1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Endpoint *Function* (EPF) library 4 * 5 * Copyright (C) 2017 Texas Instruments 6 * Author: Kishon Vijay Abraham I <kishon@ti.com> 7 */ 8 9 #include <linux/device.h> 10 #include <linux/dma-mapping.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 14 #include <linux/pci-epc.h> 15 #include <linux/pci-epf.h> 16 #include <linux/pci-ep-cfs.h> 17 18 static DEFINE_MUTEX(pci_epf_mutex); 19 20 static const struct bus_type pci_epf_bus_type; 21 static const struct device_type pci_epf_type; 22 23 /** 24 * pci_epf_unbind() - Notify the function driver that the binding between the 25 * EPF device and EPC device has been lost 26 * @epf: the EPF device which has lost the binding with the EPC device 27 * 28 * Invoke to notify the function driver that the binding between the EPF device 29 * and EPC device has been lost. 30 */ 31 void pci_epf_unbind(struct pci_epf *epf) 32 { 33 struct pci_epf *epf_vf; 34 35 if (!epf->driver) { 36 dev_WARN(&epf->dev, "epf device not bound to driver\n"); 37 return; 38 } 39 40 mutex_lock(&epf->lock); 41 list_for_each_entry(epf_vf, &epf->pci_vepf, list) { 42 if (epf_vf->is_bound) 43 epf_vf->driver->ops->unbind(epf_vf); 44 } 45 if (epf->is_bound) 46 epf->driver->ops->unbind(epf); 47 mutex_unlock(&epf->lock); 48 module_put(epf->driver->owner); 49 } 50 EXPORT_SYMBOL_GPL(pci_epf_unbind); 51 52 /** 53 * pci_epf_bind() - Notify the function driver that the EPF device has been 54 * bound to a EPC device 55 * @epf: the EPF device which has been bound to the EPC device 56 * 57 * Invoke to notify the function driver that it has been bound to a EPC device 58 */ 59 int pci_epf_bind(struct pci_epf *epf) 60 { 61 struct device *dev = &epf->dev; 62 struct pci_epf *epf_vf; 63 u8 func_no, vfunc_no; 64 struct pci_epc *epc; 65 int ret; 66 67 if (!epf->driver) { 68 dev_WARN(dev, "epf device not bound to driver\n"); 69 return -EINVAL; 70 } 71 72 if (!try_module_get(epf->driver->owner)) 73 return -EAGAIN; 74 75 mutex_lock(&epf->lock); 76 list_for_each_entry(epf_vf, &epf->pci_vepf, list) { 77 vfunc_no = epf_vf->vfunc_no; 78 79 if (vfunc_no < 1) { 80 dev_err(dev, "Invalid virtual function number\n"); 81 ret = -EINVAL; 82 goto ret; 83 } 84 85 epc = epf->epc; 86 func_no = epf->func_no; 87 if (!IS_ERR_OR_NULL(epc)) { 88 if (!epc->max_vfs) { 89 dev_err(dev, "No support for virt function\n"); 90 ret = -EINVAL; 91 goto ret; 92 } 93 94 if (vfunc_no > epc->max_vfs[func_no]) { 95 dev_err(dev, "PF%d: Exceeds max vfunc number\n", 96 func_no); 97 ret = -EINVAL; 98 goto ret; 99 } 100 } 101 102 epc = epf->sec_epc; 103 func_no = epf->sec_epc_func_no; 104 if (!IS_ERR_OR_NULL(epc)) { 105 if (!epc->max_vfs) { 106 dev_err(dev, "No support for virt function\n"); 107 ret = -EINVAL; 108 goto ret; 109 } 110 111 if (vfunc_no > epc->max_vfs[func_no]) { 112 dev_err(dev, "PF%d: Exceeds max vfunc number\n", 113 func_no); 114 ret = -EINVAL; 115 goto ret; 116 } 117 } 118 119 epf_vf->func_no = epf->func_no; 120 epf_vf->sec_epc_func_no = epf->sec_epc_func_no; 121 epf_vf->epc = epf->epc; 122 epf_vf->sec_epc = epf->sec_epc; 123 ret = epf_vf->driver->ops->bind(epf_vf); 124 if (ret) 125 goto ret; 126 epf_vf->is_bound = true; 127 } 128 129 ret = epf->driver->ops->bind(epf); 130 if (ret) 131 goto ret; 132 epf->is_bound = true; 133 134 mutex_unlock(&epf->lock); 135 return 0; 136 137 ret: 138 mutex_unlock(&epf->lock); 139 pci_epf_unbind(epf); 140 141 return ret; 142 } 143 EXPORT_SYMBOL_GPL(pci_epf_bind); 144 145 /** 146 * pci_epf_add_vepf() - associate virtual EP function to physical EP function 147 * @epf_pf: the physical EP function to which the virtual EP function should be 148 * associated 149 * @epf_vf: the virtual EP function to be added 150 * 151 * A physical endpoint function can be associated with multiple virtual 152 * endpoint functions. Invoke pci_epf_add_epf() to add a virtual PCI endpoint 153 * function to a physical PCI endpoint function. 154 */ 155 int pci_epf_add_vepf(struct pci_epf *epf_pf, struct pci_epf *epf_vf) 156 { 157 u32 vfunc_no; 158 159 if (IS_ERR_OR_NULL(epf_pf) || IS_ERR_OR_NULL(epf_vf)) 160 return -EINVAL; 161 162 if (epf_pf->epc || epf_vf->epc || epf_vf->epf_pf) 163 return -EBUSY; 164 165 if (epf_pf->sec_epc || epf_vf->sec_epc) 166 return -EBUSY; 167 168 mutex_lock(&epf_pf->lock); 169 vfunc_no = find_first_zero_bit(&epf_pf->vfunction_num_map, 170 BITS_PER_LONG); 171 if (vfunc_no >= BITS_PER_LONG) { 172 mutex_unlock(&epf_pf->lock); 173 return -EINVAL; 174 } 175 176 set_bit(vfunc_no, &epf_pf->vfunction_num_map); 177 epf_vf->vfunc_no = vfunc_no; 178 179 epf_vf->epf_pf = epf_pf; 180 epf_vf->is_vf = true; 181 182 list_add_tail(&epf_vf->list, &epf_pf->pci_vepf); 183 mutex_unlock(&epf_pf->lock); 184 185 return 0; 186 } 187 EXPORT_SYMBOL_GPL(pci_epf_add_vepf); 188 189 /** 190 * pci_epf_remove_vepf() - remove virtual EP function from physical EP function 191 * @epf_pf: the physical EP function from which the virtual EP function should 192 * be removed 193 * @epf_vf: the virtual EP function to be removed 194 * 195 * Invoke to remove a virtual endpoint function from the physical endpoint 196 * function. 197 */ 198 void pci_epf_remove_vepf(struct pci_epf *epf_pf, struct pci_epf *epf_vf) 199 { 200 if (IS_ERR_OR_NULL(epf_pf) || IS_ERR_OR_NULL(epf_vf)) 201 return; 202 203 mutex_lock(&epf_pf->lock); 204 clear_bit(epf_vf->vfunc_no, &epf_pf->vfunction_num_map); 205 epf_vf->epf_pf = NULL; 206 list_del(&epf_vf->list); 207 mutex_unlock(&epf_pf->lock); 208 } 209 EXPORT_SYMBOL_GPL(pci_epf_remove_vepf); 210 211 /** 212 * pci_epf_free_space() - free the allocated PCI EPF register space 213 * @epf: the EPF device from whom to free the memory 214 * @addr: the virtual address of the PCI EPF register space 215 * @bar: the BAR number corresponding to the register space 216 * @type: Identifies if the allocated space is for primary EPC or secondary EPC 217 * 218 * Invoke to free the allocated PCI EPF register space. 219 */ 220 void pci_epf_free_space(struct pci_epf *epf, void *addr, enum pci_barno bar, 221 enum pci_epc_interface_type type) 222 { 223 struct device *dev; 224 struct pci_epf_bar *epf_bar; 225 struct pci_epc *epc; 226 227 if (!addr) 228 return; 229 230 if (type == PRIMARY_INTERFACE) { 231 epc = epf->epc; 232 epf_bar = epf->bar; 233 } else { 234 epc = epf->sec_epc; 235 epf_bar = epf->sec_epc_bar; 236 } 237 238 dev = epc->dev.parent; 239 dma_free_coherent(dev, epf_bar[bar].size, addr, 240 epf_bar[bar].phys_addr); 241 242 epf_bar[bar].phys_addr = 0; 243 epf_bar[bar].addr = NULL; 244 epf_bar[bar].size = 0; 245 epf_bar[bar].barno = 0; 246 epf_bar[bar].flags = 0; 247 } 248 EXPORT_SYMBOL_GPL(pci_epf_free_space); 249 250 /** 251 * pci_epf_alloc_space() - allocate memory for the PCI EPF register space 252 * @epf: the EPF device to whom allocate the memory 253 * @size: the size of the memory that has to be allocated 254 * @bar: the BAR number corresponding to the allocated register space 255 * @epc_features: the features provided by the EPC specific to this EPF 256 * @type: Identifies if the allocation is for primary EPC or secondary EPC 257 * 258 * Invoke to allocate memory for the PCI EPF register space. 259 * Flag PCI_BASE_ADDRESS_MEM_TYPE_64 will automatically get set if the BAR 260 * can only be a 64-bit BAR, or if the requested size is larger than 2 GB. 261 */ 262 void *pci_epf_alloc_space(struct pci_epf *epf, size_t size, enum pci_barno bar, 263 const struct pci_epc_features *epc_features, 264 enum pci_epc_interface_type type) 265 { 266 u64 bar_fixed_size = epc_features->bar[bar].fixed_size; 267 size_t align = epc_features->align; 268 struct pci_epf_bar *epf_bar; 269 dma_addr_t phys_addr; 270 struct pci_epc *epc; 271 struct device *dev; 272 void *space; 273 274 if (size < 128) 275 size = 128; 276 277 if (epc_features->bar[bar].type == BAR_FIXED && bar_fixed_size) { 278 if (size > bar_fixed_size) { 279 dev_err(&epf->dev, 280 "requested BAR size is larger than fixed size\n"); 281 return NULL; 282 } 283 size = bar_fixed_size; 284 } 285 286 if (align) 287 size = ALIGN(size, align); 288 else 289 size = roundup_pow_of_two(size); 290 291 if (type == PRIMARY_INTERFACE) { 292 epc = epf->epc; 293 epf_bar = epf->bar; 294 } else { 295 epc = epf->sec_epc; 296 epf_bar = epf->sec_epc_bar; 297 } 298 299 dev = epc->dev.parent; 300 space = dma_alloc_coherent(dev, size, &phys_addr, GFP_KERNEL); 301 if (!space) { 302 dev_err(dev, "failed to allocate mem space\n"); 303 return NULL; 304 } 305 306 epf_bar[bar].phys_addr = phys_addr; 307 epf_bar[bar].addr = space; 308 epf_bar[bar].size = size; 309 epf_bar[bar].barno = bar; 310 if (upper_32_bits(size) || epc_features->bar[bar].only_64bit) 311 epf_bar[bar].flags |= PCI_BASE_ADDRESS_MEM_TYPE_64; 312 else 313 epf_bar[bar].flags |= PCI_BASE_ADDRESS_MEM_TYPE_32; 314 315 return space; 316 } 317 EXPORT_SYMBOL_GPL(pci_epf_alloc_space); 318 319 static void pci_epf_remove_cfs(struct pci_epf_driver *driver) 320 { 321 struct config_group *group, *tmp; 322 323 if (!IS_ENABLED(CONFIG_PCI_ENDPOINT_CONFIGFS)) 324 return; 325 326 mutex_lock(&pci_epf_mutex); 327 list_for_each_entry_safe(group, tmp, &driver->epf_group, group_entry) 328 pci_ep_cfs_remove_epf_group(group); 329 list_del(&driver->epf_group); 330 mutex_unlock(&pci_epf_mutex); 331 } 332 333 /** 334 * pci_epf_unregister_driver() - unregister the PCI EPF driver 335 * @driver: the PCI EPF driver that has to be unregistered 336 * 337 * Invoke to unregister the PCI EPF driver. 338 */ 339 void pci_epf_unregister_driver(struct pci_epf_driver *driver) 340 { 341 pci_epf_remove_cfs(driver); 342 driver_unregister(&driver->driver); 343 } 344 EXPORT_SYMBOL_GPL(pci_epf_unregister_driver); 345 346 static int pci_epf_add_cfs(struct pci_epf_driver *driver) 347 { 348 struct config_group *group; 349 const struct pci_epf_device_id *id; 350 351 if (!IS_ENABLED(CONFIG_PCI_ENDPOINT_CONFIGFS)) 352 return 0; 353 354 INIT_LIST_HEAD(&driver->epf_group); 355 356 id = driver->id_table; 357 while (id->name[0]) { 358 group = pci_ep_cfs_add_epf_group(id->name); 359 if (IS_ERR(group)) { 360 pci_epf_remove_cfs(driver); 361 return PTR_ERR(group); 362 } 363 364 mutex_lock(&pci_epf_mutex); 365 list_add_tail(&group->group_entry, &driver->epf_group); 366 mutex_unlock(&pci_epf_mutex); 367 id++; 368 } 369 370 return 0; 371 } 372 373 /** 374 * __pci_epf_register_driver() - register a new PCI EPF driver 375 * @driver: structure representing PCI EPF driver 376 * @owner: the owner of the module that registers the PCI EPF driver 377 * 378 * Invoke to register a new PCI EPF driver. 379 */ 380 int __pci_epf_register_driver(struct pci_epf_driver *driver, 381 struct module *owner) 382 { 383 int ret; 384 385 if (!driver->ops) 386 return -EINVAL; 387 388 if (!driver->ops->bind || !driver->ops->unbind) 389 return -EINVAL; 390 391 driver->driver.bus = &pci_epf_bus_type; 392 driver->driver.owner = owner; 393 394 ret = driver_register(&driver->driver); 395 if (ret) 396 return ret; 397 398 pci_epf_add_cfs(driver); 399 400 return 0; 401 } 402 EXPORT_SYMBOL_GPL(__pci_epf_register_driver); 403 404 /** 405 * pci_epf_destroy() - destroy the created PCI EPF device 406 * @epf: the PCI EPF device that has to be destroyed. 407 * 408 * Invoke to destroy the PCI EPF device created by invoking pci_epf_create(). 409 */ 410 void pci_epf_destroy(struct pci_epf *epf) 411 { 412 device_unregister(&epf->dev); 413 } 414 EXPORT_SYMBOL_GPL(pci_epf_destroy); 415 416 /** 417 * pci_epf_create() - create a new PCI EPF device 418 * @name: the name of the PCI EPF device. This name will be used to bind the 419 * EPF device to a EPF driver 420 * 421 * Invoke to create a new PCI EPF device by providing the name of the function 422 * device. 423 */ 424 struct pci_epf *pci_epf_create(const char *name) 425 { 426 int ret; 427 struct pci_epf *epf; 428 struct device *dev; 429 int len; 430 431 epf = kzalloc(sizeof(*epf), GFP_KERNEL); 432 if (!epf) 433 return ERR_PTR(-ENOMEM); 434 435 len = strchrnul(name, '.') - name; 436 epf->name = kstrndup(name, len, GFP_KERNEL); 437 if (!epf->name) { 438 kfree(epf); 439 return ERR_PTR(-ENOMEM); 440 } 441 442 /* VFs are numbered starting with 1. So set BIT(0) by default */ 443 epf->vfunction_num_map = 1; 444 INIT_LIST_HEAD(&epf->pci_vepf); 445 446 dev = &epf->dev; 447 device_initialize(dev); 448 dev->bus = &pci_epf_bus_type; 449 dev->type = &pci_epf_type; 450 mutex_init(&epf->lock); 451 452 ret = dev_set_name(dev, "%s", name); 453 if (ret) { 454 put_device(dev); 455 return ERR_PTR(ret); 456 } 457 458 ret = device_add(dev); 459 if (ret) { 460 put_device(dev); 461 return ERR_PTR(ret); 462 } 463 464 return epf; 465 } 466 EXPORT_SYMBOL_GPL(pci_epf_create); 467 468 static void pci_epf_dev_release(struct device *dev) 469 { 470 struct pci_epf *epf = to_pci_epf(dev); 471 472 kfree(epf->name); 473 kfree(epf); 474 } 475 476 static const struct device_type pci_epf_type = { 477 .release = pci_epf_dev_release, 478 }; 479 480 static const struct pci_epf_device_id * 481 pci_epf_match_id(const struct pci_epf_device_id *id, const struct pci_epf *epf) 482 { 483 while (id->name[0]) { 484 if (strcmp(epf->name, id->name) == 0) 485 return id; 486 id++; 487 } 488 489 return NULL; 490 } 491 492 static int pci_epf_device_match(struct device *dev, const struct device_driver *drv) 493 { 494 struct pci_epf *epf = to_pci_epf(dev); 495 const struct pci_epf_driver *driver = to_pci_epf_driver(drv); 496 497 if (driver->id_table) 498 return !!pci_epf_match_id(driver->id_table, epf); 499 500 return !strcmp(epf->name, drv->name); 501 } 502 503 static int pci_epf_device_probe(struct device *dev) 504 { 505 struct pci_epf *epf = to_pci_epf(dev); 506 struct pci_epf_driver *driver = to_pci_epf_driver(dev->driver); 507 508 if (!driver->probe) 509 return -ENODEV; 510 511 epf->driver = driver; 512 513 return driver->probe(epf, pci_epf_match_id(driver->id_table, epf)); 514 } 515 516 static void pci_epf_device_remove(struct device *dev) 517 { 518 struct pci_epf *epf = to_pci_epf(dev); 519 struct pci_epf_driver *driver = to_pci_epf_driver(dev->driver); 520 521 if (driver->remove) 522 driver->remove(epf); 523 epf->driver = NULL; 524 } 525 526 static const struct bus_type pci_epf_bus_type = { 527 .name = "pci-epf", 528 .match = pci_epf_device_match, 529 .probe = pci_epf_device_probe, 530 .remove = pci_epf_device_remove, 531 }; 532 533 static int __init pci_epf_init(void) 534 { 535 int ret; 536 537 ret = bus_register(&pci_epf_bus_type); 538 if (ret) { 539 pr_err("failed to register pci epf bus --> %d\n", ret); 540 return ret; 541 } 542 543 return 0; 544 } 545 module_init(pci_epf_init); 546 547 static void __exit pci_epf_exit(void) 548 { 549 bus_unregister(&pci_epf_bus_type); 550 } 551 module_exit(pci_epf_exit); 552 553 MODULE_DESCRIPTION("PCI EPF Library"); 554 MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>"); 555