1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (C) 2022, Intel Corporation. */ 3 4 #include "ice_virtchnl.h" 5 #include "ice_vf_lib_private.h" 6 #include "ice.h" 7 #include "ice_base.h" 8 #include "ice_lib.h" 9 #include "ice_fltr.h" 10 #include "ice_virtchnl_allowlist.h" 11 #include "ice_vf_vsi_vlan_ops.h" 12 #include "ice_vlan.h" 13 #include "ice_flex_pipe.h" 14 #include "ice_dcb_lib.h" 15 16 #define FIELD_SELECTOR(proto_hdr_field) \ 17 BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK) 18 19 struct ice_vc_hdr_match_type { 20 u32 vc_hdr; /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */ 21 u32 ice_hdr; /* ice headers (ICE_FLOW_SEG_HDR_XXX) */ 22 }; 23 24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = { 25 {VIRTCHNL_PROTO_HDR_NONE, ICE_FLOW_SEG_HDR_NONE}, 26 {VIRTCHNL_PROTO_HDR_ETH, ICE_FLOW_SEG_HDR_ETH}, 27 {VIRTCHNL_PROTO_HDR_S_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 28 {VIRTCHNL_PROTO_HDR_C_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 29 {VIRTCHNL_PROTO_HDR_IPV4, ICE_FLOW_SEG_HDR_IPV4 | 30 ICE_FLOW_SEG_HDR_IPV_OTHER}, 31 {VIRTCHNL_PROTO_HDR_IPV6, ICE_FLOW_SEG_HDR_IPV6 | 32 ICE_FLOW_SEG_HDR_IPV_OTHER}, 33 {VIRTCHNL_PROTO_HDR_TCP, ICE_FLOW_SEG_HDR_TCP}, 34 {VIRTCHNL_PROTO_HDR_UDP, ICE_FLOW_SEG_HDR_UDP}, 35 {VIRTCHNL_PROTO_HDR_SCTP, ICE_FLOW_SEG_HDR_SCTP}, 36 {VIRTCHNL_PROTO_HDR_PPPOE, ICE_FLOW_SEG_HDR_PPPOE}, 37 {VIRTCHNL_PROTO_HDR_GTPU_IP, ICE_FLOW_SEG_HDR_GTPU_IP}, 38 {VIRTCHNL_PROTO_HDR_GTPU_EH, ICE_FLOW_SEG_HDR_GTPU_EH}, 39 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN, 40 ICE_FLOW_SEG_HDR_GTPU_DWN}, 41 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP, 42 ICE_FLOW_SEG_HDR_GTPU_UP}, 43 {VIRTCHNL_PROTO_HDR_L2TPV3, ICE_FLOW_SEG_HDR_L2TPV3}, 44 {VIRTCHNL_PROTO_HDR_ESP, ICE_FLOW_SEG_HDR_ESP}, 45 {VIRTCHNL_PROTO_HDR_AH, ICE_FLOW_SEG_HDR_AH}, 46 {VIRTCHNL_PROTO_HDR_PFCP, ICE_FLOW_SEG_HDR_PFCP_SESSION}, 47 }; 48 49 struct ice_vc_hash_field_match_type { 50 u32 vc_hdr; /* virtchnl headers 51 * (VIRTCHNL_PROTO_HDR_XXX) 52 */ 53 u32 vc_hash_field; /* virtchnl hash fields selector 54 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX)) 55 */ 56 u64 ice_hash_field; /* ice hash fields 57 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX)) 58 */ 59 }; 60 61 static const struct 62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = { 63 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC), 64 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)}, 65 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 66 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)}, 67 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) | 68 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 69 ICE_FLOW_HASH_ETH}, 70 {VIRTCHNL_PROTO_HDR_ETH, 71 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE), 72 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)}, 73 {VIRTCHNL_PROTO_HDR_S_VLAN, 74 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID), 75 BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)}, 76 {VIRTCHNL_PROTO_HDR_C_VLAN, 77 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID), 78 BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)}, 79 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC), 80 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)}, 81 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 82 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)}, 83 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 84 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 85 ICE_FLOW_HASH_IPV4}, 86 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 87 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 88 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) | 89 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 90 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 91 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 92 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) | 93 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 94 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 95 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 96 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 97 ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 98 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 99 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 100 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC), 101 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)}, 102 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 103 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)}, 104 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 105 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 106 ICE_FLOW_HASH_IPV6}, 107 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 108 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 109 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) | 110 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 111 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 112 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 113 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) | 114 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 115 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 116 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 117 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 118 ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 119 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 120 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 121 {VIRTCHNL_PROTO_HDR_TCP, 122 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT), 123 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)}, 124 {VIRTCHNL_PROTO_HDR_TCP, 125 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 126 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)}, 127 {VIRTCHNL_PROTO_HDR_TCP, 128 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) | 129 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 130 ICE_FLOW_HASH_TCP_PORT}, 131 {VIRTCHNL_PROTO_HDR_UDP, 132 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT), 133 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)}, 134 {VIRTCHNL_PROTO_HDR_UDP, 135 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 136 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)}, 137 {VIRTCHNL_PROTO_HDR_UDP, 138 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) | 139 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 140 ICE_FLOW_HASH_UDP_PORT}, 141 {VIRTCHNL_PROTO_HDR_SCTP, 142 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT), 143 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)}, 144 {VIRTCHNL_PROTO_HDR_SCTP, 145 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 146 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)}, 147 {VIRTCHNL_PROTO_HDR_SCTP, 148 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) | 149 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 150 ICE_FLOW_HASH_SCTP_PORT}, 151 {VIRTCHNL_PROTO_HDR_PPPOE, 152 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID), 153 BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)}, 154 {VIRTCHNL_PROTO_HDR_GTPU_IP, 155 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID), 156 BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)}, 157 {VIRTCHNL_PROTO_HDR_L2TPV3, 158 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID), 159 BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)}, 160 {VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI), 161 BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)}, 162 {VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI), 163 BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)}, 164 {VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID), 165 BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)}, 166 }; 167 168 /** 169 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF 170 * @pf: pointer to the PF structure 171 * @v_opcode: operation code 172 * @v_retval: return value 173 * @msg: pointer to the msg buffer 174 * @msglen: msg length 175 */ 176 static void 177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode, 178 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 179 { 180 struct ice_hw *hw = &pf->hw; 181 struct ice_vf *vf; 182 unsigned int bkt; 183 184 mutex_lock(&pf->vfs.table_lock); 185 ice_for_each_vf(pf, bkt, vf) { 186 /* Not all vfs are enabled so skip the ones that are not */ 187 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) && 188 !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 189 continue; 190 191 /* Ignore return value on purpose - a given VF may fail, but 192 * we need to keep going and send to all of them 193 */ 194 ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg, 195 msglen, NULL); 196 } 197 mutex_unlock(&pf->vfs.table_lock); 198 } 199 200 /** 201 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event 202 * @vf: pointer to the VF structure 203 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for 204 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_* 205 * @link_up: whether or not to set the link up/down 206 */ 207 static void 208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe, 209 int ice_link_speed, bool link_up) 210 { 211 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) { 212 pfe->event_data.link_event_adv.link_status = link_up; 213 /* Speed in Mbps */ 214 pfe->event_data.link_event_adv.link_speed = 215 ice_conv_link_speed_to_virtchnl(true, ice_link_speed); 216 } else { 217 pfe->event_data.link_event.link_status = link_up; 218 /* Legacy method for virtchnl link speeds */ 219 pfe->event_data.link_event.link_speed = 220 (enum virtchnl_link_speed) 221 ice_conv_link_speed_to_virtchnl(false, ice_link_speed); 222 } 223 } 224 225 /** 226 * ice_vc_notify_vf_link_state - Inform a VF of link status 227 * @vf: pointer to the VF structure 228 * 229 * send a link status message to a single VF 230 */ 231 void ice_vc_notify_vf_link_state(struct ice_vf *vf) 232 { 233 struct virtchnl_pf_event pfe = { 0 }; 234 struct ice_hw *hw = &vf->pf->hw; 235 236 pfe.event = VIRTCHNL_EVENT_LINK_CHANGE; 237 pfe.severity = PF_EVENT_SEVERITY_INFO; 238 239 if (ice_is_vf_link_up(vf)) 240 ice_set_pfe_link(vf, &pfe, 241 hw->port_info->phy.link_info.link_speed, true); 242 else 243 ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false); 244 245 ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT, 246 VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, 247 sizeof(pfe), NULL); 248 } 249 250 /** 251 * ice_vc_notify_link_state - Inform all VFs on a PF of link status 252 * @pf: pointer to the PF structure 253 */ 254 void ice_vc_notify_link_state(struct ice_pf *pf) 255 { 256 struct ice_vf *vf; 257 unsigned int bkt; 258 259 mutex_lock(&pf->vfs.table_lock); 260 ice_for_each_vf(pf, bkt, vf) 261 ice_vc_notify_vf_link_state(vf); 262 mutex_unlock(&pf->vfs.table_lock); 263 } 264 265 /** 266 * ice_vc_notify_reset - Send pending reset message to all VFs 267 * @pf: pointer to the PF structure 268 * 269 * indicate a pending reset to all VFs on a given PF 270 */ 271 void ice_vc_notify_reset(struct ice_pf *pf) 272 { 273 struct virtchnl_pf_event pfe; 274 275 if (!ice_has_vfs(pf)) 276 return; 277 278 pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING; 279 pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM; 280 ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS, 281 (u8 *)&pfe, sizeof(struct virtchnl_pf_event)); 282 } 283 284 /** 285 * ice_vc_send_msg_to_vf - Send message to VF 286 * @vf: pointer to the VF info 287 * @v_opcode: virtual channel opcode 288 * @v_retval: virtual channel return value 289 * @msg: pointer to the msg buffer 290 * @msglen: msg length 291 * 292 * send msg to VF 293 */ 294 int 295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode, 296 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 297 { 298 struct device *dev; 299 struct ice_pf *pf; 300 int aq_ret; 301 302 pf = vf->pf; 303 dev = ice_pf_to_dev(pf); 304 305 aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval, 306 msg, msglen, NULL); 307 if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) { 308 dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n", 309 vf->vf_id, aq_ret, 310 ice_aq_str(pf->hw.mailboxq.sq_last_status)); 311 return -EIO; 312 } 313 314 return 0; 315 } 316 317 /** 318 * ice_vc_get_ver_msg 319 * @vf: pointer to the VF info 320 * @msg: pointer to the msg buffer 321 * 322 * called from the VF to request the API version used by the PF 323 */ 324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg) 325 { 326 struct virtchnl_version_info info = { 327 VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR 328 }; 329 330 vf->vf_ver = *(struct virtchnl_version_info *)msg; 331 /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */ 332 if (VF_IS_V10(&vf->vf_ver)) 333 info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS; 334 335 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION, 336 VIRTCHNL_STATUS_SUCCESS, (u8 *)&info, 337 sizeof(struct virtchnl_version_info)); 338 } 339 340 /** 341 * ice_vc_get_max_frame_size - get max frame size allowed for VF 342 * @vf: VF used to determine max frame size 343 * 344 * Max frame size is determined based on the current port's max frame size and 345 * whether a port VLAN is configured on this VF. The VF is not aware whether 346 * it's in a port VLAN so the PF needs to account for this in max frame size 347 * checks and sending the max frame size to the VF. 348 */ 349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf) 350 { 351 struct ice_port_info *pi = ice_vf_get_port_info(vf); 352 u16 max_frame_size; 353 354 max_frame_size = pi->phy.link_info.max_frame_size; 355 356 if (ice_vf_is_port_vlan_ena(vf)) 357 max_frame_size -= VLAN_HLEN; 358 359 return max_frame_size; 360 } 361 362 /** 363 * ice_vc_get_vlan_caps 364 * @hw: pointer to the hw 365 * @vf: pointer to the VF info 366 * @vsi: pointer to the VSI 367 * @driver_caps: current driver caps 368 * 369 * Return 0 if there is no VLAN caps supported, or VLAN caps value 370 */ 371 static u32 372 ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi, 373 u32 driver_caps) 374 { 375 if (ice_is_eswitch_mode_switchdev(vf->pf)) 376 /* In switchdev setting VLAN from VF isn't supported */ 377 return 0; 378 379 if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) { 380 /* VLAN offloads based on current device configuration */ 381 return VIRTCHNL_VF_OFFLOAD_VLAN_V2; 382 } else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) { 383 /* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for 384 * these two conditions, which amounts to guest VLAN filtering 385 * and offloads being based on the inner VLAN or the 386 * inner/single VLAN respectively and don't allow VF to 387 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases 388 */ 389 if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) { 390 return VIRTCHNL_VF_OFFLOAD_VLAN; 391 } else if (!ice_is_dvm_ena(hw) && 392 !ice_vf_is_port_vlan_ena(vf)) { 393 /* configure backward compatible support for VFs that 394 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is 395 * configured in SVM, and no port VLAN is configured 396 */ 397 ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi); 398 return VIRTCHNL_VF_OFFLOAD_VLAN; 399 } else if (ice_is_dvm_ena(hw)) { 400 /* configure software offloaded VLAN support when DVM 401 * is enabled, but no port VLAN is enabled 402 */ 403 ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi); 404 } 405 } 406 407 return 0; 408 } 409 410 /** 411 * ice_vc_get_vf_res_msg 412 * @vf: pointer to the VF info 413 * @msg: pointer to the msg buffer 414 * 415 * called from the VF to request its resources 416 */ 417 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg) 418 { 419 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 420 struct virtchnl_vf_resource *vfres = NULL; 421 struct ice_hw *hw = &vf->pf->hw; 422 struct ice_vsi *vsi; 423 int len = 0; 424 int ret; 425 426 if (ice_check_vf_init(vf)) { 427 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 428 goto err; 429 } 430 431 len = virtchnl_struct_size(vfres, vsi_res, 0); 432 433 vfres = kzalloc(len, GFP_KERNEL); 434 if (!vfres) { 435 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 436 len = 0; 437 goto err; 438 } 439 if (VF_IS_V11(&vf->vf_ver)) 440 vf->driver_caps = *(u32 *)msg; 441 else 442 vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 | 443 VIRTCHNL_VF_OFFLOAD_VLAN; 444 445 vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2; 446 vsi = ice_get_vf_vsi(vf); 447 if (!vsi) { 448 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 449 goto err; 450 } 451 452 vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi, 453 vf->driver_caps); 454 455 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) 456 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF; 457 458 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) 459 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC; 460 461 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF) 462 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF; 463 464 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_TC_U32 && 465 vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_FDIR_PF) 466 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_TC_U32; 467 468 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 469 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2; 470 471 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP) 472 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP; 473 474 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM) 475 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM; 476 477 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING) 478 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING; 479 480 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 481 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR; 482 483 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES) 484 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES; 485 486 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) 487 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_CRC; 488 489 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) 490 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED; 491 492 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) 493 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF; 494 495 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO) 496 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO; 497 498 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_QOS) 499 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_QOS; 500 501 if (vf->driver_caps & VIRTCHNL_VF_CAP_PTP) 502 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_PTP; 503 504 vfres->num_vsis = 1; 505 /* Tx and Rx queue are equal for VF */ 506 vfres->num_queue_pairs = vsi->num_txq; 507 vfres->max_vectors = vf->num_msix; 508 vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE; 509 vfres->rss_lut_size = ICE_LUT_VSI_SIZE; 510 vfres->max_mtu = ice_vc_get_max_frame_size(vf); 511 512 vfres->vsi_res[0].vsi_id = ICE_VF_VSI_ID; 513 vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV; 514 vfres->vsi_res[0].num_queue_pairs = vsi->num_txq; 515 ether_addr_copy(vfres->vsi_res[0].default_mac_addr, 516 vf->hw_lan_addr); 517 518 /* match guest capabilities */ 519 vf->driver_caps = vfres->vf_cap_flags; 520 521 ice_vc_set_caps_allowlist(vf); 522 ice_vc_set_working_allowlist(vf); 523 524 set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states); 525 526 err: 527 /* send the response back to the VF */ 528 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret, 529 (u8 *)vfres, len); 530 531 kfree(vfres); 532 return ret; 533 } 534 535 /** 536 * ice_vc_reset_vf_msg 537 * @vf: pointer to the VF info 538 * 539 * called from the VF to reset itself, 540 * unlike other virtchnl messages, PF driver 541 * doesn't send the response back to the VF 542 */ 543 static void ice_vc_reset_vf_msg(struct ice_vf *vf) 544 { 545 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) 546 ice_reset_vf(vf, 0); 547 } 548 549 /** 550 * ice_vc_isvalid_vsi_id 551 * @vf: pointer to the VF info 552 * @vsi_id: VF relative VSI ID 553 * 554 * check for the valid VSI ID 555 */ 556 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id) 557 { 558 return vsi_id == ICE_VF_VSI_ID; 559 } 560 561 /** 562 * ice_vc_isvalid_q_id 563 * @vsi: VSI to check queue ID against 564 * @qid: VSI relative queue ID 565 * 566 * check for the valid queue ID 567 */ 568 static bool ice_vc_isvalid_q_id(struct ice_vsi *vsi, u16 qid) 569 { 570 /* allocated Tx and Rx queues should be always equal for VF VSI */ 571 return qid < vsi->alloc_txq; 572 } 573 574 /** 575 * ice_vc_isvalid_ring_len 576 * @ring_len: length of ring 577 * 578 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE 579 * or zero 580 */ 581 static bool ice_vc_isvalid_ring_len(u16 ring_len) 582 { 583 return ring_len == 0 || 584 (ring_len >= ICE_MIN_NUM_DESC && 585 ring_len <= ICE_MAX_NUM_DESC && 586 !(ring_len % ICE_REQ_DESC_MULTIPLE)); 587 } 588 589 /** 590 * ice_vc_validate_pattern 591 * @vf: pointer to the VF info 592 * @proto: virtchnl protocol headers 593 * 594 * validate the pattern is supported or not. 595 * 596 * Return: true on success, false on error. 597 */ 598 bool 599 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto) 600 { 601 bool is_ipv4 = false; 602 bool is_ipv6 = false; 603 bool is_udp = false; 604 u16 ptype = -1; 605 int i = 0; 606 607 while (i < proto->count && 608 proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) { 609 switch (proto->proto_hdr[i].type) { 610 case VIRTCHNL_PROTO_HDR_ETH: 611 ptype = ICE_PTYPE_MAC_PAY; 612 break; 613 case VIRTCHNL_PROTO_HDR_IPV4: 614 ptype = ICE_PTYPE_IPV4_PAY; 615 is_ipv4 = true; 616 break; 617 case VIRTCHNL_PROTO_HDR_IPV6: 618 ptype = ICE_PTYPE_IPV6_PAY; 619 is_ipv6 = true; 620 break; 621 case VIRTCHNL_PROTO_HDR_UDP: 622 if (is_ipv4) 623 ptype = ICE_PTYPE_IPV4_UDP_PAY; 624 else if (is_ipv6) 625 ptype = ICE_PTYPE_IPV6_UDP_PAY; 626 is_udp = true; 627 break; 628 case VIRTCHNL_PROTO_HDR_TCP: 629 if (is_ipv4) 630 ptype = ICE_PTYPE_IPV4_TCP_PAY; 631 else if (is_ipv6) 632 ptype = ICE_PTYPE_IPV6_TCP_PAY; 633 break; 634 case VIRTCHNL_PROTO_HDR_SCTP: 635 if (is_ipv4) 636 ptype = ICE_PTYPE_IPV4_SCTP_PAY; 637 else if (is_ipv6) 638 ptype = ICE_PTYPE_IPV6_SCTP_PAY; 639 break; 640 case VIRTCHNL_PROTO_HDR_GTPU_IP: 641 case VIRTCHNL_PROTO_HDR_GTPU_EH: 642 if (is_ipv4) 643 ptype = ICE_MAC_IPV4_GTPU; 644 else if (is_ipv6) 645 ptype = ICE_MAC_IPV6_GTPU; 646 goto out; 647 case VIRTCHNL_PROTO_HDR_L2TPV3: 648 if (is_ipv4) 649 ptype = ICE_MAC_IPV4_L2TPV3; 650 else if (is_ipv6) 651 ptype = ICE_MAC_IPV6_L2TPV3; 652 goto out; 653 case VIRTCHNL_PROTO_HDR_ESP: 654 if (is_ipv4) 655 ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP : 656 ICE_MAC_IPV4_ESP; 657 else if (is_ipv6) 658 ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP : 659 ICE_MAC_IPV6_ESP; 660 goto out; 661 case VIRTCHNL_PROTO_HDR_AH: 662 if (is_ipv4) 663 ptype = ICE_MAC_IPV4_AH; 664 else if (is_ipv6) 665 ptype = ICE_MAC_IPV6_AH; 666 goto out; 667 case VIRTCHNL_PROTO_HDR_PFCP: 668 if (is_ipv4) 669 ptype = ICE_MAC_IPV4_PFCP_SESSION; 670 else if (is_ipv6) 671 ptype = ICE_MAC_IPV6_PFCP_SESSION; 672 goto out; 673 default: 674 break; 675 } 676 i++; 677 } 678 679 out: 680 return ice_hw_ptype_ena(&vf->pf->hw, ptype); 681 } 682 683 /** 684 * ice_vc_parse_rss_cfg - parses hash fields and headers from 685 * a specific virtchnl RSS cfg 686 * @hw: pointer to the hardware 687 * @rss_cfg: pointer to the virtchnl RSS cfg 688 * @hash_cfg: pointer to the HW hash configuration 689 * 690 * Return true if all the protocol header and hash fields in the RSS cfg could 691 * be parsed, else return false 692 * 693 * This function parses the virtchnl RSS cfg to be the intended 694 * hash fields and the intended header for RSS configuration 695 */ 696 static bool ice_vc_parse_rss_cfg(struct ice_hw *hw, 697 struct virtchnl_rss_cfg *rss_cfg, 698 struct ice_rss_hash_cfg *hash_cfg) 699 { 700 const struct ice_vc_hash_field_match_type *hf_list; 701 const struct ice_vc_hdr_match_type *hdr_list; 702 int i, hf_list_len, hdr_list_len; 703 u32 *addl_hdrs = &hash_cfg->addl_hdrs; 704 u64 *hash_flds = &hash_cfg->hash_flds; 705 706 /* set outer layer RSS as default */ 707 hash_cfg->hdr_type = ICE_RSS_OUTER_HEADERS; 708 709 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC) 710 hash_cfg->symm = true; 711 else 712 hash_cfg->symm = false; 713 714 hf_list = ice_vc_hash_field_list; 715 hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list); 716 hdr_list = ice_vc_hdr_list; 717 hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list); 718 719 for (i = 0; i < rss_cfg->proto_hdrs.count; i++) { 720 struct virtchnl_proto_hdr *proto_hdr = 721 &rss_cfg->proto_hdrs.proto_hdr[i]; 722 bool hdr_found = false; 723 int j; 724 725 /* Find matched ice headers according to virtchnl headers. */ 726 for (j = 0; j < hdr_list_len; j++) { 727 struct ice_vc_hdr_match_type hdr_map = hdr_list[j]; 728 729 if (proto_hdr->type == hdr_map.vc_hdr) { 730 *addl_hdrs |= hdr_map.ice_hdr; 731 hdr_found = true; 732 } 733 } 734 735 if (!hdr_found) 736 return false; 737 738 /* Find matched ice hash fields according to 739 * virtchnl hash fields. 740 */ 741 for (j = 0; j < hf_list_len; j++) { 742 struct ice_vc_hash_field_match_type hf_map = hf_list[j]; 743 744 if (proto_hdr->type == hf_map.vc_hdr && 745 proto_hdr->field_selector == hf_map.vc_hash_field) { 746 *hash_flds |= hf_map.ice_hash_field; 747 break; 748 } 749 } 750 } 751 752 return true; 753 } 754 755 /** 756 * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced 757 * RSS offloads 758 * @caps: VF driver negotiated capabilities 759 * 760 * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set, 761 * else return false 762 */ 763 static bool ice_vf_adv_rss_offload_ena(u32 caps) 764 { 765 return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF); 766 } 767 768 /** 769 * ice_vc_handle_rss_cfg 770 * @vf: pointer to the VF info 771 * @msg: pointer to the message buffer 772 * @add: add a RSS config if true, otherwise delete a RSS config 773 * 774 * This function adds/deletes a RSS config 775 */ 776 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add) 777 { 778 u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG; 779 struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg; 780 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 781 struct device *dev = ice_pf_to_dev(vf->pf); 782 struct ice_hw *hw = &vf->pf->hw; 783 struct ice_vsi *vsi; 784 785 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 786 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n", 787 vf->vf_id); 788 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 789 goto error_param; 790 } 791 792 if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) { 793 dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n", 794 vf->vf_id); 795 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 796 goto error_param; 797 } 798 799 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 800 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 801 goto error_param; 802 } 803 804 if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS || 805 rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC || 806 rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) { 807 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n", 808 vf->vf_id); 809 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 810 goto error_param; 811 } 812 813 vsi = ice_get_vf_vsi(vf); 814 if (!vsi) { 815 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 816 goto error_param; 817 } 818 819 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) { 820 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 821 goto error_param; 822 } 823 824 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) { 825 struct ice_vsi_ctx *ctx; 826 u8 lut_type, hash_type; 827 int status; 828 829 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 830 hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_HASH_XOR : 831 ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ; 832 833 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 834 if (!ctx) { 835 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 836 goto error_param; 837 } 838 839 ctx->info.q_opt_rss = 840 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) | 841 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type); 842 843 /* Preserve existing queueing option setting */ 844 ctx->info.q_opt_rss |= (vsi->info.q_opt_rss & 845 ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M); 846 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 847 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 848 849 ctx->info.valid_sections = 850 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 851 852 status = ice_update_vsi(hw, vsi->idx, ctx, NULL); 853 if (status) { 854 dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n", 855 status, ice_aq_str(hw->adminq.sq_last_status)); 856 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 857 } else { 858 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 859 } 860 861 kfree(ctx); 862 } else { 863 struct ice_rss_hash_cfg cfg; 864 865 /* Only check for none raw pattern case */ 866 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) { 867 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 868 goto error_param; 869 } 870 cfg.addl_hdrs = ICE_FLOW_SEG_HDR_NONE; 871 cfg.hash_flds = ICE_HASH_INVALID; 872 cfg.hdr_type = ICE_RSS_ANY_HEADERS; 873 874 if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &cfg)) { 875 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 876 goto error_param; 877 } 878 879 if (add) { 880 if (ice_add_rss_cfg(hw, vsi, &cfg)) { 881 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 882 dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n", 883 vsi->vsi_num, v_ret); 884 } 885 } else { 886 int status; 887 888 status = ice_rem_rss_cfg(hw, vsi->idx, &cfg); 889 /* We just ignore -ENOENT, because if two configurations 890 * share the same profile remove one of them actually 891 * removes both, since the profile is deleted. 892 */ 893 if (status && status != -ENOENT) { 894 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 895 dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n", 896 vf->vf_id, status); 897 } 898 } 899 } 900 901 error_param: 902 return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0); 903 } 904 905 /** 906 * ice_vc_config_rss_key 907 * @vf: pointer to the VF info 908 * @msg: pointer to the msg buffer 909 * 910 * Configure the VF's RSS key 911 */ 912 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg) 913 { 914 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 915 struct virtchnl_rss_key *vrk = 916 (struct virtchnl_rss_key *)msg; 917 struct ice_vsi *vsi; 918 919 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 920 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 921 goto error_param; 922 } 923 924 if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) { 925 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 926 goto error_param; 927 } 928 929 if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) { 930 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 931 goto error_param; 932 } 933 934 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 935 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 936 goto error_param; 937 } 938 939 vsi = ice_get_vf_vsi(vf); 940 if (!vsi) { 941 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 942 goto error_param; 943 } 944 945 if (ice_set_rss_key(vsi, vrk->key)) 946 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 947 error_param: 948 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret, 949 NULL, 0); 950 } 951 952 /** 953 * ice_vc_config_rss_lut 954 * @vf: pointer to the VF info 955 * @msg: pointer to the msg buffer 956 * 957 * Configure the VF's RSS LUT 958 */ 959 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg) 960 { 961 struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg; 962 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 963 struct ice_vsi *vsi; 964 965 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 966 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 967 goto error_param; 968 } 969 970 if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) { 971 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 972 goto error_param; 973 } 974 975 if (vrl->lut_entries != ICE_LUT_VSI_SIZE) { 976 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 977 goto error_param; 978 } 979 980 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 981 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 982 goto error_param; 983 } 984 985 vsi = ice_get_vf_vsi(vf); 986 if (!vsi) { 987 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 988 goto error_param; 989 } 990 991 if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE)) 992 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 993 error_param: 994 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret, 995 NULL, 0); 996 } 997 998 /** 999 * ice_vc_config_rss_hfunc 1000 * @vf: pointer to the VF info 1001 * @msg: pointer to the msg buffer 1002 * 1003 * Configure the VF's RSS Hash function 1004 */ 1005 static int ice_vc_config_rss_hfunc(struct ice_vf *vf, u8 *msg) 1006 { 1007 struct virtchnl_rss_hfunc *vrh = (struct virtchnl_rss_hfunc *)msg; 1008 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1009 u8 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ; 1010 struct ice_vsi *vsi; 1011 1012 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1013 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1014 goto error_param; 1015 } 1016 1017 if (!ice_vc_isvalid_vsi_id(vf, vrh->vsi_id)) { 1018 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1019 goto error_param; 1020 } 1021 1022 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 1023 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1024 goto error_param; 1025 } 1026 1027 vsi = ice_get_vf_vsi(vf); 1028 if (!vsi) { 1029 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1030 goto error_param; 1031 } 1032 1033 if (vrh->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC) 1034 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ; 1035 1036 if (ice_set_rss_hfunc(vsi, hfunc)) 1037 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 1038 error_param: 1039 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_HFUNC, v_ret, 1040 NULL, 0); 1041 } 1042 1043 /** 1044 * ice_vc_get_qos_caps - Get current QoS caps from PF 1045 * @vf: pointer to the VF info 1046 * 1047 * Get VF's QoS capabilities, such as TC number, arbiter and 1048 * bandwidth from PF. 1049 * 1050 * Return: 0 on success or negative error value. 1051 */ 1052 static int ice_vc_get_qos_caps(struct ice_vf *vf) 1053 { 1054 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1055 struct virtchnl_qos_cap_list *cap_list = NULL; 1056 u8 tc_prio[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 1057 struct virtchnl_qos_cap_elem *cfg = NULL; 1058 struct ice_vsi_ctx *vsi_ctx; 1059 struct ice_pf *pf = vf->pf; 1060 struct ice_port_info *pi; 1061 struct ice_vsi *vsi; 1062 u8 numtc, tc; 1063 u16 len = 0; 1064 int ret, i; 1065 1066 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1067 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1068 goto err; 1069 } 1070 1071 vsi = ice_get_vf_vsi(vf); 1072 if (!vsi) { 1073 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1074 goto err; 1075 } 1076 1077 pi = pf->hw.port_info; 1078 numtc = vsi->tc_cfg.numtc; 1079 1080 vsi_ctx = ice_get_vsi_ctx(pi->hw, vf->lan_vsi_idx); 1081 if (!vsi_ctx) { 1082 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1083 goto err; 1084 } 1085 1086 len = struct_size(cap_list, cap, numtc); 1087 cap_list = kzalloc(len, GFP_KERNEL); 1088 if (!cap_list) { 1089 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 1090 len = 0; 1091 goto err; 1092 } 1093 1094 cap_list->vsi_id = vsi->vsi_num; 1095 cap_list->num_elem = numtc; 1096 1097 /* Store the UP2TC configuration from DCB to a user priority bitmap 1098 * of each TC. Each element of prio_of_tc represents one TC. Each 1099 * bitmap indicates the user priorities belong to this TC. 1100 */ 1101 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) { 1102 tc = pi->qos_cfg.local_dcbx_cfg.etscfg.prio_table[i]; 1103 tc_prio[tc] |= BIT(i); 1104 } 1105 1106 for (i = 0; i < numtc; i++) { 1107 cfg = &cap_list->cap[i]; 1108 cfg->tc_num = i; 1109 cfg->tc_prio = tc_prio[i]; 1110 cfg->arbiter = pi->qos_cfg.local_dcbx_cfg.etscfg.tsatable[i]; 1111 cfg->weight = VIRTCHNL_STRICT_WEIGHT; 1112 cfg->type = VIRTCHNL_BW_SHAPER; 1113 cfg->shaper.committed = vsi_ctx->sched.bw_t_info[i].cir_bw.bw; 1114 cfg->shaper.peak = vsi_ctx->sched.bw_t_info[i].eir_bw.bw; 1115 } 1116 1117 err: 1118 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_QOS_CAPS, v_ret, 1119 (u8 *)cap_list, len); 1120 kfree(cap_list); 1121 return ret; 1122 } 1123 1124 /** 1125 * ice_vf_cfg_qs_bw - Configure per queue bandwidth 1126 * @vf: pointer to the VF info 1127 * @num_queues: number of queues to be configured 1128 * 1129 * Configure per queue bandwidth. 1130 * 1131 * Return: 0 on success or negative error value. 1132 */ 1133 static int ice_vf_cfg_qs_bw(struct ice_vf *vf, u16 num_queues) 1134 { 1135 struct ice_hw *hw = &vf->pf->hw; 1136 struct ice_vsi *vsi; 1137 int ret; 1138 u16 i; 1139 1140 vsi = ice_get_vf_vsi(vf); 1141 if (!vsi) 1142 return -EINVAL; 1143 1144 for (i = 0; i < num_queues; i++) { 1145 u32 p_rate, min_rate; 1146 u8 tc; 1147 1148 p_rate = vf->qs_bw[i].peak; 1149 min_rate = vf->qs_bw[i].committed; 1150 tc = vf->qs_bw[i].tc; 1151 if (p_rate) 1152 ret = ice_cfg_q_bw_lmt(hw->port_info, vsi->idx, tc, 1153 vf->qs_bw[i].queue_id, 1154 ICE_MAX_BW, p_rate); 1155 else 1156 ret = ice_cfg_q_bw_dflt_lmt(hw->port_info, vsi->idx, tc, 1157 vf->qs_bw[i].queue_id, 1158 ICE_MAX_BW); 1159 if (ret) 1160 return ret; 1161 1162 if (min_rate) 1163 ret = ice_cfg_q_bw_lmt(hw->port_info, vsi->idx, tc, 1164 vf->qs_bw[i].queue_id, 1165 ICE_MIN_BW, min_rate); 1166 else 1167 ret = ice_cfg_q_bw_dflt_lmt(hw->port_info, vsi->idx, tc, 1168 vf->qs_bw[i].queue_id, 1169 ICE_MIN_BW); 1170 1171 if (ret) 1172 return ret; 1173 } 1174 1175 return 0; 1176 } 1177 1178 /** 1179 * ice_vf_cfg_q_quanta_profile - Configure quanta profile 1180 * @vf: pointer to the VF info 1181 * @quanta_prof_idx: pointer to the quanta profile index 1182 * @quanta_size: quanta size to be set 1183 * 1184 * This function chooses available quanta profile and configures the register. 1185 * The quanta profile is evenly divided by the number of device ports, and then 1186 * available to the specific PF and VFs. The first profile for each PF is a 1187 * reserved default profile. Only quanta size of the rest unused profile can be 1188 * modified. 1189 * 1190 * Return: 0 on success or negative error value. 1191 */ 1192 static int ice_vf_cfg_q_quanta_profile(struct ice_vf *vf, u16 quanta_size, 1193 u16 *quanta_prof_idx) 1194 { 1195 const u16 n_desc = calc_quanta_desc(quanta_size); 1196 struct ice_hw *hw = &vf->pf->hw; 1197 const u16 n_cmd = 2 * n_desc; 1198 struct ice_pf *pf = vf->pf; 1199 u16 per_pf, begin_id; 1200 u8 n_used; 1201 u32 reg; 1202 1203 begin_id = (GLCOMM_QUANTA_PROF_MAX_INDEX + 1) / hw->dev_caps.num_funcs * 1204 hw->logical_pf_id; 1205 1206 if (quanta_size == ICE_DFLT_QUANTA) { 1207 *quanta_prof_idx = begin_id; 1208 } else { 1209 per_pf = (GLCOMM_QUANTA_PROF_MAX_INDEX + 1) / 1210 hw->dev_caps.num_funcs; 1211 n_used = pf->num_quanta_prof_used; 1212 if (n_used < per_pf) { 1213 *quanta_prof_idx = begin_id + 1 + n_used; 1214 pf->num_quanta_prof_used++; 1215 } else { 1216 return -EINVAL; 1217 } 1218 } 1219 1220 reg = FIELD_PREP(GLCOMM_QUANTA_PROF_QUANTA_SIZE_M, quanta_size) | 1221 FIELD_PREP(GLCOMM_QUANTA_PROF_MAX_CMD_M, n_cmd) | 1222 FIELD_PREP(GLCOMM_QUANTA_PROF_MAX_DESC_M, n_desc); 1223 wr32(hw, GLCOMM_QUANTA_PROF(*quanta_prof_idx), reg); 1224 1225 return 0; 1226 } 1227 1228 /** 1229 * ice_vc_cfg_promiscuous_mode_msg 1230 * @vf: pointer to the VF info 1231 * @msg: pointer to the msg buffer 1232 * 1233 * called from the VF to configure VF VSIs promiscuous mode 1234 */ 1235 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg) 1236 { 1237 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1238 bool rm_promisc, alluni = false, allmulti = false; 1239 struct virtchnl_promisc_info *info = 1240 (struct virtchnl_promisc_info *)msg; 1241 struct ice_vsi_vlan_ops *vlan_ops; 1242 int mcast_err = 0, ucast_err = 0; 1243 struct ice_pf *pf = vf->pf; 1244 struct ice_vsi *vsi; 1245 u8 mcast_m, ucast_m; 1246 struct device *dev; 1247 int ret = 0; 1248 1249 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1250 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1251 goto error_param; 1252 } 1253 1254 if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) { 1255 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1256 goto error_param; 1257 } 1258 1259 vsi = ice_get_vf_vsi(vf); 1260 if (!vsi) { 1261 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1262 goto error_param; 1263 } 1264 1265 dev = ice_pf_to_dev(pf); 1266 if (!ice_is_vf_trusted(vf)) { 1267 dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n", 1268 vf->vf_id); 1269 /* Leave v_ret alone, lie to the VF on purpose. */ 1270 goto error_param; 1271 } 1272 1273 if (info->flags & FLAG_VF_UNICAST_PROMISC) 1274 alluni = true; 1275 1276 if (info->flags & FLAG_VF_MULTICAST_PROMISC) 1277 allmulti = true; 1278 1279 rm_promisc = !allmulti && !alluni; 1280 1281 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 1282 if (rm_promisc) 1283 ret = vlan_ops->ena_rx_filtering(vsi); 1284 else 1285 ret = vlan_ops->dis_rx_filtering(vsi); 1286 if (ret) { 1287 dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n"); 1288 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1289 goto error_param; 1290 } 1291 1292 ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m); 1293 1294 if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) { 1295 if (alluni) { 1296 /* in this case we're turning on promiscuous mode */ 1297 ret = ice_set_dflt_vsi(vsi); 1298 } else { 1299 /* in this case we're turning off promiscuous mode */ 1300 if (ice_is_dflt_vsi_in_use(vsi->port_info)) 1301 ret = ice_clear_dflt_vsi(vsi); 1302 } 1303 1304 /* in this case we're turning on/off only 1305 * allmulticast 1306 */ 1307 if (allmulti) 1308 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); 1309 else 1310 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); 1311 1312 if (ret) { 1313 dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n", 1314 vf->vf_id, ret); 1315 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 1316 goto error_param; 1317 } 1318 } else { 1319 if (alluni) 1320 ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m); 1321 else 1322 ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m); 1323 1324 if (allmulti) 1325 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); 1326 else 1327 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); 1328 1329 if (ucast_err || mcast_err) 1330 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1331 } 1332 1333 if (!mcast_err) { 1334 if (allmulti && 1335 !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) 1336 dev_info(dev, "VF %u successfully set multicast promiscuous mode\n", 1337 vf->vf_id); 1338 else if (!allmulti && 1339 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC, 1340 vf->vf_states)) 1341 dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n", 1342 vf->vf_id); 1343 } else { 1344 dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n", 1345 vf->vf_id, mcast_err); 1346 } 1347 1348 if (!ucast_err) { 1349 if (alluni && 1350 !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states)) 1351 dev_info(dev, "VF %u successfully set unicast promiscuous mode\n", 1352 vf->vf_id); 1353 else if (!alluni && 1354 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC, 1355 vf->vf_states)) 1356 dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n", 1357 vf->vf_id); 1358 } else { 1359 dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n", 1360 vf->vf_id, ucast_err); 1361 } 1362 1363 error_param: 1364 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 1365 v_ret, NULL, 0); 1366 } 1367 1368 /** 1369 * ice_vc_get_stats_msg 1370 * @vf: pointer to the VF info 1371 * @msg: pointer to the msg buffer 1372 * 1373 * called from the VF to get VSI stats 1374 */ 1375 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg) 1376 { 1377 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1378 struct virtchnl_queue_select *vqs = 1379 (struct virtchnl_queue_select *)msg; 1380 struct ice_eth_stats stats = { 0 }; 1381 struct ice_vsi *vsi; 1382 1383 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1384 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1385 goto error_param; 1386 } 1387 1388 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1389 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1390 goto error_param; 1391 } 1392 1393 vsi = ice_get_vf_vsi(vf); 1394 if (!vsi) { 1395 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1396 goto error_param; 1397 } 1398 1399 ice_update_eth_stats(vsi); 1400 1401 stats = vsi->eth_stats; 1402 1403 error_param: 1404 /* send the response to the VF */ 1405 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret, 1406 (u8 *)&stats, sizeof(stats)); 1407 } 1408 1409 /** 1410 * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL 1411 * @vqs: virtchnl_queue_select structure containing bitmaps to validate 1412 * 1413 * Return true on successful validation, else false 1414 */ 1415 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs) 1416 { 1417 if ((!vqs->rx_queues && !vqs->tx_queues) || 1418 vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) || 1419 vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF)) 1420 return false; 1421 1422 return true; 1423 } 1424 1425 /** 1426 * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL 1427 * @vsi: VSI of the VF to configure 1428 * @q_idx: VF queue index used to determine the queue in the PF's space 1429 */ 1430 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1431 { 1432 struct ice_hw *hw = &vsi->back->hw; 1433 u32 pfq = vsi->txq_map[q_idx]; 1434 u32 reg; 1435 1436 reg = rd32(hw, QINT_TQCTL(pfq)); 1437 1438 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1439 * this is most likely a poll mode VF driver, so don't enable an 1440 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1441 */ 1442 if (!(reg & QINT_TQCTL_MSIX_INDX_M)) 1443 return; 1444 1445 wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M); 1446 } 1447 1448 /** 1449 * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL 1450 * @vsi: VSI of the VF to configure 1451 * @q_idx: VF queue index used to determine the queue in the PF's space 1452 */ 1453 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1454 { 1455 struct ice_hw *hw = &vsi->back->hw; 1456 u32 pfq = vsi->rxq_map[q_idx]; 1457 u32 reg; 1458 1459 reg = rd32(hw, QINT_RQCTL(pfq)); 1460 1461 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1462 * this is most likely a poll mode VF driver, so don't enable an 1463 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1464 */ 1465 if (!(reg & QINT_RQCTL_MSIX_INDX_M)) 1466 return; 1467 1468 wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M); 1469 } 1470 1471 /** 1472 * ice_vc_ena_qs_msg 1473 * @vf: pointer to the VF info 1474 * @msg: pointer to the msg buffer 1475 * 1476 * called from the VF to enable all or specific queue(s) 1477 */ 1478 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg) 1479 { 1480 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1481 struct virtchnl_queue_select *vqs = 1482 (struct virtchnl_queue_select *)msg; 1483 struct ice_vsi *vsi; 1484 unsigned long q_map; 1485 u16 vf_q_id; 1486 1487 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1488 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1489 goto error_param; 1490 } 1491 1492 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1493 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1494 goto error_param; 1495 } 1496 1497 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1498 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1499 goto error_param; 1500 } 1501 1502 vsi = ice_get_vf_vsi(vf); 1503 if (!vsi) { 1504 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1505 goto error_param; 1506 } 1507 1508 /* Enable only Rx rings, Tx rings were enabled by the FW when the 1509 * Tx queue group list was configured and the context bits were 1510 * programmed using ice_vsi_cfg_txqs 1511 */ 1512 q_map = vqs->rx_queues; 1513 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1514 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { 1515 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1516 goto error_param; 1517 } 1518 1519 /* Skip queue if enabled */ 1520 if (test_bit(vf_q_id, vf->rxq_ena)) 1521 continue; 1522 1523 if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) { 1524 dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n", 1525 vf_q_id, vsi->vsi_num); 1526 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1527 goto error_param; 1528 } 1529 1530 ice_vf_ena_rxq_interrupt(vsi, vf_q_id); 1531 set_bit(vf_q_id, vf->rxq_ena); 1532 } 1533 1534 q_map = vqs->tx_queues; 1535 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1536 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { 1537 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1538 goto error_param; 1539 } 1540 1541 /* Skip queue if enabled */ 1542 if (test_bit(vf_q_id, vf->txq_ena)) 1543 continue; 1544 1545 ice_vf_ena_txq_interrupt(vsi, vf_q_id); 1546 set_bit(vf_q_id, vf->txq_ena); 1547 } 1548 1549 /* Set flag to indicate that queues are enabled */ 1550 if (v_ret == VIRTCHNL_STATUS_SUCCESS) 1551 set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1552 1553 error_param: 1554 /* send the response to the VF */ 1555 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret, 1556 NULL, 0); 1557 } 1558 1559 /** 1560 * ice_vf_vsi_dis_single_txq - disable a single Tx queue 1561 * @vf: VF to disable queue for 1562 * @vsi: VSI for the VF 1563 * @q_id: VF relative (0-based) queue ID 1564 * 1565 * Attempt to disable the Tx queue passed in. If the Tx queue was successfully 1566 * disabled then clear q_id bit in the enabled queues bitmap and return 1567 * success. Otherwise return error. 1568 */ 1569 static int 1570 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id) 1571 { 1572 struct ice_txq_meta txq_meta = { 0 }; 1573 struct ice_tx_ring *ring; 1574 int err; 1575 1576 if (!test_bit(q_id, vf->txq_ena)) 1577 dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n", 1578 q_id, vsi->vsi_num); 1579 1580 ring = vsi->tx_rings[q_id]; 1581 if (!ring) 1582 return -EINVAL; 1583 1584 ice_fill_txq_meta(vsi, ring, &txq_meta); 1585 1586 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta); 1587 if (err) { 1588 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n", 1589 q_id, vsi->vsi_num); 1590 return err; 1591 } 1592 1593 /* Clear enabled queues flag */ 1594 clear_bit(q_id, vf->txq_ena); 1595 1596 return 0; 1597 } 1598 1599 /** 1600 * ice_vc_dis_qs_msg 1601 * @vf: pointer to the VF info 1602 * @msg: pointer to the msg buffer 1603 * 1604 * called from the VF to disable all or specific queue(s) 1605 */ 1606 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg) 1607 { 1608 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1609 struct virtchnl_queue_select *vqs = 1610 (struct virtchnl_queue_select *)msg; 1611 struct ice_vsi *vsi; 1612 unsigned long q_map; 1613 u16 vf_q_id; 1614 1615 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) && 1616 !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) { 1617 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1618 goto error_param; 1619 } 1620 1621 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1622 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1623 goto error_param; 1624 } 1625 1626 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1627 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1628 goto error_param; 1629 } 1630 1631 vsi = ice_get_vf_vsi(vf); 1632 if (!vsi) { 1633 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1634 goto error_param; 1635 } 1636 1637 if (vqs->tx_queues) { 1638 q_map = vqs->tx_queues; 1639 1640 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1641 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { 1642 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1643 goto error_param; 1644 } 1645 1646 if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) { 1647 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1648 goto error_param; 1649 } 1650 } 1651 } 1652 1653 q_map = vqs->rx_queues; 1654 /* speed up Rx queue disable by batching them if possible */ 1655 if (q_map && 1656 bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) { 1657 if (ice_vsi_stop_all_rx_rings(vsi)) { 1658 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n", 1659 vsi->vsi_num); 1660 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1661 goto error_param; 1662 } 1663 1664 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF); 1665 } else if (q_map) { 1666 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1667 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { 1668 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1669 goto error_param; 1670 } 1671 1672 /* Skip queue if not enabled */ 1673 if (!test_bit(vf_q_id, vf->rxq_ena)) 1674 continue; 1675 1676 if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id, 1677 true)) { 1678 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n", 1679 vf_q_id, vsi->vsi_num); 1680 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1681 goto error_param; 1682 } 1683 1684 /* Clear enabled queues flag */ 1685 clear_bit(vf_q_id, vf->rxq_ena); 1686 } 1687 } 1688 1689 /* Clear enabled queues flag */ 1690 if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf)) 1691 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1692 1693 error_param: 1694 /* send the response to the VF */ 1695 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret, 1696 NULL, 0); 1697 } 1698 1699 /** 1700 * ice_cfg_interrupt 1701 * @vf: pointer to the VF info 1702 * @vsi: the VSI being configured 1703 * @map: vector map for mapping vectors to queues 1704 * @q_vector: structure for interrupt vector 1705 * configure the IRQ to queue map 1706 */ 1707 static enum virtchnl_status_code 1708 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, 1709 struct virtchnl_vector_map *map, 1710 struct ice_q_vector *q_vector) 1711 { 1712 u16 vsi_q_id, vsi_q_id_idx; 1713 unsigned long qmap; 1714 1715 q_vector->num_ring_rx = 0; 1716 q_vector->num_ring_tx = 0; 1717 1718 qmap = map->rxq_map; 1719 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1720 vsi_q_id = vsi_q_id_idx; 1721 1722 if (!ice_vc_isvalid_q_id(vsi, vsi_q_id)) 1723 return VIRTCHNL_STATUS_ERR_PARAM; 1724 1725 q_vector->num_ring_rx++; 1726 q_vector->rx.itr_idx = map->rxitr_idx; 1727 vsi->rx_rings[vsi_q_id]->q_vector = q_vector; 1728 ice_cfg_rxq_interrupt(vsi, vsi_q_id, 1729 q_vector->vf_reg_idx, 1730 q_vector->rx.itr_idx); 1731 } 1732 1733 qmap = map->txq_map; 1734 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1735 vsi_q_id = vsi_q_id_idx; 1736 1737 if (!ice_vc_isvalid_q_id(vsi, vsi_q_id)) 1738 return VIRTCHNL_STATUS_ERR_PARAM; 1739 1740 q_vector->num_ring_tx++; 1741 q_vector->tx.itr_idx = map->txitr_idx; 1742 vsi->tx_rings[vsi_q_id]->q_vector = q_vector; 1743 ice_cfg_txq_interrupt(vsi, vsi_q_id, 1744 q_vector->vf_reg_idx, 1745 q_vector->tx.itr_idx); 1746 } 1747 1748 return VIRTCHNL_STATUS_SUCCESS; 1749 } 1750 1751 /** 1752 * ice_vc_cfg_irq_map_msg 1753 * @vf: pointer to the VF info 1754 * @msg: pointer to the msg buffer 1755 * 1756 * called from the VF to configure the IRQ to queue map 1757 */ 1758 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg) 1759 { 1760 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1761 u16 num_q_vectors_mapped, vsi_id, vector_id; 1762 struct virtchnl_irq_map_info *irqmap_info; 1763 struct virtchnl_vector_map *map; 1764 struct ice_vsi *vsi; 1765 int i; 1766 1767 irqmap_info = (struct virtchnl_irq_map_info *)msg; 1768 num_q_vectors_mapped = irqmap_info->num_vectors; 1769 1770 /* Check to make sure number of VF vectors mapped is not greater than 1771 * number of VF vectors originally allocated, and check that 1772 * there is actually at least a single VF queue vector mapped 1773 */ 1774 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 1775 vf->num_msix < num_q_vectors_mapped || 1776 !num_q_vectors_mapped) { 1777 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1778 goto error_param; 1779 } 1780 1781 vsi = ice_get_vf_vsi(vf); 1782 if (!vsi) { 1783 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1784 goto error_param; 1785 } 1786 1787 for (i = 0; i < num_q_vectors_mapped; i++) { 1788 struct ice_q_vector *q_vector; 1789 1790 map = &irqmap_info->vecmap[i]; 1791 1792 vector_id = map->vector_id; 1793 vsi_id = map->vsi_id; 1794 /* vector_id is always 0-based for each VF, and can never be 1795 * larger than or equal to the max allowed interrupts per VF 1796 */ 1797 if (!(vector_id < vf->num_msix) || 1798 !ice_vc_isvalid_vsi_id(vf, vsi_id) || 1799 (!vector_id && (map->rxq_map || map->txq_map))) { 1800 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1801 goto error_param; 1802 } 1803 1804 /* No need to map VF miscellaneous or rogue vector */ 1805 if (!vector_id) 1806 continue; 1807 1808 /* Subtract non queue vector from vector_id passed by VF 1809 * to get actual number of VSI queue vector array index 1810 */ 1811 q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF]; 1812 if (!q_vector) { 1813 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1814 goto error_param; 1815 } 1816 1817 /* lookout for the invalid queue index */ 1818 v_ret = ice_cfg_interrupt(vf, vsi, map, q_vector); 1819 if (v_ret) 1820 goto error_param; 1821 } 1822 1823 error_param: 1824 /* send the response to the VF */ 1825 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret, 1826 NULL, 0); 1827 } 1828 1829 /** 1830 * ice_vc_cfg_q_bw - Configure per queue bandwidth 1831 * @vf: pointer to the VF info 1832 * @msg: pointer to the msg buffer which holds the command descriptor 1833 * 1834 * Configure VF queues bandwidth. 1835 * 1836 * Return: 0 on success or negative error value. 1837 */ 1838 static int ice_vc_cfg_q_bw(struct ice_vf *vf, u8 *msg) 1839 { 1840 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1841 struct virtchnl_queues_bw_cfg *qbw = 1842 (struct virtchnl_queues_bw_cfg *)msg; 1843 struct ice_vsi *vsi; 1844 u16 i; 1845 1846 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 1847 !ice_vc_isvalid_vsi_id(vf, qbw->vsi_id)) { 1848 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1849 goto err; 1850 } 1851 1852 vsi = ice_get_vf_vsi(vf); 1853 if (!vsi) { 1854 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1855 goto err; 1856 } 1857 1858 if (qbw->num_queues > ICE_MAX_RSS_QS_PER_VF || 1859 qbw->num_queues > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) { 1860 dev_err(ice_pf_to_dev(vf->pf), "VF-%d trying to configure more than allocated number of queues: %d\n", 1861 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)); 1862 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1863 goto err; 1864 } 1865 1866 for (i = 0; i < qbw->num_queues; i++) { 1867 if (qbw->cfg[i].shaper.peak != 0 && vf->max_tx_rate != 0 && 1868 qbw->cfg[i].shaper.peak > vf->max_tx_rate) { 1869 dev_warn(ice_pf_to_dev(vf->pf), "The maximum queue %d rate limit configuration may not take effect because the maximum TX rate for VF-%d is %d\n", 1870 qbw->cfg[i].queue_id, vf->vf_id, 1871 vf->max_tx_rate); 1872 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1873 goto err; 1874 } 1875 if (qbw->cfg[i].shaper.committed != 0 && vf->min_tx_rate != 0 && 1876 qbw->cfg[i].shaper.committed < vf->min_tx_rate) { 1877 dev_warn(ice_pf_to_dev(vf->pf), "The minimum queue %d rate limit configuration may not take effect because the minimum TX rate for VF-%d is %d\n", 1878 qbw->cfg[i].queue_id, vf->vf_id, 1879 vf->min_tx_rate); 1880 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1881 goto err; 1882 } 1883 if (qbw->cfg[i].queue_id > vf->num_vf_qs) { 1884 dev_warn(ice_pf_to_dev(vf->pf), "VF-%d trying to configure invalid queue_id\n", 1885 vf->vf_id); 1886 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1887 goto err; 1888 } 1889 if (qbw->cfg[i].tc >= ICE_MAX_TRAFFIC_CLASS) { 1890 dev_warn(ice_pf_to_dev(vf->pf), "VF-%d trying to configure a traffic class higher than allowed\n", 1891 vf->vf_id); 1892 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1893 goto err; 1894 } 1895 } 1896 1897 for (i = 0; i < qbw->num_queues; i++) { 1898 vf->qs_bw[i].queue_id = qbw->cfg[i].queue_id; 1899 vf->qs_bw[i].peak = qbw->cfg[i].shaper.peak; 1900 vf->qs_bw[i].committed = qbw->cfg[i].shaper.committed; 1901 vf->qs_bw[i].tc = qbw->cfg[i].tc; 1902 } 1903 1904 if (ice_vf_cfg_qs_bw(vf, qbw->num_queues)) 1905 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1906 1907 err: 1908 /* send the response to the VF */ 1909 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_QUEUE_BW, 1910 v_ret, NULL, 0); 1911 } 1912 1913 /** 1914 * ice_vc_cfg_q_quanta - Configure per queue quanta 1915 * @vf: pointer to the VF info 1916 * @msg: pointer to the msg buffer which holds the command descriptor 1917 * 1918 * Configure VF queues quanta. 1919 * 1920 * Return: 0 on success or negative error value. 1921 */ 1922 static int ice_vc_cfg_q_quanta(struct ice_vf *vf, u8 *msg) 1923 { 1924 u16 quanta_prof_id, quanta_size, start_qid, num_queues, end_qid, i; 1925 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1926 struct virtchnl_quanta_cfg *qquanta = 1927 (struct virtchnl_quanta_cfg *)msg; 1928 struct ice_vsi *vsi; 1929 int ret; 1930 1931 start_qid = qquanta->queue_select.start_queue_id; 1932 num_queues = qquanta->queue_select.num_queues; 1933 1934 if (check_add_overflow(start_qid, num_queues, &end_qid)) { 1935 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1936 goto err; 1937 } 1938 1939 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1940 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1941 goto err; 1942 } 1943 1944 vsi = ice_get_vf_vsi(vf); 1945 if (!vsi) { 1946 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1947 goto err; 1948 } 1949 1950 if (end_qid > ICE_MAX_RSS_QS_PER_VF || 1951 end_qid > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) { 1952 dev_err(ice_pf_to_dev(vf->pf), "VF-%d trying to configure more than allocated number of queues: %d\n", 1953 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)); 1954 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1955 goto err; 1956 } 1957 1958 quanta_size = qquanta->quanta_size; 1959 if (quanta_size > ICE_MAX_QUANTA_SIZE || 1960 quanta_size < ICE_MIN_QUANTA_SIZE) { 1961 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1962 goto err; 1963 } 1964 1965 if (quanta_size % 64) { 1966 dev_err(ice_pf_to_dev(vf->pf), "quanta size should be the product of 64\n"); 1967 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1968 goto err; 1969 } 1970 1971 ret = ice_vf_cfg_q_quanta_profile(vf, quanta_size, 1972 &quanta_prof_id); 1973 if (ret) { 1974 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 1975 goto err; 1976 } 1977 1978 for (i = start_qid; i < end_qid; i++) 1979 vsi->tx_rings[i]->quanta_prof_id = quanta_prof_id; 1980 1981 err: 1982 /* send the response to the VF */ 1983 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_QUANTA, 1984 v_ret, NULL, 0); 1985 } 1986 1987 /** 1988 * ice_vc_cfg_qs_msg 1989 * @vf: pointer to the VF info 1990 * @msg: pointer to the msg buffer 1991 * 1992 * called from the VF to configure the Rx/Tx queues 1993 */ 1994 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg) 1995 { 1996 struct virtchnl_vsi_queue_config_info *qci = 1997 (struct virtchnl_vsi_queue_config_info *)msg; 1998 struct virtchnl_queue_pair_info *qpi; 1999 struct ice_pf *pf = vf->pf; 2000 struct ice_lag *lag; 2001 struct ice_vsi *vsi; 2002 u8 act_prt, pri_prt; 2003 int i = -1, q_idx; 2004 bool ena_ts; 2005 2006 lag = pf->lag; 2007 mutex_lock(&pf->lag_mutex); 2008 act_prt = ICE_LAG_INVALID_PORT; 2009 pri_prt = pf->hw.port_info->lport; 2010 if (lag && lag->bonded && lag->primary) { 2011 act_prt = lag->active_port; 2012 if (act_prt != pri_prt && act_prt != ICE_LAG_INVALID_PORT && 2013 lag->upper_netdev) 2014 ice_lag_move_vf_nodes_cfg(lag, act_prt, pri_prt); 2015 else 2016 act_prt = ICE_LAG_INVALID_PORT; 2017 } 2018 2019 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 2020 goto error_param; 2021 2022 if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id)) 2023 goto error_param; 2024 2025 vsi = ice_get_vf_vsi(vf); 2026 if (!vsi) 2027 goto error_param; 2028 2029 if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF || 2030 qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) { 2031 dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n", 2032 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)); 2033 goto error_param; 2034 } 2035 2036 for (i = 0; i < qci->num_queue_pairs; i++) { 2037 if (!qci->qpair[i].rxq.crc_disable) 2038 continue; 2039 2040 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) || 2041 vf->vlan_strip_ena) 2042 goto error_param; 2043 } 2044 2045 for (i = 0; i < qci->num_queue_pairs; i++) { 2046 qpi = &qci->qpair[i]; 2047 if (qpi->txq.vsi_id != qci->vsi_id || 2048 qpi->rxq.vsi_id != qci->vsi_id || 2049 qpi->rxq.queue_id != qpi->txq.queue_id || 2050 qpi->txq.headwb_enabled || 2051 !ice_vc_isvalid_ring_len(qpi->txq.ring_len) || 2052 !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) || 2053 !ice_vc_isvalid_q_id(vsi, qpi->txq.queue_id)) { 2054 goto error_param; 2055 } 2056 2057 q_idx = qpi->rxq.queue_id; 2058 2059 /* make sure selected "q_idx" is in valid range of queues 2060 * for selected "vsi" 2061 */ 2062 if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) { 2063 goto error_param; 2064 } 2065 2066 /* copy Tx queue info from VF into VSI */ 2067 if (qpi->txq.ring_len > 0) { 2068 vsi->tx_rings[q_idx]->dma = qpi->txq.dma_ring_addr; 2069 vsi->tx_rings[q_idx]->count = qpi->txq.ring_len; 2070 2071 /* Disable any existing queue first */ 2072 if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx)) 2073 goto error_param; 2074 2075 /* Configure a queue with the requested settings */ 2076 if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) { 2077 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n", 2078 vf->vf_id, q_idx); 2079 goto error_param; 2080 } 2081 } 2082 2083 /* copy Rx queue info from VF into VSI */ 2084 if (qpi->rxq.ring_len > 0) { 2085 u16 max_frame_size = ice_vc_get_max_frame_size(vf); 2086 struct ice_rx_ring *ring = vsi->rx_rings[q_idx]; 2087 u32 rxdid; 2088 2089 ring->dma = qpi->rxq.dma_ring_addr; 2090 ring->count = qpi->rxq.ring_len; 2091 2092 if (qpi->rxq.crc_disable) 2093 ring->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS; 2094 else 2095 ring->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS; 2096 2097 if (qpi->rxq.databuffer_size != 0 && 2098 (qpi->rxq.databuffer_size > ((16 * 1024) - 128) || 2099 qpi->rxq.databuffer_size < 1024)) 2100 goto error_param; 2101 ring->rx_buf_len = qpi->rxq.databuffer_size; 2102 if (qpi->rxq.max_pkt_size > max_frame_size || 2103 qpi->rxq.max_pkt_size < 64) 2104 goto error_param; 2105 2106 ring->max_frame = qpi->rxq.max_pkt_size; 2107 /* add space for the port VLAN since the VF driver is 2108 * not expected to account for it in the MTU 2109 * calculation 2110 */ 2111 if (ice_vf_is_port_vlan_ena(vf)) 2112 ring->max_frame += VLAN_HLEN; 2113 2114 if (ice_vsi_cfg_single_rxq(vsi, q_idx)) { 2115 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n", 2116 vf->vf_id, q_idx); 2117 goto error_param; 2118 } 2119 2120 /* If Rx flex desc is supported, select RXDID for Rx 2121 * queues. Otherwise, use legacy 32byte descriptor 2122 * format. Legacy 16byte descriptor is not supported. 2123 * If this RXDID is selected, return error. 2124 */ 2125 if (vf->driver_caps & 2126 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) { 2127 rxdid = qpi->rxq.rxdid; 2128 if (!(BIT(rxdid) & pf->supported_rxdids)) 2129 goto error_param; 2130 } else { 2131 rxdid = ICE_RXDID_LEGACY_1; 2132 } 2133 2134 ena_ts = ((vf->driver_caps & 2135 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) && 2136 (vf->driver_caps & VIRTCHNL_VF_CAP_PTP) && 2137 (qpi->rxq.flags & VIRTCHNL_PTP_RX_TSTAMP)); 2138 2139 ice_write_qrxflxp_cntxt(&vsi->back->hw, 2140 vsi->rxq_map[q_idx], rxdid, 2141 ICE_RXDID_PRIO, ena_ts); 2142 } 2143 } 2144 2145 if (lag && lag->bonded && lag->primary && 2146 act_prt != ICE_LAG_INVALID_PORT) 2147 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt); 2148 mutex_unlock(&pf->lag_mutex); 2149 2150 /* send the response to the VF */ 2151 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, 2152 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 2153 error_param: 2154 /* disable whatever we can */ 2155 for (; i >= 0; i--) { 2156 if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true)) 2157 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n", 2158 vf->vf_id, i); 2159 if (ice_vf_vsi_dis_single_txq(vf, vsi, i)) 2160 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n", 2161 vf->vf_id, i); 2162 } 2163 2164 if (lag && lag->bonded && lag->primary && 2165 act_prt != ICE_LAG_INVALID_PORT) 2166 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt); 2167 mutex_unlock(&pf->lag_mutex); 2168 2169 ice_lag_move_new_vf_nodes(vf); 2170 2171 /* send the response to the VF */ 2172 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, 2173 VIRTCHNL_STATUS_ERR_PARAM, NULL, 0); 2174 } 2175 2176 /** 2177 * ice_can_vf_change_mac 2178 * @vf: pointer to the VF info 2179 * 2180 * Return true if the VF is allowed to change its MAC filters, false otherwise 2181 */ 2182 static bool ice_can_vf_change_mac(struct ice_vf *vf) 2183 { 2184 /* If the VF MAC address has been set administratively (via the 2185 * ndo_set_vf_mac command), then deny permission to the VF to 2186 * add/delete unicast MAC addresses, unless the VF is trusted 2187 */ 2188 if (vf->pf_set_mac && !ice_is_vf_trusted(vf)) 2189 return false; 2190 2191 return true; 2192 } 2193 2194 /** 2195 * ice_vc_ether_addr_type - get type of virtchnl_ether_addr 2196 * @vc_ether_addr: used to extract the type 2197 */ 2198 static u8 2199 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr) 2200 { 2201 return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK); 2202 } 2203 2204 /** 2205 * ice_is_vc_addr_legacy - check if the MAC address is from an older VF 2206 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 2207 */ 2208 static bool 2209 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr) 2210 { 2211 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 2212 2213 return (type == VIRTCHNL_ETHER_ADDR_LEGACY); 2214 } 2215 2216 /** 2217 * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC 2218 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 2219 * 2220 * This function should only be called when the MAC address in 2221 * virtchnl_ether_addr is a valid unicast MAC 2222 */ 2223 static bool 2224 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr) 2225 { 2226 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 2227 2228 return (type == VIRTCHNL_ETHER_ADDR_PRIMARY); 2229 } 2230 2231 /** 2232 * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed 2233 * @vf: VF to update 2234 * @vc_ether_addr: structure from VIRTCHNL with MAC to add 2235 */ 2236 static void 2237 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 2238 { 2239 u8 *mac_addr = vc_ether_addr->addr; 2240 2241 if (!is_valid_ether_addr(mac_addr)) 2242 return; 2243 2244 /* only allow legacy VF drivers to set the device and hardware MAC if it 2245 * is zero and allow new VF drivers to set the hardware MAC if the type 2246 * was correctly specified over VIRTCHNL 2247 */ 2248 if ((ice_is_vc_addr_legacy(vc_ether_addr) && 2249 is_zero_ether_addr(vf->hw_lan_addr)) || 2250 ice_is_vc_addr_primary(vc_ether_addr)) { 2251 ether_addr_copy(vf->dev_lan_addr, mac_addr); 2252 ether_addr_copy(vf->hw_lan_addr, mac_addr); 2253 } 2254 2255 /* hardware and device MACs are already set, but its possible that the 2256 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the 2257 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it 2258 * away for the legacy VF driver case as it will be updated in the 2259 * delete flow for this case 2260 */ 2261 if (ice_is_vc_addr_legacy(vc_ether_addr)) { 2262 ether_addr_copy(vf->legacy_last_added_umac.addr, 2263 mac_addr); 2264 vf->legacy_last_added_umac.time_modified = jiffies; 2265 } 2266 } 2267 2268 /** 2269 * ice_vc_add_mac_addr - attempt to add the MAC address passed in 2270 * @vf: pointer to the VF info 2271 * @vsi: pointer to the VF's VSI 2272 * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC 2273 */ 2274 static int 2275 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 2276 struct virtchnl_ether_addr *vc_ether_addr) 2277 { 2278 struct device *dev = ice_pf_to_dev(vf->pf); 2279 u8 *mac_addr = vc_ether_addr->addr; 2280 int ret; 2281 2282 /* device MAC already added */ 2283 if (ether_addr_equal(mac_addr, vf->dev_lan_addr)) 2284 return 0; 2285 2286 if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) { 2287 dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n"); 2288 return -EPERM; 2289 } 2290 2291 ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 2292 if (ret == -EEXIST) { 2293 dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr, 2294 vf->vf_id); 2295 /* don't return since we might need to update 2296 * the primary MAC in ice_vfhw_mac_add() below 2297 */ 2298 } else if (ret) { 2299 dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n", 2300 mac_addr, vf->vf_id, ret); 2301 return ret; 2302 } else { 2303 vf->num_mac++; 2304 } 2305 2306 ice_vfhw_mac_add(vf, vc_ether_addr); 2307 2308 return ret; 2309 } 2310 2311 /** 2312 * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired 2313 * @last_added_umac: structure used to check expiration 2314 */ 2315 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac) 2316 { 2317 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME msecs_to_jiffies(3000) 2318 return time_is_before_jiffies(last_added_umac->time_modified + 2319 ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME); 2320 } 2321 2322 /** 2323 * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF 2324 * @vf: VF to update 2325 * @vc_ether_addr: structure from VIRTCHNL with MAC to check 2326 * 2327 * only update cached hardware MAC for legacy VF drivers on delete 2328 * because we cannot guarantee order/type of MAC from the VF driver 2329 */ 2330 static void 2331 ice_update_legacy_cached_mac(struct ice_vf *vf, 2332 struct virtchnl_ether_addr *vc_ether_addr) 2333 { 2334 if (!ice_is_vc_addr_legacy(vc_ether_addr) || 2335 ice_is_legacy_umac_expired(&vf->legacy_last_added_umac)) 2336 return; 2337 2338 ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr); 2339 ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr); 2340 } 2341 2342 /** 2343 * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed 2344 * @vf: VF to update 2345 * @vc_ether_addr: structure from VIRTCHNL with MAC to delete 2346 */ 2347 static void 2348 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 2349 { 2350 u8 *mac_addr = vc_ether_addr->addr; 2351 2352 if (!is_valid_ether_addr(mac_addr) || 2353 !ether_addr_equal(vf->dev_lan_addr, mac_addr)) 2354 return; 2355 2356 /* allow the device MAC to be repopulated in the add flow and don't 2357 * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant 2358 * to be persistent on VM reboot and across driver unload/load, which 2359 * won't work if we clear the hardware MAC here 2360 */ 2361 eth_zero_addr(vf->dev_lan_addr); 2362 2363 ice_update_legacy_cached_mac(vf, vc_ether_addr); 2364 } 2365 2366 /** 2367 * ice_vc_del_mac_addr - attempt to delete the MAC address passed in 2368 * @vf: pointer to the VF info 2369 * @vsi: pointer to the VF's VSI 2370 * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC 2371 */ 2372 static int 2373 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 2374 struct virtchnl_ether_addr *vc_ether_addr) 2375 { 2376 struct device *dev = ice_pf_to_dev(vf->pf); 2377 u8 *mac_addr = vc_ether_addr->addr; 2378 int status; 2379 2380 if (!ice_can_vf_change_mac(vf) && 2381 ether_addr_equal(vf->dev_lan_addr, mac_addr)) 2382 return 0; 2383 2384 status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 2385 if (status == -ENOENT) { 2386 dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr, 2387 vf->vf_id); 2388 return -ENOENT; 2389 } else if (status) { 2390 dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n", 2391 mac_addr, vf->vf_id, status); 2392 return -EIO; 2393 } 2394 2395 ice_vfhw_mac_del(vf, vc_ether_addr); 2396 2397 vf->num_mac--; 2398 2399 return 0; 2400 } 2401 2402 /** 2403 * ice_vc_handle_mac_addr_msg 2404 * @vf: pointer to the VF info 2405 * @msg: pointer to the msg buffer 2406 * @set: true if MAC filters are being set, false otherwise 2407 * 2408 * add guest MAC address filter 2409 */ 2410 static int 2411 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set) 2412 { 2413 int (*ice_vc_cfg_mac) 2414 (struct ice_vf *vf, struct ice_vsi *vsi, 2415 struct virtchnl_ether_addr *virtchnl_ether_addr); 2416 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2417 struct virtchnl_ether_addr_list *al = 2418 (struct virtchnl_ether_addr_list *)msg; 2419 struct ice_pf *pf = vf->pf; 2420 enum virtchnl_ops vc_op; 2421 struct ice_vsi *vsi; 2422 int i; 2423 2424 if (set) { 2425 vc_op = VIRTCHNL_OP_ADD_ETH_ADDR; 2426 ice_vc_cfg_mac = ice_vc_add_mac_addr; 2427 } else { 2428 vc_op = VIRTCHNL_OP_DEL_ETH_ADDR; 2429 ice_vc_cfg_mac = ice_vc_del_mac_addr; 2430 } 2431 2432 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 2433 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 2434 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2435 goto handle_mac_exit; 2436 } 2437 2438 /* If this VF is not privileged, then we can't add more than a 2439 * limited number of addresses. Check to make sure that the 2440 * additions do not push us over the limit. 2441 */ 2442 if (set && !ice_is_vf_trusted(vf) && 2443 (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) { 2444 dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n", 2445 vf->vf_id); 2446 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2447 goto handle_mac_exit; 2448 } 2449 2450 vsi = ice_get_vf_vsi(vf); 2451 if (!vsi) { 2452 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2453 goto handle_mac_exit; 2454 } 2455 2456 for (i = 0; i < al->num_elements; i++) { 2457 u8 *mac_addr = al->list[i].addr; 2458 int result; 2459 2460 if (is_broadcast_ether_addr(mac_addr) || 2461 is_zero_ether_addr(mac_addr)) 2462 continue; 2463 2464 result = ice_vc_cfg_mac(vf, vsi, &al->list[i]); 2465 if (result == -EEXIST || result == -ENOENT) { 2466 continue; 2467 } else if (result) { 2468 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 2469 goto handle_mac_exit; 2470 } 2471 } 2472 2473 handle_mac_exit: 2474 /* send the response to the VF */ 2475 return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0); 2476 } 2477 2478 /** 2479 * ice_vc_add_mac_addr_msg 2480 * @vf: pointer to the VF info 2481 * @msg: pointer to the msg buffer 2482 * 2483 * add guest MAC address filter 2484 */ 2485 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg) 2486 { 2487 return ice_vc_handle_mac_addr_msg(vf, msg, true); 2488 } 2489 2490 /** 2491 * ice_vc_del_mac_addr_msg 2492 * @vf: pointer to the VF info 2493 * @msg: pointer to the msg buffer 2494 * 2495 * remove guest MAC address filter 2496 */ 2497 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg) 2498 { 2499 return ice_vc_handle_mac_addr_msg(vf, msg, false); 2500 } 2501 2502 /** 2503 * ice_vc_request_qs_msg 2504 * @vf: pointer to the VF info 2505 * @msg: pointer to the msg buffer 2506 * 2507 * VFs get a default number of queues but can use this message to request a 2508 * different number. If the request is successful, PF will reset the VF and 2509 * return 0. If unsuccessful, PF will send message informing VF of number of 2510 * available queue pairs via virtchnl message response to VF. 2511 */ 2512 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg) 2513 { 2514 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2515 struct virtchnl_vf_res_request *vfres = 2516 (struct virtchnl_vf_res_request *)msg; 2517 u16 req_queues = vfres->num_queue_pairs; 2518 struct ice_pf *pf = vf->pf; 2519 u16 max_allowed_vf_queues; 2520 u16 tx_rx_queue_left; 2521 struct device *dev; 2522 u16 cur_queues; 2523 2524 dev = ice_pf_to_dev(pf); 2525 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2526 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2527 goto error_param; 2528 } 2529 2530 cur_queues = vf->num_vf_qs; 2531 tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf), 2532 ice_get_avail_rxq_count(pf)); 2533 max_allowed_vf_queues = tx_rx_queue_left + cur_queues; 2534 if (!req_queues) { 2535 dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n", 2536 vf->vf_id); 2537 } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) { 2538 dev_err(dev, "VF %d tried to request more than %d queues.\n", 2539 vf->vf_id, ICE_MAX_RSS_QS_PER_VF); 2540 vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF; 2541 } else if (req_queues > cur_queues && 2542 req_queues - cur_queues > tx_rx_queue_left) { 2543 dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n", 2544 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left); 2545 vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues, 2546 ICE_MAX_RSS_QS_PER_VF); 2547 } else { 2548 /* request is successful, then reset VF */ 2549 vf->num_req_qs = req_queues; 2550 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 2551 dev_info(dev, "VF %d granted request of %u queues.\n", 2552 vf->vf_id, req_queues); 2553 return 0; 2554 } 2555 2556 error_param: 2557 /* send the response to the VF */ 2558 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES, 2559 v_ret, (u8 *)vfres, sizeof(*vfres)); 2560 } 2561 2562 /** 2563 * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads 2564 * @caps: VF driver negotiated capabilities 2565 * 2566 * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false 2567 */ 2568 static bool ice_vf_vlan_offload_ena(u32 caps) 2569 { 2570 return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN); 2571 } 2572 2573 /** 2574 * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed 2575 * @vf: VF used to determine if VLAN promiscuous config is allowed 2576 */ 2577 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf) 2578 { 2579 if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) || 2580 test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) && 2581 test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags)) 2582 return true; 2583 2584 return false; 2585 } 2586 2587 /** 2588 * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN 2589 * @vf: VF to enable VLAN promisc on 2590 * @vsi: VF's VSI used to enable VLAN promiscuous mode 2591 * @vlan: VLAN used to enable VLAN promiscuous 2592 * 2593 * This function should only be called if VLAN promiscuous mode is allowed, 2594 * which can be determined via ice_is_vlan_promisc_allowed(). 2595 */ 2596 static int ice_vf_ena_vlan_promisc(struct ice_vf *vf, struct ice_vsi *vsi, 2597 struct ice_vlan *vlan) 2598 { 2599 u8 promisc_m = 0; 2600 int status; 2601 2602 if (test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states)) 2603 promisc_m |= ICE_UCAST_VLAN_PROMISC_BITS; 2604 if (test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) 2605 promisc_m |= ICE_MCAST_VLAN_PROMISC_BITS; 2606 2607 if (!promisc_m) 2608 return 0; 2609 2610 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2611 vlan->vid); 2612 if (status && status != -EEXIST) 2613 return status; 2614 2615 return 0; 2616 } 2617 2618 /** 2619 * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN 2620 * @vsi: VF's VSI used to disable VLAN promiscuous mode for 2621 * @vlan: VLAN used to disable VLAN promiscuous 2622 * 2623 * This function should only be called if VLAN promiscuous mode is allowed, 2624 * which can be determined via ice_is_vlan_promisc_allowed(). 2625 */ 2626 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) 2627 { 2628 u8 promisc_m = ICE_UCAST_VLAN_PROMISC_BITS | ICE_MCAST_VLAN_PROMISC_BITS; 2629 int status; 2630 2631 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2632 vlan->vid); 2633 if (status && status != -ENOENT) 2634 return status; 2635 2636 return 0; 2637 } 2638 2639 /** 2640 * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters 2641 * @vf: VF to check against 2642 * @vsi: VF's VSI 2643 * 2644 * If the VF is trusted then the VF is allowed to add as many VLANs as it 2645 * wants to, so return false. 2646 * 2647 * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max 2648 * allowed VLANs for an untrusted VF. Return the result of this comparison. 2649 */ 2650 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi) 2651 { 2652 if (ice_is_vf_trusted(vf)) 2653 return false; 2654 2655 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS 1 2656 return ((ice_vsi_num_non_zero_vlans(vsi) + 2657 ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF); 2658 } 2659 2660 /** 2661 * ice_vc_process_vlan_msg 2662 * @vf: pointer to the VF info 2663 * @msg: pointer to the msg buffer 2664 * @add_v: Add VLAN if true, otherwise delete VLAN 2665 * 2666 * Process virtchnl op to add or remove programmed guest VLAN ID 2667 */ 2668 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v) 2669 { 2670 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2671 struct virtchnl_vlan_filter_list *vfl = 2672 (struct virtchnl_vlan_filter_list *)msg; 2673 struct ice_pf *pf = vf->pf; 2674 bool vlan_promisc = false; 2675 struct ice_vsi *vsi; 2676 struct device *dev; 2677 int status = 0; 2678 int i; 2679 2680 dev = ice_pf_to_dev(pf); 2681 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2682 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2683 goto error_param; 2684 } 2685 2686 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2687 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2688 goto error_param; 2689 } 2690 2691 if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) { 2692 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2693 goto error_param; 2694 } 2695 2696 for (i = 0; i < vfl->num_elements; i++) { 2697 if (vfl->vlan_id[i] >= VLAN_N_VID) { 2698 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2699 dev_err(dev, "invalid VF VLAN id %d\n", 2700 vfl->vlan_id[i]); 2701 goto error_param; 2702 } 2703 } 2704 2705 vsi = ice_get_vf_vsi(vf); 2706 if (!vsi) { 2707 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2708 goto error_param; 2709 } 2710 2711 if (add_v && ice_vf_has_max_vlans(vf, vsi)) { 2712 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2713 vf->vf_id); 2714 /* There is no need to let VF know about being not trusted, 2715 * so we can just return success message here 2716 */ 2717 goto error_param; 2718 } 2719 2720 /* in DVM a VF can add/delete inner VLAN filters when 2721 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM 2722 */ 2723 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) { 2724 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2725 goto error_param; 2726 } 2727 2728 /* in DVM VLAN promiscuous is based on the outer VLAN, which would be 2729 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only 2730 * allow vlan_promisc = true in SVM and if no port VLAN is configured 2731 */ 2732 vlan_promisc = ice_is_vlan_promisc_allowed(vf) && 2733 !ice_is_dvm_ena(&pf->hw) && 2734 !ice_vf_is_port_vlan_ena(vf); 2735 2736 if (add_v) { 2737 for (i = 0; i < vfl->num_elements; i++) { 2738 u16 vid = vfl->vlan_id[i]; 2739 struct ice_vlan vlan; 2740 2741 if (ice_vf_has_max_vlans(vf, vsi)) { 2742 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2743 vf->vf_id); 2744 /* There is no need to let VF know about being 2745 * not trusted, so we can just return success 2746 * message here as well. 2747 */ 2748 goto error_param; 2749 } 2750 2751 /* we add VLAN 0 by default for each VF so we can enable 2752 * Tx VLAN anti-spoof without triggering MDD events so 2753 * we don't need to add it again here 2754 */ 2755 if (!vid) 2756 continue; 2757 2758 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2759 status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan); 2760 if (status) { 2761 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2762 goto error_param; 2763 } 2764 2765 /* Enable VLAN filtering on first non-zero VLAN */ 2766 if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) { 2767 if (vf->spoofchk) { 2768 status = vsi->inner_vlan_ops.ena_tx_filtering(vsi); 2769 if (status) { 2770 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2771 dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n", 2772 vid, status); 2773 goto error_param; 2774 } 2775 } 2776 if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) { 2777 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2778 dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n", 2779 vid, status); 2780 goto error_param; 2781 } 2782 } else if (vlan_promisc) { 2783 status = ice_vf_ena_vlan_promisc(vf, vsi, &vlan); 2784 if (status) { 2785 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2786 dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n", 2787 vid, status); 2788 } 2789 } 2790 } 2791 } else { 2792 /* In case of non_trusted VF, number of VLAN elements passed 2793 * to PF for removal might be greater than number of VLANs 2794 * filter programmed for that VF - So, use actual number of 2795 * VLANS added earlier with add VLAN opcode. In order to avoid 2796 * removing VLAN that doesn't exist, which result to sending 2797 * erroneous failed message back to the VF 2798 */ 2799 int num_vf_vlan; 2800 2801 num_vf_vlan = vsi->num_vlan; 2802 for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) { 2803 u16 vid = vfl->vlan_id[i]; 2804 struct ice_vlan vlan; 2805 2806 /* we add VLAN 0 by default for each VF so we can enable 2807 * Tx VLAN anti-spoof without triggering MDD events so 2808 * we don't want a VIRTCHNL request to remove it 2809 */ 2810 if (!vid) 2811 continue; 2812 2813 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2814 status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan); 2815 if (status) { 2816 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2817 goto error_param; 2818 } 2819 2820 /* Disable VLAN filtering when only VLAN 0 is left */ 2821 if (!ice_vsi_has_non_zero_vlans(vsi)) { 2822 vsi->inner_vlan_ops.dis_tx_filtering(vsi); 2823 vsi->inner_vlan_ops.dis_rx_filtering(vsi); 2824 } 2825 2826 if (vlan_promisc) 2827 ice_vf_dis_vlan_promisc(vsi, &vlan); 2828 } 2829 } 2830 2831 error_param: 2832 /* send the response to the VF */ 2833 if (add_v) 2834 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret, 2835 NULL, 0); 2836 else 2837 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret, 2838 NULL, 0); 2839 } 2840 2841 /** 2842 * ice_vc_add_vlan_msg 2843 * @vf: pointer to the VF info 2844 * @msg: pointer to the msg buffer 2845 * 2846 * Add and program guest VLAN ID 2847 */ 2848 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg) 2849 { 2850 return ice_vc_process_vlan_msg(vf, msg, true); 2851 } 2852 2853 /** 2854 * ice_vc_remove_vlan_msg 2855 * @vf: pointer to the VF info 2856 * @msg: pointer to the msg buffer 2857 * 2858 * remove programmed guest VLAN ID 2859 */ 2860 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg) 2861 { 2862 return ice_vc_process_vlan_msg(vf, msg, false); 2863 } 2864 2865 /** 2866 * ice_vsi_is_rxq_crc_strip_dis - check if Rx queue CRC strip is disabled or not 2867 * @vsi: pointer to the VF VSI info 2868 */ 2869 static bool ice_vsi_is_rxq_crc_strip_dis(struct ice_vsi *vsi) 2870 { 2871 unsigned int i; 2872 2873 ice_for_each_alloc_rxq(vsi, i) 2874 if (vsi->rx_rings[i]->flags & ICE_RX_FLAGS_CRC_STRIP_DIS) 2875 return true; 2876 2877 return false; 2878 } 2879 2880 /** 2881 * ice_vc_ena_vlan_stripping 2882 * @vf: pointer to the VF info 2883 * 2884 * Enable VLAN header stripping for a given VF 2885 */ 2886 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf) 2887 { 2888 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2889 struct ice_vsi *vsi; 2890 2891 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2892 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2893 goto error_param; 2894 } 2895 2896 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2897 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2898 goto error_param; 2899 } 2900 2901 vsi = ice_get_vf_vsi(vf); 2902 if (!vsi) { 2903 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2904 goto error_param; 2905 } 2906 2907 if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q)) 2908 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2909 else 2910 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA; 2911 2912 error_param: 2913 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING, 2914 v_ret, NULL, 0); 2915 } 2916 2917 /** 2918 * ice_vc_dis_vlan_stripping 2919 * @vf: pointer to the VF info 2920 * 2921 * Disable VLAN header stripping for a given VF 2922 */ 2923 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf) 2924 { 2925 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2926 struct ice_vsi *vsi; 2927 2928 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2929 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2930 goto error_param; 2931 } 2932 2933 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2934 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2935 goto error_param; 2936 } 2937 2938 vsi = ice_get_vf_vsi(vf); 2939 if (!vsi) { 2940 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2941 goto error_param; 2942 } 2943 2944 if (vsi->inner_vlan_ops.dis_stripping(vsi)) 2945 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2946 else 2947 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA; 2948 2949 error_param: 2950 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING, 2951 v_ret, NULL, 0); 2952 } 2953 2954 /** 2955 * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware 2956 * @vf: pointer to the VF info 2957 */ 2958 static int ice_vc_get_rss_hena(struct ice_vf *vf) 2959 { 2960 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2961 struct virtchnl_rss_hena *vrh = NULL; 2962 int len = 0, ret; 2963 2964 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2965 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2966 goto err; 2967 } 2968 2969 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 2970 dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n"); 2971 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2972 goto err; 2973 } 2974 2975 len = sizeof(struct virtchnl_rss_hena); 2976 vrh = kzalloc(len, GFP_KERNEL); 2977 if (!vrh) { 2978 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2979 len = 0; 2980 goto err; 2981 } 2982 2983 vrh->hena = ICE_DEFAULT_RSS_HENA; 2984 err: 2985 /* send the response back to the VF */ 2986 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret, 2987 (u8 *)vrh, len); 2988 kfree(vrh); 2989 return ret; 2990 } 2991 2992 /** 2993 * ice_vc_set_rss_hena - set RSS HENA bits for the VF 2994 * @vf: pointer to the VF info 2995 * @msg: pointer to the msg buffer 2996 */ 2997 static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg) 2998 { 2999 struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg; 3000 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3001 struct ice_pf *pf = vf->pf; 3002 struct ice_vsi *vsi; 3003 struct device *dev; 3004 int status; 3005 3006 dev = ice_pf_to_dev(pf); 3007 3008 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3009 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3010 goto err; 3011 } 3012 3013 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 3014 dev_err(dev, "RSS not supported by PF\n"); 3015 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3016 goto err; 3017 } 3018 3019 vsi = ice_get_vf_vsi(vf); 3020 if (!vsi) { 3021 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3022 goto err; 3023 } 3024 3025 /* clear all previously programmed RSS configuration to allow VF drivers 3026 * the ability to customize the RSS configuration and/or completely 3027 * disable RSS 3028 */ 3029 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 3030 if (status && !vrh->hena) { 3031 /* only report failure to clear the current RSS configuration if 3032 * that was clearly the VF's intention (i.e. vrh->hena = 0) 3033 */ 3034 v_ret = ice_err_to_virt_err(status); 3035 goto err; 3036 } else if (status) { 3037 /* allow the VF to update the RSS configuration even on failure 3038 * to clear the current RSS confguration in an attempt to keep 3039 * RSS in a working state 3040 */ 3041 dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n", 3042 vf->vf_id); 3043 } 3044 3045 if (vrh->hena) { 3046 status = ice_add_avf_rss_cfg(&pf->hw, vsi, vrh->hena); 3047 v_ret = ice_err_to_virt_err(status); 3048 } 3049 3050 /* send the response to the VF */ 3051 err: 3052 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret, 3053 NULL, 0); 3054 } 3055 3056 /** 3057 * ice_vc_query_rxdid - query RXDID supported by DDP package 3058 * @vf: pointer to VF info 3059 * 3060 * Called from VF to query a bitmap of supported flexible 3061 * descriptor RXDIDs of a DDP package. 3062 */ 3063 static int ice_vc_query_rxdid(struct ice_vf *vf) 3064 { 3065 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3066 struct ice_pf *pf = vf->pf; 3067 u64 rxdid; 3068 3069 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3070 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3071 goto err; 3072 } 3073 3074 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) { 3075 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3076 goto err; 3077 } 3078 3079 rxdid = pf->supported_rxdids; 3080 3081 err: 3082 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS, 3083 v_ret, (u8 *)&rxdid, sizeof(rxdid)); 3084 } 3085 3086 /** 3087 * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization 3088 * @vf: VF to enable/disable VLAN stripping for on initialization 3089 * 3090 * Set the default for VLAN stripping based on whether a port VLAN is configured 3091 * and the current VLAN mode of the device. 3092 */ 3093 static int ice_vf_init_vlan_stripping(struct ice_vf *vf) 3094 { 3095 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 3096 3097 vf->vlan_strip_ena = 0; 3098 3099 if (!vsi) 3100 return -EINVAL; 3101 3102 /* don't modify stripping if port VLAN is configured in SVM since the 3103 * port VLAN is based on the inner/single VLAN in SVM 3104 */ 3105 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw)) 3106 return 0; 3107 3108 if (ice_vf_vlan_offload_ena(vf->driver_caps)) { 3109 int err; 3110 3111 err = vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q); 3112 if (!err) 3113 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA; 3114 return err; 3115 } 3116 3117 return vsi->inner_vlan_ops.dis_stripping(vsi); 3118 } 3119 3120 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf) 3121 { 3122 if (vf->trusted) 3123 return VLAN_N_VID; 3124 else 3125 return ICE_MAX_VLAN_PER_VF; 3126 } 3127 3128 /** 3129 * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used 3130 * @vf: VF that being checked for 3131 * 3132 * When the device is in double VLAN mode, check whether or not the outer VLAN 3133 * is allowed. 3134 */ 3135 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf) 3136 { 3137 if (ice_vf_is_port_vlan_ena(vf)) 3138 return true; 3139 3140 return false; 3141 } 3142 3143 /** 3144 * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM 3145 * @vf: VF that capabilities are being set for 3146 * @caps: VLAN capabilities to populate 3147 * 3148 * Determine VLAN capabilities support based on whether a port VLAN is 3149 * configured. If a port VLAN is configured then the VF should use the inner 3150 * filtering/offload capabilities since the port VLAN is using the outer VLAN 3151 * capabilies. 3152 */ 3153 static void 3154 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 3155 { 3156 struct virtchnl_vlan_supported_caps *supported_caps; 3157 3158 if (ice_vf_outer_vlan_not_allowed(vf)) { 3159 /* until support for inner VLAN filtering is added when a port 3160 * VLAN is configured, only support software offloaded inner 3161 * VLANs when a port VLAN is confgured in DVM 3162 */ 3163 supported_caps = &caps->filtering.filtering_support; 3164 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 3165 3166 supported_caps = &caps->offloads.stripping_support; 3167 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 3168 VIRTCHNL_VLAN_TOGGLE | 3169 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 3170 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 3171 3172 supported_caps = &caps->offloads.insertion_support; 3173 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 3174 VIRTCHNL_VLAN_TOGGLE | 3175 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 3176 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 3177 3178 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 3179 caps->offloads.ethertype_match = 3180 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 3181 } else { 3182 supported_caps = &caps->filtering.filtering_support; 3183 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 3184 supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 | 3185 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 3186 VIRTCHNL_VLAN_ETHERTYPE_9100 | 3187 VIRTCHNL_VLAN_ETHERTYPE_AND; 3188 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 | 3189 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 3190 VIRTCHNL_VLAN_ETHERTYPE_9100; 3191 3192 supported_caps = &caps->offloads.stripping_support; 3193 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 3194 VIRTCHNL_VLAN_ETHERTYPE_8100 | 3195 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 3196 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 3197 VIRTCHNL_VLAN_ETHERTYPE_8100 | 3198 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 3199 VIRTCHNL_VLAN_ETHERTYPE_9100 | 3200 VIRTCHNL_VLAN_ETHERTYPE_XOR | 3201 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2; 3202 3203 supported_caps = &caps->offloads.insertion_support; 3204 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 3205 VIRTCHNL_VLAN_ETHERTYPE_8100 | 3206 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 3207 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 3208 VIRTCHNL_VLAN_ETHERTYPE_8100 | 3209 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 3210 VIRTCHNL_VLAN_ETHERTYPE_9100 | 3211 VIRTCHNL_VLAN_ETHERTYPE_XOR | 3212 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2; 3213 3214 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 3215 3216 caps->offloads.ethertype_match = 3217 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 3218 } 3219 3220 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 3221 } 3222 3223 /** 3224 * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM 3225 * @vf: VF that capabilities are being set for 3226 * @caps: VLAN capabilities to populate 3227 * 3228 * Determine VLAN capabilities support based on whether a port VLAN is 3229 * configured. If a port VLAN is configured then the VF does not have any VLAN 3230 * filtering or offload capabilities since the port VLAN is using the inner VLAN 3231 * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner 3232 * VLAN fitlering and offload capabilities. 3233 */ 3234 static void 3235 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 3236 { 3237 struct virtchnl_vlan_supported_caps *supported_caps; 3238 3239 if (ice_vf_is_port_vlan_ena(vf)) { 3240 supported_caps = &caps->filtering.filtering_support; 3241 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 3242 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 3243 3244 supported_caps = &caps->offloads.stripping_support; 3245 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 3246 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 3247 3248 supported_caps = &caps->offloads.insertion_support; 3249 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 3250 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 3251 3252 caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED; 3253 caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED; 3254 caps->filtering.max_filters = 0; 3255 } else { 3256 supported_caps = &caps->filtering.filtering_support; 3257 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100; 3258 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 3259 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 3260 3261 supported_caps = &caps->offloads.stripping_support; 3262 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 3263 VIRTCHNL_VLAN_TOGGLE | 3264 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 3265 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 3266 3267 supported_caps = &caps->offloads.insertion_support; 3268 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 3269 VIRTCHNL_VLAN_TOGGLE | 3270 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 3271 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 3272 3273 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 3274 caps->offloads.ethertype_match = 3275 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 3276 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 3277 } 3278 } 3279 3280 /** 3281 * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities 3282 * @vf: VF to determine VLAN capabilities for 3283 * 3284 * This will only be called if the VF and PF successfully negotiated 3285 * VIRTCHNL_VF_OFFLOAD_VLAN_V2. 3286 * 3287 * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN 3288 * is configured or not. 3289 */ 3290 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf) 3291 { 3292 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3293 struct virtchnl_vlan_caps *caps = NULL; 3294 int err, len = 0; 3295 3296 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3297 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3298 goto out; 3299 } 3300 3301 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 3302 if (!caps) { 3303 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 3304 goto out; 3305 } 3306 len = sizeof(*caps); 3307 3308 if (ice_is_dvm_ena(&vf->pf->hw)) 3309 ice_vc_set_dvm_caps(vf, caps); 3310 else 3311 ice_vc_set_svm_caps(vf, caps); 3312 3313 /* store negotiated caps to prevent invalid VF messages */ 3314 memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps)); 3315 3316 out: 3317 err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS, 3318 v_ret, (u8 *)caps, len); 3319 kfree(caps); 3320 return err; 3321 } 3322 3323 /** 3324 * ice_vc_validate_vlan_tpid - validate VLAN TPID 3325 * @filtering_caps: negotiated/supported VLAN filtering capabilities 3326 * @tpid: VLAN TPID used for validation 3327 * 3328 * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against 3329 * the negotiated/supported filtering caps to see if the VLAN TPID is valid. 3330 */ 3331 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid) 3332 { 3333 enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED; 3334 3335 switch (tpid) { 3336 case ETH_P_8021Q: 3337 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100; 3338 break; 3339 case ETH_P_8021AD: 3340 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8; 3341 break; 3342 case ETH_P_QINQ1: 3343 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100; 3344 break; 3345 } 3346 3347 if (!(filtering_caps & vlan_ethertype)) 3348 return false; 3349 3350 return true; 3351 } 3352 3353 /** 3354 * ice_vc_is_valid_vlan - validate the virtchnl_vlan 3355 * @vc_vlan: virtchnl_vlan to validate 3356 * 3357 * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return 3358 * false. Otherwise return true. 3359 */ 3360 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan) 3361 { 3362 if (!vc_vlan->tci || !vc_vlan->tpid) 3363 return false; 3364 3365 return true; 3366 } 3367 3368 /** 3369 * ice_vc_validate_vlan_filter_list - validate the filter list from the VF 3370 * @vfc: negotiated/supported VLAN filtering capabilities 3371 * @vfl: VLAN filter list from VF to validate 3372 * 3373 * Validate all of the filters in the VLAN filter list from the VF. If any of 3374 * the checks fail then return false. Otherwise return true. 3375 */ 3376 static bool 3377 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc, 3378 struct virtchnl_vlan_filter_list_v2 *vfl) 3379 { 3380 u16 i; 3381 3382 if (!vfl->num_elements) 3383 return false; 3384 3385 for (i = 0; i < vfl->num_elements; i++) { 3386 struct virtchnl_vlan_supported_caps *filtering_support = 3387 &vfc->filtering_support; 3388 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3389 struct virtchnl_vlan *outer = &vlan_fltr->outer; 3390 struct virtchnl_vlan *inner = &vlan_fltr->inner; 3391 3392 if ((ice_vc_is_valid_vlan(outer) && 3393 filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) || 3394 (ice_vc_is_valid_vlan(inner) && 3395 filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED)) 3396 return false; 3397 3398 if ((outer->tci_mask && 3399 !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) || 3400 (inner->tci_mask && 3401 !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK))) 3402 return false; 3403 3404 if (((outer->tci & VLAN_PRIO_MASK) && 3405 !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) || 3406 ((inner->tci & VLAN_PRIO_MASK) && 3407 !(filtering_support->inner & VIRTCHNL_VLAN_PRIO))) 3408 return false; 3409 3410 if ((ice_vc_is_valid_vlan(outer) && 3411 !ice_vc_validate_vlan_tpid(filtering_support->outer, 3412 outer->tpid)) || 3413 (ice_vc_is_valid_vlan(inner) && 3414 !ice_vc_validate_vlan_tpid(filtering_support->inner, 3415 inner->tpid))) 3416 return false; 3417 } 3418 3419 return true; 3420 } 3421 3422 /** 3423 * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan 3424 * @vc_vlan: struct virtchnl_vlan to transform 3425 */ 3426 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan) 3427 { 3428 struct ice_vlan vlan = { 0 }; 3429 3430 vlan.prio = FIELD_GET(VLAN_PRIO_MASK, vc_vlan->tci); 3431 vlan.vid = vc_vlan->tci & VLAN_VID_MASK; 3432 vlan.tpid = vc_vlan->tpid; 3433 3434 return vlan; 3435 } 3436 3437 /** 3438 * ice_vc_vlan_action - action to perform on the virthcnl_vlan 3439 * @vsi: VF's VSI used to perform the action 3440 * @vlan_action: function to perform the action with (i.e. add/del) 3441 * @vlan: VLAN filter to perform the action with 3442 */ 3443 static int 3444 ice_vc_vlan_action(struct ice_vsi *vsi, 3445 int (*vlan_action)(struct ice_vsi *, struct ice_vlan *), 3446 struct ice_vlan *vlan) 3447 { 3448 int err; 3449 3450 err = vlan_action(vsi, vlan); 3451 if (err) 3452 return err; 3453 3454 return 0; 3455 } 3456 3457 /** 3458 * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list 3459 * @vf: VF used to delete the VLAN(s) 3460 * @vsi: VF's VSI used to delete the VLAN(s) 3461 * @vfl: virthchnl filter list used to delete the filters 3462 */ 3463 static int 3464 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 3465 struct virtchnl_vlan_filter_list_v2 *vfl) 3466 { 3467 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 3468 int err; 3469 u16 i; 3470 3471 for (i = 0; i < vfl->num_elements; i++) { 3472 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3473 struct virtchnl_vlan *vc_vlan; 3474 3475 vc_vlan = &vlan_fltr->outer; 3476 if (ice_vc_is_valid_vlan(vc_vlan)) { 3477 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3478 3479 err = ice_vc_vlan_action(vsi, 3480 vsi->outer_vlan_ops.del_vlan, 3481 &vlan); 3482 if (err) 3483 return err; 3484 3485 if (vlan_promisc) 3486 ice_vf_dis_vlan_promisc(vsi, &vlan); 3487 3488 /* Disable VLAN filtering when only VLAN 0 is left */ 3489 if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) { 3490 err = vsi->outer_vlan_ops.dis_tx_filtering(vsi); 3491 if (err) 3492 return err; 3493 } 3494 } 3495 3496 vc_vlan = &vlan_fltr->inner; 3497 if (ice_vc_is_valid_vlan(vc_vlan)) { 3498 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3499 3500 err = ice_vc_vlan_action(vsi, 3501 vsi->inner_vlan_ops.del_vlan, 3502 &vlan); 3503 if (err) 3504 return err; 3505 3506 /* no support for VLAN promiscuous on inner VLAN unless 3507 * we are in Single VLAN Mode (SVM) 3508 */ 3509 if (!ice_is_dvm_ena(&vsi->back->hw)) { 3510 if (vlan_promisc) 3511 ice_vf_dis_vlan_promisc(vsi, &vlan); 3512 3513 /* Disable VLAN filtering when only VLAN 0 is left */ 3514 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3515 err = vsi->inner_vlan_ops.dis_tx_filtering(vsi); 3516 if (err) 3517 return err; 3518 } 3519 } 3520 } 3521 } 3522 3523 return 0; 3524 } 3525 3526 /** 3527 * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2 3528 * @vf: VF the message was received from 3529 * @msg: message received from the VF 3530 */ 3531 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 3532 { 3533 struct virtchnl_vlan_filter_list_v2 *vfl = 3534 (struct virtchnl_vlan_filter_list_v2 *)msg; 3535 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3536 struct ice_vsi *vsi; 3537 3538 if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering, 3539 vfl)) { 3540 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3541 goto out; 3542 } 3543 3544 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 3545 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3546 goto out; 3547 } 3548 3549 vsi = ice_get_vf_vsi(vf); 3550 if (!vsi) { 3551 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3552 goto out; 3553 } 3554 3555 if (ice_vc_del_vlans(vf, vsi, vfl)) 3556 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3557 3558 out: 3559 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL, 3560 0); 3561 } 3562 3563 /** 3564 * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list 3565 * @vf: VF used to add the VLAN(s) 3566 * @vsi: VF's VSI used to add the VLAN(s) 3567 * @vfl: virthchnl filter list used to add the filters 3568 */ 3569 static int 3570 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 3571 struct virtchnl_vlan_filter_list_v2 *vfl) 3572 { 3573 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 3574 int err; 3575 u16 i; 3576 3577 for (i = 0; i < vfl->num_elements; i++) { 3578 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3579 struct virtchnl_vlan *vc_vlan; 3580 3581 vc_vlan = &vlan_fltr->outer; 3582 if (ice_vc_is_valid_vlan(vc_vlan)) { 3583 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3584 3585 err = ice_vc_vlan_action(vsi, 3586 vsi->outer_vlan_ops.add_vlan, 3587 &vlan); 3588 if (err) 3589 return err; 3590 3591 if (vlan_promisc) { 3592 err = ice_vf_ena_vlan_promisc(vf, vsi, &vlan); 3593 if (err) 3594 return err; 3595 } 3596 3597 /* Enable VLAN filtering on first non-zero VLAN */ 3598 if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) { 3599 err = vsi->outer_vlan_ops.ena_tx_filtering(vsi); 3600 if (err) 3601 return err; 3602 } 3603 } 3604 3605 vc_vlan = &vlan_fltr->inner; 3606 if (ice_vc_is_valid_vlan(vc_vlan)) { 3607 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3608 3609 err = ice_vc_vlan_action(vsi, 3610 vsi->inner_vlan_ops.add_vlan, 3611 &vlan); 3612 if (err) 3613 return err; 3614 3615 /* no support for VLAN promiscuous on inner VLAN unless 3616 * we are in Single VLAN Mode (SVM) 3617 */ 3618 if (!ice_is_dvm_ena(&vsi->back->hw)) { 3619 if (vlan_promisc) { 3620 err = ice_vf_ena_vlan_promisc(vf, vsi, 3621 &vlan); 3622 if (err) 3623 return err; 3624 } 3625 3626 /* Enable VLAN filtering on first non-zero VLAN */ 3627 if (vf->spoofchk && vlan.vid) { 3628 err = vsi->inner_vlan_ops.ena_tx_filtering(vsi); 3629 if (err) 3630 return err; 3631 } 3632 } 3633 } 3634 } 3635 3636 return 0; 3637 } 3638 3639 /** 3640 * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF 3641 * @vsi: VF VSI used to get number of existing VLAN filters 3642 * @vfc: negotiated/supported VLAN filtering capabilities 3643 * @vfl: VLAN filter list from VF to validate 3644 * 3645 * Validate all of the filters in the VLAN filter list from the VF during the 3646 * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false. 3647 * Otherwise return true. 3648 */ 3649 static bool 3650 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi, 3651 struct virtchnl_vlan_filtering_caps *vfc, 3652 struct virtchnl_vlan_filter_list_v2 *vfl) 3653 { 3654 u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) + 3655 vfl->num_elements; 3656 3657 if (num_requested_filters > vfc->max_filters) 3658 return false; 3659 3660 return ice_vc_validate_vlan_filter_list(vfc, vfl); 3661 } 3662 3663 /** 3664 * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2 3665 * @vf: VF the message was received from 3666 * @msg: message received from the VF 3667 */ 3668 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 3669 { 3670 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3671 struct virtchnl_vlan_filter_list_v2 *vfl = 3672 (struct virtchnl_vlan_filter_list_v2 *)msg; 3673 struct ice_vsi *vsi; 3674 3675 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3676 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3677 goto out; 3678 } 3679 3680 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 3681 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3682 goto out; 3683 } 3684 3685 vsi = ice_get_vf_vsi(vf); 3686 if (!vsi) { 3687 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3688 goto out; 3689 } 3690 3691 if (!ice_vc_validate_add_vlan_filter_list(vsi, 3692 &vf->vlan_v2_caps.filtering, 3693 vfl)) { 3694 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3695 goto out; 3696 } 3697 3698 if (ice_vc_add_vlans(vf, vsi, vfl)) 3699 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3700 3701 out: 3702 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL, 3703 0); 3704 } 3705 3706 /** 3707 * ice_vc_valid_vlan_setting - validate VLAN setting 3708 * @negotiated_settings: negotiated VLAN settings during VF init 3709 * @ethertype_setting: ethertype(s) requested for the VLAN setting 3710 */ 3711 static bool 3712 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting) 3713 { 3714 if (ethertype_setting && !(negotiated_settings & ethertype_setting)) 3715 return false; 3716 3717 /* only allow a single VIRTCHNL_VLAN_ETHERTYPE if 3718 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported 3719 */ 3720 if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) && 3721 hweight32(ethertype_setting) > 1) 3722 return false; 3723 3724 /* ability to modify the VLAN setting was not negotiated */ 3725 if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE)) 3726 return false; 3727 3728 return true; 3729 } 3730 3731 /** 3732 * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message 3733 * @caps: negotiated VLAN settings during VF init 3734 * @msg: message to validate 3735 * 3736 * Used to validate any VLAN virtchnl message sent as a 3737 * virtchnl_vlan_setting structure. Validates the message against the 3738 * negotiated/supported caps during VF driver init. 3739 */ 3740 static bool 3741 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps, 3742 struct virtchnl_vlan_setting *msg) 3743 { 3744 if ((!msg->outer_ethertype_setting && 3745 !msg->inner_ethertype_setting) || 3746 (!caps->outer && !caps->inner)) 3747 return false; 3748 3749 if (msg->outer_ethertype_setting && 3750 !ice_vc_valid_vlan_setting(caps->outer, 3751 msg->outer_ethertype_setting)) 3752 return false; 3753 3754 if (msg->inner_ethertype_setting && 3755 !ice_vc_valid_vlan_setting(caps->inner, 3756 msg->inner_ethertype_setting)) 3757 return false; 3758 3759 return true; 3760 } 3761 3762 /** 3763 * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID 3764 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID 3765 * @tpid: VLAN TPID to populate 3766 */ 3767 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid) 3768 { 3769 switch (ethertype_setting) { 3770 case VIRTCHNL_VLAN_ETHERTYPE_8100: 3771 *tpid = ETH_P_8021Q; 3772 break; 3773 case VIRTCHNL_VLAN_ETHERTYPE_88A8: 3774 *tpid = ETH_P_8021AD; 3775 break; 3776 case VIRTCHNL_VLAN_ETHERTYPE_9100: 3777 *tpid = ETH_P_QINQ1; 3778 break; 3779 default: 3780 *tpid = 0; 3781 return -EINVAL; 3782 } 3783 3784 return 0; 3785 } 3786 3787 /** 3788 * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting 3789 * @vsi: VF's VSI used to enable the VLAN offload 3790 * @ena_offload: function used to enable the VLAN offload 3791 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for 3792 */ 3793 static int 3794 ice_vc_ena_vlan_offload(struct ice_vsi *vsi, 3795 int (*ena_offload)(struct ice_vsi *vsi, u16 tpid), 3796 u32 ethertype_setting) 3797 { 3798 u16 tpid; 3799 int err; 3800 3801 err = ice_vc_get_tpid(ethertype_setting, &tpid); 3802 if (err) 3803 return err; 3804 3805 err = ena_offload(vsi, tpid); 3806 if (err) 3807 return err; 3808 3809 return 0; 3810 } 3811 3812 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX 3 3813 #define ICE_L2TSEL_BIT_OFFSET 23 3814 enum ice_l2tsel { 3815 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND, 3816 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1, 3817 }; 3818 3819 /** 3820 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI 3821 * @vsi: VSI used to update l2tsel on 3822 * @l2tsel: l2tsel setting requested 3823 * 3824 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel. 3825 * This will modify which descriptor field the first offloaded VLAN will be 3826 * stripped into. 3827 */ 3828 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel) 3829 { 3830 struct ice_hw *hw = &vsi->back->hw; 3831 u32 l2tsel_bit; 3832 int i; 3833 3834 if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND) 3835 l2tsel_bit = 0; 3836 else 3837 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET); 3838 3839 for (i = 0; i < vsi->alloc_rxq; i++) { 3840 u16 pfq = vsi->rxq_map[i]; 3841 u32 qrx_context_offset; 3842 u32 regval; 3843 3844 qrx_context_offset = 3845 QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq); 3846 3847 regval = rd32(hw, qrx_context_offset); 3848 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET); 3849 regval |= l2tsel_bit; 3850 wr32(hw, qrx_context_offset, regval); 3851 } 3852 } 3853 3854 /** 3855 * ice_vc_ena_vlan_stripping_v2_msg 3856 * @vf: VF the message was received from 3857 * @msg: message received from the VF 3858 * 3859 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 3860 */ 3861 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3862 { 3863 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3864 struct virtchnl_vlan_supported_caps *stripping_support; 3865 struct virtchnl_vlan_setting *strip_msg = 3866 (struct virtchnl_vlan_setting *)msg; 3867 u32 ethertype_setting; 3868 struct ice_vsi *vsi; 3869 3870 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3871 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3872 goto out; 3873 } 3874 3875 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3876 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3877 goto out; 3878 } 3879 3880 vsi = ice_get_vf_vsi(vf); 3881 if (!vsi) { 3882 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3883 goto out; 3884 } 3885 3886 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3887 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3888 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3889 goto out; 3890 } 3891 3892 if (ice_vsi_is_rxq_crc_strip_dis(vsi)) { 3893 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 3894 goto out; 3895 } 3896 3897 ethertype_setting = strip_msg->outer_ethertype_setting; 3898 if (ethertype_setting) { 3899 if (ice_vc_ena_vlan_offload(vsi, 3900 vsi->outer_vlan_ops.ena_stripping, 3901 ethertype_setting)) { 3902 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3903 goto out; 3904 } else { 3905 enum ice_l2tsel l2tsel = 3906 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND; 3907 3908 /* PF tells the VF that the outer VLAN tag is always 3909 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3910 * inner is always extracted to 3911 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3912 * support outer stripping so the first tag always ends 3913 * up in L2TAG2_2ND and the second/inner tag, if 3914 * enabled, is extracted in L2TAG1. 3915 */ 3916 ice_vsi_update_l2tsel(vsi, l2tsel); 3917 3918 vf->vlan_strip_ena |= ICE_OUTER_VLAN_STRIP_ENA; 3919 } 3920 } 3921 3922 ethertype_setting = strip_msg->inner_ethertype_setting; 3923 if (ethertype_setting && 3924 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping, 3925 ethertype_setting)) { 3926 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3927 goto out; 3928 } 3929 3930 if (ethertype_setting) 3931 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA; 3932 3933 out: 3934 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2, 3935 v_ret, NULL, 0); 3936 } 3937 3938 /** 3939 * ice_vc_dis_vlan_stripping_v2_msg 3940 * @vf: VF the message was received from 3941 * @msg: message received from the VF 3942 * 3943 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 3944 */ 3945 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3946 { 3947 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3948 struct virtchnl_vlan_supported_caps *stripping_support; 3949 struct virtchnl_vlan_setting *strip_msg = 3950 (struct virtchnl_vlan_setting *)msg; 3951 u32 ethertype_setting; 3952 struct ice_vsi *vsi; 3953 3954 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3955 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3956 goto out; 3957 } 3958 3959 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3960 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3961 goto out; 3962 } 3963 3964 vsi = ice_get_vf_vsi(vf); 3965 if (!vsi) { 3966 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3967 goto out; 3968 } 3969 3970 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3971 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3972 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3973 goto out; 3974 } 3975 3976 ethertype_setting = strip_msg->outer_ethertype_setting; 3977 if (ethertype_setting) { 3978 if (vsi->outer_vlan_ops.dis_stripping(vsi)) { 3979 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3980 goto out; 3981 } else { 3982 enum ice_l2tsel l2tsel = 3983 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1; 3984 3985 /* PF tells the VF that the outer VLAN tag is always 3986 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3987 * inner is always extracted to 3988 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3989 * support inner stripping while outer stripping is 3990 * disabled so that the first and only tag is extracted 3991 * in L2TAG1. 3992 */ 3993 ice_vsi_update_l2tsel(vsi, l2tsel); 3994 3995 vf->vlan_strip_ena &= ~ICE_OUTER_VLAN_STRIP_ENA; 3996 } 3997 } 3998 3999 ethertype_setting = strip_msg->inner_ethertype_setting; 4000 if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) { 4001 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4002 goto out; 4003 } 4004 4005 if (ethertype_setting) 4006 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA; 4007 4008 out: 4009 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2, 4010 v_ret, NULL, 0); 4011 } 4012 4013 /** 4014 * ice_vc_ena_vlan_insertion_v2_msg 4015 * @vf: VF the message was received from 4016 * @msg: message received from the VF 4017 * 4018 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 4019 */ 4020 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 4021 { 4022 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 4023 struct virtchnl_vlan_supported_caps *insertion_support; 4024 struct virtchnl_vlan_setting *insertion_msg = 4025 (struct virtchnl_vlan_setting *)msg; 4026 u32 ethertype_setting; 4027 struct ice_vsi *vsi; 4028 4029 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 4030 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4031 goto out; 4032 } 4033 4034 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 4035 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4036 goto out; 4037 } 4038 4039 vsi = ice_get_vf_vsi(vf); 4040 if (!vsi) { 4041 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4042 goto out; 4043 } 4044 4045 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 4046 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 4047 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4048 goto out; 4049 } 4050 4051 ethertype_setting = insertion_msg->outer_ethertype_setting; 4052 if (ethertype_setting && 4053 ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion, 4054 ethertype_setting)) { 4055 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4056 goto out; 4057 } 4058 4059 ethertype_setting = insertion_msg->inner_ethertype_setting; 4060 if (ethertype_setting && 4061 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion, 4062 ethertype_setting)) { 4063 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4064 goto out; 4065 } 4066 4067 out: 4068 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2, 4069 v_ret, NULL, 0); 4070 } 4071 4072 /** 4073 * ice_vc_dis_vlan_insertion_v2_msg 4074 * @vf: VF the message was received from 4075 * @msg: message received from the VF 4076 * 4077 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 4078 */ 4079 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 4080 { 4081 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 4082 struct virtchnl_vlan_supported_caps *insertion_support; 4083 struct virtchnl_vlan_setting *insertion_msg = 4084 (struct virtchnl_vlan_setting *)msg; 4085 u32 ethertype_setting; 4086 struct ice_vsi *vsi; 4087 4088 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 4089 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4090 goto out; 4091 } 4092 4093 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 4094 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4095 goto out; 4096 } 4097 4098 vsi = ice_get_vf_vsi(vf); 4099 if (!vsi) { 4100 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4101 goto out; 4102 } 4103 4104 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 4105 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 4106 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4107 goto out; 4108 } 4109 4110 ethertype_setting = insertion_msg->outer_ethertype_setting; 4111 if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) { 4112 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4113 goto out; 4114 } 4115 4116 ethertype_setting = insertion_msg->inner_ethertype_setting; 4117 if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) { 4118 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4119 goto out; 4120 } 4121 4122 out: 4123 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2, 4124 v_ret, NULL, 0); 4125 } 4126 4127 static int ice_vc_get_ptp_cap(struct ice_vf *vf, 4128 const struct virtchnl_ptp_caps *msg) 4129 { 4130 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4131 u32 caps = VIRTCHNL_1588_PTP_CAP_RX_TSTAMP | 4132 VIRTCHNL_1588_PTP_CAP_READ_PHC; 4133 4134 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 4135 goto err; 4136 4137 v_ret = VIRTCHNL_STATUS_SUCCESS; 4138 4139 if (msg->caps & caps) 4140 vf->ptp_caps = caps; 4141 4142 err: 4143 /* send the response back to the VF */ 4144 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_1588_PTP_GET_CAPS, v_ret, 4145 (u8 *)&vf->ptp_caps, 4146 sizeof(struct virtchnl_ptp_caps)); 4147 } 4148 4149 static int ice_vc_get_phc_time(struct ice_vf *vf) 4150 { 4151 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4152 struct virtchnl_phc_time *phc_time = NULL; 4153 struct ice_pf *pf = vf->pf; 4154 u32 len = 0; 4155 int ret; 4156 4157 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 4158 goto err; 4159 4160 v_ret = VIRTCHNL_STATUS_SUCCESS; 4161 4162 phc_time = kzalloc(sizeof(*phc_time), GFP_KERNEL); 4163 if (!phc_time) { 4164 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 4165 goto err; 4166 } 4167 4168 len = sizeof(*phc_time); 4169 4170 phc_time->time = ice_ptp_read_src_clk_reg(pf, NULL); 4171 4172 err: 4173 /* send the response back to the VF */ 4174 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_1588_PTP_GET_TIME, v_ret, 4175 (u8 *)phc_time, len); 4176 kfree(phc_time); 4177 return ret; 4178 } 4179 4180 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = { 4181 .get_ver_msg = ice_vc_get_ver_msg, 4182 .get_vf_res_msg = ice_vc_get_vf_res_msg, 4183 .reset_vf = ice_vc_reset_vf_msg, 4184 .add_mac_addr_msg = ice_vc_add_mac_addr_msg, 4185 .del_mac_addr_msg = ice_vc_del_mac_addr_msg, 4186 .cfg_qs_msg = ice_vc_cfg_qs_msg, 4187 .ena_qs_msg = ice_vc_ena_qs_msg, 4188 .dis_qs_msg = ice_vc_dis_qs_msg, 4189 .request_qs_msg = ice_vc_request_qs_msg, 4190 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 4191 .config_rss_key = ice_vc_config_rss_key, 4192 .config_rss_lut = ice_vc_config_rss_lut, 4193 .config_rss_hfunc = ice_vc_config_rss_hfunc, 4194 .get_stats_msg = ice_vc_get_stats_msg, 4195 .cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg, 4196 .add_vlan_msg = ice_vc_add_vlan_msg, 4197 .remove_vlan_msg = ice_vc_remove_vlan_msg, 4198 .query_rxdid = ice_vc_query_rxdid, 4199 .get_rss_hena = ice_vc_get_rss_hena, 4200 .set_rss_hena_msg = ice_vc_set_rss_hena, 4201 .ena_vlan_stripping = ice_vc_ena_vlan_stripping, 4202 .dis_vlan_stripping = ice_vc_dis_vlan_stripping, 4203 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 4204 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 4205 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 4206 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 4207 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 4208 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 4209 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 4210 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 4211 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 4212 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 4213 .get_qos_caps = ice_vc_get_qos_caps, 4214 .cfg_q_bw = ice_vc_cfg_q_bw, 4215 .cfg_q_quanta = ice_vc_cfg_q_quanta, 4216 .get_ptp_cap = ice_vc_get_ptp_cap, 4217 .get_phc_time = ice_vc_get_phc_time, 4218 /* If you add a new op here please make sure to add it to 4219 * ice_virtchnl_repr_ops as well. 4220 */ 4221 }; 4222 4223 /** 4224 * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops 4225 * @vf: the VF to switch ops 4226 */ 4227 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf) 4228 { 4229 vf->virtchnl_ops = &ice_virtchnl_dflt_ops; 4230 } 4231 4232 /** 4233 * ice_vc_repr_add_mac 4234 * @vf: pointer to VF 4235 * @msg: virtchannel message 4236 * 4237 * When port representors are created, we do not add MAC rule 4238 * to firmware, we store it so that PF could report same 4239 * MAC as VF. 4240 */ 4241 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg) 4242 { 4243 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 4244 struct virtchnl_ether_addr_list *al = 4245 (struct virtchnl_ether_addr_list *)msg; 4246 struct ice_vsi *vsi; 4247 struct ice_pf *pf; 4248 int i; 4249 4250 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 4251 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 4252 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4253 goto handle_mac_exit; 4254 } 4255 4256 pf = vf->pf; 4257 4258 vsi = ice_get_vf_vsi(vf); 4259 if (!vsi) { 4260 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 4261 goto handle_mac_exit; 4262 } 4263 4264 for (i = 0; i < al->num_elements; i++) { 4265 u8 *mac_addr = al->list[i].addr; 4266 4267 if (!is_unicast_ether_addr(mac_addr) || 4268 ether_addr_equal(mac_addr, vf->hw_lan_addr)) 4269 continue; 4270 4271 if (vf->pf_set_mac) { 4272 dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n"); 4273 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 4274 goto handle_mac_exit; 4275 } 4276 4277 ice_vfhw_mac_add(vf, &al->list[i]); 4278 vf->num_mac++; 4279 break; 4280 } 4281 4282 handle_mac_exit: 4283 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR, 4284 v_ret, NULL, 0); 4285 } 4286 4287 /** 4288 * ice_vc_repr_del_mac - response with success for deleting MAC 4289 * @vf: pointer to VF 4290 * @msg: virtchannel message 4291 * 4292 * Respond with success to not break normal VF flow. 4293 * For legacy VF driver try to update cached MAC address. 4294 */ 4295 static int 4296 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg) 4297 { 4298 struct virtchnl_ether_addr_list *al = 4299 (struct virtchnl_ether_addr_list *)msg; 4300 4301 ice_update_legacy_cached_mac(vf, &al->list[0]); 4302 4303 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR, 4304 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 4305 } 4306 4307 static int 4308 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg) 4309 { 4310 dev_dbg(ice_pf_to_dev(vf->pf), 4311 "Can't config promiscuous mode in switchdev mode for VF %d\n", 4312 vf->vf_id); 4313 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 4314 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 4315 NULL, 0); 4316 } 4317 4318 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = { 4319 .get_ver_msg = ice_vc_get_ver_msg, 4320 .get_vf_res_msg = ice_vc_get_vf_res_msg, 4321 .reset_vf = ice_vc_reset_vf_msg, 4322 .add_mac_addr_msg = ice_vc_repr_add_mac, 4323 .del_mac_addr_msg = ice_vc_repr_del_mac, 4324 .cfg_qs_msg = ice_vc_cfg_qs_msg, 4325 .ena_qs_msg = ice_vc_ena_qs_msg, 4326 .dis_qs_msg = ice_vc_dis_qs_msg, 4327 .request_qs_msg = ice_vc_request_qs_msg, 4328 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 4329 .config_rss_key = ice_vc_config_rss_key, 4330 .config_rss_lut = ice_vc_config_rss_lut, 4331 .config_rss_hfunc = ice_vc_config_rss_hfunc, 4332 .get_stats_msg = ice_vc_get_stats_msg, 4333 .cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode, 4334 .add_vlan_msg = ice_vc_add_vlan_msg, 4335 .remove_vlan_msg = ice_vc_remove_vlan_msg, 4336 .query_rxdid = ice_vc_query_rxdid, 4337 .get_rss_hena = ice_vc_get_rss_hena, 4338 .set_rss_hena_msg = ice_vc_set_rss_hena, 4339 .ena_vlan_stripping = ice_vc_ena_vlan_stripping, 4340 .dis_vlan_stripping = ice_vc_dis_vlan_stripping, 4341 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 4342 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 4343 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 4344 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 4345 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 4346 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 4347 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 4348 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 4349 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 4350 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 4351 .get_qos_caps = ice_vc_get_qos_caps, 4352 .cfg_q_bw = ice_vc_cfg_q_bw, 4353 .cfg_q_quanta = ice_vc_cfg_q_quanta, 4354 .get_ptp_cap = ice_vc_get_ptp_cap, 4355 .get_phc_time = ice_vc_get_phc_time, 4356 }; 4357 4358 /** 4359 * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops 4360 * @vf: the VF to switch ops 4361 */ 4362 void ice_virtchnl_set_repr_ops(struct ice_vf *vf) 4363 { 4364 vf->virtchnl_ops = &ice_virtchnl_repr_ops; 4365 } 4366 4367 /** 4368 * ice_is_malicious_vf - check if this vf might be overflowing mailbox 4369 * @vf: the VF to check 4370 * @mbxdata: data about the state of the mailbox 4371 * 4372 * Detect if a given VF might be malicious and attempting to overflow the PF 4373 * mailbox. If so, log a warning message and ignore this event. 4374 */ 4375 static bool 4376 ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata) 4377 { 4378 bool report_malvf = false; 4379 struct device *dev; 4380 struct ice_pf *pf; 4381 int status; 4382 4383 pf = vf->pf; 4384 dev = ice_pf_to_dev(pf); 4385 4386 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) 4387 return vf->mbx_info.malicious; 4388 4389 /* check to see if we have a newly malicious VF */ 4390 status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info, 4391 &report_malvf); 4392 if (status) 4393 dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n", 4394 vf->vf_id, vf->dev_lan_addr, status); 4395 4396 if (report_malvf) { 4397 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); 4398 u8 zero_addr[ETH_ALEN] = {}; 4399 4400 dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n", 4401 vf->dev_lan_addr, 4402 pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr); 4403 } 4404 4405 return vf->mbx_info.malicious; 4406 } 4407 4408 /** 4409 * ice_vc_process_vf_msg - Process request from VF 4410 * @pf: pointer to the PF structure 4411 * @event: pointer to the AQ event 4412 * @mbxdata: information used to detect VF attempting mailbox overflow 4413 * 4414 * Called from the common asq/arq handler to process request from VF. When this 4415 * flow is used for devices with hardware VF to PF message queue overflow 4416 * support (ICE_F_MBX_LIMIT) mbxdata is set to NULL and ice_is_malicious_vf 4417 * check is skipped. 4418 */ 4419 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event, 4420 struct ice_mbx_data *mbxdata) 4421 { 4422 u32 v_opcode = le32_to_cpu(event->desc.cookie_high); 4423 s16 vf_id = le16_to_cpu(event->desc.retval); 4424 const struct ice_virtchnl_ops *ops; 4425 u16 msglen = event->msg_len; 4426 u8 *msg = event->msg_buf; 4427 struct ice_vf *vf = NULL; 4428 struct device *dev; 4429 int err = 0; 4430 4431 dev = ice_pf_to_dev(pf); 4432 4433 vf = ice_get_vf_by_id(pf, vf_id); 4434 if (!vf) { 4435 dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n", 4436 vf_id, v_opcode, msglen); 4437 return; 4438 } 4439 4440 mutex_lock(&vf->cfg_lock); 4441 4442 /* Check if the VF is trying to overflow the mailbox */ 4443 if (mbxdata && ice_is_malicious_vf(vf, mbxdata)) 4444 goto finish; 4445 4446 /* Check if VF is disabled. */ 4447 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) { 4448 err = -EPERM; 4449 goto error_handler; 4450 } 4451 4452 ops = vf->virtchnl_ops; 4453 4454 /* Perform basic checks on the msg */ 4455 err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen); 4456 if (err) { 4457 if (err == VIRTCHNL_STATUS_ERR_PARAM) 4458 err = -EPERM; 4459 else 4460 err = -EINVAL; 4461 } 4462 4463 error_handler: 4464 if (err) { 4465 ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM, 4466 NULL, 0); 4467 dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n", 4468 vf_id, v_opcode, msglen, err); 4469 goto finish; 4470 } 4471 4472 if (!ice_vc_is_opcode_allowed(vf, v_opcode)) { 4473 ice_vc_send_msg_to_vf(vf, v_opcode, 4474 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL, 4475 0); 4476 goto finish; 4477 } 4478 4479 switch (v_opcode) { 4480 case VIRTCHNL_OP_VERSION: 4481 err = ops->get_ver_msg(vf, msg); 4482 break; 4483 case VIRTCHNL_OP_GET_VF_RESOURCES: 4484 err = ops->get_vf_res_msg(vf, msg); 4485 if (ice_vf_init_vlan_stripping(vf)) 4486 dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n", 4487 vf->vf_id); 4488 ice_vc_notify_vf_link_state(vf); 4489 break; 4490 case VIRTCHNL_OP_RESET_VF: 4491 ops->reset_vf(vf); 4492 break; 4493 case VIRTCHNL_OP_ADD_ETH_ADDR: 4494 err = ops->add_mac_addr_msg(vf, msg); 4495 break; 4496 case VIRTCHNL_OP_DEL_ETH_ADDR: 4497 err = ops->del_mac_addr_msg(vf, msg); 4498 break; 4499 case VIRTCHNL_OP_CONFIG_VSI_QUEUES: 4500 err = ops->cfg_qs_msg(vf, msg); 4501 break; 4502 case VIRTCHNL_OP_ENABLE_QUEUES: 4503 err = ops->ena_qs_msg(vf, msg); 4504 ice_vc_notify_vf_link_state(vf); 4505 break; 4506 case VIRTCHNL_OP_DISABLE_QUEUES: 4507 err = ops->dis_qs_msg(vf, msg); 4508 break; 4509 case VIRTCHNL_OP_REQUEST_QUEUES: 4510 err = ops->request_qs_msg(vf, msg); 4511 break; 4512 case VIRTCHNL_OP_CONFIG_IRQ_MAP: 4513 err = ops->cfg_irq_map_msg(vf, msg); 4514 break; 4515 case VIRTCHNL_OP_CONFIG_RSS_KEY: 4516 err = ops->config_rss_key(vf, msg); 4517 break; 4518 case VIRTCHNL_OP_CONFIG_RSS_LUT: 4519 err = ops->config_rss_lut(vf, msg); 4520 break; 4521 case VIRTCHNL_OP_CONFIG_RSS_HFUNC: 4522 err = ops->config_rss_hfunc(vf, msg); 4523 break; 4524 case VIRTCHNL_OP_GET_STATS: 4525 err = ops->get_stats_msg(vf, msg); 4526 break; 4527 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE: 4528 err = ops->cfg_promiscuous_mode_msg(vf, msg); 4529 break; 4530 case VIRTCHNL_OP_ADD_VLAN: 4531 err = ops->add_vlan_msg(vf, msg); 4532 break; 4533 case VIRTCHNL_OP_DEL_VLAN: 4534 err = ops->remove_vlan_msg(vf, msg); 4535 break; 4536 case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS: 4537 err = ops->query_rxdid(vf); 4538 break; 4539 case VIRTCHNL_OP_GET_RSS_HENA_CAPS: 4540 err = ops->get_rss_hena(vf); 4541 break; 4542 case VIRTCHNL_OP_SET_RSS_HENA: 4543 err = ops->set_rss_hena_msg(vf, msg); 4544 break; 4545 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: 4546 err = ops->ena_vlan_stripping(vf); 4547 break; 4548 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: 4549 err = ops->dis_vlan_stripping(vf); 4550 break; 4551 case VIRTCHNL_OP_ADD_FDIR_FILTER: 4552 err = ops->add_fdir_fltr_msg(vf, msg); 4553 break; 4554 case VIRTCHNL_OP_DEL_FDIR_FILTER: 4555 err = ops->del_fdir_fltr_msg(vf, msg); 4556 break; 4557 case VIRTCHNL_OP_ADD_RSS_CFG: 4558 err = ops->handle_rss_cfg_msg(vf, msg, true); 4559 break; 4560 case VIRTCHNL_OP_DEL_RSS_CFG: 4561 err = ops->handle_rss_cfg_msg(vf, msg, false); 4562 break; 4563 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS: 4564 err = ops->get_offload_vlan_v2_caps(vf); 4565 break; 4566 case VIRTCHNL_OP_ADD_VLAN_V2: 4567 err = ops->add_vlan_v2_msg(vf, msg); 4568 break; 4569 case VIRTCHNL_OP_DEL_VLAN_V2: 4570 err = ops->remove_vlan_v2_msg(vf, msg); 4571 break; 4572 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2: 4573 err = ops->ena_vlan_stripping_v2_msg(vf, msg); 4574 break; 4575 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2: 4576 err = ops->dis_vlan_stripping_v2_msg(vf, msg); 4577 break; 4578 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2: 4579 err = ops->ena_vlan_insertion_v2_msg(vf, msg); 4580 break; 4581 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2: 4582 err = ops->dis_vlan_insertion_v2_msg(vf, msg); 4583 break; 4584 case VIRTCHNL_OP_GET_QOS_CAPS: 4585 err = ops->get_qos_caps(vf); 4586 break; 4587 case VIRTCHNL_OP_CONFIG_QUEUE_BW: 4588 err = ops->cfg_q_bw(vf, msg); 4589 break; 4590 case VIRTCHNL_OP_CONFIG_QUANTA: 4591 err = ops->cfg_q_quanta(vf, msg); 4592 break; 4593 case VIRTCHNL_OP_1588_PTP_GET_CAPS: 4594 err = ops->get_ptp_cap(vf, (const void *)msg); 4595 break; 4596 case VIRTCHNL_OP_1588_PTP_GET_TIME: 4597 err = ops->get_phc_time(vf); 4598 break; 4599 case VIRTCHNL_OP_UNKNOWN: 4600 default: 4601 dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode, 4602 vf_id); 4603 err = ice_vc_send_msg_to_vf(vf, v_opcode, 4604 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 4605 NULL, 0); 4606 break; 4607 } 4608 if (err) { 4609 /* Helper function cares less about error return values here 4610 * as it is busy with pending work. 4611 */ 4612 dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n", 4613 vf_id, v_opcode, err); 4614 } 4615 4616 finish: 4617 mutex_unlock(&vf->cfg_lock); 4618 ice_put_vf(vf); 4619 } 4620