1 // SPDX-License-Identifier: BSD-3-Clause-Clear 2 /* 3 * Copyright (c) 2018-2019 The Linux Foundation. All rights reserved. 4 * Copyright (c) 2021-2025 Qualcomm Innovation Center, Inc. All rights reserved. 5 */ 6 7 #include <net/mac80211.h> 8 #include <net/cfg80211.h> 9 #include <linux/etherdevice.h> 10 #include <linux/bitfield.h> 11 #include <linux/inetdevice.h> 12 #include <net/if_inet6.h> 13 #include <net/ipv6.h> 14 15 #include "mac.h" 16 #include "core.h" 17 #include "debug.h" 18 #include "wmi.h" 19 #include "hw.h" 20 #include "dp_tx.h" 21 #include "dp_rx.h" 22 #include "testmode.h" 23 #include "peer.h" 24 #include "debugfs_sta.h" 25 #include "hif.h" 26 #include "wow.h" 27 28 #define CHAN2G(_channel, _freq, _flags) { \ 29 .band = NL80211_BAND_2GHZ, \ 30 .hw_value = (_channel), \ 31 .center_freq = (_freq), \ 32 .flags = (_flags), \ 33 .max_antenna_gain = 0, \ 34 .max_power = 30, \ 35 } 36 37 #define CHAN5G(_channel, _freq, _flags) { \ 38 .band = NL80211_BAND_5GHZ, \ 39 .hw_value = (_channel), \ 40 .center_freq = (_freq), \ 41 .flags = (_flags), \ 42 .max_antenna_gain = 0, \ 43 .max_power = 30, \ 44 } 45 46 #define CHAN6G(_channel, _freq, _flags) { \ 47 .band = NL80211_BAND_6GHZ, \ 48 .hw_value = (_channel), \ 49 .center_freq = (_freq), \ 50 .flags = (_flags), \ 51 .max_antenna_gain = 0, \ 52 .max_power = 30, \ 53 } 54 55 static const struct ieee80211_channel ath11k_2ghz_channels[] = { 56 CHAN2G(1, 2412, 0), 57 CHAN2G(2, 2417, 0), 58 CHAN2G(3, 2422, 0), 59 CHAN2G(4, 2427, 0), 60 CHAN2G(5, 2432, 0), 61 CHAN2G(6, 2437, 0), 62 CHAN2G(7, 2442, 0), 63 CHAN2G(8, 2447, 0), 64 CHAN2G(9, 2452, 0), 65 CHAN2G(10, 2457, 0), 66 CHAN2G(11, 2462, 0), 67 CHAN2G(12, 2467, 0), 68 CHAN2G(13, 2472, 0), 69 CHAN2G(14, 2484, 0), 70 }; 71 72 static const struct ieee80211_channel ath11k_5ghz_channels[] = { 73 CHAN5G(36, 5180, 0), 74 CHAN5G(40, 5200, 0), 75 CHAN5G(44, 5220, 0), 76 CHAN5G(48, 5240, 0), 77 CHAN5G(52, 5260, 0), 78 CHAN5G(56, 5280, 0), 79 CHAN5G(60, 5300, 0), 80 CHAN5G(64, 5320, 0), 81 CHAN5G(100, 5500, 0), 82 CHAN5G(104, 5520, 0), 83 CHAN5G(108, 5540, 0), 84 CHAN5G(112, 5560, 0), 85 CHAN5G(116, 5580, 0), 86 CHAN5G(120, 5600, 0), 87 CHAN5G(124, 5620, 0), 88 CHAN5G(128, 5640, 0), 89 CHAN5G(132, 5660, 0), 90 CHAN5G(136, 5680, 0), 91 CHAN5G(140, 5700, 0), 92 CHAN5G(144, 5720, 0), 93 CHAN5G(149, 5745, 0), 94 CHAN5G(153, 5765, 0), 95 CHAN5G(157, 5785, 0), 96 CHAN5G(161, 5805, 0), 97 CHAN5G(165, 5825, 0), 98 CHAN5G(169, 5845, 0), 99 CHAN5G(173, 5865, 0), 100 CHAN5G(177, 5885, 0), 101 }; 102 103 static const struct ieee80211_channel ath11k_6ghz_channels[] = { 104 CHAN6G(1, 5955, 0), 105 CHAN6G(5, 5975, 0), 106 CHAN6G(9, 5995, 0), 107 CHAN6G(13, 6015, 0), 108 CHAN6G(17, 6035, 0), 109 CHAN6G(21, 6055, 0), 110 CHAN6G(25, 6075, 0), 111 CHAN6G(29, 6095, 0), 112 CHAN6G(33, 6115, 0), 113 CHAN6G(37, 6135, 0), 114 CHAN6G(41, 6155, 0), 115 CHAN6G(45, 6175, 0), 116 CHAN6G(49, 6195, 0), 117 CHAN6G(53, 6215, 0), 118 CHAN6G(57, 6235, 0), 119 CHAN6G(61, 6255, 0), 120 CHAN6G(65, 6275, 0), 121 CHAN6G(69, 6295, 0), 122 CHAN6G(73, 6315, 0), 123 CHAN6G(77, 6335, 0), 124 CHAN6G(81, 6355, 0), 125 CHAN6G(85, 6375, 0), 126 CHAN6G(89, 6395, 0), 127 CHAN6G(93, 6415, 0), 128 CHAN6G(97, 6435, 0), 129 CHAN6G(101, 6455, 0), 130 CHAN6G(105, 6475, 0), 131 CHAN6G(109, 6495, 0), 132 CHAN6G(113, 6515, 0), 133 CHAN6G(117, 6535, 0), 134 CHAN6G(121, 6555, 0), 135 CHAN6G(125, 6575, 0), 136 CHAN6G(129, 6595, 0), 137 CHAN6G(133, 6615, 0), 138 CHAN6G(137, 6635, 0), 139 CHAN6G(141, 6655, 0), 140 CHAN6G(145, 6675, 0), 141 CHAN6G(149, 6695, 0), 142 CHAN6G(153, 6715, 0), 143 CHAN6G(157, 6735, 0), 144 CHAN6G(161, 6755, 0), 145 CHAN6G(165, 6775, 0), 146 CHAN6G(169, 6795, 0), 147 CHAN6G(173, 6815, 0), 148 CHAN6G(177, 6835, 0), 149 CHAN6G(181, 6855, 0), 150 CHAN6G(185, 6875, 0), 151 CHAN6G(189, 6895, 0), 152 CHAN6G(193, 6915, 0), 153 CHAN6G(197, 6935, 0), 154 CHAN6G(201, 6955, 0), 155 CHAN6G(205, 6975, 0), 156 CHAN6G(209, 6995, 0), 157 CHAN6G(213, 7015, 0), 158 CHAN6G(217, 7035, 0), 159 CHAN6G(221, 7055, 0), 160 CHAN6G(225, 7075, 0), 161 CHAN6G(229, 7095, 0), 162 CHAN6G(233, 7115, 0), 163 164 /* new addition in IEEE Std 802.11ax-2021 */ 165 CHAN6G(2, 5935, 0), 166 }; 167 168 static struct ieee80211_rate ath11k_legacy_rates[] = { 169 { .bitrate = 10, 170 .hw_value = ATH11K_HW_RATE_CCK_LP_1M }, 171 { .bitrate = 20, 172 .hw_value = ATH11K_HW_RATE_CCK_LP_2M, 173 .hw_value_short = ATH11K_HW_RATE_CCK_SP_2M, 174 .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 175 { .bitrate = 55, 176 .hw_value = ATH11K_HW_RATE_CCK_LP_5_5M, 177 .hw_value_short = ATH11K_HW_RATE_CCK_SP_5_5M, 178 .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 179 { .bitrate = 110, 180 .hw_value = ATH11K_HW_RATE_CCK_LP_11M, 181 .hw_value_short = ATH11K_HW_RATE_CCK_SP_11M, 182 .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 183 184 { .bitrate = 60, .hw_value = ATH11K_HW_RATE_OFDM_6M }, 185 { .bitrate = 90, .hw_value = ATH11K_HW_RATE_OFDM_9M }, 186 { .bitrate = 120, .hw_value = ATH11K_HW_RATE_OFDM_12M }, 187 { .bitrate = 180, .hw_value = ATH11K_HW_RATE_OFDM_18M }, 188 { .bitrate = 240, .hw_value = ATH11K_HW_RATE_OFDM_24M }, 189 { .bitrate = 360, .hw_value = ATH11K_HW_RATE_OFDM_36M }, 190 { .bitrate = 480, .hw_value = ATH11K_HW_RATE_OFDM_48M }, 191 { .bitrate = 540, .hw_value = ATH11K_HW_RATE_OFDM_54M }, 192 }; 193 194 static const int 195 ath11k_phymodes[NUM_NL80211_BANDS][ATH11K_CHAN_WIDTH_NUM] = { 196 [NL80211_BAND_2GHZ] = { 197 [NL80211_CHAN_WIDTH_5] = MODE_UNKNOWN, 198 [NL80211_CHAN_WIDTH_10] = MODE_UNKNOWN, 199 [NL80211_CHAN_WIDTH_20_NOHT] = MODE_11AX_HE20_2G, 200 [NL80211_CHAN_WIDTH_20] = MODE_11AX_HE20_2G, 201 [NL80211_CHAN_WIDTH_40] = MODE_11AX_HE40_2G, 202 [NL80211_CHAN_WIDTH_80] = MODE_11AX_HE80_2G, 203 [NL80211_CHAN_WIDTH_80P80] = MODE_UNKNOWN, 204 [NL80211_CHAN_WIDTH_160] = MODE_UNKNOWN, 205 }, 206 [NL80211_BAND_5GHZ] = { 207 [NL80211_CHAN_WIDTH_5] = MODE_UNKNOWN, 208 [NL80211_CHAN_WIDTH_10] = MODE_UNKNOWN, 209 [NL80211_CHAN_WIDTH_20_NOHT] = MODE_11AX_HE20, 210 [NL80211_CHAN_WIDTH_20] = MODE_11AX_HE20, 211 [NL80211_CHAN_WIDTH_40] = MODE_11AX_HE40, 212 [NL80211_CHAN_WIDTH_80] = MODE_11AX_HE80, 213 [NL80211_CHAN_WIDTH_160] = MODE_11AX_HE160, 214 [NL80211_CHAN_WIDTH_80P80] = MODE_11AX_HE80_80, 215 }, 216 [NL80211_BAND_6GHZ] = { 217 [NL80211_CHAN_WIDTH_5] = MODE_UNKNOWN, 218 [NL80211_CHAN_WIDTH_10] = MODE_UNKNOWN, 219 [NL80211_CHAN_WIDTH_20_NOHT] = MODE_11AX_HE20, 220 [NL80211_CHAN_WIDTH_20] = MODE_11AX_HE20, 221 [NL80211_CHAN_WIDTH_40] = MODE_11AX_HE40, 222 [NL80211_CHAN_WIDTH_80] = MODE_11AX_HE80, 223 [NL80211_CHAN_WIDTH_160] = MODE_11AX_HE160, 224 [NL80211_CHAN_WIDTH_80P80] = MODE_11AX_HE80_80, 225 }, 226 227 }; 228 229 const struct htt_rx_ring_tlv_filter ath11k_mac_mon_status_filter_default = { 230 .rx_filter = HTT_RX_FILTER_TLV_FLAGS_MPDU_START | 231 HTT_RX_FILTER_TLV_FLAGS_PPDU_END | 232 HTT_RX_FILTER_TLV_FLAGS_PPDU_END_STATUS_DONE, 233 .pkt_filter_flags0 = HTT_RX_FP_MGMT_FILTER_FLAGS0, 234 .pkt_filter_flags1 = HTT_RX_FP_MGMT_FILTER_FLAGS1, 235 .pkt_filter_flags2 = HTT_RX_FP_CTRL_FILTER_FLASG2, 236 .pkt_filter_flags3 = HTT_RX_FP_DATA_FILTER_FLASG3 | 237 HTT_RX_FP_CTRL_FILTER_FLASG3 238 }; 239 240 #define ATH11K_MAC_FIRST_OFDM_RATE_IDX 4 241 #define ath11k_g_rates ath11k_legacy_rates 242 #define ath11k_g_rates_size (ARRAY_SIZE(ath11k_legacy_rates)) 243 #define ath11k_a_rates (ath11k_legacy_rates + 4) 244 #define ath11k_a_rates_size (ARRAY_SIZE(ath11k_legacy_rates) - 4) 245 246 #define ATH11K_MAC_SCAN_CMD_EVT_OVERHEAD 200 /* in msecs */ 247 248 /* Overhead due to the processing of channel switch events from FW */ 249 #define ATH11K_SCAN_CHANNEL_SWITCH_WMI_EVT_OVERHEAD 10 /* in msecs */ 250 251 static const u32 ath11k_smps_map[] = { 252 [WLAN_HT_CAP_SM_PS_STATIC] = WMI_PEER_SMPS_STATIC, 253 [WLAN_HT_CAP_SM_PS_DYNAMIC] = WMI_PEER_SMPS_DYNAMIC, 254 [WLAN_HT_CAP_SM_PS_INVALID] = WMI_PEER_SMPS_PS_NONE, 255 [WLAN_HT_CAP_SM_PS_DISABLED] = WMI_PEER_SMPS_PS_NONE, 256 }; 257 258 enum nl80211_he_ru_alloc ath11k_mac_phy_he_ru_to_nl80211_he_ru_alloc(u16 ru_phy) 259 { 260 enum nl80211_he_ru_alloc ret; 261 262 switch (ru_phy) { 263 case RU_26: 264 ret = NL80211_RATE_INFO_HE_RU_ALLOC_26; 265 break; 266 case RU_52: 267 ret = NL80211_RATE_INFO_HE_RU_ALLOC_52; 268 break; 269 case RU_106: 270 ret = NL80211_RATE_INFO_HE_RU_ALLOC_106; 271 break; 272 case RU_242: 273 ret = NL80211_RATE_INFO_HE_RU_ALLOC_242; 274 break; 275 case RU_484: 276 ret = NL80211_RATE_INFO_HE_RU_ALLOC_484; 277 break; 278 case RU_996: 279 ret = NL80211_RATE_INFO_HE_RU_ALLOC_996; 280 break; 281 default: 282 ret = NL80211_RATE_INFO_HE_RU_ALLOC_26; 283 break; 284 } 285 286 return ret; 287 } 288 289 enum nl80211_he_ru_alloc ath11k_mac_he_ru_tones_to_nl80211_he_ru_alloc(u16 ru_tones) 290 { 291 enum nl80211_he_ru_alloc ret; 292 293 switch (ru_tones) { 294 case 26: 295 ret = NL80211_RATE_INFO_HE_RU_ALLOC_26; 296 break; 297 case 52: 298 ret = NL80211_RATE_INFO_HE_RU_ALLOC_52; 299 break; 300 case 106: 301 ret = NL80211_RATE_INFO_HE_RU_ALLOC_106; 302 break; 303 case 242: 304 ret = NL80211_RATE_INFO_HE_RU_ALLOC_242; 305 break; 306 case 484: 307 ret = NL80211_RATE_INFO_HE_RU_ALLOC_484; 308 break; 309 case 996: 310 ret = NL80211_RATE_INFO_HE_RU_ALLOC_996; 311 break; 312 case (996 * 2): 313 ret = NL80211_RATE_INFO_HE_RU_ALLOC_2x996; 314 break; 315 default: 316 ret = NL80211_RATE_INFO_HE_RU_ALLOC_26; 317 break; 318 } 319 320 return ret; 321 } 322 323 enum nl80211_he_gi ath11k_mac_he_gi_to_nl80211_he_gi(u8 sgi) 324 { 325 enum nl80211_he_gi ret; 326 327 switch (sgi) { 328 case RX_MSDU_START_SGI_0_8_US: 329 ret = NL80211_RATE_INFO_HE_GI_0_8; 330 break; 331 case RX_MSDU_START_SGI_1_6_US: 332 ret = NL80211_RATE_INFO_HE_GI_1_6; 333 break; 334 case RX_MSDU_START_SGI_3_2_US: 335 ret = NL80211_RATE_INFO_HE_GI_3_2; 336 break; 337 default: 338 ret = NL80211_RATE_INFO_HE_GI_0_8; 339 break; 340 } 341 342 return ret; 343 } 344 345 u8 ath11k_mac_bw_to_mac80211_bw(u8 bw) 346 { 347 u8 ret = 0; 348 349 switch (bw) { 350 case ATH11K_BW_20: 351 ret = RATE_INFO_BW_20; 352 break; 353 case ATH11K_BW_40: 354 ret = RATE_INFO_BW_40; 355 break; 356 case ATH11K_BW_80: 357 ret = RATE_INFO_BW_80; 358 break; 359 case ATH11K_BW_160: 360 ret = RATE_INFO_BW_160; 361 break; 362 } 363 364 return ret; 365 } 366 367 enum ath11k_supported_bw ath11k_mac_mac80211_bw_to_ath11k_bw(enum rate_info_bw bw) 368 { 369 switch (bw) { 370 case RATE_INFO_BW_20: 371 return ATH11K_BW_20; 372 case RATE_INFO_BW_40: 373 return ATH11K_BW_40; 374 case RATE_INFO_BW_80: 375 return ATH11K_BW_80; 376 case RATE_INFO_BW_160: 377 return ATH11K_BW_160; 378 default: 379 return ATH11K_BW_20; 380 } 381 } 382 383 int ath11k_mac_hw_ratecode_to_legacy_rate(u8 hw_rc, u8 preamble, u8 *rateidx, 384 u16 *rate) 385 { 386 /* As default, it is OFDM rates */ 387 int i = ATH11K_MAC_FIRST_OFDM_RATE_IDX; 388 int max_rates_idx = ath11k_g_rates_size; 389 390 if (preamble == WMI_RATE_PREAMBLE_CCK) { 391 hw_rc &= ~ATH11k_HW_RATECODE_CCK_SHORT_PREAM_MASK; 392 i = 0; 393 max_rates_idx = ATH11K_MAC_FIRST_OFDM_RATE_IDX; 394 } 395 396 while (i < max_rates_idx) { 397 if (hw_rc == ath11k_legacy_rates[i].hw_value) { 398 *rateidx = i; 399 *rate = ath11k_legacy_rates[i].bitrate; 400 return 0; 401 } 402 i++; 403 } 404 405 return -EINVAL; 406 } 407 408 static int get_num_chains(u32 mask) 409 { 410 int num_chains = 0; 411 412 while (mask) { 413 if (mask & BIT(0)) 414 num_chains++; 415 mask >>= 1; 416 } 417 418 return num_chains; 419 } 420 421 u8 ath11k_mac_bitrate_to_idx(const struct ieee80211_supported_band *sband, 422 u32 bitrate) 423 { 424 int i; 425 426 for (i = 0; i < sband->n_bitrates; i++) 427 if (sband->bitrates[i].bitrate == bitrate) 428 return i; 429 430 return 0; 431 } 432 433 static u32 434 ath11k_mac_max_ht_nss(const u8 *ht_mcs_mask) 435 { 436 int nss; 437 438 for (nss = IEEE80211_HT_MCS_MASK_LEN - 1; nss >= 0; nss--) 439 if (ht_mcs_mask[nss]) 440 return nss + 1; 441 442 return 1; 443 } 444 445 static u32 446 ath11k_mac_max_vht_nss(const u16 *vht_mcs_mask) 447 { 448 int nss; 449 450 for (nss = NL80211_VHT_NSS_MAX - 1; nss >= 0; nss--) 451 if (vht_mcs_mask[nss]) 452 return nss + 1; 453 454 return 1; 455 } 456 457 static u32 458 ath11k_mac_max_he_nss(const u16 *he_mcs_mask) 459 { 460 int nss; 461 462 for (nss = NL80211_HE_NSS_MAX - 1; nss >= 0; nss--) 463 if (he_mcs_mask[nss]) 464 return nss + 1; 465 466 return 1; 467 } 468 469 static u8 ath11k_parse_mpdudensity(u8 mpdudensity) 470 { 471 /* 802.11n D2.0 defined values for "Minimum MPDU Start Spacing": 472 * 0 for no restriction 473 * 1 for 1/4 us 474 * 2 for 1/2 us 475 * 3 for 1 us 476 * 4 for 2 us 477 * 5 for 4 us 478 * 6 for 8 us 479 * 7 for 16 us 480 */ 481 switch (mpdudensity) { 482 case 0: 483 return 0; 484 case 1: 485 case 2: 486 case 3: 487 /* Our lower layer calculations limit our precision to 488 * 1 microsecond 489 */ 490 return 1; 491 case 4: 492 return 2; 493 case 5: 494 return 4; 495 case 6: 496 return 8; 497 case 7: 498 return 16; 499 default: 500 return 0; 501 } 502 } 503 504 static int ath11k_mac_vif_chan(struct ieee80211_vif *vif, 505 struct cfg80211_chan_def *def) 506 { 507 struct ieee80211_chanctx_conf *conf; 508 509 rcu_read_lock(); 510 conf = rcu_dereference(vif->bss_conf.chanctx_conf); 511 if (!conf) { 512 rcu_read_unlock(); 513 return -ENOENT; 514 } 515 516 *def = conf->def; 517 rcu_read_unlock(); 518 519 return 0; 520 } 521 522 static bool ath11k_mac_bitrate_is_cck(int bitrate) 523 { 524 switch (bitrate) { 525 case 10: 526 case 20: 527 case 55: 528 case 110: 529 return true; 530 } 531 532 return false; 533 } 534 535 u8 ath11k_mac_hw_rate_to_idx(const struct ieee80211_supported_band *sband, 536 u8 hw_rate, bool cck) 537 { 538 const struct ieee80211_rate *rate; 539 int i; 540 541 for (i = 0; i < sband->n_bitrates; i++) { 542 rate = &sband->bitrates[i]; 543 544 if (ath11k_mac_bitrate_is_cck(rate->bitrate) != cck) 545 continue; 546 547 if (rate->hw_value == hw_rate) 548 return i; 549 else if (rate->flags & IEEE80211_RATE_SHORT_PREAMBLE && 550 rate->hw_value_short == hw_rate) 551 return i; 552 } 553 554 return 0; 555 } 556 557 static u8 ath11k_mac_bitrate_to_rate(int bitrate) 558 { 559 return DIV_ROUND_UP(bitrate, 5) | 560 (ath11k_mac_bitrate_is_cck(bitrate) ? BIT(7) : 0); 561 } 562 563 static void ath11k_get_arvif_iter(void *data, u8 *mac, 564 struct ieee80211_vif *vif) 565 { 566 struct ath11k_vif_iter *arvif_iter = data; 567 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 568 569 if (arvif->vdev_id == arvif_iter->vdev_id) 570 arvif_iter->arvif = arvif; 571 } 572 573 struct ath11k_vif *ath11k_mac_get_arvif(struct ath11k *ar, u32 vdev_id) 574 { 575 struct ath11k_vif_iter arvif_iter; 576 u32 flags; 577 578 memset(&arvif_iter, 0, sizeof(struct ath11k_vif_iter)); 579 arvif_iter.vdev_id = vdev_id; 580 581 flags = IEEE80211_IFACE_ITER_RESUME_ALL; 582 ieee80211_iterate_active_interfaces_atomic(ar->hw, 583 flags, 584 ath11k_get_arvif_iter, 585 &arvif_iter); 586 if (!arvif_iter.arvif) { 587 ath11k_warn(ar->ab, "No VIF found for vdev %d\n", vdev_id); 588 return NULL; 589 } 590 591 return arvif_iter.arvif; 592 } 593 594 struct ath11k_vif *ath11k_mac_get_arvif_by_vdev_id(struct ath11k_base *ab, 595 u32 vdev_id) 596 { 597 int i; 598 struct ath11k_pdev *pdev; 599 struct ath11k_vif *arvif; 600 601 for (i = 0; i < ab->num_radios; i++) { 602 pdev = rcu_dereference(ab->pdevs_active[i]); 603 if (pdev && pdev->ar && 604 (pdev->ar->allocated_vdev_map & (1LL << vdev_id))) { 605 arvif = ath11k_mac_get_arvif(pdev->ar, vdev_id); 606 if (arvif) 607 return arvif; 608 } 609 } 610 611 return NULL; 612 } 613 614 struct ath11k *ath11k_mac_get_ar_by_vdev_id(struct ath11k_base *ab, u32 vdev_id) 615 { 616 int i; 617 struct ath11k_pdev *pdev; 618 619 for (i = 0; i < ab->num_radios; i++) { 620 pdev = rcu_dereference(ab->pdevs_active[i]); 621 if (pdev && pdev->ar) { 622 if (pdev->ar->allocated_vdev_map & (1LL << vdev_id)) 623 return pdev->ar; 624 } 625 } 626 627 return NULL; 628 } 629 630 struct ath11k *ath11k_mac_get_ar_by_pdev_id(struct ath11k_base *ab, u32 pdev_id) 631 { 632 int i; 633 struct ath11k_pdev *pdev; 634 635 if (ab->hw_params.single_pdev_only) { 636 pdev = rcu_dereference(ab->pdevs_active[0]); 637 return pdev ? pdev->ar : NULL; 638 } 639 640 if (WARN_ON(pdev_id > ab->num_radios)) 641 return NULL; 642 643 for (i = 0; i < ab->num_radios; i++) { 644 if (ab->fw_mode == ATH11K_FIRMWARE_MODE_FTM) 645 pdev = &ab->pdevs[i]; 646 else 647 pdev = rcu_dereference(ab->pdevs_active[i]); 648 649 if (pdev && pdev->pdev_id == pdev_id) 650 return (pdev->ar ? pdev->ar : NULL); 651 } 652 653 return NULL; 654 } 655 656 struct ath11k_vif *ath11k_mac_get_vif_up(struct ath11k_base *ab) 657 { 658 struct ath11k *ar; 659 struct ath11k_pdev *pdev; 660 struct ath11k_vif *arvif; 661 int i; 662 663 for (i = 0; i < ab->num_radios; i++) { 664 pdev = &ab->pdevs[i]; 665 ar = pdev->ar; 666 list_for_each_entry(arvif, &ar->arvifs, list) { 667 if (arvif->is_up) 668 return arvif; 669 } 670 } 671 672 return NULL; 673 } 674 675 static bool ath11k_mac_band_match(enum nl80211_band band1, enum WMI_HOST_WLAN_BAND band2) 676 { 677 return (((band1 == NL80211_BAND_2GHZ) && (band2 & WMI_HOST_WLAN_2G_CAP)) || 678 (((band1 == NL80211_BAND_5GHZ) || (band1 == NL80211_BAND_6GHZ)) && 679 (band2 & WMI_HOST_WLAN_5G_CAP))); 680 } 681 682 u8 ath11k_mac_get_target_pdev_id_from_vif(struct ath11k_vif *arvif) 683 { 684 struct ath11k *ar = arvif->ar; 685 struct ath11k_base *ab = ar->ab; 686 struct ieee80211_vif *vif = arvif->vif; 687 struct cfg80211_chan_def def; 688 enum nl80211_band band; 689 u8 pdev_id = ab->target_pdev_ids[0].pdev_id; 690 int i; 691 692 if (WARN_ON(ath11k_mac_vif_chan(vif, &def))) 693 return pdev_id; 694 695 band = def.chan->band; 696 697 for (i = 0; i < ab->target_pdev_count; i++) { 698 if (ath11k_mac_band_match(band, ab->target_pdev_ids[i].supported_bands)) 699 return ab->target_pdev_ids[i].pdev_id; 700 } 701 702 return pdev_id; 703 } 704 705 u8 ath11k_mac_get_target_pdev_id(struct ath11k *ar) 706 { 707 struct ath11k_vif *arvif; 708 709 arvif = ath11k_mac_get_vif_up(ar->ab); 710 711 if (arvif) 712 return ath11k_mac_get_target_pdev_id_from_vif(arvif); 713 else 714 return ar->ab->target_pdev_ids[0].pdev_id; 715 } 716 717 static void ath11k_pdev_caps_update(struct ath11k *ar) 718 { 719 struct ath11k_base *ab = ar->ab; 720 721 ar->max_tx_power = ab->target_caps.hw_max_tx_power; 722 723 /* FIXME Set min_tx_power to ab->target_caps.hw_min_tx_power. 724 * But since the received value in svcrdy is same as hw_max_tx_power, 725 * we can set ar->min_tx_power to 0 currently until 726 * this is fixed in firmware 727 */ 728 ar->min_tx_power = 0; 729 730 ar->txpower_limit_2g = ar->max_tx_power; 731 ar->txpower_limit_5g = ar->max_tx_power; 732 ar->txpower_scale = WMI_HOST_TP_SCALE_MAX; 733 } 734 735 static int ath11k_mac_txpower_recalc(struct ath11k *ar) 736 { 737 struct ath11k_pdev *pdev = ar->pdev; 738 struct ath11k_vif *arvif; 739 int ret, txpower = -1; 740 u32 param; 741 742 lockdep_assert_held(&ar->conf_mutex); 743 744 list_for_each_entry(arvif, &ar->arvifs, list) { 745 if (arvif->txpower <= 0) 746 continue; 747 748 if (txpower == -1) 749 txpower = arvif->txpower; 750 else 751 txpower = min(txpower, arvif->txpower); 752 } 753 754 if (txpower == -1) 755 return 0; 756 757 /* txpwr is set as 2 units per dBm in FW*/ 758 txpower = min_t(u32, max_t(u32, ar->min_tx_power, txpower), 759 ar->max_tx_power) * 2; 760 761 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "txpower to set in hw %d\n", 762 txpower / 2); 763 764 if ((pdev->cap.supported_bands & WMI_HOST_WLAN_2G_CAP) && 765 ar->txpower_limit_2g != txpower) { 766 param = WMI_PDEV_PARAM_TXPOWER_LIMIT2G; 767 ret = ath11k_wmi_pdev_set_param(ar, param, 768 txpower, ar->pdev->pdev_id); 769 if (ret) 770 goto fail; 771 ar->txpower_limit_2g = txpower; 772 } 773 774 if ((pdev->cap.supported_bands & WMI_HOST_WLAN_5G_CAP) && 775 ar->txpower_limit_5g != txpower) { 776 param = WMI_PDEV_PARAM_TXPOWER_LIMIT5G; 777 ret = ath11k_wmi_pdev_set_param(ar, param, 778 txpower, ar->pdev->pdev_id); 779 if (ret) 780 goto fail; 781 ar->txpower_limit_5g = txpower; 782 } 783 784 return 0; 785 786 fail: 787 ath11k_warn(ar->ab, "failed to recalc txpower limit %d using pdev param %d: %d\n", 788 txpower / 2, param, ret); 789 return ret; 790 } 791 792 static int ath11k_recalc_rtscts_prot(struct ath11k_vif *arvif) 793 { 794 struct ath11k *ar = arvif->ar; 795 u32 vdev_param, rts_cts = 0; 796 int ret; 797 798 lockdep_assert_held(&ar->conf_mutex); 799 800 vdev_param = WMI_VDEV_PARAM_ENABLE_RTSCTS; 801 802 /* Enable RTS/CTS protection for sw retries (when legacy stations 803 * are in BSS) or by default only for second rate series. 804 * TODO: Check if we need to enable CTS 2 Self in any case 805 */ 806 rts_cts = WMI_USE_RTS_CTS; 807 808 if (arvif->num_legacy_stations > 0) 809 rts_cts |= WMI_RTSCTS_ACROSS_SW_RETRIES << 4; 810 else 811 rts_cts |= WMI_RTSCTS_FOR_SECOND_RATESERIES << 4; 812 813 /* Need not send duplicate param value to firmware */ 814 if (arvif->rtscts_prot_mode == rts_cts) 815 return 0; 816 817 arvif->rtscts_prot_mode = rts_cts; 818 819 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "vdev %d recalc rts/cts prot %d\n", 820 arvif->vdev_id, rts_cts); 821 822 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 823 vdev_param, rts_cts); 824 if (ret) 825 ath11k_warn(ar->ab, "failed to recalculate rts/cts prot for vdev %d: %d\n", 826 arvif->vdev_id, ret); 827 828 return ret; 829 } 830 831 static int ath11k_mac_set_kickout(struct ath11k_vif *arvif) 832 { 833 struct ath11k *ar = arvif->ar; 834 u32 param; 835 int ret; 836 837 ret = ath11k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_STA_KICKOUT_TH, 838 ATH11K_KICKOUT_THRESHOLD, 839 ar->pdev->pdev_id); 840 if (ret) { 841 ath11k_warn(ar->ab, "failed to set kickout threshold on vdev %i: %d\n", 842 arvif->vdev_id, ret); 843 return ret; 844 } 845 846 param = WMI_VDEV_PARAM_AP_KEEPALIVE_MIN_IDLE_INACTIVE_TIME_SECS; 847 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, param, 848 ATH11K_KEEPALIVE_MIN_IDLE); 849 if (ret) { 850 ath11k_warn(ar->ab, "failed to set keepalive minimum idle time on vdev %i: %d\n", 851 arvif->vdev_id, ret); 852 return ret; 853 } 854 855 param = WMI_VDEV_PARAM_AP_KEEPALIVE_MAX_IDLE_INACTIVE_TIME_SECS; 856 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, param, 857 ATH11K_KEEPALIVE_MAX_IDLE); 858 if (ret) { 859 ath11k_warn(ar->ab, "failed to set keepalive maximum idle time on vdev %i: %d\n", 860 arvif->vdev_id, ret); 861 return ret; 862 } 863 864 param = WMI_VDEV_PARAM_AP_KEEPALIVE_MAX_UNRESPONSIVE_TIME_SECS; 865 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, param, 866 ATH11K_KEEPALIVE_MAX_UNRESPONSIVE); 867 if (ret) { 868 ath11k_warn(ar->ab, "failed to set keepalive maximum unresponsive time on vdev %i: %d\n", 869 arvif->vdev_id, ret); 870 return ret; 871 } 872 873 return 0; 874 } 875 876 void ath11k_mac_peer_cleanup_all(struct ath11k *ar) 877 { 878 struct ath11k_peer *peer, *tmp; 879 struct ath11k_base *ab = ar->ab; 880 881 lockdep_assert_held(&ar->conf_mutex); 882 883 mutex_lock(&ab->tbl_mtx_lock); 884 spin_lock_bh(&ab->base_lock); 885 list_for_each_entry_safe(peer, tmp, &ab->peers, list) { 886 ath11k_peer_rx_tid_cleanup(ar, peer); 887 ath11k_peer_rhash_delete(ab, peer); 888 list_del(&peer->list); 889 kfree(peer); 890 } 891 spin_unlock_bh(&ab->base_lock); 892 mutex_unlock(&ab->tbl_mtx_lock); 893 894 ar->num_peers = 0; 895 ar->num_stations = 0; 896 } 897 898 static inline int ath11k_mac_vdev_setup_sync(struct ath11k *ar) 899 { 900 lockdep_assert_held(&ar->conf_mutex); 901 902 if (test_bit(ATH11K_FLAG_CRASH_FLUSH, &ar->ab->dev_flags)) 903 return -ESHUTDOWN; 904 905 if (!wait_for_completion_timeout(&ar->vdev_setup_done, 906 ATH11K_VDEV_SETUP_TIMEOUT_HZ)) 907 return -ETIMEDOUT; 908 909 return ar->last_wmi_vdev_start_status ? -EINVAL : 0; 910 } 911 912 static void 913 ath11k_mac_get_any_chandef_iter(struct ieee80211_hw *hw, 914 struct ieee80211_chanctx_conf *conf, 915 void *data) 916 { 917 struct cfg80211_chan_def **def = data; 918 919 *def = &conf->def; 920 } 921 922 static int ath11k_mac_monitor_vdev_start(struct ath11k *ar, int vdev_id, 923 struct cfg80211_chan_def *chandef) 924 { 925 struct ieee80211_channel *channel; 926 struct wmi_vdev_start_req_arg arg = {}; 927 int ret; 928 929 lockdep_assert_held(&ar->conf_mutex); 930 931 channel = chandef->chan; 932 933 arg.vdev_id = vdev_id; 934 arg.channel.freq = channel->center_freq; 935 arg.channel.band_center_freq1 = chandef->center_freq1; 936 arg.channel.band_center_freq2 = chandef->center_freq2; 937 938 arg.channel.mode = ath11k_phymodes[chandef->chan->band][chandef->width]; 939 arg.channel.chan_radar = !!(channel->flags & IEEE80211_CHAN_RADAR); 940 941 arg.channel.min_power = 0; 942 arg.channel.max_power = channel->max_power; 943 arg.channel.max_reg_power = channel->max_reg_power; 944 arg.channel.max_antenna_gain = channel->max_antenna_gain; 945 946 arg.pref_tx_streams = ar->num_tx_chains; 947 arg.pref_rx_streams = ar->num_rx_chains; 948 949 arg.channel.passive = !!(chandef->chan->flags & IEEE80211_CHAN_NO_IR); 950 951 reinit_completion(&ar->vdev_setup_done); 952 reinit_completion(&ar->vdev_delete_done); 953 954 ret = ath11k_wmi_vdev_start(ar, &arg, false); 955 if (ret) { 956 ath11k_warn(ar->ab, "failed to request monitor vdev %i start: %d\n", 957 vdev_id, ret); 958 return ret; 959 } 960 961 ret = ath11k_mac_vdev_setup_sync(ar); 962 if (ret) { 963 ath11k_warn(ar->ab, "failed to synchronize setup for monitor vdev %i start: %d\n", 964 vdev_id, ret); 965 return ret; 966 } 967 968 ret = ath11k_wmi_vdev_up(ar, vdev_id, 0, ar->mac_addr, NULL, 0, 0); 969 if (ret) { 970 ath11k_warn(ar->ab, "failed to put up monitor vdev %i: %d\n", 971 vdev_id, ret); 972 goto vdev_stop; 973 } 974 975 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "monitor vdev %i started\n", 976 vdev_id); 977 978 return 0; 979 980 vdev_stop: 981 reinit_completion(&ar->vdev_setup_done); 982 983 ret = ath11k_wmi_vdev_stop(ar, vdev_id); 984 if (ret) { 985 ath11k_warn(ar->ab, "failed to stop monitor vdev %i after start failure: %d\n", 986 vdev_id, ret); 987 return ret; 988 } 989 990 ret = ath11k_mac_vdev_setup_sync(ar); 991 if (ret) { 992 ath11k_warn(ar->ab, "failed to synchronize setup for vdev %i stop: %d\n", 993 vdev_id, ret); 994 return ret; 995 } 996 997 return -EIO; 998 } 999 1000 static int ath11k_mac_monitor_vdev_stop(struct ath11k *ar) 1001 { 1002 int ret; 1003 1004 lockdep_assert_held(&ar->conf_mutex); 1005 1006 reinit_completion(&ar->vdev_setup_done); 1007 1008 ret = ath11k_wmi_vdev_stop(ar, ar->monitor_vdev_id); 1009 if (ret) { 1010 ath11k_warn(ar->ab, "failed to request monitor vdev %i stop: %d\n", 1011 ar->monitor_vdev_id, ret); 1012 return ret; 1013 } 1014 1015 ret = ath11k_mac_vdev_setup_sync(ar); 1016 if (ret) { 1017 ath11k_warn(ar->ab, "failed to synchronize monitor vdev %i stop: %d\n", 1018 ar->monitor_vdev_id, ret); 1019 return ret; 1020 } 1021 1022 ret = ath11k_wmi_vdev_down(ar, ar->monitor_vdev_id); 1023 if (ret) { 1024 ath11k_warn(ar->ab, "failed to put down monitor vdev %i: %d\n", 1025 ar->monitor_vdev_id, ret); 1026 return ret; 1027 } 1028 1029 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "monitor vdev %i stopped\n", 1030 ar->monitor_vdev_id); 1031 1032 return 0; 1033 } 1034 1035 static int ath11k_mac_monitor_vdev_create(struct ath11k *ar) 1036 { 1037 struct ath11k_pdev *pdev = ar->pdev; 1038 struct vdev_create_params param = {}; 1039 int bit, ret; 1040 u8 tmp_addr[6] = {0}; 1041 u16 nss; 1042 1043 lockdep_assert_held(&ar->conf_mutex); 1044 1045 if (test_bit(ATH11K_FLAG_MONITOR_VDEV_CREATED, &ar->monitor_flags)) 1046 return 0; 1047 1048 if (ar->ab->free_vdev_map == 0) { 1049 ath11k_warn(ar->ab, "failed to find free vdev id for monitor vdev\n"); 1050 return -ENOMEM; 1051 } 1052 1053 bit = __ffs64(ar->ab->free_vdev_map); 1054 1055 ar->monitor_vdev_id = bit; 1056 1057 param.if_id = ar->monitor_vdev_id; 1058 param.type = WMI_VDEV_TYPE_MONITOR; 1059 param.subtype = WMI_VDEV_SUBTYPE_NONE; 1060 param.pdev_id = pdev->pdev_id; 1061 1062 if (pdev->cap.supported_bands & WMI_HOST_WLAN_2G_CAP) { 1063 param.chains[NL80211_BAND_2GHZ].tx = ar->num_tx_chains; 1064 param.chains[NL80211_BAND_2GHZ].rx = ar->num_rx_chains; 1065 } 1066 if (pdev->cap.supported_bands & WMI_HOST_WLAN_5G_CAP) { 1067 param.chains[NL80211_BAND_5GHZ].tx = ar->num_tx_chains; 1068 param.chains[NL80211_BAND_5GHZ].rx = ar->num_rx_chains; 1069 } 1070 1071 ret = ath11k_wmi_vdev_create(ar, tmp_addr, ¶m); 1072 if (ret) { 1073 ath11k_warn(ar->ab, "failed to request monitor vdev %i creation: %d\n", 1074 ar->monitor_vdev_id, ret); 1075 ar->monitor_vdev_id = -1; 1076 return ret; 1077 } 1078 1079 nss = get_num_chains(ar->cfg_tx_chainmask) ? : 1; 1080 ret = ath11k_wmi_vdev_set_param_cmd(ar, ar->monitor_vdev_id, 1081 WMI_VDEV_PARAM_NSS, nss); 1082 if (ret) { 1083 ath11k_warn(ar->ab, "failed to set vdev %d chainmask 0x%x, nss %d :%d\n", 1084 ar->monitor_vdev_id, ar->cfg_tx_chainmask, nss, ret); 1085 goto err_vdev_del; 1086 } 1087 1088 ret = ath11k_mac_txpower_recalc(ar); 1089 if (ret) { 1090 ath11k_warn(ar->ab, "failed to recalc txpower for monitor vdev %d: %d\n", 1091 ar->monitor_vdev_id, ret); 1092 goto err_vdev_del; 1093 } 1094 1095 ar->allocated_vdev_map |= 1LL << ar->monitor_vdev_id; 1096 ar->ab->free_vdev_map &= ~(1LL << ar->monitor_vdev_id); 1097 ar->num_created_vdevs++; 1098 set_bit(ATH11K_FLAG_MONITOR_VDEV_CREATED, &ar->monitor_flags); 1099 1100 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "monitor vdev %d created\n", 1101 ar->monitor_vdev_id); 1102 1103 return 0; 1104 1105 err_vdev_del: 1106 ath11k_wmi_vdev_delete(ar, ar->monitor_vdev_id); 1107 ar->monitor_vdev_id = -1; 1108 return ret; 1109 } 1110 1111 static int ath11k_mac_monitor_vdev_delete(struct ath11k *ar) 1112 { 1113 int ret; 1114 unsigned long time_left; 1115 1116 lockdep_assert_held(&ar->conf_mutex); 1117 1118 if (!test_bit(ATH11K_FLAG_MONITOR_VDEV_CREATED, &ar->monitor_flags)) 1119 return 0; 1120 1121 reinit_completion(&ar->vdev_delete_done); 1122 1123 ret = ath11k_wmi_vdev_delete(ar, ar->monitor_vdev_id); 1124 if (ret) { 1125 ath11k_warn(ar->ab, "failed to request wmi monitor vdev %i removal: %d\n", 1126 ar->monitor_vdev_id, ret); 1127 return ret; 1128 } 1129 1130 time_left = wait_for_completion_timeout(&ar->vdev_delete_done, 1131 ATH11K_VDEV_DELETE_TIMEOUT_HZ); 1132 if (time_left == 0) { 1133 ath11k_warn(ar->ab, "Timeout in receiving vdev delete response\n"); 1134 } else { 1135 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "monitor vdev %d deleted\n", 1136 ar->monitor_vdev_id); 1137 1138 ar->allocated_vdev_map &= ~(1LL << ar->monitor_vdev_id); 1139 ar->ab->free_vdev_map |= 1LL << (ar->monitor_vdev_id); 1140 ar->num_created_vdevs--; 1141 ar->monitor_vdev_id = -1; 1142 clear_bit(ATH11K_FLAG_MONITOR_VDEV_CREATED, &ar->monitor_flags); 1143 } 1144 1145 return ret; 1146 } 1147 1148 static int ath11k_mac_monitor_start(struct ath11k *ar) 1149 { 1150 struct cfg80211_chan_def *chandef = NULL; 1151 int ret; 1152 1153 lockdep_assert_held(&ar->conf_mutex); 1154 1155 if (test_bit(ATH11K_FLAG_MONITOR_STARTED, &ar->monitor_flags)) 1156 return 0; 1157 1158 ieee80211_iter_chan_contexts_atomic(ar->hw, 1159 ath11k_mac_get_any_chandef_iter, 1160 &chandef); 1161 if (!chandef) 1162 return 0; 1163 1164 ret = ath11k_mac_monitor_vdev_start(ar, ar->monitor_vdev_id, chandef); 1165 if (ret) { 1166 ath11k_warn(ar->ab, "failed to start monitor vdev: %d\n", ret); 1167 ath11k_mac_monitor_vdev_delete(ar); 1168 return ret; 1169 } 1170 1171 set_bit(ATH11K_FLAG_MONITOR_STARTED, &ar->monitor_flags); 1172 1173 ar->num_started_vdevs++; 1174 ret = ath11k_dp_tx_htt_monitor_mode_ring_config(ar, false); 1175 if (ret) { 1176 ath11k_warn(ar->ab, "failed to configure htt monitor mode ring during start: %d", 1177 ret); 1178 return ret; 1179 } 1180 1181 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "monitor started\n"); 1182 1183 return 0; 1184 } 1185 1186 static int ath11k_mac_monitor_stop(struct ath11k *ar) 1187 { 1188 int ret; 1189 1190 lockdep_assert_held(&ar->conf_mutex); 1191 1192 if (!test_bit(ATH11K_FLAG_MONITOR_STARTED, &ar->monitor_flags)) 1193 return 0; 1194 1195 ret = ath11k_mac_monitor_vdev_stop(ar); 1196 if (ret) { 1197 ath11k_warn(ar->ab, "failed to stop monitor vdev: %d\n", ret); 1198 return ret; 1199 } 1200 1201 clear_bit(ATH11K_FLAG_MONITOR_STARTED, &ar->monitor_flags); 1202 ar->num_started_vdevs--; 1203 1204 ret = ath11k_dp_tx_htt_monitor_mode_ring_config(ar, true); 1205 if (ret) { 1206 ath11k_warn(ar->ab, "failed to configure htt monitor mode ring during stop: %d", 1207 ret); 1208 return ret; 1209 } 1210 1211 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "monitor stopped ret %d\n", ret); 1212 1213 return 0; 1214 } 1215 1216 static int ath11k_mac_vif_setup_ps(struct ath11k_vif *arvif) 1217 { 1218 struct ath11k *ar = arvif->ar; 1219 struct ieee80211_vif *vif = arvif->vif; 1220 struct ieee80211_conf *conf = &ar->hw->conf; 1221 enum wmi_sta_powersave_param param; 1222 enum wmi_sta_ps_mode psmode; 1223 int ret; 1224 int timeout; 1225 bool enable_ps; 1226 1227 lockdep_assert_held(&arvif->ar->conf_mutex); 1228 1229 if (arvif->vif->type != NL80211_IFTYPE_STATION) 1230 return 0; 1231 1232 enable_ps = arvif->ps; 1233 1234 if (enable_ps) { 1235 psmode = WMI_STA_PS_MODE_ENABLED; 1236 param = WMI_STA_PS_PARAM_INACTIVITY_TIME; 1237 1238 timeout = conf->dynamic_ps_timeout; 1239 if (timeout == 0) { 1240 /* firmware doesn't like 0 */ 1241 timeout = ieee80211_tu_to_usec(vif->bss_conf.beacon_int) / 1000; 1242 } 1243 1244 ret = ath11k_wmi_set_sta_ps_param(ar, arvif->vdev_id, param, 1245 timeout); 1246 if (ret) { 1247 ath11k_warn(ar->ab, "failed to set inactivity time for vdev %d: %i\n", 1248 arvif->vdev_id, ret); 1249 return ret; 1250 } 1251 } else { 1252 psmode = WMI_STA_PS_MODE_DISABLED; 1253 } 1254 1255 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "vdev %d psmode %s\n", 1256 arvif->vdev_id, psmode ? "enable" : "disable"); 1257 1258 ret = ath11k_wmi_pdev_set_ps_mode(ar, arvif->vdev_id, psmode); 1259 if (ret) { 1260 ath11k_warn(ar->ab, "failed to set sta power save mode %d for vdev %d: %d\n", 1261 psmode, arvif->vdev_id, ret); 1262 return ret; 1263 } 1264 1265 return 0; 1266 } 1267 1268 static int ath11k_mac_config_ps(struct ath11k *ar) 1269 { 1270 struct ath11k_vif *arvif; 1271 int ret = 0; 1272 1273 lockdep_assert_held(&ar->conf_mutex); 1274 1275 list_for_each_entry(arvif, &ar->arvifs, list) { 1276 ret = ath11k_mac_vif_setup_ps(arvif); 1277 if (ret) { 1278 ath11k_warn(ar->ab, "failed to setup powersave: %d\n", ret); 1279 break; 1280 } 1281 } 1282 1283 return ret; 1284 } 1285 1286 static int ath11k_mac_op_config(struct ieee80211_hw *hw, u32 changed) 1287 { 1288 struct ath11k *ar = hw->priv; 1289 struct ieee80211_conf *conf = &hw->conf; 1290 int ret = 0; 1291 1292 mutex_lock(&ar->conf_mutex); 1293 1294 if (changed & IEEE80211_CONF_CHANGE_MONITOR) { 1295 if (conf->flags & IEEE80211_CONF_MONITOR) { 1296 set_bit(ATH11K_FLAG_MONITOR_CONF_ENABLED, &ar->monitor_flags); 1297 1298 if (test_bit(ATH11K_FLAG_MONITOR_VDEV_CREATED, 1299 &ar->monitor_flags)) 1300 goto out; 1301 1302 ret = ath11k_mac_monitor_vdev_create(ar); 1303 if (ret) { 1304 ath11k_warn(ar->ab, "failed to create monitor vdev: %d", 1305 ret); 1306 goto out; 1307 } 1308 1309 ret = ath11k_mac_monitor_start(ar); 1310 if (ret) { 1311 ath11k_warn(ar->ab, "failed to start monitor: %d", 1312 ret); 1313 goto err_mon_del; 1314 } 1315 } else { 1316 clear_bit(ATH11K_FLAG_MONITOR_CONF_ENABLED, &ar->monitor_flags); 1317 1318 if (!test_bit(ATH11K_FLAG_MONITOR_VDEV_CREATED, 1319 &ar->monitor_flags)) 1320 goto out; 1321 1322 ret = ath11k_mac_monitor_stop(ar); 1323 if (ret) { 1324 ath11k_warn(ar->ab, "failed to stop monitor: %d", 1325 ret); 1326 goto out; 1327 } 1328 1329 ret = ath11k_mac_monitor_vdev_delete(ar); 1330 if (ret) { 1331 ath11k_warn(ar->ab, "failed to delete monitor vdev: %d", 1332 ret); 1333 goto out; 1334 } 1335 } 1336 } 1337 1338 out: 1339 mutex_unlock(&ar->conf_mutex); 1340 return ret; 1341 1342 err_mon_del: 1343 ath11k_mac_monitor_vdev_delete(ar); 1344 mutex_unlock(&ar->conf_mutex); 1345 return ret; 1346 } 1347 1348 static void ath11k_mac_setup_nontx_vif_rsnie(struct ath11k_vif *arvif, 1349 bool tx_arvif_rsnie_present, 1350 const u8 *profile, u8 profile_len) 1351 { 1352 if (cfg80211_find_ie(WLAN_EID_RSN, profile, profile_len)) { 1353 arvif->rsnie_present = true; 1354 } else if (tx_arvif_rsnie_present) { 1355 int i; 1356 u8 nie_len; 1357 const u8 *nie = cfg80211_find_ext_ie(WLAN_EID_EXT_NON_INHERITANCE, 1358 profile, profile_len); 1359 if (!nie) 1360 return; 1361 1362 nie_len = nie[1]; 1363 nie += 2; 1364 for (i = 0; i < nie_len; i++) { 1365 if (nie[i] == WLAN_EID_RSN) { 1366 arvif->rsnie_present = false; 1367 break; 1368 } 1369 } 1370 } 1371 } 1372 1373 static bool ath11k_mac_set_nontx_vif_params(struct ath11k_vif *tx_arvif, 1374 struct ath11k_vif *arvif, 1375 struct sk_buff *bcn) 1376 { 1377 struct ieee80211_mgmt *mgmt; 1378 const u8 *ies, *profile, *next_profile; 1379 int ies_len; 1380 1381 ies = bcn->data + ieee80211_get_hdrlen_from_skb(bcn); 1382 mgmt = (struct ieee80211_mgmt *)bcn->data; 1383 ies += sizeof(mgmt->u.beacon); 1384 ies_len = skb_tail_pointer(bcn) - ies; 1385 1386 ies = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ies, ies_len); 1387 arvif->rsnie_present = tx_arvif->rsnie_present; 1388 1389 while (ies) { 1390 u8 mbssid_len; 1391 1392 ies_len -= (2 + ies[1]); 1393 mbssid_len = ies[1] - 1; 1394 profile = &ies[3]; 1395 1396 while (mbssid_len) { 1397 u8 profile_len; 1398 1399 profile_len = profile[1]; 1400 next_profile = profile + (2 + profile_len); 1401 mbssid_len -= (2 + profile_len); 1402 1403 profile += 2; 1404 profile_len -= (2 + profile[1]); 1405 profile += (2 + profile[1]); /* nontx capabilities */ 1406 profile_len -= (2 + profile[1]); 1407 profile += (2 + profile[1]); /* SSID */ 1408 if (profile[2] == arvif->vif->bss_conf.bssid_index) { 1409 profile_len -= 5; 1410 profile = profile + 5; 1411 ath11k_mac_setup_nontx_vif_rsnie(arvif, 1412 tx_arvif->rsnie_present, 1413 profile, 1414 profile_len); 1415 return true; 1416 } 1417 profile = next_profile; 1418 } 1419 ies = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, profile, 1420 ies_len); 1421 } 1422 1423 return false; 1424 } 1425 1426 static int ath11k_mac_setup_bcn_p2p_ie(struct ath11k_vif *arvif, 1427 struct sk_buff *bcn) 1428 { 1429 struct ath11k *ar = arvif->ar; 1430 struct ieee80211_mgmt *mgmt; 1431 const u8 *p2p_ie; 1432 int ret; 1433 1434 mgmt = (void *)bcn->data; 1435 p2p_ie = cfg80211_find_vendor_ie(WLAN_OUI_WFA, WLAN_OUI_TYPE_WFA_P2P, 1436 mgmt->u.beacon.variable, 1437 bcn->len - (mgmt->u.beacon.variable - 1438 bcn->data)); 1439 if (!p2p_ie) 1440 return -ENOENT; 1441 1442 ret = ath11k_wmi_p2p_go_bcn_ie(ar, arvif->vdev_id, p2p_ie); 1443 if (ret) { 1444 ath11k_warn(ar->ab, "failed to submit P2P GO bcn ie for vdev %i: %d\n", 1445 arvif->vdev_id, ret); 1446 return ret; 1447 } 1448 1449 return ret; 1450 } 1451 1452 static int ath11k_mac_remove_vendor_ie(struct sk_buff *skb, unsigned int oui, 1453 u8 oui_type, size_t ie_offset) 1454 { 1455 size_t len; 1456 const u8 *next, *end; 1457 u8 *ie; 1458 1459 if (WARN_ON(skb->len < ie_offset)) 1460 return -EINVAL; 1461 1462 ie = (u8 *)cfg80211_find_vendor_ie(oui, oui_type, 1463 skb->data + ie_offset, 1464 skb->len - ie_offset); 1465 if (!ie) 1466 return -ENOENT; 1467 1468 len = ie[1] + 2; 1469 end = skb->data + skb->len; 1470 next = ie + len; 1471 1472 if (WARN_ON(next > end)) 1473 return -EINVAL; 1474 1475 memmove(ie, next, end - next); 1476 skb_trim(skb, skb->len - len); 1477 1478 return 0; 1479 } 1480 1481 static int ath11k_mac_set_vif_params(struct ath11k_vif *arvif, 1482 struct sk_buff *bcn) 1483 { 1484 struct ath11k_base *ab = arvif->ar->ab; 1485 struct ieee80211_mgmt *mgmt; 1486 int ret = 0; 1487 u8 *ies; 1488 1489 ies = bcn->data + ieee80211_get_hdrlen_from_skb(bcn); 1490 mgmt = (struct ieee80211_mgmt *)bcn->data; 1491 ies += sizeof(mgmt->u.beacon); 1492 1493 if (cfg80211_find_ie(WLAN_EID_RSN, ies, (skb_tail_pointer(bcn) - ies))) 1494 arvif->rsnie_present = true; 1495 else 1496 arvif->rsnie_present = false; 1497 1498 if (cfg80211_find_vendor_ie(WLAN_OUI_MICROSOFT, 1499 WLAN_OUI_TYPE_MICROSOFT_WPA, 1500 ies, (skb_tail_pointer(bcn) - ies))) 1501 arvif->wpaie_present = true; 1502 else 1503 arvif->wpaie_present = false; 1504 1505 if (arvif->vdev_subtype != WMI_VDEV_SUBTYPE_P2P_GO) 1506 return ret; 1507 1508 ret = ath11k_mac_setup_bcn_p2p_ie(arvif, bcn); 1509 if (ret) { 1510 ath11k_warn(ab, "failed to setup P2P GO bcn ie: %d\n", 1511 ret); 1512 return ret; 1513 } 1514 1515 /* P2P IE is inserted by firmware automatically (as 1516 * configured above) so remove it from the base beacon 1517 * template to avoid duplicate P2P IEs in beacon frames. 1518 */ 1519 ret = ath11k_mac_remove_vendor_ie(bcn, WLAN_OUI_WFA, 1520 WLAN_OUI_TYPE_WFA_P2P, 1521 offsetof(struct ieee80211_mgmt, 1522 u.beacon.variable)); 1523 if (ret) { 1524 ath11k_warn(ab, "failed to remove P2P vendor ie: %d\n", 1525 ret); 1526 return ret; 1527 } 1528 1529 return ret; 1530 } 1531 1532 static struct ath11k_vif *ath11k_mac_get_tx_arvif(struct ath11k_vif *arvif) 1533 { 1534 struct ieee80211_bss_conf *link_conf, *tx_bss_conf; 1535 1536 lockdep_assert_wiphy(arvif->ar->hw->wiphy); 1537 1538 link_conf = &arvif->vif->bss_conf; 1539 tx_bss_conf = wiphy_dereference(arvif->ar->hw->wiphy, link_conf->tx_bss_conf); 1540 if (tx_bss_conf) 1541 return ath11k_vif_to_arvif(tx_bss_conf->vif); 1542 1543 return NULL; 1544 } 1545 1546 static int ath11k_mac_setup_bcn_tmpl_ema(struct ath11k_vif *arvif, 1547 struct ath11k_vif *tx_arvif) 1548 { 1549 struct ieee80211_ema_beacons *beacons; 1550 int ret = 0; 1551 bool nontx_vif_params_set = false; 1552 u32 params = 0; 1553 u8 i = 0; 1554 1555 beacons = ieee80211_beacon_get_template_ema_list(tx_arvif->ar->hw, 1556 tx_arvif->vif, 0); 1557 if (!beacons || !beacons->cnt) { 1558 ath11k_warn(arvif->ar->ab, 1559 "failed to get ema beacon templates from mac80211\n"); 1560 return -EPERM; 1561 } 1562 1563 if (tx_arvif == arvif) { 1564 if (ath11k_mac_set_vif_params(tx_arvif, beacons->bcn[0].skb)) 1565 return -EINVAL; 1566 } else { 1567 arvif->wpaie_present = tx_arvif->wpaie_present; 1568 } 1569 1570 for (i = 0; i < beacons->cnt; i++) { 1571 if (tx_arvif != arvif && !nontx_vif_params_set) 1572 nontx_vif_params_set = 1573 ath11k_mac_set_nontx_vif_params(tx_arvif, arvif, 1574 beacons->bcn[i].skb); 1575 1576 params = beacons->cnt; 1577 params |= (i << WMI_EMA_TMPL_IDX_SHIFT); 1578 params |= ((!i ? 1 : 0) << WMI_EMA_FIRST_TMPL_SHIFT); 1579 params |= ((i + 1 == beacons->cnt ? 1 : 0) << WMI_EMA_LAST_TMPL_SHIFT); 1580 1581 ret = ath11k_wmi_bcn_tmpl(tx_arvif->ar, tx_arvif->vdev_id, 1582 &beacons->bcn[i].offs, 1583 beacons->bcn[i].skb, params); 1584 if (ret) { 1585 ath11k_warn(tx_arvif->ar->ab, 1586 "failed to set ema beacon template id %i error %d\n", 1587 i, ret); 1588 break; 1589 } 1590 } 1591 1592 ieee80211_beacon_free_ema_list(beacons); 1593 1594 if (tx_arvif != arvif && !nontx_vif_params_set) 1595 return -EINVAL; /* Profile not found in the beacons */ 1596 1597 return ret; 1598 } 1599 1600 static int ath11k_mac_setup_bcn_tmpl_mbssid(struct ath11k_vif *arvif, 1601 struct ath11k_vif *tx_arvif) 1602 { 1603 struct ath11k *ar = arvif->ar; 1604 struct ath11k_base *ab = ar->ab; 1605 struct ieee80211_hw *hw = ar->hw; 1606 struct ieee80211_vif *vif = arvif->vif; 1607 struct ieee80211_mutable_offsets offs = {}; 1608 struct sk_buff *bcn; 1609 int ret; 1610 1611 if (tx_arvif != arvif) { 1612 ar = tx_arvif->ar; 1613 ab = ar->ab; 1614 hw = ar->hw; 1615 vif = tx_arvif->vif; 1616 } 1617 1618 bcn = ieee80211_beacon_get_template(hw, vif, &offs, 0); 1619 if (!bcn) { 1620 ath11k_warn(ab, "failed to get beacon template from mac80211\n"); 1621 return -EPERM; 1622 } 1623 1624 if (tx_arvif == arvif) { 1625 if (ath11k_mac_set_vif_params(tx_arvif, bcn)) 1626 return -EINVAL; 1627 } else if (!ath11k_mac_set_nontx_vif_params(tx_arvif, arvif, bcn)) { 1628 return -EINVAL; 1629 } 1630 1631 ret = ath11k_wmi_bcn_tmpl(ar, arvif->vdev_id, &offs, bcn, 0); 1632 kfree_skb(bcn); 1633 1634 if (ret) 1635 ath11k_warn(ab, "failed to submit beacon template command: %d\n", 1636 ret); 1637 1638 return ret; 1639 } 1640 1641 static int ath11k_mac_setup_bcn_tmpl(struct ath11k_vif *arvif) 1642 { 1643 struct ieee80211_vif *vif = arvif->vif; 1644 struct ath11k_vif *tx_arvif; 1645 1646 if (arvif->vdev_type != WMI_VDEV_TYPE_AP) 1647 return 0; 1648 1649 /* Target does not expect beacon templates for the already up 1650 * non-transmitting interfaces, and results in a crash if sent. 1651 */ 1652 tx_arvif = ath11k_mac_get_tx_arvif(arvif); 1653 if (tx_arvif) { 1654 if (arvif != tx_arvif && arvif->is_up) 1655 return 0; 1656 1657 if (vif->bss_conf.ema_ap) 1658 return ath11k_mac_setup_bcn_tmpl_ema(arvif, tx_arvif); 1659 } else { 1660 tx_arvif = arvif; 1661 } 1662 1663 return ath11k_mac_setup_bcn_tmpl_mbssid(arvif, tx_arvif); 1664 } 1665 1666 void ath11k_mac_bcn_tx_event(struct ath11k_vif *arvif) 1667 { 1668 struct ieee80211_vif *vif = arvif->vif; 1669 1670 if (!vif->bss_conf.color_change_active && !arvif->bcca_zero_sent) 1671 return; 1672 1673 if (vif->bss_conf.color_change_active && 1674 ieee80211_beacon_cntdwn_is_complete(vif, 0)) { 1675 arvif->bcca_zero_sent = true; 1676 ieee80211_color_change_finish(vif, 0); 1677 return; 1678 } 1679 1680 arvif->bcca_zero_sent = false; 1681 1682 if (vif->bss_conf.color_change_active) 1683 ieee80211_beacon_update_cntdwn(vif, 0); 1684 ath11k_mac_setup_bcn_tmpl(arvif); 1685 } 1686 1687 static void ath11k_control_beaconing(struct ath11k_vif *arvif, 1688 struct ieee80211_bss_conf *info) 1689 { 1690 struct ath11k *ar = arvif->ar; 1691 struct ath11k_vif *tx_arvif; 1692 int ret = 0; 1693 1694 lockdep_assert_held(&arvif->ar->conf_mutex); 1695 1696 if (!info->enable_beacon) { 1697 ret = ath11k_wmi_vdev_down(ar, arvif->vdev_id); 1698 if (ret) 1699 ath11k_warn(ar->ab, "failed to down vdev_id %i: %d\n", 1700 arvif->vdev_id, ret); 1701 1702 arvif->is_up = false; 1703 return; 1704 } 1705 1706 /* Install the beacon template to the FW */ 1707 ret = ath11k_mac_setup_bcn_tmpl(arvif); 1708 if (ret) { 1709 ath11k_warn(ar->ab, "failed to update bcn tmpl during vdev up: %d\n", 1710 ret); 1711 return; 1712 } 1713 1714 arvif->aid = 0; 1715 1716 ether_addr_copy(arvif->bssid, info->bssid); 1717 1718 tx_arvif = ath11k_mac_get_tx_arvif(arvif); 1719 ret = ath11k_wmi_vdev_up(arvif->ar, arvif->vdev_id, arvif->aid, 1720 arvif->bssid, 1721 tx_arvif ? tx_arvif->bssid : NULL, 1722 info->bssid_index, 1723 1 << info->bssid_indicator); 1724 if (ret) { 1725 ath11k_warn(ar->ab, "failed to bring up vdev %d: %i\n", 1726 arvif->vdev_id, ret); 1727 return; 1728 } 1729 1730 arvif->is_up = true; 1731 1732 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "vdev %d up\n", arvif->vdev_id); 1733 } 1734 1735 static void ath11k_mac_handle_beacon_iter(void *data, u8 *mac, 1736 struct ieee80211_vif *vif) 1737 { 1738 struct sk_buff *skb = data; 1739 struct ieee80211_mgmt *mgmt = (void *)skb->data; 1740 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 1741 1742 if (vif->type != NL80211_IFTYPE_STATION) 1743 return; 1744 1745 if (!ether_addr_equal(mgmt->bssid, vif->bss_conf.bssid)) 1746 return; 1747 1748 cancel_delayed_work(&arvif->connection_loss_work); 1749 } 1750 1751 void ath11k_mac_handle_beacon(struct ath11k *ar, struct sk_buff *skb) 1752 { 1753 ieee80211_iterate_active_interfaces_atomic(ar->hw, 1754 IEEE80211_IFACE_ITER_NORMAL, 1755 ath11k_mac_handle_beacon_iter, 1756 skb); 1757 } 1758 1759 static void ath11k_mac_handle_beacon_miss_iter(void *data, u8 *mac, 1760 struct ieee80211_vif *vif) 1761 { 1762 u32 *vdev_id = data; 1763 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 1764 struct ath11k *ar = arvif->ar; 1765 struct ieee80211_hw *hw = ar->hw; 1766 1767 if (arvif->vdev_id != *vdev_id) 1768 return; 1769 1770 if (!arvif->is_up) 1771 return; 1772 1773 ieee80211_beacon_loss(vif); 1774 1775 /* Firmware doesn't report beacon loss events repeatedly. If AP probe 1776 * (done by mac80211) succeeds but beacons do not resume then it 1777 * doesn't make sense to continue operation. Queue connection loss work 1778 * which can be cancelled when beacon is received. 1779 */ 1780 ieee80211_queue_delayed_work(hw, &arvif->connection_loss_work, 1781 ATH11K_CONNECTION_LOSS_HZ); 1782 } 1783 1784 void ath11k_mac_handle_beacon_miss(struct ath11k *ar, u32 vdev_id) 1785 { 1786 ieee80211_iterate_active_interfaces_atomic(ar->hw, 1787 IEEE80211_IFACE_ITER_NORMAL, 1788 ath11k_mac_handle_beacon_miss_iter, 1789 &vdev_id); 1790 } 1791 1792 static void ath11k_mac_vif_sta_connection_loss_work(struct work_struct *work) 1793 { 1794 struct ath11k_vif *arvif = container_of(work, struct ath11k_vif, 1795 connection_loss_work.work); 1796 struct ieee80211_vif *vif = arvif->vif; 1797 1798 if (!arvif->is_up) 1799 return; 1800 1801 ieee80211_connection_loss(vif); 1802 } 1803 1804 static void ath11k_peer_assoc_h_basic(struct ath11k *ar, 1805 struct ieee80211_vif *vif, 1806 struct ieee80211_sta *sta, 1807 struct peer_assoc_params *arg) 1808 { 1809 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 1810 u32 aid; 1811 1812 lockdep_assert_held(&ar->conf_mutex); 1813 1814 if (vif->type == NL80211_IFTYPE_STATION) 1815 aid = vif->cfg.aid; 1816 else 1817 aid = sta->aid; 1818 1819 ether_addr_copy(arg->peer_mac, sta->addr); 1820 arg->vdev_id = arvif->vdev_id; 1821 arg->peer_associd = aid; 1822 arg->auth_flag = true; 1823 /* TODO: STA WAR in ath10k for listen interval required? */ 1824 arg->peer_listen_intval = ar->hw->conf.listen_interval; 1825 arg->peer_nss = 1; 1826 arg->peer_caps = vif->bss_conf.assoc_capability; 1827 } 1828 1829 static void ath11k_peer_assoc_h_crypto(struct ath11k *ar, 1830 struct ieee80211_vif *vif, 1831 struct ieee80211_sta *sta, 1832 struct peer_assoc_params *arg) 1833 { 1834 struct ieee80211_bss_conf *info = &vif->bss_conf; 1835 struct cfg80211_chan_def def; 1836 struct cfg80211_bss *bss; 1837 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 1838 const u8 *rsnie = NULL; 1839 const u8 *wpaie = NULL; 1840 1841 lockdep_assert_held(&ar->conf_mutex); 1842 1843 if (WARN_ON(ath11k_mac_vif_chan(vif, &def))) 1844 return; 1845 1846 bss = cfg80211_get_bss(ar->hw->wiphy, def.chan, info->bssid, NULL, 0, 1847 IEEE80211_BSS_TYPE_ANY, IEEE80211_PRIVACY_ANY); 1848 1849 if (arvif->rsnie_present || arvif->wpaie_present) { 1850 arg->need_ptk_4_way = true; 1851 if (arvif->wpaie_present) 1852 arg->need_gtk_2_way = true; 1853 } else if (bss) { 1854 const struct cfg80211_bss_ies *ies; 1855 1856 rcu_read_lock(); 1857 rsnie = ieee80211_bss_get_ie(bss, WLAN_EID_RSN); 1858 1859 ies = rcu_dereference(bss->ies); 1860 1861 wpaie = cfg80211_find_vendor_ie(WLAN_OUI_MICROSOFT, 1862 WLAN_OUI_TYPE_MICROSOFT_WPA, 1863 ies->data, 1864 ies->len); 1865 rcu_read_unlock(); 1866 cfg80211_put_bss(ar->hw->wiphy, bss); 1867 } 1868 1869 /* FIXME: base on RSN IE/WPA IE is a correct idea? */ 1870 if (rsnie || wpaie) { 1871 ath11k_dbg(ar->ab, ATH11K_DBG_WMI, 1872 "%s: rsn ie found\n", __func__); 1873 arg->need_ptk_4_way = true; 1874 } 1875 1876 if (wpaie) { 1877 ath11k_dbg(ar->ab, ATH11K_DBG_WMI, 1878 "%s: wpa ie found\n", __func__); 1879 arg->need_gtk_2_way = true; 1880 } 1881 1882 if (sta->mfp) { 1883 /* TODO: Need to check if FW supports PMF? */ 1884 arg->is_pmf_enabled = true; 1885 } 1886 1887 /* TODO: safe_mode_enabled (bypass 4-way handshake) flag req? */ 1888 } 1889 1890 static void ath11k_peer_assoc_h_rates(struct ath11k *ar, 1891 struct ieee80211_vif *vif, 1892 struct ieee80211_sta *sta, 1893 struct peer_assoc_params *arg) 1894 { 1895 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 1896 struct wmi_rate_set_arg *rateset = &arg->peer_legacy_rates; 1897 struct cfg80211_chan_def def; 1898 const struct ieee80211_supported_band *sband; 1899 const struct ieee80211_rate *rates; 1900 enum nl80211_band band; 1901 u32 ratemask; 1902 u8 rate; 1903 int i; 1904 1905 lockdep_assert_held(&ar->conf_mutex); 1906 1907 if (WARN_ON(ath11k_mac_vif_chan(vif, &def))) 1908 return; 1909 1910 band = def.chan->band; 1911 sband = ar->hw->wiphy->bands[band]; 1912 ratemask = sta->deflink.supp_rates[band]; 1913 ratemask &= arvif->bitrate_mask.control[band].legacy; 1914 rates = sband->bitrates; 1915 1916 rateset->num_rates = 0; 1917 1918 for (i = 0; i < 32; i++, ratemask >>= 1, rates++) { 1919 if (!(ratemask & 1)) 1920 continue; 1921 1922 rate = ath11k_mac_bitrate_to_rate(rates->bitrate); 1923 rateset->rates[rateset->num_rates] = rate; 1924 rateset->num_rates++; 1925 } 1926 } 1927 1928 static bool 1929 ath11k_peer_assoc_h_ht_masked(const u8 *ht_mcs_mask) 1930 { 1931 int nss; 1932 1933 for (nss = 0; nss < IEEE80211_HT_MCS_MASK_LEN; nss++) 1934 if (ht_mcs_mask[nss]) 1935 return false; 1936 1937 return true; 1938 } 1939 1940 static bool 1941 ath11k_peer_assoc_h_vht_masked(const u16 *vht_mcs_mask) 1942 { 1943 int nss; 1944 1945 for (nss = 0; nss < NL80211_VHT_NSS_MAX; nss++) 1946 if (vht_mcs_mask[nss]) 1947 return false; 1948 1949 return true; 1950 } 1951 1952 static void ath11k_peer_assoc_h_ht(struct ath11k *ar, 1953 struct ieee80211_vif *vif, 1954 struct ieee80211_sta *sta, 1955 struct peer_assoc_params *arg) 1956 { 1957 const struct ieee80211_sta_ht_cap *ht_cap = &sta->deflink.ht_cap; 1958 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 1959 struct cfg80211_chan_def def; 1960 enum nl80211_band band; 1961 const u8 *ht_mcs_mask; 1962 int i, n; 1963 u8 max_nss; 1964 u32 stbc; 1965 1966 lockdep_assert_held(&ar->conf_mutex); 1967 1968 if (WARN_ON(ath11k_mac_vif_chan(vif, &def))) 1969 return; 1970 1971 if (!ht_cap->ht_supported) 1972 return; 1973 1974 band = def.chan->band; 1975 ht_mcs_mask = arvif->bitrate_mask.control[band].ht_mcs; 1976 1977 if (ath11k_peer_assoc_h_ht_masked(ht_mcs_mask)) 1978 return; 1979 1980 arg->ht_flag = true; 1981 1982 arg->peer_max_mpdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + 1983 ht_cap->ampdu_factor)) - 1; 1984 1985 arg->peer_mpdu_density = 1986 ath11k_parse_mpdudensity(ht_cap->ampdu_density); 1987 1988 arg->peer_ht_caps = ht_cap->cap; 1989 arg->peer_rate_caps |= WMI_HOST_RC_HT_FLAG; 1990 1991 if (ht_cap->cap & IEEE80211_HT_CAP_LDPC_CODING) 1992 arg->ldpc_flag = true; 1993 1994 if (sta->deflink.bandwidth >= IEEE80211_STA_RX_BW_40) { 1995 arg->bw_40 = true; 1996 arg->peer_rate_caps |= WMI_HOST_RC_CW40_FLAG; 1997 } 1998 1999 /* As firmware handles this two flags (IEEE80211_HT_CAP_SGI_20 2000 * and IEEE80211_HT_CAP_SGI_40) for enabling SGI, we reset 2001 * both flags if guard interval is Default GI 2002 */ 2003 if (arvif->bitrate_mask.control[band].gi == NL80211_TXRATE_DEFAULT_GI) 2004 arg->peer_ht_caps &= ~(IEEE80211_HT_CAP_SGI_20 | 2005 IEEE80211_HT_CAP_SGI_40); 2006 2007 if (arvif->bitrate_mask.control[band].gi != NL80211_TXRATE_FORCE_LGI) { 2008 if (ht_cap->cap & (IEEE80211_HT_CAP_SGI_20 | 2009 IEEE80211_HT_CAP_SGI_40)) 2010 arg->peer_rate_caps |= WMI_HOST_RC_SGI_FLAG; 2011 } 2012 2013 if (ht_cap->cap & IEEE80211_HT_CAP_TX_STBC) { 2014 arg->peer_rate_caps |= WMI_HOST_RC_TX_STBC_FLAG; 2015 arg->stbc_flag = true; 2016 } 2017 2018 if (ht_cap->cap & IEEE80211_HT_CAP_RX_STBC) { 2019 stbc = ht_cap->cap & IEEE80211_HT_CAP_RX_STBC; 2020 stbc = stbc >> IEEE80211_HT_CAP_RX_STBC_SHIFT; 2021 stbc = stbc << WMI_HOST_RC_RX_STBC_FLAG_S; 2022 arg->peer_rate_caps |= stbc; 2023 arg->stbc_flag = true; 2024 } 2025 2026 if (ht_cap->mcs.rx_mask[1] && ht_cap->mcs.rx_mask[2]) 2027 arg->peer_rate_caps |= WMI_HOST_RC_TS_FLAG; 2028 else if (ht_cap->mcs.rx_mask[1]) 2029 arg->peer_rate_caps |= WMI_HOST_RC_DS_FLAG; 2030 2031 for (i = 0, n = 0, max_nss = 0; i < IEEE80211_HT_MCS_MASK_LEN * 8; i++) 2032 if ((ht_cap->mcs.rx_mask[i / 8] & BIT(i % 8)) && 2033 (ht_mcs_mask[i / 8] & BIT(i % 8))) { 2034 max_nss = (i / 8) + 1; 2035 arg->peer_ht_rates.rates[n++] = i; 2036 } 2037 2038 /* This is a workaround for HT-enabled STAs which break the spec 2039 * and have no HT capabilities RX mask (no HT RX MCS map). 2040 * 2041 * As per spec, in section 20.3.5 Modulation and coding scheme (MCS), 2042 * MCS 0 through 7 are mandatory in 20MHz with 800 ns GI at all STAs. 2043 * 2044 * Firmware asserts if such situation occurs. 2045 */ 2046 if (n == 0) { 2047 arg->peer_ht_rates.num_rates = 8; 2048 for (i = 0; i < arg->peer_ht_rates.num_rates; i++) 2049 arg->peer_ht_rates.rates[i] = i; 2050 } else { 2051 arg->peer_ht_rates.num_rates = n; 2052 arg->peer_nss = min(sta->deflink.rx_nss, max_nss); 2053 } 2054 2055 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "ht peer %pM mcs cnt %d nss %d\n", 2056 arg->peer_mac, 2057 arg->peer_ht_rates.num_rates, 2058 arg->peer_nss); 2059 } 2060 2061 static int ath11k_mac_get_max_vht_mcs_map(u16 mcs_map, int nss) 2062 { 2063 switch ((mcs_map >> (2 * nss)) & 0x3) { 2064 case IEEE80211_VHT_MCS_SUPPORT_0_7: return BIT(8) - 1; 2065 case IEEE80211_VHT_MCS_SUPPORT_0_8: return BIT(9) - 1; 2066 case IEEE80211_VHT_MCS_SUPPORT_0_9: return BIT(10) - 1; 2067 } 2068 return 0; 2069 } 2070 2071 static u16 2072 ath11k_peer_assoc_h_vht_limit(u16 tx_mcs_set, 2073 const u16 vht_mcs_limit[NL80211_VHT_NSS_MAX]) 2074 { 2075 int idx_limit; 2076 int nss; 2077 u16 mcs_map; 2078 u16 mcs; 2079 2080 for (nss = 0; nss < NL80211_VHT_NSS_MAX; nss++) { 2081 mcs_map = ath11k_mac_get_max_vht_mcs_map(tx_mcs_set, nss) & 2082 vht_mcs_limit[nss]; 2083 2084 if (mcs_map) 2085 idx_limit = fls(mcs_map) - 1; 2086 else 2087 idx_limit = -1; 2088 2089 switch (idx_limit) { 2090 case 0: 2091 case 1: 2092 case 2: 2093 case 3: 2094 case 4: 2095 case 5: 2096 case 6: 2097 case 7: 2098 mcs = IEEE80211_VHT_MCS_SUPPORT_0_7; 2099 break; 2100 case 8: 2101 mcs = IEEE80211_VHT_MCS_SUPPORT_0_8; 2102 break; 2103 case 9: 2104 mcs = IEEE80211_VHT_MCS_SUPPORT_0_9; 2105 break; 2106 default: 2107 WARN_ON(1); 2108 fallthrough; 2109 case -1: 2110 mcs = IEEE80211_VHT_MCS_NOT_SUPPORTED; 2111 break; 2112 } 2113 2114 tx_mcs_set &= ~(0x3 << (nss * 2)); 2115 tx_mcs_set |= mcs << (nss * 2); 2116 } 2117 2118 return tx_mcs_set; 2119 } 2120 2121 static u8 ath11k_get_nss_160mhz(struct ath11k *ar, 2122 u8 max_nss) 2123 { 2124 u8 nss_ratio_info = ar->pdev->cap.nss_ratio_info; 2125 u8 max_sup_nss = 0; 2126 2127 switch (nss_ratio_info) { 2128 case WMI_NSS_RATIO_1BY2_NSS: 2129 max_sup_nss = max_nss >> 1; 2130 break; 2131 case WMI_NSS_RATIO_3BY4_NSS: 2132 ath11k_warn(ar->ab, "WMI_NSS_RATIO_3BY4_NSS not supported\n"); 2133 break; 2134 case WMI_NSS_RATIO_1_NSS: 2135 max_sup_nss = max_nss; 2136 break; 2137 case WMI_NSS_RATIO_2_NSS: 2138 ath11k_warn(ar->ab, "WMI_NSS_RATIO_2_NSS not supported\n"); 2139 break; 2140 default: 2141 ath11k_warn(ar->ab, "invalid nss ratio received from firmware: %d\n", 2142 nss_ratio_info); 2143 break; 2144 } 2145 2146 return max_sup_nss; 2147 } 2148 2149 static void ath11k_peer_assoc_h_vht(struct ath11k *ar, 2150 struct ieee80211_vif *vif, 2151 struct ieee80211_sta *sta, 2152 struct peer_assoc_params *arg) 2153 { 2154 const struct ieee80211_sta_vht_cap *vht_cap = &sta->deflink.vht_cap; 2155 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 2156 struct cfg80211_chan_def def; 2157 enum nl80211_band band; 2158 u16 *vht_mcs_mask; 2159 u8 ampdu_factor; 2160 u8 max_nss, vht_mcs; 2161 int i, vht_nss, nss_idx; 2162 bool user_rate_valid = true; 2163 u32 rx_nss, tx_nss, nss_160; 2164 2165 if (WARN_ON(ath11k_mac_vif_chan(vif, &def))) 2166 return; 2167 2168 if (!vht_cap->vht_supported) 2169 return; 2170 2171 band = def.chan->band; 2172 vht_mcs_mask = arvif->bitrate_mask.control[band].vht_mcs; 2173 2174 if (ath11k_peer_assoc_h_vht_masked(vht_mcs_mask)) 2175 return; 2176 2177 arg->vht_flag = true; 2178 2179 /* TODO: similar flags required? */ 2180 arg->vht_capable = true; 2181 2182 if (def.chan->band == NL80211_BAND_2GHZ) 2183 arg->vht_ng_flag = true; 2184 2185 arg->peer_vht_caps = vht_cap->cap; 2186 2187 ampdu_factor = (vht_cap->cap & 2188 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK) >> 2189 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT; 2190 2191 /* Workaround: Some Netgear/Linksys 11ac APs set Rx A-MPDU factor to 2192 * zero in VHT IE. Using it would result in degraded throughput. 2193 * arg->peer_max_mpdu at this point contains HT max_mpdu so keep 2194 * it if VHT max_mpdu is smaller. 2195 */ 2196 arg->peer_max_mpdu = max(arg->peer_max_mpdu, 2197 (1U << (IEEE80211_HT_MAX_AMPDU_FACTOR + 2198 ampdu_factor)) - 1); 2199 2200 if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_80) 2201 arg->bw_80 = true; 2202 2203 if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_160) 2204 arg->bw_160 = true; 2205 2206 vht_nss = ath11k_mac_max_vht_nss(vht_mcs_mask); 2207 2208 if (vht_nss > sta->deflink.rx_nss) { 2209 user_rate_valid = false; 2210 for (nss_idx = sta->deflink.rx_nss - 1; nss_idx >= 0; nss_idx--) { 2211 if (vht_mcs_mask[nss_idx]) { 2212 user_rate_valid = true; 2213 break; 2214 } 2215 } 2216 } 2217 2218 if (!user_rate_valid) { 2219 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "setting vht range mcs value to peer supported nss %d for peer %pM\n", 2220 sta->deflink.rx_nss, sta->addr); 2221 vht_mcs_mask[sta->deflink.rx_nss - 1] = vht_mcs_mask[vht_nss - 1]; 2222 } 2223 2224 /* Calculate peer NSS capability from VHT capabilities if STA 2225 * supports VHT. 2226 */ 2227 for (i = 0, max_nss = 0; i < NL80211_VHT_NSS_MAX; i++) { 2228 vht_mcs = __le16_to_cpu(vht_cap->vht_mcs.rx_mcs_map) >> 2229 (2 * i) & 3; 2230 2231 if (vht_mcs != IEEE80211_VHT_MCS_NOT_SUPPORTED && 2232 vht_mcs_mask[i]) 2233 max_nss = i + 1; 2234 } 2235 arg->peer_nss = min(sta->deflink.rx_nss, max_nss); 2236 arg->rx_max_rate = __le16_to_cpu(vht_cap->vht_mcs.rx_highest); 2237 arg->rx_mcs_set = __le16_to_cpu(vht_cap->vht_mcs.rx_mcs_map); 2238 arg->tx_max_rate = __le16_to_cpu(vht_cap->vht_mcs.tx_highest); 2239 arg->tx_mcs_set = ath11k_peer_assoc_h_vht_limit( 2240 __le16_to_cpu(vht_cap->vht_mcs.tx_mcs_map), vht_mcs_mask); 2241 2242 /* In IPQ8074 platform, VHT mcs rate 10 and 11 is enabled by default. 2243 * VHT mcs rate 10 and 11 is not supported in 11ac standard. 2244 * so explicitly disable the VHT MCS rate 10 and 11 in 11ac mode. 2245 */ 2246 arg->tx_mcs_set &= ~IEEE80211_VHT_MCS_SUPPORT_0_11_MASK; 2247 arg->tx_mcs_set |= IEEE80211_DISABLE_VHT_MCS_SUPPORT_0_11; 2248 2249 if ((arg->tx_mcs_set & IEEE80211_VHT_MCS_NOT_SUPPORTED) == 2250 IEEE80211_VHT_MCS_NOT_SUPPORTED) 2251 arg->peer_vht_caps &= ~IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE; 2252 2253 /* TODO: Check */ 2254 arg->tx_max_mcs_nss = 0xFF; 2255 2256 if (arg->peer_phymode == MODE_11AC_VHT160 || 2257 arg->peer_phymode == MODE_11AC_VHT80_80) { 2258 tx_nss = ath11k_get_nss_160mhz(ar, max_nss); 2259 rx_nss = min(arg->peer_nss, tx_nss); 2260 arg->peer_bw_rxnss_override = ATH11K_BW_NSS_MAP_ENABLE; 2261 2262 if (!rx_nss) { 2263 ath11k_warn(ar->ab, "invalid max_nss\n"); 2264 return; 2265 } 2266 2267 if (arg->peer_phymode == MODE_11AC_VHT160) 2268 nss_160 = FIELD_PREP(ATH11K_PEER_RX_NSS_160MHZ, rx_nss - 1); 2269 else 2270 nss_160 = FIELD_PREP(ATH11K_PEER_RX_NSS_80_80MHZ, rx_nss - 1); 2271 2272 arg->peer_bw_rxnss_override |= nss_160; 2273 } 2274 2275 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 2276 "vht peer %pM max_mpdu %d flags 0x%x nss_override 0x%x\n", 2277 sta->addr, arg->peer_max_mpdu, arg->peer_flags, 2278 arg->peer_bw_rxnss_override); 2279 } 2280 2281 static int ath11k_mac_get_max_he_mcs_map(u16 mcs_map, int nss) 2282 { 2283 switch ((mcs_map >> (2 * nss)) & 0x3) { 2284 case IEEE80211_HE_MCS_SUPPORT_0_7: return BIT(8) - 1; 2285 case IEEE80211_HE_MCS_SUPPORT_0_9: return BIT(10) - 1; 2286 case IEEE80211_HE_MCS_SUPPORT_0_11: return BIT(12) - 1; 2287 } 2288 return 0; 2289 } 2290 2291 static u16 ath11k_peer_assoc_h_he_limit(u16 tx_mcs_set, 2292 const u16 he_mcs_limit[NL80211_HE_NSS_MAX]) 2293 { 2294 int idx_limit; 2295 int nss; 2296 u16 mcs_map; 2297 u16 mcs; 2298 2299 for (nss = 0; nss < NL80211_HE_NSS_MAX; nss++) { 2300 mcs_map = ath11k_mac_get_max_he_mcs_map(tx_mcs_set, nss) & 2301 he_mcs_limit[nss]; 2302 2303 if (mcs_map) 2304 idx_limit = fls(mcs_map) - 1; 2305 else 2306 idx_limit = -1; 2307 2308 switch (idx_limit) { 2309 case 0 ... 7: 2310 mcs = IEEE80211_HE_MCS_SUPPORT_0_7; 2311 break; 2312 case 8: 2313 case 9: 2314 mcs = IEEE80211_HE_MCS_SUPPORT_0_9; 2315 break; 2316 case 10: 2317 case 11: 2318 mcs = IEEE80211_HE_MCS_SUPPORT_0_11; 2319 break; 2320 default: 2321 WARN_ON(1); 2322 fallthrough; 2323 case -1: 2324 mcs = IEEE80211_HE_MCS_NOT_SUPPORTED; 2325 break; 2326 } 2327 2328 tx_mcs_set &= ~(0x3 << (nss * 2)); 2329 tx_mcs_set |= mcs << (nss * 2); 2330 } 2331 2332 return tx_mcs_set; 2333 } 2334 2335 static bool 2336 ath11k_peer_assoc_h_he_masked(const u16 *he_mcs_mask) 2337 { 2338 int nss; 2339 2340 for (nss = 0; nss < NL80211_HE_NSS_MAX; nss++) 2341 if (he_mcs_mask[nss]) 2342 return false; 2343 2344 return true; 2345 } 2346 2347 static void ath11k_peer_assoc_h_he(struct ath11k *ar, 2348 struct ieee80211_vif *vif, 2349 struct ieee80211_sta *sta, 2350 struct peer_assoc_params *arg) 2351 { 2352 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 2353 struct cfg80211_chan_def def; 2354 const struct ieee80211_sta_he_cap *he_cap = &sta->deflink.he_cap; 2355 enum nl80211_band band; 2356 u16 he_mcs_mask[NL80211_HE_NSS_MAX]; 2357 u8 max_nss, he_mcs; 2358 u16 he_tx_mcs = 0, v = 0; 2359 int i, he_nss, nss_idx; 2360 bool user_rate_valid = true; 2361 u32 rx_nss, tx_nss, nss_160; 2362 u8 ampdu_factor, rx_mcs_80, rx_mcs_160; 2363 u16 mcs_160_map, mcs_80_map; 2364 bool support_160; 2365 2366 if (WARN_ON(ath11k_mac_vif_chan(vif, &def))) 2367 return; 2368 2369 if (!he_cap->has_he) 2370 return; 2371 2372 band = def.chan->band; 2373 memcpy(he_mcs_mask, arvif->bitrate_mask.control[band].he_mcs, 2374 sizeof(he_mcs_mask)); 2375 2376 if (ath11k_peer_assoc_h_he_masked(he_mcs_mask)) 2377 return; 2378 2379 arg->he_flag = true; 2380 support_160 = !!(he_cap->he_cap_elem.phy_cap_info[0] & 2381 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G); 2382 2383 /* Supported HE-MCS and NSS Set of peer he_cap is intersection with self he_cp */ 2384 mcs_160_map = le16_to_cpu(he_cap->he_mcs_nss_supp.rx_mcs_160); 2385 mcs_80_map = le16_to_cpu(he_cap->he_mcs_nss_supp.rx_mcs_80); 2386 2387 /* Initialize rx_mcs_160 to 9 which is an invalid value */ 2388 rx_mcs_160 = 9; 2389 if (support_160) { 2390 for (i = 7; i >= 0; i--) { 2391 u8 mcs_160 = (mcs_160_map >> (2 * i)) & 3; 2392 2393 if (mcs_160 != IEEE80211_VHT_MCS_NOT_SUPPORTED) { 2394 rx_mcs_160 = i + 1; 2395 break; 2396 } 2397 } 2398 } 2399 2400 /* Initialize rx_mcs_80 to 9 which is an invalid value */ 2401 rx_mcs_80 = 9; 2402 for (i = 7; i >= 0; i--) { 2403 u8 mcs_80 = (mcs_80_map >> (2 * i)) & 3; 2404 2405 if (mcs_80 != IEEE80211_VHT_MCS_NOT_SUPPORTED) { 2406 rx_mcs_80 = i + 1; 2407 break; 2408 } 2409 } 2410 2411 if (support_160) 2412 max_nss = min(rx_mcs_80, rx_mcs_160); 2413 else 2414 max_nss = rx_mcs_80; 2415 2416 arg->peer_nss = min(sta->deflink.rx_nss, max_nss); 2417 2418 memcpy_and_pad(&arg->peer_he_cap_macinfo, 2419 sizeof(arg->peer_he_cap_macinfo), 2420 he_cap->he_cap_elem.mac_cap_info, 2421 sizeof(he_cap->he_cap_elem.mac_cap_info), 2422 0); 2423 memcpy_and_pad(&arg->peer_he_cap_phyinfo, 2424 sizeof(arg->peer_he_cap_phyinfo), 2425 he_cap->he_cap_elem.phy_cap_info, 2426 sizeof(he_cap->he_cap_elem.phy_cap_info), 2427 0); 2428 arg->peer_he_ops = vif->bss_conf.he_oper.params; 2429 2430 /* the top most byte is used to indicate BSS color info */ 2431 arg->peer_he_ops &= 0xffffff; 2432 2433 /* As per section 26.6.1 11ax Draft5.0, if the Max AMPDU Exponent Extension 2434 * in HE cap is zero, use the arg->peer_max_mpdu as calculated while parsing 2435 * VHT caps(if VHT caps is present) or HT caps (if VHT caps is not present). 2436 * 2437 * For non-zero value of Max AMPDU Extponent Extension in HE MAC caps, 2438 * if a HE STA sends VHT cap and HE cap IE in assoc request then, use 2439 * MAX_AMPDU_LEN_FACTOR as 20 to calculate max_ampdu length. 2440 * If a HE STA that does not send VHT cap, but HE and HT cap in assoc 2441 * request, then use MAX_AMPDU_LEN_FACTOR as 16 to calculate max_ampdu 2442 * length. 2443 */ 2444 ampdu_factor = u8_get_bits(he_cap->he_cap_elem.mac_cap_info[3], 2445 IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_MASK); 2446 2447 if (ampdu_factor) { 2448 if (sta->deflink.vht_cap.vht_supported) 2449 arg->peer_max_mpdu = (1 << (IEEE80211_HE_VHT_MAX_AMPDU_FACTOR + 2450 ampdu_factor)) - 1; 2451 else if (sta->deflink.ht_cap.ht_supported) 2452 arg->peer_max_mpdu = (1 << (IEEE80211_HE_HT_MAX_AMPDU_FACTOR + 2453 ampdu_factor)) - 1; 2454 } 2455 2456 if (he_cap->he_cap_elem.phy_cap_info[6] & 2457 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) { 2458 int bit = 7; 2459 int nss, ru; 2460 2461 arg->peer_ppet.numss_m1 = he_cap->ppe_thres[0] & 2462 IEEE80211_PPE_THRES_NSS_MASK; 2463 arg->peer_ppet.ru_bit_mask = 2464 (he_cap->ppe_thres[0] & 2465 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK) >> 2466 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_POS; 2467 2468 for (nss = 0; nss <= arg->peer_ppet.numss_m1; nss++) { 2469 for (ru = 0; ru < 4; ru++) { 2470 u32 val = 0; 2471 int i; 2472 2473 if ((arg->peer_ppet.ru_bit_mask & BIT(ru)) == 0) 2474 continue; 2475 for (i = 0; i < 6; i++) { 2476 val >>= 1; 2477 val |= ((he_cap->ppe_thres[bit / 8] >> 2478 (bit % 8)) & 0x1) << 5; 2479 bit++; 2480 } 2481 arg->peer_ppet.ppet16_ppet8_ru3_ru0[nss] |= 2482 val << (ru * 6); 2483 } 2484 } 2485 } 2486 2487 if (he_cap->he_cap_elem.mac_cap_info[0] & IEEE80211_HE_MAC_CAP0_TWT_RES) 2488 arg->twt_responder = true; 2489 if (he_cap->he_cap_elem.mac_cap_info[0] & IEEE80211_HE_MAC_CAP0_TWT_REQ) 2490 arg->twt_requester = true; 2491 2492 he_nss = ath11k_mac_max_he_nss(he_mcs_mask); 2493 2494 if (he_nss > sta->deflink.rx_nss) { 2495 user_rate_valid = false; 2496 for (nss_idx = sta->deflink.rx_nss - 1; nss_idx >= 0; nss_idx--) { 2497 if (he_mcs_mask[nss_idx]) { 2498 user_rate_valid = true; 2499 break; 2500 } 2501 } 2502 } 2503 2504 if (!user_rate_valid) { 2505 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "setting he range mcs value to peer supported nss %d for peer %pM\n", 2506 sta->deflink.rx_nss, sta->addr); 2507 he_mcs_mask[sta->deflink.rx_nss - 1] = he_mcs_mask[he_nss - 1]; 2508 } 2509 2510 switch (sta->deflink.bandwidth) { 2511 case IEEE80211_STA_RX_BW_160: 2512 if (he_cap->he_cap_elem.phy_cap_info[0] & 2513 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G) { 2514 v = le16_to_cpu(he_cap->he_mcs_nss_supp.rx_mcs_80p80); 2515 v = ath11k_peer_assoc_h_he_limit(v, he_mcs_mask); 2516 arg->peer_he_rx_mcs_set[WMI_HECAP_TXRX_MCS_NSS_IDX_80_80] = v; 2517 2518 v = le16_to_cpu(he_cap->he_mcs_nss_supp.tx_mcs_80p80); 2519 arg->peer_he_tx_mcs_set[WMI_HECAP_TXRX_MCS_NSS_IDX_80_80] = v; 2520 2521 arg->peer_he_mcs_count++; 2522 he_tx_mcs = v; 2523 } 2524 v = le16_to_cpu(he_cap->he_mcs_nss_supp.rx_mcs_160); 2525 arg->peer_he_rx_mcs_set[WMI_HECAP_TXRX_MCS_NSS_IDX_160] = v; 2526 2527 v = le16_to_cpu(he_cap->he_mcs_nss_supp.tx_mcs_160); 2528 v = ath11k_peer_assoc_h_he_limit(v, he_mcs_mask); 2529 arg->peer_he_tx_mcs_set[WMI_HECAP_TXRX_MCS_NSS_IDX_160] = v; 2530 2531 arg->peer_he_mcs_count++; 2532 if (!he_tx_mcs) 2533 he_tx_mcs = v; 2534 fallthrough; 2535 2536 default: 2537 v = le16_to_cpu(he_cap->he_mcs_nss_supp.rx_mcs_80); 2538 arg->peer_he_rx_mcs_set[WMI_HECAP_TXRX_MCS_NSS_IDX_80] = v; 2539 2540 v = le16_to_cpu(he_cap->he_mcs_nss_supp.tx_mcs_80); 2541 v = ath11k_peer_assoc_h_he_limit(v, he_mcs_mask); 2542 arg->peer_he_tx_mcs_set[WMI_HECAP_TXRX_MCS_NSS_IDX_80] = v; 2543 2544 arg->peer_he_mcs_count++; 2545 if (!he_tx_mcs) 2546 he_tx_mcs = v; 2547 break; 2548 } 2549 2550 /* Calculate peer NSS capability from HE capabilities if STA 2551 * supports HE. 2552 */ 2553 for (i = 0, max_nss = 0; i < NL80211_HE_NSS_MAX; i++) { 2554 he_mcs = he_tx_mcs >> (2 * i) & 3; 2555 2556 /* In case of fixed rates, MCS Range in he_tx_mcs might have 2557 * unsupported range, with he_mcs_mask set, so check either of them 2558 * to find nss. 2559 */ 2560 if (he_mcs != IEEE80211_HE_MCS_NOT_SUPPORTED || 2561 he_mcs_mask[i]) 2562 max_nss = i + 1; 2563 } 2564 arg->peer_nss = min(sta->deflink.rx_nss, max_nss); 2565 2566 if (arg->peer_phymode == MODE_11AX_HE160 || 2567 arg->peer_phymode == MODE_11AX_HE80_80) { 2568 tx_nss = ath11k_get_nss_160mhz(ar, max_nss); 2569 rx_nss = min(arg->peer_nss, tx_nss); 2570 arg->peer_bw_rxnss_override = ATH11K_BW_NSS_MAP_ENABLE; 2571 2572 if (!rx_nss) { 2573 ath11k_warn(ar->ab, "invalid max_nss\n"); 2574 return; 2575 } 2576 2577 if (arg->peer_phymode == MODE_11AX_HE160) 2578 nss_160 = FIELD_PREP(ATH11K_PEER_RX_NSS_160MHZ, rx_nss - 1); 2579 else 2580 nss_160 = FIELD_PREP(ATH11K_PEER_RX_NSS_80_80MHZ, rx_nss - 1); 2581 2582 arg->peer_bw_rxnss_override |= nss_160; 2583 } 2584 2585 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 2586 "he peer %pM nss %d mcs cnt %d nss_override 0x%x\n", 2587 sta->addr, arg->peer_nss, 2588 arg->peer_he_mcs_count, 2589 arg->peer_bw_rxnss_override); 2590 } 2591 2592 static void ath11k_peer_assoc_h_he_6ghz(struct ath11k *ar, 2593 struct ieee80211_vif *vif, 2594 struct ieee80211_sta *sta, 2595 struct peer_assoc_params *arg) 2596 { 2597 const struct ieee80211_sta_he_cap *he_cap = &sta->deflink.he_cap; 2598 struct cfg80211_chan_def def; 2599 enum nl80211_band band; 2600 u8 ampdu_factor; 2601 2602 if (WARN_ON(ath11k_mac_vif_chan(vif, &def))) 2603 return; 2604 2605 band = def.chan->band; 2606 2607 if (!arg->he_flag || band != NL80211_BAND_6GHZ || !sta->deflink.he_6ghz_capa.capa) 2608 return; 2609 2610 if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_40) 2611 arg->bw_40 = true; 2612 2613 if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_80) 2614 arg->bw_80 = true; 2615 2616 if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_160) 2617 arg->bw_160 = true; 2618 2619 arg->peer_he_caps_6ghz = le16_to_cpu(sta->deflink.he_6ghz_capa.capa); 2620 arg->peer_mpdu_density = 2621 ath11k_parse_mpdudensity(FIELD_GET(IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START, 2622 arg->peer_he_caps_6ghz)); 2623 2624 /* From IEEE Std 802.11ax-2021 - Section 10.12.2: An HE STA shall be capable of 2625 * receiving A-MPDU where the A-MPDU pre-EOF padding length is up to the value 2626 * indicated by the Maximum A-MPDU Length Exponent Extension field in the HE 2627 * Capabilities element and the Maximum A-MPDU Length Exponent field in HE 6 GHz 2628 * Band Capabilities element in the 6 GHz band. 2629 * 2630 * Here, we are extracting the Max A-MPDU Exponent Extension from HE caps and 2631 * factor is the Maximum A-MPDU Length Exponent from HE 6 GHZ Band capability. 2632 */ 2633 ampdu_factor = FIELD_GET(IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_MASK, 2634 he_cap->he_cap_elem.mac_cap_info[3]) + 2635 FIELD_GET(IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP, 2636 arg->peer_he_caps_6ghz); 2637 2638 arg->peer_max_mpdu = (1u << (IEEE80211_HE_6GHZ_MAX_AMPDU_FACTOR + 2639 ampdu_factor)) - 1; 2640 } 2641 2642 static void ath11k_peer_assoc_h_smps(struct ieee80211_sta *sta, 2643 struct peer_assoc_params *arg) 2644 { 2645 const struct ieee80211_sta_ht_cap *ht_cap = &sta->deflink.ht_cap; 2646 int smps; 2647 2648 if (!ht_cap->ht_supported && !sta->deflink.he_6ghz_capa.capa) 2649 return; 2650 2651 if (ht_cap->ht_supported) { 2652 smps = ht_cap->cap & IEEE80211_HT_CAP_SM_PS; 2653 smps >>= IEEE80211_HT_CAP_SM_PS_SHIFT; 2654 } else { 2655 smps = le16_get_bits(sta->deflink.he_6ghz_capa.capa, 2656 IEEE80211_HE_6GHZ_CAP_SM_PS); 2657 } 2658 2659 switch (smps) { 2660 case WLAN_HT_CAP_SM_PS_STATIC: 2661 arg->static_mimops_flag = true; 2662 break; 2663 case WLAN_HT_CAP_SM_PS_DYNAMIC: 2664 arg->dynamic_mimops_flag = true; 2665 break; 2666 case WLAN_HT_CAP_SM_PS_DISABLED: 2667 arg->spatial_mux_flag = true; 2668 break; 2669 default: 2670 break; 2671 } 2672 } 2673 2674 static void ath11k_peer_assoc_h_qos(struct ath11k *ar, 2675 struct ieee80211_vif *vif, 2676 struct ieee80211_sta *sta, 2677 struct peer_assoc_params *arg) 2678 { 2679 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 2680 2681 switch (arvif->vdev_type) { 2682 case WMI_VDEV_TYPE_AP: 2683 if (sta->wme) { 2684 /* TODO: Check WME vs QoS */ 2685 arg->is_wme_set = true; 2686 arg->qos_flag = true; 2687 } 2688 2689 if (sta->wme && sta->uapsd_queues) { 2690 /* TODO: Check WME vs QoS */ 2691 arg->is_wme_set = true; 2692 arg->apsd_flag = true; 2693 arg->peer_rate_caps |= WMI_HOST_RC_UAPSD_FLAG; 2694 } 2695 break; 2696 case WMI_VDEV_TYPE_STA: 2697 if (sta->wme) { 2698 arg->is_wme_set = true; 2699 arg->qos_flag = true; 2700 } 2701 break; 2702 default: 2703 break; 2704 } 2705 2706 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "peer %pM qos %d\n", 2707 sta->addr, arg->qos_flag); 2708 } 2709 2710 static int ath11k_peer_assoc_qos_ap(struct ath11k *ar, 2711 struct ath11k_vif *arvif, 2712 struct ieee80211_sta *sta) 2713 { 2714 struct ap_ps_params params; 2715 u32 max_sp; 2716 u32 uapsd; 2717 int ret; 2718 2719 lockdep_assert_held(&ar->conf_mutex); 2720 2721 params.vdev_id = arvif->vdev_id; 2722 2723 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "uapsd_queues 0x%x max_sp %d\n", 2724 sta->uapsd_queues, sta->max_sp); 2725 2726 uapsd = 0; 2727 if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO) 2728 uapsd |= WMI_AP_PS_UAPSD_AC3_DELIVERY_EN | 2729 WMI_AP_PS_UAPSD_AC3_TRIGGER_EN; 2730 if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VI) 2731 uapsd |= WMI_AP_PS_UAPSD_AC2_DELIVERY_EN | 2732 WMI_AP_PS_UAPSD_AC2_TRIGGER_EN; 2733 if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BK) 2734 uapsd |= WMI_AP_PS_UAPSD_AC1_DELIVERY_EN | 2735 WMI_AP_PS_UAPSD_AC1_TRIGGER_EN; 2736 if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BE) 2737 uapsd |= WMI_AP_PS_UAPSD_AC0_DELIVERY_EN | 2738 WMI_AP_PS_UAPSD_AC0_TRIGGER_EN; 2739 2740 max_sp = 0; 2741 if (sta->max_sp < MAX_WMI_AP_PS_PEER_PARAM_MAX_SP) 2742 max_sp = sta->max_sp; 2743 2744 params.param = WMI_AP_PS_PEER_PARAM_UAPSD; 2745 params.value = uapsd; 2746 ret = ath11k_wmi_send_set_ap_ps_param_cmd(ar, sta->addr, ¶ms); 2747 if (ret) 2748 goto err; 2749 2750 params.param = WMI_AP_PS_PEER_PARAM_MAX_SP; 2751 params.value = max_sp; 2752 ret = ath11k_wmi_send_set_ap_ps_param_cmd(ar, sta->addr, ¶ms); 2753 if (ret) 2754 goto err; 2755 2756 /* TODO revisit during testing */ 2757 params.param = WMI_AP_PS_PEER_PARAM_SIFS_RESP_FRMTYPE; 2758 params.value = DISABLE_SIFS_RESPONSE_TRIGGER; 2759 ret = ath11k_wmi_send_set_ap_ps_param_cmd(ar, sta->addr, ¶ms); 2760 if (ret) 2761 goto err; 2762 2763 params.param = WMI_AP_PS_PEER_PARAM_SIFS_RESP_UAPSD; 2764 params.value = DISABLE_SIFS_RESPONSE_TRIGGER; 2765 ret = ath11k_wmi_send_set_ap_ps_param_cmd(ar, sta->addr, ¶ms); 2766 if (ret) 2767 goto err; 2768 2769 return 0; 2770 2771 err: 2772 ath11k_warn(ar->ab, "failed to set ap ps peer param %d for vdev %i: %d\n", 2773 params.param, arvif->vdev_id, ret); 2774 return ret; 2775 } 2776 2777 static bool ath11k_mac_sta_has_ofdm_only(struct ieee80211_sta *sta) 2778 { 2779 return sta->deflink.supp_rates[NL80211_BAND_2GHZ] >> 2780 ATH11K_MAC_FIRST_OFDM_RATE_IDX; 2781 } 2782 2783 static enum wmi_phy_mode ath11k_mac_get_phymode_vht(struct ath11k *ar, 2784 struct ieee80211_sta *sta) 2785 { 2786 if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_160) { 2787 switch (sta->deflink.vht_cap.cap & 2788 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK) { 2789 case IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ: 2790 return MODE_11AC_VHT160; 2791 case IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ: 2792 return MODE_11AC_VHT80_80; 2793 default: 2794 /* not sure if this is a valid case? */ 2795 return MODE_11AC_VHT160; 2796 } 2797 } 2798 2799 if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_80) 2800 return MODE_11AC_VHT80; 2801 2802 if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_40) 2803 return MODE_11AC_VHT40; 2804 2805 if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_20) 2806 return MODE_11AC_VHT20; 2807 2808 return MODE_UNKNOWN; 2809 } 2810 2811 static enum wmi_phy_mode ath11k_mac_get_phymode_he(struct ath11k *ar, 2812 struct ieee80211_sta *sta) 2813 { 2814 if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_160) { 2815 if (sta->deflink.he_cap.he_cap_elem.phy_cap_info[0] & 2816 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G) 2817 return MODE_11AX_HE160; 2818 else if (sta->deflink.he_cap.he_cap_elem.phy_cap_info[0] & 2819 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G) 2820 return MODE_11AX_HE80_80; 2821 /* not sure if this is a valid case? */ 2822 return MODE_11AX_HE160; 2823 } 2824 2825 if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_80) 2826 return MODE_11AX_HE80; 2827 2828 if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_40) 2829 return MODE_11AX_HE40; 2830 2831 if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_20) 2832 return MODE_11AX_HE20; 2833 2834 return MODE_UNKNOWN; 2835 } 2836 2837 static void ath11k_peer_assoc_h_phymode(struct ath11k *ar, 2838 struct ieee80211_vif *vif, 2839 struct ieee80211_sta *sta, 2840 struct peer_assoc_params *arg) 2841 { 2842 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 2843 struct cfg80211_chan_def def; 2844 enum nl80211_band band; 2845 const u8 *ht_mcs_mask; 2846 const u16 *vht_mcs_mask; 2847 const u16 *he_mcs_mask; 2848 enum wmi_phy_mode phymode = MODE_UNKNOWN; 2849 2850 if (WARN_ON(ath11k_mac_vif_chan(vif, &def))) 2851 return; 2852 2853 band = def.chan->band; 2854 ht_mcs_mask = arvif->bitrate_mask.control[band].ht_mcs; 2855 vht_mcs_mask = arvif->bitrate_mask.control[band].vht_mcs; 2856 he_mcs_mask = arvif->bitrate_mask.control[band].he_mcs; 2857 2858 switch (band) { 2859 case NL80211_BAND_2GHZ: 2860 if (sta->deflink.he_cap.has_he && 2861 !ath11k_peer_assoc_h_he_masked(he_mcs_mask)) { 2862 if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_80) 2863 phymode = MODE_11AX_HE80_2G; 2864 else if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_40) 2865 phymode = MODE_11AX_HE40_2G; 2866 else 2867 phymode = MODE_11AX_HE20_2G; 2868 } else if (sta->deflink.vht_cap.vht_supported && 2869 !ath11k_peer_assoc_h_vht_masked(vht_mcs_mask)) { 2870 if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_40) 2871 phymode = MODE_11AC_VHT40; 2872 else 2873 phymode = MODE_11AC_VHT20; 2874 } else if (sta->deflink.ht_cap.ht_supported && 2875 !ath11k_peer_assoc_h_ht_masked(ht_mcs_mask)) { 2876 if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_40) 2877 phymode = MODE_11NG_HT40; 2878 else 2879 phymode = MODE_11NG_HT20; 2880 } else if (ath11k_mac_sta_has_ofdm_only(sta)) { 2881 phymode = MODE_11G; 2882 } else { 2883 phymode = MODE_11B; 2884 } 2885 break; 2886 case NL80211_BAND_5GHZ: 2887 case NL80211_BAND_6GHZ: 2888 /* Check HE first */ 2889 if (sta->deflink.he_cap.has_he && 2890 !ath11k_peer_assoc_h_he_masked(he_mcs_mask)) { 2891 phymode = ath11k_mac_get_phymode_he(ar, sta); 2892 } else if (sta->deflink.vht_cap.vht_supported && 2893 !ath11k_peer_assoc_h_vht_masked(vht_mcs_mask)) { 2894 phymode = ath11k_mac_get_phymode_vht(ar, sta); 2895 } else if (sta->deflink.ht_cap.ht_supported && 2896 !ath11k_peer_assoc_h_ht_masked(ht_mcs_mask)) { 2897 if (sta->deflink.bandwidth >= IEEE80211_STA_RX_BW_40) 2898 phymode = MODE_11NA_HT40; 2899 else 2900 phymode = MODE_11NA_HT20; 2901 } else { 2902 phymode = MODE_11A; 2903 } 2904 break; 2905 default: 2906 break; 2907 } 2908 2909 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "peer %pM phymode %s\n", 2910 sta->addr, ath11k_wmi_phymode_str(phymode)); 2911 2912 arg->peer_phymode = phymode; 2913 WARN_ON(phymode == MODE_UNKNOWN); 2914 } 2915 2916 static void ath11k_peer_assoc_prepare(struct ath11k *ar, 2917 struct ieee80211_vif *vif, 2918 struct ieee80211_sta *sta, 2919 struct peer_assoc_params *arg, 2920 bool reassoc) 2921 { 2922 struct ath11k_sta *arsta; 2923 2924 lockdep_assert_held(&ar->conf_mutex); 2925 2926 arsta = ath11k_sta_to_arsta(sta); 2927 2928 memset(arg, 0, sizeof(*arg)); 2929 2930 reinit_completion(&ar->peer_assoc_done); 2931 2932 arg->peer_new_assoc = !reassoc; 2933 ath11k_peer_assoc_h_basic(ar, vif, sta, arg); 2934 ath11k_peer_assoc_h_crypto(ar, vif, sta, arg); 2935 ath11k_peer_assoc_h_rates(ar, vif, sta, arg); 2936 ath11k_peer_assoc_h_phymode(ar, vif, sta, arg); 2937 ath11k_peer_assoc_h_ht(ar, vif, sta, arg); 2938 ath11k_peer_assoc_h_vht(ar, vif, sta, arg); 2939 ath11k_peer_assoc_h_he(ar, vif, sta, arg); 2940 ath11k_peer_assoc_h_he_6ghz(ar, vif, sta, arg); 2941 ath11k_peer_assoc_h_qos(ar, vif, sta, arg); 2942 ath11k_peer_assoc_h_smps(sta, arg); 2943 2944 arsta->peer_nss = arg->peer_nss; 2945 2946 /* TODO: amsdu_disable req? */ 2947 } 2948 2949 static int ath11k_setup_peer_smps(struct ath11k *ar, struct ath11k_vif *arvif, 2950 const u8 *addr, 2951 const struct ieee80211_sta_ht_cap *ht_cap, 2952 u16 he_6ghz_capa) 2953 { 2954 int smps; 2955 2956 if (!ht_cap->ht_supported && !he_6ghz_capa) 2957 return 0; 2958 2959 if (ht_cap->ht_supported) { 2960 smps = ht_cap->cap & IEEE80211_HT_CAP_SM_PS; 2961 smps >>= IEEE80211_HT_CAP_SM_PS_SHIFT; 2962 } else { 2963 smps = FIELD_GET(IEEE80211_HE_6GHZ_CAP_SM_PS, he_6ghz_capa); 2964 } 2965 2966 if (smps >= ARRAY_SIZE(ath11k_smps_map)) 2967 return -EINVAL; 2968 2969 return ath11k_wmi_set_peer_param(ar, addr, arvif->vdev_id, 2970 WMI_PEER_MIMO_PS_STATE, 2971 ath11k_smps_map[smps]); 2972 } 2973 2974 static bool ath11k_mac_set_he_txbf_conf(struct ath11k_vif *arvif) 2975 { 2976 struct ath11k *ar = arvif->ar; 2977 u32 param, value; 2978 int ret; 2979 2980 if (!arvif->vif->bss_conf.he_support) 2981 return true; 2982 2983 param = WMI_VDEV_PARAM_SET_HEMU_MODE; 2984 value = 0; 2985 if (arvif->vif->bss_conf.he_su_beamformer) { 2986 value |= FIELD_PREP(HE_MODE_SU_TX_BFER, HE_SU_BFER_ENABLE); 2987 if (arvif->vif->bss_conf.he_mu_beamformer && 2988 arvif->vdev_type == WMI_VDEV_TYPE_AP) 2989 value |= FIELD_PREP(HE_MODE_MU_TX_BFER, HE_MU_BFER_ENABLE); 2990 } 2991 2992 if (arvif->vif->type != NL80211_IFTYPE_MESH_POINT) { 2993 value |= FIELD_PREP(HE_MODE_DL_OFDMA, HE_DL_MUOFDMA_ENABLE) | 2994 FIELD_PREP(HE_MODE_UL_OFDMA, HE_UL_MUOFDMA_ENABLE); 2995 2996 if (arvif->vif->bss_conf.he_full_ul_mumimo) 2997 value |= FIELD_PREP(HE_MODE_UL_MUMIMO, HE_UL_MUMIMO_ENABLE); 2998 2999 if (arvif->vif->bss_conf.he_su_beamformee) 3000 value |= FIELD_PREP(HE_MODE_SU_TX_BFEE, HE_SU_BFEE_ENABLE); 3001 } 3002 3003 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, param, value); 3004 if (ret) { 3005 ath11k_warn(ar->ab, "failed to set vdev %d HE MU mode: %d\n", 3006 arvif->vdev_id, ret); 3007 return false; 3008 } 3009 3010 param = WMI_VDEV_PARAM_SET_HE_SOUNDING_MODE; 3011 value = FIELD_PREP(HE_VHT_SOUNDING_MODE, HE_VHT_SOUNDING_MODE_ENABLE) | 3012 FIELD_PREP(HE_TRIG_NONTRIG_SOUNDING_MODE, 3013 HE_TRIG_NONTRIG_SOUNDING_MODE_ENABLE); 3014 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 3015 param, value); 3016 if (ret) { 3017 ath11k_warn(ar->ab, "failed to set vdev %d sounding mode: %d\n", 3018 arvif->vdev_id, ret); 3019 return false; 3020 } 3021 return true; 3022 } 3023 3024 static bool ath11k_mac_vif_recalc_sta_he_txbf(struct ath11k *ar, 3025 struct ieee80211_vif *vif, 3026 struct ieee80211_sta_he_cap *he_cap) 3027 { 3028 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 3029 struct ieee80211_he_cap_elem he_cap_elem = {0}; 3030 struct ieee80211_sta_he_cap *cap_band = NULL; 3031 struct cfg80211_chan_def def; 3032 u32 param = WMI_VDEV_PARAM_SET_HEMU_MODE; 3033 u32 hemode = 0; 3034 int ret; 3035 3036 if (!vif->bss_conf.he_support) 3037 return true; 3038 3039 if (vif->type != NL80211_IFTYPE_STATION) 3040 return false; 3041 3042 if (WARN_ON(ath11k_mac_vif_chan(vif, &def))) 3043 return false; 3044 3045 if (def.chan->band == NL80211_BAND_2GHZ) 3046 cap_band = &ar->mac.iftype[NL80211_BAND_2GHZ][vif->type].he_cap; 3047 else 3048 cap_band = &ar->mac.iftype[NL80211_BAND_5GHZ][vif->type].he_cap; 3049 3050 memcpy(&he_cap_elem, &cap_band->he_cap_elem, sizeof(he_cap_elem)); 3051 3052 if (HECAP_PHY_SUBFME_GET(he_cap_elem.phy_cap_info)) { 3053 if (HECAP_PHY_SUBFMR_GET(he_cap->he_cap_elem.phy_cap_info)) 3054 hemode |= FIELD_PREP(HE_MODE_SU_TX_BFEE, HE_SU_BFEE_ENABLE); 3055 if (HECAP_PHY_MUBFMR_GET(he_cap->he_cap_elem.phy_cap_info)) 3056 hemode |= FIELD_PREP(HE_MODE_MU_TX_BFEE, HE_MU_BFEE_ENABLE); 3057 } 3058 3059 if (vif->type != NL80211_IFTYPE_MESH_POINT) { 3060 hemode |= FIELD_PREP(HE_MODE_DL_OFDMA, HE_DL_MUOFDMA_ENABLE) | 3061 FIELD_PREP(HE_MODE_UL_OFDMA, HE_UL_MUOFDMA_ENABLE); 3062 3063 if (HECAP_PHY_ULMUMIMO_GET(he_cap_elem.phy_cap_info)) 3064 if (HECAP_PHY_ULMUMIMO_GET(he_cap->he_cap_elem.phy_cap_info)) 3065 hemode |= FIELD_PREP(HE_MODE_UL_MUMIMO, 3066 HE_UL_MUMIMO_ENABLE); 3067 3068 if (FIELD_GET(HE_MODE_MU_TX_BFEE, hemode)) 3069 hemode |= FIELD_PREP(HE_MODE_SU_TX_BFEE, HE_SU_BFEE_ENABLE); 3070 3071 if (FIELD_GET(HE_MODE_MU_TX_BFER, hemode)) 3072 hemode |= FIELD_PREP(HE_MODE_SU_TX_BFER, HE_SU_BFER_ENABLE); 3073 } 3074 3075 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, param, hemode); 3076 if (ret) { 3077 ath11k_warn(ar->ab, "failed to submit vdev param txbf 0x%x: %d\n", 3078 hemode, ret); 3079 return false; 3080 } 3081 3082 return true; 3083 } 3084 3085 static void ath11k_bss_assoc(struct ieee80211_hw *hw, 3086 struct ieee80211_vif *vif, 3087 struct ieee80211_bss_conf *bss_conf) 3088 { 3089 struct ath11k *ar = hw->priv; 3090 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 3091 struct peer_assoc_params peer_arg; 3092 struct ieee80211_sta *ap_sta; 3093 struct ath11k_peer *peer; 3094 bool is_auth = false; 3095 struct ieee80211_sta_he_cap he_cap; 3096 int ret; 3097 3098 lockdep_assert_held(&ar->conf_mutex); 3099 3100 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "vdev %i assoc bssid %pM aid %d\n", 3101 arvif->vdev_id, arvif->bssid, arvif->aid); 3102 3103 rcu_read_lock(); 3104 3105 ap_sta = ieee80211_find_sta(vif, bss_conf->bssid); 3106 if (!ap_sta) { 3107 ath11k_warn(ar->ab, "failed to find station entry for bss %pM vdev %i\n", 3108 bss_conf->bssid, arvif->vdev_id); 3109 rcu_read_unlock(); 3110 return; 3111 } 3112 3113 /* he_cap here is updated at assoc success for sta mode only */ 3114 he_cap = ap_sta->deflink.he_cap; 3115 3116 ath11k_peer_assoc_prepare(ar, vif, ap_sta, &peer_arg, false); 3117 3118 rcu_read_unlock(); 3119 3120 if (!ath11k_mac_vif_recalc_sta_he_txbf(ar, vif, &he_cap)) { 3121 ath11k_warn(ar->ab, "failed to recalc he txbf for vdev %i on bss %pM\n", 3122 arvif->vdev_id, bss_conf->bssid); 3123 return; 3124 } 3125 3126 peer_arg.is_assoc = true; 3127 3128 ret = ath11k_wmi_send_peer_assoc_cmd(ar, &peer_arg); 3129 if (ret) { 3130 ath11k_warn(ar->ab, "failed to run peer assoc for %pM vdev %i: %d\n", 3131 bss_conf->bssid, arvif->vdev_id, ret); 3132 return; 3133 } 3134 3135 if (!wait_for_completion_timeout(&ar->peer_assoc_done, 1 * HZ)) { 3136 ath11k_warn(ar->ab, "failed to get peer assoc conf event for %pM vdev %i\n", 3137 bss_conf->bssid, arvif->vdev_id); 3138 return; 3139 } 3140 3141 ret = ath11k_setup_peer_smps(ar, arvif, bss_conf->bssid, 3142 &ap_sta->deflink.ht_cap, 3143 le16_to_cpu(ap_sta->deflink.he_6ghz_capa.capa)); 3144 if (ret) { 3145 ath11k_warn(ar->ab, "failed to setup peer SMPS for vdev %d: %d\n", 3146 arvif->vdev_id, ret); 3147 return; 3148 } 3149 3150 WARN_ON(arvif->is_up); 3151 3152 arvif->aid = vif->cfg.aid; 3153 ether_addr_copy(arvif->bssid, bss_conf->bssid); 3154 3155 ret = ath11k_wmi_vdev_up(ar, arvif->vdev_id, arvif->aid, arvif->bssid, 3156 NULL, 0, 0); 3157 if (ret) { 3158 ath11k_warn(ar->ab, "failed to set vdev %d up: %d\n", 3159 arvif->vdev_id, ret); 3160 return; 3161 } 3162 3163 arvif->is_up = true; 3164 arvif->rekey_data.enable_offload = false; 3165 3166 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 3167 "vdev %d up (associated) bssid %pM aid %d\n", 3168 arvif->vdev_id, bss_conf->bssid, vif->cfg.aid); 3169 3170 spin_lock_bh(&ar->ab->base_lock); 3171 3172 peer = ath11k_peer_find(ar->ab, arvif->vdev_id, arvif->bssid); 3173 if (peer && peer->is_authorized) 3174 is_auth = true; 3175 3176 spin_unlock_bh(&ar->ab->base_lock); 3177 3178 if (is_auth) { 3179 ret = ath11k_wmi_set_peer_param(ar, arvif->bssid, 3180 arvif->vdev_id, 3181 WMI_PEER_AUTHORIZE, 3182 1); 3183 if (ret) 3184 ath11k_warn(ar->ab, "Unable to authorize BSS peer: %d\n", ret); 3185 } 3186 3187 ret = ath11k_wmi_send_obss_spr_cmd(ar, arvif->vdev_id, 3188 &bss_conf->he_obss_pd); 3189 if (ret) 3190 ath11k_warn(ar->ab, "failed to set vdev %i OBSS PD parameters: %d\n", 3191 arvif->vdev_id, ret); 3192 3193 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 3194 WMI_VDEV_PARAM_DTIM_POLICY, 3195 WMI_DTIM_POLICY_STICK); 3196 if (ret) 3197 ath11k_warn(ar->ab, "failed to set vdev %d dtim policy: %d\n", 3198 arvif->vdev_id, ret); 3199 3200 ath11k_mac_11d_scan_stop_all(ar->ab); 3201 } 3202 3203 static void ath11k_bss_disassoc(struct ieee80211_hw *hw, 3204 struct ieee80211_vif *vif) 3205 { 3206 struct ath11k *ar = hw->priv; 3207 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 3208 int ret; 3209 3210 lockdep_assert_held(&ar->conf_mutex); 3211 3212 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "vdev %i disassoc bssid %pM\n", 3213 arvif->vdev_id, arvif->bssid); 3214 3215 ret = ath11k_wmi_vdev_down(ar, arvif->vdev_id); 3216 if (ret) 3217 ath11k_warn(ar->ab, "failed to down vdev %i: %d\n", 3218 arvif->vdev_id, ret); 3219 3220 arvif->is_up = false; 3221 3222 memset(&arvif->rekey_data, 0, sizeof(arvif->rekey_data)); 3223 3224 cancel_delayed_work_sync(&arvif->connection_loss_work); 3225 } 3226 3227 static u32 ath11k_mac_get_rate_hw_value(int bitrate) 3228 { 3229 u32 preamble; 3230 u16 hw_value; 3231 int rate; 3232 size_t i; 3233 3234 if (ath11k_mac_bitrate_is_cck(bitrate)) 3235 preamble = WMI_RATE_PREAMBLE_CCK; 3236 else 3237 preamble = WMI_RATE_PREAMBLE_OFDM; 3238 3239 for (i = 0; i < ARRAY_SIZE(ath11k_legacy_rates); i++) { 3240 if (ath11k_legacy_rates[i].bitrate != bitrate) 3241 continue; 3242 3243 hw_value = ath11k_legacy_rates[i].hw_value; 3244 rate = ATH11K_HW_RATE_CODE(hw_value, 0, preamble); 3245 3246 return rate; 3247 } 3248 3249 return -EINVAL; 3250 } 3251 3252 static void ath11k_recalculate_mgmt_rate(struct ath11k *ar, 3253 struct ieee80211_vif *vif, 3254 struct cfg80211_chan_def *def) 3255 { 3256 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 3257 const struct ieee80211_supported_band *sband; 3258 u8 basic_rate_idx; 3259 int hw_rate_code; 3260 u32 vdev_param; 3261 u16 bitrate; 3262 int ret; 3263 3264 lockdep_assert_held(&ar->conf_mutex); 3265 3266 sband = ar->hw->wiphy->bands[def->chan->band]; 3267 basic_rate_idx = ffs(vif->bss_conf.basic_rates) - 1; 3268 bitrate = sband->bitrates[basic_rate_idx].bitrate; 3269 3270 hw_rate_code = ath11k_mac_get_rate_hw_value(bitrate); 3271 if (hw_rate_code < 0) { 3272 ath11k_warn(ar->ab, "bitrate not supported %d\n", bitrate); 3273 return; 3274 } 3275 3276 vdev_param = WMI_VDEV_PARAM_MGMT_RATE; 3277 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, vdev_param, 3278 hw_rate_code); 3279 if (ret) 3280 ath11k_warn(ar->ab, "failed to set mgmt tx rate %d\n", ret); 3281 3282 /* For WCN6855, firmware will clear this param when vdev starts, hence 3283 * cache it here so that we can reconfigure it once vdev starts. 3284 */ 3285 ar->hw_rate_code = hw_rate_code; 3286 3287 vdev_param = WMI_VDEV_PARAM_BEACON_RATE; 3288 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, vdev_param, 3289 hw_rate_code); 3290 if (ret) 3291 ath11k_warn(ar->ab, "failed to set beacon tx rate %d\n", ret); 3292 } 3293 3294 static int ath11k_mac_fils_discovery(struct ath11k_vif *arvif, 3295 struct ieee80211_bss_conf *info) 3296 { 3297 struct ath11k *ar = arvif->ar; 3298 struct sk_buff *tmpl; 3299 int ret; 3300 u32 interval; 3301 bool unsol_bcast_probe_resp_enabled = false; 3302 3303 if (info->fils_discovery.max_interval) { 3304 interval = info->fils_discovery.max_interval; 3305 3306 tmpl = ieee80211_get_fils_discovery_tmpl(ar->hw, arvif->vif); 3307 if (tmpl) 3308 ret = ath11k_wmi_fils_discovery_tmpl(ar, arvif->vdev_id, 3309 tmpl); 3310 } else if (info->unsol_bcast_probe_resp_interval) { 3311 unsol_bcast_probe_resp_enabled = 1; 3312 interval = info->unsol_bcast_probe_resp_interval; 3313 3314 tmpl = ieee80211_get_unsol_bcast_probe_resp_tmpl(ar->hw, 3315 arvif->vif); 3316 if (tmpl) 3317 ret = ath11k_wmi_probe_resp_tmpl(ar, arvif->vdev_id, 3318 tmpl); 3319 } else { /* Disable */ 3320 return ath11k_wmi_fils_discovery(ar, arvif->vdev_id, 0, false); 3321 } 3322 3323 if (!tmpl) { 3324 ath11k_warn(ar->ab, 3325 "mac vdev %i failed to retrieve %s template\n", 3326 arvif->vdev_id, (unsol_bcast_probe_resp_enabled ? 3327 "unsolicited broadcast probe response" : 3328 "FILS discovery")); 3329 return -EPERM; 3330 } 3331 kfree_skb(tmpl); 3332 3333 if (!ret) 3334 ret = ath11k_wmi_fils_discovery(ar, arvif->vdev_id, interval, 3335 unsol_bcast_probe_resp_enabled); 3336 3337 return ret; 3338 } 3339 3340 static int ath11k_mac_config_obss_pd(struct ath11k *ar, 3341 struct ieee80211_he_obss_pd *he_obss_pd) 3342 { 3343 u32 bitmap[2], param_id, param_val, pdev_id; 3344 int ret; 3345 s8 non_srg_th = 0, srg_th = 0; 3346 3347 pdev_id = ar->pdev->pdev_id; 3348 3349 /* Set and enable SRG/non-SRG OBSS PD Threshold */ 3350 param_id = WMI_PDEV_PARAM_SET_CMD_OBSS_PD_THRESHOLD; 3351 if (test_bit(ATH11K_FLAG_MONITOR_STARTED, &ar->monitor_flags)) { 3352 ret = ath11k_wmi_pdev_set_param(ar, param_id, 0, pdev_id); 3353 if (ret) 3354 ath11k_warn(ar->ab, 3355 "failed to set obss_pd_threshold for pdev: %u\n", 3356 pdev_id); 3357 return ret; 3358 } 3359 3360 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 3361 "obss pd sr_ctrl %x non_srg_thres %u srg_max %u\n", 3362 he_obss_pd->sr_ctrl, he_obss_pd->non_srg_max_offset, 3363 he_obss_pd->max_offset); 3364 3365 param_val = 0; 3366 3367 if (he_obss_pd->sr_ctrl & 3368 IEEE80211_HE_SPR_NON_SRG_OBSS_PD_SR_DISALLOWED) { 3369 non_srg_th = ATH11K_OBSS_PD_MAX_THRESHOLD; 3370 } else { 3371 if (he_obss_pd->sr_ctrl & IEEE80211_HE_SPR_NON_SRG_OFFSET_PRESENT) 3372 non_srg_th = (ATH11K_OBSS_PD_MAX_THRESHOLD + 3373 he_obss_pd->non_srg_max_offset); 3374 else 3375 non_srg_th = ATH11K_OBSS_PD_NON_SRG_MAX_THRESHOLD; 3376 3377 param_val |= ATH11K_OBSS_PD_NON_SRG_EN; 3378 } 3379 3380 if (he_obss_pd->sr_ctrl & IEEE80211_HE_SPR_SRG_INFORMATION_PRESENT) { 3381 srg_th = ATH11K_OBSS_PD_MAX_THRESHOLD + he_obss_pd->max_offset; 3382 param_val |= ATH11K_OBSS_PD_SRG_EN; 3383 } 3384 3385 if (test_bit(WMI_TLV_SERVICE_SRG_SRP_SPATIAL_REUSE_SUPPORT, 3386 ar->ab->wmi_ab.svc_map)) { 3387 param_val |= ATH11K_OBSS_PD_THRESHOLD_IN_DBM; 3388 param_val |= FIELD_PREP(GENMASK(15, 8), srg_th); 3389 } else { 3390 non_srg_th -= ATH11K_DEFAULT_NOISE_FLOOR; 3391 /* SRG not supported and threshold in dB */ 3392 param_val &= ~(ATH11K_OBSS_PD_SRG_EN | 3393 ATH11K_OBSS_PD_THRESHOLD_IN_DBM); 3394 } 3395 3396 param_val |= (non_srg_th & GENMASK(7, 0)); 3397 ret = ath11k_wmi_pdev_set_param(ar, param_id, param_val, pdev_id); 3398 if (ret) { 3399 ath11k_warn(ar->ab, 3400 "failed to set obss_pd_threshold for pdev: %u\n", 3401 pdev_id); 3402 return ret; 3403 } 3404 3405 /* Enable OBSS PD for all access category */ 3406 param_id = WMI_PDEV_PARAM_SET_CMD_OBSS_PD_PER_AC; 3407 param_val = 0xf; 3408 ret = ath11k_wmi_pdev_set_param(ar, param_id, param_val, pdev_id); 3409 if (ret) { 3410 ath11k_warn(ar->ab, 3411 "failed to set obss_pd_per_ac for pdev: %u\n", 3412 pdev_id); 3413 return ret; 3414 } 3415 3416 /* Set SR Prohibit */ 3417 param_id = WMI_PDEV_PARAM_ENABLE_SR_PROHIBIT; 3418 param_val = !!(he_obss_pd->sr_ctrl & 3419 IEEE80211_HE_SPR_HESIGA_SR_VAL15_ALLOWED); 3420 ret = ath11k_wmi_pdev_set_param(ar, param_id, param_val, pdev_id); 3421 if (ret) { 3422 ath11k_warn(ar->ab, "failed to set sr_prohibit for pdev: %u\n", 3423 pdev_id); 3424 return ret; 3425 } 3426 3427 if (!test_bit(WMI_TLV_SERVICE_SRG_SRP_SPATIAL_REUSE_SUPPORT, 3428 ar->ab->wmi_ab.svc_map)) 3429 return 0; 3430 3431 /* Set SRG BSS Color Bitmap */ 3432 memcpy(bitmap, he_obss_pd->bss_color_bitmap, sizeof(bitmap)); 3433 ret = ath11k_wmi_pdev_set_srg_bss_color_bitmap(ar, bitmap); 3434 if (ret) { 3435 ath11k_warn(ar->ab, 3436 "failed to set bss_color_bitmap for pdev: %u\n", 3437 pdev_id); 3438 return ret; 3439 } 3440 3441 /* Set SRG Partial BSSID Bitmap */ 3442 memcpy(bitmap, he_obss_pd->partial_bssid_bitmap, sizeof(bitmap)); 3443 ret = ath11k_wmi_pdev_set_srg_patial_bssid_bitmap(ar, bitmap); 3444 if (ret) { 3445 ath11k_warn(ar->ab, 3446 "failed to set partial_bssid_bitmap for pdev: %u\n", 3447 pdev_id); 3448 return ret; 3449 } 3450 3451 memset(bitmap, 0xff, sizeof(bitmap)); 3452 3453 /* Enable all BSS Colors for SRG */ 3454 ret = ath11k_wmi_pdev_srg_obss_color_enable_bitmap(ar, bitmap); 3455 if (ret) { 3456 ath11k_warn(ar->ab, 3457 "failed to set srg_color_en_bitmap pdev: %u\n", 3458 pdev_id); 3459 return ret; 3460 } 3461 3462 /* Enable all partial BSSID mask for SRG */ 3463 ret = ath11k_wmi_pdev_srg_obss_bssid_enable_bitmap(ar, bitmap); 3464 if (ret) { 3465 ath11k_warn(ar->ab, 3466 "failed to set srg_bssid_en_bitmap pdev: %u\n", 3467 pdev_id); 3468 return ret; 3469 } 3470 3471 /* Enable all BSS Colors for non-SRG */ 3472 ret = ath11k_wmi_pdev_non_srg_obss_color_enable_bitmap(ar, bitmap); 3473 if (ret) { 3474 ath11k_warn(ar->ab, 3475 "failed to set non_srg_color_en_bitmap pdev: %u\n", 3476 pdev_id); 3477 return ret; 3478 } 3479 3480 /* Enable all partial BSSID mask for non-SRG */ 3481 ret = ath11k_wmi_pdev_non_srg_obss_bssid_enable_bitmap(ar, bitmap); 3482 if (ret) { 3483 ath11k_warn(ar->ab, 3484 "failed to set non_srg_bssid_en_bitmap pdev: %u\n", 3485 pdev_id); 3486 return ret; 3487 } 3488 3489 return 0; 3490 } 3491 3492 static bool ath11k_mac_supports_station_tpc(struct ath11k *ar, 3493 struct ath11k_vif *arvif, 3494 const struct cfg80211_chan_def *chandef) 3495 { 3496 return ath11k_wmi_supports_6ghz_cc_ext(ar) && 3497 test_bit(WMI_TLV_SERVICE_EXT_TPC_REG_SUPPORT, ar->ab->wmi_ab.svc_map) && 3498 arvif->vdev_type == WMI_VDEV_TYPE_STA && 3499 arvif->vdev_subtype == WMI_VDEV_SUBTYPE_NONE && 3500 chandef->chan && 3501 chandef->chan->band == NL80211_BAND_6GHZ; 3502 } 3503 3504 static void ath11k_mac_op_bss_info_changed(struct ieee80211_hw *hw, 3505 struct ieee80211_vif *vif, 3506 struct ieee80211_bss_conf *info, 3507 u64 changed) 3508 { 3509 struct ath11k *ar = hw->priv; 3510 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 3511 struct cfg80211_chan_def def; 3512 u32 param_id, param_value; 3513 enum nl80211_band band; 3514 u32 vdev_param; 3515 int mcast_rate; 3516 u32 preamble; 3517 u16 hw_value; 3518 u16 bitrate; 3519 int ret = 0; 3520 u8 rateidx; 3521 u32 rate, param; 3522 u32 ipv4_cnt; 3523 3524 mutex_lock(&ar->conf_mutex); 3525 3526 if (changed & BSS_CHANGED_BEACON_INT) { 3527 arvif->beacon_interval = info->beacon_int; 3528 3529 param_id = WMI_VDEV_PARAM_BEACON_INTERVAL; 3530 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 3531 param_id, 3532 arvif->beacon_interval); 3533 if (ret) 3534 ath11k_warn(ar->ab, "Failed to set beacon interval for VDEV: %d\n", 3535 arvif->vdev_id); 3536 else 3537 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 3538 "Beacon interval: %d set for VDEV: %d\n", 3539 arvif->beacon_interval, arvif->vdev_id); 3540 } 3541 3542 if (changed & BSS_CHANGED_BEACON) { 3543 param_id = WMI_PDEV_PARAM_BEACON_TX_MODE; 3544 param_value = WMI_BEACON_STAGGERED_MODE; 3545 ret = ath11k_wmi_pdev_set_param(ar, param_id, 3546 param_value, ar->pdev->pdev_id); 3547 if (ret) 3548 ath11k_warn(ar->ab, "Failed to set beacon mode for VDEV: %d\n", 3549 arvif->vdev_id); 3550 else 3551 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 3552 "Set staggered beacon mode for VDEV: %d\n", 3553 arvif->vdev_id); 3554 3555 if (!arvif->do_not_send_tmpl || !arvif->bcca_zero_sent) { 3556 ret = ath11k_mac_setup_bcn_tmpl(arvif); 3557 if (ret) 3558 ath11k_warn(ar->ab, "failed to update bcn template: %d\n", 3559 ret); 3560 } 3561 3562 if (arvif->bcca_zero_sent) 3563 arvif->do_not_send_tmpl = true; 3564 else 3565 arvif->do_not_send_tmpl = false; 3566 3567 if (vif->bss_conf.he_support) { 3568 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 3569 WMI_VDEV_PARAM_BA_MODE, 3570 WMI_BA_MODE_BUFFER_SIZE_256); 3571 if (ret) 3572 ath11k_warn(ar->ab, 3573 "failed to set BA BUFFER SIZE 256 for vdev: %d\n", 3574 arvif->vdev_id); 3575 else 3576 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 3577 "Set BA BUFFER SIZE 256 for VDEV: %d\n", 3578 arvif->vdev_id); 3579 } 3580 } 3581 3582 if (changed & (BSS_CHANGED_BEACON_INFO | BSS_CHANGED_BEACON)) { 3583 arvif->dtim_period = info->dtim_period; 3584 3585 param_id = WMI_VDEV_PARAM_DTIM_PERIOD; 3586 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 3587 param_id, 3588 arvif->dtim_period); 3589 3590 if (ret) 3591 ath11k_warn(ar->ab, "Failed to set dtim period for VDEV %d: %i\n", 3592 arvif->vdev_id, ret); 3593 else 3594 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 3595 "DTIM period: %d set for VDEV: %d\n", 3596 arvif->dtim_period, arvif->vdev_id); 3597 } 3598 3599 if (changed & BSS_CHANGED_SSID && 3600 vif->type == NL80211_IFTYPE_AP) { 3601 arvif->u.ap.ssid_len = vif->cfg.ssid_len; 3602 if (vif->cfg.ssid_len) 3603 memcpy(arvif->u.ap.ssid, vif->cfg.ssid, 3604 vif->cfg.ssid_len); 3605 arvif->u.ap.hidden_ssid = info->hidden_ssid; 3606 } 3607 3608 if (changed & BSS_CHANGED_BSSID && !is_zero_ether_addr(info->bssid)) 3609 ether_addr_copy(arvif->bssid, info->bssid); 3610 3611 if (changed & BSS_CHANGED_BEACON_ENABLED) { 3612 if (info->enable_beacon) 3613 ath11k_mac_set_he_txbf_conf(arvif); 3614 ath11k_control_beaconing(arvif, info); 3615 3616 if (arvif->is_up && vif->bss_conf.he_support && 3617 vif->bss_conf.he_oper.params) { 3618 param_id = WMI_VDEV_PARAM_HEOPS_0_31; 3619 param_value = vif->bss_conf.he_oper.params; 3620 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 3621 param_id, param_value); 3622 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 3623 "he oper param: %x set for VDEV: %d\n", 3624 param_value, arvif->vdev_id); 3625 3626 if (ret) 3627 ath11k_warn(ar->ab, "Failed to set he oper params %x for VDEV %d: %i\n", 3628 param_value, arvif->vdev_id, ret); 3629 } 3630 } 3631 3632 if (changed & BSS_CHANGED_ERP_CTS_PROT) { 3633 u32 cts_prot; 3634 3635 cts_prot = !!(info->use_cts_prot); 3636 param_id = WMI_VDEV_PARAM_PROTECTION_MODE; 3637 3638 if (arvif->is_started) { 3639 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 3640 param_id, cts_prot); 3641 if (ret) 3642 ath11k_warn(ar->ab, "Failed to set CTS prot for VDEV: %d\n", 3643 arvif->vdev_id); 3644 else 3645 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "Set CTS prot: %d for VDEV: %d\n", 3646 cts_prot, arvif->vdev_id); 3647 } else { 3648 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "defer protection mode setup, vdev is not ready yet\n"); 3649 } 3650 } 3651 3652 if (changed & BSS_CHANGED_ERP_SLOT) { 3653 u32 slottime; 3654 3655 if (info->use_short_slot) 3656 slottime = WMI_VDEV_SLOT_TIME_SHORT; /* 9us */ 3657 3658 else 3659 slottime = WMI_VDEV_SLOT_TIME_LONG; /* 20us */ 3660 3661 param_id = WMI_VDEV_PARAM_SLOT_TIME; 3662 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 3663 param_id, slottime); 3664 if (ret) 3665 ath11k_warn(ar->ab, "Failed to set erp slot for VDEV: %d\n", 3666 arvif->vdev_id); 3667 else 3668 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 3669 "Set slottime: %d for VDEV: %d\n", 3670 slottime, arvif->vdev_id); 3671 } 3672 3673 if (changed & BSS_CHANGED_ERP_PREAMBLE) { 3674 u32 preamble; 3675 3676 if (info->use_short_preamble) 3677 preamble = WMI_VDEV_PREAMBLE_SHORT; 3678 else 3679 preamble = WMI_VDEV_PREAMBLE_LONG; 3680 3681 param_id = WMI_VDEV_PARAM_PREAMBLE; 3682 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 3683 param_id, preamble); 3684 if (ret) 3685 ath11k_warn(ar->ab, "Failed to set preamble for VDEV: %d\n", 3686 arvif->vdev_id); 3687 else 3688 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 3689 "Set preamble: %d for VDEV: %d\n", 3690 preamble, arvif->vdev_id); 3691 } 3692 3693 if (changed & BSS_CHANGED_ASSOC) { 3694 if (vif->cfg.assoc) 3695 ath11k_bss_assoc(hw, vif, info); 3696 else 3697 ath11k_bss_disassoc(hw, vif); 3698 } 3699 3700 if (changed & BSS_CHANGED_TXPOWER) { 3701 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "vdev_id %i txpower %d\n", 3702 arvif->vdev_id, info->txpower); 3703 arvif->txpower = info->txpower; 3704 ath11k_mac_txpower_recalc(ar); 3705 } 3706 3707 if (changed & BSS_CHANGED_PS && 3708 ar->ab->hw_params.supports_sta_ps) { 3709 arvif->ps = vif->cfg.ps; 3710 3711 ret = ath11k_mac_config_ps(ar); 3712 if (ret) 3713 ath11k_warn(ar->ab, "failed to setup ps on vdev %i: %d\n", 3714 arvif->vdev_id, ret); 3715 } 3716 3717 if (changed & BSS_CHANGED_MCAST_RATE && 3718 !ath11k_mac_vif_chan(arvif->vif, &def)) { 3719 band = def.chan->band; 3720 mcast_rate = vif->bss_conf.mcast_rate[band]; 3721 3722 if (mcast_rate > 0) 3723 rateidx = mcast_rate - 1; 3724 else 3725 rateidx = ffs(vif->bss_conf.basic_rates) - 1; 3726 3727 if (ar->pdev->cap.supported_bands & WMI_HOST_WLAN_5G_CAP) 3728 rateidx += ATH11K_MAC_FIRST_OFDM_RATE_IDX; 3729 3730 bitrate = ath11k_legacy_rates[rateidx].bitrate; 3731 hw_value = ath11k_legacy_rates[rateidx].hw_value; 3732 3733 if (ath11k_mac_bitrate_is_cck(bitrate)) 3734 preamble = WMI_RATE_PREAMBLE_CCK; 3735 else 3736 preamble = WMI_RATE_PREAMBLE_OFDM; 3737 3738 rate = ATH11K_HW_RATE_CODE(hw_value, 0, preamble); 3739 3740 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 3741 "vdev %d mcast_rate %x\n", 3742 arvif->vdev_id, rate); 3743 3744 vdev_param = WMI_VDEV_PARAM_MCAST_DATA_RATE; 3745 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 3746 vdev_param, rate); 3747 if (ret) 3748 ath11k_warn(ar->ab, 3749 "failed to set mcast rate on vdev %i: %d\n", 3750 arvif->vdev_id, ret); 3751 3752 vdev_param = WMI_VDEV_PARAM_BCAST_DATA_RATE; 3753 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 3754 vdev_param, rate); 3755 if (ret) 3756 ath11k_warn(ar->ab, 3757 "failed to set bcast rate on vdev %i: %d\n", 3758 arvif->vdev_id, ret); 3759 } 3760 3761 if (changed & BSS_CHANGED_BASIC_RATES && 3762 !ath11k_mac_vif_chan(arvif->vif, &def)) 3763 ath11k_recalculate_mgmt_rate(ar, vif, &def); 3764 3765 if (changed & BSS_CHANGED_TWT) { 3766 struct wmi_twt_enable_params twt_params = {0}; 3767 3768 if (info->twt_requester || info->twt_responder) { 3769 ath11k_wmi_fill_default_twt_params(&twt_params); 3770 ath11k_wmi_send_twt_enable_cmd(ar, ar->pdev->pdev_id, 3771 &twt_params); 3772 } else { 3773 ath11k_wmi_send_twt_disable_cmd(ar, ar->pdev->pdev_id); 3774 } 3775 } 3776 3777 if (changed & BSS_CHANGED_HE_OBSS_PD) 3778 ath11k_mac_config_obss_pd(ar, &info->he_obss_pd); 3779 3780 if (changed & BSS_CHANGED_HE_BSS_COLOR) { 3781 if (vif->type == NL80211_IFTYPE_AP) { 3782 ret = ath11k_wmi_send_obss_color_collision_cfg_cmd( 3783 ar, arvif->vdev_id, info->he_bss_color.color, 3784 ATH11K_BSS_COLOR_COLLISION_DETECTION_AP_PERIOD_MS, 3785 info->he_bss_color.enabled); 3786 if (ret) 3787 ath11k_warn(ar->ab, "failed to set bss color collision on vdev %i: %d\n", 3788 arvif->vdev_id, ret); 3789 3790 param_id = WMI_VDEV_PARAM_BSS_COLOR; 3791 if (info->he_bss_color.enabled) 3792 param_value = info->he_bss_color.color << 3793 IEEE80211_HE_OPERATION_BSS_COLOR_OFFSET; 3794 else 3795 param_value = IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED; 3796 3797 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 3798 param_id, 3799 param_value); 3800 if (ret) 3801 ath11k_warn(ar->ab, 3802 "failed to set bss color param on vdev %i: %d\n", 3803 arvif->vdev_id, ret); 3804 3805 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 3806 "bss color param 0x%x set on vdev %i\n", 3807 param_value, arvif->vdev_id); 3808 } else if (vif->type == NL80211_IFTYPE_STATION) { 3809 ret = ath11k_wmi_send_bss_color_change_enable_cmd(ar, 3810 arvif->vdev_id, 3811 1); 3812 if (ret) 3813 ath11k_warn(ar->ab, "failed to enable bss color change on vdev %i: %d\n", 3814 arvif->vdev_id, ret); 3815 ret = ath11k_wmi_send_obss_color_collision_cfg_cmd( 3816 ar, arvif->vdev_id, 0, 3817 ATH11K_BSS_COLOR_COLLISION_DETECTION_STA_PERIOD_MS, 1); 3818 if (ret) 3819 ath11k_warn(ar->ab, "failed to set bss color collision on vdev %i: %d\n", 3820 arvif->vdev_id, ret); 3821 } 3822 } 3823 3824 if (changed & BSS_CHANGED_FTM_RESPONDER && 3825 arvif->ftm_responder != info->ftm_responder && 3826 test_bit(WMI_TLV_SERVICE_RTT, ar->ab->wmi_ab.svc_map) && 3827 (vif->type == NL80211_IFTYPE_AP || 3828 vif->type == NL80211_IFTYPE_MESH_POINT)) { 3829 arvif->ftm_responder = info->ftm_responder; 3830 param = WMI_VDEV_PARAM_ENABLE_DISABLE_RTT_RESPONDER_ROLE; 3831 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, param, 3832 arvif->ftm_responder); 3833 if (ret) 3834 ath11k_warn(ar->ab, "Failed to set ftm responder %i: %d\n", 3835 arvif->vdev_id, ret); 3836 } 3837 3838 if (changed & BSS_CHANGED_FILS_DISCOVERY || 3839 changed & BSS_CHANGED_UNSOL_BCAST_PROBE_RESP) 3840 ath11k_mac_fils_discovery(arvif, info); 3841 3842 if (changed & BSS_CHANGED_ARP_FILTER) { 3843 ipv4_cnt = min(vif->cfg.arp_addr_cnt, ATH11K_IPV4_MAX_COUNT); 3844 memcpy(arvif->arp_ns_offload.ipv4_addr, 3845 vif->cfg.arp_addr_list, 3846 ipv4_cnt * sizeof(u32)); 3847 memcpy(arvif->arp_ns_offload.mac_addr, vif->addr, ETH_ALEN); 3848 arvif->arp_ns_offload.ipv4_count = ipv4_cnt; 3849 3850 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "arp_addr_cnt %d vif->addr %pM, offload_addr %pI4\n", 3851 vif->cfg.arp_addr_cnt, 3852 vif->addr, arvif->arp_ns_offload.ipv4_addr); 3853 } 3854 3855 mutex_unlock(&ar->conf_mutex); 3856 } 3857 3858 void __ath11k_mac_scan_finish(struct ath11k *ar) 3859 { 3860 lockdep_assert_held(&ar->data_lock); 3861 3862 switch (ar->scan.state) { 3863 case ATH11K_SCAN_IDLE: 3864 break; 3865 case ATH11K_SCAN_RUNNING: 3866 case ATH11K_SCAN_ABORTING: 3867 if (ar->scan.is_roc && ar->scan.roc_notify) 3868 ieee80211_remain_on_channel_expired(ar->hw); 3869 fallthrough; 3870 case ATH11K_SCAN_STARTING: 3871 if (!ar->scan.is_roc) { 3872 struct cfg80211_scan_info info = { 3873 .aborted = ((ar->scan.state == 3874 ATH11K_SCAN_ABORTING) || 3875 (ar->scan.state == 3876 ATH11K_SCAN_STARTING)), 3877 }; 3878 3879 ieee80211_scan_completed(ar->hw, &info); 3880 } 3881 3882 ar->scan.state = ATH11K_SCAN_IDLE; 3883 ar->scan_channel = NULL; 3884 ar->scan.roc_freq = 0; 3885 cancel_delayed_work(&ar->scan.timeout); 3886 complete_all(&ar->scan.completed); 3887 break; 3888 } 3889 } 3890 3891 void ath11k_mac_scan_finish(struct ath11k *ar) 3892 { 3893 spin_lock_bh(&ar->data_lock); 3894 __ath11k_mac_scan_finish(ar); 3895 spin_unlock_bh(&ar->data_lock); 3896 } 3897 3898 static int ath11k_scan_stop(struct ath11k *ar) 3899 { 3900 struct scan_cancel_param arg = { 3901 .req_type = WLAN_SCAN_CANCEL_SINGLE, 3902 .scan_id = ATH11K_SCAN_ID, 3903 }; 3904 int ret; 3905 3906 lockdep_assert_held(&ar->conf_mutex); 3907 3908 /* TODO: Fill other STOP Params */ 3909 arg.pdev_id = ar->pdev->pdev_id; 3910 3911 ret = ath11k_wmi_send_scan_stop_cmd(ar, &arg); 3912 if (ret) { 3913 ath11k_warn(ar->ab, "failed to stop wmi scan: %d\n", ret); 3914 goto out; 3915 } 3916 3917 ret = wait_for_completion_timeout(&ar->scan.completed, 3 * HZ); 3918 if (ret == 0) { 3919 ath11k_warn(ar->ab, 3920 "failed to receive scan abort comple: timed out\n"); 3921 ret = -ETIMEDOUT; 3922 } else if (ret > 0) { 3923 ret = 0; 3924 } 3925 3926 out: 3927 /* Scan state should be updated upon scan completion but in case 3928 * firmware fails to deliver the event (for whatever reason) it is 3929 * desired to clean up scan state anyway. Firmware may have just 3930 * dropped the scan completion event delivery due to transport pipe 3931 * being overflown with data and/or it can recover on its own before 3932 * next scan request is submitted. 3933 */ 3934 spin_lock_bh(&ar->data_lock); 3935 if (ar->scan.state != ATH11K_SCAN_IDLE) 3936 __ath11k_mac_scan_finish(ar); 3937 spin_unlock_bh(&ar->data_lock); 3938 3939 return ret; 3940 } 3941 3942 static void ath11k_scan_abort(struct ath11k *ar) 3943 { 3944 int ret; 3945 3946 lockdep_assert_held(&ar->conf_mutex); 3947 3948 spin_lock_bh(&ar->data_lock); 3949 3950 switch (ar->scan.state) { 3951 case ATH11K_SCAN_IDLE: 3952 /* This can happen if timeout worker kicked in and called 3953 * abortion while scan completion was being processed. 3954 */ 3955 break; 3956 case ATH11K_SCAN_STARTING: 3957 case ATH11K_SCAN_ABORTING: 3958 ath11k_warn(ar->ab, "refusing scan abortion due to invalid scan state: %d\n", 3959 ar->scan.state); 3960 break; 3961 case ATH11K_SCAN_RUNNING: 3962 ar->scan.state = ATH11K_SCAN_ABORTING; 3963 spin_unlock_bh(&ar->data_lock); 3964 3965 ret = ath11k_scan_stop(ar); 3966 if (ret) 3967 ath11k_warn(ar->ab, "failed to abort scan: %d\n", ret); 3968 3969 spin_lock_bh(&ar->data_lock); 3970 break; 3971 } 3972 3973 spin_unlock_bh(&ar->data_lock); 3974 } 3975 3976 static void ath11k_scan_timeout_work(struct work_struct *work) 3977 { 3978 struct ath11k *ar = container_of(work, struct ath11k, 3979 scan.timeout.work); 3980 3981 mutex_lock(&ar->conf_mutex); 3982 ath11k_scan_abort(ar); 3983 mutex_unlock(&ar->conf_mutex); 3984 } 3985 3986 static int ath11k_start_scan(struct ath11k *ar, 3987 struct scan_req_params *arg) 3988 { 3989 int ret; 3990 unsigned long timeout = 1 * HZ; 3991 3992 lockdep_assert_held(&ar->conf_mutex); 3993 3994 if (ath11k_spectral_get_mode(ar) == ATH11K_SPECTRAL_BACKGROUND) 3995 ath11k_spectral_reset_buffer(ar); 3996 3997 ret = ath11k_wmi_send_scan_start_cmd(ar, arg); 3998 if (ret) 3999 return ret; 4000 4001 if (test_bit(WMI_TLV_SERVICE_11D_OFFLOAD, ar->ab->wmi_ab.svc_map)) { 4002 timeout = 5 * HZ; 4003 4004 if (ar->supports_6ghz) 4005 timeout += 5 * HZ; 4006 } 4007 4008 ret = wait_for_completion_timeout(&ar->scan.started, timeout); 4009 if (ret == 0) { 4010 ret = ath11k_scan_stop(ar); 4011 if (ret) 4012 ath11k_warn(ar->ab, "failed to stop scan: %d\n", ret); 4013 4014 return -ETIMEDOUT; 4015 } 4016 4017 /* If we failed to start the scan, return error code at 4018 * this point. This is probably due to some issue in the 4019 * firmware, but no need to wedge the driver due to that... 4020 */ 4021 spin_lock_bh(&ar->data_lock); 4022 if (ar->scan.state == ATH11K_SCAN_IDLE) { 4023 spin_unlock_bh(&ar->data_lock); 4024 return -EINVAL; 4025 } 4026 spin_unlock_bh(&ar->data_lock); 4027 4028 return 0; 4029 } 4030 4031 static int ath11k_mac_op_hw_scan(struct ieee80211_hw *hw, 4032 struct ieee80211_vif *vif, 4033 struct ieee80211_scan_request *hw_req) 4034 { 4035 struct ath11k *ar = hw->priv; 4036 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 4037 struct cfg80211_scan_request *req = &hw_req->req; 4038 struct scan_req_params *arg = NULL; 4039 int ret = 0; 4040 int i; 4041 u32 scan_timeout; 4042 4043 /* Firmwares advertising the support of triggering 11D algorithm 4044 * on the scan results of a regular scan expects driver to send 4045 * WMI_11D_SCAN_START_CMDID before sending WMI_START_SCAN_CMDID. 4046 * With this feature, separate 11D scan can be avoided since 4047 * regdomain can be determined with the scan results of the 4048 * regular scan. 4049 */ 4050 if (ar->state_11d == ATH11K_11D_PREPARING && 4051 test_bit(WMI_TLV_SERVICE_SUPPORT_11D_FOR_HOST_SCAN, 4052 ar->ab->wmi_ab.svc_map)) 4053 ath11k_mac_11d_scan_start(ar, arvif->vdev_id); 4054 4055 mutex_lock(&ar->conf_mutex); 4056 4057 spin_lock_bh(&ar->data_lock); 4058 switch (ar->scan.state) { 4059 case ATH11K_SCAN_IDLE: 4060 reinit_completion(&ar->scan.started); 4061 reinit_completion(&ar->scan.completed); 4062 ar->scan.state = ATH11K_SCAN_STARTING; 4063 ar->scan.is_roc = false; 4064 ar->scan.vdev_id = arvif->vdev_id; 4065 ret = 0; 4066 break; 4067 case ATH11K_SCAN_STARTING: 4068 case ATH11K_SCAN_RUNNING: 4069 case ATH11K_SCAN_ABORTING: 4070 ret = -EBUSY; 4071 break; 4072 } 4073 spin_unlock_bh(&ar->data_lock); 4074 4075 if (ret) 4076 goto exit; 4077 4078 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 4079 4080 if (!arg) { 4081 ret = -ENOMEM; 4082 goto exit; 4083 } 4084 4085 ath11k_wmi_start_scan_init(ar, arg); 4086 arg->vdev_id = arvif->vdev_id; 4087 arg->scan_id = ATH11K_SCAN_ID; 4088 4089 if (ar->ab->hw_params.single_pdev_only) 4090 arg->scan_f_filter_prb_req = 1; 4091 4092 if (req->ie_len) { 4093 arg->extraie.ptr = kmemdup(req->ie, req->ie_len, GFP_KERNEL); 4094 if (!arg->extraie.ptr) { 4095 ret = -ENOMEM; 4096 goto exit; 4097 } 4098 arg->extraie.len = req->ie_len; 4099 } 4100 4101 if (req->n_ssids) { 4102 arg->num_ssids = req->n_ssids; 4103 for (i = 0; i < arg->num_ssids; i++) { 4104 arg->ssid[i].length = req->ssids[i].ssid_len; 4105 memcpy(&arg->ssid[i].ssid, req->ssids[i].ssid, 4106 req->ssids[i].ssid_len); 4107 } 4108 } else { 4109 arg->scan_f_passive = 1; 4110 } 4111 4112 if (req->n_channels) { 4113 arg->num_chan = req->n_channels; 4114 arg->chan_list = kcalloc(arg->num_chan, sizeof(*arg->chan_list), 4115 GFP_KERNEL); 4116 4117 if (!arg->chan_list) { 4118 ret = -ENOMEM; 4119 goto exit; 4120 } 4121 4122 for (i = 0; i < arg->num_chan; i++) { 4123 if (test_bit(WMI_TLV_SERVICE_SCAN_CONFIG_PER_CHANNEL, 4124 ar->ab->wmi_ab.svc_map)) { 4125 arg->chan_list[i] = 4126 u32_encode_bits(req->channels[i]->center_freq, 4127 WMI_SCAN_CONFIG_PER_CHANNEL_MASK); 4128 4129 /* If NL80211_SCAN_FLAG_COLOCATED_6GHZ is set in scan 4130 * flags, then scan all PSC channels in 6 GHz band and 4131 * those non-PSC channels where RNR IE is found during 4132 * the legacy 2.4/5 GHz scan. 4133 * If NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set, 4134 * then all channels in 6 GHz will be scanned. 4135 */ 4136 if (req->channels[i]->band == NL80211_BAND_6GHZ && 4137 req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ && 4138 !cfg80211_channel_is_psc(req->channels[i])) 4139 arg->chan_list[i] |= 4140 WMI_SCAN_CH_FLAG_SCAN_ONLY_IF_RNR_FOUND; 4141 } else { 4142 arg->chan_list[i] = req->channels[i]->center_freq; 4143 } 4144 } 4145 } 4146 4147 if (req->flags & NL80211_SCAN_FLAG_RANDOM_ADDR) { 4148 arg->scan_f_add_spoofed_mac_in_probe = 1; 4149 ether_addr_copy(arg->mac_addr.addr, req->mac_addr); 4150 ether_addr_copy(arg->mac_mask.addr, req->mac_addr_mask); 4151 } 4152 4153 /* if duration is set, default dwell times will be overwritten */ 4154 if (req->duration) { 4155 arg->dwell_time_active = req->duration; 4156 arg->dwell_time_active_2g = req->duration; 4157 arg->dwell_time_active_6g = req->duration; 4158 arg->dwell_time_passive = req->duration; 4159 arg->dwell_time_passive_6g = req->duration; 4160 arg->burst_duration = req->duration; 4161 4162 scan_timeout = min_t(u32, arg->max_rest_time * 4163 (arg->num_chan - 1) + (req->duration + 4164 ATH11K_SCAN_CHANNEL_SWITCH_WMI_EVT_OVERHEAD) * 4165 arg->num_chan, arg->max_scan_time); 4166 } else { 4167 scan_timeout = arg->max_scan_time; 4168 } 4169 4170 /* Add a margin to account for event/command processing */ 4171 scan_timeout += ATH11K_MAC_SCAN_CMD_EVT_OVERHEAD; 4172 4173 ret = ath11k_start_scan(ar, arg); 4174 if (ret) { 4175 ath11k_warn(ar->ab, "failed to start hw scan: %d\n", ret); 4176 spin_lock_bh(&ar->data_lock); 4177 ar->scan.state = ATH11K_SCAN_IDLE; 4178 spin_unlock_bh(&ar->data_lock); 4179 } 4180 4181 ieee80211_queue_delayed_work(ar->hw, &ar->scan.timeout, 4182 msecs_to_jiffies(scan_timeout)); 4183 4184 exit: 4185 if (arg) { 4186 kfree(arg->chan_list); 4187 kfree(arg->extraie.ptr); 4188 kfree(arg); 4189 } 4190 4191 mutex_unlock(&ar->conf_mutex); 4192 4193 if (ar->state_11d == ATH11K_11D_PREPARING) 4194 ath11k_mac_11d_scan_start(ar, arvif->vdev_id); 4195 4196 return ret; 4197 } 4198 4199 static void ath11k_mac_op_cancel_hw_scan(struct ieee80211_hw *hw, 4200 struct ieee80211_vif *vif) 4201 { 4202 struct ath11k *ar = hw->priv; 4203 4204 mutex_lock(&ar->conf_mutex); 4205 ath11k_scan_abort(ar); 4206 mutex_unlock(&ar->conf_mutex); 4207 4208 cancel_delayed_work_sync(&ar->scan.timeout); 4209 } 4210 4211 static int ath11k_install_key(struct ath11k_vif *arvif, 4212 struct ieee80211_key_conf *key, 4213 enum set_key_cmd cmd, 4214 const u8 *macaddr, u32 flags) 4215 { 4216 int ret; 4217 struct ath11k *ar = arvif->ar; 4218 struct wmi_vdev_install_key_arg arg = { 4219 .vdev_id = arvif->vdev_id, 4220 .key_idx = key->keyidx, 4221 .key_len = key->keylen, 4222 .key_data = key->key, 4223 .key_flags = flags, 4224 .macaddr = macaddr, 4225 }; 4226 4227 lockdep_assert_held(&arvif->ar->conf_mutex); 4228 4229 reinit_completion(&ar->install_key_done); 4230 4231 if (test_bit(ATH11K_FLAG_HW_CRYPTO_DISABLED, &ar->ab->dev_flags)) 4232 return 0; 4233 4234 if (cmd == DISABLE_KEY) { 4235 arg.key_cipher = WMI_CIPHER_NONE; 4236 arg.key_data = NULL; 4237 goto install; 4238 } 4239 4240 switch (key->cipher) { 4241 case WLAN_CIPHER_SUITE_CCMP: 4242 case WLAN_CIPHER_SUITE_CCMP_256: 4243 arg.key_cipher = WMI_CIPHER_AES_CCM; 4244 /* TODO: Re-check if flag is valid */ 4245 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV_MGMT; 4246 break; 4247 case WLAN_CIPHER_SUITE_TKIP: 4248 arg.key_cipher = WMI_CIPHER_TKIP; 4249 arg.key_txmic_len = 8; 4250 arg.key_rxmic_len = 8; 4251 break; 4252 case WLAN_CIPHER_SUITE_GCMP: 4253 case WLAN_CIPHER_SUITE_GCMP_256: 4254 arg.key_cipher = WMI_CIPHER_AES_GCM; 4255 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV_MGMT; 4256 break; 4257 default: 4258 ath11k_warn(ar->ab, "cipher %d is not supported\n", key->cipher); 4259 return -EOPNOTSUPP; 4260 } 4261 4262 if (test_bit(ATH11K_FLAG_RAW_MODE, &ar->ab->dev_flags)) 4263 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV | 4264 IEEE80211_KEY_FLAG_RESERVE_TAILROOM; 4265 4266 install: 4267 ret = ath11k_wmi_vdev_install_key(arvif->ar, &arg); 4268 4269 if (ret) 4270 return ret; 4271 4272 if (!wait_for_completion_timeout(&ar->install_key_done, 1 * HZ)) 4273 return -ETIMEDOUT; 4274 4275 return ar->install_key_status ? -EINVAL : 0; 4276 } 4277 4278 static int ath11k_clear_peer_keys(struct ath11k_vif *arvif, 4279 const u8 *addr) 4280 { 4281 struct ath11k *ar = arvif->ar; 4282 struct ath11k_base *ab = ar->ab; 4283 struct ath11k_peer *peer; 4284 int first_errno = 0; 4285 int ret; 4286 int i; 4287 u32 flags = 0; 4288 4289 lockdep_assert_held(&ar->conf_mutex); 4290 4291 spin_lock_bh(&ab->base_lock); 4292 peer = ath11k_peer_find(ab, arvif->vdev_id, addr); 4293 spin_unlock_bh(&ab->base_lock); 4294 4295 if (!peer) 4296 return -ENOENT; 4297 4298 for (i = 0; i < ARRAY_SIZE(peer->keys); i++) { 4299 if (!peer->keys[i]) 4300 continue; 4301 4302 /* key flags are not required to delete the key */ 4303 ret = ath11k_install_key(arvif, peer->keys[i], 4304 DISABLE_KEY, addr, flags); 4305 if (ret < 0 && first_errno == 0) 4306 first_errno = ret; 4307 4308 if (ret < 0) 4309 ath11k_warn(ab, "failed to remove peer key %d: %d\n", 4310 i, ret); 4311 4312 spin_lock_bh(&ab->base_lock); 4313 peer->keys[i] = NULL; 4314 spin_unlock_bh(&ab->base_lock); 4315 } 4316 4317 return first_errno; 4318 } 4319 4320 static int ath11k_mac_op_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd, 4321 struct ieee80211_vif *vif, struct ieee80211_sta *sta, 4322 struct ieee80211_key_conf *key) 4323 { 4324 struct ath11k *ar = hw->priv; 4325 struct ath11k_base *ab = ar->ab; 4326 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 4327 struct ath11k_peer *peer; 4328 struct ath11k_sta *arsta; 4329 const u8 *peer_addr; 4330 int ret = 0; 4331 u32 flags = 0; 4332 4333 /* BIP needs to be done in software */ 4334 if (key->cipher == WLAN_CIPHER_SUITE_AES_CMAC || 4335 key->cipher == WLAN_CIPHER_SUITE_BIP_GMAC_128 || 4336 key->cipher == WLAN_CIPHER_SUITE_BIP_GMAC_256 || 4337 key->cipher == WLAN_CIPHER_SUITE_BIP_CMAC_256) 4338 return 1; 4339 4340 if (test_bit(ATH11K_FLAG_HW_CRYPTO_DISABLED, &ar->ab->dev_flags)) 4341 return 1; 4342 4343 if (key->keyidx > WMI_MAX_KEY_INDEX) 4344 return -ENOSPC; 4345 4346 mutex_lock(&ar->conf_mutex); 4347 4348 if (sta) 4349 peer_addr = sta->addr; 4350 else if (arvif->vdev_type == WMI_VDEV_TYPE_STA) 4351 peer_addr = vif->bss_conf.bssid; 4352 else 4353 peer_addr = vif->addr; 4354 4355 key->hw_key_idx = key->keyidx; 4356 4357 /* the peer should not disappear in mid-way (unless FW goes awry) since 4358 * we already hold conf_mutex. we just make sure its there now. 4359 */ 4360 spin_lock_bh(&ab->base_lock); 4361 peer = ath11k_peer_find(ab, arvif->vdev_id, peer_addr); 4362 4363 /* flush the fragments cache during key (re)install to 4364 * ensure all frags in the new frag list belong to the same key. 4365 */ 4366 if (peer && sta && cmd == SET_KEY) 4367 ath11k_peer_frags_flush(ar, peer); 4368 spin_unlock_bh(&ab->base_lock); 4369 4370 if (!peer) { 4371 if (cmd == SET_KEY) { 4372 ath11k_warn(ab, "cannot install key for non-existent peer %pM\n", 4373 peer_addr); 4374 ret = -EOPNOTSUPP; 4375 goto exit; 4376 } else { 4377 /* if the peer doesn't exist there is no key to disable 4378 * anymore 4379 */ 4380 goto exit; 4381 } 4382 } 4383 4384 if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE) 4385 flags |= WMI_KEY_PAIRWISE; 4386 else 4387 flags |= WMI_KEY_GROUP; 4388 4389 ret = ath11k_install_key(arvif, key, cmd, peer_addr, flags); 4390 if (ret) { 4391 ath11k_warn(ab, "ath11k_install_key failed (%d)\n", ret); 4392 goto exit; 4393 } 4394 4395 ret = ath11k_dp_peer_rx_pn_replay_config(arvif, peer_addr, cmd, key); 4396 if (ret) { 4397 ath11k_warn(ab, "failed to offload PN replay detection %d\n", ret); 4398 goto exit; 4399 } 4400 4401 spin_lock_bh(&ab->base_lock); 4402 peer = ath11k_peer_find(ab, arvif->vdev_id, peer_addr); 4403 if (peer && cmd == SET_KEY) { 4404 peer->keys[key->keyidx] = key; 4405 if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE) { 4406 peer->ucast_keyidx = key->keyidx; 4407 peer->sec_type = ath11k_dp_tx_get_encrypt_type(key->cipher); 4408 } else { 4409 peer->mcast_keyidx = key->keyidx; 4410 peer->sec_type_grp = ath11k_dp_tx_get_encrypt_type(key->cipher); 4411 } 4412 } else if (peer && cmd == DISABLE_KEY) { 4413 peer->keys[key->keyidx] = NULL; 4414 if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE) 4415 peer->ucast_keyidx = 0; 4416 else 4417 peer->mcast_keyidx = 0; 4418 } else if (!peer) 4419 /* impossible unless FW goes crazy */ 4420 ath11k_warn(ab, "peer %pM disappeared!\n", peer_addr); 4421 4422 if (sta) { 4423 arsta = ath11k_sta_to_arsta(sta); 4424 4425 switch (key->cipher) { 4426 case WLAN_CIPHER_SUITE_TKIP: 4427 case WLAN_CIPHER_SUITE_CCMP: 4428 case WLAN_CIPHER_SUITE_CCMP_256: 4429 case WLAN_CIPHER_SUITE_GCMP: 4430 case WLAN_CIPHER_SUITE_GCMP_256: 4431 if (cmd == SET_KEY) 4432 arsta->pn_type = HAL_PN_TYPE_WPA; 4433 else 4434 arsta->pn_type = HAL_PN_TYPE_NONE; 4435 break; 4436 default: 4437 arsta->pn_type = HAL_PN_TYPE_NONE; 4438 break; 4439 } 4440 } 4441 4442 spin_unlock_bh(&ab->base_lock); 4443 4444 exit: 4445 mutex_unlock(&ar->conf_mutex); 4446 return ret; 4447 } 4448 4449 static int 4450 ath11k_mac_bitrate_mask_num_ht_rates(struct ath11k *ar, 4451 enum nl80211_band band, 4452 const struct cfg80211_bitrate_mask *mask) 4453 { 4454 int num_rates = 0; 4455 int i; 4456 4457 for (i = 0; i < ARRAY_SIZE(mask->control[band].ht_mcs); i++) 4458 num_rates += hweight8(mask->control[band].ht_mcs[i]); 4459 4460 return num_rates; 4461 } 4462 4463 static int 4464 ath11k_mac_bitrate_mask_num_vht_rates(struct ath11k *ar, 4465 enum nl80211_band band, 4466 const struct cfg80211_bitrate_mask *mask) 4467 { 4468 int num_rates = 0; 4469 int i; 4470 4471 for (i = 0; i < ARRAY_SIZE(mask->control[band].vht_mcs); i++) 4472 num_rates += hweight16(mask->control[band].vht_mcs[i]); 4473 4474 return num_rates; 4475 } 4476 4477 static int 4478 ath11k_mac_bitrate_mask_num_he_rates(struct ath11k *ar, 4479 enum nl80211_band band, 4480 const struct cfg80211_bitrate_mask *mask) 4481 { 4482 int num_rates = 0; 4483 int i; 4484 4485 for (i = 0; i < ARRAY_SIZE(mask->control[band].he_mcs); i++) 4486 num_rates += hweight16(mask->control[band].he_mcs[i]); 4487 4488 return num_rates; 4489 } 4490 4491 static int 4492 ath11k_mac_set_peer_vht_fixed_rate(struct ath11k_vif *arvif, 4493 struct ieee80211_sta *sta, 4494 const struct cfg80211_bitrate_mask *mask, 4495 enum nl80211_band band) 4496 { 4497 struct ath11k *ar = arvif->ar; 4498 u8 vht_rate, nss; 4499 u32 rate_code; 4500 int ret, i; 4501 4502 lockdep_assert_held(&ar->conf_mutex); 4503 4504 nss = 0; 4505 4506 for (i = 0; i < ARRAY_SIZE(mask->control[band].vht_mcs); i++) { 4507 if (hweight16(mask->control[band].vht_mcs[i]) == 1) { 4508 nss = i + 1; 4509 vht_rate = ffs(mask->control[band].vht_mcs[i]) - 1; 4510 } 4511 } 4512 4513 if (!nss) { 4514 ath11k_warn(ar->ab, "No single VHT Fixed rate found to set for %pM", 4515 sta->addr); 4516 return -EINVAL; 4517 } 4518 4519 /* Avoid updating invalid nss as fixed rate*/ 4520 if (nss > sta->deflink.rx_nss) 4521 return -EINVAL; 4522 4523 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 4524 "Setting Fixed VHT Rate for peer %pM. Device will not switch to any other selected rates", 4525 sta->addr); 4526 4527 rate_code = ATH11K_HW_RATE_CODE(vht_rate, nss - 1, 4528 WMI_RATE_PREAMBLE_VHT); 4529 ret = ath11k_wmi_set_peer_param(ar, sta->addr, 4530 arvif->vdev_id, 4531 WMI_PEER_PARAM_FIXED_RATE, 4532 rate_code); 4533 if (ret) 4534 ath11k_warn(ar->ab, 4535 "failed to update STA %pM Fixed Rate %d: %d\n", 4536 sta->addr, rate_code, ret); 4537 4538 return ret; 4539 } 4540 4541 static int 4542 ath11k_mac_set_peer_he_fixed_rate(struct ath11k_vif *arvif, 4543 struct ieee80211_sta *sta, 4544 const struct cfg80211_bitrate_mask *mask, 4545 enum nl80211_band band) 4546 { 4547 struct ath11k *ar = arvif->ar; 4548 u8 he_rate, nss; 4549 u32 rate_code; 4550 int ret, i; 4551 4552 lockdep_assert_held(&ar->conf_mutex); 4553 4554 nss = 0; 4555 4556 for (i = 0; i < ARRAY_SIZE(mask->control[band].he_mcs); i++) { 4557 if (hweight16(mask->control[band].he_mcs[i]) == 1) { 4558 nss = i + 1; 4559 he_rate = ffs(mask->control[band].he_mcs[i]) - 1; 4560 } 4561 } 4562 4563 if (!nss) { 4564 ath11k_warn(ar->ab, "No single he fixed rate found to set for %pM", 4565 sta->addr); 4566 return -EINVAL; 4567 } 4568 4569 /* Avoid updating invalid nss as fixed rate */ 4570 if (nss > sta->deflink.rx_nss) 4571 return -EINVAL; 4572 4573 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 4574 "setting fixed he rate for peer %pM, device will not switch to any other selected rates", 4575 sta->addr); 4576 4577 rate_code = ATH11K_HW_RATE_CODE(he_rate, nss - 1, 4578 WMI_RATE_PREAMBLE_HE); 4579 4580 ret = ath11k_wmi_set_peer_param(ar, sta->addr, 4581 arvif->vdev_id, 4582 WMI_PEER_PARAM_FIXED_RATE, 4583 rate_code); 4584 if (ret) 4585 ath11k_warn(ar->ab, 4586 "failed to update sta %pM fixed rate %d: %d\n", 4587 sta->addr, rate_code, ret); 4588 4589 return ret; 4590 } 4591 4592 static int 4593 ath11k_mac_set_peer_ht_fixed_rate(struct ath11k_vif *arvif, 4594 struct ieee80211_sta *sta, 4595 const struct cfg80211_bitrate_mask *mask, 4596 enum nl80211_band band) 4597 { 4598 struct ath11k *ar = arvif->ar; 4599 u8 ht_rate, nss = 0; 4600 u32 rate_code; 4601 int ret, i; 4602 4603 lockdep_assert_held(&ar->conf_mutex); 4604 4605 for (i = 0; i < ARRAY_SIZE(mask->control[band].ht_mcs); i++) { 4606 if (hweight8(mask->control[band].ht_mcs[i]) == 1) { 4607 nss = i + 1; 4608 ht_rate = ffs(mask->control[band].ht_mcs[i]) - 1; 4609 } 4610 } 4611 4612 if (!nss) { 4613 ath11k_warn(ar->ab, "No single HT Fixed rate found to set for %pM", 4614 sta->addr); 4615 return -EINVAL; 4616 } 4617 4618 /* Avoid updating invalid nss as fixed rate*/ 4619 if (nss > sta->deflink.rx_nss) 4620 return -EINVAL; 4621 4622 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 4623 "Setting Fixed HT Rate for peer %pM. Device will not switch to any other selected rates", 4624 sta->addr); 4625 4626 rate_code = ATH11K_HW_RATE_CODE(ht_rate, nss - 1, 4627 WMI_RATE_PREAMBLE_HT); 4628 ret = ath11k_wmi_set_peer_param(ar, sta->addr, 4629 arvif->vdev_id, 4630 WMI_PEER_PARAM_FIXED_RATE, 4631 rate_code); 4632 if (ret) 4633 ath11k_warn(ar->ab, 4634 "failed to update STA %pM HT Fixed Rate %d: %d\n", 4635 sta->addr, rate_code, ret); 4636 4637 return ret; 4638 } 4639 4640 static int ath11k_station_assoc(struct ath11k *ar, 4641 struct ieee80211_vif *vif, 4642 struct ieee80211_sta *sta, 4643 bool reassoc) 4644 { 4645 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 4646 struct peer_assoc_params peer_arg; 4647 int ret = 0; 4648 struct cfg80211_chan_def def; 4649 enum nl80211_band band; 4650 struct cfg80211_bitrate_mask *mask; 4651 u8 num_ht_rates, num_vht_rates, num_he_rates; 4652 4653 lockdep_assert_held(&ar->conf_mutex); 4654 4655 if (WARN_ON(ath11k_mac_vif_chan(vif, &def))) 4656 return -EPERM; 4657 4658 band = def.chan->band; 4659 mask = &arvif->bitrate_mask; 4660 4661 ath11k_peer_assoc_prepare(ar, vif, sta, &peer_arg, reassoc); 4662 4663 peer_arg.is_assoc = true; 4664 ret = ath11k_wmi_send_peer_assoc_cmd(ar, &peer_arg); 4665 if (ret) { 4666 ath11k_warn(ar->ab, "failed to run peer assoc for STA %pM vdev %i: %d\n", 4667 sta->addr, arvif->vdev_id, ret); 4668 return ret; 4669 } 4670 4671 if (!wait_for_completion_timeout(&ar->peer_assoc_done, 1 * HZ)) { 4672 ath11k_warn(ar->ab, "failed to get peer assoc conf event for %pM vdev %i\n", 4673 sta->addr, arvif->vdev_id); 4674 return -ETIMEDOUT; 4675 } 4676 4677 num_vht_rates = ath11k_mac_bitrate_mask_num_vht_rates(ar, band, mask); 4678 num_he_rates = ath11k_mac_bitrate_mask_num_he_rates(ar, band, mask); 4679 num_ht_rates = ath11k_mac_bitrate_mask_num_ht_rates(ar, band, mask); 4680 4681 /* If single VHT/HE rate is configured (by set_bitrate_mask()), 4682 * peer_assoc will disable VHT/HE. This is now enabled by a peer specific 4683 * fixed param. 4684 * Note that all other rates and NSS will be disabled for this peer. 4685 */ 4686 if (sta->deflink.vht_cap.vht_supported && num_vht_rates == 1) { 4687 ret = ath11k_mac_set_peer_vht_fixed_rate(arvif, sta, mask, 4688 band); 4689 if (ret) 4690 return ret; 4691 } else if (sta->deflink.he_cap.has_he && num_he_rates == 1) { 4692 ret = ath11k_mac_set_peer_he_fixed_rate(arvif, sta, mask, 4693 band); 4694 if (ret) 4695 return ret; 4696 } else if (sta->deflink.ht_cap.ht_supported && num_ht_rates == 1) { 4697 ret = ath11k_mac_set_peer_ht_fixed_rate(arvif, sta, mask, 4698 band); 4699 if (ret) 4700 return ret; 4701 } 4702 4703 /* Re-assoc is run only to update supported rates for given station. It 4704 * doesn't make much sense to reconfigure the peer completely. 4705 */ 4706 if (reassoc) 4707 return 0; 4708 4709 ret = ath11k_setup_peer_smps(ar, arvif, sta->addr, 4710 &sta->deflink.ht_cap, 4711 le16_to_cpu(sta->deflink.he_6ghz_capa.capa)); 4712 if (ret) { 4713 ath11k_warn(ar->ab, "failed to setup peer SMPS for vdev %d: %d\n", 4714 arvif->vdev_id, ret); 4715 return ret; 4716 } 4717 4718 if (!sta->wme) { 4719 arvif->num_legacy_stations++; 4720 ret = ath11k_recalc_rtscts_prot(arvif); 4721 if (ret) 4722 return ret; 4723 } 4724 4725 if (sta->wme && sta->uapsd_queues) { 4726 ret = ath11k_peer_assoc_qos_ap(ar, arvif, sta); 4727 if (ret) { 4728 ath11k_warn(ar->ab, "failed to set qos params for STA %pM for vdev %i: %d\n", 4729 sta->addr, arvif->vdev_id, ret); 4730 return ret; 4731 } 4732 } 4733 4734 return 0; 4735 } 4736 4737 static int ath11k_station_disassoc(struct ath11k *ar, 4738 struct ieee80211_vif *vif, 4739 struct ieee80211_sta *sta) 4740 { 4741 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 4742 int ret = 0; 4743 4744 lockdep_assert_held(&ar->conf_mutex); 4745 4746 if (!sta->wme) { 4747 arvif->num_legacy_stations--; 4748 ret = ath11k_recalc_rtscts_prot(arvif); 4749 if (ret) 4750 return ret; 4751 } 4752 4753 ret = ath11k_clear_peer_keys(arvif, sta->addr); 4754 if (ret) { 4755 ath11k_warn(ar->ab, "failed to clear all peer keys for vdev %i: %d\n", 4756 arvif->vdev_id, ret); 4757 return ret; 4758 } 4759 return 0; 4760 } 4761 4762 static u32 ath11k_mac_max_nss(const u8 *ht_mcs_mask, const u16 *vht_mcs_mask, 4763 const u16 *he_mcs_mask) 4764 { 4765 return max3(ath11k_mac_max_ht_nss(ht_mcs_mask), 4766 ath11k_mac_max_vht_nss(vht_mcs_mask), 4767 ath11k_mac_max_he_nss(he_mcs_mask)); 4768 } 4769 4770 static void ath11k_sta_rc_update_wk(struct work_struct *wk) 4771 { 4772 struct ath11k *ar; 4773 struct ath11k_vif *arvif; 4774 struct ath11k_sta *arsta; 4775 struct ieee80211_sta *sta; 4776 struct cfg80211_chan_def def; 4777 enum nl80211_band band; 4778 const u8 *ht_mcs_mask; 4779 const u16 *vht_mcs_mask; 4780 const u16 *he_mcs_mask; 4781 u32 changed, bw, nss, smps, bw_prev; 4782 int err, num_ht_rates, num_vht_rates, num_he_rates; 4783 const struct cfg80211_bitrate_mask *mask; 4784 struct peer_assoc_params peer_arg; 4785 enum wmi_phy_mode peer_phymode; 4786 4787 arsta = container_of(wk, struct ath11k_sta, update_wk); 4788 sta = container_of((void *)arsta, struct ieee80211_sta, drv_priv); 4789 arvif = arsta->arvif; 4790 ar = arvif->ar; 4791 4792 if (WARN_ON(ath11k_mac_vif_chan(arvif->vif, &def))) 4793 return; 4794 4795 band = def.chan->band; 4796 ht_mcs_mask = arvif->bitrate_mask.control[band].ht_mcs; 4797 vht_mcs_mask = arvif->bitrate_mask.control[band].vht_mcs; 4798 he_mcs_mask = arvif->bitrate_mask.control[band].he_mcs; 4799 4800 spin_lock_bh(&ar->data_lock); 4801 4802 changed = arsta->changed; 4803 arsta->changed = 0; 4804 4805 bw = arsta->bw; 4806 bw_prev = arsta->bw_prev; 4807 nss = arsta->nss; 4808 smps = arsta->smps; 4809 4810 spin_unlock_bh(&ar->data_lock); 4811 4812 mutex_lock(&ar->conf_mutex); 4813 4814 nss = max_t(u32, 1, nss); 4815 nss = min(nss, ath11k_mac_max_nss(ht_mcs_mask, vht_mcs_mask, he_mcs_mask)); 4816 4817 if (changed & IEEE80211_RC_BW_CHANGED) { 4818 /* Get the peer phymode */ 4819 ath11k_peer_assoc_h_phymode(ar, arvif->vif, sta, &peer_arg); 4820 peer_phymode = peer_arg.peer_phymode; 4821 4822 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "update sta %pM peer bw %d phymode %d\n", 4823 sta->addr, bw, peer_phymode); 4824 4825 if (bw > bw_prev) { 4826 /* BW is upgraded. In this case we send WMI_PEER_PHYMODE 4827 * followed by WMI_PEER_CHWIDTH 4828 */ 4829 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "BW upgrade for sta %pM new BW %d, old BW %d\n", 4830 sta->addr, bw, bw_prev); 4831 4832 err = ath11k_wmi_set_peer_param(ar, sta->addr, arvif->vdev_id, 4833 WMI_PEER_PHYMODE, peer_phymode); 4834 4835 if (err) { 4836 ath11k_warn(ar->ab, "failed to update STA %pM peer phymode %d: %d\n", 4837 sta->addr, peer_phymode, err); 4838 goto err_rc_bw_changed; 4839 } 4840 4841 err = ath11k_wmi_set_peer_param(ar, sta->addr, arvif->vdev_id, 4842 WMI_PEER_CHWIDTH, bw); 4843 4844 if (err) 4845 ath11k_warn(ar->ab, "failed to update STA %pM peer bw %d: %d\n", 4846 sta->addr, bw, err); 4847 } else { 4848 /* BW is downgraded. In this case we send WMI_PEER_CHWIDTH 4849 * followed by WMI_PEER_PHYMODE 4850 */ 4851 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "BW downgrade for sta %pM new BW %d,old BW %d\n", 4852 sta->addr, bw, bw_prev); 4853 4854 err = ath11k_wmi_set_peer_param(ar, sta->addr, arvif->vdev_id, 4855 WMI_PEER_CHWIDTH, bw); 4856 4857 if (err) { 4858 ath11k_warn(ar->ab, "failed to update STA %pM peer bw %d: %d\n", 4859 sta->addr, bw, err); 4860 goto err_rc_bw_changed; 4861 } 4862 4863 err = ath11k_wmi_set_peer_param(ar, sta->addr, arvif->vdev_id, 4864 WMI_PEER_PHYMODE, peer_phymode); 4865 4866 if (err) 4867 ath11k_warn(ar->ab, "failed to update STA %pM peer phymode %d: %d\n", 4868 sta->addr, peer_phymode, err); 4869 } 4870 } 4871 4872 if (changed & IEEE80211_RC_NSS_CHANGED) { 4873 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "update sta %pM nss %d\n", 4874 sta->addr, nss); 4875 4876 err = ath11k_wmi_set_peer_param(ar, sta->addr, arvif->vdev_id, 4877 WMI_PEER_NSS, nss); 4878 if (err) 4879 ath11k_warn(ar->ab, "failed to update STA %pM nss %d: %d\n", 4880 sta->addr, nss, err); 4881 } 4882 4883 if (changed & IEEE80211_RC_SMPS_CHANGED) { 4884 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "update sta %pM smps %d\n", 4885 sta->addr, smps); 4886 4887 err = ath11k_wmi_set_peer_param(ar, sta->addr, arvif->vdev_id, 4888 WMI_PEER_MIMO_PS_STATE, smps); 4889 if (err) 4890 ath11k_warn(ar->ab, "failed to update STA %pM smps %d: %d\n", 4891 sta->addr, smps, err); 4892 } 4893 4894 if (changed & IEEE80211_RC_SUPP_RATES_CHANGED) { 4895 mask = &arvif->bitrate_mask; 4896 num_ht_rates = ath11k_mac_bitrate_mask_num_ht_rates(ar, band, 4897 mask); 4898 num_vht_rates = ath11k_mac_bitrate_mask_num_vht_rates(ar, band, 4899 mask); 4900 num_he_rates = ath11k_mac_bitrate_mask_num_he_rates(ar, band, 4901 mask); 4902 4903 /* Peer_assoc_prepare will reject vht rates in 4904 * bitrate_mask if its not available in range format and 4905 * sets vht tx_rateset as unsupported. So multiple VHT MCS 4906 * setting(eg. MCS 4,5,6) per peer is not supported here. 4907 * But, Single rate in VHT mask can be set as per-peer 4908 * fixed rate. But even if any HT rates are configured in 4909 * the bitrate mask, device will not switch to those rates 4910 * when per-peer Fixed rate is set. 4911 * TODO: Check RATEMASK_CMDID to support auto rates selection 4912 * across HT/VHT and for multiple VHT MCS support. 4913 */ 4914 if (sta->deflink.vht_cap.vht_supported && num_vht_rates == 1) { 4915 ath11k_mac_set_peer_vht_fixed_rate(arvif, sta, mask, 4916 band); 4917 } else if (sta->deflink.he_cap.has_he && num_he_rates == 1) { 4918 ath11k_mac_set_peer_he_fixed_rate(arvif, sta, mask, 4919 band); 4920 } else if (sta->deflink.ht_cap.ht_supported && num_ht_rates == 1) { 4921 ath11k_mac_set_peer_ht_fixed_rate(arvif, sta, mask, 4922 band); 4923 } else { 4924 /* If the peer is non-VHT/HE or no fixed VHT/HE rate 4925 * is provided in the new bitrate mask we set the 4926 * other rates using peer_assoc command. Also clear 4927 * the peer fixed rate settings as it has higher proprity 4928 * than peer assoc 4929 */ 4930 err = ath11k_wmi_set_peer_param(ar, sta->addr, 4931 arvif->vdev_id, 4932 WMI_PEER_PARAM_FIXED_RATE, 4933 WMI_FIXED_RATE_NONE); 4934 if (err) 4935 ath11k_warn(ar->ab, 4936 "failed to disable peer fixed rate for sta %pM: %d\n", 4937 sta->addr, err); 4938 4939 ath11k_peer_assoc_prepare(ar, arvif->vif, sta, 4940 &peer_arg, true); 4941 4942 peer_arg.is_assoc = false; 4943 err = ath11k_wmi_send_peer_assoc_cmd(ar, &peer_arg); 4944 if (err) 4945 ath11k_warn(ar->ab, "failed to run peer assoc for STA %pM vdev %i: %d\n", 4946 sta->addr, arvif->vdev_id, err); 4947 4948 if (!wait_for_completion_timeout(&ar->peer_assoc_done, 1 * HZ)) 4949 ath11k_warn(ar->ab, "failed to get peer assoc conf event for %pM vdev %i\n", 4950 sta->addr, arvif->vdev_id); 4951 } 4952 } 4953 4954 err_rc_bw_changed: 4955 mutex_unlock(&ar->conf_mutex); 4956 } 4957 4958 static void ath11k_sta_set_4addr_wk(struct work_struct *wk) 4959 { 4960 struct ath11k *ar; 4961 struct ath11k_vif *arvif; 4962 struct ath11k_sta *arsta; 4963 struct ieee80211_sta *sta; 4964 int ret = 0; 4965 4966 arsta = container_of(wk, struct ath11k_sta, set_4addr_wk); 4967 sta = container_of((void *)arsta, struct ieee80211_sta, drv_priv); 4968 arvif = arsta->arvif; 4969 ar = arvif->ar; 4970 4971 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 4972 "setting USE_4ADDR for peer %pM\n", sta->addr); 4973 4974 ret = ath11k_wmi_set_peer_param(ar, sta->addr, 4975 arvif->vdev_id, 4976 WMI_PEER_USE_4ADDR, 1); 4977 4978 if (ret) 4979 ath11k_warn(ar->ab, "failed to set peer %pM 4addr capability: %d\n", 4980 sta->addr, ret); 4981 } 4982 4983 static int ath11k_mac_inc_num_stations(struct ath11k_vif *arvif, 4984 struct ieee80211_sta *sta) 4985 { 4986 struct ath11k *ar = arvif->ar; 4987 4988 lockdep_assert_held(&ar->conf_mutex); 4989 4990 if (arvif->vdev_type == WMI_VDEV_TYPE_STA && !sta->tdls) 4991 return 0; 4992 4993 if (ar->num_stations >= ar->max_num_stations) 4994 return -ENOBUFS; 4995 4996 ar->num_stations++; 4997 4998 return 0; 4999 } 5000 5001 static void ath11k_mac_dec_num_stations(struct ath11k_vif *arvif, 5002 struct ieee80211_sta *sta) 5003 { 5004 struct ath11k *ar = arvif->ar; 5005 5006 lockdep_assert_held(&ar->conf_mutex); 5007 5008 if (arvif->vdev_type == WMI_VDEV_TYPE_STA && !sta->tdls) 5009 return; 5010 5011 ar->num_stations--; 5012 } 5013 5014 static u32 ath11k_mac_ieee80211_sta_bw_to_wmi(struct ath11k *ar, 5015 struct ieee80211_sta *sta) 5016 { 5017 u32 bw = WMI_PEER_CHWIDTH_20MHZ; 5018 5019 switch (sta->deflink.bandwidth) { 5020 case IEEE80211_STA_RX_BW_20: 5021 bw = WMI_PEER_CHWIDTH_20MHZ; 5022 break; 5023 case IEEE80211_STA_RX_BW_40: 5024 bw = WMI_PEER_CHWIDTH_40MHZ; 5025 break; 5026 case IEEE80211_STA_RX_BW_80: 5027 bw = WMI_PEER_CHWIDTH_80MHZ; 5028 break; 5029 case IEEE80211_STA_RX_BW_160: 5030 bw = WMI_PEER_CHWIDTH_160MHZ; 5031 break; 5032 default: 5033 ath11k_warn(ar->ab, "Invalid bandwidth %d for %pM\n", 5034 sta->deflink.bandwidth, sta->addr); 5035 bw = WMI_PEER_CHWIDTH_20MHZ; 5036 break; 5037 } 5038 5039 return bw; 5040 } 5041 5042 static int ath11k_mac_op_sta_set_txpwr(struct ieee80211_hw *hw, 5043 struct ieee80211_vif *vif, 5044 struct ieee80211_sta *sta) 5045 { 5046 struct ath11k *ar = hw->priv; 5047 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 5048 int ret = 0; 5049 s16 txpwr; 5050 5051 if (sta->deflink.txpwr.type == NL80211_TX_POWER_AUTOMATIC) { 5052 txpwr = 0; 5053 } else { 5054 txpwr = sta->deflink.txpwr.power; 5055 if (!txpwr) 5056 return -EINVAL; 5057 } 5058 5059 if (txpwr > ATH11K_TX_POWER_MAX_VAL || txpwr < ATH11K_TX_POWER_MIN_VAL) 5060 return -EINVAL; 5061 5062 mutex_lock(&ar->conf_mutex); 5063 5064 ret = ath11k_wmi_set_peer_param(ar, sta->addr, arvif->vdev_id, 5065 WMI_PEER_USE_FIXED_PWR, txpwr); 5066 if (ret) { 5067 ath11k_warn(ar->ab, "failed to set tx power for station ret: %d\n", 5068 ret); 5069 goto out; 5070 } 5071 5072 out: 5073 mutex_unlock(&ar->conf_mutex); 5074 return ret; 5075 } 5076 5077 static void ath11k_mac_op_sta_set_4addr(struct ieee80211_hw *hw, 5078 struct ieee80211_vif *vif, 5079 struct ieee80211_sta *sta, bool enabled) 5080 { 5081 struct ath11k *ar = hw->priv; 5082 struct ath11k_sta *arsta = ath11k_sta_to_arsta(sta); 5083 5084 if (enabled && !arsta->use_4addr_set) { 5085 ieee80211_queue_work(ar->hw, &arsta->set_4addr_wk); 5086 arsta->use_4addr_set = true; 5087 } 5088 } 5089 5090 static void ath11k_mac_op_sta_rc_update(struct ieee80211_hw *hw, 5091 struct ieee80211_vif *vif, 5092 struct ieee80211_link_sta *link_sta, 5093 u32 changed) 5094 { 5095 struct ieee80211_sta *sta = link_sta->sta; 5096 struct ath11k *ar = hw->priv; 5097 struct ath11k_sta *arsta = ath11k_sta_to_arsta(sta); 5098 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 5099 struct ath11k_peer *peer; 5100 u32 bw, smps; 5101 5102 spin_lock_bh(&ar->ab->base_lock); 5103 5104 peer = ath11k_peer_find(ar->ab, arvif->vdev_id, sta->addr); 5105 if (!peer) { 5106 spin_unlock_bh(&ar->ab->base_lock); 5107 ath11k_warn(ar->ab, "mac sta rc update failed to find peer %pM on vdev %i\n", 5108 sta->addr, arvif->vdev_id); 5109 return; 5110 } 5111 5112 spin_unlock_bh(&ar->ab->base_lock); 5113 5114 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 5115 "sta rc update for %pM changed %08x bw %d nss %d smps %d\n", 5116 sta->addr, changed, sta->deflink.bandwidth, 5117 sta->deflink.rx_nss, 5118 sta->deflink.smps_mode); 5119 5120 spin_lock_bh(&ar->data_lock); 5121 5122 if (changed & IEEE80211_RC_BW_CHANGED) { 5123 bw = ath11k_mac_ieee80211_sta_bw_to_wmi(ar, sta); 5124 arsta->bw_prev = arsta->bw; 5125 arsta->bw = bw; 5126 } 5127 5128 if (changed & IEEE80211_RC_NSS_CHANGED) 5129 arsta->nss = sta->deflink.rx_nss; 5130 5131 if (changed & IEEE80211_RC_SMPS_CHANGED) { 5132 smps = WMI_PEER_SMPS_PS_NONE; 5133 5134 switch (sta->deflink.smps_mode) { 5135 case IEEE80211_SMPS_AUTOMATIC: 5136 case IEEE80211_SMPS_OFF: 5137 smps = WMI_PEER_SMPS_PS_NONE; 5138 break; 5139 case IEEE80211_SMPS_STATIC: 5140 smps = WMI_PEER_SMPS_STATIC; 5141 break; 5142 case IEEE80211_SMPS_DYNAMIC: 5143 smps = WMI_PEER_SMPS_DYNAMIC; 5144 break; 5145 default: 5146 ath11k_warn(ar->ab, "Invalid smps %d in sta rc update for %pM\n", 5147 sta->deflink.smps_mode, sta->addr); 5148 smps = WMI_PEER_SMPS_PS_NONE; 5149 break; 5150 } 5151 5152 arsta->smps = smps; 5153 } 5154 5155 arsta->changed |= changed; 5156 5157 spin_unlock_bh(&ar->data_lock); 5158 5159 ieee80211_queue_work(hw, &arsta->update_wk); 5160 } 5161 5162 static int ath11k_conf_tx_uapsd(struct ath11k *ar, struct ieee80211_vif *vif, 5163 u16 ac, bool enable) 5164 { 5165 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 5166 u32 value = 0; 5167 int ret = 0; 5168 5169 if (arvif->vdev_type != WMI_VDEV_TYPE_STA) 5170 return 0; 5171 5172 switch (ac) { 5173 case IEEE80211_AC_VO: 5174 value = WMI_STA_PS_UAPSD_AC3_DELIVERY_EN | 5175 WMI_STA_PS_UAPSD_AC3_TRIGGER_EN; 5176 break; 5177 case IEEE80211_AC_VI: 5178 value = WMI_STA_PS_UAPSD_AC2_DELIVERY_EN | 5179 WMI_STA_PS_UAPSD_AC2_TRIGGER_EN; 5180 break; 5181 case IEEE80211_AC_BE: 5182 value = WMI_STA_PS_UAPSD_AC1_DELIVERY_EN | 5183 WMI_STA_PS_UAPSD_AC1_TRIGGER_EN; 5184 break; 5185 case IEEE80211_AC_BK: 5186 value = WMI_STA_PS_UAPSD_AC0_DELIVERY_EN | 5187 WMI_STA_PS_UAPSD_AC0_TRIGGER_EN; 5188 break; 5189 } 5190 5191 if (enable) 5192 arvif->u.sta.uapsd |= value; 5193 else 5194 arvif->u.sta.uapsd &= ~value; 5195 5196 ret = ath11k_wmi_set_sta_ps_param(ar, arvif->vdev_id, 5197 WMI_STA_PS_PARAM_UAPSD, 5198 arvif->u.sta.uapsd); 5199 if (ret) { 5200 ath11k_warn(ar->ab, "could not set uapsd params %d\n", ret); 5201 goto exit; 5202 } 5203 5204 if (arvif->u.sta.uapsd) 5205 value = WMI_STA_PS_RX_WAKE_POLICY_POLL_UAPSD; 5206 else 5207 value = WMI_STA_PS_RX_WAKE_POLICY_WAKE; 5208 5209 ret = ath11k_wmi_set_sta_ps_param(ar, arvif->vdev_id, 5210 WMI_STA_PS_PARAM_RX_WAKE_POLICY, 5211 value); 5212 if (ret) 5213 ath11k_warn(ar->ab, "could not set rx wake param %d\n", ret); 5214 5215 exit: 5216 return ret; 5217 } 5218 5219 static int ath11k_mac_op_conf_tx_mu_edca(struct ieee80211_hw *hw, 5220 struct ieee80211_vif *vif, 5221 unsigned int link_id, u16 ac, 5222 const struct ieee80211_tx_queue_params *params) 5223 { 5224 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 5225 struct ath11k *ar = hw->priv; 5226 struct wmi_wmm_params_arg *p; 5227 int ret; 5228 5229 switch (ac) { 5230 case IEEE80211_AC_VO: 5231 p = &arvif->muedca_params.ac_vo; 5232 break; 5233 case IEEE80211_AC_VI: 5234 p = &arvif->muedca_params.ac_vi; 5235 break; 5236 case IEEE80211_AC_BE: 5237 p = &arvif->muedca_params.ac_be; 5238 break; 5239 case IEEE80211_AC_BK: 5240 p = &arvif->muedca_params.ac_bk; 5241 break; 5242 default: 5243 ath11k_warn(ar->ab, "error ac: %d", ac); 5244 return -EINVAL; 5245 } 5246 5247 p->cwmin = u8_get_bits(params->mu_edca_param_rec.ecw_min_max, GENMASK(3, 0)); 5248 p->cwmax = u8_get_bits(params->mu_edca_param_rec.ecw_min_max, GENMASK(7, 4)); 5249 p->aifs = u8_get_bits(params->mu_edca_param_rec.aifsn, GENMASK(3, 0)); 5250 p->txop = params->mu_edca_param_rec.mu_edca_timer; 5251 5252 ret = ath11k_wmi_send_wmm_update_cmd_tlv(ar, arvif->vdev_id, 5253 &arvif->muedca_params, 5254 WMI_WMM_PARAM_TYPE_11AX_MU_EDCA); 5255 return ret; 5256 } 5257 5258 static int ath11k_mac_op_conf_tx(struct ieee80211_hw *hw, 5259 struct ieee80211_vif *vif, 5260 unsigned int link_id, u16 ac, 5261 const struct ieee80211_tx_queue_params *params) 5262 { 5263 struct ath11k *ar = hw->priv; 5264 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 5265 struct wmi_wmm_params_arg *p = NULL; 5266 int ret; 5267 5268 mutex_lock(&ar->conf_mutex); 5269 5270 switch (ac) { 5271 case IEEE80211_AC_VO: 5272 p = &arvif->wmm_params.ac_vo; 5273 break; 5274 case IEEE80211_AC_VI: 5275 p = &arvif->wmm_params.ac_vi; 5276 break; 5277 case IEEE80211_AC_BE: 5278 p = &arvif->wmm_params.ac_be; 5279 break; 5280 case IEEE80211_AC_BK: 5281 p = &arvif->wmm_params.ac_bk; 5282 break; 5283 } 5284 5285 if (WARN_ON(!p)) { 5286 ret = -EINVAL; 5287 goto exit; 5288 } 5289 5290 p->cwmin = params->cw_min; 5291 p->cwmax = params->cw_max; 5292 p->aifs = params->aifs; 5293 p->txop = params->txop; 5294 5295 ret = ath11k_wmi_send_wmm_update_cmd_tlv(ar, arvif->vdev_id, 5296 &arvif->wmm_params, 5297 WMI_WMM_PARAM_TYPE_LEGACY); 5298 if (ret) { 5299 ath11k_warn(ar->ab, "failed to set wmm params: %d\n", ret); 5300 goto exit; 5301 } 5302 5303 if (params->mu_edca) { 5304 ret = ath11k_mac_op_conf_tx_mu_edca(hw, vif, link_id, ac, 5305 params); 5306 if (ret) { 5307 ath11k_warn(ar->ab, "failed to set mu_edca params: %d\n", ret); 5308 goto exit; 5309 } 5310 } 5311 5312 ret = ath11k_conf_tx_uapsd(ar, vif, ac, params->uapsd); 5313 5314 if (ret) 5315 ath11k_warn(ar->ab, "failed to set sta uapsd: %d\n", ret); 5316 5317 exit: 5318 mutex_unlock(&ar->conf_mutex); 5319 return ret; 5320 } 5321 5322 static struct ieee80211_sta_ht_cap 5323 ath11k_create_ht_cap(struct ath11k *ar, u32 ar_ht_cap, u32 rate_cap_rx_chainmask) 5324 { 5325 int i; 5326 struct ieee80211_sta_ht_cap ht_cap = {0}; 5327 u32 ar_vht_cap = ar->pdev->cap.vht_cap; 5328 5329 if (!(ar_ht_cap & WMI_HT_CAP_ENABLED)) 5330 return ht_cap; 5331 5332 ht_cap.ht_supported = 1; 5333 ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K; 5334 ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_NONE; 5335 ht_cap.cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40; 5336 ht_cap.cap |= IEEE80211_HT_CAP_DSSSCCK40; 5337 ht_cap.cap |= WLAN_HT_CAP_SM_PS_STATIC << IEEE80211_HT_CAP_SM_PS_SHIFT; 5338 5339 if (ar_ht_cap & WMI_HT_CAP_HT20_SGI) 5340 ht_cap.cap |= IEEE80211_HT_CAP_SGI_20; 5341 5342 if (ar_ht_cap & WMI_HT_CAP_HT40_SGI) 5343 ht_cap.cap |= IEEE80211_HT_CAP_SGI_40; 5344 5345 if (ar_ht_cap & WMI_HT_CAP_DYNAMIC_SMPS) { 5346 u32 smps; 5347 5348 smps = WLAN_HT_CAP_SM_PS_DYNAMIC; 5349 smps <<= IEEE80211_HT_CAP_SM_PS_SHIFT; 5350 5351 ht_cap.cap |= smps; 5352 } 5353 5354 if (ar_ht_cap & WMI_HT_CAP_TX_STBC) 5355 ht_cap.cap |= IEEE80211_HT_CAP_TX_STBC; 5356 5357 if (ar_ht_cap & WMI_HT_CAP_RX_STBC) { 5358 u32 stbc; 5359 5360 stbc = ar_ht_cap; 5361 stbc &= WMI_HT_CAP_RX_STBC; 5362 stbc >>= WMI_HT_CAP_RX_STBC_MASK_SHIFT; 5363 stbc <<= IEEE80211_HT_CAP_RX_STBC_SHIFT; 5364 stbc &= IEEE80211_HT_CAP_RX_STBC; 5365 5366 ht_cap.cap |= stbc; 5367 } 5368 5369 if (ar_ht_cap & WMI_HT_CAP_RX_LDPC) 5370 ht_cap.cap |= IEEE80211_HT_CAP_LDPC_CODING; 5371 5372 if (ar_ht_cap & WMI_HT_CAP_L_SIG_TXOP_PROT) 5373 ht_cap.cap |= IEEE80211_HT_CAP_LSIG_TXOP_PROT; 5374 5375 if (ar_vht_cap & WMI_VHT_CAP_MAX_MPDU_LEN_MASK) 5376 ht_cap.cap |= IEEE80211_HT_CAP_MAX_AMSDU; 5377 5378 for (i = 0; i < ar->num_rx_chains; i++) { 5379 if (rate_cap_rx_chainmask & BIT(i)) 5380 ht_cap.mcs.rx_mask[i] = 0xFF; 5381 } 5382 5383 ht_cap.mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED; 5384 5385 return ht_cap; 5386 } 5387 5388 static int ath11k_mac_set_txbf_conf(struct ath11k_vif *arvif) 5389 { 5390 u32 value = 0; 5391 struct ath11k *ar = arvif->ar; 5392 int nsts; 5393 int sound_dim; 5394 u32 vht_cap = ar->pdev->cap.vht_cap; 5395 u32 vdev_param = WMI_VDEV_PARAM_TXBF; 5396 5397 if (vht_cap & (IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE)) { 5398 nsts = vht_cap & IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK; 5399 nsts >>= IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT; 5400 value |= SM(nsts, WMI_TXBF_STS_CAP_OFFSET); 5401 } 5402 5403 if (vht_cap & (IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE)) { 5404 sound_dim = vht_cap & 5405 IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK; 5406 sound_dim >>= IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT; 5407 if (sound_dim > (ar->num_tx_chains - 1)) 5408 sound_dim = ar->num_tx_chains - 1; 5409 value |= SM(sound_dim, WMI_BF_SOUND_DIM_OFFSET); 5410 } 5411 5412 if (!value) 5413 return 0; 5414 5415 if (vht_cap & IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE) { 5416 value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFER; 5417 5418 if ((vht_cap & IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE) && 5419 arvif->vdev_type == WMI_VDEV_TYPE_AP) 5420 value |= WMI_VDEV_PARAM_TXBF_MU_TX_BFER; 5421 } 5422 5423 /* TODO: SUBFEE not validated in HK, disable here until validated? */ 5424 5425 if (vht_cap & IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE) { 5426 value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFEE; 5427 5428 if ((vht_cap & IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE) && 5429 arvif->vdev_type == WMI_VDEV_TYPE_STA) 5430 value |= WMI_VDEV_PARAM_TXBF_MU_TX_BFEE; 5431 } 5432 5433 return ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 5434 vdev_param, value); 5435 } 5436 5437 static void ath11k_set_vht_txbf_cap(struct ath11k *ar, u32 *vht_cap) 5438 { 5439 bool subfer, subfee; 5440 int sound_dim = 0, nsts = 0; 5441 5442 subfer = !!(*vht_cap & (IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE)); 5443 subfee = !!(*vht_cap & (IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE)); 5444 5445 if (ar->num_tx_chains < 2) { 5446 *vht_cap &= ~(IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE); 5447 subfer = false; 5448 } 5449 5450 if (ar->num_rx_chains < 2) { 5451 *vht_cap &= ~(IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE); 5452 subfee = false; 5453 } 5454 5455 /* If SU Beaformer is not set, then disable MU Beamformer Capability */ 5456 if (!subfer) 5457 *vht_cap &= ~(IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE); 5458 5459 /* If SU Beaformee is not set, then disable MU Beamformee Capability */ 5460 if (!subfee) 5461 *vht_cap &= ~(IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE); 5462 5463 sound_dim = (*vht_cap & IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK); 5464 sound_dim >>= IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT; 5465 *vht_cap &= ~IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK; 5466 5467 nsts = (*vht_cap & IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK); 5468 nsts >>= IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT; 5469 *vht_cap &= ~IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK; 5470 5471 /* Enable Sounding Dimension Field only if SU BF is enabled */ 5472 if (subfer) { 5473 if (sound_dim > (ar->num_tx_chains - 1)) 5474 sound_dim = ar->num_tx_chains - 1; 5475 5476 sound_dim <<= IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT; 5477 sound_dim &= IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK; 5478 *vht_cap |= sound_dim; 5479 } 5480 5481 /* Enable Beamformee STS Field only if SU BF is enabled */ 5482 if (subfee) { 5483 nsts <<= IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT; 5484 nsts &= IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK; 5485 *vht_cap |= nsts; 5486 } 5487 } 5488 5489 static struct ieee80211_sta_vht_cap 5490 ath11k_create_vht_cap(struct ath11k *ar, u32 rate_cap_tx_chainmask, 5491 u32 rate_cap_rx_chainmask) 5492 { 5493 struct ieee80211_sta_vht_cap vht_cap = {0}; 5494 u16 txmcs_map, rxmcs_map; 5495 int i; 5496 5497 vht_cap.vht_supported = 1; 5498 vht_cap.cap = ar->pdev->cap.vht_cap; 5499 5500 if (ar->pdev->cap.nss_ratio_enabled) 5501 vht_cap.vht_mcs.tx_highest |= 5502 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE); 5503 5504 ath11k_set_vht_txbf_cap(ar, &vht_cap.cap); 5505 5506 rxmcs_map = 0; 5507 txmcs_map = 0; 5508 for (i = 0; i < 8; i++) { 5509 if (i < ar->num_tx_chains && rate_cap_tx_chainmask & BIT(i)) 5510 txmcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << (i * 2); 5511 else 5512 txmcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << (i * 2); 5513 5514 if (i < ar->num_rx_chains && rate_cap_rx_chainmask & BIT(i)) 5515 rxmcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << (i * 2); 5516 else 5517 rxmcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << (i * 2); 5518 } 5519 5520 if (rate_cap_tx_chainmask <= 1) 5521 vht_cap.cap &= ~IEEE80211_VHT_CAP_TXSTBC; 5522 5523 vht_cap.vht_mcs.rx_mcs_map = cpu_to_le16(rxmcs_map); 5524 vht_cap.vht_mcs.tx_mcs_map = cpu_to_le16(txmcs_map); 5525 5526 return vht_cap; 5527 } 5528 5529 static void ath11k_mac_setup_ht_vht_cap(struct ath11k *ar, 5530 struct ath11k_pdev_cap *cap, 5531 u32 *ht_cap_info) 5532 { 5533 struct ieee80211_supported_band *band; 5534 u32 rate_cap_tx_chainmask; 5535 u32 rate_cap_rx_chainmask; 5536 u32 ht_cap; 5537 5538 rate_cap_tx_chainmask = ar->cfg_tx_chainmask >> cap->tx_chain_mask_shift; 5539 rate_cap_rx_chainmask = ar->cfg_rx_chainmask >> cap->rx_chain_mask_shift; 5540 5541 if (cap->supported_bands & WMI_HOST_WLAN_2G_CAP) { 5542 band = &ar->mac.sbands[NL80211_BAND_2GHZ]; 5543 ht_cap = cap->band[NL80211_BAND_2GHZ].ht_cap_info; 5544 if (ht_cap_info) 5545 *ht_cap_info = ht_cap; 5546 band->ht_cap = ath11k_create_ht_cap(ar, ht_cap, 5547 rate_cap_rx_chainmask); 5548 } 5549 5550 if (cap->supported_bands & WMI_HOST_WLAN_5G_CAP && 5551 (ar->ab->hw_params.single_pdev_only || 5552 !ar->supports_6ghz)) { 5553 band = &ar->mac.sbands[NL80211_BAND_5GHZ]; 5554 ht_cap = cap->band[NL80211_BAND_5GHZ].ht_cap_info; 5555 if (ht_cap_info) 5556 *ht_cap_info = ht_cap; 5557 band->ht_cap = ath11k_create_ht_cap(ar, ht_cap, 5558 rate_cap_rx_chainmask); 5559 band->vht_cap = ath11k_create_vht_cap(ar, rate_cap_tx_chainmask, 5560 rate_cap_rx_chainmask); 5561 } 5562 } 5563 5564 static int ath11k_check_chain_mask(struct ath11k *ar, u32 ant, bool is_tx_ant) 5565 { 5566 /* TODO: Check the request chainmask against the supported 5567 * chainmask table which is advertised in extented_service_ready event 5568 */ 5569 5570 return 0; 5571 } 5572 5573 static void ath11k_gen_ppe_thresh(struct ath11k_ppe_threshold *fw_ppet, 5574 u8 *he_ppet) 5575 { 5576 int nss, ru; 5577 u8 bit = 7; 5578 5579 he_ppet[0] = fw_ppet->numss_m1 & IEEE80211_PPE_THRES_NSS_MASK; 5580 he_ppet[0] |= (fw_ppet->ru_bit_mask << 5581 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_POS) & 5582 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK; 5583 for (nss = 0; nss <= fw_ppet->numss_m1; nss++) { 5584 for (ru = 0; ru < 4; ru++) { 5585 u8 val; 5586 int i; 5587 5588 if ((fw_ppet->ru_bit_mask & BIT(ru)) == 0) 5589 continue; 5590 val = (fw_ppet->ppet16_ppet8_ru3_ru0[nss] >> (ru * 6)) & 5591 0x3f; 5592 val = ((val >> 3) & 0x7) | ((val & 0x7) << 3); 5593 for (i = 5; i >= 0; i--) { 5594 he_ppet[bit / 8] |= 5595 ((val >> i) & 0x1) << ((bit % 8)); 5596 bit++; 5597 } 5598 } 5599 } 5600 } 5601 5602 static void 5603 ath11k_mac_filter_he_cap_mesh(struct ieee80211_he_cap_elem *he_cap_elem) 5604 { 5605 u8 m; 5606 5607 m = IEEE80211_HE_MAC_CAP0_TWT_RES | 5608 IEEE80211_HE_MAC_CAP0_TWT_REQ; 5609 he_cap_elem->mac_cap_info[0] &= ~m; 5610 5611 m = IEEE80211_HE_MAC_CAP2_TRS | 5612 IEEE80211_HE_MAC_CAP2_BCAST_TWT | 5613 IEEE80211_HE_MAC_CAP2_MU_CASCADING; 5614 he_cap_elem->mac_cap_info[2] &= ~m; 5615 5616 m = IEEE80211_HE_MAC_CAP3_FLEX_TWT_SCHED | 5617 IEEE80211_HE_MAC_CAP2_BCAST_TWT | 5618 IEEE80211_HE_MAC_CAP2_MU_CASCADING; 5619 he_cap_elem->mac_cap_info[3] &= ~m; 5620 5621 m = IEEE80211_HE_MAC_CAP4_BSRP_BQRP_A_MPDU_AGG | 5622 IEEE80211_HE_MAC_CAP4_BQR; 5623 he_cap_elem->mac_cap_info[4] &= ~m; 5624 5625 m = IEEE80211_HE_MAC_CAP5_SUBCHAN_SELECTIVE_TRANSMISSION | 5626 IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU | 5627 IEEE80211_HE_MAC_CAP5_PUNCTURED_SOUNDING | 5628 IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX; 5629 he_cap_elem->mac_cap_info[5] &= ~m; 5630 5631 m = IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO | 5632 IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO; 5633 he_cap_elem->phy_cap_info[2] &= ~m; 5634 5635 m = IEEE80211_HE_PHY_CAP3_RX_PARTIAL_BW_SU_IN_20MHZ_MU | 5636 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_MASK | 5637 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_MASK; 5638 he_cap_elem->phy_cap_info[3] &= ~m; 5639 5640 m = IEEE80211_HE_PHY_CAP4_MU_BEAMFORMER; 5641 he_cap_elem->phy_cap_info[4] &= ~m; 5642 5643 m = IEEE80211_HE_PHY_CAP5_NG16_MU_FEEDBACK; 5644 he_cap_elem->phy_cap_info[5] &= ~m; 5645 5646 m = IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_75_MU | 5647 IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB | 5648 IEEE80211_HE_PHY_CAP6_TRIG_CQI_FB | 5649 IEEE80211_HE_PHY_CAP6_PARTIAL_BANDWIDTH_DL_MUMIMO; 5650 he_cap_elem->phy_cap_info[6] &= ~m; 5651 5652 m = IEEE80211_HE_PHY_CAP7_PSR_BASED_SR | 5653 IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP | 5654 IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ | 5655 IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ; 5656 he_cap_elem->phy_cap_info[7] &= ~m; 5657 5658 m = IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI | 5659 IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G | 5660 IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU | 5661 IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU; 5662 he_cap_elem->phy_cap_info[8] &= ~m; 5663 5664 m = IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM | 5665 IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK | 5666 IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU | 5667 IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU | 5668 IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB | 5669 IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB; 5670 he_cap_elem->phy_cap_info[9] &= ~m; 5671 } 5672 5673 static __le16 ath11k_mac_setup_he_6ghz_cap(struct ath11k_pdev_cap *pcap, 5674 struct ath11k_band_cap *bcap) 5675 { 5676 u8 val; 5677 5678 bcap->he_6ghz_capa = IEEE80211_HT_MPDU_DENSITY_NONE; 5679 if (bcap->ht_cap_info & WMI_HT_CAP_DYNAMIC_SMPS) 5680 bcap->he_6ghz_capa |= 5681 FIELD_PREP(IEEE80211_HE_6GHZ_CAP_SM_PS, 5682 WLAN_HT_CAP_SM_PS_DYNAMIC); 5683 else 5684 bcap->he_6ghz_capa |= 5685 FIELD_PREP(IEEE80211_HE_6GHZ_CAP_SM_PS, 5686 WLAN_HT_CAP_SM_PS_DISABLED); 5687 val = FIELD_GET(IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK, 5688 pcap->vht_cap); 5689 bcap->he_6ghz_capa |= 5690 FIELD_PREP(IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP, val); 5691 val = FIELD_GET(IEEE80211_VHT_CAP_MAX_MPDU_MASK, pcap->vht_cap); 5692 bcap->he_6ghz_capa |= 5693 FIELD_PREP(IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN, val); 5694 if (pcap->vht_cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN) 5695 bcap->he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS; 5696 if (pcap->vht_cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN) 5697 bcap->he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS; 5698 5699 return cpu_to_le16(bcap->he_6ghz_capa); 5700 } 5701 5702 static void ath11k_mac_set_hemcsmap(struct ath11k *ar, 5703 struct ath11k_pdev_cap *cap, 5704 struct ieee80211_sta_he_cap *he_cap, 5705 int band) 5706 { 5707 u16 txmcs_map, rxmcs_map; 5708 u32 i; 5709 5710 rxmcs_map = 0; 5711 txmcs_map = 0; 5712 for (i = 0; i < 8; i++) { 5713 if (i < ar->num_tx_chains && 5714 (ar->cfg_tx_chainmask >> cap->tx_chain_mask_shift) & BIT(i)) 5715 txmcs_map |= IEEE80211_HE_MCS_SUPPORT_0_11 << (i * 2); 5716 else 5717 txmcs_map |= IEEE80211_HE_MCS_NOT_SUPPORTED << (i * 2); 5718 5719 if (i < ar->num_rx_chains && 5720 (ar->cfg_rx_chainmask >> cap->tx_chain_mask_shift) & BIT(i)) 5721 rxmcs_map |= IEEE80211_HE_MCS_SUPPORT_0_11 << (i * 2); 5722 else 5723 rxmcs_map |= IEEE80211_HE_MCS_NOT_SUPPORTED << (i * 2); 5724 } 5725 he_cap->he_mcs_nss_supp.rx_mcs_80 = 5726 cpu_to_le16(rxmcs_map & 0xffff); 5727 he_cap->he_mcs_nss_supp.tx_mcs_80 = 5728 cpu_to_le16(txmcs_map & 0xffff); 5729 he_cap->he_mcs_nss_supp.rx_mcs_160 = 5730 cpu_to_le16(rxmcs_map & 0xffff); 5731 he_cap->he_mcs_nss_supp.tx_mcs_160 = 5732 cpu_to_le16(txmcs_map & 0xffff); 5733 he_cap->he_mcs_nss_supp.rx_mcs_80p80 = 5734 cpu_to_le16(rxmcs_map & 0xffff); 5735 he_cap->he_mcs_nss_supp.tx_mcs_80p80 = 5736 cpu_to_le16(txmcs_map & 0xffff); 5737 } 5738 5739 static int ath11k_mac_copy_he_cap(struct ath11k *ar, 5740 struct ath11k_pdev_cap *cap, 5741 struct ieee80211_sband_iftype_data *data, 5742 int band) 5743 { 5744 int i, idx = 0; 5745 5746 for (i = 0; i < NUM_NL80211_IFTYPES; i++) { 5747 struct ieee80211_sta_he_cap *he_cap = &data[idx].he_cap; 5748 struct ath11k_band_cap *band_cap = &cap->band[band]; 5749 struct ieee80211_he_cap_elem *he_cap_elem = 5750 &he_cap->he_cap_elem; 5751 5752 switch (i) { 5753 case NL80211_IFTYPE_STATION: 5754 case NL80211_IFTYPE_AP: 5755 case NL80211_IFTYPE_MESH_POINT: 5756 break; 5757 5758 default: 5759 continue; 5760 } 5761 5762 data[idx].types_mask = BIT(i); 5763 he_cap->has_he = true; 5764 memcpy(he_cap_elem->mac_cap_info, band_cap->he_cap_info, 5765 sizeof(he_cap_elem->mac_cap_info)); 5766 memcpy(he_cap_elem->phy_cap_info, band_cap->he_cap_phy_info, 5767 sizeof(he_cap_elem->phy_cap_info)); 5768 5769 he_cap_elem->mac_cap_info[1] &= 5770 IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_MASK; 5771 5772 he_cap_elem->phy_cap_info[5] &= 5773 ~IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK; 5774 he_cap_elem->phy_cap_info[5] |= ar->num_tx_chains - 1; 5775 5776 switch (i) { 5777 case NL80211_IFTYPE_AP: 5778 he_cap_elem->phy_cap_info[3] &= 5779 ~IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_MASK; 5780 he_cap_elem->phy_cap_info[9] |= 5781 IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU; 5782 break; 5783 case NL80211_IFTYPE_STATION: 5784 he_cap_elem->mac_cap_info[0] &= 5785 ~IEEE80211_HE_MAC_CAP0_TWT_RES; 5786 he_cap_elem->mac_cap_info[0] |= 5787 IEEE80211_HE_MAC_CAP0_TWT_REQ; 5788 he_cap_elem->phy_cap_info[9] |= 5789 IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU; 5790 break; 5791 case NL80211_IFTYPE_MESH_POINT: 5792 ath11k_mac_filter_he_cap_mesh(he_cap_elem); 5793 break; 5794 } 5795 5796 ath11k_mac_set_hemcsmap(ar, cap, he_cap, band); 5797 5798 memset(he_cap->ppe_thres, 0, sizeof(he_cap->ppe_thres)); 5799 if (he_cap_elem->phy_cap_info[6] & 5800 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) 5801 ath11k_gen_ppe_thresh(&band_cap->he_ppet, 5802 he_cap->ppe_thres); 5803 5804 if (band == NL80211_BAND_6GHZ) { 5805 data[idx].he_6ghz_capa.capa = 5806 ath11k_mac_setup_he_6ghz_cap(cap, band_cap); 5807 } 5808 idx++; 5809 } 5810 5811 return idx; 5812 } 5813 5814 static void ath11k_mac_setup_he_cap(struct ath11k *ar, 5815 struct ath11k_pdev_cap *cap) 5816 { 5817 struct ieee80211_supported_band *band; 5818 int count; 5819 5820 if (cap->supported_bands & WMI_HOST_WLAN_2G_CAP) { 5821 count = ath11k_mac_copy_he_cap(ar, cap, 5822 ar->mac.iftype[NL80211_BAND_2GHZ], 5823 NL80211_BAND_2GHZ); 5824 band = &ar->mac.sbands[NL80211_BAND_2GHZ]; 5825 _ieee80211_set_sband_iftype_data(band, 5826 ar->mac.iftype[NL80211_BAND_2GHZ], 5827 count); 5828 } 5829 5830 if (cap->supported_bands & WMI_HOST_WLAN_5G_CAP) { 5831 count = ath11k_mac_copy_he_cap(ar, cap, 5832 ar->mac.iftype[NL80211_BAND_5GHZ], 5833 NL80211_BAND_5GHZ); 5834 band = &ar->mac.sbands[NL80211_BAND_5GHZ]; 5835 _ieee80211_set_sband_iftype_data(band, 5836 ar->mac.iftype[NL80211_BAND_5GHZ], 5837 count); 5838 } 5839 5840 if (cap->supported_bands & WMI_HOST_WLAN_5G_CAP && 5841 ar->supports_6ghz) { 5842 count = ath11k_mac_copy_he_cap(ar, cap, 5843 ar->mac.iftype[NL80211_BAND_6GHZ], 5844 NL80211_BAND_6GHZ); 5845 band = &ar->mac.sbands[NL80211_BAND_6GHZ]; 5846 _ieee80211_set_sband_iftype_data(band, 5847 ar->mac.iftype[NL80211_BAND_6GHZ], 5848 count); 5849 } 5850 } 5851 5852 static int __ath11k_set_antenna(struct ath11k *ar, u32 tx_ant, u32 rx_ant) 5853 { 5854 int ret; 5855 5856 lockdep_assert_held(&ar->conf_mutex); 5857 5858 if (ath11k_check_chain_mask(ar, tx_ant, true)) 5859 return -EINVAL; 5860 5861 if (ath11k_check_chain_mask(ar, rx_ant, false)) 5862 return -EINVAL; 5863 5864 ar->cfg_tx_chainmask = tx_ant; 5865 ar->cfg_rx_chainmask = rx_ant; 5866 5867 if (ar->state != ATH11K_STATE_ON && 5868 ar->state != ATH11K_STATE_RESTARTED) 5869 return 0; 5870 5871 ret = ath11k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_TX_CHAIN_MASK, 5872 tx_ant, ar->pdev->pdev_id); 5873 if (ret) { 5874 ath11k_warn(ar->ab, "failed to set tx-chainmask: %d, req 0x%x\n", 5875 ret, tx_ant); 5876 return ret; 5877 } 5878 5879 ar->num_tx_chains = get_num_chains(tx_ant); 5880 5881 ret = ath11k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_RX_CHAIN_MASK, 5882 rx_ant, ar->pdev->pdev_id); 5883 if (ret) { 5884 ath11k_warn(ar->ab, "failed to set rx-chainmask: %d, req 0x%x\n", 5885 ret, rx_ant); 5886 return ret; 5887 } 5888 5889 ar->num_rx_chains = get_num_chains(rx_ant); 5890 5891 /* Reload HT/VHT/HE capability */ 5892 ath11k_mac_setup_ht_vht_cap(ar, &ar->pdev->cap, NULL); 5893 ath11k_mac_setup_he_cap(ar, &ar->pdev->cap); 5894 5895 return 0; 5896 } 5897 5898 static void ath11k_mgmt_over_wmi_tx_drop(struct ath11k *ar, struct sk_buff *skb) 5899 { 5900 int num_mgmt; 5901 5902 ieee80211_free_txskb(ar->hw, skb); 5903 5904 num_mgmt = atomic_dec_if_positive(&ar->num_pending_mgmt_tx); 5905 5906 if (num_mgmt < 0) 5907 WARN_ON_ONCE(1); 5908 5909 if (!num_mgmt) 5910 wake_up(&ar->txmgmt_empty_waitq); 5911 } 5912 5913 static void ath11k_mac_tx_mgmt_free(struct ath11k *ar, int buf_id) 5914 { 5915 struct sk_buff *msdu; 5916 struct ieee80211_tx_info *info; 5917 5918 spin_lock_bh(&ar->txmgmt_idr_lock); 5919 msdu = idr_remove(&ar->txmgmt_idr, buf_id); 5920 spin_unlock_bh(&ar->txmgmt_idr_lock); 5921 5922 if (!msdu) 5923 return; 5924 5925 dma_unmap_single(ar->ab->dev, ATH11K_SKB_CB(msdu)->paddr, msdu->len, 5926 DMA_TO_DEVICE); 5927 5928 info = IEEE80211_SKB_CB(msdu); 5929 memset(&info->status, 0, sizeof(info->status)); 5930 5931 ath11k_mgmt_over_wmi_tx_drop(ar, msdu); 5932 } 5933 5934 int ath11k_mac_tx_mgmt_pending_free(int buf_id, void *skb, void *ctx) 5935 { 5936 struct ath11k *ar = ctx; 5937 5938 ath11k_mac_tx_mgmt_free(ar, buf_id); 5939 5940 return 0; 5941 } 5942 5943 static int ath11k_mac_vif_txmgmt_idr_remove(int buf_id, void *skb, void *ctx) 5944 { 5945 struct ieee80211_vif *vif = ctx; 5946 struct ath11k_skb_cb *skb_cb = ATH11K_SKB_CB((struct sk_buff *)skb); 5947 struct ath11k *ar = skb_cb->ar; 5948 5949 if (skb_cb->vif == vif) 5950 ath11k_mac_tx_mgmt_free(ar, buf_id); 5951 5952 return 0; 5953 } 5954 5955 static int ath11k_mac_mgmt_tx_wmi(struct ath11k *ar, struct ath11k_vif *arvif, 5956 struct sk_buff *skb) 5957 { 5958 struct ath11k_base *ab = ar->ab; 5959 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 5960 struct ath11k_skb_cb *skb_cb = ATH11K_SKB_CB(skb); 5961 struct ieee80211_tx_info *info; 5962 enum hal_encrypt_type enctype; 5963 unsigned int mic_len; 5964 dma_addr_t paddr; 5965 int buf_id; 5966 int ret; 5967 5968 ATH11K_SKB_CB(skb)->ar = ar; 5969 5970 spin_lock_bh(&ar->txmgmt_idr_lock); 5971 buf_id = idr_alloc(&ar->txmgmt_idr, skb, 0, 5972 ATH11K_TX_MGMT_NUM_PENDING_MAX, GFP_ATOMIC); 5973 spin_unlock_bh(&ar->txmgmt_idr_lock); 5974 5975 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 5976 "tx mgmt frame, buf id %d\n", buf_id); 5977 5978 if (buf_id < 0) 5979 return -ENOSPC; 5980 5981 info = IEEE80211_SKB_CB(skb); 5982 if (!(info->flags & IEEE80211_TX_CTL_HW_80211_ENCAP)) { 5983 if ((ieee80211_is_action(hdr->frame_control) || 5984 ieee80211_is_deauth(hdr->frame_control) || 5985 ieee80211_is_disassoc(hdr->frame_control)) && 5986 ieee80211_has_protected(hdr->frame_control)) { 5987 if (!(skb_cb->flags & ATH11K_SKB_CIPHER_SET)) 5988 ath11k_warn(ab, "WMI management tx frame without ATH11K_SKB_CIPHER_SET"); 5989 5990 enctype = ath11k_dp_tx_get_encrypt_type(skb_cb->cipher); 5991 mic_len = ath11k_dp_rx_crypto_mic_len(ar, enctype); 5992 skb_put(skb, mic_len); 5993 } 5994 } 5995 5996 paddr = dma_map_single(ab->dev, skb->data, skb->len, DMA_TO_DEVICE); 5997 if (dma_mapping_error(ab->dev, paddr)) { 5998 ath11k_warn(ab, "failed to DMA map mgmt Tx buffer\n"); 5999 ret = -EIO; 6000 goto err_free_idr; 6001 } 6002 6003 ATH11K_SKB_CB(skb)->paddr = paddr; 6004 6005 ret = ath11k_wmi_mgmt_send(ar, arvif->vdev_id, buf_id, skb); 6006 if (ret) { 6007 ath11k_warn(ar->ab, "failed to send mgmt frame: %d\n", ret); 6008 goto err_unmap_buf; 6009 } 6010 6011 return 0; 6012 6013 err_unmap_buf: 6014 dma_unmap_single(ab->dev, ATH11K_SKB_CB(skb)->paddr, 6015 skb->len, DMA_TO_DEVICE); 6016 err_free_idr: 6017 spin_lock_bh(&ar->txmgmt_idr_lock); 6018 idr_remove(&ar->txmgmt_idr, buf_id); 6019 spin_unlock_bh(&ar->txmgmt_idr_lock); 6020 6021 return ret; 6022 } 6023 6024 static void ath11k_mgmt_over_wmi_tx_purge(struct ath11k *ar) 6025 { 6026 struct sk_buff *skb; 6027 6028 while ((skb = skb_dequeue(&ar->wmi_mgmt_tx_queue)) != NULL) 6029 ath11k_mgmt_over_wmi_tx_drop(ar, skb); 6030 } 6031 6032 static void ath11k_mgmt_over_wmi_tx_work(struct work_struct *work) 6033 { 6034 struct ath11k *ar = container_of(work, struct ath11k, wmi_mgmt_tx_work); 6035 struct ath11k_skb_cb *skb_cb; 6036 struct ath11k_vif *arvif; 6037 struct sk_buff *skb; 6038 int ret; 6039 6040 while ((skb = skb_dequeue(&ar->wmi_mgmt_tx_queue)) != NULL) { 6041 skb_cb = ATH11K_SKB_CB(skb); 6042 if (!skb_cb->vif) { 6043 ath11k_warn(ar->ab, "no vif found for mgmt frame\n"); 6044 ath11k_mgmt_over_wmi_tx_drop(ar, skb); 6045 continue; 6046 } 6047 6048 arvif = ath11k_vif_to_arvif(skb_cb->vif); 6049 mutex_lock(&ar->conf_mutex); 6050 if (ar->allocated_vdev_map & (1LL << arvif->vdev_id)) { 6051 ret = ath11k_mac_mgmt_tx_wmi(ar, arvif, skb); 6052 if (ret) { 6053 ath11k_warn(ar->ab, "failed to tx mgmt frame, vdev_id %d :%d\n", 6054 arvif->vdev_id, ret); 6055 ath11k_mgmt_over_wmi_tx_drop(ar, skb); 6056 } else { 6057 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 6058 "tx mgmt frame, vdev_id %d\n", 6059 arvif->vdev_id); 6060 } 6061 } else { 6062 ath11k_warn(ar->ab, 6063 "dropping mgmt frame for vdev %d, is_started %d\n", 6064 arvif->vdev_id, 6065 arvif->is_started); 6066 ath11k_mgmt_over_wmi_tx_drop(ar, skb); 6067 } 6068 mutex_unlock(&ar->conf_mutex); 6069 } 6070 } 6071 6072 static int ath11k_mac_mgmt_tx(struct ath11k *ar, struct sk_buff *skb, 6073 bool is_prb_rsp) 6074 { 6075 struct sk_buff_head *q = &ar->wmi_mgmt_tx_queue; 6076 6077 if (test_bit(ATH11K_FLAG_CRASH_FLUSH, &ar->ab->dev_flags)) 6078 return -ESHUTDOWN; 6079 6080 /* Drop probe response packets when the pending management tx 6081 * count has reached a certain threshold, so as to prioritize 6082 * other mgmt packets like auth and assoc to be sent on time 6083 * for establishing successful connections. 6084 */ 6085 if (is_prb_rsp && 6086 atomic_read(&ar->num_pending_mgmt_tx) > ATH11K_PRB_RSP_DROP_THRESHOLD) { 6087 ath11k_warn(ar->ab, 6088 "dropping probe response as pending queue is almost full\n"); 6089 return -ENOSPC; 6090 } 6091 6092 if (skb_queue_len_lockless(q) >= ATH11K_TX_MGMT_NUM_PENDING_MAX) { 6093 ath11k_warn(ar->ab, "mgmt tx queue is full\n"); 6094 return -ENOSPC; 6095 } 6096 6097 skb_queue_tail(q, skb); 6098 atomic_inc(&ar->num_pending_mgmt_tx); 6099 queue_work(ar->ab->workqueue_aux, &ar->wmi_mgmt_tx_work); 6100 6101 return 0; 6102 } 6103 6104 static void ath11k_mac_op_tx(struct ieee80211_hw *hw, 6105 struct ieee80211_tx_control *control, 6106 struct sk_buff *skb) 6107 { 6108 struct ath11k_skb_cb *skb_cb = ATH11K_SKB_CB(skb); 6109 struct ath11k *ar = hw->priv; 6110 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 6111 struct ieee80211_vif *vif = info->control.vif; 6112 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 6113 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 6114 struct ieee80211_key_conf *key = info->control.hw_key; 6115 struct ath11k_sta *arsta = NULL; 6116 u32 info_flags = info->flags; 6117 bool is_prb_rsp; 6118 int ret; 6119 6120 memset(skb_cb, 0, sizeof(*skb_cb)); 6121 skb_cb->vif = vif; 6122 6123 if (key) { 6124 skb_cb->cipher = key->cipher; 6125 skb_cb->flags |= ATH11K_SKB_CIPHER_SET; 6126 } 6127 6128 if (info_flags & IEEE80211_TX_CTL_HW_80211_ENCAP) { 6129 skb_cb->flags |= ATH11K_SKB_HW_80211_ENCAP; 6130 } else if (ieee80211_is_mgmt(hdr->frame_control)) { 6131 is_prb_rsp = ieee80211_is_probe_resp(hdr->frame_control); 6132 ret = ath11k_mac_mgmt_tx(ar, skb, is_prb_rsp); 6133 if (ret) { 6134 ath11k_warn(ar->ab, "failed to queue management frame %d\n", 6135 ret); 6136 ieee80211_free_txskb(ar->hw, skb); 6137 } 6138 return; 6139 } 6140 6141 if (control->sta) 6142 arsta = ath11k_sta_to_arsta(control->sta); 6143 6144 ret = ath11k_dp_tx(ar, arvif, arsta, skb); 6145 if (unlikely(ret)) { 6146 ath11k_warn(ar->ab, "failed to transmit frame %d\n", ret); 6147 ieee80211_free_txskb(ar->hw, skb); 6148 } 6149 } 6150 6151 void ath11k_mac_drain_tx(struct ath11k *ar) 6152 { 6153 /* make sure rcu-protected mac80211 tx path itself is drained */ 6154 synchronize_net(); 6155 6156 cancel_work_sync(&ar->wmi_mgmt_tx_work); 6157 ath11k_mgmt_over_wmi_tx_purge(ar); 6158 } 6159 6160 static int ath11k_mac_config_mon_status_default(struct ath11k *ar, bool enable) 6161 { 6162 struct htt_rx_ring_tlv_filter tlv_filter = {0}; 6163 struct ath11k_base *ab = ar->ab; 6164 int i, ret = 0; 6165 u32 ring_id; 6166 6167 if (enable) { 6168 tlv_filter = ath11k_mac_mon_status_filter_default; 6169 if (ath11k_debugfs_rx_filter(ar)) 6170 tlv_filter.rx_filter = ath11k_debugfs_rx_filter(ar); 6171 } 6172 6173 for (i = 0; i < ab->hw_params.num_rxdma_per_pdev; i++) { 6174 ring_id = ar->dp.rx_mon_status_refill_ring[i].refill_buf_ring.ring_id; 6175 ret = ath11k_dp_tx_htt_rx_filter_setup(ar->ab, ring_id, 6176 ar->dp.mac_id + i, 6177 HAL_RXDMA_MONITOR_STATUS, 6178 DP_RX_BUFFER_SIZE, 6179 &tlv_filter); 6180 } 6181 6182 if (enable && !ar->ab->hw_params.rxdma1_enable) 6183 mod_timer(&ar->ab->mon_reap_timer, jiffies + 6184 msecs_to_jiffies(ATH11K_MON_TIMER_INTERVAL)); 6185 6186 return ret; 6187 } 6188 6189 static void ath11k_mac_wait_reconfigure(struct ath11k_base *ab) 6190 { 6191 int recovery_start_count; 6192 6193 if (!ab->is_reset) 6194 return; 6195 6196 recovery_start_count = atomic_inc_return(&ab->recovery_start_count); 6197 ath11k_dbg(ab, ATH11K_DBG_MAC, "recovery start count %d\n", recovery_start_count); 6198 6199 if (recovery_start_count == ab->num_radios) { 6200 complete(&ab->recovery_start); 6201 ath11k_dbg(ab, ATH11K_DBG_MAC, "recovery started success\n"); 6202 } 6203 6204 ath11k_dbg(ab, ATH11K_DBG_MAC, "waiting reconfigure...\n"); 6205 6206 wait_for_completion_timeout(&ab->reconfigure_complete, 6207 ATH11K_RECONFIGURE_TIMEOUT_HZ); 6208 } 6209 6210 static int ath11k_mac_op_start(struct ieee80211_hw *hw) 6211 { 6212 struct ath11k *ar = hw->priv; 6213 struct ath11k_base *ab = ar->ab; 6214 struct ath11k_pdev *pdev = ar->pdev; 6215 int ret; 6216 6217 if (ath11k_ftm_mode) { 6218 ath11k_warn(ab, "mac operations not supported in factory test mode\n"); 6219 return -EOPNOTSUPP; 6220 } 6221 6222 ath11k_mac_drain_tx(ar); 6223 mutex_lock(&ar->conf_mutex); 6224 6225 switch (ar->state) { 6226 case ATH11K_STATE_OFF: 6227 ar->state = ATH11K_STATE_ON; 6228 break; 6229 case ATH11K_STATE_RESTARTING: 6230 ar->state = ATH11K_STATE_RESTARTED; 6231 ath11k_mac_wait_reconfigure(ab); 6232 break; 6233 case ATH11K_STATE_RESTARTED: 6234 case ATH11K_STATE_WEDGED: 6235 case ATH11K_STATE_ON: 6236 case ATH11K_STATE_FTM: 6237 WARN_ON(1); 6238 ret = -EINVAL; 6239 goto err; 6240 } 6241 6242 ret = ath11k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_PMF_QOS, 6243 1, pdev->pdev_id); 6244 6245 if (ret) { 6246 ath11k_err(ar->ab, "failed to enable PMF QOS: (%d\n", ret); 6247 goto err; 6248 } 6249 6250 ret = ath11k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_DYNAMIC_BW, 1, 6251 pdev->pdev_id); 6252 if (ret) { 6253 ath11k_err(ar->ab, "failed to enable dynamic bw: %d\n", ret); 6254 goto err; 6255 } 6256 6257 if (test_bit(WMI_TLV_SERVICE_SPOOF_MAC_SUPPORT, ar->wmi->wmi_ab->svc_map)) { 6258 ret = ath11k_wmi_scan_prob_req_oui(ar, ar->mac_addr); 6259 if (ret) { 6260 ath11k_err(ab, "failed to set prob req oui: %i\n", ret); 6261 goto err; 6262 } 6263 } 6264 6265 ret = ath11k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_ARP_AC_OVERRIDE, 6266 0, pdev->pdev_id); 6267 if (ret) { 6268 ath11k_err(ab, "failed to set ac override for ARP: %d\n", 6269 ret); 6270 goto err; 6271 } 6272 6273 ret = ath11k_wmi_send_dfs_phyerr_offload_enable_cmd(ar, pdev->pdev_id); 6274 if (ret) { 6275 ath11k_err(ab, "failed to offload radar detection: %d\n", 6276 ret); 6277 goto err; 6278 } 6279 6280 ret = ath11k_dp_tx_htt_h2t_ppdu_stats_req(ar, 6281 HTT_PPDU_STATS_TAG_DEFAULT); 6282 if (ret) { 6283 ath11k_err(ab, "failed to req ppdu stats: %d\n", ret); 6284 goto err; 6285 } 6286 6287 ret = ath11k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_MESH_MCAST_ENABLE, 6288 1, pdev->pdev_id); 6289 6290 if (ret) { 6291 ath11k_err(ar->ab, "failed to enable MESH MCAST ENABLE: (%d\n", ret); 6292 goto err; 6293 } 6294 6295 __ath11k_set_antenna(ar, ar->cfg_tx_chainmask, ar->cfg_rx_chainmask); 6296 6297 /* TODO: Do we need to enable ANI? */ 6298 6299 ath11k_reg_update_chan_list(ar, false); 6300 6301 ar->num_started_vdevs = 0; 6302 ar->num_created_vdevs = 0; 6303 ar->num_peers = 0; 6304 ar->allocated_vdev_map = 0; 6305 6306 /* Configure monitor status ring with default rx_filter to get rx status 6307 * such as rssi, rx_duration. 6308 */ 6309 ret = ath11k_mac_config_mon_status_default(ar, true); 6310 if (ret) { 6311 ath11k_err(ab, "failed to configure monitor status ring with default rx_filter: (%d)\n", 6312 ret); 6313 goto err; 6314 } 6315 6316 /* Configure the hash seed for hash based reo dest ring selection */ 6317 ath11k_wmi_pdev_lro_cfg(ar, ar->pdev->pdev_id); 6318 6319 /* allow device to enter IMPS */ 6320 if (ab->hw_params.idle_ps) { 6321 ret = ath11k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_IDLE_PS_CONFIG, 6322 1, pdev->pdev_id); 6323 if (ret) { 6324 ath11k_err(ab, "failed to enable idle ps: %d\n", ret); 6325 goto err; 6326 } 6327 } 6328 6329 mutex_unlock(&ar->conf_mutex); 6330 6331 rcu_assign_pointer(ab->pdevs_active[ar->pdev_idx], 6332 &ab->pdevs[ar->pdev_idx]); 6333 6334 return 0; 6335 6336 err: 6337 ar->state = ATH11K_STATE_OFF; 6338 mutex_unlock(&ar->conf_mutex); 6339 6340 return ret; 6341 } 6342 6343 static void ath11k_mac_op_stop(struct ieee80211_hw *hw, bool suspend) 6344 { 6345 struct ath11k *ar = hw->priv; 6346 struct htt_ppdu_stats_info *ppdu_stats, *tmp; 6347 struct scan_chan_list_params *params; 6348 int ret; 6349 6350 ath11k_mac_drain_tx(ar); 6351 6352 mutex_lock(&ar->conf_mutex); 6353 ret = ath11k_mac_config_mon_status_default(ar, false); 6354 if (ret) 6355 ath11k_err(ar->ab, "failed to clear rx_filter for monitor status ring: (%d)\n", 6356 ret); 6357 6358 clear_bit(ATH11K_CAC_RUNNING, &ar->dev_flags); 6359 ar->state = ATH11K_STATE_OFF; 6360 mutex_unlock(&ar->conf_mutex); 6361 6362 cancel_delayed_work_sync(&ar->scan.timeout); 6363 cancel_work_sync(&ar->channel_update_work); 6364 cancel_work_sync(&ar->regd_update_work); 6365 cancel_work_sync(&ar->ab->update_11d_work); 6366 6367 if (ar->state_11d == ATH11K_11D_PREPARING) { 6368 ar->state_11d = ATH11K_11D_IDLE; 6369 complete(&ar->completed_11d_scan); 6370 } 6371 6372 spin_lock_bh(&ar->data_lock); 6373 6374 list_for_each_entry_safe(ppdu_stats, tmp, &ar->ppdu_stats_info, list) { 6375 list_del(&ppdu_stats->list); 6376 kfree(ppdu_stats); 6377 } 6378 6379 while ((params = list_first_entry_or_null(&ar->channel_update_queue, 6380 struct scan_chan_list_params, 6381 list))) { 6382 list_del(¶ms->list); 6383 kfree(params); 6384 } 6385 6386 spin_unlock_bh(&ar->data_lock); 6387 6388 rcu_assign_pointer(ar->ab->pdevs_active[ar->pdev_idx], NULL); 6389 6390 synchronize_rcu(); 6391 6392 atomic_set(&ar->num_pending_mgmt_tx, 0); 6393 } 6394 6395 static int ath11k_mac_setup_vdev_params_mbssid(struct ath11k_vif *arvif, 6396 u32 *flags, u32 *tx_vdev_id) 6397 { 6398 struct ath11k *ar = arvif->ar; 6399 struct ath11k_vif *tx_arvif; 6400 6401 *tx_vdev_id = 0; 6402 tx_arvif = ath11k_mac_get_tx_arvif(arvif); 6403 if (!tx_arvif) { 6404 *flags = WMI_HOST_VDEV_FLAGS_NON_MBSSID_AP; 6405 return 0; 6406 } 6407 6408 if (arvif->vif->bss_conf.nontransmitted) { 6409 if (ar->hw->wiphy != tx_arvif->ar->hw->wiphy) 6410 return -EINVAL; 6411 6412 *flags = WMI_HOST_VDEV_FLAGS_NON_TRANSMIT_AP; 6413 *tx_vdev_id = tx_arvif->vdev_id; 6414 } else if (tx_arvif == arvif) { 6415 *flags = WMI_HOST_VDEV_FLAGS_TRANSMIT_AP; 6416 } else { 6417 return -EINVAL; 6418 } 6419 6420 if (arvif->vif->bss_conf.ema_ap) 6421 *flags |= WMI_HOST_VDEV_FLAGS_EMA_MODE; 6422 6423 return 0; 6424 } 6425 6426 static int ath11k_mac_setup_vdev_create_params(struct ath11k_vif *arvif, 6427 struct vdev_create_params *params) 6428 { 6429 struct ath11k *ar = arvif->ar; 6430 struct ath11k_pdev *pdev = ar->pdev; 6431 int ret; 6432 6433 params->if_id = arvif->vdev_id; 6434 params->type = arvif->vdev_type; 6435 params->subtype = arvif->vdev_subtype; 6436 params->pdev_id = pdev->pdev_id; 6437 params->mbssid_flags = 0; 6438 params->mbssid_tx_vdev_id = 0; 6439 6440 if (!test_bit(WMI_TLV_SERVICE_MBSS_PARAM_IN_VDEV_START_SUPPORT, 6441 ar->ab->wmi_ab.svc_map)) { 6442 ret = ath11k_mac_setup_vdev_params_mbssid(arvif, 6443 ¶ms->mbssid_flags, 6444 ¶ms->mbssid_tx_vdev_id); 6445 if (ret) 6446 return ret; 6447 } 6448 6449 if (pdev->cap.supported_bands & WMI_HOST_WLAN_2G_CAP) { 6450 params->chains[NL80211_BAND_2GHZ].tx = ar->num_tx_chains; 6451 params->chains[NL80211_BAND_2GHZ].rx = ar->num_rx_chains; 6452 } 6453 if (pdev->cap.supported_bands & WMI_HOST_WLAN_5G_CAP) { 6454 params->chains[NL80211_BAND_5GHZ].tx = ar->num_tx_chains; 6455 params->chains[NL80211_BAND_5GHZ].rx = ar->num_rx_chains; 6456 } 6457 if (pdev->cap.supported_bands & WMI_HOST_WLAN_5G_CAP && 6458 ar->supports_6ghz) { 6459 params->chains[NL80211_BAND_6GHZ].tx = ar->num_tx_chains; 6460 params->chains[NL80211_BAND_6GHZ].rx = ar->num_rx_chains; 6461 } 6462 return 0; 6463 } 6464 6465 static void ath11k_mac_op_update_vif_offload(struct ieee80211_hw *hw, 6466 struct ieee80211_vif *vif) 6467 { 6468 struct ath11k *ar = hw->priv; 6469 struct ath11k_base *ab = ar->ab; 6470 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 6471 u32 param_id, param_value; 6472 int ret; 6473 6474 param_id = WMI_VDEV_PARAM_TX_ENCAP_TYPE; 6475 if (ath11k_frame_mode != ATH11K_HW_TXRX_ETHERNET || 6476 (vif->type != NL80211_IFTYPE_STATION && 6477 vif->type != NL80211_IFTYPE_AP)) 6478 vif->offload_flags &= ~(IEEE80211_OFFLOAD_ENCAP_ENABLED | 6479 IEEE80211_OFFLOAD_DECAP_ENABLED); 6480 6481 if (vif->offload_flags & IEEE80211_OFFLOAD_ENCAP_ENABLED) 6482 param_value = ATH11K_HW_TXRX_ETHERNET; 6483 else if (test_bit(ATH11K_FLAG_RAW_MODE, &ab->dev_flags)) 6484 param_value = ATH11K_HW_TXRX_RAW; 6485 else 6486 param_value = ATH11K_HW_TXRX_NATIVE_WIFI; 6487 6488 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 6489 param_id, param_value); 6490 if (ret) { 6491 ath11k_warn(ab, "failed to set vdev %d tx encap mode: %d\n", 6492 arvif->vdev_id, ret); 6493 vif->offload_flags &= ~IEEE80211_OFFLOAD_ENCAP_ENABLED; 6494 } 6495 6496 param_id = WMI_VDEV_PARAM_RX_DECAP_TYPE; 6497 if (vif->offload_flags & IEEE80211_OFFLOAD_DECAP_ENABLED) 6498 param_value = ATH11K_HW_TXRX_ETHERNET; 6499 else if (test_bit(ATH11K_FLAG_RAW_MODE, &ab->dev_flags)) 6500 param_value = ATH11K_HW_TXRX_RAW; 6501 else 6502 param_value = ATH11K_HW_TXRX_NATIVE_WIFI; 6503 6504 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 6505 param_id, param_value); 6506 if (ret) { 6507 ath11k_warn(ab, "failed to set vdev %d rx decap mode: %d\n", 6508 arvif->vdev_id, ret); 6509 vif->offload_flags &= ~IEEE80211_OFFLOAD_DECAP_ENABLED; 6510 } 6511 } 6512 6513 static bool ath11k_mac_vif_ap_active_any(struct ath11k_base *ab) 6514 { 6515 struct ath11k *ar; 6516 struct ath11k_pdev *pdev; 6517 struct ath11k_vif *arvif; 6518 int i; 6519 6520 for (i = 0; i < ab->num_radios; i++) { 6521 pdev = &ab->pdevs[i]; 6522 ar = pdev->ar; 6523 list_for_each_entry(arvif, &ar->arvifs, list) { 6524 if (arvif->is_up && arvif->vdev_type == WMI_VDEV_TYPE_AP) 6525 return true; 6526 } 6527 } 6528 return false; 6529 } 6530 6531 void ath11k_mac_11d_scan_start(struct ath11k *ar, u32 vdev_id) 6532 { 6533 struct wmi_11d_scan_start_params param; 6534 int ret; 6535 6536 mutex_lock(&ar->ab->vdev_id_11d_lock); 6537 6538 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "vdev id for 11d scan %d\n", 6539 ar->vdev_id_11d_scan); 6540 6541 if (ar->regdom_set_by_user) 6542 goto fin; 6543 6544 if (ar->vdev_id_11d_scan != ATH11K_11D_INVALID_VDEV_ID) 6545 goto fin; 6546 6547 if (!test_bit(WMI_TLV_SERVICE_11D_OFFLOAD, ar->ab->wmi_ab.svc_map)) 6548 goto fin; 6549 6550 if (ath11k_mac_vif_ap_active_any(ar->ab)) 6551 goto fin; 6552 6553 param.vdev_id = vdev_id; 6554 param.start_interval_msec = 0; 6555 param.scan_period_msec = ATH11K_SCAN_11D_INTERVAL; 6556 6557 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "start 11d scan\n"); 6558 6559 ret = ath11k_wmi_send_11d_scan_start_cmd(ar, ¶m); 6560 if (ret) { 6561 ath11k_warn(ar->ab, "failed to start 11d scan vdev %d ret: %d\n", 6562 vdev_id, ret); 6563 } else { 6564 ar->vdev_id_11d_scan = vdev_id; 6565 if (ar->state_11d == ATH11K_11D_PREPARING) 6566 ar->state_11d = ATH11K_11D_RUNNING; 6567 } 6568 6569 fin: 6570 if (ar->state_11d == ATH11K_11D_PREPARING) { 6571 ar->state_11d = ATH11K_11D_IDLE; 6572 complete(&ar->completed_11d_scan); 6573 } 6574 6575 mutex_unlock(&ar->ab->vdev_id_11d_lock); 6576 } 6577 6578 void ath11k_mac_11d_scan_stop(struct ath11k *ar) 6579 { 6580 int ret; 6581 u32 vdev_id; 6582 6583 if (!test_bit(WMI_TLV_SERVICE_11D_OFFLOAD, ar->ab->wmi_ab.svc_map)) 6584 return; 6585 6586 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "stop 11d scan\n"); 6587 6588 mutex_lock(&ar->ab->vdev_id_11d_lock); 6589 6590 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "stop 11d vdev id %d\n", 6591 ar->vdev_id_11d_scan); 6592 6593 if (ar->state_11d == ATH11K_11D_PREPARING) { 6594 ar->state_11d = ATH11K_11D_IDLE; 6595 complete(&ar->completed_11d_scan); 6596 } 6597 6598 if (ar->vdev_id_11d_scan != ATH11K_11D_INVALID_VDEV_ID) { 6599 vdev_id = ar->vdev_id_11d_scan; 6600 6601 ret = ath11k_wmi_send_11d_scan_stop_cmd(ar, vdev_id); 6602 if (ret) { 6603 ath11k_warn(ar->ab, 6604 "failed to stopt 11d scan vdev %d ret: %d\n", 6605 vdev_id, ret); 6606 } else { 6607 ar->vdev_id_11d_scan = ATH11K_11D_INVALID_VDEV_ID; 6608 ar->state_11d = ATH11K_11D_IDLE; 6609 complete(&ar->completed_11d_scan); 6610 } 6611 } 6612 mutex_unlock(&ar->ab->vdev_id_11d_lock); 6613 } 6614 6615 void ath11k_mac_11d_scan_stop_all(struct ath11k_base *ab) 6616 { 6617 struct ath11k *ar; 6618 struct ath11k_pdev *pdev; 6619 int i; 6620 6621 ath11k_dbg(ab, ATH11K_DBG_MAC, "stop soc 11d scan\n"); 6622 6623 for (i = 0; i < ab->num_radios; i++) { 6624 pdev = &ab->pdevs[i]; 6625 ar = pdev->ar; 6626 6627 ath11k_mac_11d_scan_stop(ar); 6628 } 6629 } 6630 6631 static int ath11k_mac_vdev_delete(struct ath11k *ar, struct ath11k_vif *arvif) 6632 { 6633 unsigned long time_left; 6634 struct ieee80211_vif *vif = arvif->vif; 6635 int ret = 0; 6636 6637 lockdep_assert_held(&ar->conf_mutex); 6638 6639 reinit_completion(&ar->vdev_delete_done); 6640 6641 ret = ath11k_wmi_vdev_delete(ar, arvif->vdev_id); 6642 if (ret) { 6643 ath11k_warn(ar->ab, "failed to delete WMI vdev %d: %d\n", 6644 arvif->vdev_id, ret); 6645 return ret; 6646 } 6647 6648 time_left = wait_for_completion_timeout(&ar->vdev_delete_done, 6649 ATH11K_VDEV_DELETE_TIMEOUT_HZ); 6650 if (time_left == 0) { 6651 ath11k_warn(ar->ab, "Timeout in receiving vdev delete response\n"); 6652 return -ETIMEDOUT; 6653 } 6654 6655 ar->ab->free_vdev_map |= 1LL << (arvif->vdev_id); 6656 ar->allocated_vdev_map &= ~(1LL << arvif->vdev_id); 6657 ar->num_created_vdevs--; 6658 6659 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "vdev %pM deleted, vdev_id %d\n", 6660 vif->addr, arvif->vdev_id); 6661 6662 return ret; 6663 } 6664 6665 static void ath11k_mac_bcn_tx_work(struct work_struct *work) 6666 { 6667 struct ath11k_vif *arvif = container_of(work, struct ath11k_vif, 6668 bcn_tx_work); 6669 6670 mutex_lock(&arvif->ar->conf_mutex); 6671 ath11k_mac_bcn_tx_event(arvif); 6672 mutex_unlock(&arvif->ar->conf_mutex); 6673 } 6674 6675 static int ath11k_mac_op_add_interface(struct ieee80211_hw *hw, 6676 struct ieee80211_vif *vif) 6677 { 6678 struct ath11k *ar = hw->priv; 6679 struct ath11k_base *ab = ar->ab; 6680 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 6681 struct vdev_create_params vdev_param = {0}; 6682 struct peer_create_params peer_param; 6683 u32 param_id, param_value; 6684 u16 nss; 6685 int i; 6686 int ret, fbret; 6687 int bit; 6688 6689 vif->driver_flags |= IEEE80211_VIF_SUPPORTS_UAPSD; 6690 6691 mutex_lock(&ar->conf_mutex); 6692 6693 if (vif->type == NL80211_IFTYPE_AP && 6694 ar->num_peers > (ar->max_num_peers - 1)) { 6695 ath11k_warn(ab, "failed to create vdev due to insufficient peer entry resource in firmware\n"); 6696 ret = -ENOBUFS; 6697 goto err; 6698 } 6699 6700 if (ar->num_created_vdevs > (TARGET_NUM_VDEVS(ab) - 1)) { 6701 ath11k_warn(ab, "failed to create vdev %u, reached max vdev limit %d\n", 6702 ar->num_created_vdevs, TARGET_NUM_VDEVS(ab)); 6703 ret = -EBUSY; 6704 goto err; 6705 } 6706 6707 memset(arvif, 0, sizeof(*arvif)); 6708 6709 arvif->ar = ar; 6710 arvif->vif = vif; 6711 6712 INIT_LIST_HEAD(&arvif->list); 6713 INIT_WORK(&arvif->bcn_tx_work, ath11k_mac_bcn_tx_work); 6714 INIT_DELAYED_WORK(&arvif->connection_loss_work, 6715 ath11k_mac_vif_sta_connection_loss_work); 6716 6717 for (i = 0; i < ARRAY_SIZE(arvif->bitrate_mask.control); i++) { 6718 arvif->bitrate_mask.control[i].legacy = 0xffffffff; 6719 arvif->bitrate_mask.control[i].gi = NL80211_TXRATE_FORCE_SGI; 6720 memset(arvif->bitrate_mask.control[i].ht_mcs, 0xff, 6721 sizeof(arvif->bitrate_mask.control[i].ht_mcs)); 6722 memset(arvif->bitrate_mask.control[i].vht_mcs, 0xff, 6723 sizeof(arvif->bitrate_mask.control[i].vht_mcs)); 6724 memset(arvif->bitrate_mask.control[i].he_mcs, 0xff, 6725 sizeof(arvif->bitrate_mask.control[i].he_mcs)); 6726 } 6727 6728 bit = __ffs64(ab->free_vdev_map); 6729 6730 arvif->vdev_id = bit; 6731 arvif->vdev_subtype = WMI_VDEV_SUBTYPE_NONE; 6732 6733 switch (vif->type) { 6734 case NL80211_IFTYPE_UNSPECIFIED: 6735 case NL80211_IFTYPE_STATION: 6736 arvif->vdev_type = WMI_VDEV_TYPE_STA; 6737 if (vif->p2p) 6738 arvif->vdev_subtype = WMI_VDEV_SUBTYPE_P2P_CLIENT; 6739 break; 6740 case NL80211_IFTYPE_MESH_POINT: 6741 arvif->vdev_subtype = WMI_VDEV_SUBTYPE_MESH_11S; 6742 fallthrough; 6743 case NL80211_IFTYPE_AP: 6744 arvif->vdev_type = WMI_VDEV_TYPE_AP; 6745 if (vif->p2p) 6746 arvif->vdev_subtype = WMI_VDEV_SUBTYPE_P2P_GO; 6747 break; 6748 case NL80211_IFTYPE_MONITOR: 6749 arvif->vdev_type = WMI_VDEV_TYPE_MONITOR; 6750 ar->monitor_vdev_id = bit; 6751 break; 6752 case NL80211_IFTYPE_P2P_DEVICE: 6753 arvif->vdev_type = WMI_VDEV_TYPE_STA; 6754 arvif->vdev_subtype = WMI_VDEV_SUBTYPE_P2P_DEVICE; 6755 break; 6756 6757 default: 6758 WARN_ON(1); 6759 break; 6760 } 6761 6762 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "add interface id %d type %d subtype %d map %llx\n", 6763 arvif->vdev_id, arvif->vdev_type, arvif->vdev_subtype, 6764 ab->free_vdev_map); 6765 6766 vif->cab_queue = arvif->vdev_id % (ATH11K_HW_MAX_QUEUES - 1); 6767 for (i = 0; i < ARRAY_SIZE(vif->hw_queue); i++) 6768 vif->hw_queue[i] = i % (ATH11K_HW_MAX_QUEUES - 1); 6769 6770 ret = ath11k_mac_setup_vdev_create_params(arvif, &vdev_param); 6771 if (ret) { 6772 ath11k_warn(ab, "failed to create vdev parameters %d: %d\n", 6773 arvif->vdev_id, ret); 6774 goto err; 6775 } 6776 6777 ret = ath11k_wmi_vdev_create(ar, vif->addr, &vdev_param); 6778 if (ret) { 6779 ath11k_warn(ab, "failed to create WMI vdev %d: %d\n", 6780 arvif->vdev_id, ret); 6781 goto err; 6782 } 6783 6784 ar->num_created_vdevs++; 6785 ath11k_dbg(ab, ATH11K_DBG_MAC, "vdev %pM created, vdev_id %d\n", 6786 vif->addr, arvif->vdev_id); 6787 ar->allocated_vdev_map |= 1LL << arvif->vdev_id; 6788 ab->free_vdev_map &= ~(1LL << arvif->vdev_id); 6789 6790 spin_lock_bh(&ar->data_lock); 6791 list_add(&arvif->list, &ar->arvifs); 6792 spin_unlock_bh(&ar->data_lock); 6793 6794 ath11k_mac_op_update_vif_offload(hw, vif); 6795 6796 nss = get_num_chains(ar->cfg_tx_chainmask) ? : 1; 6797 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 6798 WMI_VDEV_PARAM_NSS, nss); 6799 if (ret) { 6800 ath11k_warn(ab, "failed to set vdev %d chainmask 0x%x, nss %d :%d\n", 6801 arvif->vdev_id, ar->cfg_tx_chainmask, nss, ret); 6802 goto err_vdev_del; 6803 } 6804 6805 switch (arvif->vdev_type) { 6806 case WMI_VDEV_TYPE_AP: 6807 peer_param.vdev_id = arvif->vdev_id; 6808 peer_param.peer_addr = vif->addr; 6809 peer_param.peer_type = WMI_PEER_TYPE_DEFAULT; 6810 ret = ath11k_peer_create(ar, arvif, NULL, &peer_param); 6811 if (ret) { 6812 ath11k_warn(ab, "failed to vdev %d create peer for AP: %d\n", 6813 arvif->vdev_id, ret); 6814 goto err_vdev_del; 6815 } 6816 6817 ret = ath11k_mac_set_kickout(arvif); 6818 if (ret) { 6819 ath11k_warn(ar->ab, "failed to set vdev %i kickout parameters: %d\n", 6820 arvif->vdev_id, ret); 6821 goto err_peer_del; 6822 } 6823 6824 ath11k_mac_11d_scan_stop_all(ar->ab); 6825 break; 6826 case WMI_VDEV_TYPE_STA: 6827 param_id = WMI_STA_PS_PARAM_RX_WAKE_POLICY; 6828 param_value = WMI_STA_PS_RX_WAKE_POLICY_WAKE; 6829 ret = ath11k_wmi_set_sta_ps_param(ar, arvif->vdev_id, 6830 param_id, param_value); 6831 if (ret) { 6832 ath11k_warn(ar->ab, "failed to set vdev %d RX wake policy: %d\n", 6833 arvif->vdev_id, ret); 6834 goto err_peer_del; 6835 } 6836 6837 param_id = WMI_STA_PS_PARAM_TX_WAKE_THRESHOLD; 6838 param_value = WMI_STA_PS_TX_WAKE_THRESHOLD_ALWAYS; 6839 ret = ath11k_wmi_set_sta_ps_param(ar, arvif->vdev_id, 6840 param_id, param_value); 6841 if (ret) { 6842 ath11k_warn(ar->ab, "failed to set vdev %d TX wake threshold: %d\n", 6843 arvif->vdev_id, ret); 6844 goto err_peer_del; 6845 } 6846 6847 param_id = WMI_STA_PS_PARAM_PSPOLL_COUNT; 6848 param_value = WMI_STA_PS_PSPOLL_COUNT_NO_MAX; 6849 ret = ath11k_wmi_set_sta_ps_param(ar, arvif->vdev_id, 6850 param_id, param_value); 6851 if (ret) { 6852 ath11k_warn(ar->ab, "failed to set vdev %d pspoll count: %d\n", 6853 arvif->vdev_id, ret); 6854 goto err_peer_del; 6855 } 6856 6857 ret = ath11k_wmi_pdev_set_ps_mode(ar, arvif->vdev_id, 6858 WMI_STA_PS_MODE_DISABLED); 6859 if (ret) { 6860 ath11k_warn(ar->ab, "failed to disable vdev %d ps mode: %d\n", 6861 arvif->vdev_id, ret); 6862 goto err_peer_del; 6863 } 6864 6865 if (test_bit(WMI_TLV_SERVICE_11D_OFFLOAD, ab->wmi_ab.svc_map)) { 6866 reinit_completion(&ar->completed_11d_scan); 6867 ar->state_11d = ATH11K_11D_PREPARING; 6868 } 6869 break; 6870 case WMI_VDEV_TYPE_MONITOR: 6871 set_bit(ATH11K_FLAG_MONITOR_VDEV_CREATED, &ar->monitor_flags); 6872 break; 6873 default: 6874 break; 6875 } 6876 6877 arvif->txpower = vif->bss_conf.txpower; 6878 ret = ath11k_mac_txpower_recalc(ar); 6879 if (ret) 6880 goto err_peer_del; 6881 6882 param_id = WMI_VDEV_PARAM_RTS_THRESHOLD; 6883 param_value = ar->hw->wiphy->rts_threshold; 6884 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 6885 param_id, param_value); 6886 if (ret) { 6887 ath11k_warn(ar->ab, "failed to set rts threshold for vdev %d: %d\n", 6888 arvif->vdev_id, ret); 6889 } 6890 6891 ath11k_dp_vdev_tx_attach(ar, arvif); 6892 6893 if (vif->type != NL80211_IFTYPE_MONITOR && 6894 test_bit(ATH11K_FLAG_MONITOR_CONF_ENABLED, &ar->monitor_flags)) { 6895 ret = ath11k_mac_monitor_vdev_create(ar); 6896 if (ret) 6897 ath11k_warn(ar->ab, "failed to create monitor vdev during add interface: %d", 6898 ret); 6899 } 6900 6901 if (ath11k_wmi_supports_6ghz_cc_ext(ar)) { 6902 struct cur_regulatory_info *reg_info; 6903 6904 reg_info = &ab->reg_info_store[ar->pdev_idx]; 6905 ath11k_dbg(ab, ATH11K_DBG_MAC, "interface added to change reg rules\n"); 6906 ath11k_reg_handle_chan_list(ab, reg_info, IEEE80211_REG_LPI_AP); 6907 } 6908 6909 mutex_unlock(&ar->conf_mutex); 6910 6911 return 0; 6912 6913 err_peer_del: 6914 if (arvif->vdev_type == WMI_VDEV_TYPE_AP) { 6915 fbret = ath11k_peer_delete(ar, arvif->vdev_id, vif->addr); 6916 if (fbret) { 6917 ath11k_warn(ar->ab, "fallback fail to delete peer addr %pM vdev_id %d ret %d\n", 6918 vif->addr, arvif->vdev_id, fbret); 6919 goto err; 6920 } 6921 } 6922 6923 err_vdev_del: 6924 ath11k_mac_vdev_delete(ar, arvif); 6925 spin_lock_bh(&ar->data_lock); 6926 list_del(&arvif->list); 6927 spin_unlock_bh(&ar->data_lock); 6928 6929 err: 6930 mutex_unlock(&ar->conf_mutex); 6931 6932 return ret; 6933 } 6934 6935 static int ath11k_mac_vif_unref(int buf_id, void *skb, void *ctx) 6936 { 6937 struct ieee80211_vif *vif = ctx; 6938 struct ath11k_skb_cb *skb_cb = ATH11K_SKB_CB(skb); 6939 6940 if (skb_cb->vif == vif) 6941 skb_cb->vif = NULL; 6942 6943 return 0; 6944 } 6945 6946 static void ath11k_mac_op_remove_interface(struct ieee80211_hw *hw, 6947 struct ieee80211_vif *vif) 6948 { 6949 struct ath11k *ar = hw->priv; 6950 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 6951 struct ath11k_base *ab = ar->ab; 6952 int ret; 6953 int i; 6954 6955 cancel_delayed_work_sync(&arvif->connection_loss_work); 6956 cancel_work_sync(&arvif->bcn_tx_work); 6957 6958 mutex_lock(&ar->conf_mutex); 6959 6960 ath11k_dbg(ab, ATH11K_DBG_MAC, "remove interface (vdev %d)\n", 6961 arvif->vdev_id); 6962 6963 ret = ath11k_spectral_vif_stop(arvif); 6964 if (ret) 6965 ath11k_warn(ab, "failed to stop spectral for vdev %i: %d\n", 6966 arvif->vdev_id, ret); 6967 6968 if (arvif->vdev_type == WMI_VDEV_TYPE_STA) 6969 ath11k_mac_11d_scan_stop(ar); 6970 6971 if (arvif->vdev_type == WMI_VDEV_TYPE_AP) { 6972 ret = ath11k_peer_delete(ar, arvif->vdev_id, vif->addr); 6973 if (ret) 6974 ath11k_warn(ab, "failed to submit AP self-peer removal on vdev %d: %d\n", 6975 arvif->vdev_id, ret); 6976 } 6977 6978 ret = ath11k_mac_vdev_delete(ar, arvif); 6979 if (ret) { 6980 ath11k_warn(ab, "failed to delete vdev %d: %d\n", 6981 arvif->vdev_id, ret); 6982 goto err_vdev_del; 6983 } 6984 6985 if (arvif->vdev_type == WMI_VDEV_TYPE_MONITOR) { 6986 clear_bit(ATH11K_FLAG_MONITOR_VDEV_CREATED, &ar->monitor_flags); 6987 ar->monitor_vdev_id = -1; 6988 } else if (test_bit(ATH11K_FLAG_MONITOR_VDEV_CREATED, &ar->monitor_flags) && 6989 !test_bit(ATH11K_FLAG_MONITOR_STARTED, &ar->monitor_flags)) { 6990 ret = ath11k_mac_monitor_vdev_delete(ar); 6991 if (ret) 6992 /* continue even if there's an error */ 6993 ath11k_warn(ar->ab, "failed to delete vdev monitor during remove interface: %d", 6994 ret); 6995 } 6996 6997 err_vdev_del: 6998 spin_lock_bh(&ar->data_lock); 6999 list_del(&arvif->list); 7000 spin_unlock_bh(&ar->data_lock); 7001 7002 ath11k_peer_cleanup(ar, arvif->vdev_id); 7003 7004 idr_for_each(&ar->txmgmt_idr, 7005 ath11k_mac_vif_txmgmt_idr_remove, vif); 7006 7007 for (i = 0; i < ab->hw_params.max_tx_ring; i++) { 7008 spin_lock_bh(&ab->dp.tx_ring[i].tx_idr_lock); 7009 idr_for_each(&ab->dp.tx_ring[i].txbuf_idr, 7010 ath11k_mac_vif_unref, vif); 7011 spin_unlock_bh(&ab->dp.tx_ring[i].tx_idr_lock); 7012 } 7013 7014 /* Recalc txpower for remaining vdev */ 7015 ath11k_mac_txpower_recalc(ar); 7016 7017 /* TODO: recalc traffic pause state based on the available vdevs */ 7018 7019 mutex_unlock(&ar->conf_mutex); 7020 } 7021 7022 /* FIXME: Has to be verified. */ 7023 #define SUPPORTED_FILTERS \ 7024 (FIF_ALLMULTI | \ 7025 FIF_CONTROL | \ 7026 FIF_PSPOLL | \ 7027 FIF_OTHER_BSS | \ 7028 FIF_BCN_PRBRESP_PROMISC | \ 7029 FIF_PROBE_REQ | \ 7030 FIF_FCSFAIL) 7031 7032 static void ath11k_mac_op_configure_filter(struct ieee80211_hw *hw, 7033 unsigned int changed_flags, 7034 unsigned int *total_flags, 7035 u64 multicast) 7036 { 7037 struct ath11k *ar = hw->priv; 7038 7039 mutex_lock(&ar->conf_mutex); 7040 7041 *total_flags &= SUPPORTED_FILTERS; 7042 ar->filter_flags = *total_flags; 7043 7044 mutex_unlock(&ar->conf_mutex); 7045 } 7046 7047 static int ath11k_mac_op_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant) 7048 { 7049 struct ath11k *ar = hw->priv; 7050 7051 mutex_lock(&ar->conf_mutex); 7052 7053 *tx_ant = ar->cfg_tx_chainmask; 7054 *rx_ant = ar->cfg_rx_chainmask; 7055 7056 mutex_unlock(&ar->conf_mutex); 7057 7058 return 0; 7059 } 7060 7061 static int ath11k_mac_op_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant) 7062 { 7063 struct ath11k *ar = hw->priv; 7064 int ret; 7065 7066 mutex_lock(&ar->conf_mutex); 7067 ret = __ath11k_set_antenna(ar, tx_ant, rx_ant); 7068 mutex_unlock(&ar->conf_mutex); 7069 7070 return ret; 7071 } 7072 7073 static int ath11k_mac_op_ampdu_action(struct ieee80211_hw *hw, 7074 struct ieee80211_vif *vif, 7075 struct ieee80211_ampdu_params *params) 7076 { 7077 struct ath11k *ar = hw->priv; 7078 int ret = -EINVAL; 7079 7080 mutex_lock(&ar->conf_mutex); 7081 7082 switch (params->action) { 7083 case IEEE80211_AMPDU_RX_START: 7084 ret = ath11k_dp_rx_ampdu_start(ar, params); 7085 break; 7086 case IEEE80211_AMPDU_RX_STOP: 7087 ret = ath11k_dp_rx_ampdu_stop(ar, params); 7088 break; 7089 case IEEE80211_AMPDU_TX_START: 7090 case IEEE80211_AMPDU_TX_STOP_CONT: 7091 case IEEE80211_AMPDU_TX_STOP_FLUSH: 7092 case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT: 7093 case IEEE80211_AMPDU_TX_OPERATIONAL: 7094 /* Tx A-MPDU aggregation offloaded to hw/fw so deny mac80211 7095 * Tx aggregation requests. 7096 */ 7097 ret = -EOPNOTSUPP; 7098 break; 7099 } 7100 7101 mutex_unlock(&ar->conf_mutex); 7102 7103 return ret; 7104 } 7105 7106 static int ath11k_mac_op_add_chanctx(struct ieee80211_hw *hw, 7107 struct ieee80211_chanctx_conf *ctx) 7108 { 7109 struct ath11k *ar = hw->priv; 7110 struct ath11k_base *ab = ar->ab; 7111 7112 ath11k_dbg(ab, ATH11K_DBG_MAC, 7113 "chanctx add freq %u width %d ptr %p\n", 7114 ctx->def.chan->center_freq, ctx->def.width, ctx); 7115 7116 mutex_lock(&ar->conf_mutex); 7117 7118 spin_lock_bh(&ar->data_lock); 7119 /* TODO: In case of multiple channel context, populate rx_channel from 7120 * Rx PPDU desc information. 7121 */ 7122 ar->rx_channel = ctx->def.chan; 7123 spin_unlock_bh(&ar->data_lock); 7124 7125 mutex_unlock(&ar->conf_mutex); 7126 7127 return 0; 7128 } 7129 7130 static void ath11k_mac_op_remove_chanctx(struct ieee80211_hw *hw, 7131 struct ieee80211_chanctx_conf *ctx) 7132 { 7133 struct ath11k *ar = hw->priv; 7134 struct ath11k_base *ab = ar->ab; 7135 7136 ath11k_dbg(ab, ATH11K_DBG_MAC, 7137 "chanctx remove freq %u width %d ptr %p\n", 7138 ctx->def.chan->center_freq, ctx->def.width, ctx); 7139 7140 mutex_lock(&ar->conf_mutex); 7141 7142 spin_lock_bh(&ar->data_lock); 7143 /* TODO: In case of there is one more channel context left, populate 7144 * rx_channel with the channel of that remaining channel context. 7145 */ 7146 ar->rx_channel = NULL; 7147 spin_unlock_bh(&ar->data_lock); 7148 7149 mutex_unlock(&ar->conf_mutex); 7150 } 7151 7152 static int 7153 ath11k_mac_vdev_start_restart(struct ath11k_vif *arvif, 7154 struct ieee80211_chanctx_conf *ctx, 7155 bool restart) 7156 { 7157 struct ath11k *ar = arvif->ar; 7158 struct ath11k_base *ab = ar->ab; 7159 struct wmi_vdev_start_req_arg arg = {}; 7160 const struct cfg80211_chan_def *chandef = &ctx->def; 7161 int ret = 0; 7162 unsigned int dfs_cac_time; 7163 7164 lockdep_assert_held(&ar->conf_mutex); 7165 7166 reinit_completion(&ar->vdev_setup_done); 7167 7168 arg.vdev_id = arvif->vdev_id; 7169 arg.dtim_period = arvif->dtim_period; 7170 arg.bcn_intval = arvif->beacon_interval; 7171 7172 arg.channel.freq = chandef->chan->center_freq; 7173 arg.channel.band_center_freq1 = chandef->center_freq1; 7174 arg.channel.band_center_freq2 = chandef->center_freq2; 7175 arg.channel.mode = 7176 ath11k_phymodes[chandef->chan->band][chandef->width]; 7177 7178 arg.channel.min_power = 0; 7179 arg.channel.max_power = chandef->chan->max_power; 7180 arg.channel.max_reg_power = chandef->chan->max_reg_power; 7181 arg.channel.max_antenna_gain = chandef->chan->max_antenna_gain; 7182 7183 arg.pref_tx_streams = ar->num_tx_chains; 7184 arg.pref_rx_streams = ar->num_rx_chains; 7185 7186 arg.mbssid_flags = 0; 7187 arg.mbssid_tx_vdev_id = 0; 7188 if (test_bit(WMI_TLV_SERVICE_MBSS_PARAM_IN_VDEV_START_SUPPORT, 7189 ar->ab->wmi_ab.svc_map)) { 7190 ret = ath11k_mac_setup_vdev_params_mbssid(arvif, 7191 &arg.mbssid_flags, 7192 &arg.mbssid_tx_vdev_id); 7193 if (ret) 7194 return ret; 7195 } 7196 7197 if (arvif->vdev_type == WMI_VDEV_TYPE_AP) { 7198 arg.ssid = arvif->u.ap.ssid; 7199 arg.ssid_len = arvif->u.ap.ssid_len; 7200 arg.hidden_ssid = arvif->u.ap.hidden_ssid; 7201 7202 /* For now allow DFS for AP mode */ 7203 arg.channel.chan_radar = 7204 !!(chandef->chan->flags & IEEE80211_CHAN_RADAR); 7205 7206 arg.channel.freq2_radar = ctx->radar_enabled; 7207 7208 arg.channel.passive = arg.channel.chan_radar; 7209 7210 spin_lock_bh(&ab->base_lock); 7211 arg.regdomain = ar->ab->dfs_region; 7212 spin_unlock_bh(&ab->base_lock); 7213 } 7214 7215 arg.channel.passive |= !!(chandef->chan->flags & IEEE80211_CHAN_NO_IR); 7216 7217 ath11k_dbg(ab, ATH11K_DBG_MAC, 7218 "vdev %d start center_freq %d phymode %s\n", 7219 arg.vdev_id, arg.channel.freq, 7220 ath11k_wmi_phymode_str(arg.channel.mode)); 7221 7222 ret = ath11k_wmi_vdev_start(ar, &arg, restart); 7223 if (ret) { 7224 ath11k_warn(ar->ab, "failed to %s WMI vdev %i\n", 7225 restart ? "restart" : "start", arg.vdev_id); 7226 return ret; 7227 } 7228 7229 ret = ath11k_mac_vdev_setup_sync(ar); 7230 if (ret) { 7231 ath11k_warn(ab, "failed to synchronize setup for vdev %i %s: %d\n", 7232 arg.vdev_id, restart ? "restart" : "start", ret); 7233 return ret; 7234 } 7235 7236 /* TODO: For now we only set TPC power here. However when 7237 * channel changes, say CSA, it should be updated again. 7238 */ 7239 if (ath11k_mac_supports_station_tpc(ar, arvif, chandef)) { 7240 ath11k_mac_fill_reg_tpc_info(ar, arvif->vif, &arvif->chanctx); 7241 ath11k_wmi_send_vdev_set_tpc_power(ar, arvif->vdev_id, 7242 &arvif->reg_tpc_info); 7243 } 7244 7245 if (!restart) 7246 ar->num_started_vdevs++; 7247 7248 ath11k_dbg(ab, ATH11K_DBG_MAC, "vdev %pM started, vdev_id %d\n", 7249 arvif->vif->addr, arvif->vdev_id); 7250 7251 /* Enable CAC Flag in the driver by checking the all sub-channel's DFS 7252 * state as NL80211_DFS_USABLE which indicates CAC needs to be 7253 * done before channel usage. This flags is used to drop rx packets. 7254 * during CAC. 7255 */ 7256 /* TODO Set the flag for other interface types as required */ 7257 if (arvif->vdev_type == WMI_VDEV_TYPE_AP && ctx->radar_enabled && 7258 cfg80211_chandef_dfs_usable(ar->hw->wiphy, chandef)) { 7259 set_bit(ATH11K_CAC_RUNNING, &ar->dev_flags); 7260 dfs_cac_time = cfg80211_chandef_dfs_cac_time(ar->hw->wiphy, 7261 chandef); 7262 ath11k_dbg(ab, ATH11K_DBG_MAC, 7263 "cac started dfs_cac_time %u center_freq %d center_freq1 %d for vdev %d\n", 7264 dfs_cac_time, arg.channel.freq, chandef->center_freq1, 7265 arg.vdev_id); 7266 } 7267 7268 ret = ath11k_mac_set_txbf_conf(arvif); 7269 if (ret) 7270 ath11k_warn(ab, "failed to set txbf conf for vdev %d: %d\n", 7271 arvif->vdev_id, ret); 7272 7273 return 0; 7274 } 7275 7276 static int ath11k_mac_vdev_stop(struct ath11k_vif *arvif) 7277 { 7278 struct ath11k *ar = arvif->ar; 7279 int ret; 7280 7281 lockdep_assert_held(&ar->conf_mutex); 7282 7283 reinit_completion(&ar->vdev_setup_done); 7284 7285 ret = ath11k_wmi_vdev_stop(ar, arvif->vdev_id); 7286 if (ret) { 7287 ath11k_warn(ar->ab, "failed to stop WMI vdev %i: %d\n", 7288 arvif->vdev_id, ret); 7289 goto err; 7290 } 7291 7292 ret = ath11k_mac_vdev_setup_sync(ar); 7293 if (ret) { 7294 ath11k_warn(ar->ab, "failed to synchronize setup for vdev %i: %d\n", 7295 arvif->vdev_id, ret); 7296 goto err; 7297 } 7298 7299 WARN_ON(ar->num_started_vdevs == 0); 7300 7301 ar->num_started_vdevs--; 7302 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "vdev %pM stopped, vdev_id %d\n", 7303 arvif->vif->addr, arvif->vdev_id); 7304 7305 if (test_bit(ATH11K_CAC_RUNNING, &ar->dev_flags)) { 7306 clear_bit(ATH11K_CAC_RUNNING, &ar->dev_flags); 7307 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "CAC Stopped for vdev %d\n", 7308 arvif->vdev_id); 7309 } 7310 7311 return 0; 7312 err: 7313 return ret; 7314 } 7315 7316 static int ath11k_mac_vdev_start(struct ath11k_vif *arvif, 7317 struct ieee80211_chanctx_conf *ctx) 7318 { 7319 return ath11k_mac_vdev_start_restart(arvif, ctx, false); 7320 } 7321 7322 static int ath11k_mac_vdev_restart(struct ath11k_vif *arvif, 7323 struct ieee80211_chanctx_conf *ctx) 7324 { 7325 return ath11k_mac_vdev_start_restart(arvif, ctx, true); 7326 } 7327 7328 struct ath11k_mac_change_chanctx_arg { 7329 struct ieee80211_chanctx_conf *ctx; 7330 struct ieee80211_vif_chanctx_switch *vifs; 7331 int n_vifs; 7332 int next_vif; 7333 }; 7334 7335 static void 7336 ath11k_mac_change_chanctx_cnt_iter(void *data, u8 *mac, 7337 struct ieee80211_vif *vif) 7338 { 7339 struct ath11k_mac_change_chanctx_arg *arg = data; 7340 7341 if (rcu_access_pointer(vif->bss_conf.chanctx_conf) != arg->ctx) 7342 return; 7343 7344 arg->n_vifs++; 7345 } 7346 7347 static void 7348 ath11k_mac_change_chanctx_fill_iter(void *data, u8 *mac, 7349 struct ieee80211_vif *vif) 7350 { 7351 struct ath11k_mac_change_chanctx_arg *arg = data; 7352 struct ieee80211_chanctx_conf *ctx; 7353 7354 ctx = rcu_access_pointer(vif->bss_conf.chanctx_conf); 7355 if (ctx != arg->ctx) 7356 return; 7357 7358 if (WARN_ON(arg->next_vif == arg->n_vifs)) 7359 return; 7360 7361 arg->vifs[arg->next_vif].vif = vif; 7362 arg->vifs[arg->next_vif].old_ctx = ctx; 7363 arg->vifs[arg->next_vif].new_ctx = ctx; 7364 arg->next_vif++; 7365 } 7366 7367 static void 7368 ath11k_mac_update_vif_chan(struct ath11k *ar, 7369 struct ieee80211_vif_chanctx_switch *vifs, 7370 int n_vifs) 7371 { 7372 struct ath11k_base *ab = ar->ab; 7373 struct ath11k_vif *arvif, *tx_arvif; 7374 int ret; 7375 int i; 7376 bool monitor_vif = false; 7377 7378 lockdep_assert_held(&ar->conf_mutex); 7379 7380 /* Associated channel resources of all relevant vdevs 7381 * should be available for the channel switch now. 7382 */ 7383 7384 /* TODO: Update ar->rx_channel */ 7385 7386 for (i = 0; i < n_vifs; i++) { 7387 arvif = ath11k_vif_to_arvif(vifs[i].vif); 7388 7389 if (WARN_ON(!arvif->is_started)) 7390 continue; 7391 7392 /* change_chanctx can be called even before vdev_up from 7393 * ieee80211_start_ap->ieee80211_vif_use_channel-> 7394 * ieee80211_recalc_radar_chanctx. 7395 * 7396 * Firmware expect vdev_restart only if vdev is up. 7397 * If vdev is down then it expect vdev_stop->vdev_start. 7398 */ 7399 if (arvif->is_up) { 7400 ret = ath11k_mac_vdev_restart(arvif, vifs[i].new_ctx); 7401 if (ret) { 7402 ath11k_warn(ab, "failed to restart vdev %d: %d\n", 7403 arvif->vdev_id, ret); 7404 continue; 7405 } 7406 } else { 7407 ret = ath11k_mac_vdev_stop(arvif); 7408 if (ret) { 7409 ath11k_warn(ab, "failed to stop vdev %d: %d\n", 7410 arvif->vdev_id, ret); 7411 continue; 7412 } 7413 7414 ret = ath11k_mac_vdev_start(arvif, vifs[i].new_ctx); 7415 if (ret) 7416 ath11k_warn(ab, "failed to start vdev %d: %d\n", 7417 arvif->vdev_id, ret); 7418 7419 continue; 7420 } 7421 7422 ret = ath11k_mac_setup_bcn_tmpl(arvif); 7423 if (ret) 7424 ath11k_warn(ab, "failed to update bcn tmpl during csa: %d\n", 7425 ret); 7426 7427 tx_arvif = ath11k_mac_get_tx_arvif(arvif); 7428 ret = ath11k_wmi_vdev_up(arvif->ar, arvif->vdev_id, arvif->aid, 7429 arvif->bssid, 7430 tx_arvif ? tx_arvif->bssid : NULL, 7431 arvif->vif->bss_conf.bssid_index, 7432 1 << arvif->vif->bss_conf.bssid_indicator); 7433 if (ret) { 7434 ath11k_warn(ab, "failed to bring vdev up %d: %d\n", 7435 arvif->vdev_id, ret); 7436 continue; 7437 } 7438 } 7439 7440 /* Restart the internal monitor vdev on new channel */ 7441 if (!monitor_vif && 7442 test_bit(ATH11K_FLAG_MONITOR_VDEV_CREATED, &ar->monitor_flags)) { 7443 ret = ath11k_mac_monitor_stop(ar); 7444 if (ret) { 7445 ath11k_warn(ar->ab, "failed to stop monitor during vif channel update: %d", 7446 ret); 7447 return; 7448 } 7449 7450 ret = ath11k_mac_monitor_start(ar); 7451 if (ret) { 7452 ath11k_warn(ar->ab, "failed to start monitor during vif channel update: %d", 7453 ret); 7454 return; 7455 } 7456 } 7457 } 7458 7459 static void 7460 ath11k_mac_update_active_vif_chan(struct ath11k *ar, 7461 struct ieee80211_chanctx_conf *ctx) 7462 { 7463 struct ath11k_mac_change_chanctx_arg arg = { .ctx = ctx }; 7464 7465 lockdep_assert_held(&ar->conf_mutex); 7466 7467 ieee80211_iterate_active_interfaces_atomic(ar->hw, 7468 IEEE80211_IFACE_ITER_NORMAL, 7469 ath11k_mac_change_chanctx_cnt_iter, 7470 &arg); 7471 if (arg.n_vifs == 0) 7472 return; 7473 7474 arg.vifs = kcalloc(arg.n_vifs, sizeof(arg.vifs[0]), GFP_KERNEL); 7475 if (!arg.vifs) 7476 return; 7477 7478 ieee80211_iterate_active_interfaces_atomic(ar->hw, 7479 IEEE80211_IFACE_ITER_NORMAL, 7480 ath11k_mac_change_chanctx_fill_iter, 7481 &arg); 7482 7483 ath11k_mac_update_vif_chan(ar, arg.vifs, arg.n_vifs); 7484 7485 kfree(arg.vifs); 7486 } 7487 7488 static void ath11k_mac_op_change_chanctx(struct ieee80211_hw *hw, 7489 struct ieee80211_chanctx_conf *ctx, 7490 u32 changed) 7491 { 7492 struct ath11k *ar = hw->priv; 7493 struct ath11k_base *ab = ar->ab; 7494 7495 mutex_lock(&ar->conf_mutex); 7496 7497 ath11k_dbg(ab, ATH11K_DBG_MAC, 7498 "chanctx change freq %u width %d ptr %p changed %x\n", 7499 ctx->def.chan->center_freq, ctx->def.width, ctx, changed); 7500 7501 /* This shouldn't really happen because channel switching should use 7502 * switch_vif_chanctx(). 7503 */ 7504 if (WARN_ON(changed & IEEE80211_CHANCTX_CHANGE_CHANNEL)) 7505 goto unlock; 7506 7507 if (changed & IEEE80211_CHANCTX_CHANGE_WIDTH || 7508 changed & IEEE80211_CHANCTX_CHANGE_RADAR) 7509 ath11k_mac_update_active_vif_chan(ar, ctx); 7510 7511 /* TODO: Recalc radar detection */ 7512 7513 unlock: 7514 mutex_unlock(&ar->conf_mutex); 7515 } 7516 7517 static int ath11k_mac_start_vdev_delay(struct ieee80211_hw *hw, 7518 struct ieee80211_vif *vif) 7519 { 7520 struct ath11k *ar = hw->priv; 7521 struct ath11k_base *ab = ar->ab; 7522 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 7523 int ret; 7524 7525 if (WARN_ON(arvif->is_started)) 7526 return -EBUSY; 7527 7528 ret = ath11k_mac_vdev_start(arvif, &arvif->chanctx); 7529 if (ret) { 7530 ath11k_warn(ab, "failed to start vdev %i addr %pM on freq %d: %d\n", 7531 arvif->vdev_id, vif->addr, 7532 arvif->chanctx.def.chan->center_freq, ret); 7533 return ret; 7534 } 7535 7536 /* Reconfigure hardware rate code since it is cleared by firmware. 7537 */ 7538 if (ar->hw_rate_code > 0) { 7539 u32 vdev_param = WMI_VDEV_PARAM_MGMT_RATE; 7540 7541 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, vdev_param, 7542 ar->hw_rate_code); 7543 if (ret) { 7544 ath11k_warn(ar->ab, "failed to set mgmt tx rate %d\n", ret); 7545 return ret; 7546 } 7547 } 7548 7549 if (arvif->vdev_type == WMI_VDEV_TYPE_MONITOR) { 7550 ret = ath11k_wmi_vdev_up(ar, arvif->vdev_id, 0, ar->mac_addr, 7551 NULL, 0, 0); 7552 if (ret) { 7553 ath11k_warn(ab, "failed put monitor up: %d\n", ret); 7554 return ret; 7555 } 7556 } 7557 7558 arvif->is_started = true; 7559 7560 /* TODO: Setup ps and cts/rts protection */ 7561 return 0; 7562 } 7563 7564 static int ath11k_mac_stop_vdev_early(struct ieee80211_hw *hw, 7565 struct ieee80211_vif *vif) 7566 { 7567 struct ath11k *ar = hw->priv; 7568 struct ath11k_base *ab = ar->ab; 7569 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 7570 int ret; 7571 7572 if (WARN_ON(!arvif->is_started)) 7573 return -EBUSY; 7574 7575 ret = ath11k_mac_vdev_stop(arvif); 7576 if (ret) { 7577 ath11k_warn(ab, "failed to stop vdev %i: %d\n", 7578 arvif->vdev_id, ret); 7579 return ret; 7580 } 7581 7582 arvif->is_started = false; 7583 7584 /* TODO: Setup ps and cts/rts protection */ 7585 return 0; 7586 } 7587 7588 static u8 ath11k_mac_get_num_pwr_levels(struct cfg80211_chan_def *chan_def) 7589 { 7590 if (chan_def->chan->flags & IEEE80211_CHAN_PSD) { 7591 switch (chan_def->width) { 7592 case NL80211_CHAN_WIDTH_20: 7593 return 1; 7594 case NL80211_CHAN_WIDTH_40: 7595 return 2; 7596 case NL80211_CHAN_WIDTH_80: 7597 return 4; 7598 case NL80211_CHAN_WIDTH_80P80: 7599 case NL80211_CHAN_WIDTH_160: 7600 return 8; 7601 default: 7602 return 1; 7603 } 7604 } else { 7605 switch (chan_def->width) { 7606 case NL80211_CHAN_WIDTH_20: 7607 return 1; 7608 case NL80211_CHAN_WIDTH_40: 7609 return 2; 7610 case NL80211_CHAN_WIDTH_80: 7611 return 3; 7612 case NL80211_CHAN_WIDTH_80P80: 7613 case NL80211_CHAN_WIDTH_160: 7614 return 4; 7615 default: 7616 return 1; 7617 } 7618 } 7619 } 7620 7621 static u16 ath11k_mac_get_6ghz_start_frequency(struct cfg80211_chan_def *chan_def) 7622 { 7623 u16 diff_seq; 7624 7625 /* It is to get the lowest channel number's center frequency of the chan. 7626 * For example, 7627 * bandwidth=40 MHz, center frequency is 5965, lowest channel is 1 7628 * with center frequency 5955, its diff is 5965 - 5955 = 10. 7629 * bandwidth=80 MHz, center frequency is 5985, lowest channel is 1 7630 * with center frequency 5955, its diff is 5985 - 5955 = 30. 7631 * bandwidth=160 MHz, center frequency is 6025, lowest channel is 1 7632 * with center frequency 5955, its diff is 6025 - 5955 = 70. 7633 */ 7634 switch (chan_def->width) { 7635 case NL80211_CHAN_WIDTH_160: 7636 diff_seq = 70; 7637 break; 7638 case NL80211_CHAN_WIDTH_80: 7639 case NL80211_CHAN_WIDTH_80P80: 7640 diff_seq = 30; 7641 break; 7642 case NL80211_CHAN_WIDTH_40: 7643 diff_seq = 10; 7644 break; 7645 default: 7646 diff_seq = 0; 7647 } 7648 7649 return chan_def->center_freq1 - diff_seq; 7650 } 7651 7652 static u16 ath11k_mac_get_seg_freq(struct cfg80211_chan_def *chan_def, 7653 u16 start_seq, u8 seq) 7654 { 7655 u16 seg_seq; 7656 7657 /* It is to get the center frequency of the specific bandwidth. 7658 * start_seq means the lowest channel number's center frequency. 7659 * seq 0/1/2/3 means 20 MHz/40 MHz/80 MHz/160 MHz&80P80. 7660 * For example, 7661 * lowest channel is 1, its center frequency 5955, 7662 * center frequency is 5955 when bandwidth=20 MHz, its diff is 5955 - 5955 = 0. 7663 * lowest channel is 1, its center frequency 5955, 7664 * center frequency is 5965 when bandwidth=40 MHz, its diff is 5965 - 5955 = 10. 7665 * lowest channel is 1, its center frequency 5955, 7666 * center frequency is 5985 when bandwidth=80 MHz, its diff is 5985 - 5955 = 30. 7667 * lowest channel is 1, its center frequency 5955, 7668 * center frequency is 6025 when bandwidth=160 MHz, its diff is 6025 - 5955 = 70. 7669 */ 7670 if (chan_def->width == NL80211_CHAN_WIDTH_80P80 && seq == 3) 7671 return chan_def->center_freq2; 7672 7673 seg_seq = 10 * (BIT(seq) - 1); 7674 return seg_seq + start_seq; 7675 } 7676 7677 static void ath11k_mac_get_psd_channel(struct ath11k *ar, 7678 u16 step_freq, 7679 u16 *start_freq, 7680 u16 *center_freq, 7681 u8 i, 7682 struct ieee80211_channel **temp_chan, 7683 s8 *tx_power) 7684 { 7685 /* It is to get the center frequency for each 20 MHz. 7686 * For example, if the chan is 160 MHz and center frequency is 6025, 7687 * then it include 8 channels, they are 1/5/9/13/17/21/25/29, 7688 * channel number 1's center frequency is 5955, it is parameter start_freq. 7689 * parameter i is the step of the 8 channels. i is 0~7 for the 8 channels. 7690 * the channel 1/5/9/13/17/21/25/29 maps i=0/1/2/3/4/5/6/7, 7691 * and maps its center frequency is 5955/5975/5995/6015/6035/6055/6075/6095, 7692 * the gap is 20 for each channel, parameter step_freq means the gap. 7693 * after get the center frequency of each channel, it is easy to find the 7694 * struct ieee80211_channel of it and get the max_reg_power. 7695 */ 7696 *center_freq = *start_freq + i * step_freq; 7697 *temp_chan = ieee80211_get_channel(ar->hw->wiphy, *center_freq); 7698 *tx_power = (*temp_chan)->max_reg_power; 7699 } 7700 7701 static void ath11k_mac_get_eirp_power(struct ath11k *ar, 7702 u16 *start_freq, 7703 u16 *center_freq, 7704 u8 i, 7705 struct ieee80211_channel **temp_chan, 7706 struct cfg80211_chan_def *def, 7707 s8 *tx_power) 7708 { 7709 /* It is to get the center frequency for 20 MHz/40 MHz/80 MHz/ 7710 * 160 MHz&80P80 bandwidth, and then plus 10 to the center frequency, 7711 * it is the center frequency of a channel number. 7712 * For example, when configured channel number is 1. 7713 * center frequency is 5965 when bandwidth=40 MHz, after plus 10, it is 5975, 7714 * then it is channel number 5. 7715 * center frequency is 5985 when bandwidth=80 MHz, after plus 10, it is 5995, 7716 * then it is channel number 9. 7717 * center frequency is 6025 when bandwidth=160 MHz, after plus 10, it is 6035, 7718 * then it is channel number 17. 7719 * after get the center frequency of each channel, it is easy to find the 7720 * struct ieee80211_channel of it and get the max_reg_power. 7721 */ 7722 *center_freq = ath11k_mac_get_seg_freq(def, *start_freq, i); 7723 7724 /* For the 20 MHz, its center frequency is same with same channel */ 7725 if (i != 0) 7726 *center_freq += 10; 7727 7728 *temp_chan = ieee80211_get_channel(ar->hw->wiphy, *center_freq); 7729 *tx_power = (*temp_chan)->max_reg_power; 7730 } 7731 7732 void ath11k_mac_fill_reg_tpc_info(struct ath11k *ar, 7733 struct ieee80211_vif *vif, 7734 struct ieee80211_chanctx_conf *ctx) 7735 { 7736 struct ath11k_base *ab = ar->ab; 7737 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 7738 struct ieee80211_bss_conf *bss_conf = &vif->bss_conf; 7739 struct ath11k_reg_tpc_power_info *reg_tpc_info = &arvif->reg_tpc_info; 7740 struct ieee80211_channel *chan, *temp_chan; 7741 u8 pwr_lvl_idx, num_pwr_levels, pwr_reduction; 7742 bool is_psd_power = false, is_tpe_present = false; 7743 s8 max_tx_power[ATH11K_NUM_PWR_LEVELS], 7744 psd_power, tx_power; 7745 s8 eirp_power = 0; 7746 u16 start_freq, center_freq; 7747 7748 chan = ctx->def.chan; 7749 start_freq = ath11k_mac_get_6ghz_start_frequency(&ctx->def); 7750 pwr_reduction = bss_conf->pwr_reduction; 7751 7752 if (arvif->reg_tpc_info.num_pwr_levels) { 7753 is_tpe_present = true; 7754 num_pwr_levels = arvif->reg_tpc_info.num_pwr_levels; 7755 } else { 7756 num_pwr_levels = 7757 ath11k_mac_get_num_pwr_levels(&bss_conf->chanreq.oper); 7758 } 7759 7760 for (pwr_lvl_idx = 0; pwr_lvl_idx < num_pwr_levels; pwr_lvl_idx++) { 7761 /* STA received TPE IE*/ 7762 if (is_tpe_present) { 7763 /* local power is PSD power*/ 7764 if (chan->flags & IEEE80211_CHAN_PSD) { 7765 /* Connecting AP is psd power */ 7766 if (reg_tpc_info->is_psd_power) { 7767 is_psd_power = true; 7768 ath11k_mac_get_psd_channel(ar, 20, 7769 &start_freq, 7770 ¢er_freq, 7771 pwr_lvl_idx, 7772 &temp_chan, 7773 &tx_power); 7774 psd_power = temp_chan->psd; 7775 eirp_power = tx_power; 7776 max_tx_power[pwr_lvl_idx] = 7777 min_t(s8, 7778 psd_power, 7779 reg_tpc_info->tpe[pwr_lvl_idx]); 7780 /* Connecting AP is not psd power */ 7781 } else { 7782 ath11k_mac_get_eirp_power(ar, 7783 &start_freq, 7784 ¢er_freq, 7785 pwr_lvl_idx, 7786 &temp_chan, 7787 &ctx->def, 7788 &tx_power); 7789 psd_power = temp_chan->psd; 7790 /* convert psd power to EIRP power based 7791 * on channel width 7792 */ 7793 tx_power = 7794 min_t(s8, tx_power, 7795 psd_power + 13 + pwr_lvl_idx * 3); 7796 max_tx_power[pwr_lvl_idx] = 7797 min_t(s8, 7798 tx_power, 7799 reg_tpc_info->tpe[pwr_lvl_idx]); 7800 } 7801 /* local power is not PSD power */ 7802 } else { 7803 /* Connecting AP is psd power */ 7804 if (reg_tpc_info->is_psd_power) { 7805 is_psd_power = true; 7806 ath11k_mac_get_psd_channel(ar, 20, 7807 &start_freq, 7808 ¢er_freq, 7809 pwr_lvl_idx, 7810 &temp_chan, 7811 &tx_power); 7812 eirp_power = tx_power; 7813 max_tx_power[pwr_lvl_idx] = 7814 reg_tpc_info->tpe[pwr_lvl_idx]; 7815 /* Connecting AP is not psd power */ 7816 } else { 7817 ath11k_mac_get_eirp_power(ar, 7818 &start_freq, 7819 ¢er_freq, 7820 pwr_lvl_idx, 7821 &temp_chan, 7822 &ctx->def, 7823 &tx_power); 7824 max_tx_power[pwr_lvl_idx] = 7825 min_t(s8, 7826 tx_power, 7827 reg_tpc_info->tpe[pwr_lvl_idx]); 7828 } 7829 } 7830 /* STA not received TPE IE */ 7831 } else { 7832 /* local power is PSD power*/ 7833 if (chan->flags & IEEE80211_CHAN_PSD) { 7834 is_psd_power = true; 7835 ath11k_mac_get_psd_channel(ar, 20, 7836 &start_freq, 7837 ¢er_freq, 7838 pwr_lvl_idx, 7839 &temp_chan, 7840 &tx_power); 7841 psd_power = temp_chan->psd; 7842 eirp_power = tx_power; 7843 max_tx_power[pwr_lvl_idx] = psd_power; 7844 } else { 7845 ath11k_mac_get_eirp_power(ar, 7846 &start_freq, 7847 ¢er_freq, 7848 pwr_lvl_idx, 7849 &temp_chan, 7850 &ctx->def, 7851 &tx_power); 7852 max_tx_power[pwr_lvl_idx] = tx_power; 7853 } 7854 } 7855 7856 if (is_psd_power) { 7857 /* If AP local power constraint is present */ 7858 if (pwr_reduction) 7859 eirp_power = eirp_power - pwr_reduction; 7860 7861 /* If firmware updated max tx power is non zero, then take 7862 * the min of firmware updated ap tx power 7863 * and max power derived from above mentioned parameters. 7864 */ 7865 ath11k_dbg(ab, ATH11K_DBG_MAC, 7866 "eirp power : %d firmware report power : %d\n", 7867 eirp_power, ar->max_allowed_tx_power); 7868 /* Firmware reports lower max_allowed_tx_power during vdev 7869 * start response. In case of 6 GHz, firmware is not aware 7870 * of EIRP power unless driver sets EIRP power through WMI 7871 * TPC command. So radio which does not support idle power 7872 * save can set maximum calculated EIRP power directly to 7873 * firmware through TPC command without min comparison with 7874 * vdev start response's max_allowed_tx_power. 7875 */ 7876 if (ar->max_allowed_tx_power && ab->hw_params.idle_ps) 7877 eirp_power = min_t(s8, 7878 eirp_power, 7879 ar->max_allowed_tx_power); 7880 } else { 7881 /* If AP local power constraint is present */ 7882 if (pwr_reduction) 7883 max_tx_power[pwr_lvl_idx] = 7884 max_tx_power[pwr_lvl_idx] - pwr_reduction; 7885 /* If firmware updated max tx power is non zero, then take 7886 * the min of firmware updated ap tx power 7887 * and max power derived from above mentioned parameters. 7888 */ 7889 if (ar->max_allowed_tx_power && ab->hw_params.idle_ps) 7890 max_tx_power[pwr_lvl_idx] = 7891 min_t(s8, 7892 max_tx_power[pwr_lvl_idx], 7893 ar->max_allowed_tx_power); 7894 } 7895 reg_tpc_info->chan_power_info[pwr_lvl_idx].chan_cfreq = center_freq; 7896 reg_tpc_info->chan_power_info[pwr_lvl_idx].tx_power = 7897 max_tx_power[pwr_lvl_idx]; 7898 } 7899 7900 reg_tpc_info->num_pwr_levels = num_pwr_levels; 7901 reg_tpc_info->is_psd_power = is_psd_power; 7902 reg_tpc_info->eirp_power = eirp_power; 7903 reg_tpc_info->ap_power_type = 7904 ath11k_reg_ap_pwr_convert(vif->bss_conf.power_type); 7905 } 7906 7907 static void ath11k_mac_parse_tx_pwr_env(struct ath11k *ar, 7908 struct ieee80211_vif *vif, 7909 struct ieee80211_chanctx_conf *ctx) 7910 { 7911 struct ath11k_base *ab = ar->ab; 7912 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 7913 struct ieee80211_bss_conf *bss_conf = &vif->bss_conf; 7914 struct ieee80211_parsed_tpe_eirp *non_psd = NULL; 7915 struct ieee80211_parsed_tpe_psd *psd = NULL; 7916 enum wmi_reg_6ghz_client_type client_type; 7917 struct cur_regulatory_info *reg_info; 7918 u8 local_tpe_count, reg_tpe_count; 7919 bool use_local_tpe; 7920 int i; 7921 7922 reg_info = &ab->reg_info_store[ar->pdev_idx]; 7923 client_type = reg_info->client_type; 7924 7925 local_tpe_count = 7926 bss_conf->tpe.max_local[client_type].valid + 7927 bss_conf->tpe.psd_local[client_type].valid; 7928 reg_tpe_count = 7929 bss_conf->tpe.max_reg_client[client_type].valid + 7930 bss_conf->tpe.psd_reg_client[client_type].valid; 7931 7932 if (!reg_tpe_count && !local_tpe_count) { 7933 ath11k_warn(ab, 7934 "no transmit power envelope match client power type %d\n", 7935 client_type); 7936 return; 7937 } else if (!reg_tpe_count) { 7938 use_local_tpe = true; 7939 } else { 7940 use_local_tpe = false; 7941 } 7942 7943 if (use_local_tpe) { 7944 psd = &bss_conf->tpe.psd_local[client_type]; 7945 if (!psd->valid) 7946 psd = NULL; 7947 non_psd = &bss_conf->tpe.max_local[client_type]; 7948 if (!non_psd->valid) 7949 non_psd = NULL; 7950 } else { 7951 psd = &bss_conf->tpe.psd_reg_client[client_type]; 7952 if (!psd->valid) 7953 psd = NULL; 7954 non_psd = &bss_conf->tpe.max_reg_client[client_type]; 7955 if (!non_psd->valid) 7956 non_psd = NULL; 7957 } 7958 7959 if (non_psd && !psd) { 7960 arvif->reg_tpc_info.is_psd_power = false; 7961 arvif->reg_tpc_info.eirp_power = 0; 7962 7963 arvif->reg_tpc_info.num_pwr_levels = non_psd->count; 7964 7965 for (i = 0; i < arvif->reg_tpc_info.num_pwr_levels; i++) { 7966 ath11k_dbg(ab, ATH11K_DBG_MAC, 7967 "non PSD power[%d] : %d\n", 7968 i, non_psd->power[i]); 7969 arvif->reg_tpc_info.tpe[i] = non_psd->power[i] / 2; 7970 } 7971 } 7972 7973 if (psd) { 7974 arvif->reg_tpc_info.is_psd_power = true; 7975 arvif->reg_tpc_info.num_pwr_levels = psd->count; 7976 7977 for (i = 0; i < arvif->reg_tpc_info.num_pwr_levels; i++) { 7978 ath11k_dbg(ab, ATH11K_DBG_MAC, 7979 "TPE PSD power[%d] : %d\n", 7980 i, psd->power[i]); 7981 arvif->reg_tpc_info.tpe[i] = psd->power[i] / 2; 7982 } 7983 } 7984 } 7985 7986 static int 7987 ath11k_mac_op_assign_vif_chanctx(struct ieee80211_hw *hw, 7988 struct ieee80211_vif *vif, 7989 struct ieee80211_bss_conf *link_conf, 7990 struct ieee80211_chanctx_conf *ctx) 7991 { 7992 struct ath11k *ar = hw->priv; 7993 struct ath11k_base *ab = ar->ab; 7994 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 7995 int ret; 7996 7997 mutex_lock(&ar->conf_mutex); 7998 7999 ath11k_dbg(ab, ATH11K_DBG_MAC, 8000 "chanctx assign ptr %p vdev_id %i\n", 8001 ctx, arvif->vdev_id); 8002 8003 if (ath11k_wmi_supports_6ghz_cc_ext(ar) && 8004 ctx->def.chan->band == NL80211_BAND_6GHZ && 8005 arvif->vdev_type == WMI_VDEV_TYPE_STA) { 8006 arvif->chanctx = *ctx; 8007 ath11k_mac_parse_tx_pwr_env(ar, vif, ctx); 8008 } 8009 8010 /* for QCA6390 bss peer must be created before vdev_start */ 8011 if (ab->hw_params.vdev_start_delay && 8012 arvif->vdev_type != WMI_VDEV_TYPE_AP && 8013 arvif->vdev_type != WMI_VDEV_TYPE_MONITOR && 8014 !ath11k_peer_find_by_vdev_id(ab, arvif->vdev_id)) { 8015 memcpy(&arvif->chanctx, ctx, sizeof(*ctx)); 8016 ret = 0; 8017 goto out; 8018 } 8019 8020 if (WARN_ON(arvif->is_started)) { 8021 ret = -EBUSY; 8022 goto out; 8023 } 8024 8025 if (arvif->vdev_type == WMI_VDEV_TYPE_MONITOR) { 8026 ret = ath11k_mac_monitor_start(ar); 8027 if (ret) { 8028 ath11k_warn(ar->ab, "failed to start monitor during vif channel context assignment: %d", 8029 ret); 8030 goto out; 8031 } 8032 8033 arvif->is_started = true; 8034 goto out; 8035 } 8036 8037 if (!arvif->is_started) { 8038 ret = ath11k_mac_vdev_start(arvif, ctx); 8039 if (ret) { 8040 ath11k_warn(ab, "failed to start vdev %i addr %pM on freq %d: %d\n", 8041 arvif->vdev_id, vif->addr, 8042 ctx->def.chan->center_freq, ret); 8043 goto out; 8044 } 8045 8046 arvif->is_started = true; 8047 } 8048 8049 if (arvif->vdev_type != WMI_VDEV_TYPE_MONITOR && 8050 test_bit(ATH11K_FLAG_MONITOR_VDEV_CREATED, &ar->monitor_flags)) { 8051 ret = ath11k_mac_monitor_start(ar); 8052 if (ret) { 8053 ath11k_warn(ar->ab, "failed to start monitor during vif channel context assignment: %d", 8054 ret); 8055 goto out; 8056 } 8057 } 8058 8059 /* TODO: Setup ps and cts/rts protection */ 8060 8061 ret = 0; 8062 8063 out: 8064 mutex_unlock(&ar->conf_mutex); 8065 8066 return ret; 8067 } 8068 8069 static void 8070 ath11k_mac_op_unassign_vif_chanctx(struct ieee80211_hw *hw, 8071 struct ieee80211_vif *vif, 8072 struct ieee80211_bss_conf *link_conf, 8073 struct ieee80211_chanctx_conf *ctx) 8074 { 8075 struct ath11k *ar = hw->priv; 8076 struct ath11k_base *ab = ar->ab; 8077 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 8078 struct ath11k_peer *peer; 8079 int ret; 8080 8081 mutex_lock(&ar->conf_mutex); 8082 8083 ath11k_dbg(ab, ATH11K_DBG_MAC, 8084 "chanctx unassign ptr %p vdev_id %i\n", 8085 ctx, arvif->vdev_id); 8086 8087 if (ab->hw_params.vdev_start_delay && 8088 arvif->vdev_type == WMI_VDEV_TYPE_MONITOR) { 8089 spin_lock_bh(&ab->base_lock); 8090 peer = ath11k_peer_find_by_addr(ab, ar->mac_addr); 8091 spin_unlock_bh(&ab->base_lock); 8092 if (peer) 8093 ath11k_peer_delete(ar, arvif->vdev_id, ar->mac_addr); 8094 } 8095 8096 if (arvif->vdev_type == WMI_VDEV_TYPE_MONITOR) { 8097 ret = ath11k_mac_monitor_stop(ar); 8098 if (ret) { 8099 ath11k_warn(ar->ab, "failed to stop monitor during vif channel context unassignment: %d", 8100 ret); 8101 mutex_unlock(&ar->conf_mutex); 8102 return; 8103 } 8104 8105 arvif->is_started = false; 8106 mutex_unlock(&ar->conf_mutex); 8107 return; 8108 } 8109 8110 if (arvif->is_started) { 8111 ret = ath11k_mac_vdev_stop(arvif); 8112 if (ret) 8113 ath11k_warn(ab, "failed to stop vdev %i: %d\n", 8114 arvif->vdev_id, ret); 8115 8116 arvif->is_started = false; 8117 } 8118 8119 if (ab->hw_params.vdev_start_delay && 8120 arvif->vdev_type == WMI_VDEV_TYPE_MONITOR) 8121 ath11k_wmi_vdev_down(ar, arvif->vdev_id); 8122 8123 if (arvif->vdev_type != WMI_VDEV_TYPE_MONITOR && 8124 ar->num_started_vdevs == 1 && 8125 test_bit(ATH11K_FLAG_MONITOR_VDEV_CREATED, &ar->monitor_flags)) { 8126 ret = ath11k_mac_monitor_stop(ar); 8127 if (ret) 8128 /* continue even if there's an error */ 8129 ath11k_warn(ar->ab, "failed to stop monitor during vif channel context unassignment: %d", 8130 ret); 8131 } 8132 8133 if (arvif->vdev_type == WMI_VDEV_TYPE_STA) 8134 ath11k_mac_11d_scan_start(ar, arvif->vdev_id); 8135 8136 mutex_unlock(&ar->conf_mutex); 8137 } 8138 8139 static int 8140 ath11k_mac_op_switch_vif_chanctx(struct ieee80211_hw *hw, 8141 struct ieee80211_vif_chanctx_switch *vifs, 8142 int n_vifs, 8143 enum ieee80211_chanctx_switch_mode mode) 8144 { 8145 struct ath11k *ar = hw->priv; 8146 8147 mutex_lock(&ar->conf_mutex); 8148 8149 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 8150 "chanctx switch n_vifs %d mode %d\n", 8151 n_vifs, mode); 8152 ath11k_mac_update_vif_chan(ar, vifs, n_vifs); 8153 8154 mutex_unlock(&ar->conf_mutex); 8155 8156 return 0; 8157 } 8158 8159 static int 8160 ath11k_set_vdev_param_to_all_vifs(struct ath11k *ar, int param, u32 value) 8161 { 8162 struct ath11k_vif *arvif; 8163 int ret = 0; 8164 8165 mutex_lock(&ar->conf_mutex); 8166 list_for_each_entry(arvif, &ar->arvifs, list) { 8167 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "setting mac vdev %d param %d value %d\n", 8168 param, arvif->vdev_id, value); 8169 8170 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 8171 param, value); 8172 if (ret) { 8173 ath11k_warn(ar->ab, "failed to set param %d for vdev %d: %d\n", 8174 param, arvif->vdev_id, ret); 8175 break; 8176 } 8177 } 8178 mutex_unlock(&ar->conf_mutex); 8179 return ret; 8180 } 8181 8182 /* mac80211 stores device specific RTS/Fragmentation threshold value, 8183 * this is set interface specific to firmware from ath11k driver 8184 */ 8185 static int ath11k_mac_op_set_rts_threshold(struct ieee80211_hw *hw, u32 value) 8186 { 8187 struct ath11k *ar = hw->priv; 8188 int param_id = WMI_VDEV_PARAM_RTS_THRESHOLD; 8189 8190 return ath11k_set_vdev_param_to_all_vifs(ar, param_id, value); 8191 } 8192 8193 static int ath11k_mac_op_set_frag_threshold(struct ieee80211_hw *hw, u32 value) 8194 { 8195 /* Even though there's a WMI vdev param for fragmentation threshold no 8196 * known firmware actually implements it. Moreover it is not possible to 8197 * rely frame fragmentation to mac80211 because firmware clears the 8198 * "more fragments" bit in frame control making it impossible for remote 8199 * devices to reassemble frames. 8200 * 8201 * Hence implement a dummy callback just to say fragmentation isn't 8202 * supported. This effectively prevents mac80211 from doing frame 8203 * fragmentation in software. 8204 */ 8205 return -EOPNOTSUPP; 8206 } 8207 8208 static int ath11k_mac_flush_tx_complete(struct ath11k *ar) 8209 { 8210 long time_left; 8211 int ret = 0; 8212 8213 time_left = wait_event_timeout(ar->dp.tx_empty_waitq, 8214 (atomic_read(&ar->dp.num_tx_pending) == 0), 8215 ATH11K_FLUSH_TIMEOUT); 8216 if (time_left == 0) { 8217 ath11k_warn(ar->ab, "failed to flush transmit queue, data pkts pending %d\n", 8218 atomic_read(&ar->dp.num_tx_pending)); 8219 ret = -ETIMEDOUT; 8220 } 8221 8222 time_left = wait_event_timeout(ar->txmgmt_empty_waitq, 8223 (atomic_read(&ar->num_pending_mgmt_tx) == 0), 8224 ATH11K_FLUSH_TIMEOUT); 8225 if (time_left == 0) { 8226 ath11k_warn(ar->ab, "failed to flush mgmt transmit queue, mgmt pkts pending %d\n", 8227 atomic_read(&ar->num_pending_mgmt_tx)); 8228 ret = -ETIMEDOUT; 8229 } 8230 8231 return ret; 8232 } 8233 8234 int ath11k_mac_wait_tx_complete(struct ath11k *ar) 8235 { 8236 ath11k_mac_drain_tx(ar); 8237 return ath11k_mac_flush_tx_complete(ar); 8238 } 8239 8240 static void ath11k_mac_op_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 8241 u32 queues, bool drop) 8242 { 8243 struct ath11k *ar = hw->priv; 8244 8245 if (drop) 8246 return; 8247 8248 ath11k_mac_flush_tx_complete(ar); 8249 } 8250 8251 static bool 8252 ath11k_mac_has_single_legacy_rate(struct ath11k *ar, 8253 enum nl80211_band band, 8254 const struct cfg80211_bitrate_mask *mask) 8255 { 8256 int num_rates = 0; 8257 8258 num_rates = hweight32(mask->control[band].legacy); 8259 8260 if (ath11k_mac_bitrate_mask_num_ht_rates(ar, band, mask)) 8261 return false; 8262 8263 if (ath11k_mac_bitrate_mask_num_vht_rates(ar, band, mask)) 8264 return false; 8265 8266 if (ath11k_mac_bitrate_mask_num_he_rates(ar, band, mask)) 8267 return false; 8268 8269 return num_rates == 1; 8270 } 8271 8272 static __le16 8273 ath11k_mac_get_tx_mcs_map(const struct ieee80211_sta_he_cap *he_cap) 8274 { 8275 if (he_cap->he_cap_elem.phy_cap_info[0] & 8276 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G) 8277 return he_cap->he_mcs_nss_supp.tx_mcs_80p80; 8278 8279 if (he_cap->he_cap_elem.phy_cap_info[0] & 8280 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G) 8281 return he_cap->he_mcs_nss_supp.tx_mcs_160; 8282 8283 return he_cap->he_mcs_nss_supp.tx_mcs_80; 8284 } 8285 8286 static bool 8287 ath11k_mac_bitrate_mask_get_single_nss(struct ath11k *ar, 8288 struct ath11k_vif *arvif, 8289 enum nl80211_band band, 8290 const struct cfg80211_bitrate_mask *mask, 8291 int *nss) 8292 { 8293 struct ieee80211_supported_band *sband = &ar->mac.sbands[band]; 8294 u16 vht_mcs_map = le16_to_cpu(sband->vht_cap.vht_mcs.tx_mcs_map); 8295 const struct ieee80211_sta_he_cap *he_cap; 8296 u16 he_mcs_map = 0; 8297 u8 ht_nss_mask = 0; 8298 u8 vht_nss_mask = 0; 8299 u8 he_nss_mask = 0; 8300 int i; 8301 8302 /* No need to consider legacy here. Basic rates are always present 8303 * in bitrate mask 8304 */ 8305 8306 for (i = 0; i < ARRAY_SIZE(mask->control[band].ht_mcs); i++) { 8307 if (mask->control[band].ht_mcs[i] == 0) 8308 continue; 8309 else if (mask->control[band].ht_mcs[i] == 8310 sband->ht_cap.mcs.rx_mask[i]) 8311 ht_nss_mask |= BIT(i); 8312 else 8313 return false; 8314 } 8315 8316 for (i = 0; i < ARRAY_SIZE(mask->control[band].vht_mcs); i++) { 8317 if (mask->control[band].vht_mcs[i] == 0) 8318 continue; 8319 else if (mask->control[band].vht_mcs[i] == 8320 ath11k_mac_get_max_vht_mcs_map(vht_mcs_map, i)) 8321 vht_nss_mask |= BIT(i); 8322 else 8323 return false; 8324 } 8325 8326 he_cap = ieee80211_get_he_iftype_cap_vif(sband, arvif->vif); 8327 if (!he_cap) 8328 return false; 8329 8330 he_mcs_map = le16_to_cpu(ath11k_mac_get_tx_mcs_map(he_cap)); 8331 8332 for (i = 0; i < ARRAY_SIZE(mask->control[band].he_mcs); i++) { 8333 if (mask->control[band].he_mcs[i] == 0) 8334 continue; 8335 8336 if (mask->control[band].he_mcs[i] == 8337 ath11k_mac_get_max_he_mcs_map(he_mcs_map, i)) 8338 he_nss_mask |= BIT(i); 8339 else 8340 return false; 8341 } 8342 8343 if (ht_nss_mask != vht_nss_mask || ht_nss_mask != he_nss_mask) 8344 return false; 8345 8346 if (ht_nss_mask == 0) 8347 return false; 8348 8349 if (BIT(fls(ht_nss_mask)) - 1 != ht_nss_mask) 8350 return false; 8351 8352 *nss = fls(ht_nss_mask); 8353 8354 return true; 8355 } 8356 8357 static int 8358 ath11k_mac_get_single_legacy_rate(struct ath11k *ar, 8359 enum nl80211_band band, 8360 const struct cfg80211_bitrate_mask *mask, 8361 u32 *rate, u8 *nss) 8362 { 8363 int rate_idx; 8364 u16 bitrate; 8365 u8 preamble; 8366 u8 hw_rate; 8367 8368 if (hweight32(mask->control[band].legacy) != 1) 8369 return -EINVAL; 8370 8371 rate_idx = ffs(mask->control[band].legacy) - 1; 8372 8373 if (band == NL80211_BAND_5GHZ || band == NL80211_BAND_6GHZ) 8374 rate_idx += ATH11K_MAC_FIRST_OFDM_RATE_IDX; 8375 8376 hw_rate = ath11k_legacy_rates[rate_idx].hw_value; 8377 bitrate = ath11k_legacy_rates[rate_idx].bitrate; 8378 8379 if (ath11k_mac_bitrate_is_cck(bitrate)) 8380 preamble = WMI_RATE_PREAMBLE_CCK; 8381 else 8382 preamble = WMI_RATE_PREAMBLE_OFDM; 8383 8384 *nss = 1; 8385 *rate = ATH11K_HW_RATE_CODE(hw_rate, 0, preamble); 8386 8387 return 0; 8388 } 8389 8390 static int 8391 ath11k_mac_set_fixed_rate_gi_ltf(struct ath11k_vif *arvif, u8 he_gi, u8 he_ltf) 8392 { 8393 struct ath11k *ar = arvif->ar; 8394 int ret; 8395 8396 /* 0.8 = 0, 1.6 = 2 and 3.2 = 3. */ 8397 if (he_gi && he_gi != 0xFF) 8398 he_gi += 1; 8399 8400 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 8401 WMI_VDEV_PARAM_SGI, he_gi); 8402 if (ret) { 8403 ath11k_warn(ar->ab, "failed to set he gi %d: %d\n", 8404 he_gi, ret); 8405 return ret; 8406 } 8407 /* start from 1 */ 8408 if (he_ltf != 0xFF) 8409 he_ltf += 1; 8410 8411 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 8412 WMI_VDEV_PARAM_HE_LTF, he_ltf); 8413 if (ret) { 8414 ath11k_warn(ar->ab, "failed to set he ltf %d: %d\n", 8415 he_ltf, ret); 8416 return ret; 8417 } 8418 8419 return 0; 8420 } 8421 8422 static int 8423 ath11k_mac_set_auto_rate_gi_ltf(struct ath11k_vif *arvif, u16 he_gi, u8 he_ltf) 8424 { 8425 struct ath11k *ar = arvif->ar; 8426 int ret; 8427 u32 he_ar_gi_ltf; 8428 8429 if (he_gi != 0xFF) { 8430 switch (he_gi) { 8431 case NL80211_RATE_INFO_HE_GI_0_8: 8432 he_gi = WMI_AUTORATE_800NS_GI; 8433 break; 8434 case NL80211_RATE_INFO_HE_GI_1_6: 8435 he_gi = WMI_AUTORATE_1600NS_GI; 8436 break; 8437 case NL80211_RATE_INFO_HE_GI_3_2: 8438 he_gi = WMI_AUTORATE_3200NS_GI; 8439 break; 8440 default: 8441 ath11k_warn(ar->ab, "invalid he gi: %d\n", he_gi); 8442 return -EINVAL; 8443 } 8444 } 8445 8446 if (he_ltf != 0xFF) { 8447 switch (he_ltf) { 8448 case NL80211_RATE_INFO_HE_1XLTF: 8449 he_ltf = WMI_HE_AUTORATE_LTF_1X; 8450 break; 8451 case NL80211_RATE_INFO_HE_2XLTF: 8452 he_ltf = WMI_HE_AUTORATE_LTF_2X; 8453 break; 8454 case NL80211_RATE_INFO_HE_4XLTF: 8455 he_ltf = WMI_HE_AUTORATE_LTF_4X; 8456 break; 8457 default: 8458 ath11k_warn(ar->ab, "invalid he ltf: %d\n", he_ltf); 8459 return -EINVAL; 8460 } 8461 } 8462 8463 he_ar_gi_ltf = he_gi | he_ltf; 8464 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 8465 WMI_VDEV_PARAM_AUTORATE_MISC_CFG, 8466 he_ar_gi_ltf); 8467 if (ret) { 8468 ath11k_warn(ar->ab, 8469 "failed to set he autorate gi %u ltf %u: %d\n", 8470 he_gi, he_ltf, ret); 8471 return ret; 8472 } 8473 8474 return 0; 8475 } 8476 8477 static int ath11k_mac_set_rate_params(struct ath11k_vif *arvif, 8478 u32 rate, u8 nss, u8 sgi, u8 ldpc, 8479 u8 he_gi, u8 he_ltf, bool he_fixed_rate) 8480 { 8481 struct ath11k *ar = arvif->ar; 8482 u32 vdev_param; 8483 int ret; 8484 8485 lockdep_assert_held(&ar->conf_mutex); 8486 8487 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 8488 "set rate params vdev %i rate 0x%02x nss 0x%02x sgi 0x%02x ldpc 0x%02x he_gi 0x%02x he_ltf 0x%02x he_fixed_rate %d\n", 8489 arvif->vdev_id, rate, nss, sgi, ldpc, he_gi, 8490 he_ltf, he_fixed_rate); 8491 8492 if (!arvif->vif->bss_conf.he_support) { 8493 vdev_param = WMI_VDEV_PARAM_FIXED_RATE; 8494 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 8495 vdev_param, rate); 8496 if (ret) { 8497 ath11k_warn(ar->ab, "failed to set fixed rate param 0x%02x: %d\n", 8498 rate, ret); 8499 return ret; 8500 } 8501 } 8502 8503 vdev_param = WMI_VDEV_PARAM_NSS; 8504 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 8505 vdev_param, nss); 8506 if (ret) { 8507 ath11k_warn(ar->ab, "failed to set nss param %d: %d\n", 8508 nss, ret); 8509 return ret; 8510 } 8511 8512 vdev_param = WMI_VDEV_PARAM_LDPC; 8513 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 8514 vdev_param, ldpc); 8515 if (ret) { 8516 ath11k_warn(ar->ab, "failed to set ldpc param %d: %d\n", 8517 ldpc, ret); 8518 return ret; 8519 } 8520 8521 if (arvif->vif->bss_conf.he_support) { 8522 if (he_fixed_rate) { 8523 ret = ath11k_mac_set_fixed_rate_gi_ltf(arvif, he_gi, 8524 he_ltf); 8525 if (ret) { 8526 ath11k_warn(ar->ab, "failed to set fixed rate gi ltf: %d\n", 8527 ret); 8528 return ret; 8529 } 8530 } else { 8531 ret = ath11k_mac_set_auto_rate_gi_ltf(arvif, he_gi, 8532 he_ltf); 8533 if (ret) { 8534 ath11k_warn(ar->ab, "failed to set auto rate gi ltf: %d\n", 8535 ret); 8536 return ret; 8537 } 8538 } 8539 } else { 8540 vdev_param = WMI_VDEV_PARAM_SGI; 8541 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 8542 vdev_param, sgi); 8543 if (ret) { 8544 ath11k_warn(ar->ab, "failed to set sgi param %d: %d\n", 8545 sgi, ret); 8546 return ret; 8547 } 8548 } 8549 8550 return 0; 8551 } 8552 8553 static bool 8554 ath11k_mac_vht_mcs_range_present(struct ath11k *ar, 8555 enum nl80211_band band, 8556 const struct cfg80211_bitrate_mask *mask) 8557 { 8558 int i; 8559 u16 vht_mcs; 8560 8561 for (i = 0; i < NL80211_VHT_NSS_MAX; i++) { 8562 vht_mcs = mask->control[band].vht_mcs[i]; 8563 8564 switch (vht_mcs) { 8565 case 0: 8566 case BIT(8) - 1: 8567 case BIT(9) - 1: 8568 case BIT(10) - 1: 8569 break; 8570 default: 8571 return false; 8572 } 8573 } 8574 8575 return true; 8576 } 8577 8578 static bool 8579 ath11k_mac_he_mcs_range_present(struct ath11k *ar, 8580 enum nl80211_band band, 8581 const struct cfg80211_bitrate_mask *mask) 8582 { 8583 int i; 8584 u16 he_mcs; 8585 8586 for (i = 0; i < NL80211_HE_NSS_MAX; i++) { 8587 he_mcs = mask->control[band].he_mcs[i]; 8588 8589 switch (he_mcs) { 8590 case 0: 8591 case BIT(8) - 1: 8592 case BIT(10) - 1: 8593 case BIT(12) - 1: 8594 break; 8595 default: 8596 return false; 8597 } 8598 } 8599 8600 return true; 8601 } 8602 8603 static void ath11k_mac_set_bitrate_mask_iter(void *data, 8604 struct ieee80211_sta *sta) 8605 { 8606 struct ath11k_vif *arvif = data; 8607 struct ath11k_sta *arsta = ath11k_sta_to_arsta(sta); 8608 struct ath11k *ar = arvif->ar; 8609 8610 spin_lock_bh(&ar->data_lock); 8611 arsta->changed |= IEEE80211_RC_SUPP_RATES_CHANGED; 8612 spin_unlock_bh(&ar->data_lock); 8613 8614 ieee80211_queue_work(ar->hw, &arsta->update_wk); 8615 } 8616 8617 static void ath11k_mac_disable_peer_fixed_rate(void *data, 8618 struct ieee80211_sta *sta) 8619 { 8620 struct ath11k_vif *arvif = data; 8621 struct ath11k *ar = arvif->ar; 8622 int ret; 8623 8624 ret = ath11k_wmi_set_peer_param(ar, sta->addr, 8625 arvif->vdev_id, 8626 WMI_PEER_PARAM_FIXED_RATE, 8627 WMI_FIXED_RATE_NONE); 8628 if (ret) 8629 ath11k_warn(ar->ab, 8630 "failed to disable peer fixed rate for STA %pM ret %d\n", 8631 sta->addr, ret); 8632 } 8633 8634 static bool 8635 ath11k_mac_validate_vht_he_fixed_rate_settings(struct ath11k *ar, enum nl80211_band band, 8636 const struct cfg80211_bitrate_mask *mask) 8637 { 8638 bool he_fixed_rate = false, vht_fixed_rate = false; 8639 struct ath11k_peer *peer; 8640 const u16 *vht_mcs_mask, *he_mcs_mask; 8641 struct ieee80211_link_sta *deflink; 8642 u8 vht_nss, he_nss; 8643 bool ret = true; 8644 8645 vht_mcs_mask = mask->control[band].vht_mcs; 8646 he_mcs_mask = mask->control[band].he_mcs; 8647 8648 if (ath11k_mac_bitrate_mask_num_vht_rates(ar, band, mask) == 1) 8649 vht_fixed_rate = true; 8650 8651 if (ath11k_mac_bitrate_mask_num_he_rates(ar, band, mask) == 1) 8652 he_fixed_rate = true; 8653 8654 if (!vht_fixed_rate && !he_fixed_rate) 8655 return true; 8656 8657 vht_nss = ath11k_mac_max_vht_nss(vht_mcs_mask); 8658 he_nss = ath11k_mac_max_he_nss(he_mcs_mask); 8659 8660 rcu_read_lock(); 8661 spin_lock_bh(&ar->ab->base_lock); 8662 list_for_each_entry(peer, &ar->ab->peers, list) { 8663 if (peer->sta) { 8664 deflink = &peer->sta->deflink; 8665 8666 if (vht_fixed_rate && (!deflink->vht_cap.vht_supported || 8667 deflink->rx_nss < vht_nss)) { 8668 ret = false; 8669 goto out; 8670 } 8671 8672 if (he_fixed_rate && (!deflink->he_cap.has_he || 8673 deflink->rx_nss < he_nss)) { 8674 ret = false; 8675 goto out; 8676 } 8677 } 8678 } 8679 8680 out: 8681 spin_unlock_bh(&ar->ab->base_lock); 8682 rcu_read_unlock(); 8683 return ret; 8684 } 8685 8686 static int 8687 ath11k_mac_op_set_bitrate_mask(struct ieee80211_hw *hw, 8688 struct ieee80211_vif *vif, 8689 const struct cfg80211_bitrate_mask *mask) 8690 { 8691 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 8692 struct cfg80211_chan_def def; 8693 struct ath11k_pdev_cap *cap; 8694 struct ath11k *ar = arvif->ar; 8695 enum nl80211_band band; 8696 const u8 *ht_mcs_mask; 8697 const u16 *vht_mcs_mask; 8698 const u16 *he_mcs_mask; 8699 u8 he_ltf = 0; 8700 u8 he_gi = 0; 8701 u32 rate; 8702 u8 nss; 8703 u8 sgi; 8704 u8 ldpc; 8705 int single_nss; 8706 int ret; 8707 int num_rates; 8708 bool he_fixed_rate = false; 8709 8710 if (ath11k_mac_vif_chan(vif, &def)) 8711 return -EPERM; 8712 8713 band = def.chan->band; 8714 cap = &ar->pdev->cap; 8715 ht_mcs_mask = mask->control[band].ht_mcs; 8716 vht_mcs_mask = mask->control[band].vht_mcs; 8717 he_mcs_mask = mask->control[band].he_mcs; 8718 ldpc = !!(cap->band[band].ht_cap_info & WMI_HT_CAP_TX_LDPC); 8719 8720 sgi = mask->control[band].gi; 8721 if (sgi == NL80211_TXRATE_FORCE_LGI) 8722 return -EINVAL; 8723 8724 he_gi = mask->control[band].he_gi; 8725 he_ltf = mask->control[band].he_ltf; 8726 8727 /* mac80211 doesn't support sending a fixed HT/VHT MCS alone, rather it 8728 * requires passing at least one of used basic rates along with them. 8729 * Fixed rate setting across different preambles(legacy, HT, VHT) is 8730 * not supported by the FW. Hence use of FIXED_RATE vdev param is not 8731 * suitable for setting single HT/VHT rates. 8732 * But, there could be a single basic rate passed from userspace which 8733 * can be done through the FIXED_RATE param. 8734 */ 8735 if (ath11k_mac_has_single_legacy_rate(ar, band, mask)) { 8736 ret = ath11k_mac_get_single_legacy_rate(ar, band, mask, &rate, 8737 &nss); 8738 if (ret) { 8739 ath11k_warn(ar->ab, "failed to get single legacy rate for vdev %i: %d\n", 8740 arvif->vdev_id, ret); 8741 return ret; 8742 } 8743 ieee80211_iterate_stations_atomic(ar->hw, 8744 ath11k_mac_disable_peer_fixed_rate, 8745 arvif); 8746 } else if (ath11k_mac_bitrate_mask_get_single_nss(ar, arvif, band, mask, 8747 &single_nss)) { 8748 rate = WMI_FIXED_RATE_NONE; 8749 nss = single_nss; 8750 mutex_lock(&ar->conf_mutex); 8751 arvif->bitrate_mask = *mask; 8752 ieee80211_iterate_stations_atomic(ar->hw, 8753 ath11k_mac_set_bitrate_mask_iter, 8754 arvif); 8755 mutex_unlock(&ar->conf_mutex); 8756 } else { 8757 rate = WMI_FIXED_RATE_NONE; 8758 8759 if (!ath11k_mac_validate_vht_he_fixed_rate_settings(ar, band, mask)) 8760 ath11k_warn(ar->ab, 8761 "could not update fixed rate settings to all peers due to mcs/nss incompatibility\n"); 8762 nss = min_t(u32, ar->num_tx_chains, 8763 ath11k_mac_max_nss(ht_mcs_mask, vht_mcs_mask, he_mcs_mask)); 8764 8765 /* If multiple rates across different preambles are given 8766 * we can reconfigure this info with all peers using PEER_ASSOC 8767 * command with the below exception cases. 8768 * - Single VHT Rate : peer_assoc command accommodates only MCS 8769 * range values i.e 0-7, 0-8, 0-9 for VHT. Though mac80211 8770 * mandates passing basic rates along with HT/VHT rates, FW 8771 * doesn't allow switching from VHT to Legacy. Hence instead of 8772 * setting legacy and VHT rates using RATEMASK_CMD vdev cmd, 8773 * we could set this VHT rate as peer fixed rate param, which 8774 * will override FIXED rate and FW rate control algorithm. 8775 * If single VHT rate is passed along with HT rates, we select 8776 * the VHT rate as fixed rate for vht peers. 8777 * - Multiple VHT Rates : When Multiple VHT rates are given,this 8778 * can be set using RATEMASK CMD which uses FW rate-ctl alg. 8779 * TODO: Setting multiple VHT MCS and replacing peer_assoc with 8780 * RATEMASK_CMDID can cover all use cases of setting rates 8781 * across multiple preambles and rates within same type. 8782 * But requires more validation of the command at this point. 8783 */ 8784 8785 num_rates = ath11k_mac_bitrate_mask_num_vht_rates(ar, band, 8786 mask); 8787 8788 if (!ath11k_mac_vht_mcs_range_present(ar, band, mask) && 8789 num_rates > 1) { 8790 /* TODO: Handle multiple VHT MCS values setting using 8791 * RATEMASK CMD 8792 */ 8793 ath11k_warn(ar->ab, 8794 "setting %d mcs values in bitrate mask not supported\n", 8795 num_rates); 8796 return -EINVAL; 8797 } 8798 8799 num_rates = ath11k_mac_bitrate_mask_num_he_rates(ar, band, 8800 mask); 8801 if (num_rates == 1) 8802 he_fixed_rate = true; 8803 8804 if (!ath11k_mac_he_mcs_range_present(ar, band, mask) && 8805 num_rates > 1) { 8806 ath11k_warn(ar->ab, 8807 "Setting more than one HE MCS Value in bitrate mask not supported\n"); 8808 return -EINVAL; 8809 } 8810 8811 mutex_lock(&ar->conf_mutex); 8812 ieee80211_iterate_stations_atomic(ar->hw, 8813 ath11k_mac_disable_peer_fixed_rate, 8814 arvif); 8815 8816 arvif->bitrate_mask = *mask; 8817 ieee80211_iterate_stations_atomic(ar->hw, 8818 ath11k_mac_set_bitrate_mask_iter, 8819 arvif); 8820 8821 mutex_unlock(&ar->conf_mutex); 8822 } 8823 8824 mutex_lock(&ar->conf_mutex); 8825 8826 ret = ath11k_mac_set_rate_params(arvif, rate, nss, sgi, ldpc, he_gi, 8827 he_ltf, he_fixed_rate); 8828 if (ret) { 8829 ath11k_warn(ar->ab, "failed to set rate params on vdev %i: %d\n", 8830 arvif->vdev_id, ret); 8831 } 8832 8833 mutex_unlock(&ar->conf_mutex); 8834 8835 return ret; 8836 } 8837 8838 static void 8839 ath11k_mac_op_reconfig_complete(struct ieee80211_hw *hw, 8840 enum ieee80211_reconfig_type reconfig_type) 8841 { 8842 struct ath11k *ar = hw->priv; 8843 struct ath11k_base *ab = ar->ab; 8844 int recovery_count; 8845 struct ath11k_vif *arvif; 8846 8847 if (reconfig_type != IEEE80211_RECONFIG_TYPE_RESTART) 8848 return; 8849 8850 mutex_lock(&ar->conf_mutex); 8851 8852 if (ar->state == ATH11K_STATE_RESTARTED) { 8853 ath11k_warn(ar->ab, "pdev %d successfully recovered\n", 8854 ar->pdev->pdev_id); 8855 ar->state = ATH11K_STATE_ON; 8856 ieee80211_wake_queues(ar->hw); 8857 8858 if (ar->ab->hw_params.current_cc_support && 8859 ar->alpha2[0] != 0 && ar->alpha2[1] != 0) 8860 ath11k_reg_set_cc(ar); 8861 8862 if (ab->is_reset) { 8863 recovery_count = atomic_inc_return(&ab->recovery_count); 8864 ath11k_dbg(ab, ATH11K_DBG_BOOT, 8865 "recovery count %d\n", recovery_count); 8866 /* When there are multiple radios in an SOC, 8867 * the recovery has to be done for each radio 8868 */ 8869 if (recovery_count == ab->num_radios) { 8870 atomic_dec(&ab->reset_count); 8871 complete(&ab->reset_complete); 8872 ab->is_reset = false; 8873 atomic_set(&ab->fail_cont_count, 0); 8874 ath11k_dbg(ab, ATH11K_DBG_BOOT, "reset success\n"); 8875 } 8876 } 8877 if (ar->ab->hw_params.support_fw_mac_sequence) { 8878 list_for_each_entry(arvif, &ar->arvifs, list) { 8879 if (arvif->is_up && arvif->vdev_type == WMI_VDEV_TYPE_STA) 8880 ieee80211_hw_restart_disconnect(arvif->vif); 8881 } 8882 } 8883 } 8884 8885 mutex_unlock(&ar->conf_mutex); 8886 } 8887 8888 static void 8889 ath11k_mac_update_bss_chan_survey(struct ath11k *ar, 8890 struct ieee80211_channel *channel) 8891 { 8892 int ret; 8893 enum wmi_bss_chan_info_req_type type = WMI_BSS_SURVEY_REQ_TYPE_READ; 8894 8895 lockdep_assert_held(&ar->conf_mutex); 8896 8897 if (!test_bit(WMI_TLV_SERVICE_BSS_CHANNEL_INFO_64, ar->ab->wmi_ab.svc_map) || 8898 ar->rx_channel != channel) 8899 return; 8900 8901 if (ar->scan.state != ATH11K_SCAN_IDLE) { 8902 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 8903 "ignoring bss chan info req while scanning..\n"); 8904 return; 8905 } 8906 8907 reinit_completion(&ar->bss_survey_done); 8908 8909 ret = ath11k_wmi_pdev_bss_chan_info_request(ar, type); 8910 if (ret) { 8911 ath11k_warn(ar->ab, "failed to send pdev bss chan info request\n"); 8912 return; 8913 } 8914 8915 ret = wait_for_completion_timeout(&ar->bss_survey_done, 3 * HZ); 8916 if (ret == 0) 8917 ath11k_warn(ar->ab, "bss channel survey timed out\n"); 8918 } 8919 8920 static int ath11k_mac_op_get_survey(struct ieee80211_hw *hw, int idx, 8921 struct survey_info *survey) 8922 { 8923 struct ath11k *ar = hw->priv; 8924 struct ieee80211_supported_band *sband; 8925 struct survey_info *ar_survey; 8926 int ret = 0; 8927 8928 if (idx >= ATH11K_NUM_CHANS) 8929 return -ENOENT; 8930 8931 ar_survey = &ar->survey[idx]; 8932 8933 mutex_lock(&ar->conf_mutex); 8934 8935 sband = hw->wiphy->bands[NL80211_BAND_2GHZ]; 8936 if (sband && idx >= sband->n_channels) { 8937 idx -= sband->n_channels; 8938 sband = NULL; 8939 } 8940 8941 if (!sband) 8942 sband = hw->wiphy->bands[NL80211_BAND_5GHZ]; 8943 if (sband && idx >= sband->n_channels) { 8944 idx -= sband->n_channels; 8945 sband = NULL; 8946 } 8947 8948 if (!sband) 8949 sband = hw->wiphy->bands[NL80211_BAND_6GHZ]; 8950 if (!sband || idx >= sband->n_channels) { 8951 ret = -ENOENT; 8952 goto exit; 8953 } 8954 8955 ath11k_mac_update_bss_chan_survey(ar, &sband->channels[idx]); 8956 8957 spin_lock_bh(&ar->data_lock); 8958 memcpy(survey, ar_survey, sizeof(*survey)); 8959 spin_unlock_bh(&ar->data_lock); 8960 8961 survey->channel = &sband->channels[idx]; 8962 8963 if (ar->rx_channel == survey->channel) 8964 survey->filled |= SURVEY_INFO_IN_USE; 8965 8966 exit: 8967 mutex_unlock(&ar->conf_mutex); 8968 return ret; 8969 } 8970 8971 static void ath11k_mac_put_chain_rssi(struct station_info *sinfo, 8972 struct ath11k_sta *arsta, 8973 char *pre, 8974 bool clear) 8975 { 8976 struct ath11k *ar = arsta->arvif->ar; 8977 int i; 8978 s8 rssi; 8979 8980 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) { 8981 sinfo->chains &= ~BIT(i); 8982 rssi = arsta->chain_signal[i]; 8983 if (clear) 8984 arsta->chain_signal[i] = ATH11K_INVALID_RSSI_FULL; 8985 8986 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 8987 "sta statistics %s rssi[%d] %d\n", pre, i, rssi); 8988 8989 if (rssi != ATH11K_DEFAULT_NOISE_FLOOR && 8990 rssi != ATH11K_INVALID_RSSI_FULL && 8991 rssi != ATH11K_INVALID_RSSI_EMPTY && 8992 rssi != 0) { 8993 sinfo->chain_signal[i] = rssi; 8994 sinfo->chains |= BIT(i); 8995 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL); 8996 } 8997 } 8998 } 8999 9000 static void ath11k_mac_fw_stats_reset(struct ath11k *ar) 9001 { 9002 spin_lock_bh(&ar->data_lock); 9003 ath11k_fw_stats_pdevs_free(&ar->fw_stats.pdevs); 9004 ath11k_fw_stats_vdevs_free(&ar->fw_stats.vdevs); 9005 ar->fw_stats.num_vdev_recvd = 0; 9006 ar->fw_stats.num_bcn_recvd = 0; 9007 spin_unlock_bh(&ar->data_lock); 9008 } 9009 9010 int ath11k_mac_fw_stats_request(struct ath11k *ar, 9011 struct stats_request_params *req_param) 9012 { 9013 struct ath11k_base *ab = ar->ab; 9014 unsigned long time_left; 9015 int ret; 9016 9017 lockdep_assert_held(&ar->conf_mutex); 9018 9019 ath11k_mac_fw_stats_reset(ar); 9020 9021 reinit_completion(&ar->fw_stats_complete); 9022 reinit_completion(&ar->fw_stats_done); 9023 9024 ret = ath11k_wmi_send_stats_request_cmd(ar, req_param); 9025 9026 if (ret) { 9027 ath11k_warn(ab, "could not request fw stats (%d)\n", 9028 ret); 9029 return ret; 9030 } 9031 9032 time_left = wait_for_completion_timeout(&ar->fw_stats_complete, 1 * HZ); 9033 if (!time_left) 9034 return -ETIMEDOUT; 9035 9036 /* FW stats can get split when exceeding the stats data buffer limit. 9037 * In that case, since there is no end marking for the back-to-back 9038 * received 'update stats' event, we keep a 3 seconds timeout in case, 9039 * fw_stats_done is not marked yet 9040 */ 9041 time_left = wait_for_completion_timeout(&ar->fw_stats_done, 3 * HZ); 9042 if (!time_left) 9043 return -ETIMEDOUT; 9044 9045 return 0; 9046 } 9047 9048 static int ath11k_mac_get_fw_stats(struct ath11k *ar, u32 pdev_id, 9049 u32 vdev_id, u32 stats_id) 9050 { 9051 struct ath11k_base *ab = ar->ab; 9052 struct stats_request_params req_param; 9053 int ret; 9054 9055 lockdep_assert_held(&ar->conf_mutex); 9056 9057 if (ar->state != ATH11K_STATE_ON) 9058 return -ENETDOWN; 9059 9060 req_param.pdev_id = pdev_id; 9061 req_param.vdev_id = vdev_id; 9062 req_param.stats_id = stats_id; 9063 9064 ret = ath11k_mac_fw_stats_request(ar, &req_param); 9065 if (ret) 9066 ath11k_warn(ab, "failed to request fw stats: %d\n", ret); 9067 9068 ath11k_dbg(ab, ATH11K_DBG_WMI, 9069 "debug get fw stat pdev id %d vdev id %d stats id 0x%x\n", 9070 pdev_id, vdev_id, stats_id); 9071 9072 return ret; 9073 } 9074 9075 static void ath11k_mac_op_sta_statistics(struct ieee80211_hw *hw, 9076 struct ieee80211_vif *vif, 9077 struct ieee80211_sta *sta, 9078 struct station_info *sinfo) 9079 { 9080 struct ath11k_sta *arsta = ath11k_sta_to_arsta(sta); 9081 struct ath11k *ar = arsta->arvif->ar; 9082 s8 signal; 9083 bool db2dbm = test_bit(WMI_TLV_SERVICE_HW_DB2DBM_CONVERSION_SUPPORT, 9084 ar->ab->wmi_ab.svc_map); 9085 9086 sinfo->rx_duration = arsta->rx_duration; 9087 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION); 9088 9089 sinfo->tx_duration = arsta->tx_duration; 9090 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_DURATION); 9091 9092 if (arsta->txrate.legacy || arsta->txrate.nss) { 9093 if (arsta->txrate.legacy) { 9094 sinfo->txrate.legacy = arsta->txrate.legacy; 9095 } else { 9096 sinfo->txrate.mcs = arsta->txrate.mcs; 9097 sinfo->txrate.nss = arsta->txrate.nss; 9098 sinfo->txrate.bw = arsta->txrate.bw; 9099 sinfo->txrate.he_gi = arsta->txrate.he_gi; 9100 sinfo->txrate.he_dcm = arsta->txrate.he_dcm; 9101 sinfo->txrate.he_ru_alloc = arsta->txrate.he_ru_alloc; 9102 } 9103 sinfo->txrate.flags = arsta->txrate.flags; 9104 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE); 9105 } 9106 9107 ath11k_mac_put_chain_rssi(sinfo, arsta, "ppdu", false); 9108 9109 mutex_lock(&ar->conf_mutex); 9110 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL)) && 9111 arsta->arvif->vdev_type == WMI_VDEV_TYPE_STA && 9112 ar->ab->hw_params.supports_rssi_stats && 9113 !ath11k_mac_get_fw_stats(ar, ar->pdev->pdev_id, 0, 9114 WMI_REQUEST_RSSI_PER_CHAIN_STAT)) { 9115 ath11k_mac_put_chain_rssi(sinfo, arsta, "fw stats", true); 9116 } 9117 9118 signal = arsta->rssi_comb; 9119 if (!signal && 9120 arsta->arvif->vdev_type == WMI_VDEV_TYPE_STA && 9121 ar->ab->hw_params.supports_rssi_stats && 9122 !(ath11k_mac_get_fw_stats(ar, ar->pdev->pdev_id, 0, 9123 WMI_REQUEST_VDEV_STAT))) 9124 signal = arsta->rssi_beacon; 9125 mutex_unlock(&ar->conf_mutex); 9126 9127 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 9128 "sta statistics db2dbm %u rssi comb %d rssi beacon %d\n", 9129 db2dbm, arsta->rssi_comb, arsta->rssi_beacon); 9130 9131 if (signal) { 9132 sinfo->signal = db2dbm ? signal : signal + ATH11K_DEFAULT_NOISE_FLOOR; 9133 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL); 9134 } 9135 9136 sinfo->signal_avg = ewma_avg_rssi_read(&arsta->avg_rssi); 9137 9138 if (!db2dbm) 9139 sinfo->signal_avg += ATH11K_DEFAULT_NOISE_FLOOR; 9140 9141 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG); 9142 } 9143 9144 #if IS_ENABLED(CONFIG_IPV6) 9145 static void ath11k_generate_ns_mc_addr(struct ath11k *ar, 9146 struct ath11k_arp_ns_offload *offload) 9147 { 9148 int i; 9149 9150 for (i = 0; i < offload->ipv6_count; i++) { 9151 offload->self_ipv6_addr[i][0] = 0xff; 9152 offload->self_ipv6_addr[i][1] = 0x02; 9153 offload->self_ipv6_addr[i][11] = 0x01; 9154 offload->self_ipv6_addr[i][12] = 0xff; 9155 offload->self_ipv6_addr[i][13] = 9156 offload->ipv6_addr[i][13]; 9157 offload->self_ipv6_addr[i][14] = 9158 offload->ipv6_addr[i][14]; 9159 offload->self_ipv6_addr[i][15] = 9160 offload->ipv6_addr[i][15]; 9161 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "NS solicited addr %pI6\n", 9162 offload->self_ipv6_addr[i]); 9163 } 9164 } 9165 9166 static void ath11k_mac_op_ipv6_changed(struct ieee80211_hw *hw, 9167 struct ieee80211_vif *vif, 9168 struct inet6_dev *idev) 9169 { 9170 struct ath11k *ar = hw->priv; 9171 struct ath11k_arp_ns_offload *offload; 9172 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 9173 struct inet6_ifaddr *ifa6; 9174 struct ifacaddr6 *ifaca6; 9175 u32 count, scope; 9176 9177 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "op ipv6 changed\n"); 9178 9179 offload = &arvif->arp_ns_offload; 9180 count = 0; 9181 9182 /* The _ipv6_changed() is called with RCU lock already held in 9183 * atomic_notifier_call_chain(), so we don't need to call 9184 * rcu_read_lock() again here. But note that with CONFIG_PREEMPT_RT 9185 * enabled, read_lock_bh() also calls rcu_read_lock(). This is OK 9186 * because RCU read critical section is allowed to get nested. 9187 */ 9188 read_lock_bh(&idev->lock); 9189 9190 memset(offload->ipv6_addr, 0, sizeof(offload->ipv6_addr)); 9191 memset(offload->self_ipv6_addr, 0, sizeof(offload->self_ipv6_addr)); 9192 memcpy(offload->mac_addr, vif->addr, ETH_ALEN); 9193 9194 /* get unicast address */ 9195 list_for_each_entry(ifa6, &idev->addr_list, if_list) { 9196 if (count >= ATH11K_IPV6_MAX_COUNT) 9197 goto generate; 9198 9199 if (ifa6->flags & IFA_F_DADFAILED) 9200 continue; 9201 scope = ipv6_addr_src_scope(&ifa6->addr); 9202 if (scope == IPV6_ADDR_SCOPE_LINKLOCAL || 9203 scope == IPV6_ADDR_SCOPE_GLOBAL) { 9204 memcpy(offload->ipv6_addr[count], &ifa6->addr.s6_addr, 9205 sizeof(ifa6->addr.s6_addr)); 9206 offload->ipv6_type[count] = ATH11K_IPV6_UC_TYPE; 9207 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "count %d ipv6 uc %pI6 scope %d\n", 9208 count, offload->ipv6_addr[count], 9209 scope); 9210 count++; 9211 } else { 9212 ath11k_warn(ar->ab, "Unsupported ipv6 scope: %d\n", scope); 9213 } 9214 } 9215 9216 /* get anycast address */ 9217 for (ifaca6 = rcu_dereference(idev->ac_list); ifaca6; 9218 ifaca6 = rcu_dereference(ifaca6->aca_next)) { 9219 if (count >= ATH11K_IPV6_MAX_COUNT) 9220 goto generate; 9221 9222 scope = ipv6_addr_src_scope(&ifaca6->aca_addr); 9223 if (scope == IPV6_ADDR_SCOPE_LINKLOCAL || 9224 scope == IPV6_ADDR_SCOPE_GLOBAL) { 9225 memcpy(offload->ipv6_addr[count], &ifaca6->aca_addr, 9226 sizeof(ifaca6->aca_addr)); 9227 offload->ipv6_type[count] = ATH11K_IPV6_AC_TYPE; 9228 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "count %d ipv6 ac %pI6 scope %d\n", 9229 count, offload->ipv6_addr[count], 9230 scope); 9231 count++; 9232 } else { 9233 ath11k_warn(ar->ab, "Unsupported ipv scope: %d\n", scope); 9234 } 9235 } 9236 9237 generate: 9238 offload->ipv6_count = count; 9239 read_unlock_bh(&idev->lock); 9240 9241 /* generate ns multicast address */ 9242 ath11k_generate_ns_mc_addr(ar, offload); 9243 } 9244 #endif 9245 9246 static void ath11k_mac_op_set_rekey_data(struct ieee80211_hw *hw, 9247 struct ieee80211_vif *vif, 9248 struct cfg80211_gtk_rekey_data *data) 9249 { 9250 struct ath11k *ar = hw->priv; 9251 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 9252 struct ath11k_rekey_data *rekey_data = &arvif->rekey_data; 9253 9254 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "set rekey data vdev %d\n", 9255 arvif->vdev_id); 9256 9257 mutex_lock(&ar->conf_mutex); 9258 9259 memcpy(rekey_data->kck, data->kck, NL80211_KCK_LEN); 9260 memcpy(rekey_data->kek, data->kek, NL80211_KEK_LEN); 9261 9262 /* The supplicant works on big-endian, the firmware expects it on 9263 * little endian. 9264 */ 9265 rekey_data->replay_ctr = get_unaligned_be64(data->replay_ctr); 9266 9267 arvif->rekey_data.enable_offload = true; 9268 9269 ath11k_dbg_dump(ar->ab, ATH11K_DBG_MAC, "kck", NULL, 9270 rekey_data->kck, NL80211_KCK_LEN); 9271 ath11k_dbg_dump(ar->ab, ATH11K_DBG_MAC, "kek", NULL, 9272 rekey_data->kck, NL80211_KEK_LEN); 9273 ath11k_dbg_dump(ar->ab, ATH11K_DBG_MAC, "replay ctr", NULL, 9274 &rekey_data->replay_ctr, sizeof(rekey_data->replay_ctr)); 9275 9276 mutex_unlock(&ar->conf_mutex); 9277 } 9278 9279 static int ath11k_mac_op_set_bios_sar_specs(struct ieee80211_hw *hw, 9280 const struct cfg80211_sar_specs *sar) 9281 { 9282 struct ath11k *ar = hw->priv; 9283 const struct cfg80211_sar_sub_specs *sspec; 9284 int ret, index; 9285 u8 *sar_tbl; 9286 u32 i; 9287 9288 if (!sar || sar->type != NL80211_SAR_TYPE_POWER || 9289 sar->num_sub_specs == 0) 9290 return -EINVAL; 9291 9292 mutex_lock(&ar->conf_mutex); 9293 9294 if (!test_bit(WMI_TLV_SERVICE_BIOS_SAR_SUPPORT, ar->ab->wmi_ab.svc_map) || 9295 !ar->ab->hw_params.bios_sar_capa) { 9296 ret = -EOPNOTSUPP; 9297 goto exit; 9298 } 9299 9300 ret = ath11k_wmi_pdev_set_bios_geo_table_param(ar); 9301 if (ret) { 9302 ath11k_warn(ar->ab, "failed to set geo table: %d\n", ret); 9303 goto exit; 9304 } 9305 9306 sar_tbl = kzalloc(BIOS_SAR_TABLE_LEN, GFP_KERNEL); 9307 if (!sar_tbl) { 9308 ret = -ENOMEM; 9309 goto exit; 9310 } 9311 9312 sspec = sar->sub_specs; 9313 for (i = 0; i < sar->num_sub_specs; i++) { 9314 if (sspec->freq_range_index >= (BIOS_SAR_TABLE_LEN >> 1)) { 9315 ath11k_warn(ar->ab, "Ignore bad frequency index %u, max allowed %u\n", 9316 sspec->freq_range_index, BIOS_SAR_TABLE_LEN >> 1); 9317 continue; 9318 } 9319 9320 /* chain0 and chain1 share same power setting */ 9321 sar_tbl[sspec->freq_range_index] = sspec->power; 9322 index = sspec->freq_range_index + (BIOS_SAR_TABLE_LEN >> 1); 9323 sar_tbl[index] = sspec->power; 9324 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "sar tbl[%d] = %d\n", 9325 sspec->freq_range_index, sar_tbl[sspec->freq_range_index]); 9326 sspec++; 9327 } 9328 9329 ret = ath11k_wmi_pdev_set_bios_sar_table_param(ar, sar_tbl); 9330 if (ret) 9331 ath11k_warn(ar->ab, "failed to set sar power: %d", ret); 9332 9333 kfree(sar_tbl); 9334 exit: 9335 mutex_unlock(&ar->conf_mutex); 9336 9337 return ret; 9338 } 9339 9340 static int ath11k_mac_op_cancel_remain_on_channel(struct ieee80211_hw *hw, 9341 struct ieee80211_vif *vif) 9342 { 9343 struct ath11k *ar = hw->priv; 9344 9345 mutex_lock(&ar->conf_mutex); 9346 9347 spin_lock_bh(&ar->data_lock); 9348 ar->scan.roc_notify = false; 9349 spin_unlock_bh(&ar->data_lock); 9350 9351 ath11k_scan_abort(ar); 9352 9353 mutex_unlock(&ar->conf_mutex); 9354 9355 cancel_delayed_work_sync(&ar->scan.timeout); 9356 9357 return 0; 9358 } 9359 9360 static int ath11k_mac_op_remain_on_channel(struct ieee80211_hw *hw, 9361 struct ieee80211_vif *vif, 9362 struct ieee80211_channel *chan, 9363 int duration, 9364 enum ieee80211_roc_type type) 9365 { 9366 struct ath11k *ar = hw->priv; 9367 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 9368 struct scan_req_params *arg; 9369 int ret; 9370 u32 scan_time_msec; 9371 9372 mutex_lock(&ar->conf_mutex); 9373 9374 spin_lock_bh(&ar->data_lock); 9375 switch (ar->scan.state) { 9376 case ATH11K_SCAN_IDLE: 9377 reinit_completion(&ar->scan.started); 9378 reinit_completion(&ar->scan.completed); 9379 reinit_completion(&ar->scan.on_channel); 9380 ar->scan.state = ATH11K_SCAN_STARTING; 9381 ar->scan.is_roc = true; 9382 ar->scan.vdev_id = arvif->vdev_id; 9383 ar->scan.roc_freq = chan->center_freq; 9384 ar->scan.roc_notify = true; 9385 ret = 0; 9386 break; 9387 case ATH11K_SCAN_STARTING: 9388 case ATH11K_SCAN_RUNNING: 9389 case ATH11K_SCAN_ABORTING: 9390 ret = -EBUSY; 9391 break; 9392 } 9393 spin_unlock_bh(&ar->data_lock); 9394 9395 if (ret) 9396 goto exit; 9397 9398 scan_time_msec = ar->hw->wiphy->max_remain_on_channel_duration * 2; 9399 9400 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 9401 if (!arg) { 9402 ret = -ENOMEM; 9403 goto exit; 9404 } 9405 ath11k_wmi_start_scan_init(ar, arg); 9406 arg->num_chan = 1; 9407 arg->chan_list = kcalloc(arg->num_chan, sizeof(*arg->chan_list), 9408 GFP_KERNEL); 9409 if (!arg->chan_list) { 9410 ret = -ENOMEM; 9411 goto free_arg; 9412 } 9413 9414 arg->vdev_id = arvif->vdev_id; 9415 arg->scan_id = ATH11K_SCAN_ID; 9416 arg->chan_list[0] = chan->center_freq; 9417 arg->dwell_time_active = scan_time_msec; 9418 arg->dwell_time_passive = scan_time_msec; 9419 arg->max_scan_time = scan_time_msec; 9420 arg->scan_f_passive = 1; 9421 arg->burst_duration = duration; 9422 9423 if (!ar->ab->hw_params.single_pdev_only) 9424 arg->scan_f_filter_prb_req = 1; 9425 9426 ret = ath11k_start_scan(ar, arg); 9427 if (ret) { 9428 ath11k_warn(ar->ab, "failed to start roc scan: %d\n", ret); 9429 9430 spin_lock_bh(&ar->data_lock); 9431 ar->scan.state = ATH11K_SCAN_IDLE; 9432 spin_unlock_bh(&ar->data_lock); 9433 goto free_chan_list; 9434 } 9435 9436 ret = wait_for_completion_timeout(&ar->scan.on_channel, 3 * HZ); 9437 if (ret == 0) { 9438 ath11k_warn(ar->ab, "failed to switch to channel for roc scan\n"); 9439 ret = ath11k_scan_stop(ar); 9440 if (ret) 9441 ath11k_warn(ar->ab, "failed to stop scan: %d\n", ret); 9442 ret = -ETIMEDOUT; 9443 goto free_chan_list; 9444 } 9445 9446 ieee80211_queue_delayed_work(ar->hw, &ar->scan.timeout, 9447 msecs_to_jiffies(duration)); 9448 9449 ret = 0; 9450 9451 free_chan_list: 9452 kfree(arg->chan_list); 9453 free_arg: 9454 kfree(arg); 9455 exit: 9456 mutex_unlock(&ar->conf_mutex); 9457 return ret; 9458 } 9459 9460 static int ath11k_mac_op_get_txpower(struct ieee80211_hw *hw, 9461 struct ieee80211_vif *vif, 9462 unsigned int link_id, 9463 int *dbm) 9464 { 9465 struct ath11k *ar = hw->priv; 9466 struct ath11k_base *ab = ar->ab; 9467 struct ath11k_fw_stats_pdev *pdev; 9468 int ret; 9469 9470 /* Final Tx power is minimum of Target Power, CTL power, Regulatory 9471 * Power, PSD EIRP Power. We just know the Regulatory power from the 9472 * regulatory rules obtained. FW knows all these power and sets the min 9473 * of these. Hence, we request the FW pdev stats in which FW reports 9474 * the minimum of all vdev's channel Tx power. 9475 */ 9476 mutex_lock(&ar->conf_mutex); 9477 9478 /* Firmware doesn't provide Tx power during CAC hence no need to fetch 9479 * the stats. 9480 */ 9481 if (test_bit(ATH11K_CAC_RUNNING, &ar->dev_flags)) { 9482 mutex_unlock(&ar->conf_mutex); 9483 return -EAGAIN; 9484 } 9485 9486 ret = ath11k_mac_get_fw_stats(ar, ar->pdev->pdev_id, 0, 9487 WMI_REQUEST_PDEV_STAT); 9488 if (ret) { 9489 ath11k_warn(ab, "failed to request fw pdev stats: %d\n", ret); 9490 goto err_fallback; 9491 } 9492 9493 spin_lock_bh(&ar->data_lock); 9494 pdev = list_first_entry_or_null(&ar->fw_stats.pdevs, 9495 struct ath11k_fw_stats_pdev, list); 9496 if (!pdev) { 9497 spin_unlock_bh(&ar->data_lock); 9498 goto err_fallback; 9499 } 9500 9501 /* tx power is set as 2 units per dBm in FW. */ 9502 *dbm = pdev->chan_tx_power / 2; 9503 9504 spin_unlock_bh(&ar->data_lock); 9505 mutex_unlock(&ar->conf_mutex); 9506 9507 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "txpower from firmware %d, reported %d dBm\n", 9508 pdev->chan_tx_power, *dbm); 9509 return 0; 9510 9511 err_fallback: 9512 mutex_unlock(&ar->conf_mutex); 9513 /* We didn't get txpower from FW. Hence, relying on vif->bss_conf.txpower */ 9514 *dbm = vif->bss_conf.txpower; 9515 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "txpower from firmware NaN, reported %d dBm\n", 9516 *dbm); 9517 return 0; 9518 } 9519 9520 static int ath11k_mac_station_add(struct ath11k *ar, 9521 struct ieee80211_vif *vif, 9522 struct ieee80211_sta *sta) 9523 { 9524 struct ath11k_base *ab = ar->ab; 9525 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 9526 struct ath11k_sta *arsta = ath11k_sta_to_arsta(sta); 9527 struct peer_create_params peer_param; 9528 int ret; 9529 9530 lockdep_assert_held(&ar->conf_mutex); 9531 9532 ret = ath11k_mac_inc_num_stations(arvif, sta); 9533 if (ret) { 9534 ath11k_warn(ab, "refusing to associate station: too many connected already (%d)\n", 9535 ar->max_num_stations); 9536 goto exit; 9537 } 9538 9539 arsta->rx_stats = kzalloc(sizeof(*arsta->rx_stats), GFP_KERNEL); 9540 if (!arsta->rx_stats) { 9541 ret = -ENOMEM; 9542 goto dec_num_station; 9543 } 9544 9545 peer_param.vdev_id = arvif->vdev_id; 9546 peer_param.peer_addr = sta->addr; 9547 peer_param.peer_type = WMI_PEER_TYPE_DEFAULT; 9548 9549 ret = ath11k_peer_create(ar, arvif, sta, &peer_param); 9550 if (ret) { 9551 ath11k_warn(ab, "Failed to add peer: %pM for VDEV: %d\n", 9552 sta->addr, arvif->vdev_id); 9553 goto free_rx_stats; 9554 } 9555 9556 ath11k_dbg(ab, ATH11K_DBG_MAC, "Added peer: %pM for VDEV: %d\n", 9557 sta->addr, arvif->vdev_id); 9558 9559 if (ath11k_debugfs_is_extd_tx_stats_enabled(ar)) { 9560 arsta->tx_stats = kzalloc(sizeof(*arsta->tx_stats), GFP_KERNEL); 9561 if (!arsta->tx_stats) { 9562 ret = -ENOMEM; 9563 goto free_peer; 9564 } 9565 } 9566 9567 if (ieee80211_vif_is_mesh(vif)) { 9568 ath11k_dbg(ab, ATH11K_DBG_MAC, 9569 "setting USE_4ADDR for mesh STA %pM\n", sta->addr); 9570 ret = ath11k_wmi_set_peer_param(ar, sta->addr, 9571 arvif->vdev_id, 9572 WMI_PEER_USE_4ADDR, 1); 9573 if (ret) { 9574 ath11k_warn(ab, "failed to set mesh STA %pM 4addr capability: %d\n", 9575 sta->addr, ret); 9576 goto free_tx_stats; 9577 } 9578 } 9579 9580 ret = ath11k_dp_peer_setup(ar, arvif->vdev_id, sta->addr); 9581 if (ret) { 9582 ath11k_warn(ab, "failed to setup dp for peer %pM on vdev %i (%d)\n", 9583 sta->addr, arvif->vdev_id, ret); 9584 goto free_tx_stats; 9585 } 9586 9587 if (ab->hw_params.vdev_start_delay && 9588 !arvif->is_started && 9589 arvif->vdev_type != WMI_VDEV_TYPE_AP) { 9590 ret = ath11k_mac_start_vdev_delay(ar->hw, vif); 9591 if (ret) { 9592 ath11k_warn(ab, "failed to delay vdev start: %d\n", ret); 9593 goto free_tx_stats; 9594 } 9595 } 9596 9597 ewma_avg_rssi_init(&arsta->avg_rssi); 9598 return 0; 9599 9600 free_tx_stats: 9601 kfree(arsta->tx_stats); 9602 arsta->tx_stats = NULL; 9603 free_peer: 9604 ath11k_peer_delete(ar, arvif->vdev_id, sta->addr); 9605 free_rx_stats: 9606 kfree(arsta->rx_stats); 9607 arsta->rx_stats = NULL; 9608 dec_num_station: 9609 ath11k_mac_dec_num_stations(arvif, sta); 9610 exit: 9611 return ret; 9612 } 9613 9614 static int ath11k_mac_station_remove(struct ath11k *ar, 9615 struct ieee80211_vif *vif, 9616 struct ieee80211_sta *sta) 9617 { 9618 struct ath11k_base *ab = ar->ab; 9619 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 9620 struct ath11k_sta *arsta = ath11k_sta_to_arsta(sta); 9621 int ret; 9622 9623 if (ab->hw_params.vdev_start_delay && 9624 arvif->is_started && 9625 arvif->vdev_type != WMI_VDEV_TYPE_AP) { 9626 ret = ath11k_mac_stop_vdev_early(ar->hw, vif); 9627 if (ret) { 9628 ath11k_warn(ab, "failed to do early vdev stop: %d\n", ret); 9629 return ret; 9630 } 9631 } 9632 9633 ath11k_dp_peer_cleanup(ar, arvif->vdev_id, sta->addr); 9634 9635 ret = ath11k_peer_delete(ar, arvif->vdev_id, sta->addr); 9636 if (ret) 9637 ath11k_warn(ab, "Failed to delete peer: %pM for VDEV: %d\n", 9638 sta->addr, arvif->vdev_id); 9639 else 9640 ath11k_dbg(ab, ATH11K_DBG_MAC, "Removed peer: %pM for VDEV: %d\n", 9641 sta->addr, arvif->vdev_id); 9642 9643 ath11k_mac_dec_num_stations(arvif, sta); 9644 9645 kfree(arsta->tx_stats); 9646 arsta->tx_stats = NULL; 9647 9648 kfree(arsta->rx_stats); 9649 arsta->rx_stats = NULL; 9650 9651 return ret; 9652 } 9653 9654 static int ath11k_mac_op_sta_state(struct ieee80211_hw *hw, 9655 struct ieee80211_vif *vif, 9656 struct ieee80211_sta *sta, 9657 enum ieee80211_sta_state old_state, 9658 enum ieee80211_sta_state new_state) 9659 { 9660 struct ath11k *ar = hw->priv; 9661 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 9662 struct ath11k_sta *arsta = ath11k_sta_to_arsta(sta); 9663 enum ieee80211_ap_reg_power power_type; 9664 struct cur_regulatory_info *reg_info; 9665 struct ath11k_peer *peer; 9666 int ret = 0; 9667 9668 /* cancel must be done outside the mutex to avoid deadlock */ 9669 if ((old_state == IEEE80211_STA_NONE && 9670 new_state == IEEE80211_STA_NOTEXIST)) { 9671 cancel_work_sync(&arsta->update_wk); 9672 cancel_work_sync(&arsta->set_4addr_wk); 9673 } 9674 9675 mutex_lock(&ar->conf_mutex); 9676 9677 if (old_state == IEEE80211_STA_NOTEXIST && 9678 new_state == IEEE80211_STA_NONE) { 9679 memset(arsta, 0, sizeof(*arsta)); 9680 arsta->arvif = arvif; 9681 arsta->peer_ps_state = WMI_PEER_PS_STATE_DISABLED; 9682 INIT_WORK(&arsta->update_wk, ath11k_sta_rc_update_wk); 9683 INIT_WORK(&arsta->set_4addr_wk, ath11k_sta_set_4addr_wk); 9684 9685 ret = ath11k_mac_station_add(ar, vif, sta); 9686 if (ret) 9687 ath11k_warn(ar->ab, "Failed to add station: %pM for VDEV: %d\n", 9688 sta->addr, arvif->vdev_id); 9689 } else if ((old_state == IEEE80211_STA_NONE && 9690 new_state == IEEE80211_STA_NOTEXIST)) { 9691 ret = ath11k_mac_station_remove(ar, vif, sta); 9692 if (ret) 9693 ath11k_warn(ar->ab, "Failed to remove station: %pM for VDEV: %d\n", 9694 sta->addr, arvif->vdev_id); 9695 9696 mutex_lock(&ar->ab->tbl_mtx_lock); 9697 spin_lock_bh(&ar->ab->base_lock); 9698 peer = ath11k_peer_find(ar->ab, arvif->vdev_id, sta->addr); 9699 if (peer && peer->sta == sta) { 9700 ath11k_warn(ar->ab, "Found peer entry %pM n vdev %i after it was supposedly removed\n", 9701 vif->addr, arvif->vdev_id); 9702 ath11k_peer_rhash_delete(ar->ab, peer); 9703 peer->sta = NULL; 9704 list_del(&peer->list); 9705 kfree(peer); 9706 ar->num_peers--; 9707 } 9708 spin_unlock_bh(&ar->ab->base_lock); 9709 mutex_unlock(&ar->ab->tbl_mtx_lock); 9710 } else if (old_state == IEEE80211_STA_AUTH && 9711 new_state == IEEE80211_STA_ASSOC && 9712 (vif->type == NL80211_IFTYPE_AP || 9713 vif->type == NL80211_IFTYPE_MESH_POINT || 9714 vif->type == NL80211_IFTYPE_ADHOC)) { 9715 ret = ath11k_station_assoc(ar, vif, sta, false); 9716 if (ret) 9717 ath11k_warn(ar->ab, "Failed to associate station: %pM\n", 9718 sta->addr); 9719 9720 spin_lock_bh(&ar->data_lock); 9721 /* Set arsta bw and prev bw */ 9722 arsta->bw = ath11k_mac_ieee80211_sta_bw_to_wmi(ar, sta); 9723 arsta->bw_prev = arsta->bw; 9724 spin_unlock_bh(&ar->data_lock); 9725 } else if (old_state == IEEE80211_STA_ASSOC && 9726 new_state == IEEE80211_STA_AUTHORIZED) { 9727 spin_lock_bh(&ar->ab->base_lock); 9728 9729 peer = ath11k_peer_find(ar->ab, arvif->vdev_id, sta->addr); 9730 if (peer) 9731 peer->is_authorized = true; 9732 9733 spin_unlock_bh(&ar->ab->base_lock); 9734 9735 if (vif->type == NL80211_IFTYPE_STATION && arvif->is_up) { 9736 ret = ath11k_wmi_set_peer_param(ar, sta->addr, 9737 arvif->vdev_id, 9738 WMI_PEER_AUTHORIZE, 9739 1); 9740 if (ret) 9741 ath11k_warn(ar->ab, "Unable to authorize peer %pM vdev %d: %d\n", 9742 sta->addr, arvif->vdev_id, ret); 9743 } 9744 9745 if (!ret && 9746 ath11k_wmi_supports_6ghz_cc_ext(ar) && 9747 arvif->vdev_type == WMI_VDEV_TYPE_STA && 9748 arvif->chanctx.def.chan && 9749 arvif->chanctx.def.chan->band == NL80211_BAND_6GHZ) { 9750 reg_info = &ar->ab->reg_info_store[ar->pdev_idx]; 9751 power_type = vif->bss_conf.power_type; 9752 9753 if (power_type == IEEE80211_REG_UNSET_AP) { 9754 ath11k_warn(ar->ab, "invalid power type %d\n", 9755 power_type); 9756 ret = -EINVAL; 9757 } else { 9758 ret = ath11k_reg_handle_chan_list(ar->ab, 9759 reg_info, 9760 power_type); 9761 if (ret) 9762 ath11k_warn(ar->ab, 9763 "failed to handle chan list with power type %d\n", 9764 power_type); 9765 } 9766 } 9767 } else if (old_state == IEEE80211_STA_AUTHORIZED && 9768 new_state == IEEE80211_STA_ASSOC) { 9769 spin_lock_bh(&ar->ab->base_lock); 9770 9771 peer = ath11k_peer_find(ar->ab, arvif->vdev_id, sta->addr); 9772 if (peer) 9773 peer->is_authorized = false; 9774 9775 spin_unlock_bh(&ar->ab->base_lock); 9776 } else if (old_state == IEEE80211_STA_ASSOC && 9777 new_state == IEEE80211_STA_AUTH && 9778 (vif->type == NL80211_IFTYPE_AP || 9779 vif->type == NL80211_IFTYPE_MESH_POINT || 9780 vif->type == NL80211_IFTYPE_ADHOC)) { 9781 ret = ath11k_station_disassoc(ar, vif, sta); 9782 if (ret) 9783 ath11k_warn(ar->ab, "Failed to disassociate station: %pM\n", 9784 sta->addr); 9785 } 9786 9787 mutex_unlock(&ar->conf_mutex); 9788 return ret; 9789 } 9790 9791 static const struct ieee80211_ops ath11k_ops = { 9792 .tx = ath11k_mac_op_tx, 9793 .wake_tx_queue = ieee80211_handle_wake_tx_queue, 9794 .start = ath11k_mac_op_start, 9795 .stop = ath11k_mac_op_stop, 9796 .reconfig_complete = ath11k_mac_op_reconfig_complete, 9797 .add_interface = ath11k_mac_op_add_interface, 9798 .remove_interface = ath11k_mac_op_remove_interface, 9799 .update_vif_offload = ath11k_mac_op_update_vif_offload, 9800 .config = ath11k_mac_op_config, 9801 .bss_info_changed = ath11k_mac_op_bss_info_changed, 9802 .configure_filter = ath11k_mac_op_configure_filter, 9803 .hw_scan = ath11k_mac_op_hw_scan, 9804 .cancel_hw_scan = ath11k_mac_op_cancel_hw_scan, 9805 .set_key = ath11k_mac_op_set_key, 9806 .set_rekey_data = ath11k_mac_op_set_rekey_data, 9807 .sta_state = ath11k_mac_op_sta_state, 9808 .sta_set_4addr = ath11k_mac_op_sta_set_4addr, 9809 .sta_set_txpwr = ath11k_mac_op_sta_set_txpwr, 9810 .link_sta_rc_update = ath11k_mac_op_sta_rc_update, 9811 .conf_tx = ath11k_mac_op_conf_tx, 9812 .set_antenna = ath11k_mac_op_set_antenna, 9813 .get_antenna = ath11k_mac_op_get_antenna, 9814 .ampdu_action = ath11k_mac_op_ampdu_action, 9815 .add_chanctx = ath11k_mac_op_add_chanctx, 9816 .remove_chanctx = ath11k_mac_op_remove_chanctx, 9817 .change_chanctx = ath11k_mac_op_change_chanctx, 9818 .assign_vif_chanctx = ath11k_mac_op_assign_vif_chanctx, 9819 .unassign_vif_chanctx = ath11k_mac_op_unassign_vif_chanctx, 9820 .switch_vif_chanctx = ath11k_mac_op_switch_vif_chanctx, 9821 .set_rts_threshold = ath11k_mac_op_set_rts_threshold, 9822 .set_frag_threshold = ath11k_mac_op_set_frag_threshold, 9823 .set_bitrate_mask = ath11k_mac_op_set_bitrate_mask, 9824 .get_survey = ath11k_mac_op_get_survey, 9825 .flush = ath11k_mac_op_flush, 9826 .sta_statistics = ath11k_mac_op_sta_statistics, 9827 CFG80211_TESTMODE_CMD(ath11k_tm_cmd) 9828 9829 #ifdef CONFIG_PM 9830 .suspend = ath11k_wow_op_suspend, 9831 .resume = ath11k_wow_op_resume, 9832 .set_wakeup = ath11k_wow_op_set_wakeup, 9833 #endif 9834 9835 #ifdef CONFIG_ATH11K_DEBUGFS 9836 .vif_add_debugfs = ath11k_debugfs_op_vif_add, 9837 .sta_add_debugfs = ath11k_debugfs_sta_op_add, 9838 #endif 9839 9840 #if IS_ENABLED(CONFIG_IPV6) 9841 .ipv6_addr_change = ath11k_mac_op_ipv6_changed, 9842 #endif 9843 .get_txpower = ath11k_mac_op_get_txpower, 9844 9845 .set_sar_specs = ath11k_mac_op_set_bios_sar_specs, 9846 .remain_on_channel = ath11k_mac_op_remain_on_channel, 9847 .cancel_remain_on_channel = ath11k_mac_op_cancel_remain_on_channel, 9848 }; 9849 9850 static void ath11k_mac_update_ch_list(struct ath11k *ar, 9851 struct ieee80211_supported_band *band, 9852 u32 freq_low, u32 freq_high) 9853 { 9854 int i; 9855 9856 if (!(freq_low && freq_high)) 9857 return; 9858 9859 for (i = 0; i < band->n_channels; i++) { 9860 if (band->channels[i].center_freq < freq_low || 9861 band->channels[i].center_freq > freq_high) 9862 band->channels[i].flags |= IEEE80211_CHAN_DISABLED; 9863 } 9864 } 9865 9866 static u32 ath11k_get_phy_id(struct ath11k *ar, u32 band) 9867 { 9868 struct ath11k_pdev *pdev = ar->pdev; 9869 struct ath11k_pdev_cap *pdev_cap = &pdev->cap; 9870 9871 if (band == WMI_HOST_WLAN_2G_CAP) 9872 return pdev_cap->band[NL80211_BAND_2GHZ].phy_id; 9873 9874 if (band == WMI_HOST_WLAN_5G_CAP) 9875 return pdev_cap->band[NL80211_BAND_5GHZ].phy_id; 9876 9877 ath11k_warn(ar->ab, "unsupported phy cap:%d\n", band); 9878 9879 return 0; 9880 } 9881 9882 static int ath11k_mac_setup_channels_rates(struct ath11k *ar, 9883 u32 supported_bands) 9884 { 9885 struct ieee80211_supported_band *band; 9886 struct ath11k_hal_reg_capabilities_ext *reg_cap, *temp_reg_cap; 9887 void *channels; 9888 u32 phy_id; 9889 9890 BUILD_BUG_ON((ARRAY_SIZE(ath11k_2ghz_channels) + 9891 ARRAY_SIZE(ath11k_5ghz_channels) + 9892 ARRAY_SIZE(ath11k_6ghz_channels)) != 9893 ATH11K_NUM_CHANS); 9894 9895 reg_cap = &ar->ab->hal_reg_cap[ar->pdev_idx]; 9896 temp_reg_cap = reg_cap; 9897 9898 if (supported_bands & WMI_HOST_WLAN_2G_CAP) { 9899 channels = kmemdup(ath11k_2ghz_channels, 9900 sizeof(ath11k_2ghz_channels), 9901 GFP_KERNEL); 9902 if (!channels) 9903 return -ENOMEM; 9904 9905 band = &ar->mac.sbands[NL80211_BAND_2GHZ]; 9906 band->band = NL80211_BAND_2GHZ; 9907 band->n_channels = ARRAY_SIZE(ath11k_2ghz_channels); 9908 band->channels = channels; 9909 band->n_bitrates = ath11k_g_rates_size; 9910 band->bitrates = ath11k_g_rates; 9911 ar->hw->wiphy->bands[NL80211_BAND_2GHZ] = band; 9912 9913 if (ar->ab->hw_params.single_pdev_only) { 9914 phy_id = ath11k_get_phy_id(ar, WMI_HOST_WLAN_2G_CAP); 9915 temp_reg_cap = &ar->ab->hal_reg_cap[phy_id]; 9916 } 9917 ath11k_mac_update_ch_list(ar, band, 9918 temp_reg_cap->low_2ghz_chan, 9919 temp_reg_cap->high_2ghz_chan); 9920 } 9921 9922 if (supported_bands & WMI_HOST_WLAN_5G_CAP) { 9923 if (reg_cap->high_5ghz_chan >= ATH11K_MIN_6G_FREQ) { 9924 channels = kmemdup(ath11k_6ghz_channels, 9925 sizeof(ath11k_6ghz_channels), GFP_KERNEL); 9926 if (!channels) { 9927 kfree(ar->mac.sbands[NL80211_BAND_2GHZ].channels); 9928 return -ENOMEM; 9929 } 9930 9931 ar->supports_6ghz = true; 9932 band = &ar->mac.sbands[NL80211_BAND_6GHZ]; 9933 band->band = NL80211_BAND_6GHZ; 9934 band->n_channels = ARRAY_SIZE(ath11k_6ghz_channels); 9935 band->channels = channels; 9936 band->n_bitrates = ath11k_a_rates_size; 9937 band->bitrates = ath11k_a_rates; 9938 ar->hw->wiphy->bands[NL80211_BAND_6GHZ] = band; 9939 9940 if (ar->ab->hw_params.single_pdev_only) { 9941 phy_id = ath11k_get_phy_id(ar, WMI_HOST_WLAN_5G_CAP); 9942 temp_reg_cap = &ar->ab->hal_reg_cap[phy_id]; 9943 } 9944 9945 ath11k_mac_update_ch_list(ar, band, 9946 temp_reg_cap->low_5ghz_chan, 9947 temp_reg_cap->high_5ghz_chan); 9948 } 9949 9950 if (reg_cap->low_5ghz_chan < ATH11K_MIN_6G_FREQ) { 9951 channels = kmemdup(ath11k_5ghz_channels, 9952 sizeof(ath11k_5ghz_channels), 9953 GFP_KERNEL); 9954 if (!channels) { 9955 kfree(ar->mac.sbands[NL80211_BAND_2GHZ].channels); 9956 kfree(ar->mac.sbands[NL80211_BAND_6GHZ].channels); 9957 return -ENOMEM; 9958 } 9959 9960 band = &ar->mac.sbands[NL80211_BAND_5GHZ]; 9961 band->band = NL80211_BAND_5GHZ; 9962 band->n_channels = ARRAY_SIZE(ath11k_5ghz_channels); 9963 band->channels = channels; 9964 band->n_bitrates = ath11k_a_rates_size; 9965 band->bitrates = ath11k_a_rates; 9966 ar->hw->wiphy->bands[NL80211_BAND_5GHZ] = band; 9967 9968 if (ar->ab->hw_params.single_pdev_only) { 9969 phy_id = ath11k_get_phy_id(ar, WMI_HOST_WLAN_5G_CAP); 9970 temp_reg_cap = &ar->ab->hal_reg_cap[phy_id]; 9971 } 9972 9973 ath11k_mac_update_ch_list(ar, band, 9974 temp_reg_cap->low_5ghz_chan, 9975 temp_reg_cap->high_5ghz_chan); 9976 } 9977 } 9978 9979 return 0; 9980 } 9981 9982 static void ath11k_mac_setup_mac_address_list(struct ath11k *ar) 9983 { 9984 struct mac_address *addresses; 9985 u16 n_addresses; 9986 int i; 9987 9988 if (!ar->ab->hw_params.support_dual_stations) 9989 return; 9990 9991 n_addresses = ar->ab->hw_params.num_vdevs; 9992 addresses = kcalloc(n_addresses, sizeof(*addresses), GFP_KERNEL); 9993 if (!addresses) 9994 return; 9995 9996 memcpy(addresses[0].addr, ar->mac_addr, ETH_ALEN); 9997 for (i = 1; i < n_addresses; i++) { 9998 memcpy(addresses[i].addr, ar->mac_addr, ETH_ALEN); 9999 /* set Local Administered Address bit */ 10000 addresses[i].addr[0] |= 0x2; 10001 10002 addresses[i].addr[0] += (i - 1) << 4; 10003 } 10004 10005 ar->hw->wiphy->addresses = addresses; 10006 ar->hw->wiphy->n_addresses = n_addresses; 10007 } 10008 10009 static int ath11k_mac_setup_iface_combinations(struct ath11k *ar) 10010 { 10011 struct ath11k_base *ab = ar->ab; 10012 struct ieee80211_iface_combination *combinations; 10013 struct ieee80211_iface_limit *limits; 10014 int n_limits, n_combos; 10015 bool p2p; 10016 10017 p2p = ab->hw_params.interface_modes & BIT(NL80211_IFTYPE_P2P_DEVICE); 10018 10019 if (ab->hw_params.support_dual_stations) 10020 n_combos = 2; 10021 else 10022 n_combos = 1; 10023 10024 combinations = kcalloc(n_combos, sizeof(*combinations), GFP_KERNEL); 10025 if (!combinations) 10026 return -ENOMEM; 10027 10028 if (p2p) 10029 n_limits = 3; 10030 else 10031 n_limits = 2; 10032 10033 limits = kcalloc(n_limits, sizeof(*limits), GFP_KERNEL); 10034 if (!limits) { 10035 kfree(combinations); 10036 return -ENOMEM; 10037 } 10038 10039 limits[0].max = 1; 10040 limits[0].types |= BIT(NL80211_IFTYPE_STATION); 10041 limits[1].max = 16; 10042 limits[1].types |= BIT(NL80211_IFTYPE_AP); 10043 if (IS_ENABLED(CONFIG_MAC80211_MESH) && 10044 ab->hw_params.interface_modes & BIT(NL80211_IFTYPE_MESH_POINT)) 10045 limits[1].types |= BIT(NL80211_IFTYPE_MESH_POINT); 10046 10047 combinations[0].limits = limits; 10048 combinations[0].n_limits = n_limits; 10049 combinations[0].beacon_int_infra_match = true; 10050 combinations[0].beacon_int_min_gcd = 100; 10051 combinations[0].max_interfaces = 16; 10052 combinations[0].num_different_channels = 1; 10053 combinations[0].radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) | 10054 BIT(NL80211_CHAN_WIDTH_20) | 10055 BIT(NL80211_CHAN_WIDTH_40) | 10056 BIT(NL80211_CHAN_WIDTH_80) | 10057 BIT(NL80211_CHAN_WIDTH_80P80) | 10058 BIT(NL80211_CHAN_WIDTH_160); 10059 10060 if (ab->hw_params.support_dual_stations) { 10061 limits[0].max = 2; 10062 10063 combinations[1].limits = limits; 10064 combinations[1].n_limits = n_limits; 10065 combinations[1].beacon_int_infra_match = true; 10066 combinations[1].beacon_int_min_gcd = 100; 10067 combinations[1].max_interfaces = ab->hw_params.num_vdevs; 10068 combinations[1].num_different_channels = 2; 10069 } 10070 10071 if (p2p) { 10072 limits[1].types |= BIT(NL80211_IFTYPE_P2P_CLIENT) | 10073 BIT(NL80211_IFTYPE_P2P_GO); 10074 limits[2].max = 1; 10075 limits[2].types |= BIT(NL80211_IFTYPE_P2P_DEVICE); 10076 } 10077 10078 ar->hw->wiphy->iface_combinations = combinations; 10079 ar->hw->wiphy->n_iface_combinations = n_combos; 10080 10081 return 0; 10082 } 10083 10084 static const u8 ath11k_if_types_ext_capa[] = { 10085 [0] = WLAN_EXT_CAPA1_EXT_CHANNEL_SWITCHING, 10086 [2] = WLAN_EXT_CAPA3_MULTI_BSSID_SUPPORT, 10087 [7] = WLAN_EXT_CAPA8_OPMODE_NOTIF, 10088 }; 10089 10090 static const u8 ath11k_if_types_ext_capa_sta[] = { 10091 [0] = WLAN_EXT_CAPA1_EXT_CHANNEL_SWITCHING, 10092 [2] = WLAN_EXT_CAPA3_MULTI_BSSID_SUPPORT, 10093 [7] = WLAN_EXT_CAPA8_OPMODE_NOTIF, 10094 [9] = WLAN_EXT_CAPA10_TWT_REQUESTER_SUPPORT, 10095 }; 10096 10097 static const u8 ath11k_if_types_ext_capa_ap[] = { 10098 [0] = WLAN_EXT_CAPA1_EXT_CHANNEL_SWITCHING, 10099 [2] = WLAN_EXT_CAPA3_MULTI_BSSID_SUPPORT, 10100 [7] = WLAN_EXT_CAPA8_OPMODE_NOTIF, 10101 [9] = WLAN_EXT_CAPA10_TWT_RESPONDER_SUPPORT, 10102 [10] = WLAN_EXT_CAPA11_EMA_SUPPORT, 10103 }; 10104 10105 static const struct wiphy_iftype_ext_capab ath11k_iftypes_ext_capa[] = { 10106 { 10107 .extended_capabilities = ath11k_if_types_ext_capa, 10108 .extended_capabilities_mask = ath11k_if_types_ext_capa, 10109 .extended_capabilities_len = sizeof(ath11k_if_types_ext_capa), 10110 }, { 10111 .iftype = NL80211_IFTYPE_STATION, 10112 .extended_capabilities = ath11k_if_types_ext_capa_sta, 10113 .extended_capabilities_mask = ath11k_if_types_ext_capa_sta, 10114 .extended_capabilities_len = 10115 sizeof(ath11k_if_types_ext_capa_sta), 10116 }, { 10117 .iftype = NL80211_IFTYPE_AP, 10118 .extended_capabilities = ath11k_if_types_ext_capa_ap, 10119 .extended_capabilities_mask = ath11k_if_types_ext_capa_ap, 10120 .extended_capabilities_len = 10121 sizeof(ath11k_if_types_ext_capa_ap), 10122 }, 10123 }; 10124 10125 static void __ath11k_mac_unregister(struct ath11k *ar) 10126 { 10127 cancel_work_sync(&ar->channel_update_work); 10128 cancel_work_sync(&ar->regd_update_work); 10129 10130 ieee80211_unregister_hw(ar->hw); 10131 10132 idr_for_each(&ar->txmgmt_idr, ath11k_mac_tx_mgmt_pending_free, ar); 10133 idr_destroy(&ar->txmgmt_idr); 10134 10135 kfree(ar->mac.sbands[NL80211_BAND_2GHZ].channels); 10136 kfree(ar->mac.sbands[NL80211_BAND_5GHZ].channels); 10137 kfree(ar->mac.sbands[NL80211_BAND_6GHZ].channels); 10138 10139 kfree(ar->hw->wiphy->iface_combinations[0].limits); 10140 kfree(ar->hw->wiphy->iface_combinations); 10141 10142 kfree(ar->hw->wiphy->addresses); 10143 10144 SET_IEEE80211_DEV(ar->hw, NULL); 10145 } 10146 10147 void ath11k_mac_unregister(struct ath11k_base *ab) 10148 { 10149 struct ath11k *ar; 10150 struct ath11k_pdev *pdev; 10151 int i; 10152 10153 for (i = 0; i < ab->num_radios; i++) { 10154 pdev = &ab->pdevs[i]; 10155 ar = pdev->ar; 10156 if (!ar) 10157 continue; 10158 10159 __ath11k_mac_unregister(ar); 10160 } 10161 10162 ath11k_peer_rhash_tbl_destroy(ab); 10163 } 10164 10165 static int __ath11k_mac_register(struct ath11k *ar) 10166 { 10167 struct ath11k_base *ab = ar->ab; 10168 struct ath11k_pdev_cap *cap = &ar->pdev->cap; 10169 static const u32 cipher_suites[] = { 10170 WLAN_CIPHER_SUITE_TKIP, 10171 WLAN_CIPHER_SUITE_CCMP, 10172 WLAN_CIPHER_SUITE_AES_CMAC, 10173 WLAN_CIPHER_SUITE_BIP_CMAC_256, 10174 WLAN_CIPHER_SUITE_BIP_GMAC_128, 10175 WLAN_CIPHER_SUITE_BIP_GMAC_256, 10176 WLAN_CIPHER_SUITE_GCMP, 10177 WLAN_CIPHER_SUITE_GCMP_256, 10178 WLAN_CIPHER_SUITE_CCMP_256, 10179 }; 10180 int ret; 10181 u32 ht_cap = 0; 10182 10183 ath11k_pdev_caps_update(ar); 10184 10185 SET_IEEE80211_PERM_ADDR(ar->hw, ar->mac_addr); 10186 ath11k_mac_setup_mac_address_list(ar); 10187 10188 SET_IEEE80211_DEV(ar->hw, ab->dev); 10189 10190 ret = ath11k_mac_setup_channels_rates(ar, 10191 cap->supported_bands); 10192 if (ret) 10193 goto err; 10194 10195 wiphy_read_of_freq_limits(ar->hw->wiphy); 10196 ath11k_mac_setup_ht_vht_cap(ar, cap, &ht_cap); 10197 ath11k_mac_setup_he_cap(ar, cap); 10198 10199 ret = ath11k_mac_setup_iface_combinations(ar); 10200 if (ret) { 10201 ath11k_err(ar->ab, "failed to setup interface combinations: %d\n", ret); 10202 goto err_free_channels; 10203 } 10204 10205 ar->hw->wiphy->available_antennas_rx = cap->rx_chain_mask; 10206 ar->hw->wiphy->available_antennas_tx = cap->tx_chain_mask; 10207 10208 ar->hw->wiphy->interface_modes = ab->hw_params.interface_modes; 10209 10210 if (ab->hw_params.single_pdev_only && ar->supports_6ghz) 10211 ieee80211_hw_set(ar->hw, SINGLE_SCAN_ON_ALL_BANDS); 10212 10213 if (ab->hw_params.supports_multi_bssid) { 10214 ieee80211_hw_set(ar->hw, SUPPORTS_MULTI_BSSID); 10215 ieee80211_hw_set(ar->hw, SUPPORTS_ONLY_HE_MULTI_BSSID); 10216 } 10217 10218 ieee80211_hw_set(ar->hw, SIGNAL_DBM); 10219 ieee80211_hw_set(ar->hw, SUPPORTS_PS); 10220 ieee80211_hw_set(ar->hw, SUPPORTS_DYNAMIC_PS); 10221 ieee80211_hw_set(ar->hw, MFP_CAPABLE); 10222 ieee80211_hw_set(ar->hw, REPORTS_TX_ACK_STATUS); 10223 ieee80211_hw_set(ar->hw, HAS_RATE_CONTROL); 10224 ieee80211_hw_set(ar->hw, AP_LINK_PS); 10225 ieee80211_hw_set(ar->hw, SPECTRUM_MGMT); 10226 ieee80211_hw_set(ar->hw, CONNECTION_MONITOR); 10227 ieee80211_hw_set(ar->hw, SUPPORTS_PER_STA_GTK); 10228 ieee80211_hw_set(ar->hw, WANT_MONITOR_VIF); 10229 ieee80211_hw_set(ar->hw, CHANCTX_STA_CSA); 10230 ieee80211_hw_set(ar->hw, QUEUE_CONTROL); 10231 ieee80211_hw_set(ar->hw, SUPPORTS_TX_FRAG); 10232 ieee80211_hw_set(ar->hw, REPORTS_LOW_ACK); 10233 10234 if (ath11k_frame_mode == ATH11K_HW_TXRX_ETHERNET) { 10235 ieee80211_hw_set(ar->hw, SUPPORTS_TX_ENCAP_OFFLOAD); 10236 ieee80211_hw_set(ar->hw, SUPPORTS_RX_DECAP_OFFLOAD); 10237 } 10238 10239 if (cap->nss_ratio_enabled) 10240 ieee80211_hw_set(ar->hw, SUPPORTS_VHT_EXT_NSS_BW); 10241 10242 if ((ht_cap & WMI_HT_CAP_ENABLED) || ar->supports_6ghz) { 10243 ieee80211_hw_set(ar->hw, AMPDU_AGGREGATION); 10244 ieee80211_hw_set(ar->hw, TX_AMPDU_SETUP_IN_HW); 10245 ieee80211_hw_set(ar->hw, SUPPORTS_REORDERING_BUFFER); 10246 ieee80211_hw_set(ar->hw, SUPPORTS_AMSDU_IN_AMPDU); 10247 ieee80211_hw_set(ar->hw, USES_RSS); 10248 } 10249 10250 ar->hw->wiphy->features |= NL80211_FEATURE_STATIC_SMPS; 10251 ar->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN; 10252 10253 /* TODO: Check if HT capability advertised from firmware is different 10254 * for each band for a dual band capable radio. It will be tricky to 10255 * handle it when the ht capability different for each band. 10256 */ 10257 if (ht_cap & WMI_HT_CAP_DYNAMIC_SMPS || 10258 (ar->supports_6ghz && ab->hw_params.supports_dynamic_smps_6ghz)) 10259 ar->hw->wiphy->features |= NL80211_FEATURE_DYNAMIC_SMPS; 10260 10261 ar->hw->wiphy->max_scan_ssids = WLAN_SCAN_PARAMS_MAX_SSID; 10262 ar->hw->wiphy->max_scan_ie_len = WLAN_SCAN_PARAMS_MAX_IE_LEN; 10263 10264 ar->hw->max_listen_interval = ATH11K_MAX_HW_LISTEN_INTERVAL; 10265 10266 ar->hw->wiphy->flags |= WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL; 10267 ar->hw->wiphy->flags |= WIPHY_FLAG_HAS_CHANNEL_SWITCH; 10268 ar->hw->wiphy->max_remain_on_channel_duration = 5000; 10269 10270 ar->hw->wiphy->flags |= WIPHY_FLAG_AP_UAPSD; 10271 ar->hw->wiphy->features |= NL80211_FEATURE_AP_MODE_CHAN_WIDTH_CHANGE | 10272 NL80211_FEATURE_AP_SCAN; 10273 10274 ar->max_num_stations = TARGET_NUM_STATIONS(ab); 10275 ar->max_num_peers = TARGET_NUM_PEERS_PDEV(ab); 10276 10277 ar->hw->wiphy->max_ap_assoc_sta = ar->max_num_stations; 10278 10279 if (test_bit(WMI_TLV_SERVICE_SPOOF_MAC_SUPPORT, ar->wmi->wmi_ab->svc_map)) { 10280 ar->hw->wiphy->features |= 10281 NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR; 10282 } 10283 10284 if (test_bit(WMI_TLV_SERVICE_NLO, ar->wmi->wmi_ab->svc_map)) { 10285 ar->hw->wiphy->max_sched_scan_ssids = WMI_PNO_MAX_SUPP_NETWORKS; 10286 ar->hw->wiphy->max_match_sets = WMI_PNO_MAX_SUPP_NETWORKS; 10287 ar->hw->wiphy->max_sched_scan_ie_len = WMI_PNO_MAX_IE_LENGTH; 10288 ar->hw->wiphy->max_sched_scan_plans = WMI_PNO_MAX_SCHED_SCAN_PLANS; 10289 ar->hw->wiphy->max_sched_scan_plan_interval = 10290 WMI_PNO_MAX_SCHED_SCAN_PLAN_INT; 10291 ar->hw->wiphy->max_sched_scan_plan_iterations = 10292 WMI_PNO_MAX_SCHED_SCAN_PLAN_ITRNS; 10293 ar->hw->wiphy->features |= NL80211_FEATURE_ND_RANDOM_MAC_ADDR; 10294 } 10295 10296 ret = ath11k_wow_init(ar); 10297 if (ret) { 10298 ath11k_warn(ar->ab, "failed to init wow: %d\n", ret); 10299 goto err_free_if_combs; 10300 } 10301 10302 if (test_bit(WMI_TLV_SERVICE_TX_DATA_MGMT_ACK_RSSI, 10303 ar->ab->wmi_ab.svc_map)) 10304 wiphy_ext_feature_set(ar->hw->wiphy, 10305 NL80211_EXT_FEATURE_ACK_SIGNAL_SUPPORT); 10306 10307 ar->hw->queues = ATH11K_HW_MAX_QUEUES; 10308 ar->hw->wiphy->tx_queue_len = ATH11K_QUEUE_LEN; 10309 ar->hw->offchannel_tx_hw_queue = ATH11K_HW_MAX_QUEUES - 1; 10310 ar->hw->max_rx_aggregation_subframes = IEEE80211_MAX_AMPDU_BUF_HE; 10311 10312 ar->hw->vif_data_size = sizeof(struct ath11k_vif); 10313 ar->hw->sta_data_size = sizeof(struct ath11k_sta); 10314 10315 wiphy_ext_feature_set(ar->hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST); 10316 wiphy_ext_feature_set(ar->hw->wiphy, NL80211_EXT_FEATURE_STA_TX_PWR); 10317 if (test_bit(WMI_TLV_SERVICE_BSS_COLOR_OFFLOAD, 10318 ar->ab->wmi_ab.svc_map)) { 10319 wiphy_ext_feature_set(ar->hw->wiphy, 10320 NL80211_EXT_FEATURE_BSS_COLOR); 10321 ieee80211_hw_set(ar->hw, DETECTS_COLOR_COLLISION); 10322 } 10323 10324 ar->hw->wiphy->cipher_suites = cipher_suites; 10325 ar->hw->wiphy->n_cipher_suites = ARRAY_SIZE(cipher_suites); 10326 10327 ar->hw->wiphy->iftype_ext_capab = ath11k_iftypes_ext_capa; 10328 ar->hw->wiphy->num_iftype_ext_capab = 10329 ARRAY_SIZE(ath11k_iftypes_ext_capa); 10330 10331 if (ar->supports_6ghz) { 10332 wiphy_ext_feature_set(ar->hw->wiphy, 10333 NL80211_EXT_FEATURE_FILS_DISCOVERY); 10334 wiphy_ext_feature_set(ar->hw->wiphy, 10335 NL80211_EXT_FEATURE_UNSOL_BCAST_PROBE_RESP); 10336 } 10337 10338 wiphy_ext_feature_set(ar->hw->wiphy, 10339 NL80211_EXT_FEATURE_SET_SCAN_DWELL); 10340 10341 if (test_bit(WMI_TLV_SERVICE_RTT, ar->ab->wmi_ab.svc_map)) 10342 wiphy_ext_feature_set(ar->hw->wiphy, 10343 NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER); 10344 10345 ar->hw->wiphy->mbssid_max_interfaces = TARGET_NUM_VDEVS(ab); 10346 ar->hw->wiphy->ema_max_profile_periodicity = TARGET_EMA_MAX_PROFILE_PERIOD; 10347 10348 ath11k_reg_init(ar); 10349 10350 if (!test_bit(ATH11K_FLAG_RAW_MODE, &ab->dev_flags)) { 10351 ar->hw->netdev_features = NETIF_F_HW_CSUM; 10352 ieee80211_hw_set(ar->hw, SW_CRYPTO_CONTROL); 10353 ieee80211_hw_set(ar->hw, SUPPORT_FAST_XMIT); 10354 } 10355 10356 if (test_bit(WMI_TLV_SERVICE_BIOS_SAR_SUPPORT, ar->ab->wmi_ab.svc_map) && 10357 ab->hw_params.bios_sar_capa) 10358 ar->hw->wiphy->sar_capa = ab->hw_params.bios_sar_capa; 10359 10360 ret = ieee80211_register_hw(ar->hw); 10361 if (ret) { 10362 ath11k_err(ar->ab, "ieee80211 registration failed: %d\n", ret); 10363 goto err_free_if_combs; 10364 } 10365 10366 if (!ab->hw_params.supports_monitor) 10367 /* There's a race between calling ieee80211_register_hw() 10368 * and here where the monitor mode is enabled for a little 10369 * while. But that time is so short and in practise it make 10370 * a difference in real life. 10371 */ 10372 ar->hw->wiphy->interface_modes &= ~BIT(NL80211_IFTYPE_MONITOR); 10373 10374 /* Apply the regd received during initialization */ 10375 ret = ath11k_regd_update(ar); 10376 if (ret) { 10377 ath11k_err(ar->ab, "ath11k regd update failed: %d\n", ret); 10378 goto err_unregister_hw; 10379 } 10380 10381 if (ab->hw_params.current_cc_support && ab->new_alpha2[0]) { 10382 memcpy(&ar->alpha2, ab->new_alpha2, 2); 10383 ret = ath11k_reg_set_cc(ar); 10384 if (ret) 10385 ath11k_warn(ar->ab, 10386 "failed set cc code for mac register: %d\n", ret); 10387 } 10388 10389 ret = ath11k_debugfs_register(ar); 10390 if (ret) { 10391 ath11k_err(ar->ab, "debugfs registration failed: %d\n", ret); 10392 goto err_unregister_hw; 10393 } 10394 10395 return 0; 10396 10397 err_unregister_hw: 10398 ieee80211_unregister_hw(ar->hw); 10399 10400 err_free_if_combs: 10401 kfree(ar->hw->wiphy->iface_combinations[0].limits); 10402 kfree(ar->hw->wiphy->iface_combinations); 10403 10404 err_free_channels: 10405 kfree(ar->mac.sbands[NL80211_BAND_2GHZ].channels); 10406 kfree(ar->mac.sbands[NL80211_BAND_5GHZ].channels); 10407 kfree(ar->mac.sbands[NL80211_BAND_6GHZ].channels); 10408 10409 err: 10410 SET_IEEE80211_DEV(ar->hw, NULL); 10411 return ret; 10412 } 10413 10414 int ath11k_mac_register(struct ath11k_base *ab) 10415 { 10416 struct ath11k *ar; 10417 struct ath11k_pdev *pdev; 10418 int i; 10419 int ret; 10420 u8 mac_addr[ETH_ALEN] = {0}; 10421 10422 if (test_bit(ATH11K_FLAG_REGISTERED, &ab->dev_flags)) 10423 return 0; 10424 10425 /* Initialize channel counters frequency value in hertz */ 10426 ab->cc_freq_hz = IPQ8074_CC_FREQ_HERTZ; 10427 ab->free_vdev_map = (1LL << (ab->num_radios * TARGET_NUM_VDEVS(ab))) - 1; 10428 10429 ret = ath11k_peer_rhash_tbl_init(ab); 10430 if (ret) 10431 return ret; 10432 10433 device_get_mac_address(ab->dev, mac_addr); 10434 10435 for (i = 0; i < ab->num_radios; i++) { 10436 pdev = &ab->pdevs[i]; 10437 ar = pdev->ar; 10438 if (ab->pdevs_macaddr_valid) { 10439 ether_addr_copy(ar->mac_addr, pdev->mac_addr); 10440 } else { 10441 if (is_zero_ether_addr(mac_addr)) 10442 ether_addr_copy(ar->mac_addr, ab->mac_addr); 10443 else 10444 ether_addr_copy(ar->mac_addr, mac_addr); 10445 ar->mac_addr[4] += i; 10446 } 10447 10448 idr_init(&ar->txmgmt_idr); 10449 spin_lock_init(&ar->txmgmt_idr_lock); 10450 10451 ret = __ath11k_mac_register(ar); 10452 if (ret) 10453 goto err_cleanup; 10454 10455 init_waitqueue_head(&ar->txmgmt_empty_waitq); 10456 } 10457 10458 return 0; 10459 10460 err_cleanup: 10461 for (i = i - 1; i >= 0; i--) { 10462 pdev = &ab->pdevs[i]; 10463 ar = pdev->ar; 10464 __ath11k_mac_unregister(ar); 10465 } 10466 10467 ath11k_peer_rhash_tbl_destroy(ab); 10468 10469 return ret; 10470 } 10471 10472 int ath11k_mac_allocate(struct ath11k_base *ab) 10473 { 10474 struct ieee80211_hw *hw; 10475 struct ath11k *ar; 10476 struct ath11k_pdev *pdev; 10477 int ret; 10478 int i; 10479 10480 if (test_bit(ATH11K_FLAG_REGISTERED, &ab->dev_flags)) 10481 return 0; 10482 10483 for (i = 0; i < ab->num_radios; i++) { 10484 pdev = &ab->pdevs[i]; 10485 hw = ieee80211_alloc_hw(sizeof(struct ath11k), &ath11k_ops); 10486 if (!hw) { 10487 ath11k_warn(ab, "failed to allocate mac80211 hw device\n"); 10488 ret = -ENOMEM; 10489 goto err_free_mac; 10490 } 10491 10492 ar = hw->priv; 10493 ar->hw = hw; 10494 ar->ab = ab; 10495 ar->pdev = pdev; 10496 ar->pdev_idx = i; 10497 ar->lmac_id = ath11k_hw_get_mac_from_pdev_id(&ab->hw_params, i); 10498 10499 ar->wmi = &ab->wmi_ab.wmi[i]; 10500 /* FIXME wmi[0] is already initialized during attach, 10501 * Should we do this again? 10502 */ 10503 ath11k_wmi_pdev_attach(ab, i); 10504 10505 ar->cfg_tx_chainmask = pdev->cap.tx_chain_mask; 10506 ar->cfg_rx_chainmask = pdev->cap.rx_chain_mask; 10507 ar->num_tx_chains = get_num_chains(pdev->cap.tx_chain_mask); 10508 ar->num_rx_chains = get_num_chains(pdev->cap.rx_chain_mask); 10509 10510 pdev->ar = ar; 10511 spin_lock_init(&ar->data_lock); 10512 INIT_LIST_HEAD(&ar->arvifs); 10513 INIT_LIST_HEAD(&ar->ppdu_stats_info); 10514 mutex_init(&ar->conf_mutex); 10515 init_completion(&ar->vdev_setup_done); 10516 init_completion(&ar->vdev_delete_done); 10517 init_completion(&ar->peer_assoc_done); 10518 init_completion(&ar->peer_delete_done); 10519 init_completion(&ar->install_key_done); 10520 init_completion(&ar->bss_survey_done); 10521 init_completion(&ar->scan.started); 10522 init_completion(&ar->scan.completed); 10523 init_completion(&ar->scan.on_channel); 10524 init_completion(&ar->thermal.wmi_sync); 10525 10526 INIT_DELAYED_WORK(&ar->scan.timeout, ath11k_scan_timeout_work); 10527 INIT_WORK(&ar->channel_update_work, ath11k_regd_update_chan_list_work); 10528 INIT_LIST_HEAD(&ar->channel_update_queue); 10529 INIT_WORK(&ar->regd_update_work, ath11k_regd_update_work); 10530 10531 INIT_WORK(&ar->wmi_mgmt_tx_work, ath11k_mgmt_over_wmi_tx_work); 10532 skb_queue_head_init(&ar->wmi_mgmt_tx_queue); 10533 10534 clear_bit(ATH11K_FLAG_MONITOR_STARTED, &ar->monitor_flags); 10535 10536 ar->monitor_vdev_id = -1; 10537 clear_bit(ATH11K_FLAG_MONITOR_VDEV_CREATED, &ar->monitor_flags); 10538 ar->vdev_id_11d_scan = ATH11K_11D_INVALID_VDEV_ID; 10539 init_completion(&ar->completed_11d_scan); 10540 10541 ath11k_fw_stats_init(ar); 10542 } 10543 10544 return 0; 10545 10546 err_free_mac: 10547 ath11k_mac_destroy(ab); 10548 10549 return ret; 10550 } 10551 10552 void ath11k_mac_destroy(struct ath11k_base *ab) 10553 { 10554 struct ath11k *ar; 10555 struct ath11k_pdev *pdev; 10556 int i; 10557 10558 for (i = 0; i < ab->num_radios; i++) { 10559 pdev = &ab->pdevs[i]; 10560 ar = pdev->ar; 10561 if (!ar) 10562 continue; 10563 10564 ath11k_fw_stats_free(&ar->fw_stats); 10565 ieee80211_free_hw(ar->hw); 10566 pdev->ar = NULL; 10567 } 10568 } 10569 10570 int ath11k_mac_vif_set_keepalive(struct ath11k_vif *arvif, 10571 enum wmi_sta_keepalive_method method, 10572 u32 interval) 10573 { 10574 struct ath11k *ar = arvif->ar; 10575 struct wmi_sta_keepalive_arg arg = {}; 10576 int ret; 10577 10578 lockdep_assert_held(&ar->conf_mutex); 10579 10580 if (arvif->vdev_type != WMI_VDEV_TYPE_STA) 10581 return 0; 10582 10583 if (!test_bit(WMI_TLV_SERVICE_STA_KEEP_ALIVE, ar->ab->wmi_ab.svc_map)) 10584 return 0; 10585 10586 arg.vdev_id = arvif->vdev_id; 10587 arg.enabled = 1; 10588 arg.method = method; 10589 arg.interval = interval; 10590 10591 ret = ath11k_wmi_sta_keepalive(ar, &arg); 10592 if (ret) { 10593 ath11k_warn(ar->ab, "failed to set keepalive on vdev %i: %d\n", 10594 arvif->vdev_id, ret); 10595 return ret; 10596 } 10597 10598 return 0; 10599 } 10600