1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 #include "ixgbe.h" 5 #include <linux/ptp_classify.h> 6 #include <linux/clocksource.h> 7 8 /* 9 * The 82599 and the X540 do not have true 64bit nanosecond scale 10 * counter registers. Instead, SYSTIME is defined by a fixed point 11 * system which allows the user to define the scale counter increment 12 * value at every level change of the oscillator driving the SYSTIME 13 * value. For both devices the TIMINCA:IV field defines this 14 * increment. On the X540 device, 31 bits are provided. However on the 15 * 82599 only provides 24 bits. The time unit is determined by the 16 * clock frequency of the oscillator in combination with the TIMINCA 17 * register. When these devices link at 10Gb the oscillator has a 18 * period of 6.4ns. In order to convert the scale counter into 19 * nanoseconds the cyclecounter and timecounter structures are 20 * used. The SYSTIME registers need to be converted to ns values by use 21 * of only a right shift (division by power of 2). The following math 22 * determines the largest incvalue that will fit into the available 23 * bits in the TIMINCA register. 24 * 25 * PeriodWidth: Number of bits to store the clock period 26 * MaxWidth: The maximum width value of the TIMINCA register 27 * Period: The clock period for the oscillator 28 * round(): discard the fractional portion of the calculation 29 * 30 * Period * [ 2 ^ ( MaxWidth - PeriodWidth ) ] 31 * 32 * For the X540, MaxWidth is 31 bits, and the base period is 6.4 ns 33 * For the 82599, MaxWidth is 24 bits, and the base period is 6.4 ns 34 * 35 * The period also changes based on the link speed: 36 * At 10Gb link or no link, the period remains the same. 37 * At 1Gb link, the period is multiplied by 10. (64ns) 38 * At 100Mb link, the period is multiplied by 100. (640ns) 39 * 40 * The calculated value allows us to right shift the SYSTIME register 41 * value in order to quickly convert it into a nanosecond clock, 42 * while allowing for the maximum possible adjustment value. 43 * 44 * These diagrams are only for the 10Gb link period 45 * 46 * SYSTIMEH SYSTIMEL 47 * +--------------+ +--------------+ 48 * X540 | 32 | | 1 | 3 | 28 | 49 * *--------------+ +--------------+ 50 * \________ 36 bits ______/ fract 51 * 52 * +--------------+ +--------------+ 53 * 82599 | 32 | | 8 | 3 | 21 | 54 * *--------------+ +--------------+ 55 * \________ 43 bits ______/ fract 56 * 57 * The 36 bit X540 SYSTIME overflows every 58 * 2^36 * 10^-9 / 60 = 1.14 minutes or 69 seconds 59 * 60 * The 43 bit 82599 SYSTIME overflows every 61 * 2^43 * 10^-9 / 3600 = 2.4 hours 62 */ 63 #define IXGBE_INCVAL_10GB 0x66666666 64 #define IXGBE_INCVAL_1GB 0x40000000 65 #define IXGBE_INCVAL_100 0x50000000 66 67 #define IXGBE_INCVAL_SHIFT_10GB 28 68 #define IXGBE_INCVAL_SHIFT_1GB 24 69 #define IXGBE_INCVAL_SHIFT_100 21 70 71 #define IXGBE_INCVAL_SHIFT_82599 7 72 #define IXGBE_INCPER_SHIFT_82599 24 73 74 #define IXGBE_OVERFLOW_PERIOD (HZ * 30) 75 #define IXGBE_PTP_TX_TIMEOUT (HZ) 76 77 /* We use our own definitions instead of NSEC_PER_SEC because we want to mark 78 * the value as a ULL to force precision when bit shifting. 79 */ 80 #define NS_PER_SEC 1000000000ULL 81 #define NS_PER_HALF_SEC 500000000ULL 82 83 /* In contrast, the X550 controller has two registers, SYSTIMEH and SYSTIMEL 84 * which contain measurements of seconds and nanoseconds respectively. This 85 * matches the standard linux representation of time in the kernel. In addition, 86 * the X550 also has a SYSTIMER register which represents residue, or 87 * subnanosecond overflow adjustments. To control clock adjustment, the TIMINCA 88 * register is used, but it is unlike the X540 and 82599 devices. TIMINCA 89 * represents units of 2^-32 nanoseconds, and uses 31 bits for this, with the 90 * high bit representing whether the adjustent is positive or negative. Every 91 * clock cycle, the X550 will add 12.5 ns + TIMINCA which can result in a range 92 * of 12 to 13 nanoseconds adjustment. Unlike the 82599 and X540 devices, the 93 * X550's clock for purposes of SYSTIME generation is constant and not dependent 94 * on the link speed. 95 * 96 * SYSTIMEH SYSTIMEL SYSTIMER 97 * +--------------+ +--------------+ +-------------+ 98 * X550 | 32 | | 32 | | 32 | 99 * *--------------+ +--------------+ +-------------+ 100 * \____seconds___/ \_nanoseconds_/ \__2^-32 ns__/ 101 * 102 * This results in a full 96 bits to represent the clock, with 32 bits for 103 * seconds, 32 bits for nanoseconds (largest value is 0d999999999 or just under 104 * 1 second) and an additional 32 bits to measure sub nanosecond adjustments for 105 * underflow of adjustments. 106 * 107 * The 32 bits of seconds for the X550 overflows every 108 * 2^32 / ( 365.25 * 24 * 60 * 60 ) = ~136 years. 109 * 110 * In order to adjust the clock frequency for the X550, the TIMINCA register is 111 * provided. This register represents a + or minus nearly 0.5 ns adjustment to 112 * the base frequency. It is measured in 2^-32 ns units, with the high bit being 113 * the sign bit. This register enables software to calculate frequency 114 * adjustments and apply them directly to the clock rate. 115 * 116 * The math for converting scaled_ppm into TIMINCA values is fairly 117 * straightforward. 118 * 119 * TIMINCA value = ( Base_Frequency * scaled_ppm ) / 1000000ULL << 16 120 * 121 * To avoid overflow, we simply use mul_u64_u64_div_u64. 122 * 123 * This assumes that scaled_ppm is never high enough to create a value bigger 124 * than TIMINCA's 31 bits can store. This is ensured by the stack, and is 125 * measured in parts per billion. Calculating this value is also simple. 126 * Max ppb = ( Max Adjustment / Base Frequency ) / 1000000000ULL 127 * 128 * For the X550, the Max adjustment is +/- 0.5 ns, and the base frequency is 129 * 12.5 nanoseconds. This means that the Max ppb is 39999999 130 * Note: We subtract one in order to ensure no overflow, because the TIMINCA 131 * register can only hold slightly under 0.5 nanoseconds. 132 * 133 * Because TIMINCA is measured in 2^-32 ns units, we have to convert 12.5 ns 134 * into 2^-32 units, which is 135 * 136 * 12.5 * 2^32 = C80000000 137 * 138 * Some revisions of hardware have a faster base frequency than the registers 139 * were defined for. To fix this, we use a timecounter structure with the 140 * proper mult and shift to convert the cycles into nanoseconds of time. 141 */ 142 #define IXGBE_X550_BASE_PERIOD 0xC80000000ULL 143 #define IXGBE_E610_BASE_PERIOD 0x333333333ULL 144 #define INCVALUE_MASK 0x7FFFFFFF 145 #define ISGN 0x80000000 146 147 /** 148 * ixgbe_ptp_setup_sdp_X540 149 * @adapter: private adapter structure 150 * 151 * this function enables or disables the clock out feature on SDP0 for 152 * the X540 device. It will create a 1 second periodic output that can 153 * be used as the PPS (via an interrupt). 154 * 155 * It calculates when the system time will be on an exact second, and then 156 * aligns the start of the PPS signal to that value. 157 * 158 * This works by using the cycle counter shift and mult values in reverse, and 159 * assumes that the values we're shifting will not overflow. 160 */ 161 static void ixgbe_ptp_setup_sdp_X540(struct ixgbe_adapter *adapter) 162 { 163 struct cyclecounter *cc = &adapter->hw_cc; 164 struct ixgbe_hw *hw = &adapter->hw; 165 u32 esdp, tsauxc, clktiml, clktimh, trgttiml, trgttimh, rem; 166 u64 ns = 0, clock_edge = 0, clock_period; 167 unsigned long flags; 168 169 /* disable the pin first */ 170 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0); 171 IXGBE_WRITE_FLUSH(hw); 172 173 if (!(adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED)) 174 return; 175 176 esdp = IXGBE_READ_REG(hw, IXGBE_ESDP); 177 178 /* enable the SDP0 pin as output, and connected to the 179 * native function for Timesync (ClockOut) 180 */ 181 esdp |= IXGBE_ESDP_SDP0_DIR | 182 IXGBE_ESDP_SDP0_NATIVE; 183 184 /* enable the Clock Out feature on SDP0, and allow 185 * interrupts to occur when the pin changes 186 */ 187 tsauxc = (IXGBE_TSAUXC_EN_CLK | 188 IXGBE_TSAUXC_SYNCLK | 189 IXGBE_TSAUXC_SDP0_INT); 190 191 /* Determine the clock time period to use. This assumes that the 192 * cycle counter shift is small enough to avoid overflow. 193 */ 194 clock_period = div_u64((NS_PER_HALF_SEC << cc->shift), cc->mult); 195 clktiml = (u32)(clock_period); 196 clktimh = (u32)(clock_period >> 32); 197 198 /* Read the current clock time, and save the cycle counter value */ 199 spin_lock_irqsave(&adapter->tmreg_lock, flags); 200 ns = timecounter_read(&adapter->hw_tc); 201 clock_edge = adapter->hw_tc.cycle_last; 202 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 203 204 /* Figure out how many seconds to add in order to round up */ 205 div_u64_rem(ns, NS_PER_SEC, &rem); 206 207 /* Figure out how many nanoseconds to add to round the clock edge up 208 * to the next full second 209 */ 210 rem = (NS_PER_SEC - rem); 211 212 /* Adjust the clock edge to align with the next full second. */ 213 clock_edge += div_u64(((u64)rem << cc->shift), cc->mult); 214 trgttiml = (u32)clock_edge; 215 trgttimh = (u32)(clock_edge >> 32); 216 217 IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml); 218 IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh); 219 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml); 220 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh); 221 222 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp); 223 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc); 224 225 IXGBE_WRITE_FLUSH(hw); 226 } 227 228 /** 229 * ixgbe_ptp_setup_sdp_X550 230 * @adapter: private adapter structure 231 * 232 * Enable or disable a clock output signal on SDP 0 for X550 hardware. 233 * 234 * Use the target time feature to align the output signal on the next full 235 * second. 236 * 237 * This works by using the cycle counter shift and mult values in reverse, and 238 * assumes that the values we're shifting will not overflow. 239 */ 240 static void ixgbe_ptp_setup_sdp_X550(struct ixgbe_adapter *adapter) 241 { 242 u32 esdp, tsauxc, freqout, trgttiml, trgttimh, rem, tssdp; 243 struct cyclecounter *cc = &adapter->hw_cc; 244 struct ixgbe_hw *hw = &adapter->hw; 245 u64 ns = 0, clock_edge = 0; 246 struct timespec64 ts; 247 unsigned long flags; 248 249 /* disable the pin first */ 250 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0); 251 IXGBE_WRITE_FLUSH(hw); 252 253 if (!(adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED)) 254 return; 255 256 esdp = IXGBE_READ_REG(hw, IXGBE_ESDP); 257 258 /* enable the SDP0 pin as output, and connected to the 259 * native function for Timesync (ClockOut) 260 */ 261 esdp |= IXGBE_ESDP_SDP0_DIR | 262 IXGBE_ESDP_SDP0_NATIVE; 263 264 /* enable the Clock Out feature on SDP0, and use Target Time 0 to 265 * enable generation of interrupts on the clock change. 266 */ 267 #define IXGBE_TSAUXC_DIS_TS_CLEAR 0x40000000 268 tsauxc = (IXGBE_TSAUXC_EN_CLK | IXGBE_TSAUXC_ST0 | 269 IXGBE_TSAUXC_EN_TT0 | IXGBE_TSAUXC_SDP0_INT | 270 IXGBE_TSAUXC_DIS_TS_CLEAR); 271 272 tssdp = (IXGBE_TSSDP_TS_SDP0_EN | 273 IXGBE_TSSDP_TS_SDP0_CLK0); 274 275 /* Determine the clock time period to use. This assumes that the 276 * cycle counter shift is small enough to avoid overflowing a 32bit 277 * value. 278 */ 279 freqout = div_u64(NS_PER_HALF_SEC << cc->shift, cc->mult); 280 281 /* Read the current clock time, and save the cycle counter value */ 282 spin_lock_irqsave(&adapter->tmreg_lock, flags); 283 ns = timecounter_read(&adapter->hw_tc); 284 clock_edge = adapter->hw_tc.cycle_last; 285 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 286 287 /* Figure out how far past the next second we are */ 288 div_u64_rem(ns, NS_PER_SEC, &rem); 289 290 /* Figure out how many nanoseconds to add to round the clock edge up 291 * to the next full second 292 */ 293 rem = (NS_PER_SEC - rem); 294 295 /* Adjust the clock edge to align with the next full second. */ 296 clock_edge += div_u64(((u64)rem << cc->shift), cc->mult); 297 298 /* X550 hardware stores the time in 32bits of 'billions of cycles' and 299 * 32bits of 'cycles'. There's no guarantee that cycles represents 300 * nanoseconds. However, we can use the math from a timespec64 to 301 * convert into the hardware representation. 302 * 303 * See ixgbe_ptp_read_X550() for more details. 304 */ 305 ts = ns_to_timespec64(clock_edge); 306 trgttiml = (u32)ts.tv_nsec; 307 trgttimh = (u32)ts.tv_sec; 308 309 IXGBE_WRITE_REG(hw, IXGBE_FREQOUT0, freqout); 310 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml); 311 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh); 312 313 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp); 314 IXGBE_WRITE_REG(hw, IXGBE_TSSDP, tssdp); 315 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc); 316 317 IXGBE_WRITE_FLUSH(hw); 318 } 319 320 /** 321 * ixgbe_ptp_read_X550 - read cycle counter value 322 * @cc: cyclecounter structure 323 * 324 * This function reads SYSTIME registers. It is called by the cyclecounter 325 * structure to convert from internal representation into nanoseconds. We need 326 * this for X550 since some skews do not have expected clock frequency and 327 * result of SYSTIME is 32bits of "billions of cycles" and 32 bits of 328 * "cycles", rather than seconds and nanoseconds. 329 */ 330 static u64 ixgbe_ptp_read_X550(struct cyclecounter *cc) 331 { 332 struct ixgbe_adapter *adapter = 333 container_of(cc, struct ixgbe_adapter, hw_cc); 334 struct ixgbe_hw *hw = &adapter->hw; 335 struct timespec64 ts; 336 337 /* storage is 32 bits of 'billions of cycles' and 32 bits of 'cycles'. 338 * Some revisions of hardware run at a higher frequency and so the 339 * cycles are not guaranteed to be nanoseconds. The timespec64 created 340 * here is used for its math/conversions but does not necessarily 341 * represent nominal time. 342 * 343 * It should be noted that this cyclecounter will overflow at a 344 * non-bitmask field since we have to convert our billions of cycles 345 * into an actual cycles count. This results in some possible weird 346 * situations at high cycle counter stamps. However given that 32 bits 347 * of "seconds" is ~138 years this isn't a problem. Even at the 348 * increased frequency of some revisions, this is still ~103 years. 349 * Since the SYSTIME values start at 0 and we never write them, it is 350 * highly unlikely for the cyclecounter to overflow in practice. 351 */ 352 IXGBE_READ_REG(hw, IXGBE_SYSTIMR); 353 ts.tv_nsec = IXGBE_READ_REG(hw, IXGBE_SYSTIML); 354 ts.tv_sec = IXGBE_READ_REG(hw, IXGBE_SYSTIMH); 355 356 return (u64)timespec64_to_ns(&ts); 357 } 358 359 /** 360 * ixgbe_ptp_read_82599 - read raw cycle counter (to be used by time counter) 361 * @cc: the cyclecounter structure 362 * 363 * this function reads the cyclecounter registers and is called by the 364 * cyclecounter structure used to construct a ns counter from the 365 * arbitrary fixed point registers 366 */ 367 static u64 ixgbe_ptp_read_82599(struct cyclecounter *cc) 368 { 369 struct ixgbe_adapter *adapter = 370 container_of(cc, struct ixgbe_adapter, hw_cc); 371 struct ixgbe_hw *hw = &adapter->hw; 372 u64 stamp = 0; 373 374 stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML); 375 stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32; 376 377 return stamp; 378 } 379 380 /** 381 * ixgbe_ptp_convert_to_hwtstamp - convert register value to hw timestamp 382 * @adapter: private adapter structure 383 * @hwtstamp: stack timestamp structure 384 * @timestamp: unsigned 64bit system time value 385 * 386 * We need to convert the adapter's RX/TXSTMP registers into a hwtstamp value 387 * which can be used by the stack's ptp functions. 388 * 389 * The lock is used to protect consistency of the cyclecounter and the SYSTIME 390 * registers. However, it does not need to protect against the Rx or Tx 391 * timestamp registers, as there can't be a new timestamp until the old one is 392 * unlatched by reading. 393 * 394 * In addition to the timestamp in hardware, some controllers need a software 395 * overflow cyclecounter, and this function takes this into account as well. 396 **/ 397 static void ixgbe_ptp_convert_to_hwtstamp(struct ixgbe_adapter *adapter, 398 struct skb_shared_hwtstamps *hwtstamp, 399 u64 timestamp) 400 { 401 unsigned long flags; 402 struct timespec64 systime; 403 u64 ns; 404 405 memset(hwtstamp, 0, sizeof(*hwtstamp)); 406 407 switch (adapter->hw.mac.type) { 408 /* X550 and later hardware supposedly represent time using a seconds 409 * and nanoseconds counter, instead of raw 64bits nanoseconds. We need 410 * to convert the timestamp into cycles before it can be fed to the 411 * cyclecounter. We need an actual cyclecounter because some revisions 412 * of hardware run at a higher frequency and thus the counter does 413 * not represent seconds/nanoseconds. Instead it can be thought of as 414 * cycles and billions of cycles. 415 */ 416 case ixgbe_mac_X550: 417 case ixgbe_mac_X550EM_x: 418 case ixgbe_mac_x550em_a: 419 case ixgbe_mac_e610: 420 /* Upper 32 bits represent billions of cycles, lower 32 bits 421 * represent cycles. However, we use timespec64_to_ns for the 422 * correct math even though the units haven't been corrected 423 * yet. 424 */ 425 systime.tv_sec = timestamp >> 32; 426 systime.tv_nsec = timestamp & 0xFFFFFFFF; 427 428 timestamp = timespec64_to_ns(&systime); 429 break; 430 default: 431 break; 432 } 433 434 spin_lock_irqsave(&adapter->tmreg_lock, flags); 435 ns = timecounter_cyc2time(&adapter->hw_tc, timestamp); 436 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 437 438 hwtstamp->hwtstamp = ns_to_ktime(ns); 439 } 440 441 /** 442 * ixgbe_ptp_adjfine_82599 443 * @ptp: the ptp clock structure 444 * @scaled_ppm: scaled parts per million adjustment from base 445 * 446 * Adjust the frequency of the ptp cycle counter by the 447 * indicated scaled_ppm from the base frequency. 448 * 449 * Scaled parts per million is ppm with a 16-bit binary fractional field. 450 */ 451 static int ixgbe_ptp_adjfine_82599(struct ptp_clock_info *ptp, long scaled_ppm) 452 { 453 struct ixgbe_adapter *adapter = 454 container_of(ptp, struct ixgbe_adapter, ptp_caps); 455 struct ixgbe_hw *hw = &adapter->hw; 456 u64 incval; 457 458 smp_mb(); 459 incval = READ_ONCE(adapter->base_incval); 460 incval = adjust_by_scaled_ppm(incval, scaled_ppm); 461 462 switch (hw->mac.type) { 463 case ixgbe_mac_X540: 464 if (incval > 0xFFFFFFFFULL) 465 e_dev_warn("PTP scaled_ppm adjusted SYSTIME rate overflowed!\n"); 466 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, (u32)incval); 467 break; 468 case ixgbe_mac_82599EB: 469 if (incval > 0x00FFFFFFULL) 470 e_dev_warn("PTP scaled_ppm adjusted SYSTIME rate overflowed!\n"); 471 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, 472 BIT(IXGBE_INCPER_SHIFT_82599) | 473 ((u32)incval & 0x00FFFFFFUL)); 474 break; 475 default: 476 break; 477 } 478 479 return 0; 480 } 481 482 /** 483 * ixgbe_ptp_adjfine_X550 484 * @ptp: the ptp clock structure 485 * @scaled_ppm: scaled parts per million adjustment from base 486 * 487 * Adjust the frequency of the SYSTIME registers by the indicated scaled_ppm 488 * from base frequency. 489 * 490 * Scaled parts per million is ppm with a 16-bit binary fractional field. 491 */ 492 static int ixgbe_ptp_adjfine_X550(struct ptp_clock_info *ptp, long scaled_ppm) 493 { 494 struct ixgbe_adapter *adapter = 495 container_of(ptp, struct ixgbe_adapter, ptp_caps); 496 struct ixgbe_hw *hw = &adapter->hw; 497 u64 rate, base; 498 bool neg_adj; 499 u32 inca; 500 501 base = hw->mac.type == ixgbe_mac_e610 ? IXGBE_E610_BASE_PERIOD : 502 IXGBE_X550_BASE_PERIOD; 503 neg_adj = diff_by_scaled_ppm(base, scaled_ppm, &rate); 504 505 /* warn if rate is too large */ 506 if (rate >= INCVALUE_MASK) 507 e_dev_warn("PTP scaled_ppm adjusted SYSTIME rate overflowed!\n"); 508 509 inca = rate & INCVALUE_MASK; 510 if (neg_adj) 511 inca |= ISGN; 512 513 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, inca); 514 515 return 0; 516 } 517 518 /** 519 * ixgbe_ptp_adjtime 520 * @ptp: the ptp clock structure 521 * @delta: offset to adjust the cycle counter by 522 * 523 * adjust the timer by resetting the timecounter structure. 524 */ 525 static int ixgbe_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 526 { 527 struct ixgbe_adapter *adapter = 528 container_of(ptp, struct ixgbe_adapter, ptp_caps); 529 unsigned long flags; 530 531 spin_lock_irqsave(&adapter->tmreg_lock, flags); 532 timecounter_adjtime(&adapter->hw_tc, delta); 533 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 534 535 if (adapter->ptp_setup_sdp) 536 adapter->ptp_setup_sdp(adapter); 537 538 return 0; 539 } 540 541 /** 542 * ixgbe_ptp_gettimex 543 * @ptp: the ptp clock structure 544 * @ts: timespec to hold the PHC timestamp 545 * @sts: structure to hold the system time before and after reading the PHC 546 * 547 * read the timecounter and return the correct value on ns, 548 * after converting it into a struct timespec. 549 */ 550 static int ixgbe_ptp_gettimex(struct ptp_clock_info *ptp, 551 struct timespec64 *ts, 552 struct ptp_system_timestamp *sts) 553 { 554 struct ixgbe_adapter *adapter = 555 container_of(ptp, struct ixgbe_adapter, ptp_caps); 556 struct ixgbe_hw *hw = &adapter->hw; 557 unsigned long flags; 558 u64 ns, stamp; 559 560 spin_lock_irqsave(&adapter->tmreg_lock, flags); 561 562 switch (adapter->hw.mac.type) { 563 case ixgbe_mac_X550: 564 case ixgbe_mac_X550EM_x: 565 case ixgbe_mac_x550em_a: 566 case ixgbe_mac_e610: 567 /* Upper 32 bits represent billions of cycles, lower 32 bits 568 * represent cycles. However, we use timespec64_to_ns for the 569 * correct math even though the units haven't been corrected 570 * yet. 571 */ 572 ptp_read_system_prets(sts); 573 IXGBE_READ_REG(hw, IXGBE_SYSTIMR); 574 ptp_read_system_postts(sts); 575 ts->tv_nsec = IXGBE_READ_REG(hw, IXGBE_SYSTIML); 576 ts->tv_sec = IXGBE_READ_REG(hw, IXGBE_SYSTIMH); 577 stamp = timespec64_to_ns(ts); 578 break; 579 default: 580 ptp_read_system_prets(sts); 581 stamp = IXGBE_READ_REG(hw, IXGBE_SYSTIML); 582 ptp_read_system_postts(sts); 583 stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32; 584 break; 585 } 586 587 ns = timecounter_cyc2time(&adapter->hw_tc, stamp); 588 589 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 590 591 *ts = ns_to_timespec64(ns); 592 593 return 0; 594 } 595 596 /** 597 * ixgbe_ptp_settime 598 * @ptp: the ptp clock structure 599 * @ts: the timespec containing the new time for the cycle counter 600 * 601 * reset the timecounter to use a new base value instead of the kernel 602 * wall timer value. 603 */ 604 static int ixgbe_ptp_settime(struct ptp_clock_info *ptp, 605 const struct timespec64 *ts) 606 { 607 struct ixgbe_adapter *adapter = 608 container_of(ptp, struct ixgbe_adapter, ptp_caps); 609 unsigned long flags; 610 u64 ns = timespec64_to_ns(ts); 611 612 /* reset the timecounter */ 613 spin_lock_irqsave(&adapter->tmreg_lock, flags); 614 timecounter_init(&adapter->hw_tc, &adapter->hw_cc, ns); 615 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 616 617 if (adapter->ptp_setup_sdp) 618 adapter->ptp_setup_sdp(adapter); 619 return 0; 620 } 621 622 /** 623 * ixgbe_ptp_feature_enable 624 * @ptp: the ptp clock structure 625 * @rq: the requested feature to change 626 * @on: whether to enable or disable the feature 627 * 628 * enable (or disable) ancillary features of the phc subsystem. 629 * our driver only supports the PPS feature on the X540 630 */ 631 static int ixgbe_ptp_feature_enable(struct ptp_clock_info *ptp, 632 struct ptp_clock_request *rq, int on) 633 { 634 struct ixgbe_adapter *adapter = 635 container_of(ptp, struct ixgbe_adapter, ptp_caps); 636 637 /** 638 * When PPS is enabled, unmask the interrupt for the ClockOut 639 * feature, so that the interrupt handler can send the PPS 640 * event when the clock SDP triggers. Clear mask when PPS is 641 * disabled 642 */ 643 if (rq->type != PTP_CLK_REQ_PPS || !adapter->ptp_setup_sdp) 644 return -ENOTSUPP; 645 646 if (on) 647 adapter->flags2 |= IXGBE_FLAG2_PTP_PPS_ENABLED; 648 else 649 adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED; 650 651 adapter->ptp_setup_sdp(adapter); 652 return 0; 653 } 654 655 /** 656 * ixgbe_ptp_check_pps_event 657 * @adapter: the private adapter structure 658 * 659 * This function is called by the interrupt routine when checking for 660 * interrupts. It will check and handle a pps event. 661 */ 662 void ixgbe_ptp_check_pps_event(struct ixgbe_adapter *adapter) 663 { 664 struct ixgbe_hw *hw = &adapter->hw; 665 struct ptp_clock_event event; 666 667 event.type = PTP_CLOCK_PPS; 668 669 /* this check is necessary in case the interrupt was enabled via some 670 * alternative means (ex. debug_fs). Better to check here than 671 * everywhere that calls this function. 672 */ 673 if (!adapter->ptp_clock) 674 return; 675 676 switch (hw->mac.type) { 677 case ixgbe_mac_X540: 678 ptp_clock_event(adapter->ptp_clock, &event); 679 break; 680 default: 681 break; 682 } 683 } 684 685 /** 686 * ixgbe_ptp_overflow_check - watchdog task to detect SYSTIME overflow 687 * @adapter: private adapter struct 688 * 689 * this watchdog task periodically reads the timecounter 690 * in order to prevent missing when the system time registers wrap 691 * around. This needs to be run approximately twice a minute. 692 */ 693 void ixgbe_ptp_overflow_check(struct ixgbe_adapter *adapter) 694 { 695 bool timeout = time_is_before_jiffies(adapter->last_overflow_check + 696 IXGBE_OVERFLOW_PERIOD); 697 unsigned long flags; 698 699 if (timeout) { 700 /* Update the timecounter */ 701 spin_lock_irqsave(&adapter->tmreg_lock, flags); 702 timecounter_read(&adapter->hw_tc); 703 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 704 705 adapter->last_overflow_check = jiffies; 706 } 707 } 708 709 /** 710 * ixgbe_ptp_rx_hang - detect error case when Rx timestamp registers latched 711 * @adapter: private network adapter structure 712 * 713 * this watchdog task is scheduled to detect error case where hardware has 714 * dropped an Rx packet that was timestamped when the ring is full. The 715 * particular error is rare but leaves the device in a state unable to timestamp 716 * any future packets. 717 */ 718 void ixgbe_ptp_rx_hang(struct ixgbe_adapter *adapter) 719 { 720 struct ixgbe_hw *hw = &adapter->hw; 721 u32 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL); 722 struct ixgbe_ring *rx_ring; 723 unsigned long rx_event; 724 int n; 725 726 /* if we don't have a valid timestamp in the registers, just update the 727 * timeout counter and exit 728 */ 729 if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID)) { 730 adapter->last_rx_ptp_check = jiffies; 731 return; 732 } 733 734 /* determine the most recent watchdog or rx_timestamp event */ 735 rx_event = adapter->last_rx_ptp_check; 736 for (n = 0; n < adapter->num_rx_queues; n++) { 737 rx_ring = adapter->rx_ring[n]; 738 if (time_after(rx_ring->last_rx_timestamp, rx_event)) 739 rx_event = rx_ring->last_rx_timestamp; 740 } 741 742 /* only need to read the high RXSTMP register to clear the lock */ 743 if (time_is_before_jiffies(rx_event + 5 * HZ)) { 744 IXGBE_READ_REG(hw, IXGBE_RXSTMPH); 745 adapter->last_rx_ptp_check = jiffies; 746 747 adapter->rx_hwtstamp_cleared++; 748 e_warn(drv, "clearing RX Timestamp hang\n"); 749 } 750 } 751 752 /** 753 * ixgbe_ptp_clear_tx_timestamp - utility function to clear Tx timestamp state 754 * @adapter: the private adapter structure 755 * 756 * This function should be called whenever the state related to a Tx timestamp 757 * needs to be cleared. This helps ensure that all related bits are reset for 758 * the next Tx timestamp event. 759 */ 760 static void ixgbe_ptp_clear_tx_timestamp(struct ixgbe_adapter *adapter) 761 { 762 struct ixgbe_hw *hw = &adapter->hw; 763 764 IXGBE_READ_REG(hw, IXGBE_TXSTMPH); 765 if (adapter->ptp_tx_skb) { 766 dev_kfree_skb_any(adapter->ptp_tx_skb); 767 adapter->ptp_tx_skb = NULL; 768 } 769 clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state); 770 } 771 772 /** 773 * ixgbe_ptp_tx_hang - detect error case where Tx timestamp never finishes 774 * @adapter: private network adapter structure 775 */ 776 void ixgbe_ptp_tx_hang(struct ixgbe_adapter *adapter) 777 { 778 bool timeout = time_is_before_jiffies(adapter->ptp_tx_start + 779 IXGBE_PTP_TX_TIMEOUT); 780 781 if (!adapter->ptp_tx_skb) 782 return; 783 784 if (!test_bit(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state)) 785 return; 786 787 /* If we haven't received a timestamp within the timeout, it is 788 * reasonable to assume that it will never occur, so we can unlock the 789 * timestamp bit when this occurs. 790 */ 791 if (timeout) { 792 cancel_work_sync(&adapter->ptp_tx_work); 793 ixgbe_ptp_clear_tx_timestamp(adapter); 794 adapter->tx_hwtstamp_timeouts++; 795 e_warn(drv, "clearing Tx timestamp hang\n"); 796 } 797 } 798 799 /** 800 * ixgbe_ptp_tx_hwtstamp - utility function which checks for TX time stamp 801 * @adapter: the private adapter struct 802 * 803 * if the timestamp is valid, we convert it into the timecounter ns 804 * value, then store that result into the shhwtstamps structure which 805 * is passed up the network stack 806 */ 807 static void ixgbe_ptp_tx_hwtstamp(struct ixgbe_adapter *adapter) 808 { 809 struct sk_buff *skb = adapter->ptp_tx_skb; 810 struct ixgbe_hw *hw = &adapter->hw; 811 struct skb_shared_hwtstamps shhwtstamps; 812 u64 regval = 0; 813 814 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPL); 815 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPH) << 32; 816 ixgbe_ptp_convert_to_hwtstamp(adapter, &shhwtstamps, regval); 817 818 /* Handle cleanup of the ptp_tx_skb ourselves, and unlock the state 819 * bit prior to notifying the stack via skb_tstamp_tx(). This prevents 820 * well behaved applications from attempting to timestamp again prior 821 * to the lock bit being clear. 822 */ 823 adapter->ptp_tx_skb = NULL; 824 clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state); 825 826 /* Notify the stack and then free the skb after we've unlocked */ 827 skb_tstamp_tx(skb, &shhwtstamps); 828 dev_kfree_skb_any(skb); 829 } 830 831 /** 832 * ixgbe_ptp_tx_hwtstamp_work 833 * @work: pointer to the work struct 834 * 835 * This work item polls TSYNCTXCTL valid bit to determine when a Tx hardware 836 * timestamp has been taken for the current skb. It is necessary, because the 837 * descriptor's "done" bit does not correlate with the timestamp event. 838 */ 839 static void ixgbe_ptp_tx_hwtstamp_work(struct work_struct *work) 840 { 841 struct ixgbe_adapter *adapter = container_of(work, struct ixgbe_adapter, 842 ptp_tx_work); 843 struct ixgbe_hw *hw = &adapter->hw; 844 bool timeout = time_is_before_jiffies(adapter->ptp_tx_start + 845 IXGBE_PTP_TX_TIMEOUT); 846 u32 tsynctxctl; 847 848 /* we have to have a valid skb to poll for a timestamp */ 849 if (!adapter->ptp_tx_skb) { 850 ixgbe_ptp_clear_tx_timestamp(adapter); 851 return; 852 } 853 854 /* stop polling once we have a valid timestamp */ 855 tsynctxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL); 856 if (tsynctxctl & IXGBE_TSYNCTXCTL_VALID) { 857 ixgbe_ptp_tx_hwtstamp(adapter); 858 return; 859 } 860 861 if (timeout) { 862 ixgbe_ptp_clear_tx_timestamp(adapter); 863 adapter->tx_hwtstamp_timeouts++; 864 e_warn(drv, "clearing Tx Timestamp hang\n"); 865 } else { 866 /* reschedule to keep checking if it's not available yet */ 867 schedule_work(&adapter->ptp_tx_work); 868 } 869 } 870 871 /** 872 * ixgbe_ptp_rx_pktstamp - utility function to get RX time stamp from buffer 873 * @q_vector: structure containing interrupt and ring information 874 * @skb: the packet 875 * 876 * This function will be called by the Rx routine of the timestamp for this 877 * packet is stored in the buffer. The value is stored in little endian format 878 * starting at the end of the packet data. 879 */ 880 void ixgbe_ptp_rx_pktstamp(struct ixgbe_q_vector *q_vector, 881 struct sk_buff *skb) 882 { 883 __le64 regval; 884 885 /* copy the bits out of the skb, and then trim the skb length */ 886 skb_copy_bits(skb, skb->len - IXGBE_TS_HDR_LEN, ®val, 887 IXGBE_TS_HDR_LEN); 888 __pskb_trim(skb, skb->len - IXGBE_TS_HDR_LEN); 889 890 /* The timestamp is recorded in little endian format, and is stored at 891 * the end of the packet. 892 * 893 * DWORD: N N + 1 N + 2 894 * Field: End of Packet SYSTIMH SYSTIML 895 */ 896 ixgbe_ptp_convert_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb), 897 le64_to_cpu(regval)); 898 } 899 900 /** 901 * ixgbe_ptp_rx_rgtstamp - utility function which checks for RX time stamp 902 * @q_vector: structure containing interrupt and ring information 903 * @skb: particular skb to send timestamp with 904 * 905 * if the timestamp is valid, we convert it into the timecounter ns 906 * value, then store that result into the shhwtstamps structure which 907 * is passed up the network stack 908 */ 909 void ixgbe_ptp_rx_rgtstamp(struct ixgbe_q_vector *q_vector, 910 struct sk_buff *skb) 911 { 912 struct ixgbe_adapter *adapter; 913 struct ixgbe_hw *hw; 914 u64 regval = 0; 915 u32 tsyncrxctl; 916 917 /* we cannot process timestamps on a ring without a q_vector */ 918 if (!q_vector || !q_vector->adapter) 919 return; 920 921 adapter = q_vector->adapter; 922 hw = &adapter->hw; 923 924 /* Read the tsyncrxctl register afterwards in order to prevent taking an 925 * I/O hit on every packet. 926 */ 927 928 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL); 929 if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID)) 930 return; 931 932 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPL); 933 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPH) << 32; 934 935 ixgbe_ptp_convert_to_hwtstamp(adapter, skb_hwtstamps(skb), regval); 936 } 937 938 /** 939 * ixgbe_ptp_get_ts_config - get current hardware timestamping configuration 940 * @adapter: pointer to adapter structure 941 * @ifr: ioctl data 942 * 943 * This function returns the current timestamping settings. Rather than 944 * attempt to deconstruct registers to fill in the values, simply keep a copy 945 * of the old settings around, and return a copy when requested. 946 */ 947 int ixgbe_ptp_get_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr) 948 { 949 struct hwtstamp_config *config = &adapter->tstamp_config; 950 951 return copy_to_user(ifr->ifr_data, config, 952 sizeof(*config)) ? -EFAULT : 0; 953 } 954 955 /** 956 * ixgbe_ptp_set_timestamp_mode - setup the hardware for the requested mode 957 * @adapter: the private ixgbe adapter structure 958 * @config: the hwtstamp configuration requested 959 * 960 * Outgoing time stamping can be enabled and disabled. Play nice and 961 * disable it when requested, although it shouldn't cause any overhead 962 * when no packet needs it. At most one packet in the queue may be 963 * marked for time stamping, otherwise it would be impossible to tell 964 * for sure to which packet the hardware time stamp belongs. 965 * 966 * Incoming time stamping has to be configured via the hardware 967 * filters. Not all combinations are supported, in particular event 968 * type has to be specified. Matching the kind of event packet is 969 * not supported, with the exception of "all V2 events regardless of 970 * level 2 or 4". 971 * 972 * Since hardware always timestamps Path delay packets when timestamping V2 973 * packets, regardless of the type specified in the register, only use V2 974 * Event mode. This more accurately tells the user what the hardware is going 975 * to do anyways. 976 * 977 * Note: this may modify the hwtstamp configuration towards a more general 978 * mode, if required to support the specifically requested mode. 979 */ 980 static int ixgbe_ptp_set_timestamp_mode(struct ixgbe_adapter *adapter, 981 struct hwtstamp_config *config) 982 { 983 struct ixgbe_hw *hw = &adapter->hw; 984 u32 tsync_tx_ctl = IXGBE_TSYNCTXCTL_ENABLED; 985 u32 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED; 986 u32 tsync_rx_mtrl = PTP_EV_PORT << 16; 987 u32 aflags = adapter->flags; 988 bool is_l2 = false; 989 u32 regval; 990 991 switch (config->tx_type) { 992 case HWTSTAMP_TX_OFF: 993 tsync_tx_ctl = 0; 994 break; 995 case HWTSTAMP_TX_ON: 996 break; 997 default: 998 return -ERANGE; 999 } 1000 1001 switch (config->rx_filter) { 1002 case HWTSTAMP_FILTER_NONE: 1003 tsync_rx_ctl = 0; 1004 tsync_rx_mtrl = 0; 1005 aflags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED | 1006 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER); 1007 break; 1008 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1009 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1; 1010 tsync_rx_mtrl |= IXGBE_RXMTRL_V1_SYNC_MSG; 1011 aflags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED | 1012 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER); 1013 break; 1014 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1015 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1; 1016 tsync_rx_mtrl |= IXGBE_RXMTRL_V1_DELAY_REQ_MSG; 1017 aflags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED | 1018 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER); 1019 break; 1020 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1021 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1022 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1023 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1024 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1025 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1026 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1027 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1028 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1029 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_EVENT_V2; 1030 is_l2 = true; 1031 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 1032 aflags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED | 1033 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER); 1034 break; 1035 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1036 case HWTSTAMP_FILTER_NTP_ALL: 1037 case HWTSTAMP_FILTER_ALL: 1038 /* The X550 controller is capable of timestamping all packets, 1039 * which allows it to accept any filter. 1040 */ 1041 if (hw->mac.type >= ixgbe_mac_X550) { 1042 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_ALL; 1043 config->rx_filter = HWTSTAMP_FILTER_ALL; 1044 aflags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED; 1045 break; 1046 } 1047 fallthrough; 1048 default: 1049 /* 1050 * register RXMTRL must be set in order to do V1 packets, 1051 * therefore it is not possible to time stamp both V1 Sync and 1052 * Delay_Req messages and hardware does not support 1053 * timestamping all packets => return error 1054 */ 1055 config->rx_filter = HWTSTAMP_FILTER_NONE; 1056 return -ERANGE; 1057 } 1058 1059 if (hw->mac.type == ixgbe_mac_82598EB) { 1060 adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED | 1061 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER); 1062 if (tsync_rx_ctl | tsync_tx_ctl) 1063 return -ERANGE; 1064 return 0; 1065 } 1066 1067 /* Per-packet timestamping only works if the filter is set to all 1068 * packets. Since this is desired, always timestamp all packets as long 1069 * as any Rx filter was configured. 1070 */ 1071 switch (hw->mac.type) { 1072 case ixgbe_mac_X550: 1073 case ixgbe_mac_X550EM_x: 1074 case ixgbe_mac_x550em_a: 1075 case ixgbe_mac_e610: 1076 /* enable timestamping all packets only if at least some 1077 * packets were requested. Otherwise, play nice and disable 1078 * timestamping 1079 */ 1080 if (config->rx_filter == HWTSTAMP_FILTER_NONE) 1081 break; 1082 1083 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED | 1084 IXGBE_TSYNCRXCTL_TYPE_ALL | 1085 IXGBE_TSYNCRXCTL_TSIP_UT_EN; 1086 config->rx_filter = HWTSTAMP_FILTER_ALL; 1087 aflags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED; 1088 aflags &= ~IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER; 1089 is_l2 = true; 1090 break; 1091 default: 1092 break; 1093 } 1094 1095 /* define ethertype filter for timestamping L2 packets */ 1096 if (is_l2) 1097 IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588), 1098 (IXGBE_ETQF_FILTER_EN | /* enable filter */ 1099 IXGBE_ETQF_1588 | /* enable timestamping */ 1100 ETH_P_1588)); /* 1588 eth protocol type */ 1101 else 1102 IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588), 0); 1103 1104 /* enable/disable TX */ 1105 regval = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL); 1106 regval &= ~IXGBE_TSYNCTXCTL_ENABLED; 1107 regval |= tsync_tx_ctl; 1108 IXGBE_WRITE_REG(hw, IXGBE_TSYNCTXCTL, regval); 1109 1110 /* enable/disable RX */ 1111 regval = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL); 1112 regval &= ~(IXGBE_TSYNCRXCTL_ENABLED | IXGBE_TSYNCRXCTL_TYPE_MASK); 1113 regval |= tsync_rx_ctl; 1114 IXGBE_WRITE_REG(hw, IXGBE_TSYNCRXCTL, regval); 1115 1116 /* define which PTP packets are time stamped */ 1117 IXGBE_WRITE_REG(hw, IXGBE_RXMTRL, tsync_rx_mtrl); 1118 1119 IXGBE_WRITE_FLUSH(hw); 1120 1121 /* configure adapter flags only when HW is actually configured */ 1122 adapter->flags = aflags; 1123 1124 /* clear TX/RX time stamp registers, just to be sure */ 1125 ixgbe_ptp_clear_tx_timestamp(adapter); 1126 IXGBE_READ_REG(hw, IXGBE_RXSTMPH); 1127 1128 return 0; 1129 } 1130 1131 /** 1132 * ixgbe_ptp_set_ts_config - user entry point for timestamp mode 1133 * @adapter: pointer to adapter struct 1134 * @ifr: ioctl data 1135 * 1136 * Set hardware to requested mode. If unsupported, return an error with no 1137 * changes. Otherwise, store the mode for future reference. 1138 */ 1139 int ixgbe_ptp_set_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr) 1140 { 1141 struct hwtstamp_config config; 1142 int err; 1143 1144 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 1145 return -EFAULT; 1146 1147 err = ixgbe_ptp_set_timestamp_mode(adapter, &config); 1148 if (err) 1149 return err; 1150 1151 /* save these settings for future reference */ 1152 memcpy(&adapter->tstamp_config, &config, 1153 sizeof(adapter->tstamp_config)); 1154 1155 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 1156 -EFAULT : 0; 1157 } 1158 1159 static void ixgbe_ptp_link_speed_adjust(struct ixgbe_adapter *adapter, 1160 u32 *shift, u32 *incval) 1161 { 1162 /** 1163 * Scale the NIC cycle counter by a large factor so that 1164 * relatively small corrections to the frequency can be added 1165 * or subtracted. The drawbacks of a large factor include 1166 * (a) the clock register overflows more quickly, (b) the cycle 1167 * counter structure must be able to convert the systime value 1168 * to nanoseconds using only a multiplier and a right-shift, 1169 * and (c) the value must fit within the timinca register space 1170 * => math based on internal DMA clock rate and available bits 1171 * 1172 * Note that when there is no link, internal DMA clock is same as when 1173 * link speed is 10Gb. Set the registers correctly even when link is 1174 * down to preserve the clock setting 1175 */ 1176 switch (adapter->link_speed) { 1177 case IXGBE_LINK_SPEED_100_FULL: 1178 *shift = IXGBE_INCVAL_SHIFT_100; 1179 *incval = IXGBE_INCVAL_100; 1180 break; 1181 case IXGBE_LINK_SPEED_1GB_FULL: 1182 *shift = IXGBE_INCVAL_SHIFT_1GB; 1183 *incval = IXGBE_INCVAL_1GB; 1184 break; 1185 case IXGBE_LINK_SPEED_10GB_FULL: 1186 default: 1187 *shift = IXGBE_INCVAL_SHIFT_10GB; 1188 *incval = IXGBE_INCVAL_10GB; 1189 break; 1190 } 1191 } 1192 1193 /** 1194 * ixgbe_ptp_start_cyclecounter - create the cycle counter from hw 1195 * @adapter: pointer to the adapter structure 1196 * 1197 * This function should be called to set the proper values for the TIMINCA 1198 * register and tell the cyclecounter structure what the tick rate of SYSTIME 1199 * is. It does not directly modify SYSTIME registers or the timecounter 1200 * structure. It should be called whenever a new TIMINCA value is necessary, 1201 * such as during initialization or when the link speed changes. 1202 */ 1203 void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter) 1204 { 1205 struct ixgbe_hw *hw = &adapter->hw; 1206 struct cyclecounter cc; 1207 unsigned long flags; 1208 u32 incval = 0; 1209 u32 fuse0 = 0; 1210 1211 /* For some of the boards below this mask is technically incorrect. 1212 * The timestamp mask overflows at approximately 61bits. However the 1213 * particular hardware does not overflow on an even bitmask value. 1214 * Instead, it overflows due to conversion of upper 32bits billions of 1215 * cycles. Timecounters are not really intended for this purpose so 1216 * they do not properly function if the overflow point isn't 2^N-1. 1217 * However, the actual SYSTIME values in question take ~138 years to 1218 * overflow. In practice this means they won't actually overflow. A 1219 * proper fix to this problem would require modification of the 1220 * timecounter delta calculations. 1221 */ 1222 cc.mask = CLOCKSOURCE_MASK(64); 1223 cc.mult = 1; 1224 cc.shift = 0; 1225 1226 switch (hw->mac.type) { 1227 case ixgbe_mac_X550EM_x: 1228 /* SYSTIME assumes X550EM_x board frequency is 300Mhz, and is 1229 * designed to represent seconds and nanoseconds when this is 1230 * the case. However, some revisions of hardware have a 400Mhz 1231 * clock and we have to compensate for this frequency 1232 * variation using corrected mult and shift values. 1233 */ 1234 fuse0 = IXGBE_READ_REG(hw, IXGBE_FUSES0_GROUP(0)); 1235 if (!(fuse0 & IXGBE_FUSES0_300MHZ)) { 1236 cc.mult = 3; 1237 cc.shift = 2; 1238 } 1239 fallthrough; 1240 case ixgbe_mac_x550em_a: 1241 case ixgbe_mac_X550: 1242 case ixgbe_mac_e610: 1243 cc.read = ixgbe_ptp_read_X550; 1244 break; 1245 case ixgbe_mac_X540: 1246 cc.read = ixgbe_ptp_read_82599; 1247 1248 ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval); 1249 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval); 1250 break; 1251 case ixgbe_mac_82599EB: 1252 cc.read = ixgbe_ptp_read_82599; 1253 1254 ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval); 1255 incval >>= IXGBE_INCVAL_SHIFT_82599; 1256 cc.shift -= IXGBE_INCVAL_SHIFT_82599; 1257 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, 1258 BIT(IXGBE_INCPER_SHIFT_82599) | incval); 1259 break; 1260 default: 1261 /* other devices aren't supported */ 1262 return; 1263 } 1264 1265 /* update the base incval used to calculate frequency adjustment */ 1266 WRITE_ONCE(adapter->base_incval, incval); 1267 smp_mb(); 1268 1269 /* need lock to prevent incorrect read while modifying cyclecounter */ 1270 spin_lock_irqsave(&adapter->tmreg_lock, flags); 1271 memcpy(&adapter->hw_cc, &cc, sizeof(adapter->hw_cc)); 1272 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 1273 } 1274 1275 /** 1276 * ixgbe_ptp_init_systime - Initialize SYSTIME registers 1277 * @adapter: the ixgbe private board structure 1278 * 1279 * Initialize and start the SYSTIME registers. 1280 */ 1281 static void ixgbe_ptp_init_systime(struct ixgbe_adapter *adapter) 1282 { 1283 struct ixgbe_hw *hw = &adapter->hw; 1284 u32 tsauxc; 1285 1286 switch (hw->mac.type) { 1287 case ixgbe_mac_X550EM_x: 1288 case ixgbe_mac_x550em_a: 1289 case ixgbe_mac_X550: 1290 case ixgbe_mac_e610: 1291 tsauxc = IXGBE_READ_REG(hw, IXGBE_TSAUXC); 1292 1293 /* Reset SYSTIME registers to 0 */ 1294 IXGBE_WRITE_REG(hw, IXGBE_SYSTIMR, 0); 1295 IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0); 1296 IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0); 1297 1298 /* Reset interrupt settings */ 1299 IXGBE_WRITE_REG(hw, IXGBE_TSIM, IXGBE_TSIM_TXTS); 1300 IXGBE_WRITE_REG(hw, IXGBE_EIMS, IXGBE_EIMS_TIMESYNC); 1301 1302 /* Activate the SYSTIME counter */ 1303 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 1304 tsauxc & ~IXGBE_TSAUXC_DISABLE_SYSTIME); 1305 break; 1306 case ixgbe_mac_X540: 1307 case ixgbe_mac_82599EB: 1308 /* Reset SYSTIME registers to 0 */ 1309 IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0); 1310 IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0); 1311 break; 1312 default: 1313 /* Other devices aren't supported */ 1314 return; 1315 } 1316 1317 IXGBE_WRITE_FLUSH(hw); 1318 } 1319 1320 /** 1321 * ixgbe_ptp_reset 1322 * @adapter: the ixgbe private board structure 1323 * 1324 * When the MAC resets, all the hardware bits for timesync are reset. This 1325 * function is used to re-enable the device for PTP based on current settings. 1326 * We do lose the current clock time, so just reset the cyclecounter to the 1327 * system real clock time. 1328 * 1329 * This function will maintain hwtstamp_config settings, and resets the SDP 1330 * output if it was enabled. 1331 */ 1332 void ixgbe_ptp_reset(struct ixgbe_adapter *adapter) 1333 { 1334 struct ixgbe_hw *hw = &adapter->hw; 1335 unsigned long flags; 1336 1337 /* reset the hardware timestamping mode */ 1338 ixgbe_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config); 1339 1340 /* 82598 does not support PTP */ 1341 if (hw->mac.type == ixgbe_mac_82598EB) 1342 return; 1343 1344 ixgbe_ptp_start_cyclecounter(adapter); 1345 1346 ixgbe_ptp_init_systime(adapter); 1347 1348 spin_lock_irqsave(&adapter->tmreg_lock, flags); 1349 timecounter_init(&adapter->hw_tc, &adapter->hw_cc, 1350 ktime_to_ns(ktime_get_real())); 1351 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 1352 1353 adapter->last_overflow_check = jiffies; 1354 1355 /* Now that the shift has been calculated and the systime 1356 * registers reset, (re-)enable the Clock out feature 1357 */ 1358 if (adapter->ptp_setup_sdp) 1359 adapter->ptp_setup_sdp(adapter); 1360 } 1361 1362 /** 1363 * ixgbe_ptp_create_clock 1364 * @adapter: the ixgbe private adapter structure 1365 * 1366 * This function performs setup of the user entry point function table and 1367 * initializes the PTP clock device, which is used to access the clock-like 1368 * features of the PTP core. It will be called by ixgbe_ptp_init, and may 1369 * reuse a previously initialized clock (such as during a suspend/resume 1370 * cycle). 1371 */ 1372 static long ixgbe_ptp_create_clock(struct ixgbe_adapter *adapter) 1373 { 1374 struct net_device *netdev = adapter->netdev; 1375 long err; 1376 1377 /* do nothing if we already have a clock device */ 1378 if (!IS_ERR_OR_NULL(adapter->ptp_clock)) 1379 return 0; 1380 1381 switch (adapter->hw.mac.type) { 1382 case ixgbe_mac_X540: 1383 snprintf(adapter->ptp_caps.name, 1384 sizeof(adapter->ptp_caps.name), 1385 "%s", netdev->name); 1386 adapter->ptp_caps.owner = THIS_MODULE; 1387 adapter->ptp_caps.max_adj = 250000000; 1388 adapter->ptp_caps.n_alarm = 0; 1389 adapter->ptp_caps.n_ext_ts = 0; 1390 adapter->ptp_caps.n_per_out = 0; 1391 adapter->ptp_caps.pps = 1; 1392 adapter->ptp_caps.adjfine = ixgbe_ptp_adjfine_82599; 1393 adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime; 1394 adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex; 1395 adapter->ptp_caps.settime64 = ixgbe_ptp_settime; 1396 adapter->ptp_caps.enable = ixgbe_ptp_feature_enable; 1397 adapter->ptp_setup_sdp = ixgbe_ptp_setup_sdp_X540; 1398 break; 1399 case ixgbe_mac_82599EB: 1400 snprintf(adapter->ptp_caps.name, 1401 sizeof(adapter->ptp_caps.name), 1402 "%s", netdev->name); 1403 adapter->ptp_caps.owner = THIS_MODULE; 1404 adapter->ptp_caps.max_adj = 250000000; 1405 adapter->ptp_caps.n_alarm = 0; 1406 adapter->ptp_caps.n_ext_ts = 0; 1407 adapter->ptp_caps.n_per_out = 0; 1408 adapter->ptp_caps.pps = 0; 1409 adapter->ptp_caps.adjfine = ixgbe_ptp_adjfine_82599; 1410 adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime; 1411 adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex; 1412 adapter->ptp_caps.settime64 = ixgbe_ptp_settime; 1413 adapter->ptp_caps.enable = ixgbe_ptp_feature_enable; 1414 break; 1415 case ixgbe_mac_X550: 1416 case ixgbe_mac_X550EM_x: 1417 case ixgbe_mac_x550em_a: 1418 case ixgbe_mac_e610: 1419 snprintf(adapter->ptp_caps.name, 16, "%s", netdev->name); 1420 adapter->ptp_caps.owner = THIS_MODULE; 1421 adapter->ptp_caps.max_adj = 30000000; 1422 adapter->ptp_caps.n_alarm = 0; 1423 adapter->ptp_caps.n_ext_ts = 0; 1424 adapter->ptp_caps.n_per_out = 0; 1425 adapter->ptp_caps.pps = 1; 1426 adapter->ptp_caps.adjfine = ixgbe_ptp_adjfine_X550; 1427 adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime; 1428 adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex; 1429 adapter->ptp_caps.settime64 = ixgbe_ptp_settime; 1430 adapter->ptp_caps.enable = ixgbe_ptp_feature_enable; 1431 adapter->ptp_setup_sdp = ixgbe_ptp_setup_sdp_X550; 1432 break; 1433 default: 1434 adapter->ptp_clock = NULL; 1435 adapter->ptp_setup_sdp = NULL; 1436 return -EOPNOTSUPP; 1437 } 1438 1439 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps, 1440 &adapter->pdev->dev); 1441 if (IS_ERR(adapter->ptp_clock)) { 1442 err = PTR_ERR(adapter->ptp_clock); 1443 adapter->ptp_clock = NULL; 1444 e_dev_err("ptp_clock_register failed\n"); 1445 return err; 1446 } else if (adapter->ptp_clock) 1447 e_dev_info("registered PHC device on %s\n", netdev->name); 1448 1449 /* set default timestamp mode to disabled here. We do this in 1450 * create_clock instead of init, because we don't want to override the 1451 * previous settings during a resume cycle. 1452 */ 1453 adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; 1454 adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF; 1455 1456 return 0; 1457 } 1458 1459 /** 1460 * ixgbe_ptp_init 1461 * @adapter: the ixgbe private adapter structure 1462 * 1463 * This function performs the required steps for enabling PTP 1464 * support. If PTP support has already been loaded it simply calls the 1465 * cyclecounter init routine and exits. 1466 */ 1467 void ixgbe_ptp_init(struct ixgbe_adapter *adapter) 1468 { 1469 /* initialize the spin lock first since we can't control when a user 1470 * will call the entry functions once we have initialized the clock 1471 * device 1472 */ 1473 spin_lock_init(&adapter->tmreg_lock); 1474 1475 /* obtain a PTP device, or re-use an existing device */ 1476 if (ixgbe_ptp_create_clock(adapter)) 1477 return; 1478 1479 /* we have a clock so we can initialize work now */ 1480 INIT_WORK(&adapter->ptp_tx_work, ixgbe_ptp_tx_hwtstamp_work); 1481 1482 /* reset the PTP related hardware bits */ 1483 ixgbe_ptp_reset(adapter); 1484 1485 /* enter the IXGBE_PTP_RUNNING state */ 1486 set_bit(__IXGBE_PTP_RUNNING, &adapter->state); 1487 1488 return; 1489 } 1490 1491 /** 1492 * ixgbe_ptp_suspend - stop PTP work items 1493 * @adapter: pointer to adapter struct 1494 * 1495 * this function suspends PTP activity, and prevents more PTP work from being 1496 * generated, but does not destroy the PTP clock device. 1497 */ 1498 void ixgbe_ptp_suspend(struct ixgbe_adapter *adapter) 1499 { 1500 /* Leave the IXGBE_PTP_RUNNING state. */ 1501 if (!test_and_clear_bit(__IXGBE_PTP_RUNNING, &adapter->state)) 1502 return; 1503 1504 adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED; 1505 if (adapter->ptp_setup_sdp) 1506 adapter->ptp_setup_sdp(adapter); 1507 1508 /* ensure that we cancel any pending PTP Tx work item in progress */ 1509 cancel_work_sync(&adapter->ptp_tx_work); 1510 ixgbe_ptp_clear_tx_timestamp(adapter); 1511 } 1512 1513 /** 1514 * ixgbe_ptp_stop - close the PTP device 1515 * @adapter: pointer to adapter struct 1516 * 1517 * completely destroy the PTP device, should only be called when the device is 1518 * being fully closed. 1519 */ 1520 void ixgbe_ptp_stop(struct ixgbe_adapter *adapter) 1521 { 1522 /* first, suspend PTP activity */ 1523 ixgbe_ptp_suspend(adapter); 1524 1525 /* disable the PTP clock device */ 1526 if (adapter->ptp_clock) { 1527 ptp_clock_unregister(adapter->ptp_clock); 1528 adapter->ptp_clock = NULL; 1529 e_dev_info("removed PHC on %s\n", 1530 adapter->netdev->name); 1531 } 1532 } 1533