1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> */ 3 4 #include <linux/module.h> 5 #include <linux/device.h> 6 #include <linux/pci.h> 7 #include <linux/ptp_classify.h> 8 9 #include "igb.h" 10 11 #define INCVALUE_MASK 0x7fffffff 12 #define ISGN 0x80000000 13 14 /* The 82580 timesync updates the system timer every 8ns by 8ns, 15 * and this update value cannot be reprogrammed. 16 * 17 * Neither the 82576 nor the 82580 offer registers wide enough to hold 18 * nanoseconds time values for very long. For the 82580, SYSTIM always 19 * counts nanoseconds, but the upper 24 bits are not available. The 20 * frequency is adjusted by changing the 32 bit fractional nanoseconds 21 * register, TIMINCA. 22 * 23 * For the 82576, the SYSTIM register time unit is affect by the 24 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this 25 * field are needed to provide the nominal 16 nanosecond period, 26 * leaving 19 bits for fractional nanoseconds. 27 * 28 * We scale the NIC clock cycle by a large factor so that relatively 29 * small clock corrections can be added or subtracted at each clock 30 * tick. The drawbacks of a large factor are a) that the clock 31 * register overflows more quickly (not such a big deal) and b) that 32 * the increment per tick has to fit into 24 bits. As a result we 33 * need to use a shift of 19 so we can fit a value of 16 into the 34 * TIMINCA register. 35 * 36 * 37 * SYSTIMH SYSTIML 38 * +--------------+ +---+---+------+ 39 * 82576 | 32 | | 8 | 5 | 19 | 40 * +--------------+ +---+---+------+ 41 * \________ 45 bits _______/ fract 42 * 43 * +----------+---+ +--------------+ 44 * 82580 | 24 | 8 | | 32 | 45 * +----------+---+ +--------------+ 46 * reserved \______ 40 bits _____/ 47 * 48 * 49 * The 45 bit 82576 SYSTIM overflows every 50 * 2^45 * 10^-9 / 3600 = 9.77 hours. 51 * 52 * The 40 bit 82580 SYSTIM overflows every 53 * 2^40 * 10^-9 / 60 = 18.3 minutes. 54 * 55 * SYSTIM is converted to real time using a timecounter. As 56 * timecounter_cyc2time() allows old timestamps, the timecounter needs 57 * to be updated at least once per half of the SYSTIM interval. 58 * Scheduling of delayed work is not very accurate, and also the NIC 59 * clock can be adjusted to run up to 6% faster and the system clock 60 * up to 10% slower, so we aim for 6 minutes to be sure the actual 61 * interval in the NIC time is shorter than 9.16 minutes. 62 */ 63 64 #define IGB_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 6) 65 #define IGB_PTP_TX_TIMEOUT (HZ * 15) 66 #define INCPERIOD_82576 BIT(E1000_TIMINCA_16NS_SHIFT) 67 #define INCVALUE_82576_MASK GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0) 68 #define INCVALUE_82576 (16u << IGB_82576_TSYNC_SHIFT) 69 #define IGB_NBITS_82580 40 70 #define IGB_82580_BASE_PERIOD 0x800000000 71 72 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter); 73 static void igb_ptp_sdp_init(struct igb_adapter *adapter); 74 75 /* SYSTIM read access for the 82576 */ 76 static u64 igb_ptp_read_82576(const struct cyclecounter *cc) 77 { 78 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc); 79 struct e1000_hw *hw = &igb->hw; 80 u64 val; 81 u32 lo, hi; 82 83 lo = rd32(E1000_SYSTIML); 84 hi = rd32(E1000_SYSTIMH); 85 86 val = ((u64) hi) << 32; 87 val |= lo; 88 89 return val; 90 } 91 92 /* SYSTIM read access for the 82580 */ 93 static u64 igb_ptp_read_82580(const struct cyclecounter *cc) 94 { 95 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc); 96 struct e1000_hw *hw = &igb->hw; 97 u32 lo, hi; 98 u64 val; 99 100 /* The timestamp latches on lowest register read. For the 82580 101 * the lowest register is SYSTIMR instead of SYSTIML. However we only 102 * need to provide nanosecond resolution, so we just ignore it. 103 */ 104 rd32(E1000_SYSTIMR); 105 lo = rd32(E1000_SYSTIML); 106 hi = rd32(E1000_SYSTIMH); 107 108 val = ((u64) hi) << 32; 109 val |= lo; 110 111 return val; 112 } 113 114 /* SYSTIM read access for I210/I211 */ 115 static void igb_ptp_read_i210(struct igb_adapter *adapter, 116 struct timespec64 *ts) 117 { 118 struct e1000_hw *hw = &adapter->hw; 119 u32 sec, nsec; 120 121 /* The timestamp latches on lowest register read. For I210/I211, the 122 * lowest register is SYSTIMR. Since we only need to provide nanosecond 123 * resolution, we can ignore it. 124 */ 125 rd32(E1000_SYSTIMR); 126 nsec = rd32(E1000_SYSTIML); 127 sec = rd32(E1000_SYSTIMH); 128 129 ts->tv_sec = sec; 130 ts->tv_nsec = nsec; 131 } 132 133 static void igb_ptp_write_i210(struct igb_adapter *adapter, 134 const struct timespec64 *ts) 135 { 136 struct e1000_hw *hw = &adapter->hw; 137 138 /* Writing the SYSTIMR register is not necessary as it only provides 139 * sub-nanosecond resolution. 140 */ 141 wr32(E1000_SYSTIML, ts->tv_nsec); 142 wr32(E1000_SYSTIMH, (u32)ts->tv_sec); 143 } 144 145 /** 146 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp 147 * @adapter: board private structure 148 * @hwtstamps: timestamp structure to update 149 * @systim: unsigned 64bit system time value. 150 * 151 * We need to convert the system time value stored in the RX/TXSTMP registers 152 * into a hwtstamp which can be used by the upper level timestamping functions. 153 * 154 * The 'tmreg_lock' spinlock is used to protect the consistency of the 155 * system time value. This is needed because reading the 64 bit time 156 * value involves reading two (or three) 32 bit registers. The first 157 * read latches the value. Ditto for writing. 158 * 159 * In addition, here have extended the system time with an overflow 160 * counter in software. 161 **/ 162 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter, 163 struct skb_shared_hwtstamps *hwtstamps, 164 u64 systim) 165 { 166 unsigned long flags; 167 u64 ns; 168 169 memset(hwtstamps, 0, sizeof(*hwtstamps)); 170 171 switch (adapter->hw.mac.type) { 172 case e1000_82576: 173 case e1000_82580: 174 case e1000_i354: 175 case e1000_i350: 176 spin_lock_irqsave(&adapter->tmreg_lock, flags); 177 ns = timecounter_cyc2time(&adapter->tc, systim); 178 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 179 180 hwtstamps->hwtstamp = ns_to_ktime(ns); 181 break; 182 case e1000_i210: 183 case e1000_i211: 184 /* Upper 32 bits contain s, lower 32 bits contain ns. */ 185 hwtstamps->hwtstamp = ktime_set(systim >> 32, 186 systim & 0xFFFFFFFF); 187 break; 188 default: 189 break; 190 } 191 } 192 193 /* PTP clock operations */ 194 static int igb_ptp_adjfine_82576(struct ptp_clock_info *ptp, long scaled_ppm) 195 { 196 struct igb_adapter *igb = container_of(ptp, struct igb_adapter, 197 ptp_caps); 198 struct e1000_hw *hw = &igb->hw; 199 u64 incvalue; 200 201 incvalue = adjust_by_scaled_ppm(INCVALUE_82576, scaled_ppm); 202 203 wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK)); 204 205 return 0; 206 } 207 208 static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm) 209 { 210 struct igb_adapter *igb = container_of(ptp, struct igb_adapter, 211 ptp_caps); 212 struct e1000_hw *hw = &igb->hw; 213 bool neg_adj; 214 u64 rate; 215 u32 inca; 216 217 neg_adj = diff_by_scaled_ppm(IGB_82580_BASE_PERIOD, scaled_ppm, &rate); 218 219 inca = rate & INCVALUE_MASK; 220 if (neg_adj) 221 inca |= ISGN; 222 223 wr32(E1000_TIMINCA, inca); 224 225 return 0; 226 } 227 228 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta) 229 { 230 struct igb_adapter *igb = container_of(ptp, struct igb_adapter, 231 ptp_caps); 232 unsigned long flags; 233 234 spin_lock_irqsave(&igb->tmreg_lock, flags); 235 timecounter_adjtime(&igb->tc, delta); 236 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 237 238 return 0; 239 } 240 241 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta) 242 { 243 struct igb_adapter *igb = container_of(ptp, struct igb_adapter, 244 ptp_caps); 245 unsigned long flags; 246 struct timespec64 now, then = ns_to_timespec64(delta); 247 248 spin_lock_irqsave(&igb->tmreg_lock, flags); 249 250 igb_ptp_read_i210(igb, &now); 251 now = timespec64_add(now, then); 252 igb_ptp_write_i210(igb, (const struct timespec64 *)&now); 253 254 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 255 256 return 0; 257 } 258 259 static int igb_ptp_gettimex_82576(struct ptp_clock_info *ptp, 260 struct timespec64 *ts, 261 struct ptp_system_timestamp *sts) 262 { 263 struct igb_adapter *igb = container_of(ptp, struct igb_adapter, 264 ptp_caps); 265 struct e1000_hw *hw = &igb->hw; 266 unsigned long flags; 267 u32 lo, hi; 268 u64 ns; 269 270 spin_lock_irqsave(&igb->tmreg_lock, flags); 271 272 ptp_read_system_prets(sts); 273 lo = rd32(E1000_SYSTIML); 274 ptp_read_system_postts(sts); 275 hi = rd32(E1000_SYSTIMH); 276 277 ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo); 278 279 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 280 281 *ts = ns_to_timespec64(ns); 282 283 return 0; 284 } 285 286 static int igb_ptp_gettimex_82580(struct ptp_clock_info *ptp, 287 struct timespec64 *ts, 288 struct ptp_system_timestamp *sts) 289 { 290 struct igb_adapter *igb = container_of(ptp, struct igb_adapter, 291 ptp_caps); 292 struct e1000_hw *hw = &igb->hw; 293 unsigned long flags; 294 u32 lo, hi; 295 u64 ns; 296 297 spin_lock_irqsave(&igb->tmreg_lock, flags); 298 299 ptp_read_system_prets(sts); 300 rd32(E1000_SYSTIMR); 301 ptp_read_system_postts(sts); 302 lo = rd32(E1000_SYSTIML); 303 hi = rd32(E1000_SYSTIMH); 304 305 ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo); 306 307 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 308 309 *ts = ns_to_timespec64(ns); 310 311 return 0; 312 } 313 314 static int igb_ptp_gettimex_i210(struct ptp_clock_info *ptp, 315 struct timespec64 *ts, 316 struct ptp_system_timestamp *sts) 317 { 318 struct igb_adapter *igb = container_of(ptp, struct igb_adapter, 319 ptp_caps); 320 struct e1000_hw *hw = &igb->hw; 321 unsigned long flags; 322 323 spin_lock_irqsave(&igb->tmreg_lock, flags); 324 325 ptp_read_system_prets(sts); 326 rd32(E1000_SYSTIMR); 327 ptp_read_system_postts(sts); 328 ts->tv_nsec = rd32(E1000_SYSTIML); 329 ts->tv_sec = rd32(E1000_SYSTIMH); 330 331 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 332 333 return 0; 334 } 335 336 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp, 337 const struct timespec64 *ts) 338 { 339 struct igb_adapter *igb = container_of(ptp, struct igb_adapter, 340 ptp_caps); 341 unsigned long flags; 342 u64 ns; 343 344 ns = timespec64_to_ns(ts); 345 346 spin_lock_irqsave(&igb->tmreg_lock, flags); 347 348 timecounter_init(&igb->tc, &igb->cc, ns); 349 350 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 351 352 return 0; 353 } 354 355 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp, 356 const struct timespec64 *ts) 357 { 358 struct igb_adapter *igb = container_of(ptp, struct igb_adapter, 359 ptp_caps); 360 unsigned long flags; 361 362 spin_lock_irqsave(&igb->tmreg_lock, flags); 363 364 igb_ptp_write_i210(igb, ts); 365 366 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 367 368 return 0; 369 } 370 371 static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext) 372 { 373 u32 *ptr = pin < 2 ? ctrl : ctrl_ext; 374 static const u32 mask[IGB_N_SDP] = { 375 E1000_CTRL_SDP0_DIR, 376 E1000_CTRL_SDP1_DIR, 377 E1000_CTRL_EXT_SDP2_DIR, 378 E1000_CTRL_EXT_SDP3_DIR, 379 }; 380 381 if (input) 382 *ptr &= ~mask[pin]; 383 else 384 *ptr |= mask[pin]; 385 } 386 387 static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin) 388 { 389 static const u32 aux0_sel_sdp[IGB_N_SDP] = { 390 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3, 391 }; 392 static const u32 aux1_sel_sdp[IGB_N_SDP] = { 393 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3, 394 }; 395 static const u32 ts_sdp_en[IGB_N_SDP] = { 396 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN, 397 }; 398 struct e1000_hw *hw = &igb->hw; 399 u32 ctrl, ctrl_ext, tssdp = 0; 400 401 ctrl = rd32(E1000_CTRL); 402 ctrl_ext = rd32(E1000_CTRL_EXT); 403 tssdp = rd32(E1000_TSSDP); 404 405 igb_pin_direction(pin, 1, &ctrl, &ctrl_ext); 406 407 /* Make sure this pin is not enabled as an output. */ 408 tssdp &= ~ts_sdp_en[pin]; 409 410 if (chan == 1) { 411 tssdp &= ~AUX1_SEL_SDP3; 412 tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN; 413 } else { 414 tssdp &= ~AUX0_SEL_SDP3; 415 tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN; 416 } 417 418 wr32(E1000_TSSDP, tssdp); 419 wr32(E1000_CTRL, ctrl); 420 wr32(E1000_CTRL_EXT, ctrl_ext); 421 } 422 423 static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq) 424 { 425 static const u32 aux0_sel_sdp[IGB_N_SDP] = { 426 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3, 427 }; 428 static const u32 aux1_sel_sdp[IGB_N_SDP] = { 429 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3, 430 }; 431 static const u32 ts_sdp_en[IGB_N_SDP] = { 432 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN, 433 }; 434 static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = { 435 TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0, 436 TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0, 437 }; 438 static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = { 439 TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1, 440 TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1, 441 }; 442 static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = { 443 TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0, 444 TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0, 445 }; 446 static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = { 447 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1, 448 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1, 449 }; 450 static const u32 ts_sdp_sel_clr[IGB_N_SDP] = { 451 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1, 452 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1, 453 }; 454 struct e1000_hw *hw = &igb->hw; 455 u32 ctrl, ctrl_ext, tssdp = 0; 456 457 ctrl = rd32(E1000_CTRL); 458 ctrl_ext = rd32(E1000_CTRL_EXT); 459 tssdp = rd32(E1000_TSSDP); 460 461 igb_pin_direction(pin, 0, &ctrl, &ctrl_ext); 462 463 /* Make sure this pin is not enabled as an input. */ 464 if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin]) 465 tssdp &= ~AUX0_TS_SDP_EN; 466 467 if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin]) 468 tssdp &= ~AUX1_TS_SDP_EN; 469 470 tssdp &= ~ts_sdp_sel_clr[pin]; 471 if (freq) { 472 if (chan == 1) 473 tssdp |= ts_sdp_sel_fc1[pin]; 474 else 475 tssdp |= ts_sdp_sel_fc0[pin]; 476 } else { 477 if (chan == 1) 478 tssdp |= ts_sdp_sel_tt1[pin]; 479 else 480 tssdp |= ts_sdp_sel_tt0[pin]; 481 } 482 tssdp |= ts_sdp_en[pin]; 483 484 wr32(E1000_TSSDP, tssdp); 485 wr32(E1000_CTRL, ctrl); 486 wr32(E1000_CTRL_EXT, ctrl_ext); 487 } 488 489 static int igb_ptp_feature_enable_82580(struct ptp_clock_info *ptp, 490 struct ptp_clock_request *rq, int on) 491 { 492 struct igb_adapter *igb = 493 container_of(ptp, struct igb_adapter, ptp_caps); 494 u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, systiml, 495 systimh, level_mask, level, rem; 496 struct e1000_hw *hw = &igb->hw; 497 struct timespec64 ts, start; 498 unsigned long flags; 499 u64 systim, now; 500 int pin = -1; 501 s64 ns; 502 503 switch (rq->type) { 504 case PTP_CLK_REQ_EXTTS: 505 /* Both the rising and falling edge are timestamped */ 506 if (rq->extts.flags & PTP_STRICT_FLAGS && 507 (rq->extts.flags & PTP_ENABLE_FEATURE) && 508 (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES) 509 return -EOPNOTSUPP; 510 511 if (on) { 512 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS, 513 rq->extts.index); 514 if (pin < 0) 515 return -EBUSY; 516 } 517 if (rq->extts.index == 1) { 518 tsauxc_mask = TSAUXC_EN_TS1; 519 tsim_mask = TSINTR_AUTT1; 520 } else { 521 tsauxc_mask = TSAUXC_EN_TS0; 522 tsim_mask = TSINTR_AUTT0; 523 } 524 spin_lock_irqsave(&igb->tmreg_lock, flags); 525 tsauxc = rd32(E1000_TSAUXC); 526 tsim = rd32(E1000_TSIM); 527 if (on) { 528 igb_pin_extts(igb, rq->extts.index, pin); 529 tsauxc |= tsauxc_mask; 530 tsim |= tsim_mask; 531 } else { 532 tsauxc &= ~tsauxc_mask; 533 tsim &= ~tsim_mask; 534 } 535 wr32(E1000_TSAUXC, tsauxc); 536 wr32(E1000_TSIM, tsim); 537 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 538 return 0; 539 540 case PTP_CLK_REQ_PEROUT: 541 /* Reject requests with unsupported flags */ 542 if (rq->perout.flags) 543 return -EOPNOTSUPP; 544 545 if (on) { 546 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT, 547 rq->perout.index); 548 if (pin < 0) 549 return -EBUSY; 550 } 551 ts.tv_sec = rq->perout.period.sec; 552 ts.tv_nsec = rq->perout.period.nsec; 553 ns = timespec64_to_ns(&ts); 554 ns = ns >> 1; 555 if (on && ns < 8LL) 556 return -EINVAL; 557 ts = ns_to_timespec64(ns); 558 if (rq->perout.index == 1) { 559 tsauxc_mask = TSAUXC_EN_TT1; 560 tsim_mask = TSINTR_TT1; 561 trgttiml = E1000_TRGTTIML1; 562 trgttimh = E1000_TRGTTIMH1; 563 } else { 564 tsauxc_mask = TSAUXC_EN_TT0; 565 tsim_mask = TSINTR_TT0; 566 trgttiml = E1000_TRGTTIML0; 567 trgttimh = E1000_TRGTTIMH0; 568 } 569 spin_lock_irqsave(&igb->tmreg_lock, flags); 570 tsauxc = rd32(E1000_TSAUXC); 571 tsim = rd32(E1000_TSIM); 572 if (rq->perout.index == 1) { 573 tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1); 574 tsim &= ~TSINTR_TT1; 575 } else { 576 tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0); 577 tsim &= ~TSINTR_TT0; 578 } 579 if (on) { 580 int i = rq->perout.index; 581 582 /* read systim registers in sequence */ 583 rd32(E1000_SYSTIMR); 584 systiml = rd32(E1000_SYSTIML); 585 systimh = rd32(E1000_SYSTIMH); 586 systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml); 587 now = timecounter_cyc2time(&igb->tc, systim); 588 589 if (pin < 2) { 590 level_mask = (i == 1) ? 0x80000 : 0x40000; 591 level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0; 592 } else { 593 level_mask = (i == 1) ? 0x80 : 0x40; 594 level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0; 595 } 596 597 div_u64_rem(now, ns, &rem); 598 systim = systim + (ns - rem); 599 600 /* synchronize pin level with rising/falling edges */ 601 div_u64_rem(now, ns << 1, &rem); 602 if (rem < ns) { 603 /* first half of period */ 604 if (level == 0) { 605 /* output is already low, skip this period */ 606 systim += ns; 607 } 608 } else { 609 /* second half of period */ 610 if (level == 1) { 611 /* output is already high, skip this period */ 612 systim += ns; 613 } 614 } 615 616 start = ns_to_timespec64(systim + (ns - rem)); 617 igb_pin_perout(igb, i, pin, 0); 618 igb->perout[i].start.tv_sec = start.tv_sec; 619 igb->perout[i].start.tv_nsec = start.tv_nsec; 620 igb->perout[i].period.tv_sec = ts.tv_sec; 621 igb->perout[i].period.tv_nsec = ts.tv_nsec; 622 623 wr32(trgttiml, (u32)systim); 624 wr32(trgttimh, ((u32)(systim >> 32)) & 0xFF); 625 tsauxc |= tsauxc_mask; 626 tsim |= tsim_mask; 627 } 628 wr32(E1000_TSAUXC, tsauxc); 629 wr32(E1000_TSIM, tsim); 630 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 631 return 0; 632 633 case PTP_CLK_REQ_PPS: 634 return -EOPNOTSUPP; 635 } 636 637 return -EOPNOTSUPP; 638 } 639 640 static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp, 641 struct ptp_clock_request *rq, int on) 642 { 643 struct igb_adapter *igb = 644 container_of(ptp, struct igb_adapter, ptp_caps); 645 struct e1000_hw *hw = &igb->hw; 646 u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout; 647 unsigned long flags; 648 struct timespec64 ts; 649 int use_freq = 0, pin = -1; 650 s64 ns; 651 652 switch (rq->type) { 653 case PTP_CLK_REQ_EXTTS: 654 /* Reject requests failing to enable both edges. */ 655 if ((rq->extts.flags & PTP_STRICT_FLAGS) && 656 (rq->extts.flags & PTP_ENABLE_FEATURE) && 657 (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES) 658 return -EOPNOTSUPP; 659 660 if (on) { 661 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS, 662 rq->extts.index); 663 if (pin < 0) 664 return -EBUSY; 665 } 666 if (rq->extts.index == 1) { 667 tsauxc_mask = TSAUXC_EN_TS1; 668 tsim_mask = TSINTR_AUTT1; 669 } else { 670 tsauxc_mask = TSAUXC_EN_TS0; 671 tsim_mask = TSINTR_AUTT0; 672 } 673 spin_lock_irqsave(&igb->tmreg_lock, flags); 674 tsauxc = rd32(E1000_TSAUXC); 675 tsim = rd32(E1000_TSIM); 676 if (on) { 677 igb_pin_extts(igb, rq->extts.index, pin); 678 tsauxc |= tsauxc_mask; 679 tsim |= tsim_mask; 680 } else { 681 tsauxc &= ~tsauxc_mask; 682 tsim &= ~tsim_mask; 683 } 684 wr32(E1000_TSAUXC, tsauxc); 685 wr32(E1000_TSIM, tsim); 686 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 687 return 0; 688 689 case PTP_CLK_REQ_PEROUT: 690 /* Reject requests with unsupported flags */ 691 if (rq->perout.flags) 692 return -EOPNOTSUPP; 693 694 if (on) { 695 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT, 696 rq->perout.index); 697 if (pin < 0) 698 return -EBUSY; 699 } 700 ts.tv_sec = rq->perout.period.sec; 701 ts.tv_nsec = rq->perout.period.nsec; 702 ns = timespec64_to_ns(&ts); 703 ns = ns >> 1; 704 if (on && ((ns <= 70000000LL) || (ns == 125000000LL) || 705 (ns == 250000000LL) || (ns == 500000000LL))) { 706 if (ns < 8LL) 707 return -EINVAL; 708 use_freq = 1; 709 } 710 ts = ns_to_timespec64(ns); 711 if (rq->perout.index == 1) { 712 if (use_freq) { 713 tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1; 714 tsim_mask = 0; 715 } else { 716 tsauxc_mask = TSAUXC_EN_TT1; 717 tsim_mask = TSINTR_TT1; 718 } 719 trgttiml = E1000_TRGTTIML1; 720 trgttimh = E1000_TRGTTIMH1; 721 freqout = E1000_FREQOUT1; 722 } else { 723 if (use_freq) { 724 tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0; 725 tsim_mask = 0; 726 } else { 727 tsauxc_mask = TSAUXC_EN_TT0; 728 tsim_mask = TSINTR_TT0; 729 } 730 trgttiml = E1000_TRGTTIML0; 731 trgttimh = E1000_TRGTTIMH0; 732 freqout = E1000_FREQOUT0; 733 } 734 spin_lock_irqsave(&igb->tmreg_lock, flags); 735 tsauxc = rd32(E1000_TSAUXC); 736 tsim = rd32(E1000_TSIM); 737 if (rq->perout.index == 1) { 738 tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1); 739 tsim &= ~TSINTR_TT1; 740 } else { 741 tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0); 742 tsim &= ~TSINTR_TT0; 743 } 744 if (on) { 745 int i = rq->perout.index; 746 igb_pin_perout(igb, i, pin, use_freq); 747 igb->perout[i].start.tv_sec = rq->perout.start.sec; 748 igb->perout[i].start.tv_nsec = rq->perout.start.nsec; 749 igb->perout[i].period.tv_sec = ts.tv_sec; 750 igb->perout[i].period.tv_nsec = ts.tv_nsec; 751 wr32(trgttimh, rq->perout.start.sec); 752 wr32(trgttiml, rq->perout.start.nsec); 753 if (use_freq) 754 wr32(freqout, ns); 755 tsauxc |= tsauxc_mask; 756 tsim |= tsim_mask; 757 } 758 wr32(E1000_TSAUXC, tsauxc); 759 wr32(E1000_TSIM, tsim); 760 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 761 return 0; 762 763 case PTP_CLK_REQ_PPS: 764 spin_lock_irqsave(&igb->tmreg_lock, flags); 765 tsim = rd32(E1000_TSIM); 766 if (on) 767 tsim |= TSINTR_SYS_WRAP; 768 else 769 tsim &= ~TSINTR_SYS_WRAP; 770 igb->pps_sys_wrap_on = !!on; 771 wr32(E1000_TSIM, tsim); 772 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 773 return 0; 774 } 775 776 return -EOPNOTSUPP; 777 } 778 779 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp, 780 struct ptp_clock_request *rq, int on) 781 { 782 return -EOPNOTSUPP; 783 } 784 785 static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin, 786 enum ptp_pin_function func, unsigned int chan) 787 { 788 switch (func) { 789 case PTP_PF_NONE: 790 case PTP_PF_EXTTS: 791 case PTP_PF_PEROUT: 792 break; 793 case PTP_PF_PHYSYNC: 794 return -1; 795 } 796 return 0; 797 } 798 799 /** 800 * igb_ptp_tx_work 801 * @work: pointer to work struct 802 * 803 * This work function polls the TSYNCTXCTL valid bit to determine when a 804 * timestamp has been taken for the current stored skb. 805 **/ 806 static void igb_ptp_tx_work(struct work_struct *work) 807 { 808 struct igb_adapter *adapter = container_of(work, struct igb_adapter, 809 ptp_tx_work); 810 struct e1000_hw *hw = &adapter->hw; 811 u32 tsynctxctl; 812 813 if (!adapter->ptp_tx_skb) 814 return; 815 816 if (time_is_before_jiffies(adapter->ptp_tx_start + 817 IGB_PTP_TX_TIMEOUT)) { 818 dev_kfree_skb_any(adapter->ptp_tx_skb); 819 adapter->ptp_tx_skb = NULL; 820 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state); 821 adapter->tx_hwtstamp_timeouts++; 822 /* Clear the tx valid bit in TSYNCTXCTL register to enable 823 * interrupt 824 */ 825 rd32(E1000_TXSTMPH); 826 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n"); 827 return; 828 } 829 830 tsynctxctl = rd32(E1000_TSYNCTXCTL); 831 if (tsynctxctl & E1000_TSYNCTXCTL_VALID) 832 igb_ptp_tx_hwtstamp(adapter); 833 else 834 /* reschedule to check later */ 835 schedule_work(&adapter->ptp_tx_work); 836 } 837 838 static void igb_ptp_overflow_check(struct work_struct *work) 839 { 840 struct igb_adapter *igb = 841 container_of(work, struct igb_adapter, ptp_overflow_work.work); 842 struct timespec64 ts; 843 u64 ns; 844 845 /* Update the timecounter */ 846 ns = timecounter_read(&igb->tc); 847 848 ts = ns_to_timespec64(ns); 849 pr_debug("igb overflow check at %lld.%09lu\n", 850 (long long) ts.tv_sec, ts.tv_nsec); 851 852 schedule_delayed_work(&igb->ptp_overflow_work, 853 IGB_SYSTIM_OVERFLOW_PERIOD); 854 } 855 856 /** 857 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched 858 * @adapter: private network adapter structure 859 * 860 * This watchdog task is scheduled to detect error case where hardware has 861 * dropped an Rx packet that was timestamped when the ring is full. The 862 * particular error is rare but leaves the device in a state unable to timestamp 863 * any future packets. 864 **/ 865 void igb_ptp_rx_hang(struct igb_adapter *adapter) 866 { 867 struct e1000_hw *hw = &adapter->hw; 868 u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL); 869 unsigned long rx_event; 870 871 /* Other hardware uses per-packet timestamps */ 872 if (hw->mac.type != e1000_82576) 873 return; 874 875 /* If we don't have a valid timestamp in the registers, just update the 876 * timeout counter and exit 877 */ 878 if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) { 879 adapter->last_rx_ptp_check = jiffies; 880 return; 881 } 882 883 /* Determine the most recent watchdog or rx_timestamp event */ 884 rx_event = adapter->last_rx_ptp_check; 885 if (time_after(adapter->last_rx_timestamp, rx_event)) 886 rx_event = adapter->last_rx_timestamp; 887 888 /* Only need to read the high RXSTMP register to clear the lock */ 889 if (time_is_before_jiffies(rx_event + 5 * HZ)) { 890 rd32(E1000_RXSTMPH); 891 adapter->last_rx_ptp_check = jiffies; 892 adapter->rx_hwtstamp_cleared++; 893 dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n"); 894 } 895 } 896 897 /** 898 * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes 899 * @adapter: private network adapter structure 900 */ 901 void igb_ptp_tx_hang(struct igb_adapter *adapter) 902 { 903 struct e1000_hw *hw = &adapter->hw; 904 bool timeout = time_is_before_jiffies(adapter->ptp_tx_start + 905 IGB_PTP_TX_TIMEOUT); 906 907 if (!adapter->ptp_tx_skb) 908 return; 909 910 if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state)) 911 return; 912 913 /* If we haven't received a timestamp within the timeout, it is 914 * reasonable to assume that it will never occur, so we can unlock the 915 * timestamp bit when this occurs. 916 */ 917 if (timeout) { 918 cancel_work_sync(&adapter->ptp_tx_work); 919 dev_kfree_skb_any(adapter->ptp_tx_skb); 920 adapter->ptp_tx_skb = NULL; 921 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state); 922 adapter->tx_hwtstamp_timeouts++; 923 /* Clear the tx valid bit in TSYNCTXCTL register to enable 924 * interrupt 925 */ 926 rd32(E1000_TXSTMPH); 927 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n"); 928 } 929 } 930 931 /** 932 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp 933 * @adapter: Board private structure. 934 * 935 * If we were asked to do hardware stamping and such a time stamp is 936 * available, then it must have been for this skb here because we only 937 * allow only one such packet into the queue. 938 **/ 939 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter) 940 { 941 struct sk_buff *skb = adapter->ptp_tx_skb; 942 struct e1000_hw *hw = &adapter->hw; 943 struct skb_shared_hwtstamps shhwtstamps; 944 u64 regval; 945 int adjust = 0; 946 947 regval = rd32(E1000_TXSTMPL); 948 regval |= (u64)rd32(E1000_TXSTMPH) << 32; 949 950 igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval); 951 /* adjust timestamp for the TX latency based on link speed */ 952 if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) { 953 switch (adapter->link_speed) { 954 case SPEED_10: 955 adjust = IGB_I210_TX_LATENCY_10; 956 break; 957 case SPEED_100: 958 adjust = IGB_I210_TX_LATENCY_100; 959 break; 960 case SPEED_1000: 961 adjust = IGB_I210_TX_LATENCY_1000; 962 break; 963 } 964 } 965 966 shhwtstamps.hwtstamp = 967 ktime_add_ns(shhwtstamps.hwtstamp, adjust); 968 969 /* Clear the lock early before calling skb_tstamp_tx so that 970 * applications are not woken up before the lock bit is clear. We use 971 * a copy of the skb pointer to ensure other threads can't change it 972 * while we're notifying the stack. 973 */ 974 adapter->ptp_tx_skb = NULL; 975 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state); 976 977 /* Notify the stack and free the skb after we've unlocked */ 978 skb_tstamp_tx(skb, &shhwtstamps); 979 dev_kfree_skb_any(skb); 980 } 981 982 /** 983 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp 984 * @q_vector: Pointer to interrupt specific structure 985 * @va: Pointer to address containing Rx buffer 986 * @timestamp: Pointer where timestamp will be stored 987 * 988 * This function is meant to retrieve a timestamp from the first buffer of an 989 * incoming frame. The value is stored in little endian format starting on 990 * byte 8 991 * 992 * Returns: The timestamp header length or 0 if not available 993 **/ 994 int igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va, 995 ktime_t *timestamp) 996 { 997 struct igb_adapter *adapter = q_vector->adapter; 998 struct e1000_hw *hw = &adapter->hw; 999 struct skb_shared_hwtstamps ts; 1000 __le64 *regval = (__le64 *)va; 1001 int adjust = 0; 1002 1003 if (!(adapter->ptp_flags & IGB_PTP_ENABLED)) 1004 return 0; 1005 1006 /* The timestamp is recorded in little endian format. 1007 * DWORD: 0 1 2 3 1008 * Field: Reserved Reserved SYSTIML SYSTIMH 1009 */ 1010 1011 /* check reserved dwords are zero, be/le doesn't matter for zero */ 1012 if (regval[0]) 1013 return 0; 1014 1015 igb_ptp_systim_to_hwtstamp(adapter, &ts, le64_to_cpu(regval[1])); 1016 1017 /* adjust timestamp for the RX latency based on link speed */ 1018 if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) { 1019 switch (adapter->link_speed) { 1020 case SPEED_10: 1021 adjust = IGB_I210_RX_LATENCY_10; 1022 break; 1023 case SPEED_100: 1024 adjust = IGB_I210_RX_LATENCY_100; 1025 break; 1026 case SPEED_1000: 1027 adjust = IGB_I210_RX_LATENCY_1000; 1028 break; 1029 } 1030 } 1031 1032 *timestamp = ktime_sub_ns(ts.hwtstamp, adjust); 1033 1034 return IGB_TS_HDR_LEN; 1035 } 1036 1037 /** 1038 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register 1039 * @q_vector: Pointer to interrupt specific structure 1040 * @skb: Buffer containing timestamp and packet 1041 * 1042 * This function is meant to retrieve a timestamp from the internal registers 1043 * of the adapter and store it in the skb. 1044 **/ 1045 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb) 1046 { 1047 struct igb_adapter *adapter = q_vector->adapter; 1048 struct e1000_hw *hw = &adapter->hw; 1049 int adjust = 0; 1050 u64 regval; 1051 1052 if (!(adapter->ptp_flags & IGB_PTP_ENABLED)) 1053 return; 1054 1055 /* If this bit is set, then the RX registers contain the time stamp. No 1056 * other packet will be time stamped until we read these registers, so 1057 * read the registers to make them available again. Because only one 1058 * packet can be time stamped at a time, we know that the register 1059 * values must belong to this one here and therefore we don't need to 1060 * compare any of the additional attributes stored for it. 1061 * 1062 * If nothing went wrong, then it should have a shared tx_flags that we 1063 * can turn into a skb_shared_hwtstamps. 1064 */ 1065 if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) 1066 return; 1067 1068 regval = rd32(E1000_RXSTMPL); 1069 regval |= (u64)rd32(E1000_RXSTMPH) << 32; 1070 1071 igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval); 1072 1073 /* adjust timestamp for the RX latency based on link speed */ 1074 if (adapter->hw.mac.type == e1000_i210) { 1075 switch (adapter->link_speed) { 1076 case SPEED_10: 1077 adjust = IGB_I210_RX_LATENCY_10; 1078 break; 1079 case SPEED_100: 1080 adjust = IGB_I210_RX_LATENCY_100; 1081 break; 1082 case SPEED_1000: 1083 adjust = IGB_I210_RX_LATENCY_1000; 1084 break; 1085 } 1086 } 1087 skb_hwtstamps(skb)->hwtstamp = 1088 ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust); 1089 1090 /* Update the last_rx_timestamp timer in order to enable watchdog check 1091 * for error case of latched timestamp on a dropped packet. 1092 */ 1093 adapter->last_rx_timestamp = jiffies; 1094 } 1095 1096 /** 1097 * igb_ptp_get_ts_config - get hardware time stamping config 1098 * @netdev: netdev struct 1099 * @ifr: interface struct 1100 * 1101 * Get the hwtstamp_config settings to return to the user. Rather than attempt 1102 * to deconstruct the settings from the registers, just return a shadow copy 1103 * of the last known settings. 1104 **/ 1105 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr) 1106 { 1107 struct igb_adapter *adapter = netdev_priv(netdev); 1108 struct hwtstamp_config *config = &adapter->tstamp_config; 1109 1110 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ? 1111 -EFAULT : 0; 1112 } 1113 1114 /** 1115 * igb_ptp_set_timestamp_mode - setup hardware for timestamping 1116 * @adapter: networking device structure 1117 * @config: hwtstamp configuration 1118 * 1119 * Outgoing time stamping can be enabled and disabled. Play nice and 1120 * disable it when requested, although it shouldn't case any overhead 1121 * when no packet needs it. At most one packet in the queue may be 1122 * marked for time stamping, otherwise it would be impossible to tell 1123 * for sure to which packet the hardware time stamp belongs. 1124 * 1125 * Incoming time stamping has to be configured via the hardware 1126 * filters. Not all combinations are supported, in particular event 1127 * type has to be specified. Matching the kind of event packet is 1128 * not supported, with the exception of "all V2 events regardless of 1129 * level 2 or 4". 1130 */ 1131 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter, 1132 struct hwtstamp_config *config) 1133 { 1134 struct e1000_hw *hw = &adapter->hw; 1135 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED; 1136 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED; 1137 u32 tsync_rx_cfg = 0; 1138 bool is_l4 = false; 1139 bool is_l2 = false; 1140 u32 regval; 1141 1142 switch (config->tx_type) { 1143 case HWTSTAMP_TX_OFF: 1144 tsync_tx_ctl = 0; 1145 break; 1146 case HWTSTAMP_TX_ON: 1147 break; 1148 default: 1149 return -ERANGE; 1150 } 1151 1152 switch (config->rx_filter) { 1153 case HWTSTAMP_FILTER_NONE: 1154 tsync_rx_ctl = 0; 1155 break; 1156 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1157 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; 1158 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE; 1159 is_l4 = true; 1160 break; 1161 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1162 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; 1163 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE; 1164 is_l4 = true; 1165 break; 1166 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1167 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1168 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1169 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1170 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1171 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1172 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1173 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1174 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1175 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2; 1176 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 1177 is_l2 = true; 1178 is_l4 = true; 1179 break; 1180 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1181 case HWTSTAMP_FILTER_NTP_ALL: 1182 case HWTSTAMP_FILTER_ALL: 1183 /* 82576 cannot timestamp all packets, which it needs to do to 1184 * support both V1 Sync and Delay_Req messages 1185 */ 1186 if (hw->mac.type != e1000_82576) { 1187 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL; 1188 config->rx_filter = HWTSTAMP_FILTER_ALL; 1189 break; 1190 } 1191 fallthrough; 1192 default: 1193 config->rx_filter = HWTSTAMP_FILTER_NONE; 1194 return -ERANGE; 1195 } 1196 1197 if (hw->mac.type == e1000_82575) { 1198 if (tsync_rx_ctl | tsync_tx_ctl) 1199 return -EINVAL; 1200 return 0; 1201 } 1202 1203 /* Per-packet timestamping only works if all packets are 1204 * timestamped, so enable timestamping in all packets as 1205 * long as one Rx filter was configured. 1206 */ 1207 if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) { 1208 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED; 1209 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL; 1210 config->rx_filter = HWTSTAMP_FILTER_ALL; 1211 is_l2 = true; 1212 is_l4 = true; 1213 1214 if ((hw->mac.type == e1000_i210) || 1215 (hw->mac.type == e1000_i211)) { 1216 regval = rd32(E1000_RXPBS); 1217 regval |= E1000_RXPBS_CFG_TS_EN; 1218 wr32(E1000_RXPBS, regval); 1219 } 1220 } 1221 1222 /* enable/disable TX */ 1223 regval = rd32(E1000_TSYNCTXCTL); 1224 regval &= ~E1000_TSYNCTXCTL_ENABLED; 1225 regval |= tsync_tx_ctl; 1226 wr32(E1000_TSYNCTXCTL, regval); 1227 1228 /* enable/disable RX */ 1229 regval = rd32(E1000_TSYNCRXCTL); 1230 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK); 1231 regval |= tsync_rx_ctl; 1232 wr32(E1000_TSYNCRXCTL, regval); 1233 1234 /* define which PTP packets are time stamped */ 1235 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg); 1236 1237 /* define ethertype filter for timestamped packets */ 1238 if (is_l2) 1239 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 1240 (E1000_ETQF_FILTER_ENABLE | /* enable filter */ 1241 E1000_ETQF_1588 | /* enable timestamping */ 1242 ETH_P_1588)); /* 1588 eth protocol type */ 1243 else 1244 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0); 1245 1246 /* L4 Queue Filter[3]: filter by destination port and protocol */ 1247 if (is_l4) { 1248 u32 ftqf = (IPPROTO_UDP /* UDP */ 1249 | E1000_FTQF_VF_BP /* VF not compared */ 1250 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */ 1251 | E1000_FTQF_MASK); /* mask all inputs */ 1252 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */ 1253 1254 wr32(E1000_IMIR(3), (__force unsigned int)htons(PTP_EV_PORT)); 1255 wr32(E1000_IMIREXT(3), 1256 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP)); 1257 if (hw->mac.type == e1000_82576) { 1258 /* enable source port check */ 1259 wr32(E1000_SPQF(3), (__force unsigned int)htons(PTP_EV_PORT)); 1260 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP; 1261 } 1262 wr32(E1000_FTQF(3), ftqf); 1263 } else { 1264 wr32(E1000_FTQF(3), E1000_FTQF_MASK); 1265 } 1266 wrfl(); 1267 1268 /* clear TX/RX time stamp registers, just to be sure */ 1269 regval = rd32(E1000_TXSTMPL); 1270 regval = rd32(E1000_TXSTMPH); 1271 regval = rd32(E1000_RXSTMPL); 1272 regval = rd32(E1000_RXSTMPH); 1273 1274 return 0; 1275 } 1276 1277 /** 1278 * igb_ptp_set_ts_config - set hardware time stamping config 1279 * @netdev: netdev struct 1280 * @ifr: interface struct 1281 * 1282 **/ 1283 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr) 1284 { 1285 struct igb_adapter *adapter = netdev_priv(netdev); 1286 struct hwtstamp_config config; 1287 int err; 1288 1289 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 1290 return -EFAULT; 1291 1292 err = igb_ptp_set_timestamp_mode(adapter, &config); 1293 if (err) 1294 return err; 1295 1296 /* save these settings for future reference */ 1297 memcpy(&adapter->tstamp_config, &config, 1298 sizeof(adapter->tstamp_config)); 1299 1300 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 1301 -EFAULT : 0; 1302 } 1303 1304 /** 1305 * igb_ptp_init - Initialize PTP functionality 1306 * @adapter: Board private structure 1307 * 1308 * This function is called at device probe to initialize the PTP 1309 * functionality. 1310 */ 1311 void igb_ptp_init(struct igb_adapter *adapter) 1312 { 1313 struct e1000_hw *hw = &adapter->hw; 1314 struct net_device *netdev = adapter->netdev; 1315 1316 switch (hw->mac.type) { 1317 case e1000_82576: 1318 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr); 1319 adapter->ptp_caps.owner = THIS_MODULE; 1320 adapter->ptp_caps.max_adj = 999999881; 1321 adapter->ptp_caps.n_ext_ts = 0; 1322 adapter->ptp_caps.pps = 0; 1323 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82576; 1324 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576; 1325 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82576; 1326 adapter->ptp_caps.settime64 = igb_ptp_settime_82576; 1327 adapter->ptp_caps.enable = igb_ptp_feature_enable; 1328 adapter->cc.read = igb_ptp_read_82576; 1329 adapter->cc.mask = CYCLECOUNTER_MASK(64); 1330 adapter->cc.mult = 1; 1331 adapter->cc.shift = IGB_82576_TSYNC_SHIFT; 1332 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK; 1333 break; 1334 case e1000_82580: 1335 case e1000_i354: 1336 case e1000_i350: 1337 igb_ptp_sdp_init(adapter); 1338 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr); 1339 adapter->ptp_caps.owner = THIS_MODULE; 1340 adapter->ptp_caps.max_adj = 62499999; 1341 adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS; 1342 adapter->ptp_caps.n_per_out = IGB_N_PEROUT; 1343 adapter->ptp_caps.n_pins = IGB_N_SDP; 1344 adapter->ptp_caps.pps = 0; 1345 adapter->ptp_caps.supported_extts_flags = PTP_RISING_EDGE | 1346 PTP_FALLING_EDGE | 1347 PTP_STRICT_FLAGS; 1348 adapter->ptp_caps.pin_config = adapter->sdp_config; 1349 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580; 1350 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576; 1351 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82580; 1352 adapter->ptp_caps.settime64 = igb_ptp_settime_82576; 1353 adapter->ptp_caps.enable = igb_ptp_feature_enable_82580; 1354 adapter->ptp_caps.verify = igb_ptp_verify_pin; 1355 adapter->cc.read = igb_ptp_read_82580; 1356 adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580); 1357 adapter->cc.mult = 1; 1358 adapter->cc.shift = 0; 1359 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK; 1360 break; 1361 case e1000_i210: 1362 case e1000_i211: 1363 igb_ptp_sdp_init(adapter); 1364 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr); 1365 adapter->ptp_caps.owner = THIS_MODULE; 1366 adapter->ptp_caps.max_adj = 62499999; 1367 adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS; 1368 adapter->ptp_caps.n_per_out = IGB_N_PEROUT; 1369 adapter->ptp_caps.n_pins = IGB_N_SDP; 1370 adapter->ptp_caps.supported_extts_flags = PTP_RISING_EDGE | 1371 PTP_FALLING_EDGE | 1372 PTP_STRICT_FLAGS; 1373 adapter->ptp_caps.pps = 1; 1374 adapter->ptp_caps.pin_config = adapter->sdp_config; 1375 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580; 1376 adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210; 1377 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_i210; 1378 adapter->ptp_caps.settime64 = igb_ptp_settime_i210; 1379 adapter->ptp_caps.enable = igb_ptp_feature_enable_i210; 1380 adapter->ptp_caps.verify = igb_ptp_verify_pin; 1381 break; 1382 default: 1383 adapter->ptp_clock = NULL; 1384 return; 1385 } 1386 1387 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps, 1388 &adapter->pdev->dev); 1389 if (IS_ERR(adapter->ptp_clock)) { 1390 adapter->ptp_clock = NULL; 1391 dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n"); 1392 } else if (adapter->ptp_clock) { 1393 dev_info(&adapter->pdev->dev, "added PHC on %s\n", 1394 adapter->netdev->name); 1395 adapter->ptp_flags |= IGB_PTP_ENABLED; 1396 1397 spin_lock_init(&adapter->tmreg_lock); 1398 INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work); 1399 1400 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK) 1401 INIT_DELAYED_WORK(&adapter->ptp_overflow_work, 1402 igb_ptp_overflow_check); 1403 1404 adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; 1405 adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF; 1406 1407 igb_ptp_reset(adapter); 1408 } 1409 } 1410 1411 /** 1412 * igb_ptp_sdp_init - utility function which inits the SDP config structs 1413 * @adapter: Board private structure. 1414 **/ 1415 void igb_ptp_sdp_init(struct igb_adapter *adapter) 1416 { 1417 int i; 1418 1419 for (i = 0; i < IGB_N_SDP; i++) { 1420 struct ptp_pin_desc *ppd = &adapter->sdp_config[i]; 1421 1422 snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i); 1423 ppd->index = i; 1424 ppd->func = PTP_PF_NONE; 1425 } 1426 } 1427 1428 /** 1429 * igb_ptp_suspend - Disable PTP work items and prepare for suspend 1430 * @adapter: Board private structure 1431 * 1432 * This function stops the overflow check work and PTP Tx timestamp work, and 1433 * will prepare the device for OS suspend. 1434 */ 1435 void igb_ptp_suspend(struct igb_adapter *adapter) 1436 { 1437 if (!(adapter->ptp_flags & IGB_PTP_ENABLED)) 1438 return; 1439 1440 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK) 1441 cancel_delayed_work_sync(&adapter->ptp_overflow_work); 1442 1443 cancel_work_sync(&adapter->ptp_tx_work); 1444 if (adapter->ptp_tx_skb) { 1445 dev_kfree_skb_any(adapter->ptp_tx_skb); 1446 adapter->ptp_tx_skb = NULL; 1447 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state); 1448 } 1449 } 1450 1451 /** 1452 * igb_ptp_stop - Disable PTP device and stop the overflow check. 1453 * @adapter: Board private structure. 1454 * 1455 * This function stops the PTP support and cancels the delayed work. 1456 **/ 1457 void igb_ptp_stop(struct igb_adapter *adapter) 1458 { 1459 igb_ptp_suspend(adapter); 1460 1461 if (adapter->ptp_clock) { 1462 ptp_clock_unregister(adapter->ptp_clock); 1463 dev_info(&adapter->pdev->dev, "removed PHC on %s\n", 1464 adapter->netdev->name); 1465 adapter->ptp_flags &= ~IGB_PTP_ENABLED; 1466 } 1467 } 1468 1469 /** 1470 * igb_ptp_reset - Re-enable the adapter for PTP following a reset. 1471 * @adapter: Board private structure. 1472 * 1473 * This function handles the reset work required to re-enable the PTP device. 1474 **/ 1475 void igb_ptp_reset(struct igb_adapter *adapter) 1476 { 1477 struct e1000_hw *hw = &adapter->hw; 1478 unsigned long flags; 1479 1480 /* reset the tstamp_config */ 1481 igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config); 1482 1483 spin_lock_irqsave(&adapter->tmreg_lock, flags); 1484 1485 switch (adapter->hw.mac.type) { 1486 case e1000_82576: 1487 /* Dial the nominal frequency. */ 1488 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576); 1489 break; 1490 case e1000_82580: 1491 case e1000_i354: 1492 case e1000_i350: 1493 case e1000_i210: 1494 case e1000_i211: 1495 wr32(E1000_TSAUXC, 0x0); 1496 wr32(E1000_TSSDP, 0x0); 1497 wr32(E1000_TSIM, 1498 TSYNC_INTERRUPTS | 1499 (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0)); 1500 wr32(E1000_IMS, E1000_IMS_TS); 1501 break; 1502 default: 1503 /* No work to do. */ 1504 goto out; 1505 } 1506 1507 /* Re-initialize the timer. */ 1508 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) { 1509 struct timespec64 ts = ktime_to_timespec64(ktime_get_real()); 1510 1511 igb_ptp_write_i210(adapter, &ts); 1512 } else { 1513 timecounter_init(&adapter->tc, &adapter->cc, 1514 ktime_to_ns(ktime_get_real())); 1515 } 1516 out: 1517 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 1518 1519 wrfl(); 1520 1521 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK) 1522 schedule_delayed_work(&adapter->ptp_overflow_work, 1523 IGB_SYSTIM_OVERFLOW_PERIOD); 1524 } 1525