1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * drivers/of/property.c - Procedures for accessing and interpreting 4 * Devicetree properties and graphs. 5 * 6 * Initially created by copying procedures from drivers/of/base.c. This 7 * file contains the OF property as well as the OF graph interface 8 * functions. 9 * 10 * Paul Mackerras August 1996. 11 * Copyright (C) 1996-2005 Paul Mackerras. 12 * 13 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 14 * {engebret|bergner}@us.ibm.com 15 * 16 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 17 * 18 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 19 * Grant Likely. 20 */ 21 22 #define pr_fmt(fmt) "OF: " fmt 23 24 #include <linux/of.h> 25 #include <linux/of_address.h> 26 #include <linux/of_device.h> 27 #include <linux/of_graph.h> 28 #include <linux/of_irq.h> 29 #include <linux/string.h> 30 #include <linux/moduleparam.h> 31 32 #include "of_private.h" 33 34 /** 35 * of_property_read_bool - Find a property 36 * @np: device node from which the property value is to be read. 37 * @propname: name of the property to be searched. 38 * 39 * Search for a boolean property in a device node. Usage on non-boolean 40 * property types is deprecated. 41 * 42 * Return: true if the property exists false otherwise. 43 */ 44 bool of_property_read_bool(const struct device_node *np, const char *propname) 45 { 46 struct property *prop = of_find_property(np, propname, NULL); 47 48 /* 49 * Boolean properties should not have a value. Testing for property 50 * presence should either use of_property_present() or just read the 51 * property value and check the returned error code. 52 */ 53 if (prop && prop->length) 54 pr_warn("%pOF: Read of boolean property '%s' with a value.\n", np, propname); 55 56 return prop ? true : false; 57 } 58 EXPORT_SYMBOL(of_property_read_bool); 59 60 /** 61 * of_graph_is_present() - check graph's presence 62 * @node: pointer to device_node containing graph port 63 * 64 * Return: True if @node has a port or ports (with a port) sub-node, 65 * false otherwise. 66 */ 67 bool of_graph_is_present(const struct device_node *node) 68 { 69 struct device_node *ports __free(device_node) = of_get_child_by_name(node, "ports"); 70 71 if (ports) 72 node = ports; 73 74 struct device_node *port __free(device_node) = of_get_child_by_name(node, "port"); 75 76 return !!port; 77 } 78 EXPORT_SYMBOL(of_graph_is_present); 79 80 /** 81 * of_property_count_elems_of_size - Count the number of elements in a property 82 * 83 * @np: device node from which the property value is to be read. 84 * @propname: name of the property to be searched. 85 * @elem_size: size of the individual element 86 * 87 * Search for a property in a device node and count the number of elements of 88 * size elem_size in it. 89 * 90 * Return: The number of elements on sucess, -EINVAL if the property does not 91 * exist or its length does not match a multiple of elem_size and -ENODATA if 92 * the property does not have a value. 93 */ 94 int of_property_count_elems_of_size(const struct device_node *np, 95 const char *propname, int elem_size) 96 { 97 const struct property *prop = of_find_property(np, propname, NULL); 98 99 if (!prop) 100 return -EINVAL; 101 if (!prop->value) 102 return -ENODATA; 103 104 if (prop->length % elem_size != 0) { 105 pr_err("size of %s in node %pOF is not a multiple of %d\n", 106 propname, np, elem_size); 107 return -EINVAL; 108 } 109 110 return prop->length / elem_size; 111 } 112 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size); 113 114 /** 115 * of_find_property_value_of_size 116 * 117 * @np: device node from which the property value is to be read. 118 * @propname: name of the property to be searched. 119 * @min: minimum allowed length of property value 120 * @max: maximum allowed length of property value (0 means unlimited) 121 * @len: if !=NULL, actual length is written to here 122 * 123 * Search for a property in a device node and valid the requested size. 124 * 125 * Return: The property value on success, -EINVAL if the property does not 126 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the 127 * property data is too small or too large. 128 * 129 */ 130 static void *of_find_property_value_of_size(const struct device_node *np, 131 const char *propname, u32 min, u32 max, size_t *len) 132 { 133 const struct property *prop = of_find_property(np, propname, NULL); 134 135 if (!prop) 136 return ERR_PTR(-EINVAL); 137 if (!prop->value) 138 return ERR_PTR(-ENODATA); 139 if (prop->length < min) 140 return ERR_PTR(-EOVERFLOW); 141 if (max && prop->length > max) 142 return ERR_PTR(-EOVERFLOW); 143 144 if (len) 145 *len = prop->length; 146 147 return prop->value; 148 } 149 150 /** 151 * of_property_read_u32_index - Find and read a u32 from a multi-value property. 152 * 153 * @np: device node from which the property value is to be read. 154 * @propname: name of the property to be searched. 155 * @index: index of the u32 in the list of values 156 * @out_value: pointer to return value, modified only if no error. 157 * 158 * Search for a property in a device node and read nth 32-bit value from 159 * it. 160 * 161 * Return: 0 on success, -EINVAL if the property does not exist, 162 * -ENODATA if property does not have a value, and -EOVERFLOW if the 163 * property data isn't large enough. 164 * 165 * The out_value is modified only if a valid u32 value can be decoded. 166 */ 167 int of_property_read_u32_index(const struct device_node *np, 168 const char *propname, 169 u32 index, u32 *out_value) 170 { 171 const u32 *val = of_find_property_value_of_size(np, propname, 172 ((index + 1) * sizeof(*out_value)), 173 0, 174 NULL); 175 176 if (IS_ERR(val)) 177 return PTR_ERR(val); 178 179 *out_value = be32_to_cpup(((__be32 *)val) + index); 180 return 0; 181 } 182 EXPORT_SYMBOL_GPL(of_property_read_u32_index); 183 184 /** 185 * of_property_read_u64_index - Find and read a u64 from a multi-value property. 186 * 187 * @np: device node from which the property value is to be read. 188 * @propname: name of the property to be searched. 189 * @index: index of the u64 in the list of values 190 * @out_value: pointer to return value, modified only if no error. 191 * 192 * Search for a property in a device node and read nth 64-bit value from 193 * it. 194 * 195 * Return: 0 on success, -EINVAL if the property does not exist, 196 * -ENODATA if property does not have a value, and -EOVERFLOW if the 197 * property data isn't large enough. 198 * 199 * The out_value is modified only if a valid u64 value can be decoded. 200 */ 201 int of_property_read_u64_index(const struct device_node *np, 202 const char *propname, 203 u32 index, u64 *out_value) 204 { 205 const u64 *val = of_find_property_value_of_size(np, propname, 206 ((index + 1) * sizeof(*out_value)), 207 0, NULL); 208 209 if (IS_ERR(val)) 210 return PTR_ERR(val); 211 212 *out_value = be64_to_cpup(((__be64 *)val) + index); 213 return 0; 214 } 215 EXPORT_SYMBOL_GPL(of_property_read_u64_index); 216 217 /** 218 * of_property_read_variable_u8_array - Find and read an array of u8 from a 219 * property, with bounds on the minimum and maximum array size. 220 * 221 * @np: device node from which the property value is to be read. 222 * @propname: name of the property to be searched. 223 * @out_values: pointer to found values. 224 * @sz_min: minimum number of array elements to read 225 * @sz_max: maximum number of array elements to read, if zero there is no 226 * upper limit on the number of elements in the dts entry but only 227 * sz_min will be read. 228 * 229 * Search for a property in a device node and read 8-bit value(s) from 230 * it. 231 * 232 * dts entry of array should be like: 233 * ``property = /bits/ 8 <0x50 0x60 0x70>;`` 234 * 235 * Return: The number of elements read on success, -EINVAL if the property 236 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 237 * if the property data is smaller than sz_min or longer than sz_max. 238 * 239 * The out_values is modified only if a valid u8 value can be decoded. 240 */ 241 int of_property_read_variable_u8_array(const struct device_node *np, 242 const char *propname, u8 *out_values, 243 size_t sz_min, size_t sz_max) 244 { 245 size_t sz, count; 246 const u8 *val = of_find_property_value_of_size(np, propname, 247 (sz_min * sizeof(*out_values)), 248 (sz_max * sizeof(*out_values)), 249 &sz); 250 251 if (IS_ERR(val)) 252 return PTR_ERR(val); 253 254 if (!sz_max) 255 sz = sz_min; 256 else 257 sz /= sizeof(*out_values); 258 259 count = sz; 260 while (count--) 261 *out_values++ = *val++; 262 263 return sz; 264 } 265 EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array); 266 267 /** 268 * of_property_read_variable_u16_array - Find and read an array of u16 from a 269 * property, with bounds on the minimum and maximum array size. 270 * 271 * @np: device node from which the property value is to be read. 272 * @propname: name of the property to be searched. 273 * @out_values: pointer to found values. 274 * @sz_min: minimum number of array elements to read 275 * @sz_max: maximum number of array elements to read, if zero there is no 276 * upper limit on the number of elements in the dts entry but only 277 * sz_min will be read. 278 * 279 * Search for a property in a device node and read 16-bit value(s) from 280 * it. 281 * 282 * dts entry of array should be like: 283 * ``property = /bits/ 16 <0x5000 0x6000 0x7000>;`` 284 * 285 * Return: The number of elements read on success, -EINVAL if the property 286 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 287 * if the property data is smaller than sz_min or longer than sz_max. 288 * 289 * The out_values is modified only if a valid u16 value can be decoded. 290 */ 291 int of_property_read_variable_u16_array(const struct device_node *np, 292 const char *propname, u16 *out_values, 293 size_t sz_min, size_t sz_max) 294 { 295 size_t sz, count; 296 const __be16 *val = of_find_property_value_of_size(np, propname, 297 (sz_min * sizeof(*out_values)), 298 (sz_max * sizeof(*out_values)), 299 &sz); 300 301 if (IS_ERR(val)) 302 return PTR_ERR(val); 303 304 if (!sz_max) 305 sz = sz_min; 306 else 307 sz /= sizeof(*out_values); 308 309 count = sz; 310 while (count--) 311 *out_values++ = be16_to_cpup(val++); 312 313 return sz; 314 } 315 EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array); 316 317 /** 318 * of_property_read_variable_u32_array - Find and read an array of 32 bit 319 * integers from a property, with bounds on the minimum and maximum array size. 320 * 321 * @np: device node from which the property value is to be read. 322 * @propname: name of the property to be searched. 323 * @out_values: pointer to return found values. 324 * @sz_min: minimum number of array elements to read 325 * @sz_max: maximum number of array elements to read, if zero there is no 326 * upper limit on the number of elements in the dts entry but only 327 * sz_min will be read. 328 * 329 * Search for a property in a device node and read 32-bit value(s) from 330 * it. 331 * 332 * Return: The number of elements read on success, -EINVAL if the property 333 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 334 * if the property data is smaller than sz_min or longer than sz_max. 335 * 336 * The out_values is modified only if a valid u32 value can be decoded. 337 */ 338 int of_property_read_variable_u32_array(const struct device_node *np, 339 const char *propname, u32 *out_values, 340 size_t sz_min, size_t sz_max) 341 { 342 size_t sz, count; 343 const __be32 *val = of_find_property_value_of_size(np, propname, 344 (sz_min * sizeof(*out_values)), 345 (sz_max * sizeof(*out_values)), 346 &sz); 347 348 if (IS_ERR(val)) 349 return PTR_ERR(val); 350 351 if (!sz_max) 352 sz = sz_min; 353 else 354 sz /= sizeof(*out_values); 355 356 count = sz; 357 while (count--) 358 *out_values++ = be32_to_cpup(val++); 359 360 return sz; 361 } 362 EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array); 363 364 /** 365 * of_property_read_u64 - Find and read a 64 bit integer from a property 366 * @np: device node from which the property value is to be read. 367 * @propname: name of the property to be searched. 368 * @out_value: pointer to return value, modified only if return value is 0. 369 * 370 * Search for a property in a device node and read a 64-bit value from 371 * it. 372 * 373 * Return: 0 on success, -EINVAL if the property does not exist, 374 * -ENODATA if property does not have a value, and -EOVERFLOW if the 375 * property data isn't large enough. 376 * 377 * The out_value is modified only if a valid u64 value can be decoded. 378 */ 379 int of_property_read_u64(const struct device_node *np, const char *propname, 380 u64 *out_value) 381 { 382 const __be32 *val = of_find_property_value_of_size(np, propname, 383 sizeof(*out_value), 384 0, 385 NULL); 386 387 if (IS_ERR(val)) 388 return PTR_ERR(val); 389 390 *out_value = of_read_number(val, 2); 391 return 0; 392 } 393 EXPORT_SYMBOL_GPL(of_property_read_u64); 394 395 /** 396 * of_property_read_variable_u64_array - Find and read an array of 64 bit 397 * integers from a property, with bounds on the minimum and maximum array size. 398 * 399 * @np: device node from which the property value is to be read. 400 * @propname: name of the property to be searched. 401 * @out_values: pointer to found values. 402 * @sz_min: minimum number of array elements to read 403 * @sz_max: maximum number of array elements to read, if zero there is no 404 * upper limit on the number of elements in the dts entry but only 405 * sz_min will be read. 406 * 407 * Search for a property in a device node and read 64-bit value(s) from 408 * it. 409 * 410 * Return: The number of elements read on success, -EINVAL if the property 411 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 412 * if the property data is smaller than sz_min or longer than sz_max. 413 * 414 * The out_values is modified only if a valid u64 value can be decoded. 415 */ 416 int of_property_read_variable_u64_array(const struct device_node *np, 417 const char *propname, u64 *out_values, 418 size_t sz_min, size_t sz_max) 419 { 420 size_t sz, count; 421 const __be32 *val = of_find_property_value_of_size(np, propname, 422 (sz_min * sizeof(*out_values)), 423 (sz_max * sizeof(*out_values)), 424 &sz); 425 426 if (IS_ERR(val)) 427 return PTR_ERR(val); 428 429 if (!sz_max) 430 sz = sz_min; 431 else 432 sz /= sizeof(*out_values); 433 434 count = sz; 435 while (count--) { 436 *out_values++ = of_read_number(val, 2); 437 val += 2; 438 } 439 440 return sz; 441 } 442 EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array); 443 444 /** 445 * of_property_read_string - Find and read a string from a property 446 * @np: device node from which the property value is to be read. 447 * @propname: name of the property to be searched. 448 * @out_string: pointer to null terminated return string, modified only if 449 * return value is 0. 450 * 451 * Search for a property in a device tree node and retrieve a null 452 * terminated string value (pointer to data, not a copy). 453 * 454 * Return: 0 on success, -EINVAL if the property does not exist, -ENODATA if 455 * property does not have a value, and -EILSEQ if the string is not 456 * null-terminated within the length of the property data. 457 * 458 * Note that the empty string "" has length of 1, thus -ENODATA cannot 459 * be interpreted as an empty string. 460 * 461 * The out_string pointer is modified only if a valid string can be decoded. 462 */ 463 int of_property_read_string(const struct device_node *np, const char *propname, 464 const char **out_string) 465 { 466 const struct property *prop = of_find_property(np, propname, NULL); 467 468 if (!prop) 469 return -EINVAL; 470 if (!prop->length) 471 return -ENODATA; 472 if (strnlen(prop->value, prop->length) >= prop->length) 473 return -EILSEQ; 474 *out_string = prop->value; 475 return 0; 476 } 477 EXPORT_SYMBOL_GPL(of_property_read_string); 478 479 /** 480 * of_property_match_string() - Find string in a list and return index 481 * @np: pointer to the node containing the string list property 482 * @propname: string list property name 483 * @string: pointer to the string to search for in the string list 484 * 485 * Search for an exact match of string in a device node property which is a 486 * string of lists. 487 * 488 * Return: the index of the first occurrence of the string on success, -EINVAL 489 * if the property does not exist, -ENODATA if the property does not have a 490 * value, and -EILSEQ if the string is not null-terminated within the length of 491 * the property data. 492 */ 493 int of_property_match_string(const struct device_node *np, const char *propname, 494 const char *string) 495 { 496 const struct property *prop = of_find_property(np, propname, NULL); 497 size_t l; 498 int i; 499 const char *p, *end; 500 501 if (!prop) 502 return -EINVAL; 503 if (!prop->value) 504 return -ENODATA; 505 506 p = prop->value; 507 end = p + prop->length; 508 509 for (i = 0; p < end; i++, p += l) { 510 l = strnlen(p, end - p) + 1; 511 if (p + l > end) 512 return -EILSEQ; 513 pr_debug("comparing %s with %s\n", string, p); 514 if (strcmp(string, p) == 0) 515 return i; /* Found it; return index */ 516 } 517 return -ENODATA; 518 } 519 EXPORT_SYMBOL_GPL(of_property_match_string); 520 521 /** 522 * of_property_read_string_helper() - Utility helper for parsing string properties 523 * @np: device node from which the property value is to be read. 524 * @propname: name of the property to be searched. 525 * @out_strs: output array of string pointers. 526 * @sz: number of array elements to read. 527 * @skip: Number of strings to skip over at beginning of list. 528 * 529 * Don't call this function directly. It is a utility helper for the 530 * of_property_read_string*() family of functions. 531 */ 532 int of_property_read_string_helper(const struct device_node *np, 533 const char *propname, const char **out_strs, 534 size_t sz, int skip) 535 { 536 const struct property *prop = of_find_property(np, propname, NULL); 537 int l = 0, i = 0; 538 const char *p, *end; 539 540 if (!prop) 541 return -EINVAL; 542 if (!prop->value) 543 return -ENODATA; 544 p = prop->value; 545 end = p + prop->length; 546 547 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) { 548 l = strnlen(p, end - p) + 1; 549 if (p + l > end) 550 return -EILSEQ; 551 if (out_strs && i >= skip) 552 *out_strs++ = p; 553 } 554 i -= skip; 555 return i <= 0 ? -ENODATA : i; 556 } 557 EXPORT_SYMBOL_GPL(of_property_read_string_helper); 558 559 const __be32 *of_prop_next_u32(const struct property *prop, const __be32 *cur, 560 u32 *pu) 561 { 562 const void *curv = cur; 563 564 if (!prop) 565 return NULL; 566 567 if (!cur) { 568 curv = prop->value; 569 goto out_val; 570 } 571 572 curv += sizeof(*cur); 573 if (curv >= prop->value + prop->length) 574 return NULL; 575 576 out_val: 577 *pu = be32_to_cpup(curv); 578 return curv; 579 } 580 EXPORT_SYMBOL_GPL(of_prop_next_u32); 581 582 const char *of_prop_next_string(const struct property *prop, const char *cur) 583 { 584 const void *curv = cur; 585 586 if (!prop) 587 return NULL; 588 589 if (!cur) 590 return prop->value; 591 592 curv += strlen(cur) + 1; 593 if (curv >= prop->value + prop->length) 594 return NULL; 595 596 return curv; 597 } 598 EXPORT_SYMBOL_GPL(of_prop_next_string); 599 600 /** 601 * of_graph_parse_endpoint() - parse common endpoint node properties 602 * @node: pointer to endpoint device_node 603 * @endpoint: pointer to the OF endpoint data structure 604 * 605 * The caller should hold a reference to @node. 606 */ 607 int of_graph_parse_endpoint(const struct device_node *node, 608 struct of_endpoint *endpoint) 609 { 610 struct device_node *port_node __free(device_node) = 611 of_get_parent(node); 612 613 WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n", 614 __func__, node); 615 616 memset(endpoint, 0, sizeof(*endpoint)); 617 618 endpoint->local_node = node; 619 /* 620 * It doesn't matter whether the two calls below succeed. 621 * If they don't then the default value 0 is used. 622 */ 623 of_property_read_u32(port_node, "reg", &endpoint->port); 624 of_property_read_u32(node, "reg", &endpoint->id); 625 626 return 0; 627 } 628 EXPORT_SYMBOL(of_graph_parse_endpoint); 629 630 /** 631 * of_graph_get_port_by_id() - get the port matching a given id 632 * @parent: pointer to the parent device node 633 * @id: id of the port 634 * 635 * Return: A 'port' node pointer with refcount incremented. The caller 636 * has to use of_node_put() on it when done. 637 */ 638 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id) 639 { 640 struct device_node *node __free(device_node) = of_get_child_by_name(parent, "ports"); 641 642 if (node) 643 parent = node; 644 645 for_each_child_of_node_scoped(parent, port) { 646 u32 port_id = 0; 647 648 if (!of_node_name_eq(port, "port")) 649 continue; 650 of_property_read_u32(port, "reg", &port_id); 651 if (id == port_id) 652 return_ptr(port); 653 } 654 655 return NULL; 656 } 657 EXPORT_SYMBOL(of_graph_get_port_by_id); 658 659 /** 660 * of_graph_get_next_port() - get next port node. 661 * @parent: pointer to the parent device node, or parent ports node 662 * @prev: previous port node, or NULL to get first 663 * 664 * Parent device node can be used as @parent whether device node has ports node 665 * or not. It will work same as ports@0 node. 666 * 667 * Return: A 'port' node pointer with refcount incremented. Refcount 668 * of the passed @prev node is decremented. 669 */ 670 struct device_node *of_graph_get_next_port(const struct device_node *parent, 671 struct device_node *prev) 672 { 673 if (!parent) 674 return NULL; 675 676 if (!prev) { 677 struct device_node *node __free(device_node) = 678 of_get_child_by_name(parent, "ports"); 679 680 if (node) 681 parent = node; 682 683 return of_get_child_by_name(parent, "port"); 684 } 685 686 do { 687 prev = of_get_next_child(parent, prev); 688 if (!prev) 689 break; 690 } while (!of_node_name_eq(prev, "port")); 691 692 return prev; 693 } 694 EXPORT_SYMBOL(of_graph_get_next_port); 695 696 /** 697 * of_graph_get_next_port_endpoint() - get next endpoint node in port. 698 * If it reached to end of the port, it will return NULL. 699 * @port: pointer to the target port node 700 * @prev: previous endpoint node, or NULL to get first 701 * 702 * Return: An 'endpoint' node pointer with refcount incremented. Refcount 703 * of the passed @prev node is decremented. 704 */ 705 struct device_node *of_graph_get_next_port_endpoint(const struct device_node *port, 706 struct device_node *prev) 707 { 708 while (1) { 709 prev = of_get_next_child(port, prev); 710 if (!prev) 711 break; 712 if (WARN(!of_node_name_eq(prev, "endpoint"), 713 "non endpoint node is used (%pOF)", prev)) 714 continue; 715 716 break; 717 } 718 719 return prev; 720 } 721 EXPORT_SYMBOL(of_graph_get_next_port_endpoint); 722 723 /** 724 * of_graph_get_next_endpoint() - get next endpoint node 725 * @parent: pointer to the parent device node 726 * @prev: previous endpoint node, or NULL to get first 727 * 728 * Return: An 'endpoint' node pointer with refcount incremented. Refcount 729 * of the passed @prev node is decremented. 730 */ 731 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent, 732 struct device_node *prev) 733 { 734 struct device_node *endpoint; 735 struct device_node *port; 736 737 if (!parent) 738 return NULL; 739 740 /* 741 * Start by locating the port node. If no previous endpoint is specified 742 * search for the first port node, otherwise get the previous endpoint 743 * parent port node. 744 */ 745 if (!prev) { 746 port = of_graph_get_next_port(parent, NULL); 747 if (!port) { 748 pr_debug("graph: no port node found in %pOF\n", parent); 749 return NULL; 750 } 751 } else { 752 port = of_get_parent(prev); 753 if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n", 754 __func__, prev)) 755 return NULL; 756 } 757 758 while (1) { 759 /* 760 * Now that we have a port node, get the next endpoint by 761 * getting the next child. If the previous endpoint is NULL this 762 * will return the first child. 763 */ 764 endpoint = of_graph_get_next_port_endpoint(port, prev); 765 if (endpoint) { 766 of_node_put(port); 767 return endpoint; 768 } 769 770 /* No more endpoints under this port, try the next one. */ 771 prev = NULL; 772 773 port = of_graph_get_next_port(parent, port); 774 if (!port) 775 return NULL; 776 } 777 } 778 EXPORT_SYMBOL(of_graph_get_next_endpoint); 779 780 /** 781 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers 782 * @parent: pointer to the parent device node 783 * @port_reg: identifier (value of reg property) of the parent port node 784 * @reg: identifier (value of reg property) of the endpoint node 785 * 786 * Return: An 'endpoint' node pointer which is identified by reg and at the same 787 * is the child of a port node identified by port_reg. reg and port_reg are 788 * ignored when they are -1. Use of_node_put() on the pointer when done. 789 */ 790 struct device_node *of_graph_get_endpoint_by_regs( 791 const struct device_node *parent, int port_reg, int reg) 792 { 793 struct of_endpoint endpoint; 794 struct device_node *node = NULL; 795 796 for_each_endpoint_of_node(parent, node) { 797 of_graph_parse_endpoint(node, &endpoint); 798 if (((port_reg == -1) || (endpoint.port == port_reg)) && 799 ((reg == -1) || (endpoint.id == reg))) 800 return node; 801 } 802 803 return NULL; 804 } 805 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs); 806 807 /** 808 * of_graph_get_remote_endpoint() - get remote endpoint node 809 * @node: pointer to a local endpoint device_node 810 * 811 * Return: Remote endpoint node associated with remote endpoint node linked 812 * to @node. Use of_node_put() on it when done. 813 */ 814 struct device_node *of_graph_get_remote_endpoint(const struct device_node *node) 815 { 816 /* Get remote endpoint node. */ 817 return of_parse_phandle(node, "remote-endpoint", 0); 818 } 819 EXPORT_SYMBOL(of_graph_get_remote_endpoint); 820 821 /** 822 * of_graph_get_port_parent() - get port's parent node 823 * @node: pointer to a local endpoint device_node 824 * 825 * Return: device node associated with endpoint node linked 826 * to @node. Use of_node_put() on it when done. 827 */ 828 struct device_node *of_graph_get_port_parent(struct device_node *node) 829 { 830 unsigned int depth; 831 832 if (!node) 833 return NULL; 834 835 /* 836 * Preserve usecount for passed in node as of_get_next_parent() 837 * will do of_node_put() on it. 838 */ 839 of_node_get(node); 840 841 /* Walk 3 levels up only if there is 'ports' node. */ 842 for (depth = 3; depth && node; depth--) { 843 node = of_get_next_parent(node); 844 if (depth == 2 && !of_node_name_eq(node, "ports") && 845 !of_node_name_eq(node, "in-ports") && 846 !of_node_name_eq(node, "out-ports")) 847 break; 848 } 849 return node; 850 } 851 EXPORT_SYMBOL(of_graph_get_port_parent); 852 853 /** 854 * of_graph_get_remote_port_parent() - get remote port's parent node 855 * @node: pointer to a local endpoint device_node 856 * 857 * Return: Remote device node associated with remote endpoint node linked 858 * to @node. Use of_node_put() on it when done. 859 */ 860 struct device_node *of_graph_get_remote_port_parent( 861 const struct device_node *node) 862 { 863 /* Get remote endpoint node. */ 864 struct device_node *np __free(device_node) = 865 of_graph_get_remote_endpoint(node); 866 867 return of_graph_get_port_parent(np); 868 } 869 EXPORT_SYMBOL(of_graph_get_remote_port_parent); 870 871 /** 872 * of_graph_get_remote_port() - get remote port node 873 * @node: pointer to a local endpoint device_node 874 * 875 * Return: Remote port node associated with remote endpoint node linked 876 * to @node. Use of_node_put() on it when done. 877 */ 878 struct device_node *of_graph_get_remote_port(const struct device_node *node) 879 { 880 struct device_node *np; 881 882 /* Get remote endpoint node. */ 883 np = of_graph_get_remote_endpoint(node); 884 if (!np) 885 return NULL; 886 return of_get_next_parent(np); 887 } 888 EXPORT_SYMBOL(of_graph_get_remote_port); 889 890 /** 891 * of_graph_get_endpoint_count() - get the number of endpoints in a device node 892 * @np: parent device node containing ports and endpoints 893 * 894 * Return: count of endpoint of this device node 895 */ 896 unsigned int of_graph_get_endpoint_count(const struct device_node *np) 897 { 898 struct device_node *endpoint; 899 unsigned int num = 0; 900 901 for_each_endpoint_of_node(np, endpoint) 902 num++; 903 904 return num; 905 } 906 EXPORT_SYMBOL(of_graph_get_endpoint_count); 907 908 /** 909 * of_graph_get_port_count() - get the number of port in a device or ports node 910 * @np: pointer to the device or ports node 911 * 912 * Return: count of port of this device or ports node 913 */ 914 unsigned int of_graph_get_port_count(struct device_node *np) 915 { 916 unsigned int num = 0; 917 918 for_each_of_graph_port(np, port) 919 num++; 920 921 return num; 922 } 923 EXPORT_SYMBOL(of_graph_get_port_count); 924 925 /** 926 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint 927 * @node: pointer to parent device_node containing graph port/endpoint 928 * @port: identifier (value of reg property) of the parent port node 929 * @endpoint: identifier (value of reg property) of the endpoint node 930 * 931 * Return: Remote device node associated with remote endpoint node linked 932 * to @node. Use of_node_put() on it when done. 933 */ 934 struct device_node *of_graph_get_remote_node(const struct device_node *node, 935 u32 port, u32 endpoint) 936 { 937 struct device_node *endpoint_node, *remote; 938 939 endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint); 940 if (!endpoint_node) { 941 pr_debug("no valid endpoint (%d, %d) for node %pOF\n", 942 port, endpoint, node); 943 return NULL; 944 } 945 946 remote = of_graph_get_remote_port_parent(endpoint_node); 947 of_node_put(endpoint_node); 948 if (!remote) { 949 pr_debug("no valid remote node\n"); 950 return NULL; 951 } 952 953 if (!of_device_is_available(remote)) { 954 pr_debug("not available for remote node\n"); 955 of_node_put(remote); 956 return NULL; 957 } 958 959 return remote; 960 } 961 EXPORT_SYMBOL(of_graph_get_remote_node); 962 963 static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode) 964 { 965 return of_fwnode_handle(of_node_get(to_of_node(fwnode))); 966 } 967 968 static void of_fwnode_put(struct fwnode_handle *fwnode) 969 { 970 of_node_put(to_of_node(fwnode)); 971 } 972 973 static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode) 974 { 975 return of_device_is_available(to_of_node(fwnode)); 976 } 977 978 static bool of_fwnode_device_dma_supported(const struct fwnode_handle *fwnode) 979 { 980 return true; 981 } 982 983 static enum dev_dma_attr 984 of_fwnode_device_get_dma_attr(const struct fwnode_handle *fwnode) 985 { 986 if (of_dma_is_coherent(to_of_node(fwnode))) 987 return DEV_DMA_COHERENT; 988 else 989 return DEV_DMA_NON_COHERENT; 990 } 991 992 static bool of_fwnode_property_present(const struct fwnode_handle *fwnode, 993 const char *propname) 994 { 995 return of_property_present(to_of_node(fwnode), propname); 996 } 997 998 static bool of_fwnode_property_read_bool(const struct fwnode_handle *fwnode, 999 const char *propname) 1000 { 1001 return of_property_read_bool(to_of_node(fwnode), propname); 1002 } 1003 1004 static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode, 1005 const char *propname, 1006 unsigned int elem_size, void *val, 1007 size_t nval) 1008 { 1009 const struct device_node *node = to_of_node(fwnode); 1010 1011 if (!val) 1012 return of_property_count_elems_of_size(node, propname, 1013 elem_size); 1014 1015 switch (elem_size) { 1016 case sizeof(u8): 1017 return of_property_read_u8_array(node, propname, val, nval); 1018 case sizeof(u16): 1019 return of_property_read_u16_array(node, propname, val, nval); 1020 case sizeof(u32): 1021 return of_property_read_u32_array(node, propname, val, nval); 1022 case sizeof(u64): 1023 return of_property_read_u64_array(node, propname, val, nval); 1024 } 1025 1026 return -ENXIO; 1027 } 1028 1029 static int 1030 of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode, 1031 const char *propname, const char **val, 1032 size_t nval) 1033 { 1034 const struct device_node *node = to_of_node(fwnode); 1035 1036 return val ? 1037 of_property_read_string_array(node, propname, val, nval) : 1038 of_property_count_strings(node, propname); 1039 } 1040 1041 static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode) 1042 { 1043 return kbasename(to_of_node(fwnode)->full_name); 1044 } 1045 1046 static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode) 1047 { 1048 /* Root needs no prefix here (its name is "/"). */ 1049 if (!to_of_node(fwnode)->parent) 1050 return ""; 1051 1052 return "/"; 1053 } 1054 1055 static struct fwnode_handle * 1056 of_fwnode_get_parent(const struct fwnode_handle *fwnode) 1057 { 1058 return of_fwnode_handle(of_get_parent(to_of_node(fwnode))); 1059 } 1060 1061 static struct fwnode_handle * 1062 of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode, 1063 struct fwnode_handle *child) 1064 { 1065 return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode), 1066 to_of_node(child))); 1067 } 1068 1069 static struct fwnode_handle * 1070 of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode, 1071 const char *childname) 1072 { 1073 const struct device_node *node = to_of_node(fwnode); 1074 struct device_node *child; 1075 1076 for_each_available_child_of_node(node, child) 1077 if (of_node_name_eq(child, childname)) 1078 return of_fwnode_handle(child); 1079 1080 return NULL; 1081 } 1082 1083 static int 1084 of_fwnode_get_reference_args(const struct fwnode_handle *fwnode, 1085 const char *prop, const char *nargs_prop, 1086 unsigned int nargs, unsigned int index, 1087 struct fwnode_reference_args *args) 1088 { 1089 struct of_phandle_args of_args; 1090 unsigned int i; 1091 int ret; 1092 1093 if (nargs_prop) 1094 ret = of_parse_phandle_with_args(to_of_node(fwnode), prop, 1095 nargs_prop, index, &of_args); 1096 else 1097 ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop, 1098 nargs, index, &of_args); 1099 if (ret < 0) 1100 return ret; 1101 if (!args) { 1102 of_node_put(of_args.np); 1103 return 0; 1104 } 1105 1106 args->nargs = of_args.args_count; 1107 args->fwnode = of_fwnode_handle(of_args.np); 1108 1109 for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++) 1110 args->args[i] = i < of_args.args_count ? of_args.args[i] : 0; 1111 1112 return 0; 1113 } 1114 1115 static struct fwnode_handle * 1116 of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode, 1117 struct fwnode_handle *prev) 1118 { 1119 return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode), 1120 to_of_node(prev))); 1121 } 1122 1123 static struct fwnode_handle * 1124 of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode) 1125 { 1126 return of_fwnode_handle( 1127 of_graph_get_remote_endpoint(to_of_node(fwnode))); 1128 } 1129 1130 static struct fwnode_handle * 1131 of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode) 1132 { 1133 struct device_node *np; 1134 1135 /* Get the parent of the port */ 1136 np = of_get_parent(to_of_node(fwnode)); 1137 if (!np) 1138 return NULL; 1139 1140 /* Is this the "ports" node? If not, it's the port parent. */ 1141 if (!of_node_name_eq(np, "ports")) 1142 return of_fwnode_handle(np); 1143 1144 return of_fwnode_handle(of_get_next_parent(np)); 1145 } 1146 1147 static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode, 1148 struct fwnode_endpoint *endpoint) 1149 { 1150 const struct device_node *node = to_of_node(fwnode); 1151 struct device_node *port_node __free(device_node) = of_get_parent(node); 1152 1153 endpoint->local_fwnode = fwnode; 1154 1155 of_property_read_u32(port_node, "reg", &endpoint->port); 1156 of_property_read_u32(node, "reg", &endpoint->id); 1157 1158 return 0; 1159 } 1160 1161 static const void * 1162 of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode, 1163 const struct device *dev) 1164 { 1165 return of_device_get_match_data(dev); 1166 } 1167 1168 static void of_link_to_phandle(struct device_node *con_np, 1169 struct device_node *sup_np, 1170 u8 flags) 1171 { 1172 struct device_node *tmp_np __free(device_node) = of_node_get(sup_np); 1173 1174 /* Check that sup_np and its ancestors are available. */ 1175 while (tmp_np) { 1176 if (of_fwnode_handle(tmp_np)->dev) 1177 break; 1178 1179 if (!of_device_is_available(tmp_np)) 1180 return; 1181 1182 tmp_np = of_get_next_parent(tmp_np); 1183 } 1184 1185 fwnode_link_add(of_fwnode_handle(con_np), of_fwnode_handle(sup_np), flags); 1186 } 1187 1188 /** 1189 * parse_prop_cells - Property parsing function for suppliers 1190 * 1191 * @np: Pointer to device tree node containing a list 1192 * @prop_name: Name of property to be parsed. Expected to hold phandle values 1193 * @index: For properties holding a list of phandles, this is the index 1194 * into the list. 1195 * @list_name: Property name that is known to contain list of phandle(s) to 1196 * supplier(s) 1197 * @cells_name: property name that specifies phandles' arguments count 1198 * 1199 * This is a helper function to parse properties that have a known fixed name 1200 * and are a list of phandles and phandle arguments. 1201 * 1202 * Returns: 1203 * - phandle node pointer with refcount incremented. Caller must of_node_put() 1204 * on it when done. 1205 * - NULL if no phandle found at index 1206 */ 1207 static struct device_node *parse_prop_cells(struct device_node *np, 1208 const char *prop_name, int index, 1209 const char *list_name, 1210 const char *cells_name) 1211 { 1212 struct of_phandle_args sup_args; 1213 1214 if (strcmp(prop_name, list_name)) 1215 return NULL; 1216 1217 if (__of_parse_phandle_with_args(np, list_name, cells_name, 0, index, 1218 &sup_args)) 1219 return NULL; 1220 1221 return sup_args.np; 1222 } 1223 1224 #define DEFINE_SIMPLE_PROP(fname, name, cells) \ 1225 static struct device_node *parse_##fname(struct device_node *np, \ 1226 const char *prop_name, int index) \ 1227 { \ 1228 return parse_prop_cells(np, prop_name, index, name, cells); \ 1229 } 1230 1231 static int strcmp_suffix(const char *str, const char *suffix) 1232 { 1233 unsigned int len, suffix_len; 1234 1235 len = strlen(str); 1236 suffix_len = strlen(suffix); 1237 if (len <= suffix_len) 1238 return -1; 1239 return strcmp(str + len - suffix_len, suffix); 1240 } 1241 1242 /** 1243 * parse_suffix_prop_cells - Suffix property parsing function for suppliers 1244 * 1245 * @np: Pointer to device tree node containing a list 1246 * @prop_name: Name of property to be parsed. Expected to hold phandle values 1247 * @index: For properties holding a list of phandles, this is the index 1248 * into the list. 1249 * @suffix: Property suffix that is known to contain list of phandle(s) to 1250 * supplier(s) 1251 * @cells_name: property name that specifies phandles' arguments count 1252 * 1253 * This is a helper function to parse properties that have a known fixed suffix 1254 * and are a list of phandles and phandle arguments. 1255 * 1256 * Returns: 1257 * - phandle node pointer with refcount incremented. Caller must of_node_put() 1258 * on it when done. 1259 * - NULL if no phandle found at index 1260 */ 1261 static struct device_node *parse_suffix_prop_cells(struct device_node *np, 1262 const char *prop_name, int index, 1263 const char *suffix, 1264 const char *cells_name) 1265 { 1266 struct of_phandle_args sup_args; 1267 1268 if (strcmp_suffix(prop_name, suffix)) 1269 return NULL; 1270 1271 if (of_parse_phandle_with_args(np, prop_name, cells_name, index, 1272 &sup_args)) 1273 return NULL; 1274 1275 return sup_args.np; 1276 } 1277 1278 #define DEFINE_SUFFIX_PROP(fname, suffix, cells) \ 1279 static struct device_node *parse_##fname(struct device_node *np, \ 1280 const char *prop_name, int index) \ 1281 { \ 1282 return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \ 1283 } 1284 1285 /** 1286 * struct supplier_bindings - Property parsing functions for suppliers 1287 * 1288 * @parse_prop: function name 1289 * parse_prop() finds the node corresponding to a supplier phandle 1290 * parse_prop.np: Pointer to device node holding supplier phandle property 1291 * parse_prop.prop_name: Name of property holding a phandle value 1292 * parse_prop.index: For properties holding a list of phandles, this is the 1293 * index into the list 1294 * @get_con_dev: If the consumer node containing the property is never converted 1295 * to a struct device, implement this ops so fw_devlink can use it 1296 * to find the true consumer. 1297 * @optional: Describes whether a supplier is mandatory or not 1298 * @fwlink_flags: Optional fwnode link flags to use when creating a fwnode link 1299 * for this property. 1300 * 1301 * Returns: 1302 * parse_prop() return values are 1303 * - phandle node pointer with refcount incremented. Caller must of_node_put() 1304 * on it when done. 1305 * - NULL if no phandle found at index 1306 */ 1307 struct supplier_bindings { 1308 struct device_node *(*parse_prop)(struct device_node *np, 1309 const char *prop_name, int index); 1310 struct device_node *(*get_con_dev)(struct device_node *np); 1311 bool optional; 1312 u8 fwlink_flags; 1313 }; 1314 1315 DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells") 1316 DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells") 1317 DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells") 1318 DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells") 1319 DEFINE_SIMPLE_PROP(io_channels, "io-channels", "#io-channel-cells") 1320 DEFINE_SIMPLE_PROP(io_backends, "io-backends", "#io-backend-cells") 1321 DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells") 1322 DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells") 1323 DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells") 1324 DEFINE_SIMPLE_PROP(extcon, "extcon", NULL) 1325 DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", "#nvmem-cell-cells") 1326 DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells") 1327 DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL) 1328 DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL) 1329 DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL) 1330 DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL) 1331 DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL) 1332 DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL) 1333 DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL) 1334 DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL) 1335 DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL) 1336 DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL) 1337 DEFINE_SIMPLE_PROP(pwms, "pwms", "#pwm-cells") 1338 DEFINE_SIMPLE_PROP(resets, "resets", "#reset-cells") 1339 DEFINE_SIMPLE_PROP(leds, "leds", NULL) 1340 DEFINE_SIMPLE_PROP(backlight, "backlight", NULL) 1341 DEFINE_SIMPLE_PROP(panel, "panel", NULL) 1342 DEFINE_SIMPLE_PROP(msi_parent, "msi-parent", "#msi-cells") 1343 DEFINE_SIMPLE_PROP(post_init_providers, "post-init-providers", NULL) 1344 DEFINE_SIMPLE_PROP(access_controllers, "access-controllers", "#access-controller-cells") 1345 DEFINE_SIMPLE_PROP(pses, "pses", "#pse-cells") 1346 DEFINE_SIMPLE_PROP(power_supplies, "power-supplies", NULL) 1347 DEFINE_SUFFIX_PROP(regulators, "-supply", NULL) 1348 DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells") 1349 1350 static struct device_node *parse_gpios(struct device_node *np, 1351 const char *prop_name, int index) 1352 { 1353 if (!strcmp_suffix(prop_name, ",nr-gpios")) 1354 return NULL; 1355 1356 return parse_suffix_prop_cells(np, prop_name, index, "-gpios", 1357 "#gpio-cells"); 1358 } 1359 1360 static struct device_node *parse_iommu_maps(struct device_node *np, 1361 const char *prop_name, int index) 1362 { 1363 if (strcmp(prop_name, "iommu-map")) 1364 return NULL; 1365 1366 return of_parse_phandle(np, prop_name, (index * 4) + 1); 1367 } 1368 1369 static struct device_node *parse_gpio_compat(struct device_node *np, 1370 const char *prop_name, int index) 1371 { 1372 struct of_phandle_args sup_args; 1373 1374 if (strcmp(prop_name, "gpio") && strcmp(prop_name, "gpios")) 1375 return NULL; 1376 1377 /* 1378 * Ignore node with gpio-hog property since its gpios are all provided 1379 * by its parent. 1380 */ 1381 if (of_property_read_bool(np, "gpio-hog")) 1382 return NULL; 1383 1384 if (of_parse_phandle_with_args(np, prop_name, "#gpio-cells", index, 1385 &sup_args)) 1386 return NULL; 1387 1388 return sup_args.np; 1389 } 1390 1391 static struct device_node *parse_interrupts(struct device_node *np, 1392 const char *prop_name, int index) 1393 { 1394 struct of_phandle_args sup_args; 1395 1396 if (!IS_ENABLED(CONFIG_OF_IRQ) || IS_ENABLED(CONFIG_PPC)) 1397 return NULL; 1398 1399 if (strcmp(prop_name, "interrupts") && 1400 strcmp(prop_name, "interrupts-extended")) 1401 return NULL; 1402 1403 return of_irq_parse_one(np, index, &sup_args) ? NULL : sup_args.np; 1404 } 1405 1406 static struct device_node *parse_interrupt_map(struct device_node *np, 1407 const char *prop_name, int index) 1408 { 1409 const __be32 *imap, *imap_end; 1410 struct of_phandle_args sup_args; 1411 u32 addrcells, intcells; 1412 int imaplen; 1413 1414 if (!IS_ENABLED(CONFIG_OF_IRQ)) 1415 return NULL; 1416 1417 if (strcmp(prop_name, "interrupt-map")) 1418 return NULL; 1419 1420 if (of_property_read_u32(np, "#interrupt-cells", &intcells)) 1421 return NULL; 1422 addrcells = of_bus_n_addr_cells(np); 1423 1424 imap = of_get_property(np, "interrupt-map", &imaplen); 1425 if (!imap) 1426 return NULL; 1427 imaplen /= sizeof(*imap); 1428 1429 imap_end = imap + imaplen; 1430 1431 for (int i = 0; imap + addrcells + intcells + 1 < imap_end; i++) { 1432 imap += addrcells + intcells; 1433 1434 imap = of_irq_parse_imap_parent(imap, imap_end - imap, &sup_args); 1435 if (!imap) 1436 return NULL; 1437 1438 if (i == index) 1439 return sup_args.np; 1440 1441 of_node_put(sup_args.np); 1442 } 1443 1444 return NULL; 1445 } 1446 1447 static struct device_node *parse_remote_endpoint(struct device_node *np, 1448 const char *prop_name, 1449 int index) 1450 { 1451 /* Return NULL for index > 0 to signify end of remote-endpoints. */ 1452 if (index > 0 || strcmp(prop_name, "remote-endpoint")) 1453 return NULL; 1454 1455 return of_graph_get_remote_port_parent(np); 1456 } 1457 1458 static const struct supplier_bindings of_supplier_bindings[] = { 1459 { .parse_prop = parse_clocks, }, 1460 { .parse_prop = parse_interconnects, }, 1461 { .parse_prop = parse_iommus, .optional = true, }, 1462 { .parse_prop = parse_iommu_maps, .optional = true, }, 1463 { .parse_prop = parse_mboxes, }, 1464 { .parse_prop = parse_io_channels, }, 1465 { .parse_prop = parse_io_backends, }, 1466 { .parse_prop = parse_dmas, .optional = true, }, 1467 { .parse_prop = parse_power_domains, }, 1468 { .parse_prop = parse_hwlocks, }, 1469 { .parse_prop = parse_extcon, }, 1470 { .parse_prop = parse_nvmem_cells, }, 1471 { .parse_prop = parse_phys, }, 1472 { .parse_prop = parse_wakeup_parent, }, 1473 { .parse_prop = parse_pinctrl0, }, 1474 { .parse_prop = parse_pinctrl1, }, 1475 { .parse_prop = parse_pinctrl2, }, 1476 { .parse_prop = parse_pinctrl3, }, 1477 { .parse_prop = parse_pinctrl4, }, 1478 { .parse_prop = parse_pinctrl5, }, 1479 { .parse_prop = parse_pinctrl6, }, 1480 { .parse_prop = parse_pinctrl7, }, 1481 { .parse_prop = parse_pinctrl8, }, 1482 { 1483 .parse_prop = parse_remote_endpoint, 1484 .get_con_dev = of_graph_get_port_parent, 1485 }, 1486 { .parse_prop = parse_pwms, }, 1487 { .parse_prop = parse_resets, }, 1488 { .parse_prop = parse_leds, }, 1489 { .parse_prop = parse_backlight, }, 1490 { .parse_prop = parse_panel, }, 1491 { .parse_prop = parse_msi_parent, }, 1492 { .parse_prop = parse_pses, }, 1493 { .parse_prop = parse_power_supplies, }, 1494 { .parse_prop = parse_gpio_compat, }, 1495 { .parse_prop = parse_interrupts, }, 1496 { .parse_prop = parse_interrupt_map, }, 1497 { .parse_prop = parse_access_controllers, }, 1498 { .parse_prop = parse_regulators, }, 1499 { .parse_prop = parse_gpio, }, 1500 { .parse_prop = parse_gpios, }, 1501 { 1502 .parse_prop = parse_post_init_providers, 1503 .fwlink_flags = FWLINK_FLAG_IGNORE, 1504 }, 1505 {} 1506 }; 1507 1508 /** 1509 * of_link_property - Create device links to suppliers listed in a property 1510 * @con_np: The consumer device tree node which contains the property 1511 * @prop_name: Name of property to be parsed 1512 * 1513 * This function checks if the property @prop_name that is present in the 1514 * @con_np device tree node is one of the known common device tree bindings 1515 * that list phandles to suppliers. If @prop_name isn't one, this function 1516 * doesn't do anything. 1517 * 1518 * If @prop_name is one, this function attempts to create fwnode links from the 1519 * consumer device tree node @con_np to all the suppliers device tree nodes 1520 * listed in @prop_name. 1521 * 1522 * Any failed attempt to create a fwnode link will NOT result in an immediate 1523 * return. of_link_property() must create links to all the available supplier 1524 * device tree nodes even when attempts to create a link to one or more 1525 * suppliers fail. 1526 */ 1527 static int of_link_property(struct device_node *con_np, const char *prop_name) 1528 { 1529 struct device_node *phandle; 1530 const struct supplier_bindings *s = of_supplier_bindings; 1531 unsigned int i = 0; 1532 bool matched = false; 1533 1534 /* Do not stop at first failed link, link all available suppliers. */ 1535 while (!matched && s->parse_prop) { 1536 if (s->optional && !fw_devlink_is_strict()) { 1537 s++; 1538 continue; 1539 } 1540 1541 while ((phandle = s->parse_prop(con_np, prop_name, i))) { 1542 struct device_node *con_dev_np __free(device_node) = 1543 s->get_con_dev ? s->get_con_dev(con_np) : of_node_get(con_np); 1544 1545 matched = true; 1546 i++; 1547 of_link_to_phandle(con_dev_np, phandle, s->fwlink_flags); 1548 of_node_put(phandle); 1549 } 1550 s++; 1551 } 1552 return 0; 1553 } 1554 1555 static void __iomem *of_fwnode_iomap(struct fwnode_handle *fwnode, int index) 1556 { 1557 #ifdef CONFIG_OF_ADDRESS 1558 return of_iomap(to_of_node(fwnode), index); 1559 #else 1560 return NULL; 1561 #endif 1562 } 1563 1564 static int of_fwnode_irq_get(const struct fwnode_handle *fwnode, 1565 unsigned int index) 1566 { 1567 return of_irq_get(to_of_node(fwnode), index); 1568 } 1569 1570 static int of_fwnode_add_links(struct fwnode_handle *fwnode) 1571 { 1572 const struct property *p; 1573 struct device_node *con_np = to_of_node(fwnode); 1574 1575 if (IS_ENABLED(CONFIG_X86)) 1576 return 0; 1577 1578 if (!con_np) 1579 return -EINVAL; 1580 1581 for_each_property_of_node(con_np, p) 1582 of_link_property(con_np, p->name); 1583 1584 return 0; 1585 } 1586 1587 const struct fwnode_operations of_fwnode_ops = { 1588 .get = of_fwnode_get, 1589 .put = of_fwnode_put, 1590 .device_is_available = of_fwnode_device_is_available, 1591 .device_get_match_data = of_fwnode_device_get_match_data, 1592 .device_dma_supported = of_fwnode_device_dma_supported, 1593 .device_get_dma_attr = of_fwnode_device_get_dma_attr, 1594 .property_present = of_fwnode_property_present, 1595 .property_read_bool = of_fwnode_property_read_bool, 1596 .property_read_int_array = of_fwnode_property_read_int_array, 1597 .property_read_string_array = of_fwnode_property_read_string_array, 1598 .get_name = of_fwnode_get_name, 1599 .get_name_prefix = of_fwnode_get_name_prefix, 1600 .get_parent = of_fwnode_get_parent, 1601 .get_next_child_node = of_fwnode_get_next_child_node, 1602 .get_named_child_node = of_fwnode_get_named_child_node, 1603 .get_reference_args = of_fwnode_get_reference_args, 1604 .graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint, 1605 .graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint, 1606 .graph_get_port_parent = of_fwnode_graph_get_port_parent, 1607 .graph_parse_endpoint = of_fwnode_graph_parse_endpoint, 1608 .iomap = of_fwnode_iomap, 1609 .irq_get = of_fwnode_irq_get, 1610 .add_links = of_fwnode_add_links, 1611 }; 1612 EXPORT_SYMBOL_GPL(of_fwnode_ops); 1613