1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Peer 2 Peer DMA support. 4 * 5 * Copyright (c) 2016-2018, Logan Gunthorpe 6 * Copyright (c) 2016-2017, Microsemi Corporation 7 * Copyright (c) 2017, Christoph Hellwig 8 * Copyright (c) 2018, Eideticom Inc. 9 */ 10 11 #define pr_fmt(fmt) "pci-p2pdma: " fmt 12 #include <linux/ctype.h> 13 #include <linux/dma-map-ops.h> 14 #include <linux/pci-p2pdma.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/genalloc.h> 18 #include <linux/memremap.h> 19 #include <linux/percpu-refcount.h> 20 #include <linux/random.h> 21 #include <linux/seq_buf.h> 22 #include <linux/xarray.h> 23 24 struct pci_p2pdma { 25 struct gen_pool *pool; 26 bool p2pmem_published; 27 struct xarray map_types; 28 }; 29 30 struct pci_p2pdma_pagemap { 31 struct pci_dev *provider; 32 u64 bus_offset; 33 struct dev_pagemap pgmap; 34 }; 35 36 static struct pci_p2pdma_pagemap *to_p2p_pgmap(struct dev_pagemap *pgmap) 37 { 38 return container_of(pgmap, struct pci_p2pdma_pagemap, pgmap); 39 } 40 41 static ssize_t size_show(struct device *dev, struct device_attribute *attr, 42 char *buf) 43 { 44 struct pci_dev *pdev = to_pci_dev(dev); 45 struct pci_p2pdma *p2pdma; 46 size_t size = 0; 47 48 rcu_read_lock(); 49 p2pdma = rcu_dereference(pdev->p2pdma); 50 if (p2pdma && p2pdma->pool) 51 size = gen_pool_size(p2pdma->pool); 52 rcu_read_unlock(); 53 54 return sysfs_emit(buf, "%zd\n", size); 55 } 56 static DEVICE_ATTR_RO(size); 57 58 static ssize_t available_show(struct device *dev, struct device_attribute *attr, 59 char *buf) 60 { 61 struct pci_dev *pdev = to_pci_dev(dev); 62 struct pci_p2pdma *p2pdma; 63 size_t avail = 0; 64 65 rcu_read_lock(); 66 p2pdma = rcu_dereference(pdev->p2pdma); 67 if (p2pdma && p2pdma->pool) 68 avail = gen_pool_avail(p2pdma->pool); 69 rcu_read_unlock(); 70 71 return sysfs_emit(buf, "%zd\n", avail); 72 } 73 static DEVICE_ATTR_RO(available); 74 75 static ssize_t published_show(struct device *dev, struct device_attribute *attr, 76 char *buf) 77 { 78 struct pci_dev *pdev = to_pci_dev(dev); 79 struct pci_p2pdma *p2pdma; 80 bool published = false; 81 82 rcu_read_lock(); 83 p2pdma = rcu_dereference(pdev->p2pdma); 84 if (p2pdma) 85 published = p2pdma->p2pmem_published; 86 rcu_read_unlock(); 87 88 return sysfs_emit(buf, "%d\n", published); 89 } 90 static DEVICE_ATTR_RO(published); 91 92 static int p2pmem_alloc_mmap(struct file *filp, struct kobject *kobj, 93 const struct bin_attribute *attr, struct vm_area_struct *vma) 94 { 95 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj)); 96 size_t len = vma->vm_end - vma->vm_start; 97 struct pci_p2pdma *p2pdma; 98 struct percpu_ref *ref; 99 unsigned long vaddr; 100 void *kaddr; 101 int ret; 102 103 /* prevent private mappings from being established */ 104 if ((vma->vm_flags & VM_MAYSHARE) != VM_MAYSHARE) { 105 pci_info_ratelimited(pdev, 106 "%s: fail, attempted private mapping\n", 107 current->comm); 108 return -EINVAL; 109 } 110 111 if (vma->vm_pgoff) { 112 pci_info_ratelimited(pdev, 113 "%s: fail, attempted mapping with non-zero offset\n", 114 current->comm); 115 return -EINVAL; 116 } 117 118 rcu_read_lock(); 119 p2pdma = rcu_dereference(pdev->p2pdma); 120 if (!p2pdma) { 121 ret = -ENODEV; 122 goto out; 123 } 124 125 kaddr = (void *)gen_pool_alloc_owner(p2pdma->pool, len, (void **)&ref); 126 if (!kaddr) { 127 ret = -ENOMEM; 128 goto out; 129 } 130 131 /* 132 * vm_insert_page() can sleep, so a reference is taken to mapping 133 * such that rcu_read_unlock() can be done before inserting the 134 * pages 135 */ 136 if (unlikely(!percpu_ref_tryget_live_rcu(ref))) { 137 ret = -ENODEV; 138 goto out_free_mem; 139 } 140 rcu_read_unlock(); 141 142 for (vaddr = vma->vm_start; vaddr < vma->vm_end; vaddr += PAGE_SIZE) { 143 struct page *page = virt_to_page(kaddr); 144 145 /* 146 * Initialise the refcount for the freshly allocated page. As 147 * we have just allocated the page no one else should be 148 * using it. 149 */ 150 VM_WARN_ON_ONCE_PAGE(!page_ref_count(page), page); 151 set_page_count(page, 1); 152 ret = vm_insert_page(vma, vaddr, page); 153 if (ret) { 154 gen_pool_free(p2pdma->pool, (uintptr_t)kaddr, len); 155 return ret; 156 } 157 percpu_ref_get(ref); 158 put_page(page); 159 kaddr += PAGE_SIZE; 160 len -= PAGE_SIZE; 161 } 162 163 percpu_ref_put(ref); 164 165 return 0; 166 out_free_mem: 167 gen_pool_free(p2pdma->pool, (uintptr_t)kaddr, len); 168 out: 169 rcu_read_unlock(); 170 return ret; 171 } 172 173 static const struct bin_attribute p2pmem_alloc_attr = { 174 .attr = { .name = "allocate", .mode = 0660 }, 175 .mmap = p2pmem_alloc_mmap, 176 /* 177 * Some places where we want to call mmap (ie. python) will check 178 * that the file size is greater than the mmap size before allowing 179 * the mmap to continue. To work around this, just set the size 180 * to be very large. 181 */ 182 .size = SZ_1T, 183 }; 184 185 static struct attribute *p2pmem_attrs[] = { 186 &dev_attr_size.attr, 187 &dev_attr_available.attr, 188 &dev_attr_published.attr, 189 NULL, 190 }; 191 192 static const struct bin_attribute *const p2pmem_bin_attrs[] = { 193 &p2pmem_alloc_attr, 194 NULL, 195 }; 196 197 static const struct attribute_group p2pmem_group = { 198 .attrs = p2pmem_attrs, 199 .bin_attrs_new = p2pmem_bin_attrs, 200 .name = "p2pmem", 201 }; 202 203 static void p2pdma_page_free(struct page *page) 204 { 205 struct pci_p2pdma_pagemap *pgmap = to_p2p_pgmap(page_pgmap(page)); 206 /* safe to dereference while a reference is held to the percpu ref */ 207 struct pci_p2pdma *p2pdma = 208 rcu_dereference_protected(pgmap->provider->p2pdma, 1); 209 struct percpu_ref *ref; 210 211 gen_pool_free_owner(p2pdma->pool, (uintptr_t)page_to_virt(page), 212 PAGE_SIZE, (void **)&ref); 213 percpu_ref_put(ref); 214 } 215 216 static const struct dev_pagemap_ops p2pdma_pgmap_ops = { 217 .page_free = p2pdma_page_free, 218 }; 219 220 static void pci_p2pdma_release(void *data) 221 { 222 struct pci_dev *pdev = data; 223 struct pci_p2pdma *p2pdma; 224 225 p2pdma = rcu_dereference_protected(pdev->p2pdma, 1); 226 if (!p2pdma) 227 return; 228 229 /* Flush and disable pci_alloc_p2p_mem() */ 230 pdev->p2pdma = NULL; 231 synchronize_rcu(); 232 233 gen_pool_destroy(p2pdma->pool); 234 sysfs_remove_group(&pdev->dev.kobj, &p2pmem_group); 235 xa_destroy(&p2pdma->map_types); 236 } 237 238 static int pci_p2pdma_setup(struct pci_dev *pdev) 239 { 240 int error = -ENOMEM; 241 struct pci_p2pdma *p2p; 242 243 p2p = devm_kzalloc(&pdev->dev, sizeof(*p2p), GFP_KERNEL); 244 if (!p2p) 245 return -ENOMEM; 246 247 xa_init(&p2p->map_types); 248 249 p2p->pool = gen_pool_create(PAGE_SHIFT, dev_to_node(&pdev->dev)); 250 if (!p2p->pool) 251 goto out; 252 253 error = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_release, pdev); 254 if (error) 255 goto out_pool_destroy; 256 257 error = sysfs_create_group(&pdev->dev.kobj, &p2pmem_group); 258 if (error) 259 goto out_pool_destroy; 260 261 rcu_assign_pointer(pdev->p2pdma, p2p); 262 return 0; 263 264 out_pool_destroy: 265 gen_pool_destroy(p2p->pool); 266 out: 267 devm_kfree(&pdev->dev, p2p); 268 return error; 269 } 270 271 static void pci_p2pdma_unmap_mappings(void *data) 272 { 273 struct pci_dev *pdev = data; 274 275 /* 276 * Removing the alloc attribute from sysfs will call 277 * unmap_mapping_range() on the inode, teardown any existing userspace 278 * mappings and prevent new ones from being created. 279 */ 280 sysfs_remove_file_from_group(&pdev->dev.kobj, &p2pmem_alloc_attr.attr, 281 p2pmem_group.name); 282 } 283 284 /** 285 * pci_p2pdma_add_resource - add memory for use as p2p memory 286 * @pdev: the device to add the memory to 287 * @bar: PCI BAR to add 288 * @size: size of the memory to add, may be zero to use the whole BAR 289 * @offset: offset into the PCI BAR 290 * 291 * The memory will be given ZONE_DEVICE struct pages so that it may 292 * be used with any DMA request. 293 */ 294 int pci_p2pdma_add_resource(struct pci_dev *pdev, int bar, size_t size, 295 u64 offset) 296 { 297 struct pci_p2pdma_pagemap *p2p_pgmap; 298 struct dev_pagemap *pgmap; 299 struct pci_p2pdma *p2pdma; 300 void *addr; 301 int error; 302 303 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) 304 return -EINVAL; 305 306 if (offset >= pci_resource_len(pdev, bar)) 307 return -EINVAL; 308 309 if (!size) 310 size = pci_resource_len(pdev, bar) - offset; 311 312 if (size + offset > pci_resource_len(pdev, bar)) 313 return -EINVAL; 314 315 if (!pdev->p2pdma) { 316 error = pci_p2pdma_setup(pdev); 317 if (error) 318 return error; 319 } 320 321 p2p_pgmap = devm_kzalloc(&pdev->dev, sizeof(*p2p_pgmap), GFP_KERNEL); 322 if (!p2p_pgmap) 323 return -ENOMEM; 324 325 pgmap = &p2p_pgmap->pgmap; 326 pgmap->range.start = pci_resource_start(pdev, bar) + offset; 327 pgmap->range.end = pgmap->range.start + size - 1; 328 pgmap->nr_range = 1; 329 pgmap->type = MEMORY_DEVICE_PCI_P2PDMA; 330 pgmap->ops = &p2pdma_pgmap_ops; 331 332 p2p_pgmap->provider = pdev; 333 p2p_pgmap->bus_offset = pci_bus_address(pdev, bar) - 334 pci_resource_start(pdev, bar); 335 336 addr = devm_memremap_pages(&pdev->dev, pgmap); 337 if (IS_ERR(addr)) { 338 error = PTR_ERR(addr); 339 goto pgmap_free; 340 } 341 342 error = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_unmap_mappings, 343 pdev); 344 if (error) 345 goto pages_free; 346 347 p2pdma = rcu_dereference_protected(pdev->p2pdma, 1); 348 error = gen_pool_add_owner(p2pdma->pool, (unsigned long)addr, 349 pci_bus_address(pdev, bar) + offset, 350 range_len(&pgmap->range), dev_to_node(&pdev->dev), 351 &pgmap->ref); 352 if (error) 353 goto pages_free; 354 355 pci_info(pdev, "added peer-to-peer DMA memory %#llx-%#llx\n", 356 pgmap->range.start, pgmap->range.end); 357 358 return 0; 359 360 pages_free: 361 devm_memunmap_pages(&pdev->dev, pgmap); 362 pgmap_free: 363 devm_kfree(&pdev->dev, pgmap); 364 return error; 365 } 366 EXPORT_SYMBOL_GPL(pci_p2pdma_add_resource); 367 368 /* 369 * Note this function returns the parent PCI device with a 370 * reference taken. It is the caller's responsibility to drop 371 * the reference. 372 */ 373 static struct pci_dev *find_parent_pci_dev(struct device *dev) 374 { 375 struct device *parent; 376 377 dev = get_device(dev); 378 379 while (dev) { 380 if (dev_is_pci(dev)) 381 return to_pci_dev(dev); 382 383 parent = get_device(dev->parent); 384 put_device(dev); 385 dev = parent; 386 } 387 388 return NULL; 389 } 390 391 /* 392 * Check if a PCI bridge has its ACS redirection bits set to redirect P2P 393 * TLPs upstream via ACS. Returns 1 if the packets will be redirected 394 * upstream, 0 otherwise. 395 */ 396 static int pci_bridge_has_acs_redir(struct pci_dev *pdev) 397 { 398 int pos; 399 u16 ctrl; 400 401 pos = pdev->acs_cap; 402 if (!pos) 403 return 0; 404 405 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 406 407 if (ctrl & (PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC)) 408 return 1; 409 410 return 0; 411 } 412 413 static void seq_buf_print_bus_devfn(struct seq_buf *buf, struct pci_dev *pdev) 414 { 415 if (!buf) 416 return; 417 418 seq_buf_printf(buf, "%s;", pci_name(pdev)); 419 } 420 421 static bool cpu_supports_p2pdma(void) 422 { 423 #ifdef CONFIG_X86 424 struct cpuinfo_x86 *c = &cpu_data(0); 425 426 /* Any AMD CPU whose family ID is Zen or newer supports p2pdma */ 427 if (c->x86_vendor == X86_VENDOR_AMD && c->x86 >= 0x17) 428 return true; 429 #endif 430 431 return false; 432 } 433 434 static const struct pci_p2pdma_whitelist_entry { 435 unsigned short vendor; 436 unsigned short device; 437 enum { 438 REQ_SAME_HOST_BRIDGE = 1 << 0, 439 } flags; 440 } pci_p2pdma_whitelist[] = { 441 /* Intel Xeon E5/Core i7 */ 442 {PCI_VENDOR_ID_INTEL, 0x3c00, REQ_SAME_HOST_BRIDGE}, 443 {PCI_VENDOR_ID_INTEL, 0x3c01, REQ_SAME_HOST_BRIDGE}, 444 /* Intel Xeon E7 v3/Xeon E5 v3/Core i7 */ 445 {PCI_VENDOR_ID_INTEL, 0x2f00, REQ_SAME_HOST_BRIDGE}, 446 {PCI_VENDOR_ID_INTEL, 0x2f01, REQ_SAME_HOST_BRIDGE}, 447 /* Intel Skylake-E */ 448 {PCI_VENDOR_ID_INTEL, 0x2030, 0}, 449 {PCI_VENDOR_ID_INTEL, 0x2031, 0}, 450 {PCI_VENDOR_ID_INTEL, 0x2032, 0}, 451 {PCI_VENDOR_ID_INTEL, 0x2033, 0}, 452 {PCI_VENDOR_ID_INTEL, 0x2020, 0}, 453 {PCI_VENDOR_ID_INTEL, 0x09a2, 0}, 454 {} 455 }; 456 457 /* 458 * If the first device on host's root bus is either devfn 00.0 or a PCIe 459 * Root Port, return it. Otherwise return NULL. 460 * 461 * We often use a devfn 00.0 "host bridge" in the pci_p2pdma_whitelist[] 462 * (though there is no PCI/PCIe requirement for such a device). On some 463 * platforms, e.g., Intel Skylake, there is no such host bridge device, and 464 * pci_p2pdma_whitelist[] may contain a Root Port at any devfn. 465 * 466 * This function is similar to pci_get_slot(host->bus, 0), but it does 467 * not take the pci_bus_sem lock since __host_bridge_whitelist() must not 468 * sleep. 469 * 470 * For this to be safe, the caller should hold a reference to a device on the 471 * bridge, which should ensure the host_bridge device will not be freed 472 * or removed from the head of the devices list. 473 */ 474 static struct pci_dev *pci_host_bridge_dev(struct pci_host_bridge *host) 475 { 476 struct pci_dev *root; 477 478 root = list_first_entry_or_null(&host->bus->devices, 479 struct pci_dev, bus_list); 480 481 if (!root) 482 return NULL; 483 484 if (root->devfn == PCI_DEVFN(0, 0)) 485 return root; 486 487 if (pci_pcie_type(root) == PCI_EXP_TYPE_ROOT_PORT) 488 return root; 489 490 return NULL; 491 } 492 493 static bool __host_bridge_whitelist(struct pci_host_bridge *host, 494 bool same_host_bridge, bool warn) 495 { 496 struct pci_dev *root = pci_host_bridge_dev(host); 497 const struct pci_p2pdma_whitelist_entry *entry; 498 unsigned short vendor, device; 499 500 if (!root) 501 return false; 502 503 vendor = root->vendor; 504 device = root->device; 505 506 for (entry = pci_p2pdma_whitelist; entry->vendor; entry++) { 507 if (vendor != entry->vendor || device != entry->device) 508 continue; 509 if (entry->flags & REQ_SAME_HOST_BRIDGE && !same_host_bridge) 510 return false; 511 512 return true; 513 } 514 515 if (warn) 516 pci_warn(root, "Host bridge not in P2PDMA whitelist: %04x:%04x\n", 517 vendor, device); 518 519 return false; 520 } 521 522 /* 523 * If we can't find a common upstream bridge take a look at the root 524 * complex and compare it to a whitelist of known good hardware. 525 */ 526 static bool host_bridge_whitelist(struct pci_dev *a, struct pci_dev *b, 527 bool warn) 528 { 529 struct pci_host_bridge *host_a = pci_find_host_bridge(a->bus); 530 struct pci_host_bridge *host_b = pci_find_host_bridge(b->bus); 531 532 if (host_a == host_b) 533 return __host_bridge_whitelist(host_a, true, warn); 534 535 if (__host_bridge_whitelist(host_a, false, warn) && 536 __host_bridge_whitelist(host_b, false, warn)) 537 return true; 538 539 return false; 540 } 541 542 static unsigned long map_types_idx(struct pci_dev *client) 543 { 544 return (pci_domain_nr(client->bus) << 16) | pci_dev_id(client); 545 } 546 547 /* 548 * Calculate the P2PDMA mapping type and distance between two PCI devices. 549 * 550 * If the two devices are the same PCI function, return 551 * PCI_P2PDMA_MAP_BUS_ADDR and a distance of 0. 552 * 553 * If they are two functions of the same device, return 554 * PCI_P2PDMA_MAP_BUS_ADDR and a distance of 2 (one hop up to the bridge, 555 * then one hop back down to another function of the same device). 556 * 557 * In the case where two devices are connected to the same PCIe switch, 558 * return a distance of 4. This corresponds to the following PCI tree: 559 * 560 * -+ Root Port 561 * \+ Switch Upstream Port 562 * +-+ Switch Downstream Port 0 563 * + \- Device A 564 * \-+ Switch Downstream Port 1 565 * \- Device B 566 * 567 * The distance is 4 because we traverse from Device A to Downstream Port 0 568 * to the common Switch Upstream Port, back down to Downstream Port 1 and 569 * then to Device B. The mapping type returned depends on the ACS 570 * redirection setting of the ports along the path. 571 * 572 * If ACS redirect is set on any port in the path, traffic between the 573 * devices will go through the host bridge, so return 574 * PCI_P2PDMA_MAP_THRU_HOST_BRIDGE; otherwise return 575 * PCI_P2PDMA_MAP_BUS_ADDR. 576 * 577 * Any two devices that have a data path that goes through the host bridge 578 * will consult a whitelist. If the host bridge is in the whitelist, return 579 * PCI_P2PDMA_MAP_THRU_HOST_BRIDGE with the distance set to the number of 580 * ports per above. If the device is not in the whitelist, return 581 * PCI_P2PDMA_MAP_NOT_SUPPORTED. 582 */ 583 static enum pci_p2pdma_map_type 584 calc_map_type_and_dist(struct pci_dev *provider, struct pci_dev *client, 585 int *dist, bool verbose) 586 { 587 enum pci_p2pdma_map_type map_type = PCI_P2PDMA_MAP_THRU_HOST_BRIDGE; 588 struct pci_dev *a = provider, *b = client, *bb; 589 bool acs_redirects = false; 590 struct pci_p2pdma *p2pdma; 591 struct seq_buf acs_list; 592 int acs_cnt = 0; 593 int dist_a = 0; 594 int dist_b = 0; 595 char buf[128]; 596 597 seq_buf_init(&acs_list, buf, sizeof(buf)); 598 599 /* 600 * Note, we don't need to take references to devices returned by 601 * pci_upstream_bridge() seeing we hold a reference to a child 602 * device which will already hold a reference to the upstream bridge. 603 */ 604 while (a) { 605 dist_b = 0; 606 607 if (pci_bridge_has_acs_redir(a)) { 608 seq_buf_print_bus_devfn(&acs_list, a); 609 acs_cnt++; 610 } 611 612 bb = b; 613 614 while (bb) { 615 if (a == bb) 616 goto check_b_path_acs; 617 618 bb = pci_upstream_bridge(bb); 619 dist_b++; 620 } 621 622 a = pci_upstream_bridge(a); 623 dist_a++; 624 } 625 626 *dist = dist_a + dist_b; 627 goto map_through_host_bridge; 628 629 check_b_path_acs: 630 bb = b; 631 632 while (bb) { 633 if (a == bb) 634 break; 635 636 if (pci_bridge_has_acs_redir(bb)) { 637 seq_buf_print_bus_devfn(&acs_list, bb); 638 acs_cnt++; 639 } 640 641 bb = pci_upstream_bridge(bb); 642 } 643 644 *dist = dist_a + dist_b; 645 646 if (!acs_cnt) { 647 map_type = PCI_P2PDMA_MAP_BUS_ADDR; 648 goto done; 649 } 650 651 if (verbose) { 652 acs_list.buffer[acs_list.len-1] = 0; /* drop final semicolon */ 653 pci_warn(client, "ACS redirect is set between the client and provider (%s)\n", 654 pci_name(provider)); 655 pci_warn(client, "to disable ACS redirect for this path, add the kernel parameter: pci=disable_acs_redir=%s\n", 656 acs_list.buffer); 657 } 658 acs_redirects = true; 659 660 map_through_host_bridge: 661 if (!cpu_supports_p2pdma() && 662 !host_bridge_whitelist(provider, client, acs_redirects)) { 663 if (verbose) 664 pci_warn(client, "cannot be used for peer-to-peer DMA as the client and provider (%s) do not share an upstream bridge or whitelisted host bridge\n", 665 pci_name(provider)); 666 map_type = PCI_P2PDMA_MAP_NOT_SUPPORTED; 667 } 668 done: 669 rcu_read_lock(); 670 p2pdma = rcu_dereference(provider->p2pdma); 671 if (p2pdma) 672 xa_store(&p2pdma->map_types, map_types_idx(client), 673 xa_mk_value(map_type), GFP_ATOMIC); 674 rcu_read_unlock(); 675 return map_type; 676 } 677 678 /** 679 * pci_p2pdma_distance_many - Determine the cumulative distance between 680 * a p2pdma provider and the clients in use. 681 * @provider: p2pdma provider to check against the client list 682 * @clients: array of devices to check (NULL-terminated) 683 * @num_clients: number of clients in the array 684 * @verbose: if true, print warnings for devices when we return -1 685 * 686 * Returns -1 if any of the clients are not compatible, otherwise returns a 687 * positive number where a lower number is the preferable choice. (If there's 688 * one client that's the same as the provider it will return 0, which is best 689 * choice). 690 * 691 * "compatible" means the provider and the clients are either all behind 692 * the same PCI root port or the host bridges connected to each of the devices 693 * are listed in the 'pci_p2pdma_whitelist'. 694 */ 695 int pci_p2pdma_distance_many(struct pci_dev *provider, struct device **clients, 696 int num_clients, bool verbose) 697 { 698 enum pci_p2pdma_map_type map; 699 bool not_supported = false; 700 struct pci_dev *pci_client; 701 int total_dist = 0; 702 int i, distance; 703 704 if (num_clients == 0) 705 return -1; 706 707 for (i = 0; i < num_clients; i++) { 708 pci_client = find_parent_pci_dev(clients[i]); 709 if (!pci_client) { 710 if (verbose) 711 dev_warn(clients[i], 712 "cannot be used for peer-to-peer DMA as it is not a PCI device\n"); 713 return -1; 714 } 715 716 map = calc_map_type_and_dist(provider, pci_client, &distance, 717 verbose); 718 719 pci_dev_put(pci_client); 720 721 if (map == PCI_P2PDMA_MAP_NOT_SUPPORTED) 722 not_supported = true; 723 724 if (not_supported && !verbose) 725 break; 726 727 total_dist += distance; 728 } 729 730 if (not_supported) 731 return -1; 732 733 return total_dist; 734 } 735 EXPORT_SYMBOL_GPL(pci_p2pdma_distance_many); 736 737 /** 738 * pci_has_p2pmem - check if a given PCI device has published any p2pmem 739 * @pdev: PCI device to check 740 */ 741 bool pci_has_p2pmem(struct pci_dev *pdev) 742 { 743 struct pci_p2pdma *p2pdma; 744 bool res; 745 746 rcu_read_lock(); 747 p2pdma = rcu_dereference(pdev->p2pdma); 748 res = p2pdma && p2pdma->p2pmem_published; 749 rcu_read_unlock(); 750 751 return res; 752 } 753 EXPORT_SYMBOL_GPL(pci_has_p2pmem); 754 755 /** 756 * pci_p2pmem_find_many - find a peer-to-peer DMA memory device compatible with 757 * the specified list of clients and shortest distance 758 * @clients: array of devices to check (NULL-terminated) 759 * @num_clients: number of client devices in the list 760 * 761 * If multiple devices are behind the same switch, the one "closest" to the 762 * client devices in use will be chosen first. (So if one of the providers is 763 * the same as one of the clients, that provider will be used ahead of any 764 * other providers that are unrelated). If multiple providers are an equal 765 * distance away, one will be chosen at random. 766 * 767 * Returns a pointer to the PCI device with a reference taken (use pci_dev_put 768 * to return the reference) or NULL if no compatible device is found. The 769 * found provider will also be assigned to the client list. 770 */ 771 struct pci_dev *pci_p2pmem_find_many(struct device **clients, int num_clients) 772 { 773 struct pci_dev *pdev = NULL; 774 int distance; 775 int closest_distance = INT_MAX; 776 struct pci_dev **closest_pdevs; 777 int dev_cnt = 0; 778 const int max_devs = PAGE_SIZE / sizeof(*closest_pdevs); 779 int i; 780 781 closest_pdevs = kmalloc(PAGE_SIZE, GFP_KERNEL); 782 if (!closest_pdevs) 783 return NULL; 784 785 for_each_pci_dev(pdev) { 786 if (!pci_has_p2pmem(pdev)) 787 continue; 788 789 distance = pci_p2pdma_distance_many(pdev, clients, 790 num_clients, false); 791 if (distance < 0 || distance > closest_distance) 792 continue; 793 794 if (distance == closest_distance && dev_cnt >= max_devs) 795 continue; 796 797 if (distance < closest_distance) { 798 for (i = 0; i < dev_cnt; i++) 799 pci_dev_put(closest_pdevs[i]); 800 801 dev_cnt = 0; 802 closest_distance = distance; 803 } 804 805 closest_pdevs[dev_cnt++] = pci_dev_get(pdev); 806 } 807 808 if (dev_cnt) 809 pdev = pci_dev_get(closest_pdevs[get_random_u32_below(dev_cnt)]); 810 811 for (i = 0; i < dev_cnt; i++) 812 pci_dev_put(closest_pdevs[i]); 813 814 kfree(closest_pdevs); 815 return pdev; 816 } 817 EXPORT_SYMBOL_GPL(pci_p2pmem_find_many); 818 819 /** 820 * pci_alloc_p2pmem - allocate peer-to-peer DMA memory 821 * @pdev: the device to allocate memory from 822 * @size: number of bytes to allocate 823 * 824 * Returns the allocated memory or NULL on error. 825 */ 826 void *pci_alloc_p2pmem(struct pci_dev *pdev, size_t size) 827 { 828 void *ret = NULL; 829 struct percpu_ref *ref; 830 struct pci_p2pdma *p2pdma; 831 832 /* 833 * Pairs with synchronize_rcu() in pci_p2pdma_release() to 834 * ensure pdev->p2pdma is non-NULL for the duration of the 835 * read-lock. 836 */ 837 rcu_read_lock(); 838 p2pdma = rcu_dereference(pdev->p2pdma); 839 if (unlikely(!p2pdma)) 840 goto out; 841 842 ret = (void *)gen_pool_alloc_owner(p2pdma->pool, size, (void **) &ref); 843 if (!ret) 844 goto out; 845 846 if (unlikely(!percpu_ref_tryget_live_rcu(ref))) { 847 gen_pool_free(p2pdma->pool, (unsigned long) ret, size); 848 ret = NULL; 849 } 850 out: 851 rcu_read_unlock(); 852 return ret; 853 } 854 EXPORT_SYMBOL_GPL(pci_alloc_p2pmem); 855 856 /** 857 * pci_free_p2pmem - free peer-to-peer DMA memory 858 * @pdev: the device the memory was allocated from 859 * @addr: address of the memory that was allocated 860 * @size: number of bytes that were allocated 861 */ 862 void pci_free_p2pmem(struct pci_dev *pdev, void *addr, size_t size) 863 { 864 struct percpu_ref *ref; 865 struct pci_p2pdma *p2pdma = rcu_dereference_protected(pdev->p2pdma, 1); 866 867 gen_pool_free_owner(p2pdma->pool, (uintptr_t)addr, size, 868 (void **) &ref); 869 percpu_ref_put(ref); 870 } 871 EXPORT_SYMBOL_GPL(pci_free_p2pmem); 872 873 /** 874 * pci_p2pmem_virt_to_bus - return the PCI bus address for a given virtual 875 * address obtained with pci_alloc_p2pmem() 876 * @pdev: the device the memory was allocated from 877 * @addr: address of the memory that was allocated 878 */ 879 pci_bus_addr_t pci_p2pmem_virt_to_bus(struct pci_dev *pdev, void *addr) 880 { 881 struct pci_p2pdma *p2pdma; 882 883 if (!addr) 884 return 0; 885 886 p2pdma = rcu_dereference_protected(pdev->p2pdma, 1); 887 if (!p2pdma) 888 return 0; 889 890 /* 891 * Note: when we added the memory to the pool we used the PCI 892 * bus address as the physical address. So gen_pool_virt_to_phys() 893 * actually returns the bus address despite the misleading name. 894 */ 895 return gen_pool_virt_to_phys(p2pdma->pool, (unsigned long)addr); 896 } 897 EXPORT_SYMBOL_GPL(pci_p2pmem_virt_to_bus); 898 899 /** 900 * pci_p2pmem_alloc_sgl - allocate peer-to-peer DMA memory in a scatterlist 901 * @pdev: the device to allocate memory from 902 * @nents: the number of SG entries in the list 903 * @length: number of bytes to allocate 904 * 905 * Return: %NULL on error or &struct scatterlist pointer and @nents on success 906 */ 907 struct scatterlist *pci_p2pmem_alloc_sgl(struct pci_dev *pdev, 908 unsigned int *nents, u32 length) 909 { 910 struct scatterlist *sg; 911 void *addr; 912 913 sg = kmalloc(sizeof(*sg), GFP_KERNEL); 914 if (!sg) 915 return NULL; 916 917 sg_init_table(sg, 1); 918 919 addr = pci_alloc_p2pmem(pdev, length); 920 if (!addr) 921 goto out_free_sg; 922 923 sg_set_buf(sg, addr, length); 924 *nents = 1; 925 return sg; 926 927 out_free_sg: 928 kfree(sg); 929 return NULL; 930 } 931 EXPORT_SYMBOL_GPL(pci_p2pmem_alloc_sgl); 932 933 /** 934 * pci_p2pmem_free_sgl - free a scatterlist allocated by pci_p2pmem_alloc_sgl() 935 * @pdev: the device to allocate memory from 936 * @sgl: the allocated scatterlist 937 */ 938 void pci_p2pmem_free_sgl(struct pci_dev *pdev, struct scatterlist *sgl) 939 { 940 struct scatterlist *sg; 941 int count; 942 943 for_each_sg(sgl, sg, INT_MAX, count) { 944 if (!sg) 945 break; 946 947 pci_free_p2pmem(pdev, sg_virt(sg), sg->length); 948 } 949 kfree(sgl); 950 } 951 EXPORT_SYMBOL_GPL(pci_p2pmem_free_sgl); 952 953 /** 954 * pci_p2pmem_publish - publish the peer-to-peer DMA memory for use by 955 * other devices with pci_p2pmem_find() 956 * @pdev: the device with peer-to-peer DMA memory to publish 957 * @publish: set to true to publish the memory, false to unpublish it 958 * 959 * Published memory can be used by other PCI device drivers for 960 * peer-2-peer DMA operations. Non-published memory is reserved for 961 * exclusive use of the device driver that registers the peer-to-peer 962 * memory. 963 */ 964 void pci_p2pmem_publish(struct pci_dev *pdev, bool publish) 965 { 966 struct pci_p2pdma *p2pdma; 967 968 rcu_read_lock(); 969 p2pdma = rcu_dereference(pdev->p2pdma); 970 if (p2pdma) 971 p2pdma->p2pmem_published = publish; 972 rcu_read_unlock(); 973 } 974 EXPORT_SYMBOL_GPL(pci_p2pmem_publish); 975 976 static enum pci_p2pdma_map_type pci_p2pdma_map_type(struct dev_pagemap *pgmap, 977 struct device *dev) 978 { 979 enum pci_p2pdma_map_type type = PCI_P2PDMA_MAP_NOT_SUPPORTED; 980 struct pci_dev *provider = to_p2p_pgmap(pgmap)->provider; 981 struct pci_dev *client; 982 struct pci_p2pdma *p2pdma; 983 int dist; 984 985 if (!provider->p2pdma) 986 return PCI_P2PDMA_MAP_NOT_SUPPORTED; 987 988 if (!dev_is_pci(dev)) 989 return PCI_P2PDMA_MAP_NOT_SUPPORTED; 990 991 client = to_pci_dev(dev); 992 993 rcu_read_lock(); 994 p2pdma = rcu_dereference(provider->p2pdma); 995 996 if (p2pdma) 997 type = xa_to_value(xa_load(&p2pdma->map_types, 998 map_types_idx(client))); 999 rcu_read_unlock(); 1000 1001 if (type == PCI_P2PDMA_MAP_UNKNOWN) 1002 return calc_map_type_and_dist(provider, client, &dist, true); 1003 1004 return type; 1005 } 1006 1007 /** 1008 * pci_p2pdma_map_segment - map an sg segment determining the mapping type 1009 * @state: State structure that should be declared outside of the for_each_sg() 1010 * loop and initialized to zero. 1011 * @dev: DMA device that's doing the mapping operation 1012 * @sg: scatterlist segment to map 1013 * 1014 * This is a helper to be used by non-IOMMU dma_map_sg() implementations where 1015 * the sg segment is the same for the page_link and the dma_address. 1016 * 1017 * Attempt to map a single segment in an SGL with the PCI bus address. 1018 * The segment must point to a PCI P2PDMA page and thus must be 1019 * wrapped in a is_pci_p2pdma_page(sg_page(sg)) check. 1020 * 1021 * Returns the type of mapping used and maps the page if the type is 1022 * PCI_P2PDMA_MAP_BUS_ADDR. 1023 */ 1024 enum pci_p2pdma_map_type 1025 pci_p2pdma_map_segment(struct pci_p2pdma_map_state *state, struct device *dev, 1026 struct scatterlist *sg) 1027 { 1028 if (state->pgmap != page_pgmap(sg_page(sg))) { 1029 state->pgmap = page_pgmap(sg_page(sg)); 1030 state->map = pci_p2pdma_map_type(state->pgmap, dev); 1031 state->bus_off = to_p2p_pgmap(state->pgmap)->bus_offset; 1032 } 1033 1034 if (state->map == PCI_P2PDMA_MAP_BUS_ADDR) { 1035 sg->dma_address = sg_phys(sg) + state->bus_off; 1036 sg_dma_len(sg) = sg->length; 1037 sg_dma_mark_bus_address(sg); 1038 } 1039 1040 return state->map; 1041 } 1042 1043 /** 1044 * pci_p2pdma_enable_store - parse a configfs/sysfs attribute store 1045 * to enable p2pdma 1046 * @page: contents of the value to be stored 1047 * @p2p_dev: returns the PCI device that was selected to be used 1048 * (if one was specified in the stored value) 1049 * @use_p2pdma: returns whether to enable p2pdma or not 1050 * 1051 * Parses an attribute value to decide whether to enable p2pdma. 1052 * The value can select a PCI device (using its full BDF device 1053 * name) or a boolean (in any format kstrtobool() accepts). A false 1054 * value disables p2pdma, a true value expects the caller 1055 * to automatically find a compatible device and specifying a PCI device 1056 * expects the caller to use the specific provider. 1057 * 1058 * pci_p2pdma_enable_show() should be used as the show operation for 1059 * the attribute. 1060 * 1061 * Returns 0 on success 1062 */ 1063 int pci_p2pdma_enable_store(const char *page, struct pci_dev **p2p_dev, 1064 bool *use_p2pdma) 1065 { 1066 struct device *dev; 1067 1068 dev = bus_find_device_by_name(&pci_bus_type, NULL, page); 1069 if (dev) { 1070 *use_p2pdma = true; 1071 *p2p_dev = to_pci_dev(dev); 1072 1073 if (!pci_has_p2pmem(*p2p_dev)) { 1074 pci_err(*p2p_dev, 1075 "PCI device has no peer-to-peer memory: %s\n", 1076 page); 1077 pci_dev_put(*p2p_dev); 1078 return -ENODEV; 1079 } 1080 1081 return 0; 1082 } else if ((page[0] == '0' || page[0] == '1') && !iscntrl(page[1])) { 1083 /* 1084 * If the user enters a PCI device that doesn't exist 1085 * like "0000:01:00.1", we don't want kstrtobool to think 1086 * it's a '0' when it's clearly not what the user wanted. 1087 * So we require 0's and 1's to be exactly one character. 1088 */ 1089 } else if (!kstrtobool(page, use_p2pdma)) { 1090 return 0; 1091 } 1092 1093 pr_err("No such PCI device: %.*s\n", (int)strcspn(page, "\n"), page); 1094 return -ENODEV; 1095 } 1096 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_store); 1097 1098 /** 1099 * pci_p2pdma_enable_show - show a configfs/sysfs attribute indicating 1100 * whether p2pdma is enabled 1101 * @page: contents of the stored value 1102 * @p2p_dev: the selected p2p device (NULL if no device is selected) 1103 * @use_p2pdma: whether p2pdma has been enabled 1104 * 1105 * Attributes that use pci_p2pdma_enable_store() should use this function 1106 * to show the value of the attribute. 1107 * 1108 * Returns 0 on success 1109 */ 1110 ssize_t pci_p2pdma_enable_show(char *page, struct pci_dev *p2p_dev, 1111 bool use_p2pdma) 1112 { 1113 if (!use_p2pdma) 1114 return sprintf(page, "0\n"); 1115 1116 if (!p2p_dev) 1117 return sprintf(page, "1\n"); 1118 1119 return sprintf(page, "%s\n", pci_name(p2p_dev)); 1120 } 1121 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_show); 1122