAL) { 1248 dev_err(dev, "invalid format for ti,btcm-enable, ret = %d\n", 1249 ret); 1250 goto err; 1251 } 1252 1253 ret = of_property_read_u32(np, "ti,loczrama", &core->loczrama); 1254 if (ret < 0 && ret != -EINVAL) { 1255 dev_err(dev, "invalid format for ti,loczrama, ret = %d\n", ret); 1256 goto err; 1257 } 1258 1259 ret = k3_r5_core_of_get_sram_memories(pdev, core); 1260 if (ret) { 1261 dev_err(dev, "failed to get sram memories, ret = %d\n", ret); 1262 goto err; 1263 } 1264 1265 platform_set_drvdata(pdev, core); 1266 devres_close_group(dev, k3_r5_core_of_init); 1267 1268 return 0; 1269 1270 err: 1271 devres_release_group(dev, k3_r5_core_of_init); 1272 return ret; 1273 } 1274 1275 /* 1276 * free the resources explicitly since driver model is not being used 1277 * for the child R5F devices 1278 */ 1279 static void k3_r5_core_of_exit(struct platform_device *pdev) 1280 { 1281 struct device *dev = &pdev->dev; 1282 1283 platform_set_drvdata(pdev, NULL); 1284 devres_release_group(dev, k3_r5_core_of_init); 1285 } 1286 1287 static void k3_r5_cluster_of_exit(void *data) 1288 { 1289 struct k3_r5_cluster *cluster = platform_get_drvdata(data); 1290 struct platform_device *cpdev; 1291 struct k3_r5_core *core, *temp; 1292 1293 list_for_each_entry_safe_reverse(core, temp, &cluster->cores, elem) { 1294 list_del(&core->elem); 1295 cpdev = to_platform_device(core->dev); 1296 k3_r5_core_of_exit(cpdev); 1297 } 1298 } 1299 1300 static int k3_r5_cluster_of_init(struct platform_device *pdev) 1301 { 1302 struct k3_r5_cluster *cluster = platform_get_drvdata(pdev); 1303 struct device *dev = &pdev->dev; 1304 struct device_node *np = dev_of_node(dev); 1305 struct platform_device *cpdev; 1306 struct k3_r5_core *core; 1307 int ret; 1308 1309 for_each_available_child_of_node_scoped(np, child) { 1310 cpdev = of_find_device_by_node(child); 1311 if (!cpdev) { 1312 ret = -ENODEV; 1313 dev_err(dev, "could not get R5 core platform device\n"); 1314 goto fail; 1315 } 1316 1317 ret = k3_r5_core_of_init(cpdev); 1318 if (ret) { 1319 dev_err(dev, "k3_r5_core_of_init failed, ret = %d\n", 1320 ret); 1321 put_device(&cpdev->dev); 1322 goto fail; 1323 } 1324 1325 core = platform_get_drvdata(cpdev); 1326 core->cluster = cluster; 1327 put_device(&cpdev->dev); 1328 list_add_tail(&core->elem, &cluster->cores); 1329 } 1330 1331 return 0; 1332 1333 fail: 1334 k3_r5_cluster_of_exit(pdev); 1335 return ret; 1336 } 1337 1338 static int k3_r5_probe(struct platform_device *pdev) 1339 { 1340 struct device *dev = &pdev->dev; 1341 struct device_node *np = dev_of_node(dev); 1342 struct k3_r5_cluster *cluster; 1343 const struct k3_r5_soc_data *data; 1344 int ret; 1345 int num_cores; 1346 1347 data = of_device_get_match_data(&pdev->dev); 1348 if (!data) { 1349 dev_err(dev, "SoC-specific data is not defined\n"); 1350 return -ENODEV; 1351 } 1352 1353 cluster = devm_kzalloc(dev, sizeof(*cluster), GFP_KERNEL); 1354 if (!cluster) 1355 return -ENOMEM; 1356 1357 cluster->dev = dev; 1358 cluster->soc_data = data; 1359 INIT_LIST_HEAD(&cluster->cores); 1360 init_waitqueue_head(&cluster->core_transition); 1361 1362 ret = of_property_read_u32(np, "ti,cluster-mode", &cluster->mode); 1363 if (ret < 0 && ret != -EINVAL) 1364 return dev_err_probe(dev, ret, "invalid format for ti,cluster-mode\n"); 1365 1366 if (ret == -EINVAL) { 1367 /* 1368 * default to most common efuse configurations - Split-mode on AM64x 1369 * and LockStep-mode on all others 1370 * default to most common efuse configurations - 1371 * Split-mode on AM64x 1372 * Single core on AM62x 1373 * LockStep-mode on all others 1374 */ 1375 if (!data->is_single_core) 1376 cluster->mode = data->single_cpu_mode ? 1377 CLUSTER_MODE_SPLIT : CLUSTER_MODE_LOCKSTEP; 1378 else 1379 cluster->mode = CLUSTER_MODE_SINGLECORE; 1380 } 1381 1382 if ((cluster->mode == CLUSTER_MODE_SINGLECPU && !data->single_cpu_mode) || 1383 (cluster->mode == CLUSTER_MODE_SINGLECORE && !data->is_single_core)) 1384 return dev_err_probe(dev, -EINVAL, 1385 "Cluster mode = %d is not supported on this SoC\n", 1386 cluster->mode); 1387 1388 num_cores = of_get_available_child_count(np); 1389 if (num_cores != 2 && !data->is_single_core) 1390 return dev_err_probe(dev, -ENODEV, 1391 "MCU cluster requires both R5F cores to be enabled but num_cores is set to = %d\n", 1392 num_cores); 1393 1394 if (num_cores != 1 && data->is_single_core) 1395 return dev_err_probe(dev, -ENODEV, 1396 "SoC supports only single core R5 but num_cores is set to %d\n", 1397 num_cores); 1398 1399 platform_set_drvdata(pdev, cluster); 1400 1401 ret = devm_of_platform_populate(dev); 1402 if (ret) 1403 return dev_err_probe(dev, ret, "devm_of_platform_populate failed\n"); 1404 1405 ret = k3_r5_cluster_of_init(pdev); 1406 if (ret) 1407 return dev_err_probe(dev, ret, "k3_r5_cluster_of_init failed\n"); 1408 1409 ret = devm_add_action_or_reset(dev, k3_r5_cluster_of_exit, pdev); 1410 if (ret) 1411 return ret; 1412 1413 ret = k3_r5_cluster_rproc_init(pdev); 1414 if (ret) 1415 return dev_err_probe(dev, ret, "k3_r5_cluster_rproc_init failed\n"); 1416 1417 ret = devm_add_action_or_reset(dev, k3_r5_cluster_rproc_exit, pdev); 1418 if (ret) 1419 return ret; 1420 1421 return 0; 1422 } 1423 1424 static const struct k3_rproc_mem_data r5_mems[] = { 1425 { .name = "atcm", .dev_addr = 0x0 }, 1426 { .name = "btcm", .dev_addr = K3_R5_TCM_DEV_ADDR }, 1427 }; 1428 1429 static const struct k3_rproc_dev_data r5_data = { 1430 .mems = r5_mems, 1431 .num_mems = ARRAY_SIZE(r5_mems), 1432 .boot_align_addr = 0, 1433 .uses_lreset = true, 1434 }; 1435 1436 static const struct k3_r5_soc_data am65_j721e_soc_data = { 1437 .tcm_is_double = false, 1438 .tcm_ecc_autoinit = false, 1439 .single_cpu_mode = false, 1440 .is_single_core = false, 1441 .core_data = &r5_data, 1442 }; 1443 1444 static const struct k3_r5_soc_data j7200_j721s2_soc_data = { 1445 .tcm_is_double = true, 1446 .tcm_ecc_autoinit = true, 1447 .single_cpu_mode = false, 1448 .is_single_core = false, 1449 .core_data = &r5_data, 1450 }; 1451 1452 static const struct k3_r5_soc_data am64_soc_data = { 1453 .tcm_is_double = true, 1454 .tcm_ecc_autoinit = true, 1455 .single_cpu_mode = true, 1456 .is_single_core = false, 1457 .core_data = &r5_data, 1458 }; 1459 1460 static const struct k3_r5_soc_data am62_soc_data = { 1461 .tcm_is_double = false, 1462 .tcm_ecc_autoinit = true, 1463 .single_cpu_mode = false, 1464 .is_single_core = true, 1465 .core_data = &r5_data, 1466 }; 1467 1468 static const struct of_device_id k3_r5_of_match[] = { 1469 { .compatible = "ti,am654-r5fss", .data = &am65_j721e_soc_data, }, 1470 { .compatible = "ti,j721e-r5fss", .data = &am65_j721e_soc_data, }, 1471 { .compatible = "ti,j7200-r5fss", .data = &j7200_j721s2_soc_data, }, 1472 { .compatible = "ti,am64-r5fss", .data = &am64_soc_data, }, 1473 { .compatible = "ti,am62-r5fss", .data = &am62_soc_data, }, 1474 { .compatible = "ti,j721s2-r5fss", .data = &j7200_j721s2_soc_data, }, 1475 { /* sentinel */ }, 1476 }; 1477 MODULE_DEVICE_TABLE(of, k3_r5_of_match); 1478 1479 static struct platform_driver k3_r5_rproc_driver = { 1480 .probe = k3_r5_probe, 1481 .driver = { 1482 .name = "k3_r5_rproc", 1483 .of_match_table = k3_r5_of_match, 1484 }, 1485 }; 1486 1487 module_platform_driver(k3_r5_rproc_driver); 1488 1489 MODULE_LICENSE("GPL v2"); 1490 MODULE_DESCRIPTION("TI K3 R5F remote processor driver"); 1491 MODULE_AUTHOR("Suman Anna <s-anna@ti.com>"); 1492