1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include <linux/net/intel/libie/rx.h> 5 #include <net/netdev_lock.h> 6 7 #include "iavf.h" 8 #include "iavf_ptp.h" 9 #include "iavf_prototype.h" 10 /* All iavf tracepoints are defined by the include below, which must 11 * be included exactly once across the whole kernel with 12 * CREATE_TRACE_POINTS defined 13 */ 14 #define CREATE_TRACE_POINTS 15 #include "iavf_trace.h" 16 17 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter); 18 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter); 19 static int iavf_close(struct net_device *netdev); 20 static void iavf_init_get_resources(struct iavf_adapter *adapter); 21 static int iavf_check_reset_complete(struct iavf_hw *hw); 22 23 char iavf_driver_name[] = "iavf"; 24 static const char iavf_driver_string[] = 25 "Intel(R) Ethernet Adaptive Virtual Function Network Driver"; 26 27 static const char iavf_copyright[] = 28 "Copyright (c) 2013 - 2018 Intel Corporation."; 29 30 /* iavf_pci_tbl - PCI Device ID Table 31 * 32 * Wildcard entries (PCI_ANY_ID) should come last 33 * Last entry must be all 0s 34 * 35 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 36 * Class, Class Mask, private data (not used) } 37 */ 38 static const struct pci_device_id iavf_pci_tbl[] = { 39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0}, 40 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0}, 41 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0}, 42 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0}, 43 /* required last entry */ 44 {0, } 45 }; 46 47 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl); 48 49 MODULE_ALIAS("i40evf"); 50 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver"); 51 MODULE_IMPORT_NS("LIBETH"); 52 MODULE_IMPORT_NS("LIBIE"); 53 MODULE_LICENSE("GPL v2"); 54 55 static const struct net_device_ops iavf_netdev_ops; 56 57 int iavf_status_to_errno(enum iavf_status status) 58 { 59 switch (status) { 60 case IAVF_SUCCESS: 61 return 0; 62 case IAVF_ERR_PARAM: 63 case IAVF_ERR_MAC_TYPE: 64 case IAVF_ERR_INVALID_MAC_ADDR: 65 case IAVF_ERR_INVALID_LINK_SETTINGS: 66 case IAVF_ERR_INVALID_PD_ID: 67 case IAVF_ERR_INVALID_QP_ID: 68 case IAVF_ERR_INVALID_CQ_ID: 69 case IAVF_ERR_INVALID_CEQ_ID: 70 case IAVF_ERR_INVALID_AEQ_ID: 71 case IAVF_ERR_INVALID_SIZE: 72 case IAVF_ERR_INVALID_ARP_INDEX: 73 case IAVF_ERR_INVALID_FPM_FUNC_ID: 74 case IAVF_ERR_QP_INVALID_MSG_SIZE: 75 case IAVF_ERR_INVALID_FRAG_COUNT: 76 case IAVF_ERR_INVALID_ALIGNMENT: 77 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX: 78 case IAVF_ERR_INVALID_IMM_DATA_SIZE: 79 case IAVF_ERR_INVALID_VF_ID: 80 case IAVF_ERR_INVALID_HMCFN_ID: 81 case IAVF_ERR_INVALID_PBLE_INDEX: 82 case IAVF_ERR_INVALID_SD_INDEX: 83 case IAVF_ERR_INVALID_PAGE_DESC_INDEX: 84 case IAVF_ERR_INVALID_SD_TYPE: 85 case IAVF_ERR_INVALID_HMC_OBJ_INDEX: 86 case IAVF_ERR_INVALID_HMC_OBJ_COUNT: 87 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT: 88 return -EINVAL; 89 case IAVF_ERR_NVM: 90 case IAVF_ERR_NVM_CHECKSUM: 91 case IAVF_ERR_PHY: 92 case IAVF_ERR_CONFIG: 93 case IAVF_ERR_UNKNOWN_PHY: 94 case IAVF_ERR_LINK_SETUP: 95 case IAVF_ERR_ADAPTER_STOPPED: 96 case IAVF_ERR_PRIMARY_REQUESTS_PENDING: 97 case IAVF_ERR_AUTONEG_NOT_COMPLETE: 98 case IAVF_ERR_RESET_FAILED: 99 case IAVF_ERR_BAD_PTR: 100 case IAVF_ERR_SWFW_SYNC: 101 case IAVF_ERR_QP_TOOMANY_WRS_POSTED: 102 case IAVF_ERR_QUEUE_EMPTY: 103 case IAVF_ERR_FLUSHED_QUEUE: 104 case IAVF_ERR_OPCODE_MISMATCH: 105 case IAVF_ERR_CQP_COMPL_ERROR: 106 case IAVF_ERR_BACKING_PAGE_ERROR: 107 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE: 108 case IAVF_ERR_MEMCPY_FAILED: 109 case IAVF_ERR_SRQ_ENABLED: 110 case IAVF_ERR_ADMIN_QUEUE_ERROR: 111 case IAVF_ERR_ADMIN_QUEUE_FULL: 112 case IAVF_ERR_BAD_RDMA_CQE: 113 case IAVF_ERR_NVM_BLANK_MODE: 114 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED: 115 case IAVF_ERR_DIAG_TEST_FAILED: 116 case IAVF_ERR_FIRMWARE_API_VERSION: 117 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR: 118 return -EIO; 119 case IAVF_ERR_DEVICE_NOT_SUPPORTED: 120 return -ENODEV; 121 case IAVF_ERR_NO_AVAILABLE_VSI: 122 case IAVF_ERR_RING_FULL: 123 return -ENOSPC; 124 case IAVF_ERR_NO_MEMORY: 125 return -ENOMEM; 126 case IAVF_ERR_TIMEOUT: 127 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT: 128 return -ETIMEDOUT; 129 case IAVF_ERR_NOT_IMPLEMENTED: 130 case IAVF_NOT_SUPPORTED: 131 return -EOPNOTSUPP; 132 case IAVF_ERR_ADMIN_QUEUE_NO_WORK: 133 return -EALREADY; 134 case IAVF_ERR_NOT_READY: 135 return -EBUSY; 136 case IAVF_ERR_BUF_TOO_SHORT: 137 return -EMSGSIZE; 138 } 139 140 return -EIO; 141 } 142 143 int virtchnl_status_to_errno(enum virtchnl_status_code v_status) 144 { 145 switch (v_status) { 146 case VIRTCHNL_STATUS_SUCCESS: 147 return 0; 148 case VIRTCHNL_STATUS_ERR_PARAM: 149 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID: 150 return -EINVAL; 151 case VIRTCHNL_STATUS_ERR_NO_MEMORY: 152 return -ENOMEM; 153 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH: 154 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR: 155 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR: 156 return -EIO; 157 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED: 158 return -EOPNOTSUPP; 159 } 160 161 return -EIO; 162 } 163 164 /** 165 * iavf_pdev_to_adapter - go from pci_dev to adapter 166 * @pdev: pci_dev pointer 167 */ 168 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev) 169 { 170 return netdev_priv(pci_get_drvdata(pdev)); 171 } 172 173 /** 174 * iavf_is_reset_in_progress - Check if a reset is in progress 175 * @adapter: board private structure 176 */ 177 static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter) 178 { 179 if (adapter->state == __IAVF_RESETTING || 180 adapter->flags & (IAVF_FLAG_RESET_PENDING | 181 IAVF_FLAG_RESET_NEEDED)) 182 return true; 183 184 return false; 185 } 186 187 /** 188 * iavf_wait_for_reset - Wait for reset to finish. 189 * @adapter: board private structure 190 * 191 * Returns 0 if reset finished successfully, negative on timeout or interrupt. 192 */ 193 int iavf_wait_for_reset(struct iavf_adapter *adapter) 194 { 195 int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue, 196 !iavf_is_reset_in_progress(adapter), 197 msecs_to_jiffies(5000)); 198 199 /* If ret < 0 then it means wait was interrupted. 200 * If ret == 0 then it means we got a timeout while waiting 201 * for reset to finish. 202 * If ret > 0 it means reset has finished. 203 */ 204 if (ret > 0) 205 return 0; 206 else if (ret < 0) 207 return -EINTR; 208 else 209 return -EBUSY; 210 } 211 212 /** 213 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code 214 * @hw: pointer to the HW structure 215 * @mem: ptr to mem struct to fill out 216 * @size: size of memory requested 217 * @alignment: what to align the allocation to 218 **/ 219 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw, 220 struct iavf_dma_mem *mem, 221 u64 size, u32 alignment) 222 { 223 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 224 225 if (!mem) 226 return IAVF_ERR_PARAM; 227 228 mem->size = ALIGN(size, alignment); 229 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size, 230 (dma_addr_t *)&mem->pa, GFP_KERNEL); 231 if (mem->va) 232 return 0; 233 else 234 return IAVF_ERR_NO_MEMORY; 235 } 236 237 /** 238 * iavf_free_dma_mem - wrapper for DMA memory freeing 239 * @hw: pointer to the HW structure 240 * @mem: ptr to mem struct to free 241 **/ 242 enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem) 243 { 244 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 245 246 if (!mem || !mem->va) 247 return IAVF_ERR_PARAM; 248 dma_free_coherent(&adapter->pdev->dev, mem->size, 249 mem->va, (dma_addr_t)mem->pa); 250 return 0; 251 } 252 253 /** 254 * iavf_allocate_virt_mem - virt memory alloc wrapper 255 * @hw: pointer to the HW structure 256 * @mem: ptr to mem struct to fill out 257 * @size: size of memory requested 258 **/ 259 enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw, 260 struct iavf_virt_mem *mem, u32 size) 261 { 262 if (!mem) 263 return IAVF_ERR_PARAM; 264 265 mem->size = size; 266 mem->va = kzalloc(size, GFP_KERNEL); 267 268 if (mem->va) 269 return 0; 270 else 271 return IAVF_ERR_NO_MEMORY; 272 } 273 274 /** 275 * iavf_free_virt_mem - virt memory free wrapper 276 * @hw: pointer to the HW structure 277 * @mem: ptr to mem struct to free 278 **/ 279 void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem) 280 { 281 kfree(mem->va); 282 } 283 284 /** 285 * iavf_schedule_reset - Set the flags and schedule a reset event 286 * @adapter: board private structure 287 * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED 288 **/ 289 void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags) 290 { 291 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) && 292 !(adapter->flags & 293 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) { 294 adapter->flags |= flags; 295 queue_work(adapter->wq, &adapter->reset_task); 296 } 297 } 298 299 /** 300 * iavf_schedule_aq_request - Set the flags and schedule aq request 301 * @adapter: board private structure 302 * @flags: requested aq flags 303 **/ 304 void iavf_schedule_aq_request(struct iavf_adapter *adapter, u64 flags) 305 { 306 adapter->aq_required |= flags; 307 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 308 } 309 310 /** 311 * iavf_tx_timeout - Respond to a Tx Hang 312 * @netdev: network interface device structure 313 * @txqueue: queue number that is timing out 314 **/ 315 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue) 316 { 317 struct iavf_adapter *adapter = netdev_priv(netdev); 318 319 adapter->tx_timeout_count++; 320 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 321 } 322 323 /** 324 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC 325 * @adapter: board private structure 326 **/ 327 static void iavf_misc_irq_disable(struct iavf_adapter *adapter) 328 { 329 struct iavf_hw *hw = &adapter->hw; 330 331 if (!adapter->msix_entries) 332 return; 333 334 wr32(hw, IAVF_VFINT_DYN_CTL01, 0); 335 336 iavf_flush(hw); 337 338 synchronize_irq(adapter->msix_entries[0].vector); 339 } 340 341 /** 342 * iavf_misc_irq_enable - Enable default interrupt generation settings 343 * @adapter: board private structure 344 **/ 345 static void iavf_misc_irq_enable(struct iavf_adapter *adapter) 346 { 347 struct iavf_hw *hw = &adapter->hw; 348 349 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK | 350 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK); 351 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK); 352 353 iavf_flush(hw); 354 } 355 356 /** 357 * iavf_irq_disable - Mask off interrupt generation on the NIC 358 * @adapter: board private structure 359 **/ 360 static void iavf_irq_disable(struct iavf_adapter *adapter) 361 { 362 int i; 363 struct iavf_hw *hw = &adapter->hw; 364 365 if (!adapter->msix_entries) 366 return; 367 368 for (i = 1; i < adapter->num_msix_vectors; i++) { 369 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0); 370 synchronize_irq(adapter->msix_entries[i].vector); 371 } 372 iavf_flush(hw); 373 } 374 375 /** 376 * iavf_irq_enable_queues - Enable interrupt for all queues 377 * @adapter: board private structure 378 **/ 379 static void iavf_irq_enable_queues(struct iavf_adapter *adapter) 380 { 381 struct iavf_hw *hw = &adapter->hw; 382 int i; 383 384 for (i = 1; i < adapter->num_msix_vectors; i++) { 385 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 386 IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 387 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK); 388 } 389 } 390 391 /** 392 * iavf_irq_enable - Enable default interrupt generation settings 393 * @adapter: board private structure 394 * @flush: boolean value whether to run rd32() 395 **/ 396 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush) 397 { 398 struct iavf_hw *hw = &adapter->hw; 399 400 iavf_misc_irq_enable(adapter); 401 iavf_irq_enable_queues(adapter); 402 403 if (flush) 404 iavf_flush(hw); 405 } 406 407 /** 408 * iavf_msix_aq - Interrupt handler for vector 0 409 * @irq: interrupt number 410 * @data: pointer to netdev 411 **/ 412 static irqreturn_t iavf_msix_aq(int irq, void *data) 413 { 414 struct net_device *netdev = data; 415 struct iavf_adapter *adapter = netdev_priv(netdev); 416 struct iavf_hw *hw = &adapter->hw; 417 418 /* handle non-queue interrupts, these reads clear the registers */ 419 rd32(hw, IAVF_VFINT_ICR01); 420 rd32(hw, IAVF_VFINT_ICR0_ENA1); 421 422 if (adapter->state != __IAVF_REMOVE) 423 /* schedule work on the private workqueue */ 424 queue_work(adapter->wq, &adapter->adminq_task); 425 426 return IRQ_HANDLED; 427 } 428 429 /** 430 * iavf_msix_clean_rings - MSIX mode Interrupt Handler 431 * @irq: interrupt number 432 * @data: pointer to a q_vector 433 **/ 434 static irqreturn_t iavf_msix_clean_rings(int irq, void *data) 435 { 436 struct iavf_q_vector *q_vector = data; 437 438 if (!q_vector->tx.ring && !q_vector->rx.ring) 439 return IRQ_HANDLED; 440 441 napi_schedule_irqoff(&q_vector->napi); 442 443 return IRQ_HANDLED; 444 } 445 446 /** 447 * iavf_map_vector_to_rxq - associate irqs with rx queues 448 * @adapter: board private structure 449 * @v_idx: interrupt number 450 * @r_idx: queue number 451 **/ 452 static void 453 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx) 454 { 455 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 456 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx]; 457 struct iavf_hw *hw = &adapter->hw; 458 459 rx_ring->q_vector = q_vector; 460 rx_ring->next = q_vector->rx.ring; 461 rx_ring->vsi = &adapter->vsi; 462 q_vector->rx.ring = rx_ring; 463 q_vector->rx.count++; 464 q_vector->rx.next_update = jiffies + 1; 465 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 466 q_vector->ring_mask |= BIT(r_idx); 467 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx), 468 q_vector->rx.current_itr >> 1); 469 q_vector->rx.current_itr = q_vector->rx.target_itr; 470 } 471 472 /** 473 * iavf_map_vector_to_txq - associate irqs with tx queues 474 * @adapter: board private structure 475 * @v_idx: interrupt number 476 * @t_idx: queue number 477 **/ 478 static void 479 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx) 480 { 481 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 482 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx]; 483 struct iavf_hw *hw = &adapter->hw; 484 485 tx_ring->q_vector = q_vector; 486 tx_ring->next = q_vector->tx.ring; 487 tx_ring->vsi = &adapter->vsi; 488 q_vector->tx.ring = tx_ring; 489 q_vector->tx.count++; 490 q_vector->tx.next_update = jiffies + 1; 491 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 492 q_vector->num_ringpairs++; 493 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx), 494 q_vector->tx.target_itr >> 1); 495 q_vector->tx.current_itr = q_vector->tx.target_itr; 496 } 497 498 /** 499 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors 500 * @adapter: board private structure to initialize 501 * 502 * This function maps descriptor rings to the queue-specific vectors 503 * we were allotted through the MSI-X enabling code. Ideally, we'd have 504 * one vector per ring/queue, but on a constrained vector budget, we 505 * group the rings as "efficiently" as possible. You would add new 506 * mapping configurations in here. 507 **/ 508 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter) 509 { 510 int rings_remaining = adapter->num_active_queues; 511 int ridx = 0, vidx = 0; 512 int q_vectors; 513 514 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 515 516 for (; ridx < rings_remaining; ridx++) { 517 iavf_map_vector_to_rxq(adapter, vidx, ridx); 518 iavf_map_vector_to_txq(adapter, vidx, ridx); 519 520 /* In the case where we have more queues than vectors, continue 521 * round-robin on vectors until all queues are mapped. 522 */ 523 if (++vidx >= q_vectors) 524 vidx = 0; 525 } 526 527 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 528 } 529 530 /** 531 * iavf_irq_affinity_notify - Callback for affinity changes 532 * @notify: context as to what irq was changed 533 * @mask: the new affinity mask 534 * 535 * This is a callback function used by the irq_set_affinity_notifier function 536 * so that we may register to receive changes to the irq affinity masks. 537 **/ 538 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify, 539 const cpumask_t *mask) 540 { 541 struct iavf_q_vector *q_vector = 542 container_of(notify, struct iavf_q_vector, affinity_notify); 543 544 cpumask_copy(&q_vector->affinity_mask, mask); 545 } 546 547 /** 548 * iavf_irq_affinity_release - Callback for affinity notifier release 549 * @ref: internal core kernel usage 550 * 551 * This is a callback function used by the irq_set_affinity_notifier function 552 * to inform the current notification subscriber that they will no longer 553 * receive notifications. 554 **/ 555 static void iavf_irq_affinity_release(struct kref *ref) {} 556 557 /** 558 * iavf_request_traffic_irqs - Initialize MSI-X interrupts 559 * @adapter: board private structure 560 * @basename: device basename 561 * 562 * Allocates MSI-X vectors for tx and rx handling, and requests 563 * interrupts from the kernel. 564 **/ 565 static int 566 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename) 567 { 568 unsigned int vector, q_vectors; 569 unsigned int rx_int_idx = 0, tx_int_idx = 0; 570 int irq_num, err; 571 int cpu; 572 573 iavf_irq_disable(adapter); 574 /* Decrement for Other and TCP Timer vectors */ 575 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 576 577 for (vector = 0; vector < q_vectors; vector++) { 578 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector]; 579 580 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 581 582 if (q_vector->tx.ring && q_vector->rx.ring) { 583 snprintf(q_vector->name, sizeof(q_vector->name), 584 "iavf-%s-TxRx-%u", basename, rx_int_idx++); 585 tx_int_idx++; 586 } else if (q_vector->rx.ring) { 587 snprintf(q_vector->name, sizeof(q_vector->name), 588 "iavf-%s-rx-%u", basename, rx_int_idx++); 589 } else if (q_vector->tx.ring) { 590 snprintf(q_vector->name, sizeof(q_vector->name), 591 "iavf-%s-tx-%u", basename, tx_int_idx++); 592 } else { 593 /* skip this unused q_vector */ 594 continue; 595 } 596 err = request_irq(irq_num, 597 iavf_msix_clean_rings, 598 0, 599 q_vector->name, 600 q_vector); 601 if (err) { 602 dev_info(&adapter->pdev->dev, 603 "Request_irq failed, error: %d\n", err); 604 goto free_queue_irqs; 605 } 606 /* register for affinity change notifications */ 607 q_vector->affinity_notify.notify = iavf_irq_affinity_notify; 608 q_vector->affinity_notify.release = 609 iavf_irq_affinity_release; 610 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 611 /* Spread the IRQ affinity hints across online CPUs. Note that 612 * get_cpu_mask returns a mask with a permanent lifetime so 613 * it's safe to use as a hint for irq_update_affinity_hint. 614 */ 615 cpu = cpumask_local_spread(q_vector->v_idx, -1); 616 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu)); 617 } 618 619 return 0; 620 621 free_queue_irqs: 622 while (vector) { 623 vector--; 624 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 625 irq_set_affinity_notifier(irq_num, NULL); 626 irq_update_affinity_hint(irq_num, NULL); 627 free_irq(irq_num, &adapter->q_vectors[vector]); 628 } 629 return err; 630 } 631 632 /** 633 * iavf_request_misc_irq - Initialize MSI-X interrupts 634 * @adapter: board private structure 635 * 636 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This 637 * vector is only for the admin queue, and stays active even when the netdev 638 * is closed. 639 **/ 640 static int iavf_request_misc_irq(struct iavf_adapter *adapter) 641 { 642 struct net_device *netdev = adapter->netdev; 643 int err; 644 645 snprintf(adapter->misc_vector_name, 646 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx", 647 dev_name(&adapter->pdev->dev)); 648 err = request_irq(adapter->msix_entries[0].vector, 649 &iavf_msix_aq, 0, 650 adapter->misc_vector_name, netdev); 651 if (err) { 652 dev_err(&adapter->pdev->dev, 653 "request_irq for %s failed: %d\n", 654 adapter->misc_vector_name, err); 655 free_irq(adapter->msix_entries[0].vector, netdev); 656 } 657 return err; 658 } 659 660 /** 661 * iavf_free_traffic_irqs - Free MSI-X interrupts 662 * @adapter: board private structure 663 * 664 * Frees all MSI-X vectors other than 0. 665 **/ 666 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter) 667 { 668 int vector, irq_num, q_vectors; 669 670 if (!adapter->msix_entries) 671 return; 672 673 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 674 675 for (vector = 0; vector < q_vectors; vector++) { 676 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 677 irq_set_affinity_notifier(irq_num, NULL); 678 irq_update_affinity_hint(irq_num, NULL); 679 free_irq(irq_num, &adapter->q_vectors[vector]); 680 } 681 } 682 683 /** 684 * iavf_free_misc_irq - Free MSI-X miscellaneous vector 685 * @adapter: board private structure 686 * 687 * Frees MSI-X vector 0. 688 **/ 689 static void iavf_free_misc_irq(struct iavf_adapter *adapter) 690 { 691 struct net_device *netdev = adapter->netdev; 692 693 if (!adapter->msix_entries) 694 return; 695 696 free_irq(adapter->msix_entries[0].vector, netdev); 697 } 698 699 /** 700 * iavf_configure_tx - Configure Transmit Unit after Reset 701 * @adapter: board private structure 702 * 703 * Configure the Tx unit of the MAC after a reset. 704 **/ 705 static void iavf_configure_tx(struct iavf_adapter *adapter) 706 { 707 struct iavf_hw *hw = &adapter->hw; 708 int i; 709 710 for (i = 0; i < adapter->num_active_queues; i++) 711 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i); 712 } 713 714 /** 715 * iavf_select_rx_desc_format - Select Rx descriptor format 716 * @adapter: adapter private structure 717 * 718 * Select what Rx descriptor format based on availability and enabled 719 * features. 720 * 721 * Return: the desired RXDID to select for a given Rx queue, as defined by 722 * enum virtchnl_rxdid_format. 723 */ 724 static u8 iavf_select_rx_desc_format(const struct iavf_adapter *adapter) 725 { 726 u64 rxdids = adapter->supp_rxdids; 727 728 /* If we did not negotiate VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC, we must 729 * stick with the default value of the legacy 32 byte format. 730 */ 731 if (!IAVF_RXDID_ALLOWED(adapter)) 732 return VIRTCHNL_RXDID_1_32B_BASE; 733 734 /* Rx timestamping requires the use of flexible NIC descriptors */ 735 if (iavf_ptp_cap_supported(adapter, VIRTCHNL_1588_PTP_CAP_RX_TSTAMP)) { 736 if (rxdids & BIT(VIRTCHNL_RXDID_2_FLEX_SQ_NIC)) 737 return VIRTCHNL_RXDID_2_FLEX_SQ_NIC; 738 739 pci_warn(adapter->pdev, 740 "Unable to negotiate flexible descriptor format\n"); 741 } 742 743 /* Warn if the PF does not list support for the default legacy 744 * descriptor format. This shouldn't happen, as this is the format 745 * used if VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC is not supported. It is 746 * likely caused by a bug in the PF implementation failing to indicate 747 * support for the format. 748 */ 749 if (!(rxdids & VIRTCHNL_RXDID_1_32B_BASE_M)) 750 netdev_warn(adapter->netdev, "PF does not list support for default Rx descriptor format\n"); 751 752 return VIRTCHNL_RXDID_1_32B_BASE; 753 } 754 755 /** 756 * iavf_configure_rx - Configure Receive Unit after Reset 757 * @adapter: board private structure 758 * 759 * Configure the Rx unit of the MAC after a reset. 760 **/ 761 static void iavf_configure_rx(struct iavf_adapter *adapter) 762 { 763 struct iavf_hw *hw = &adapter->hw; 764 765 adapter->rxdid = iavf_select_rx_desc_format(adapter); 766 767 for (u32 i = 0; i < adapter->num_active_queues; i++) { 768 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i); 769 adapter->rx_rings[i].rxdid = adapter->rxdid; 770 } 771 } 772 773 /** 774 * iavf_find_vlan - Search filter list for specific vlan filter 775 * @adapter: board private structure 776 * @vlan: vlan tag 777 * 778 * Returns ptr to the filter object or NULL. Must be called while holding the 779 * mac_vlan_list_lock. 780 **/ 781 static struct 782 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, 783 struct iavf_vlan vlan) 784 { 785 struct iavf_vlan_filter *f; 786 787 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 788 if (f->vlan.vid == vlan.vid && 789 f->vlan.tpid == vlan.tpid) 790 return f; 791 } 792 793 return NULL; 794 } 795 796 /** 797 * iavf_add_vlan - Add a vlan filter to the list 798 * @adapter: board private structure 799 * @vlan: VLAN tag 800 * 801 * Returns ptr to the filter object or NULL when no memory available. 802 **/ 803 static struct 804 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, 805 struct iavf_vlan vlan) 806 { 807 struct iavf_vlan_filter *f = NULL; 808 809 spin_lock_bh(&adapter->mac_vlan_list_lock); 810 811 f = iavf_find_vlan(adapter, vlan); 812 if (!f) { 813 f = kzalloc(sizeof(*f), GFP_ATOMIC); 814 if (!f) 815 goto clearout; 816 817 f->vlan = vlan; 818 819 list_add_tail(&f->list, &adapter->vlan_filter_list); 820 f->state = IAVF_VLAN_ADD; 821 adapter->num_vlan_filters++; 822 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_VLAN_FILTER); 823 } else if (f->state == IAVF_VLAN_REMOVE) { 824 /* IAVF_VLAN_REMOVE means that VLAN wasn't yet removed. 825 * We can safely only change the state here. 826 */ 827 f->state = IAVF_VLAN_ACTIVE; 828 } 829 830 clearout: 831 spin_unlock_bh(&adapter->mac_vlan_list_lock); 832 return f; 833 } 834 835 /** 836 * iavf_del_vlan - Remove a vlan filter from the list 837 * @adapter: board private structure 838 * @vlan: VLAN tag 839 **/ 840 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan) 841 { 842 struct iavf_vlan_filter *f; 843 844 spin_lock_bh(&adapter->mac_vlan_list_lock); 845 846 f = iavf_find_vlan(adapter, vlan); 847 if (f) { 848 /* IAVF_ADD_VLAN means that VLAN wasn't even added yet. 849 * Remove it from the list. 850 */ 851 if (f->state == IAVF_VLAN_ADD) { 852 list_del(&f->list); 853 kfree(f); 854 adapter->num_vlan_filters--; 855 } else { 856 f->state = IAVF_VLAN_REMOVE; 857 iavf_schedule_aq_request(adapter, 858 IAVF_FLAG_AQ_DEL_VLAN_FILTER); 859 } 860 } 861 862 spin_unlock_bh(&adapter->mac_vlan_list_lock); 863 } 864 865 /** 866 * iavf_restore_filters 867 * @adapter: board private structure 868 * 869 * Restore existing non MAC filters when VF netdev comes back up 870 **/ 871 static void iavf_restore_filters(struct iavf_adapter *adapter) 872 { 873 struct iavf_vlan_filter *f; 874 875 /* re-add all VLAN filters */ 876 spin_lock_bh(&adapter->mac_vlan_list_lock); 877 878 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 879 if (f->state == IAVF_VLAN_INACTIVE) 880 f->state = IAVF_VLAN_ADD; 881 } 882 883 spin_unlock_bh(&adapter->mac_vlan_list_lock); 884 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 885 } 886 887 /** 888 * iavf_get_num_vlans_added - get number of VLANs added 889 * @adapter: board private structure 890 */ 891 u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter) 892 { 893 return adapter->num_vlan_filters; 894 } 895 896 /** 897 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF 898 * @adapter: board private structure 899 * 900 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN, 901 * do not impose a limit as that maintains current behavior and for 902 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF. 903 **/ 904 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter) 905 { 906 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has 907 * never been a limit on the VF driver side 908 */ 909 if (VLAN_ALLOWED(adapter)) 910 return VLAN_N_VID; 911 else if (VLAN_V2_ALLOWED(adapter)) 912 return adapter->vlan_v2_caps.filtering.max_filters; 913 914 return 0; 915 } 916 917 /** 918 * iavf_max_vlans_added - check if maximum VLANs allowed already exist 919 * @adapter: board private structure 920 **/ 921 static bool iavf_max_vlans_added(struct iavf_adapter *adapter) 922 { 923 if (iavf_get_num_vlans_added(adapter) < 924 iavf_get_max_vlans_allowed(adapter)) 925 return false; 926 927 return true; 928 } 929 930 /** 931 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device 932 * @netdev: network device struct 933 * @proto: unused protocol data 934 * @vid: VLAN tag 935 **/ 936 static int iavf_vlan_rx_add_vid(struct net_device *netdev, 937 __always_unused __be16 proto, u16 vid) 938 { 939 struct iavf_adapter *adapter = netdev_priv(netdev); 940 941 /* Do not track VLAN 0 filter, always added by the PF on VF init */ 942 if (!vid) 943 return 0; 944 945 if (!VLAN_FILTERING_ALLOWED(adapter)) 946 return -EIO; 947 948 if (iavf_max_vlans_added(adapter)) { 949 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n", 950 iavf_get_max_vlans_allowed(adapter)); 951 return -EIO; 952 } 953 954 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)))) 955 return -ENOMEM; 956 957 return 0; 958 } 959 960 /** 961 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device 962 * @netdev: network device struct 963 * @proto: unused protocol data 964 * @vid: VLAN tag 965 **/ 966 static int iavf_vlan_rx_kill_vid(struct net_device *netdev, 967 __always_unused __be16 proto, u16 vid) 968 { 969 struct iavf_adapter *adapter = netdev_priv(netdev); 970 971 /* We do not track VLAN 0 filter */ 972 if (!vid) 973 return 0; 974 975 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))); 976 return 0; 977 } 978 979 /** 980 * iavf_find_filter - Search filter list for specific mac filter 981 * @adapter: board private structure 982 * @macaddr: the MAC address 983 * 984 * Returns ptr to the filter object or NULL. Must be called while holding the 985 * mac_vlan_list_lock. 986 **/ 987 static struct 988 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter, 989 const u8 *macaddr) 990 { 991 struct iavf_mac_filter *f; 992 993 if (!macaddr) 994 return NULL; 995 996 list_for_each_entry(f, &adapter->mac_filter_list, list) { 997 if (ether_addr_equal(macaddr, f->macaddr)) 998 return f; 999 } 1000 return NULL; 1001 } 1002 1003 /** 1004 * iavf_add_filter - Add a mac filter to the filter list 1005 * @adapter: board private structure 1006 * @macaddr: the MAC address 1007 * 1008 * Returns ptr to the filter object or NULL when no memory available. 1009 **/ 1010 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter, 1011 const u8 *macaddr) 1012 { 1013 struct iavf_mac_filter *f; 1014 1015 if (!macaddr) 1016 return NULL; 1017 1018 f = iavf_find_filter(adapter, macaddr); 1019 if (!f) { 1020 f = kzalloc(sizeof(*f), GFP_ATOMIC); 1021 if (!f) 1022 return f; 1023 1024 ether_addr_copy(f->macaddr, macaddr); 1025 1026 list_add_tail(&f->list, &adapter->mac_filter_list); 1027 f->add = true; 1028 f->add_handled = false; 1029 f->is_new_mac = true; 1030 f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr); 1031 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 1032 } else { 1033 f->remove = false; 1034 } 1035 1036 return f; 1037 } 1038 1039 /** 1040 * iavf_replace_primary_mac - Replace current primary address 1041 * @adapter: board private structure 1042 * @new_mac: new MAC address to be applied 1043 * 1044 * Replace current dev_addr and send request to PF for removal of previous 1045 * primary MAC address filter and addition of new primary MAC filter. 1046 * Return 0 for success, -ENOMEM for failure. 1047 * 1048 * Do not call this with mac_vlan_list_lock! 1049 **/ 1050 static int iavf_replace_primary_mac(struct iavf_adapter *adapter, 1051 const u8 *new_mac) 1052 { 1053 struct iavf_hw *hw = &adapter->hw; 1054 struct iavf_mac_filter *new_f; 1055 struct iavf_mac_filter *old_f; 1056 1057 spin_lock_bh(&adapter->mac_vlan_list_lock); 1058 1059 new_f = iavf_add_filter(adapter, new_mac); 1060 if (!new_f) { 1061 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1062 return -ENOMEM; 1063 } 1064 1065 old_f = iavf_find_filter(adapter, hw->mac.addr); 1066 if (old_f) { 1067 old_f->is_primary = false; 1068 old_f->remove = true; 1069 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1070 } 1071 /* Always send the request to add if changing primary MAC, 1072 * even if filter is already present on the list 1073 */ 1074 new_f->is_primary = true; 1075 new_f->add = true; 1076 ether_addr_copy(hw->mac.addr, new_mac); 1077 1078 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1079 1080 /* schedule the watchdog task to immediately process the request */ 1081 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_MAC_FILTER); 1082 return 0; 1083 } 1084 1085 /** 1086 * iavf_is_mac_set_handled - wait for a response to set MAC from PF 1087 * @netdev: network interface device structure 1088 * @macaddr: MAC address to set 1089 * 1090 * Returns true on success, false on failure 1091 */ 1092 static bool iavf_is_mac_set_handled(struct net_device *netdev, 1093 const u8 *macaddr) 1094 { 1095 struct iavf_adapter *adapter = netdev_priv(netdev); 1096 struct iavf_mac_filter *f; 1097 bool ret = false; 1098 1099 spin_lock_bh(&adapter->mac_vlan_list_lock); 1100 1101 f = iavf_find_filter(adapter, macaddr); 1102 1103 if (!f || (!f->add && f->add_handled)) 1104 ret = true; 1105 1106 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1107 1108 return ret; 1109 } 1110 1111 /** 1112 * iavf_set_mac - NDO callback to set port MAC address 1113 * @netdev: network interface device structure 1114 * @p: pointer to an address structure 1115 * 1116 * Returns 0 on success, negative on failure 1117 */ 1118 static int iavf_set_mac(struct net_device *netdev, void *p) 1119 { 1120 struct iavf_adapter *adapter = netdev_priv(netdev); 1121 struct sockaddr *addr = p; 1122 int ret; 1123 1124 if (!is_valid_ether_addr(addr->sa_data)) 1125 return -EADDRNOTAVAIL; 1126 1127 ret = iavf_replace_primary_mac(adapter, addr->sa_data); 1128 1129 if (ret) 1130 return ret; 1131 1132 ret = wait_event_interruptible_timeout(adapter->vc_waitqueue, 1133 iavf_is_mac_set_handled(netdev, addr->sa_data), 1134 msecs_to_jiffies(2500)); 1135 1136 /* If ret < 0 then it means wait was interrupted. 1137 * If ret == 0 then it means we got a timeout. 1138 * else it means we got response for set MAC from PF, 1139 * check if netdev MAC was updated to requested MAC, 1140 * if yes then set MAC succeeded otherwise it failed return -EACCES 1141 */ 1142 if (ret < 0) 1143 return ret; 1144 1145 if (!ret) 1146 return -EAGAIN; 1147 1148 if (!ether_addr_equal(netdev->dev_addr, addr->sa_data)) 1149 return -EACCES; 1150 1151 return 0; 1152 } 1153 1154 /** 1155 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address 1156 * @netdev: the netdevice 1157 * @addr: address to add 1158 * 1159 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 1160 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1161 */ 1162 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr) 1163 { 1164 struct iavf_adapter *adapter = netdev_priv(netdev); 1165 1166 if (iavf_add_filter(adapter, addr)) 1167 return 0; 1168 else 1169 return -ENOMEM; 1170 } 1171 1172 /** 1173 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 1174 * @netdev: the netdevice 1175 * @addr: address to add 1176 * 1177 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 1178 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1179 */ 1180 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr) 1181 { 1182 struct iavf_adapter *adapter = netdev_priv(netdev); 1183 struct iavf_mac_filter *f; 1184 1185 /* Under some circumstances, we might receive a request to delete 1186 * our own device address from our uc list. Because we store the 1187 * device address in the VSI's MAC/VLAN filter list, we need to ignore 1188 * such requests and not delete our device address from this list. 1189 */ 1190 if (ether_addr_equal(addr, netdev->dev_addr)) 1191 return 0; 1192 1193 f = iavf_find_filter(adapter, addr); 1194 if (f) { 1195 f->remove = true; 1196 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1197 } 1198 return 0; 1199 } 1200 1201 /** 1202 * iavf_promiscuous_mode_changed - check if promiscuous mode bits changed 1203 * @adapter: device specific adapter 1204 */ 1205 bool iavf_promiscuous_mode_changed(struct iavf_adapter *adapter) 1206 { 1207 return (adapter->current_netdev_promisc_flags ^ adapter->netdev->flags) & 1208 (IFF_PROMISC | IFF_ALLMULTI); 1209 } 1210 1211 /** 1212 * iavf_set_rx_mode - NDO callback to set the netdev filters 1213 * @netdev: network interface device structure 1214 **/ 1215 static void iavf_set_rx_mode(struct net_device *netdev) 1216 { 1217 struct iavf_adapter *adapter = netdev_priv(netdev); 1218 1219 spin_lock_bh(&adapter->mac_vlan_list_lock); 1220 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1221 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1222 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1223 1224 spin_lock_bh(&adapter->current_netdev_promisc_flags_lock); 1225 if (iavf_promiscuous_mode_changed(adapter)) 1226 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE; 1227 spin_unlock_bh(&adapter->current_netdev_promisc_flags_lock); 1228 } 1229 1230 /** 1231 * iavf_napi_enable_all - enable NAPI on all queue vectors 1232 * @adapter: board private structure 1233 **/ 1234 static void iavf_napi_enable_all(struct iavf_adapter *adapter) 1235 { 1236 int q_idx; 1237 struct iavf_q_vector *q_vector; 1238 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1239 1240 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1241 struct napi_struct *napi; 1242 1243 q_vector = &adapter->q_vectors[q_idx]; 1244 napi = &q_vector->napi; 1245 napi_enable_locked(napi); 1246 } 1247 } 1248 1249 /** 1250 * iavf_napi_disable_all - disable NAPI on all queue vectors 1251 * @adapter: board private structure 1252 **/ 1253 static void iavf_napi_disable_all(struct iavf_adapter *adapter) 1254 { 1255 int q_idx; 1256 struct iavf_q_vector *q_vector; 1257 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1258 1259 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1260 q_vector = &adapter->q_vectors[q_idx]; 1261 napi_disable_locked(&q_vector->napi); 1262 } 1263 } 1264 1265 /** 1266 * iavf_configure - set up transmit and receive data structures 1267 * @adapter: board private structure 1268 **/ 1269 static void iavf_configure(struct iavf_adapter *adapter) 1270 { 1271 struct net_device *netdev = adapter->netdev; 1272 int i; 1273 1274 iavf_set_rx_mode(netdev); 1275 1276 iavf_configure_tx(adapter); 1277 iavf_configure_rx(adapter); 1278 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES; 1279 1280 for (i = 0; i < adapter->num_active_queues; i++) { 1281 struct iavf_ring *ring = &adapter->rx_rings[i]; 1282 1283 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring)); 1284 } 1285 } 1286 1287 /** 1288 * iavf_up_complete - Finish the last steps of bringing up a connection 1289 * @adapter: board private structure 1290 * 1291 * Expects to be called while holding crit_lock. 1292 **/ 1293 static void iavf_up_complete(struct iavf_adapter *adapter) 1294 { 1295 iavf_change_state(adapter, __IAVF_RUNNING); 1296 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1297 1298 iavf_napi_enable_all(adapter); 1299 1300 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ENABLE_QUEUES); 1301 } 1302 1303 /** 1304 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF 1305 * yet and mark other to be removed. 1306 * @adapter: board private structure 1307 **/ 1308 static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter) 1309 { 1310 struct iavf_vlan_filter *vlf, *vlftmp; 1311 struct iavf_mac_filter *f, *ftmp; 1312 1313 spin_lock_bh(&adapter->mac_vlan_list_lock); 1314 /* clear the sync flag on all filters */ 1315 __dev_uc_unsync(adapter->netdev, NULL); 1316 __dev_mc_unsync(adapter->netdev, NULL); 1317 1318 /* remove all MAC filters */ 1319 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, 1320 list) { 1321 if (f->add) { 1322 list_del(&f->list); 1323 kfree(f); 1324 } else { 1325 f->remove = true; 1326 } 1327 } 1328 1329 /* disable all VLAN filters */ 1330 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 1331 list) 1332 vlf->state = IAVF_VLAN_DISABLE; 1333 1334 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1335 } 1336 1337 /** 1338 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and 1339 * mark other to be removed. 1340 * @adapter: board private structure 1341 **/ 1342 static void iavf_clear_cloud_filters(struct iavf_adapter *adapter) 1343 { 1344 struct iavf_cloud_filter *cf, *cftmp; 1345 1346 /* remove all cloud filters */ 1347 spin_lock_bh(&adapter->cloud_filter_list_lock); 1348 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 1349 list) { 1350 if (cf->add) { 1351 list_del(&cf->list); 1352 kfree(cf); 1353 adapter->num_cloud_filters--; 1354 } else { 1355 cf->del = true; 1356 } 1357 } 1358 spin_unlock_bh(&adapter->cloud_filter_list_lock); 1359 } 1360 1361 /** 1362 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark 1363 * other to be removed. 1364 * @adapter: board private structure 1365 **/ 1366 static void iavf_clear_fdir_filters(struct iavf_adapter *adapter) 1367 { 1368 struct iavf_fdir_fltr *fdir; 1369 1370 /* remove all Flow Director filters */ 1371 spin_lock_bh(&adapter->fdir_fltr_lock); 1372 list_for_each_entry(fdir, &adapter->fdir_list_head, list) { 1373 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) { 1374 /* Cancel a request, keep filter as inactive */ 1375 fdir->state = IAVF_FDIR_FLTR_INACTIVE; 1376 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING || 1377 fdir->state == IAVF_FDIR_FLTR_ACTIVE) { 1378 /* Disable filters which are active or have a pending 1379 * request to PF to be added 1380 */ 1381 fdir->state = IAVF_FDIR_FLTR_DIS_REQUEST; 1382 } 1383 } 1384 spin_unlock_bh(&adapter->fdir_fltr_lock); 1385 } 1386 1387 /** 1388 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark 1389 * other to be removed. 1390 * @adapter: board private structure 1391 **/ 1392 static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter) 1393 { 1394 struct iavf_adv_rss *rss, *rsstmp; 1395 1396 /* remove all advance RSS configuration */ 1397 spin_lock_bh(&adapter->adv_rss_lock); 1398 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 1399 list) { 1400 if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) { 1401 list_del(&rss->list); 1402 kfree(rss); 1403 } else { 1404 rss->state = IAVF_ADV_RSS_DEL_REQUEST; 1405 } 1406 } 1407 spin_unlock_bh(&adapter->adv_rss_lock); 1408 } 1409 1410 /** 1411 * iavf_down - Shutdown the connection processing 1412 * @adapter: board private structure 1413 * 1414 * Expects to be called while holding crit_lock. 1415 **/ 1416 void iavf_down(struct iavf_adapter *adapter) 1417 { 1418 struct net_device *netdev = adapter->netdev; 1419 1420 if (adapter->state <= __IAVF_DOWN_PENDING) 1421 return; 1422 1423 netif_carrier_off(netdev); 1424 netif_tx_disable(netdev); 1425 adapter->link_up = false; 1426 iavf_napi_disable_all(adapter); 1427 iavf_irq_disable(adapter); 1428 1429 iavf_clear_mac_vlan_filters(adapter); 1430 iavf_clear_cloud_filters(adapter); 1431 iavf_clear_fdir_filters(adapter); 1432 iavf_clear_adv_rss_conf(adapter); 1433 1434 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 1435 return; 1436 1437 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { 1438 /* cancel any current operation */ 1439 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1440 /* Schedule operations to close down the HW. Don't wait 1441 * here for this to complete. The watchdog is still running 1442 * and it will take care of this. 1443 */ 1444 if (!list_empty(&adapter->mac_filter_list)) 1445 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1446 if (!list_empty(&adapter->vlan_filter_list)) 1447 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 1448 if (!list_empty(&adapter->cloud_filter_list)) 1449 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 1450 if (!list_empty(&adapter->fdir_list_head)) 1451 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 1452 if (!list_empty(&adapter->adv_rss_list_head)) 1453 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG; 1454 } 1455 1456 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DISABLE_QUEUES); 1457 } 1458 1459 /** 1460 * iavf_acquire_msix_vectors - Setup the MSIX capability 1461 * @adapter: board private structure 1462 * @vectors: number of vectors to request 1463 * 1464 * Work with the OS to set up the MSIX vectors needed. 1465 * 1466 * Returns 0 on success, negative on failure 1467 **/ 1468 static int 1469 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors) 1470 { 1471 int err, vector_threshold; 1472 1473 /* We'll want at least 3 (vector_threshold): 1474 * 0) Other (Admin Queue and link, mostly) 1475 * 1) TxQ[0] Cleanup 1476 * 2) RxQ[0] Cleanup 1477 */ 1478 vector_threshold = MIN_MSIX_COUNT; 1479 1480 /* The more we get, the more we will assign to Tx/Rx Cleanup 1481 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 1482 * Right now, we simply care about how many we'll get; we'll 1483 * set them up later while requesting irq's. 1484 */ 1485 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 1486 vector_threshold, vectors); 1487 if (err < 0) { 1488 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n"); 1489 kfree(adapter->msix_entries); 1490 adapter->msix_entries = NULL; 1491 return err; 1492 } 1493 1494 /* Adjust for only the vectors we'll use, which is minimum 1495 * of max_msix_q_vectors + NONQ_VECS, or the number of 1496 * vectors we were allocated. 1497 */ 1498 adapter->num_msix_vectors = err; 1499 return 0; 1500 } 1501 1502 /** 1503 * iavf_free_queues - Free memory for all rings 1504 * @adapter: board private structure to initialize 1505 * 1506 * Free all of the memory associated with queue pairs. 1507 **/ 1508 static void iavf_free_queues(struct iavf_adapter *adapter) 1509 { 1510 if (!adapter->vsi_res) 1511 return; 1512 adapter->num_active_queues = 0; 1513 kfree(adapter->tx_rings); 1514 adapter->tx_rings = NULL; 1515 kfree(adapter->rx_rings); 1516 adapter->rx_rings = NULL; 1517 } 1518 1519 /** 1520 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload 1521 * @adapter: board private structure 1522 * 1523 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or 1524 * stripped in certain descriptor fields. Instead of checking the offload 1525 * capability bits in the hot path, cache the location the ring specific 1526 * flags. 1527 */ 1528 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter) 1529 { 1530 int i; 1531 1532 for (i = 0; i < adapter->num_active_queues; i++) { 1533 struct iavf_ring *tx_ring = &adapter->tx_rings[i]; 1534 struct iavf_ring *rx_ring = &adapter->rx_rings[i]; 1535 1536 /* prevent multiple L2TAG bits being set after VFR */ 1537 tx_ring->flags &= 1538 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1539 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2); 1540 rx_ring->flags &= 1541 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1542 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2); 1543 1544 if (VLAN_ALLOWED(adapter)) { 1545 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1546 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1547 } else if (VLAN_V2_ALLOWED(adapter)) { 1548 struct virtchnl_vlan_supported_caps *stripping_support; 1549 struct virtchnl_vlan_supported_caps *insertion_support; 1550 1551 stripping_support = 1552 &adapter->vlan_v2_caps.offloads.stripping_support; 1553 insertion_support = 1554 &adapter->vlan_v2_caps.offloads.insertion_support; 1555 1556 if (stripping_support->outer) { 1557 if (stripping_support->outer & 1558 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1559 rx_ring->flags |= 1560 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1561 else if (stripping_support->outer & 1562 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1563 rx_ring->flags |= 1564 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1565 } else if (stripping_support->inner) { 1566 if (stripping_support->inner & 1567 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1568 rx_ring->flags |= 1569 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1570 else if (stripping_support->inner & 1571 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1572 rx_ring->flags |= 1573 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1574 } 1575 1576 if (insertion_support->outer) { 1577 if (insertion_support->outer & 1578 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1579 tx_ring->flags |= 1580 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1581 else if (insertion_support->outer & 1582 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1583 tx_ring->flags |= 1584 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1585 } else if (insertion_support->inner) { 1586 if (insertion_support->inner & 1587 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1588 tx_ring->flags |= 1589 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1590 else if (insertion_support->inner & 1591 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1592 tx_ring->flags |= 1593 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1594 } 1595 } 1596 } 1597 } 1598 1599 /** 1600 * iavf_alloc_queues - Allocate memory for all rings 1601 * @adapter: board private structure to initialize 1602 * 1603 * We allocate one ring per queue at run-time since we don't know the 1604 * number of queues at compile-time. The polling_netdev array is 1605 * intended for Multiqueue, but should work fine with a single queue. 1606 **/ 1607 static int iavf_alloc_queues(struct iavf_adapter *adapter) 1608 { 1609 int i, num_active_queues; 1610 1611 /* If we're in reset reallocating queues we don't actually know yet for 1612 * certain the PF gave us the number of queues we asked for but we'll 1613 * assume it did. Once basic reset is finished we'll confirm once we 1614 * start negotiating config with PF. 1615 */ 1616 if (adapter->num_req_queues) 1617 num_active_queues = adapter->num_req_queues; 1618 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1619 adapter->num_tc) 1620 num_active_queues = adapter->ch_config.total_qps; 1621 else 1622 num_active_queues = min_t(int, 1623 adapter->vsi_res->num_queue_pairs, 1624 (int)(num_online_cpus())); 1625 1626 1627 adapter->tx_rings = kcalloc(num_active_queues, 1628 sizeof(struct iavf_ring), GFP_KERNEL); 1629 if (!adapter->tx_rings) 1630 goto err_out; 1631 adapter->rx_rings = kcalloc(num_active_queues, 1632 sizeof(struct iavf_ring), GFP_KERNEL); 1633 if (!adapter->rx_rings) 1634 goto err_out; 1635 1636 for (i = 0; i < num_active_queues; i++) { 1637 struct iavf_ring *tx_ring; 1638 struct iavf_ring *rx_ring; 1639 1640 tx_ring = &adapter->tx_rings[i]; 1641 1642 tx_ring->queue_index = i; 1643 tx_ring->netdev = adapter->netdev; 1644 tx_ring->dev = &adapter->pdev->dev; 1645 tx_ring->count = adapter->tx_desc_count; 1646 tx_ring->itr_setting = IAVF_ITR_TX_DEF; 1647 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE) 1648 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR; 1649 1650 rx_ring = &adapter->rx_rings[i]; 1651 rx_ring->queue_index = i; 1652 rx_ring->netdev = adapter->netdev; 1653 rx_ring->count = adapter->rx_desc_count; 1654 rx_ring->itr_setting = IAVF_ITR_RX_DEF; 1655 } 1656 1657 adapter->num_active_queues = num_active_queues; 1658 1659 iavf_set_queue_vlan_tag_loc(adapter); 1660 1661 return 0; 1662 1663 err_out: 1664 iavf_free_queues(adapter); 1665 return -ENOMEM; 1666 } 1667 1668 /** 1669 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported 1670 * @adapter: board private structure to initialize 1671 * 1672 * Attempt to configure the interrupts using the best available 1673 * capabilities of the hardware and the kernel. 1674 **/ 1675 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter) 1676 { 1677 int vector, v_budget; 1678 int pairs = 0; 1679 int err = 0; 1680 1681 if (!adapter->vsi_res) { 1682 err = -EIO; 1683 goto out; 1684 } 1685 pairs = adapter->num_active_queues; 1686 1687 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do 1688 * us much good if we have more vectors than CPUs. However, we already 1689 * limit the total number of queues by the number of CPUs so we do not 1690 * need any further limiting here. 1691 */ 1692 v_budget = min_t(int, pairs + NONQ_VECS, 1693 (int)adapter->vf_res->max_vectors); 1694 1695 adapter->msix_entries = kcalloc(v_budget, 1696 sizeof(struct msix_entry), GFP_KERNEL); 1697 if (!adapter->msix_entries) { 1698 err = -ENOMEM; 1699 goto out; 1700 } 1701 1702 for (vector = 0; vector < v_budget; vector++) 1703 adapter->msix_entries[vector].entry = vector; 1704 1705 err = iavf_acquire_msix_vectors(adapter, v_budget); 1706 if (!err) 1707 iavf_schedule_finish_config(adapter); 1708 1709 out: 1710 return err; 1711 } 1712 1713 /** 1714 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands 1715 * @adapter: board private structure 1716 * 1717 * Return 0 on success, negative on failure 1718 **/ 1719 static int iavf_config_rss_aq(struct iavf_adapter *adapter) 1720 { 1721 struct iavf_aqc_get_set_rss_key_data *rss_key = 1722 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key; 1723 struct iavf_hw *hw = &adapter->hw; 1724 enum iavf_status status; 1725 1726 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) { 1727 /* bail because we already have a command pending */ 1728 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n", 1729 adapter->current_op); 1730 return -EBUSY; 1731 } 1732 1733 status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key); 1734 if (status) { 1735 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n", 1736 iavf_stat_str(hw, status), 1737 iavf_aq_str(hw, hw->aq.asq_last_status)); 1738 return iavf_status_to_errno(status); 1739 1740 } 1741 1742 status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false, 1743 adapter->rss_lut, adapter->rss_lut_size); 1744 if (status) { 1745 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n", 1746 iavf_stat_str(hw, status), 1747 iavf_aq_str(hw, hw->aq.asq_last_status)); 1748 return iavf_status_to_errno(status); 1749 } 1750 1751 return 0; 1752 1753 } 1754 1755 /** 1756 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers 1757 * @adapter: board private structure 1758 * 1759 * Returns 0 on success, negative on failure 1760 **/ 1761 static int iavf_config_rss_reg(struct iavf_adapter *adapter) 1762 { 1763 struct iavf_hw *hw = &adapter->hw; 1764 u32 *dw; 1765 u16 i; 1766 1767 dw = (u32 *)adapter->rss_key; 1768 for (i = 0; i <= adapter->rss_key_size / 4; i++) 1769 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]); 1770 1771 dw = (u32 *)adapter->rss_lut; 1772 for (i = 0; i <= adapter->rss_lut_size / 4; i++) 1773 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]); 1774 1775 iavf_flush(hw); 1776 1777 return 0; 1778 } 1779 1780 /** 1781 * iavf_config_rss - Configure RSS keys and lut 1782 * @adapter: board private structure 1783 * 1784 * Returns 0 on success, negative on failure 1785 **/ 1786 int iavf_config_rss(struct iavf_adapter *adapter) 1787 { 1788 1789 if (RSS_PF(adapter)) { 1790 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT | 1791 IAVF_FLAG_AQ_SET_RSS_KEY; 1792 return 0; 1793 } else if (RSS_AQ(adapter)) { 1794 return iavf_config_rss_aq(adapter); 1795 } else { 1796 return iavf_config_rss_reg(adapter); 1797 } 1798 } 1799 1800 /** 1801 * iavf_fill_rss_lut - Fill the lut with default values 1802 * @adapter: board private structure 1803 **/ 1804 static void iavf_fill_rss_lut(struct iavf_adapter *adapter) 1805 { 1806 u16 i; 1807 1808 for (i = 0; i < adapter->rss_lut_size; i++) 1809 adapter->rss_lut[i] = i % adapter->num_active_queues; 1810 } 1811 1812 /** 1813 * iavf_init_rss - Prepare for RSS 1814 * @adapter: board private structure 1815 * 1816 * Return 0 on success, negative on failure 1817 **/ 1818 static int iavf_init_rss(struct iavf_adapter *adapter) 1819 { 1820 struct iavf_hw *hw = &adapter->hw; 1821 1822 if (!RSS_PF(adapter)) { 1823 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */ 1824 if (adapter->vf_res->vf_cap_flags & 1825 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 1826 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED; 1827 else 1828 adapter->hena = IAVF_DEFAULT_RSS_HENA; 1829 1830 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena); 1831 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32)); 1832 } 1833 1834 iavf_fill_rss_lut(adapter); 1835 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size); 1836 1837 return iavf_config_rss(adapter); 1838 } 1839 1840 /** 1841 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors 1842 * @adapter: board private structure to initialize 1843 * 1844 * We allocate one q_vector per queue interrupt. If allocation fails we 1845 * return -ENOMEM. 1846 **/ 1847 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter) 1848 { 1849 int q_idx = 0, num_q_vectors; 1850 struct iavf_q_vector *q_vector; 1851 1852 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1853 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector), 1854 GFP_KERNEL); 1855 if (!adapter->q_vectors) 1856 return -ENOMEM; 1857 1858 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1859 q_vector = &adapter->q_vectors[q_idx]; 1860 q_vector->adapter = adapter; 1861 q_vector->vsi = &adapter->vsi; 1862 q_vector->v_idx = q_idx; 1863 q_vector->reg_idx = q_idx; 1864 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 1865 netif_napi_add_locked(adapter->netdev, &q_vector->napi, 1866 iavf_napi_poll); 1867 } 1868 1869 return 0; 1870 } 1871 1872 /** 1873 * iavf_free_q_vectors - Free memory allocated for interrupt vectors 1874 * @adapter: board private structure to initialize 1875 * 1876 * This function frees the memory allocated to the q_vectors. In addition if 1877 * NAPI is enabled it will delete any references to the NAPI struct prior 1878 * to freeing the q_vector. 1879 **/ 1880 static void iavf_free_q_vectors(struct iavf_adapter *adapter) 1881 { 1882 int q_idx, num_q_vectors; 1883 1884 if (!adapter->q_vectors) 1885 return; 1886 1887 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1888 1889 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1890 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx]; 1891 1892 netif_napi_del_locked(&q_vector->napi); 1893 } 1894 kfree(adapter->q_vectors); 1895 adapter->q_vectors = NULL; 1896 } 1897 1898 /** 1899 * iavf_reset_interrupt_capability - Reset MSIX setup 1900 * @adapter: board private structure 1901 * 1902 **/ 1903 static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter) 1904 { 1905 if (!adapter->msix_entries) 1906 return; 1907 1908 pci_disable_msix(adapter->pdev); 1909 kfree(adapter->msix_entries); 1910 adapter->msix_entries = NULL; 1911 } 1912 1913 /** 1914 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init 1915 * @adapter: board private structure to initialize 1916 * 1917 **/ 1918 static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter) 1919 { 1920 int err; 1921 1922 err = iavf_alloc_queues(adapter); 1923 if (err) { 1924 dev_err(&adapter->pdev->dev, 1925 "Unable to allocate memory for queues\n"); 1926 goto err_alloc_queues; 1927 } 1928 1929 err = iavf_set_interrupt_capability(adapter); 1930 if (err) { 1931 dev_err(&adapter->pdev->dev, 1932 "Unable to setup interrupt capabilities\n"); 1933 goto err_set_interrupt; 1934 } 1935 1936 err = iavf_alloc_q_vectors(adapter); 1937 if (err) { 1938 dev_err(&adapter->pdev->dev, 1939 "Unable to allocate memory for queue vectors\n"); 1940 goto err_alloc_q_vectors; 1941 } 1942 1943 /* If we've made it so far while ADq flag being ON, then we haven't 1944 * bailed out anywhere in middle. And ADq isn't just enabled but actual 1945 * resources have been allocated in the reset path. 1946 * Now we can truly claim that ADq is enabled. 1947 */ 1948 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1949 adapter->num_tc) 1950 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created", 1951 adapter->num_tc); 1952 1953 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u", 1954 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled", 1955 adapter->num_active_queues); 1956 1957 return 0; 1958 err_alloc_q_vectors: 1959 iavf_reset_interrupt_capability(adapter); 1960 err_set_interrupt: 1961 iavf_free_queues(adapter); 1962 err_alloc_queues: 1963 return err; 1964 } 1965 1966 /** 1967 * iavf_free_interrupt_scheme - Undo what iavf_init_interrupt_scheme does 1968 * @adapter: board private structure 1969 **/ 1970 static void iavf_free_interrupt_scheme(struct iavf_adapter *adapter) 1971 { 1972 iavf_free_q_vectors(adapter); 1973 iavf_reset_interrupt_capability(adapter); 1974 iavf_free_queues(adapter); 1975 } 1976 1977 /** 1978 * iavf_free_rss - Free memory used by RSS structs 1979 * @adapter: board private structure 1980 **/ 1981 static void iavf_free_rss(struct iavf_adapter *adapter) 1982 { 1983 kfree(adapter->rss_key); 1984 adapter->rss_key = NULL; 1985 1986 kfree(adapter->rss_lut); 1987 adapter->rss_lut = NULL; 1988 } 1989 1990 /** 1991 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors 1992 * @adapter: board private structure 1993 * @running: true if adapter->state == __IAVF_RUNNING 1994 * 1995 * Returns 0 on success, negative on failure 1996 **/ 1997 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running) 1998 { 1999 struct net_device *netdev = adapter->netdev; 2000 int err; 2001 2002 if (running) 2003 iavf_free_traffic_irqs(adapter); 2004 iavf_free_misc_irq(adapter); 2005 iavf_free_interrupt_scheme(adapter); 2006 2007 err = iavf_init_interrupt_scheme(adapter); 2008 if (err) 2009 goto err; 2010 2011 netif_tx_stop_all_queues(netdev); 2012 2013 err = iavf_request_misc_irq(adapter); 2014 if (err) 2015 goto err; 2016 2017 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2018 2019 iavf_map_rings_to_vectors(adapter); 2020 err: 2021 return err; 2022 } 2023 2024 /** 2025 * iavf_finish_config - do all netdev work that needs RTNL 2026 * @work: our work_struct 2027 * 2028 * Do work that needs both RTNL and crit_lock. 2029 **/ 2030 static void iavf_finish_config(struct work_struct *work) 2031 { 2032 struct iavf_adapter *adapter; 2033 bool locks_released = false; 2034 int pairs, err; 2035 2036 adapter = container_of(work, struct iavf_adapter, finish_config); 2037 2038 /* Always take RTNL first to prevent circular lock dependency; 2039 * The dev->lock is needed to update the queue number 2040 */ 2041 rtnl_lock(); 2042 netdev_lock(adapter->netdev); 2043 mutex_lock(&adapter->crit_lock); 2044 2045 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) && 2046 adapter->netdev->reg_state == NETREG_REGISTERED && 2047 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { 2048 netdev_update_features(adapter->netdev); 2049 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES; 2050 } 2051 2052 switch (adapter->state) { 2053 case __IAVF_DOWN: 2054 /* Set the real number of queues when reset occurs while 2055 * state == __IAVF_DOWN 2056 */ 2057 pairs = adapter->num_active_queues; 2058 netif_set_real_num_rx_queues(adapter->netdev, pairs); 2059 netif_set_real_num_tx_queues(adapter->netdev, pairs); 2060 2061 if (adapter->netdev->reg_state != NETREG_REGISTERED) { 2062 mutex_unlock(&adapter->crit_lock); 2063 netdev_unlock(adapter->netdev); 2064 locks_released = true; 2065 err = register_netdevice(adapter->netdev); 2066 if (err) { 2067 dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n", 2068 err); 2069 2070 /* go back and try again.*/ 2071 mutex_lock(&adapter->crit_lock); 2072 iavf_free_rss(adapter); 2073 iavf_free_misc_irq(adapter); 2074 iavf_reset_interrupt_capability(adapter); 2075 iavf_change_state(adapter, 2076 __IAVF_INIT_CONFIG_ADAPTER); 2077 mutex_unlock(&adapter->crit_lock); 2078 goto out; 2079 } 2080 } 2081 break; 2082 case __IAVF_RUNNING: 2083 pairs = adapter->num_active_queues; 2084 netif_set_real_num_rx_queues(adapter->netdev, pairs); 2085 netif_set_real_num_tx_queues(adapter->netdev, pairs); 2086 break; 2087 2088 default: 2089 break; 2090 } 2091 2092 out: 2093 if (!locks_released) { 2094 mutex_unlock(&adapter->crit_lock); 2095 netdev_unlock(adapter->netdev); 2096 } 2097 rtnl_unlock(); 2098 } 2099 2100 /** 2101 * iavf_schedule_finish_config - Set the flags and schedule a reset event 2102 * @adapter: board private structure 2103 **/ 2104 void iavf_schedule_finish_config(struct iavf_adapter *adapter) 2105 { 2106 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 2107 queue_work(adapter->wq, &adapter->finish_config); 2108 } 2109 2110 /** 2111 * iavf_process_aq_command - process aq_required flags 2112 * and sends aq command 2113 * @adapter: pointer to iavf adapter structure 2114 * 2115 * Returns 0 on success 2116 * Returns error code if no command was sent 2117 * or error code if the command failed. 2118 **/ 2119 static int iavf_process_aq_command(struct iavf_adapter *adapter) 2120 { 2121 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG) 2122 return iavf_send_vf_config_msg(adapter); 2123 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS) 2124 return iavf_send_vf_offload_vlan_v2_msg(adapter); 2125 if (adapter->aq_required & IAVF_FLAG_AQ_GET_SUPPORTED_RXDIDS) 2126 return iavf_send_vf_supported_rxdids_msg(adapter); 2127 if (adapter->aq_required & IAVF_FLAG_AQ_GET_PTP_CAPS) 2128 return iavf_send_vf_ptp_caps_msg(adapter); 2129 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) { 2130 iavf_disable_queues(adapter); 2131 return 0; 2132 } 2133 2134 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) { 2135 iavf_map_queues(adapter); 2136 return 0; 2137 } 2138 2139 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) { 2140 iavf_add_ether_addrs(adapter); 2141 return 0; 2142 } 2143 2144 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) { 2145 iavf_add_vlans(adapter); 2146 return 0; 2147 } 2148 2149 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) { 2150 iavf_del_ether_addrs(adapter); 2151 return 0; 2152 } 2153 2154 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) { 2155 iavf_del_vlans(adapter); 2156 return 0; 2157 } 2158 2159 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) { 2160 iavf_enable_vlan_stripping(adapter); 2161 return 0; 2162 } 2163 2164 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) { 2165 iavf_disable_vlan_stripping(adapter); 2166 return 0; 2167 } 2168 2169 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW) { 2170 iavf_cfg_queues_bw(adapter); 2171 return 0; 2172 } 2173 2174 if (adapter->aq_required & IAVF_FLAG_AQ_GET_QOS_CAPS) { 2175 iavf_get_qos_caps(adapter); 2176 return 0; 2177 } 2178 2179 if (adapter->aq_required & IAVF_FLAG_AQ_CFG_QUEUES_QUANTA_SIZE) { 2180 iavf_cfg_queues_quanta_size(adapter); 2181 return 0; 2182 } 2183 2184 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) { 2185 iavf_configure_queues(adapter); 2186 return 0; 2187 } 2188 2189 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) { 2190 iavf_enable_queues(adapter); 2191 return 0; 2192 } 2193 2194 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) { 2195 /* This message goes straight to the firmware, not the 2196 * PF, so we don't have to set current_op as we will 2197 * not get a response through the ARQ. 2198 */ 2199 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS; 2200 return 0; 2201 } 2202 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) { 2203 iavf_get_hena(adapter); 2204 return 0; 2205 } 2206 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) { 2207 iavf_set_hena(adapter); 2208 return 0; 2209 } 2210 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) { 2211 iavf_set_rss_key(adapter); 2212 return 0; 2213 } 2214 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) { 2215 iavf_set_rss_lut(adapter); 2216 return 0; 2217 } 2218 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_HFUNC) { 2219 iavf_set_rss_hfunc(adapter); 2220 return 0; 2221 } 2222 2223 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE) { 2224 iavf_set_promiscuous(adapter); 2225 return 0; 2226 } 2227 2228 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) { 2229 iavf_enable_channels(adapter); 2230 return 0; 2231 } 2232 2233 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) { 2234 iavf_disable_channels(adapter); 2235 return 0; 2236 } 2237 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 2238 iavf_add_cloud_filter(adapter); 2239 return 0; 2240 } 2241 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 2242 iavf_del_cloud_filter(adapter); 2243 return 0; 2244 } 2245 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) { 2246 iavf_add_fdir_filter(adapter); 2247 return IAVF_SUCCESS; 2248 } 2249 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) { 2250 iavf_del_fdir_filter(adapter); 2251 return IAVF_SUCCESS; 2252 } 2253 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) { 2254 iavf_add_adv_rss_cfg(adapter); 2255 return 0; 2256 } 2257 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) { 2258 iavf_del_adv_rss_cfg(adapter); 2259 return 0; 2260 } 2261 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) { 2262 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2263 return 0; 2264 } 2265 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) { 2266 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2267 return 0; 2268 } 2269 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) { 2270 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2271 return 0; 2272 } 2273 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) { 2274 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2275 return 0; 2276 } 2277 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) { 2278 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2279 return 0; 2280 } 2281 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) { 2282 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2283 return 0; 2284 } 2285 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) { 2286 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2287 return 0; 2288 } 2289 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) { 2290 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2291 return 0; 2292 } 2293 if (adapter->aq_required & IAVF_FLAG_AQ_SEND_PTP_CMD) { 2294 iavf_virtchnl_send_ptp_cmd(adapter); 2295 return IAVF_SUCCESS; 2296 } 2297 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) { 2298 iavf_request_stats(adapter); 2299 return 0; 2300 } 2301 2302 return -EAGAIN; 2303 } 2304 2305 /** 2306 * iavf_set_vlan_offload_features - set VLAN offload configuration 2307 * @adapter: board private structure 2308 * @prev_features: previous features used for comparison 2309 * @features: updated features used for configuration 2310 * 2311 * Set the aq_required bit(s) based on the requested features passed in to 2312 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule 2313 * the watchdog if any changes are requested to expedite the request via 2314 * virtchnl. 2315 **/ 2316 static void 2317 iavf_set_vlan_offload_features(struct iavf_adapter *adapter, 2318 netdev_features_t prev_features, 2319 netdev_features_t features) 2320 { 2321 bool enable_stripping = true, enable_insertion = true; 2322 u16 vlan_ethertype = 0; 2323 u64 aq_required = 0; 2324 2325 /* keep cases separate because one ethertype for offloads can be 2326 * disabled at the same time as another is disabled, so check for an 2327 * enabled ethertype first, then check for disabled. Default to 2328 * ETH_P_8021Q so an ethertype is specified if disabling insertion and 2329 * stripping. 2330 */ 2331 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2332 vlan_ethertype = ETH_P_8021AD; 2333 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2334 vlan_ethertype = ETH_P_8021Q; 2335 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2336 vlan_ethertype = ETH_P_8021AD; 2337 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2338 vlan_ethertype = ETH_P_8021Q; 2339 else 2340 vlan_ethertype = ETH_P_8021Q; 2341 2342 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 2343 enable_stripping = false; 2344 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 2345 enable_insertion = false; 2346 2347 if (VLAN_ALLOWED(adapter)) { 2348 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN 2349 * stripping via virtchnl. VLAN insertion can be toggled on the 2350 * netdev, but it doesn't require a virtchnl message 2351 */ 2352 if (enable_stripping) 2353 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING; 2354 else 2355 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING; 2356 2357 } else if (VLAN_V2_ALLOWED(adapter)) { 2358 switch (vlan_ethertype) { 2359 case ETH_P_8021Q: 2360 if (enable_stripping) 2361 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING; 2362 else 2363 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING; 2364 2365 if (enable_insertion) 2366 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION; 2367 else 2368 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION; 2369 break; 2370 case ETH_P_8021AD: 2371 if (enable_stripping) 2372 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING; 2373 else 2374 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING; 2375 2376 if (enable_insertion) 2377 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION; 2378 else 2379 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION; 2380 break; 2381 } 2382 } 2383 2384 if (aq_required) 2385 iavf_schedule_aq_request(adapter, aq_required); 2386 } 2387 2388 /** 2389 * iavf_startup - first step of driver startup 2390 * @adapter: board private structure 2391 * 2392 * Function process __IAVF_STARTUP driver state. 2393 * When success the state is changed to __IAVF_INIT_VERSION_CHECK 2394 * when fails the state is changed to __IAVF_INIT_FAILED 2395 **/ 2396 static void iavf_startup(struct iavf_adapter *adapter) 2397 { 2398 struct pci_dev *pdev = adapter->pdev; 2399 struct iavf_hw *hw = &adapter->hw; 2400 enum iavf_status status; 2401 int ret; 2402 2403 WARN_ON(adapter->state != __IAVF_STARTUP); 2404 2405 /* driver loaded, probe complete */ 2406 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2407 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2408 2409 ret = iavf_check_reset_complete(hw); 2410 if (ret) { 2411 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n", 2412 ret); 2413 goto err; 2414 } 2415 hw->aq.num_arq_entries = IAVF_AQ_LEN; 2416 hw->aq.num_asq_entries = IAVF_AQ_LEN; 2417 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2418 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2419 2420 status = iavf_init_adminq(hw); 2421 if (status) { 2422 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", 2423 status); 2424 goto err; 2425 } 2426 ret = iavf_send_api_ver(adapter); 2427 if (ret) { 2428 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret); 2429 iavf_shutdown_adminq(hw); 2430 goto err; 2431 } 2432 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK); 2433 return; 2434 err: 2435 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2436 } 2437 2438 /** 2439 * iavf_init_version_check - second step of driver startup 2440 * @adapter: board private structure 2441 * 2442 * Function process __IAVF_INIT_VERSION_CHECK driver state. 2443 * When success the state is changed to __IAVF_INIT_GET_RESOURCES 2444 * when fails the state is changed to __IAVF_INIT_FAILED 2445 **/ 2446 static void iavf_init_version_check(struct iavf_adapter *adapter) 2447 { 2448 struct pci_dev *pdev = adapter->pdev; 2449 struct iavf_hw *hw = &adapter->hw; 2450 int err = -EAGAIN; 2451 2452 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK); 2453 2454 if (!iavf_asq_done(hw)) { 2455 dev_err(&pdev->dev, "Admin queue command never completed\n"); 2456 iavf_shutdown_adminq(hw); 2457 iavf_change_state(adapter, __IAVF_STARTUP); 2458 goto err; 2459 } 2460 2461 /* aq msg sent, awaiting reply */ 2462 err = iavf_verify_api_ver(adapter); 2463 if (err) { 2464 if (err == -EALREADY) 2465 err = iavf_send_api_ver(adapter); 2466 else 2467 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n", 2468 adapter->pf_version.major, 2469 adapter->pf_version.minor, 2470 VIRTCHNL_VERSION_MAJOR, 2471 VIRTCHNL_VERSION_MINOR); 2472 goto err; 2473 } 2474 err = iavf_send_vf_config_msg(adapter); 2475 if (err) { 2476 dev_err(&pdev->dev, "Unable to send config request (%d)\n", 2477 err); 2478 goto err; 2479 } 2480 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES); 2481 return; 2482 err: 2483 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2484 } 2485 2486 /** 2487 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES 2488 * @adapter: board private structure 2489 */ 2490 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter) 2491 { 2492 int i, num_req_queues = adapter->num_req_queues; 2493 struct iavf_vsi *vsi = &adapter->vsi; 2494 2495 for (i = 0; i < adapter->vf_res->num_vsis; i++) { 2496 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV) 2497 adapter->vsi_res = &adapter->vf_res->vsi_res[i]; 2498 } 2499 if (!adapter->vsi_res) { 2500 dev_err(&adapter->pdev->dev, "No LAN VSI found\n"); 2501 return -ENODEV; 2502 } 2503 2504 if (num_req_queues && 2505 num_req_queues > adapter->vsi_res->num_queue_pairs) { 2506 /* Problem. The PF gave us fewer queues than what we had 2507 * negotiated in our request. Need a reset to see if we can't 2508 * get back to a working state. 2509 */ 2510 dev_err(&adapter->pdev->dev, 2511 "Requested %d queues, but PF only gave us %d.\n", 2512 num_req_queues, 2513 adapter->vsi_res->num_queue_pairs); 2514 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED; 2515 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs; 2516 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 2517 2518 return -EAGAIN; 2519 } 2520 adapter->num_req_queues = 0; 2521 adapter->vsi.id = adapter->vsi_res->vsi_id; 2522 2523 adapter->vsi.back = adapter; 2524 adapter->vsi.base_vector = 1; 2525 vsi->netdev = adapter->netdev; 2526 vsi->qs_handle = adapter->vsi_res->qset_handle; 2527 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 2528 adapter->rss_key_size = adapter->vf_res->rss_key_size; 2529 adapter->rss_lut_size = adapter->vf_res->rss_lut_size; 2530 } else { 2531 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE; 2532 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE; 2533 } 2534 2535 return 0; 2536 } 2537 2538 /** 2539 * iavf_init_get_resources - third step of driver startup 2540 * @adapter: board private structure 2541 * 2542 * Function process __IAVF_INIT_GET_RESOURCES driver state and 2543 * finishes driver initialization procedure. 2544 * When success the state is changed to __IAVF_DOWN 2545 * when fails the state is changed to __IAVF_INIT_FAILED 2546 **/ 2547 static void iavf_init_get_resources(struct iavf_adapter *adapter) 2548 { 2549 struct pci_dev *pdev = adapter->pdev; 2550 struct iavf_hw *hw = &adapter->hw; 2551 int err; 2552 2553 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES); 2554 /* aq msg sent, awaiting reply */ 2555 if (!adapter->vf_res) { 2556 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE, 2557 GFP_KERNEL); 2558 if (!adapter->vf_res) { 2559 err = -ENOMEM; 2560 goto err; 2561 } 2562 } 2563 err = iavf_get_vf_config(adapter); 2564 if (err == -EALREADY) { 2565 err = iavf_send_vf_config_msg(adapter); 2566 goto err; 2567 } else if (err == -EINVAL) { 2568 /* We only get -EINVAL if the device is in a very bad 2569 * state or if we've been disabled for previous bad 2570 * behavior. Either way, we're done now. 2571 */ 2572 iavf_shutdown_adminq(hw); 2573 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n"); 2574 return; 2575 } 2576 if (err) { 2577 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err); 2578 goto err_alloc; 2579 } 2580 2581 err = iavf_parse_vf_resource_msg(adapter); 2582 if (err) { 2583 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n", 2584 err); 2585 goto err_alloc; 2586 } 2587 /* Some features require additional messages to negotiate extended 2588 * capabilities. These are processed in sequence by the 2589 * __IAVF_INIT_EXTENDED_CAPS driver state. 2590 */ 2591 adapter->extended_caps = IAVF_EXTENDED_CAPS; 2592 2593 iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS); 2594 return; 2595 2596 err_alloc: 2597 kfree(adapter->vf_res); 2598 adapter->vf_res = NULL; 2599 err: 2600 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2601 } 2602 2603 /** 2604 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2605 * @adapter: board private structure 2606 * 2607 * Function processes send of the extended VLAN V2 capability message to the 2608 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent, 2609 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2610 */ 2611 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2612 { 2613 int ret; 2614 2615 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2)); 2616 2617 ret = iavf_send_vf_offload_vlan_v2_msg(adapter); 2618 if (ret && ret == -EOPNOTSUPP) { 2619 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case, 2620 * we did not send the capability exchange message and do not 2621 * expect a response. 2622 */ 2623 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2624 } 2625 2626 /* We sent the message, so move on to the next step */ 2627 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2628 } 2629 2630 /** 2631 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2632 * @adapter: board private structure 2633 * 2634 * Function processes receipt of the extended VLAN V2 capability message from 2635 * the PF. 2636 **/ 2637 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2638 { 2639 int ret; 2640 2641 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2)); 2642 2643 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps)); 2644 2645 ret = iavf_get_vf_vlan_v2_caps(adapter); 2646 if (ret) 2647 goto err; 2648 2649 /* We've processed receipt of the VLAN V2 caps message */ 2650 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2651 return; 2652 err: 2653 /* We didn't receive a reply. Make sure we try sending again when 2654 * __IAVF_INIT_FAILED attempts to recover. 2655 */ 2656 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2657 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2658 } 2659 2660 /** 2661 * iavf_init_send_supported_rxdids - part of querying for supported RXDID 2662 * formats 2663 * @adapter: board private structure 2664 * 2665 * Function processes send of the request for supported RXDIDs to the PF. 2666 * Must clear IAVF_EXTENDED_CAP_RECV_RXDID if the message is not sent, e.g. 2667 * due to the PF not negotiating VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC. 2668 */ 2669 static void iavf_init_send_supported_rxdids(struct iavf_adapter *adapter) 2670 { 2671 int ret; 2672 2673 ret = iavf_send_vf_supported_rxdids_msg(adapter); 2674 if (ret == -EOPNOTSUPP) { 2675 /* PF does not support VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC. In this 2676 * case, we did not send the capability exchange message and 2677 * do not expect a response. 2678 */ 2679 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_RXDID; 2680 } 2681 2682 /* We sent the message, so move on to the next step */ 2683 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_RXDID; 2684 } 2685 2686 /** 2687 * iavf_init_recv_supported_rxdids - part of querying for supported RXDID 2688 * formats 2689 * @adapter: board private structure 2690 * 2691 * Function processes receipt of the supported RXDIDs message from the PF. 2692 **/ 2693 static void iavf_init_recv_supported_rxdids(struct iavf_adapter *adapter) 2694 { 2695 int ret; 2696 2697 memset(&adapter->supp_rxdids, 0, sizeof(adapter->supp_rxdids)); 2698 2699 ret = iavf_get_vf_supported_rxdids(adapter); 2700 if (ret) 2701 goto err; 2702 2703 /* We've processed the PF response to the 2704 * VIRTCHNL_OP_GET_SUPPORTED_RXDIDS message we sent previously. 2705 */ 2706 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_RXDID; 2707 return; 2708 2709 err: 2710 /* We didn't receive a reply. Make sure we try sending again when 2711 * __IAVF_INIT_FAILED attempts to recover. 2712 */ 2713 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_RXDID; 2714 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2715 } 2716 2717 /** 2718 * iavf_init_send_ptp_caps - part of querying for extended PTP capabilities 2719 * @adapter: board private structure 2720 * 2721 * Function processes send of the request for 1588 PTP capabilities to the PF. 2722 * Must clear IAVF_EXTENDED_CAP_SEND_PTP if the message is not sent, e.g. 2723 * due to the PF not negotiating VIRTCHNL_VF_PTP_CAP 2724 */ 2725 static void iavf_init_send_ptp_caps(struct iavf_adapter *adapter) 2726 { 2727 if (iavf_send_vf_ptp_caps_msg(adapter) == -EOPNOTSUPP) { 2728 /* PF does not support VIRTCHNL_VF_PTP_CAP. In this case, we 2729 * did not send the capability exchange message and do not 2730 * expect a response. 2731 */ 2732 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_PTP; 2733 } 2734 2735 /* We sent the message, so move on to the next step */ 2736 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_PTP; 2737 } 2738 2739 /** 2740 * iavf_init_recv_ptp_caps - part of querying for supported PTP capabilities 2741 * @adapter: board private structure 2742 * 2743 * Function processes receipt of the PTP capabilities supported on this VF. 2744 **/ 2745 static void iavf_init_recv_ptp_caps(struct iavf_adapter *adapter) 2746 { 2747 memset(&adapter->ptp.hw_caps, 0, sizeof(adapter->ptp.hw_caps)); 2748 2749 if (iavf_get_vf_ptp_caps(adapter)) 2750 goto err; 2751 2752 /* We've processed the PF response to the VIRTCHNL_OP_1588_PTP_GET_CAPS 2753 * message we sent previously. 2754 */ 2755 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_PTP; 2756 return; 2757 2758 err: 2759 /* We didn't receive a reply. Make sure we try sending again when 2760 * __IAVF_INIT_FAILED attempts to recover. 2761 */ 2762 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_PTP; 2763 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2764 } 2765 2766 /** 2767 * iavf_init_process_extended_caps - Part of driver startup 2768 * @adapter: board private structure 2769 * 2770 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state 2771 * handles negotiating capabilities for features which require an additional 2772 * message. 2773 * 2774 * Once all extended capabilities exchanges are finished, the driver will 2775 * transition into __IAVF_INIT_CONFIG_ADAPTER. 2776 */ 2777 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter) 2778 { 2779 WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS); 2780 2781 /* Process capability exchange for VLAN V2 */ 2782 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) { 2783 iavf_init_send_offload_vlan_v2_caps(adapter); 2784 return; 2785 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) { 2786 iavf_init_recv_offload_vlan_v2_caps(adapter); 2787 return; 2788 } 2789 2790 /* Process capability exchange for RXDID formats */ 2791 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_RXDID) { 2792 iavf_init_send_supported_rxdids(adapter); 2793 return; 2794 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_RXDID) { 2795 iavf_init_recv_supported_rxdids(adapter); 2796 return; 2797 } 2798 2799 /* Process capability exchange for PTP features */ 2800 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_PTP) { 2801 iavf_init_send_ptp_caps(adapter); 2802 return; 2803 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_PTP) { 2804 iavf_init_recv_ptp_caps(adapter); 2805 return; 2806 } 2807 2808 /* When we reach here, no further extended capabilities exchanges are 2809 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER 2810 */ 2811 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER); 2812 } 2813 2814 /** 2815 * iavf_init_config_adapter - last part of driver startup 2816 * @adapter: board private structure 2817 * 2818 * After all the supported capabilities are negotiated, then the 2819 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization. 2820 */ 2821 static void iavf_init_config_adapter(struct iavf_adapter *adapter) 2822 { 2823 struct net_device *netdev = adapter->netdev; 2824 struct pci_dev *pdev = adapter->pdev; 2825 int err; 2826 2827 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER); 2828 2829 if (iavf_process_config(adapter)) 2830 goto err; 2831 2832 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2833 2834 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED; 2835 2836 netdev->netdev_ops = &iavf_netdev_ops; 2837 iavf_set_ethtool_ops(netdev); 2838 netdev->watchdog_timeo = 5 * HZ; 2839 2840 netdev->min_mtu = ETH_MIN_MTU; 2841 netdev->max_mtu = LIBIE_MAX_MTU; 2842 2843 if (!is_valid_ether_addr(adapter->hw.mac.addr)) { 2844 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n", 2845 adapter->hw.mac.addr); 2846 eth_hw_addr_random(netdev); 2847 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr); 2848 } else { 2849 eth_hw_addr_set(netdev, adapter->hw.mac.addr); 2850 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2851 } 2852 2853 adapter->tx_desc_count = IAVF_DEFAULT_TXD; 2854 adapter->rx_desc_count = IAVF_DEFAULT_RXD; 2855 err = iavf_init_interrupt_scheme(adapter); 2856 if (err) 2857 goto err_sw_init; 2858 iavf_map_rings_to_vectors(adapter); 2859 if (adapter->vf_res->vf_cap_flags & 2860 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 2861 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE; 2862 2863 err = iavf_request_misc_irq(adapter); 2864 if (err) 2865 goto err_sw_init; 2866 2867 netif_carrier_off(netdev); 2868 adapter->link_up = false; 2869 netif_tx_stop_all_queues(netdev); 2870 2871 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr); 2872 if (netdev->features & NETIF_F_GRO) 2873 dev_info(&pdev->dev, "GRO is enabled\n"); 2874 2875 iavf_change_state(adapter, __IAVF_DOWN); 2876 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2877 2878 iavf_misc_irq_enable(adapter); 2879 wake_up(&adapter->down_waitqueue); 2880 2881 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL); 2882 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL); 2883 if (!adapter->rss_key || !adapter->rss_lut) { 2884 err = -ENOMEM; 2885 goto err_mem; 2886 } 2887 if (RSS_AQ(adapter)) 2888 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 2889 else 2890 iavf_init_rss(adapter); 2891 2892 if (VLAN_V2_ALLOWED(adapter)) 2893 /* request initial VLAN offload settings */ 2894 iavf_set_vlan_offload_features(adapter, 0, netdev->features); 2895 2896 if (QOS_ALLOWED(adapter)) 2897 adapter->aq_required |= IAVF_FLAG_AQ_GET_QOS_CAPS; 2898 2899 /* Setup initial PTP configuration */ 2900 iavf_ptp_init(adapter); 2901 2902 iavf_schedule_finish_config(adapter); 2903 return; 2904 2905 err_mem: 2906 iavf_free_rss(adapter); 2907 iavf_free_misc_irq(adapter); 2908 err_sw_init: 2909 iavf_reset_interrupt_capability(adapter); 2910 err: 2911 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2912 } 2913 2914 /** 2915 * iavf_watchdog_task - Periodic call-back task 2916 * @work: pointer to work_struct 2917 **/ 2918 static void iavf_watchdog_task(struct work_struct *work) 2919 { 2920 struct iavf_adapter *adapter = container_of(work, 2921 struct iavf_adapter, 2922 watchdog_task.work); 2923 struct net_device *netdev = adapter->netdev; 2924 struct iavf_hw *hw = &adapter->hw; 2925 u32 reg_val; 2926 2927 netdev_lock(netdev); 2928 if (!mutex_trylock(&adapter->crit_lock)) { 2929 if (adapter->state == __IAVF_REMOVE) { 2930 netdev_unlock(netdev); 2931 return; 2932 } 2933 2934 goto restart_watchdog; 2935 } 2936 2937 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 2938 iavf_change_state(adapter, __IAVF_COMM_FAILED); 2939 2940 switch (adapter->state) { 2941 case __IAVF_STARTUP: 2942 iavf_startup(adapter); 2943 mutex_unlock(&adapter->crit_lock); 2944 netdev_unlock(netdev); 2945 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2946 msecs_to_jiffies(30)); 2947 return; 2948 case __IAVF_INIT_VERSION_CHECK: 2949 iavf_init_version_check(adapter); 2950 mutex_unlock(&adapter->crit_lock); 2951 netdev_unlock(netdev); 2952 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2953 msecs_to_jiffies(30)); 2954 return; 2955 case __IAVF_INIT_GET_RESOURCES: 2956 iavf_init_get_resources(adapter); 2957 mutex_unlock(&adapter->crit_lock); 2958 netdev_unlock(netdev); 2959 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2960 msecs_to_jiffies(1)); 2961 return; 2962 case __IAVF_INIT_EXTENDED_CAPS: 2963 iavf_init_process_extended_caps(adapter); 2964 mutex_unlock(&adapter->crit_lock); 2965 netdev_unlock(netdev); 2966 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2967 msecs_to_jiffies(1)); 2968 return; 2969 case __IAVF_INIT_CONFIG_ADAPTER: 2970 iavf_init_config_adapter(adapter); 2971 mutex_unlock(&adapter->crit_lock); 2972 netdev_unlock(netdev); 2973 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2974 msecs_to_jiffies(1)); 2975 return; 2976 case __IAVF_INIT_FAILED: 2977 if (test_bit(__IAVF_IN_REMOVE_TASK, 2978 &adapter->crit_section)) { 2979 /* Do not update the state and do not reschedule 2980 * watchdog task, iavf_remove should handle this state 2981 * as it can loop forever 2982 */ 2983 mutex_unlock(&adapter->crit_lock); 2984 netdev_unlock(netdev); 2985 return; 2986 } 2987 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) { 2988 dev_err(&adapter->pdev->dev, 2989 "Failed to communicate with PF; waiting before retry\n"); 2990 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2991 iavf_shutdown_adminq(hw); 2992 mutex_unlock(&adapter->crit_lock); 2993 netdev_unlock(netdev); 2994 queue_delayed_work(adapter->wq, 2995 &adapter->watchdog_task, (5 * HZ)); 2996 return; 2997 } 2998 /* Try again from failed step*/ 2999 iavf_change_state(adapter, adapter->last_state); 3000 mutex_unlock(&adapter->crit_lock); 3001 netdev_unlock(netdev); 3002 queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ); 3003 return; 3004 case __IAVF_COMM_FAILED: 3005 if (test_bit(__IAVF_IN_REMOVE_TASK, 3006 &adapter->crit_section)) { 3007 /* Set state to __IAVF_INIT_FAILED and perform remove 3008 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task 3009 * doesn't bring the state back to __IAVF_COMM_FAILED. 3010 */ 3011 iavf_change_state(adapter, __IAVF_INIT_FAILED); 3012 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 3013 mutex_unlock(&adapter->crit_lock); 3014 netdev_unlock(netdev); 3015 return; 3016 } 3017 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 3018 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 3019 if (reg_val == VIRTCHNL_VFR_VFACTIVE || 3020 reg_val == VIRTCHNL_VFR_COMPLETED) { 3021 /* A chance for redemption! */ 3022 dev_err(&adapter->pdev->dev, 3023 "Hardware came out of reset. Attempting reinit.\n"); 3024 /* When init task contacts the PF and 3025 * gets everything set up again, it'll restart the 3026 * watchdog for us. Down, boy. Sit. Stay. Woof. 3027 */ 3028 iavf_change_state(adapter, __IAVF_STARTUP); 3029 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 3030 } 3031 adapter->aq_required = 0; 3032 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 3033 mutex_unlock(&adapter->crit_lock); 3034 netdev_unlock(netdev); 3035 queue_delayed_work(adapter->wq, 3036 &adapter->watchdog_task, 3037 msecs_to_jiffies(10)); 3038 return; 3039 case __IAVF_RESETTING: 3040 mutex_unlock(&adapter->crit_lock); 3041 netdev_unlock(netdev); 3042 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 3043 HZ * 2); 3044 return; 3045 case __IAVF_DOWN: 3046 case __IAVF_DOWN_PENDING: 3047 case __IAVF_TESTING: 3048 case __IAVF_RUNNING: 3049 if (adapter->current_op) { 3050 if (!iavf_asq_done(hw)) { 3051 dev_dbg(&adapter->pdev->dev, 3052 "Admin queue timeout\n"); 3053 iavf_send_api_ver(adapter); 3054 } 3055 } else { 3056 int ret = iavf_process_aq_command(adapter); 3057 3058 /* An error will be returned if no commands were 3059 * processed; use this opportunity to update stats 3060 * if the error isn't -ENOTSUPP 3061 */ 3062 if (ret && ret != -EOPNOTSUPP && 3063 adapter->state == __IAVF_RUNNING) 3064 iavf_request_stats(adapter); 3065 } 3066 if (adapter->state == __IAVF_RUNNING) 3067 iavf_detect_recover_hung(&adapter->vsi); 3068 break; 3069 case __IAVF_REMOVE: 3070 default: 3071 mutex_unlock(&adapter->crit_lock); 3072 netdev_unlock(netdev); 3073 return; 3074 } 3075 3076 /* check for hw reset */ 3077 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK; 3078 if (!reg_val) { 3079 adapter->aq_required = 0; 3080 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 3081 dev_err(&adapter->pdev->dev, "Hardware reset detected\n"); 3082 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING); 3083 mutex_unlock(&adapter->crit_lock); 3084 netdev_unlock(netdev); 3085 queue_delayed_work(adapter->wq, 3086 &adapter->watchdog_task, HZ * 2); 3087 return; 3088 } 3089 3090 mutex_unlock(&adapter->crit_lock); 3091 restart_watchdog: 3092 netdev_unlock(netdev); 3093 if (adapter->state >= __IAVF_DOWN) 3094 queue_work(adapter->wq, &adapter->adminq_task); 3095 if (adapter->aq_required) 3096 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 3097 msecs_to_jiffies(20)); 3098 else 3099 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 3100 HZ * 2); 3101 } 3102 3103 /** 3104 * iavf_disable_vf - disable VF 3105 * @adapter: board private structure 3106 * 3107 * Set communication failed flag and free all resources. 3108 * NOTE: This function is expected to be called with crit_lock being held. 3109 **/ 3110 static void iavf_disable_vf(struct iavf_adapter *adapter) 3111 { 3112 struct iavf_mac_filter *f, *ftmp; 3113 struct iavf_vlan_filter *fv, *fvtmp; 3114 struct iavf_cloud_filter *cf, *cftmp; 3115 3116 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 3117 3118 /* We don't use netif_running() because it may be true prior to 3119 * ndo_open() returning, so we can't assume it means all our open 3120 * tasks have finished, since we're not holding the rtnl_lock here. 3121 */ 3122 if (adapter->state == __IAVF_RUNNING) { 3123 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 3124 netif_carrier_off(adapter->netdev); 3125 netif_tx_disable(adapter->netdev); 3126 adapter->link_up = false; 3127 iavf_napi_disable_all(adapter); 3128 iavf_irq_disable(adapter); 3129 iavf_free_traffic_irqs(adapter); 3130 iavf_free_all_tx_resources(adapter); 3131 iavf_free_all_rx_resources(adapter); 3132 } 3133 3134 spin_lock_bh(&adapter->mac_vlan_list_lock); 3135 3136 /* Delete all of the filters */ 3137 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 3138 list_del(&f->list); 3139 kfree(f); 3140 } 3141 3142 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) { 3143 list_del(&fv->list); 3144 kfree(fv); 3145 } 3146 adapter->num_vlan_filters = 0; 3147 3148 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3149 3150 spin_lock_bh(&adapter->cloud_filter_list_lock); 3151 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 3152 list_del(&cf->list); 3153 kfree(cf); 3154 adapter->num_cloud_filters--; 3155 } 3156 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3157 3158 iavf_free_misc_irq(adapter); 3159 iavf_free_interrupt_scheme(adapter); 3160 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE); 3161 iavf_shutdown_adminq(&adapter->hw); 3162 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 3163 iavf_change_state(adapter, __IAVF_DOWN); 3164 wake_up(&adapter->down_waitqueue); 3165 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n"); 3166 } 3167 3168 /** 3169 * iavf_reconfig_qs_bw - Call-back task to handle hardware reset 3170 * @adapter: board private structure 3171 * 3172 * After a reset, the shaper parameters of queues need to be replayed again. 3173 * Since the net_shaper object inside TX rings persists across reset, 3174 * set the update flag for all queues so that the virtchnl message is triggered 3175 * for all queues. 3176 **/ 3177 static void iavf_reconfig_qs_bw(struct iavf_adapter *adapter) 3178 { 3179 int i, num = 0; 3180 3181 for (i = 0; i < adapter->num_active_queues; i++) 3182 if (adapter->tx_rings[i].q_shaper.bw_min || 3183 adapter->tx_rings[i].q_shaper.bw_max) { 3184 adapter->tx_rings[i].q_shaper_update = true; 3185 num++; 3186 } 3187 3188 if (num) 3189 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW; 3190 } 3191 3192 /** 3193 * iavf_reset_task - Call-back task to handle hardware reset 3194 * @work: pointer to work_struct 3195 * 3196 * During reset we need to shut down and reinitialize the admin queue 3197 * before we can use it to communicate with the PF again. We also clear 3198 * and reinit the rings because that context is lost as well. 3199 **/ 3200 static void iavf_reset_task(struct work_struct *work) 3201 { 3202 struct iavf_adapter *adapter = container_of(work, 3203 struct iavf_adapter, 3204 reset_task); 3205 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3206 struct net_device *netdev = adapter->netdev; 3207 struct iavf_hw *hw = &adapter->hw; 3208 struct iavf_mac_filter *f, *ftmp; 3209 struct iavf_cloud_filter *cf; 3210 enum iavf_status status; 3211 u32 reg_val; 3212 int i = 0, err; 3213 bool running; 3214 3215 /* When device is being removed it doesn't make sense to run the reset 3216 * task, just return in such a case. 3217 */ 3218 netdev_lock(netdev); 3219 if (!mutex_trylock(&adapter->crit_lock)) { 3220 if (adapter->state != __IAVF_REMOVE) 3221 queue_work(adapter->wq, &adapter->reset_task); 3222 3223 netdev_unlock(netdev); 3224 return; 3225 } 3226 3227 iavf_misc_irq_disable(adapter); 3228 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 3229 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED; 3230 /* Restart the AQ here. If we have been reset but didn't 3231 * detect it, or if the PF had to reinit, our AQ will be hosed. 3232 */ 3233 iavf_shutdown_adminq(hw); 3234 iavf_init_adminq(hw); 3235 iavf_request_reset(adapter); 3236 } 3237 adapter->flags |= IAVF_FLAG_RESET_PENDING; 3238 3239 /* poll until we see the reset actually happen */ 3240 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) { 3241 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & 3242 IAVF_VF_ARQLEN1_ARQENABLE_MASK; 3243 if (!reg_val) 3244 break; 3245 usleep_range(5000, 10000); 3246 } 3247 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) { 3248 dev_info(&adapter->pdev->dev, "Never saw reset\n"); 3249 goto continue_reset; /* act like the reset happened */ 3250 } 3251 3252 /* wait until the reset is complete and the PF is responding to us */ 3253 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 3254 /* sleep first to make sure a minimum wait time is met */ 3255 msleep(IAVF_RESET_WAIT_MS); 3256 3257 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 3258 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 3259 if (reg_val == VIRTCHNL_VFR_VFACTIVE) 3260 break; 3261 } 3262 3263 pci_set_master(adapter->pdev); 3264 pci_restore_msi_state(adapter->pdev); 3265 3266 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) { 3267 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n", 3268 reg_val); 3269 iavf_disable_vf(adapter); 3270 mutex_unlock(&adapter->crit_lock); 3271 netdev_unlock(netdev); 3272 return; /* Do not attempt to reinit. It's dead, Jim. */ 3273 } 3274 3275 continue_reset: 3276 /* We don't use netif_running() because it may be true prior to 3277 * ndo_open() returning, so we can't assume it means all our open 3278 * tasks have finished, since we're not holding the rtnl_lock here. 3279 */ 3280 running = adapter->state == __IAVF_RUNNING; 3281 3282 if (running) { 3283 netif_carrier_off(netdev); 3284 netif_tx_stop_all_queues(netdev); 3285 adapter->link_up = false; 3286 iavf_napi_disable_all(adapter); 3287 } 3288 iavf_irq_disable(adapter); 3289 3290 iavf_change_state(adapter, __IAVF_RESETTING); 3291 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 3292 3293 /* free the Tx/Rx rings and descriptors, might be better to just 3294 * re-use them sometime in the future 3295 */ 3296 iavf_free_all_rx_resources(adapter); 3297 iavf_free_all_tx_resources(adapter); 3298 3299 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED; 3300 /* kill and reinit the admin queue */ 3301 iavf_shutdown_adminq(hw); 3302 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 3303 status = iavf_init_adminq(hw); 3304 if (status) { 3305 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n", 3306 status); 3307 goto reset_err; 3308 } 3309 adapter->aq_required = 0; 3310 3311 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3312 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3313 err = iavf_reinit_interrupt_scheme(adapter, running); 3314 if (err) 3315 goto reset_err; 3316 } 3317 3318 if (RSS_AQ(adapter)) { 3319 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 3320 } else { 3321 err = iavf_init_rss(adapter); 3322 if (err) 3323 goto reset_err; 3324 } 3325 3326 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG; 3327 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 3328 3329 /* Certain capabilities require an extended negotiation process using 3330 * extra messages that must be processed after getting the VF 3331 * configuration. The related checks such as VLAN_V2_ALLOWED() are not 3332 * reliable here, since the configuration has not yet been negotiated. 3333 * 3334 * Always set these flags, since them related VIRTCHNL messages won't 3335 * be sent until after VIRTCHNL_OP_GET_VF_RESOURCES. 3336 */ 3337 adapter->aq_required |= IAVF_FLAG_AQ_EXTENDED_CAPS; 3338 3339 spin_lock_bh(&adapter->mac_vlan_list_lock); 3340 3341 /* Delete filter for the current MAC address, it could have 3342 * been changed by the PF via administratively set MAC. 3343 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES. 3344 */ 3345 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 3346 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) { 3347 list_del(&f->list); 3348 kfree(f); 3349 } 3350 } 3351 /* re-add all MAC filters */ 3352 list_for_each_entry(f, &adapter->mac_filter_list, list) { 3353 f->add = true; 3354 } 3355 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3356 3357 /* check if TCs are running and re-add all cloud filters */ 3358 spin_lock_bh(&adapter->cloud_filter_list_lock); 3359 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 3360 adapter->num_tc) { 3361 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 3362 cf->add = true; 3363 } 3364 } 3365 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3366 3367 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 3368 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 3369 iavf_misc_irq_enable(adapter); 3370 3371 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2); 3372 3373 /* We were running when the reset started, so we need to restore some 3374 * state here. 3375 */ 3376 if (running) { 3377 /* allocate transmit descriptors */ 3378 err = iavf_setup_all_tx_resources(adapter); 3379 if (err) 3380 goto reset_err; 3381 3382 /* allocate receive descriptors */ 3383 err = iavf_setup_all_rx_resources(adapter); 3384 if (err) 3385 goto reset_err; 3386 3387 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3388 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3389 err = iavf_request_traffic_irqs(adapter, netdev->name); 3390 if (err) 3391 goto reset_err; 3392 3393 adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED; 3394 } 3395 3396 iavf_configure(adapter); 3397 3398 /* iavf_up_complete() will switch device back 3399 * to __IAVF_RUNNING 3400 */ 3401 iavf_up_complete(adapter); 3402 3403 iavf_irq_enable(adapter, true); 3404 3405 iavf_reconfig_qs_bw(adapter); 3406 } else { 3407 iavf_change_state(adapter, __IAVF_DOWN); 3408 wake_up(&adapter->down_waitqueue); 3409 } 3410 3411 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 3412 3413 wake_up(&adapter->reset_waitqueue); 3414 mutex_unlock(&adapter->crit_lock); 3415 netdev_unlock(netdev); 3416 3417 return; 3418 reset_err: 3419 if (running) { 3420 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 3421 iavf_free_traffic_irqs(adapter); 3422 } 3423 iavf_disable_vf(adapter); 3424 3425 mutex_unlock(&adapter->crit_lock); 3426 netdev_unlock(netdev); 3427 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n"); 3428 } 3429 3430 /** 3431 * iavf_adminq_task - worker thread to clean the admin queue 3432 * @work: pointer to work_struct containing our data 3433 **/ 3434 static void iavf_adminq_task(struct work_struct *work) 3435 { 3436 struct iavf_adapter *adapter = 3437 container_of(work, struct iavf_adapter, adminq_task); 3438 struct iavf_hw *hw = &adapter->hw; 3439 struct iavf_arq_event_info event; 3440 enum virtchnl_ops v_op; 3441 enum iavf_status ret, v_ret; 3442 u32 val, oldval; 3443 u16 pending; 3444 3445 if (!mutex_trylock(&adapter->crit_lock)) { 3446 if (adapter->state == __IAVF_REMOVE) 3447 return; 3448 3449 queue_work(adapter->wq, &adapter->adminq_task); 3450 goto out; 3451 } 3452 3453 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 3454 goto unlock; 3455 3456 event.buf_len = IAVF_MAX_AQ_BUF_SIZE; 3457 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 3458 if (!event.msg_buf) 3459 goto unlock; 3460 3461 do { 3462 ret = iavf_clean_arq_element(hw, &event, &pending); 3463 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high); 3464 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low); 3465 3466 if (ret || !v_op) 3467 break; /* No event to process or error cleaning ARQ */ 3468 3469 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf, 3470 event.msg_len); 3471 if (pending != 0) 3472 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE); 3473 } while (pending); 3474 3475 if (iavf_is_reset_in_progress(adapter)) 3476 goto freedom; 3477 3478 /* check for error indications */ 3479 val = rd32(hw, IAVF_VF_ARQLEN1); 3480 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */ 3481 goto freedom; 3482 oldval = val; 3483 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) { 3484 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n"); 3485 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK; 3486 } 3487 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) { 3488 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n"); 3489 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK; 3490 } 3491 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) { 3492 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n"); 3493 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK; 3494 } 3495 if (oldval != val) 3496 wr32(hw, IAVF_VF_ARQLEN1, val); 3497 3498 val = rd32(hw, IAVF_VF_ATQLEN1); 3499 oldval = val; 3500 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) { 3501 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n"); 3502 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK; 3503 } 3504 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) { 3505 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n"); 3506 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK; 3507 } 3508 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) { 3509 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n"); 3510 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK; 3511 } 3512 if (oldval != val) 3513 wr32(hw, IAVF_VF_ATQLEN1, val); 3514 3515 freedom: 3516 kfree(event.msg_buf); 3517 unlock: 3518 mutex_unlock(&adapter->crit_lock); 3519 out: 3520 /* re-enable Admin queue interrupt cause */ 3521 iavf_misc_irq_enable(adapter); 3522 } 3523 3524 /** 3525 * iavf_free_all_tx_resources - Free Tx Resources for All Queues 3526 * @adapter: board private structure 3527 * 3528 * Free all transmit software resources 3529 **/ 3530 void iavf_free_all_tx_resources(struct iavf_adapter *adapter) 3531 { 3532 int i; 3533 3534 if (!adapter->tx_rings) 3535 return; 3536 3537 for (i = 0; i < adapter->num_active_queues; i++) 3538 if (adapter->tx_rings[i].desc) 3539 iavf_free_tx_resources(&adapter->tx_rings[i]); 3540 } 3541 3542 /** 3543 * iavf_setup_all_tx_resources - allocate all queues Tx resources 3544 * @adapter: board private structure 3545 * 3546 * If this function returns with an error, then it's possible one or 3547 * more of the rings is populated (while the rest are not). It is the 3548 * callers duty to clean those orphaned rings. 3549 * 3550 * Return 0 on success, negative on failure 3551 **/ 3552 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter) 3553 { 3554 int i, err = 0; 3555 3556 for (i = 0; i < adapter->num_active_queues; i++) { 3557 adapter->tx_rings[i].count = adapter->tx_desc_count; 3558 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]); 3559 if (!err) 3560 continue; 3561 dev_err(&adapter->pdev->dev, 3562 "Allocation for Tx Queue %u failed\n", i); 3563 break; 3564 } 3565 3566 return err; 3567 } 3568 3569 /** 3570 * iavf_setup_all_rx_resources - allocate all queues Rx resources 3571 * @adapter: board private structure 3572 * 3573 * If this function returns with an error, then it's possible one or 3574 * more of the rings is populated (while the rest are not). It is the 3575 * callers duty to clean those orphaned rings. 3576 * 3577 * Return 0 on success, negative on failure 3578 **/ 3579 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter) 3580 { 3581 int i, err = 0; 3582 3583 for (i = 0; i < adapter->num_active_queues; i++) { 3584 adapter->rx_rings[i].count = adapter->rx_desc_count; 3585 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]); 3586 if (!err) 3587 continue; 3588 dev_err(&adapter->pdev->dev, 3589 "Allocation for Rx Queue %u failed\n", i); 3590 break; 3591 } 3592 return err; 3593 } 3594 3595 /** 3596 * iavf_free_all_rx_resources - Free Rx Resources for All Queues 3597 * @adapter: board private structure 3598 * 3599 * Free all receive software resources 3600 **/ 3601 void iavf_free_all_rx_resources(struct iavf_adapter *adapter) 3602 { 3603 int i; 3604 3605 if (!adapter->rx_rings) 3606 return; 3607 3608 for (i = 0; i < adapter->num_active_queues; i++) 3609 if (adapter->rx_rings[i].desc) 3610 iavf_free_rx_resources(&adapter->rx_rings[i]); 3611 } 3612 3613 /** 3614 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth 3615 * @adapter: board private structure 3616 * @max_tx_rate: max Tx bw for a tc 3617 **/ 3618 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter, 3619 u64 max_tx_rate) 3620 { 3621 int speed = 0, ret = 0; 3622 3623 if (ADV_LINK_SUPPORT(adapter)) { 3624 if (adapter->link_speed_mbps < U32_MAX) { 3625 speed = adapter->link_speed_mbps; 3626 goto validate_bw; 3627 } else { 3628 dev_err(&adapter->pdev->dev, "Unknown link speed\n"); 3629 return -EINVAL; 3630 } 3631 } 3632 3633 switch (adapter->link_speed) { 3634 case VIRTCHNL_LINK_SPEED_40GB: 3635 speed = SPEED_40000; 3636 break; 3637 case VIRTCHNL_LINK_SPEED_25GB: 3638 speed = SPEED_25000; 3639 break; 3640 case VIRTCHNL_LINK_SPEED_20GB: 3641 speed = SPEED_20000; 3642 break; 3643 case VIRTCHNL_LINK_SPEED_10GB: 3644 speed = SPEED_10000; 3645 break; 3646 case VIRTCHNL_LINK_SPEED_5GB: 3647 speed = SPEED_5000; 3648 break; 3649 case VIRTCHNL_LINK_SPEED_2_5GB: 3650 speed = SPEED_2500; 3651 break; 3652 case VIRTCHNL_LINK_SPEED_1GB: 3653 speed = SPEED_1000; 3654 break; 3655 case VIRTCHNL_LINK_SPEED_100MB: 3656 speed = SPEED_100; 3657 break; 3658 default: 3659 break; 3660 } 3661 3662 validate_bw: 3663 if (max_tx_rate > speed) { 3664 dev_err(&adapter->pdev->dev, 3665 "Invalid tx rate specified\n"); 3666 ret = -EINVAL; 3667 } 3668 3669 return ret; 3670 } 3671 3672 /** 3673 * iavf_validate_ch_config - validate queue mapping info 3674 * @adapter: board private structure 3675 * @mqprio_qopt: queue parameters 3676 * 3677 * This function validates if the config provided by the user to 3678 * configure queue channels is valid or not. Returns 0 on a valid 3679 * config. 3680 **/ 3681 static int iavf_validate_ch_config(struct iavf_adapter *adapter, 3682 struct tc_mqprio_qopt_offload *mqprio_qopt) 3683 { 3684 u64 total_max_rate = 0; 3685 u32 tx_rate_rem = 0; 3686 int i, num_qps = 0; 3687 u64 tx_rate = 0; 3688 int ret = 0; 3689 3690 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS || 3691 mqprio_qopt->qopt.num_tc < 1) 3692 return -EINVAL; 3693 3694 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) { 3695 if (!mqprio_qopt->qopt.count[i] || 3696 mqprio_qopt->qopt.offset[i] != num_qps) 3697 return -EINVAL; 3698 if (mqprio_qopt->min_rate[i]) { 3699 dev_err(&adapter->pdev->dev, 3700 "Invalid min tx rate (greater than 0) specified for TC%d\n", 3701 i); 3702 return -EINVAL; 3703 } 3704 3705 /* convert to Mbps */ 3706 tx_rate = div_u64(mqprio_qopt->max_rate[i], 3707 IAVF_MBPS_DIVISOR); 3708 3709 if (mqprio_qopt->max_rate[i] && 3710 tx_rate < IAVF_MBPS_QUANTA) { 3711 dev_err(&adapter->pdev->dev, 3712 "Invalid max tx rate for TC%d, minimum %dMbps\n", 3713 i, IAVF_MBPS_QUANTA); 3714 return -EINVAL; 3715 } 3716 3717 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem); 3718 3719 if (tx_rate_rem != 0) { 3720 dev_err(&adapter->pdev->dev, 3721 "Invalid max tx rate for TC%d, not divisible by %d\n", 3722 i, IAVF_MBPS_QUANTA); 3723 return -EINVAL; 3724 } 3725 3726 total_max_rate += tx_rate; 3727 num_qps += mqprio_qopt->qopt.count[i]; 3728 } 3729 if (num_qps > adapter->num_active_queues) { 3730 dev_err(&adapter->pdev->dev, 3731 "Cannot support requested number of queues\n"); 3732 return -EINVAL; 3733 } 3734 3735 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate); 3736 return ret; 3737 } 3738 3739 /** 3740 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes 3741 * @adapter: board private structure 3742 **/ 3743 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter) 3744 { 3745 struct iavf_cloud_filter *cf, *cftmp; 3746 3747 spin_lock_bh(&adapter->cloud_filter_list_lock); 3748 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 3749 list) { 3750 list_del(&cf->list); 3751 kfree(cf); 3752 adapter->num_cloud_filters--; 3753 } 3754 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3755 } 3756 3757 /** 3758 * iavf_is_tc_config_same - Compare the mqprio TC config with the 3759 * TC config already configured on this adapter. 3760 * @adapter: board private structure 3761 * @mqprio_qopt: TC config received from kernel. 3762 * 3763 * This function compares the TC config received from the kernel 3764 * with the config already configured on the adapter. 3765 * 3766 * Return: True if configuration is same, false otherwise. 3767 **/ 3768 static bool iavf_is_tc_config_same(struct iavf_adapter *adapter, 3769 struct tc_mqprio_qopt *mqprio_qopt) 3770 { 3771 struct virtchnl_channel_info *ch = &adapter->ch_config.ch_info[0]; 3772 int i; 3773 3774 if (adapter->num_tc != mqprio_qopt->num_tc) 3775 return false; 3776 3777 for (i = 0; i < adapter->num_tc; i++) { 3778 if (ch[i].count != mqprio_qopt->count[i] || 3779 ch[i].offset != mqprio_qopt->offset[i]) 3780 return false; 3781 } 3782 return true; 3783 } 3784 3785 /** 3786 * __iavf_setup_tc - configure multiple traffic classes 3787 * @netdev: network interface device structure 3788 * @type_data: tc offload data 3789 * 3790 * This function processes the config information provided by the 3791 * user to configure traffic classes/queue channels and packages the 3792 * information to request the PF to setup traffic classes. 3793 * 3794 * Returns 0 on success. 3795 **/ 3796 static int __iavf_setup_tc(struct net_device *netdev, void *type_data) 3797 { 3798 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 3799 struct iavf_adapter *adapter = netdev_priv(netdev); 3800 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3801 u8 num_tc = 0, total_qps = 0; 3802 int ret = 0, netdev_tc = 0; 3803 u64 max_tx_rate; 3804 u16 mode; 3805 int i; 3806 3807 num_tc = mqprio_qopt->qopt.num_tc; 3808 mode = mqprio_qopt->mode; 3809 3810 /* delete queue_channel */ 3811 if (!mqprio_qopt->qopt.hw) { 3812 if (adapter->ch_config.state == __IAVF_TC_RUNNING) { 3813 /* reset the tc configuration */ 3814 netdev_reset_tc(netdev); 3815 adapter->num_tc = 0; 3816 netif_tx_stop_all_queues(netdev); 3817 netif_tx_disable(netdev); 3818 iavf_del_all_cloud_filters(adapter); 3819 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS; 3820 total_qps = adapter->orig_num_active_queues; 3821 goto exit; 3822 } else { 3823 return -EINVAL; 3824 } 3825 } 3826 3827 /* add queue channel */ 3828 if (mode == TC_MQPRIO_MODE_CHANNEL) { 3829 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) { 3830 dev_err(&adapter->pdev->dev, "ADq not supported\n"); 3831 return -EOPNOTSUPP; 3832 } 3833 if (adapter->ch_config.state != __IAVF_TC_INVALID) { 3834 dev_err(&adapter->pdev->dev, "TC configuration already exists\n"); 3835 return -EINVAL; 3836 } 3837 3838 ret = iavf_validate_ch_config(adapter, mqprio_qopt); 3839 if (ret) 3840 return ret; 3841 /* Return if same TC config is requested */ 3842 if (iavf_is_tc_config_same(adapter, &mqprio_qopt->qopt)) 3843 return 0; 3844 adapter->num_tc = num_tc; 3845 3846 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3847 if (i < num_tc) { 3848 adapter->ch_config.ch_info[i].count = 3849 mqprio_qopt->qopt.count[i]; 3850 adapter->ch_config.ch_info[i].offset = 3851 mqprio_qopt->qopt.offset[i]; 3852 total_qps += mqprio_qopt->qopt.count[i]; 3853 max_tx_rate = mqprio_qopt->max_rate[i]; 3854 /* convert to Mbps */ 3855 max_tx_rate = div_u64(max_tx_rate, 3856 IAVF_MBPS_DIVISOR); 3857 adapter->ch_config.ch_info[i].max_tx_rate = 3858 max_tx_rate; 3859 } else { 3860 adapter->ch_config.ch_info[i].count = 1; 3861 adapter->ch_config.ch_info[i].offset = 0; 3862 } 3863 } 3864 3865 /* Take snapshot of original config such as "num_active_queues" 3866 * It is used later when delete ADQ flow is exercised, so that 3867 * once delete ADQ flow completes, VF shall go back to its 3868 * original queue configuration 3869 */ 3870 3871 adapter->orig_num_active_queues = adapter->num_active_queues; 3872 3873 /* Store queue info based on TC so that VF gets configured 3874 * with correct number of queues when VF completes ADQ config 3875 * flow 3876 */ 3877 adapter->ch_config.total_qps = total_qps; 3878 3879 netif_tx_stop_all_queues(netdev); 3880 netif_tx_disable(netdev); 3881 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS; 3882 netdev_reset_tc(netdev); 3883 /* Report the tc mapping up the stack */ 3884 netdev_set_num_tc(adapter->netdev, num_tc); 3885 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3886 u16 qcount = mqprio_qopt->qopt.count[i]; 3887 u16 qoffset = mqprio_qopt->qopt.offset[i]; 3888 3889 if (i < num_tc) 3890 netdev_set_tc_queue(netdev, netdev_tc++, qcount, 3891 qoffset); 3892 } 3893 } 3894 exit: 3895 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 3896 return 0; 3897 3898 netif_set_real_num_rx_queues(netdev, total_qps); 3899 netif_set_real_num_tx_queues(netdev, total_qps); 3900 3901 return ret; 3902 } 3903 3904 /** 3905 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel 3906 * @adapter: board private structure 3907 * @f: pointer to struct flow_cls_offload 3908 * @filter: pointer to cloud filter structure 3909 */ 3910 static int iavf_parse_cls_flower(struct iavf_adapter *adapter, 3911 struct flow_cls_offload *f, 3912 struct iavf_cloud_filter *filter) 3913 { 3914 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 3915 struct flow_dissector *dissector = rule->match.dissector; 3916 u16 n_proto_mask = 0; 3917 u16 n_proto_key = 0; 3918 u8 field_flags = 0; 3919 u16 addr_type = 0; 3920 u16 n_proto = 0; 3921 int i = 0; 3922 struct virtchnl_filter *vf = &filter->f; 3923 3924 if (dissector->used_keys & 3925 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) | 3926 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) | 3927 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 3928 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) | 3929 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 3930 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 3931 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) | 3932 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 3933 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%llx\n", 3934 dissector->used_keys); 3935 return -EOPNOTSUPP; 3936 } 3937 3938 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 3939 struct flow_match_enc_keyid match; 3940 3941 flow_rule_match_enc_keyid(rule, &match); 3942 if (match.mask->keyid != 0) 3943 field_flags |= IAVF_CLOUD_FIELD_TEN_ID; 3944 } 3945 3946 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 3947 struct flow_match_basic match; 3948 3949 flow_rule_match_basic(rule, &match); 3950 n_proto_key = ntohs(match.key->n_proto); 3951 n_proto_mask = ntohs(match.mask->n_proto); 3952 3953 if (n_proto_key == ETH_P_ALL) { 3954 n_proto_key = 0; 3955 n_proto_mask = 0; 3956 } 3957 n_proto = n_proto_key & n_proto_mask; 3958 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6) 3959 return -EINVAL; 3960 if (n_proto == ETH_P_IPV6) { 3961 /* specify flow type as TCP IPv6 */ 3962 vf->flow_type = VIRTCHNL_TCP_V6_FLOW; 3963 } 3964 3965 if (match.key->ip_proto != IPPROTO_TCP) { 3966 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n"); 3967 return -EINVAL; 3968 } 3969 } 3970 3971 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 3972 struct flow_match_eth_addrs match; 3973 3974 flow_rule_match_eth_addrs(rule, &match); 3975 3976 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 3977 if (!is_zero_ether_addr(match.mask->dst)) { 3978 if (is_broadcast_ether_addr(match.mask->dst)) { 3979 field_flags |= IAVF_CLOUD_FIELD_OMAC; 3980 } else { 3981 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n", 3982 match.mask->dst); 3983 return -EINVAL; 3984 } 3985 } 3986 3987 if (!is_zero_ether_addr(match.mask->src)) { 3988 if (is_broadcast_ether_addr(match.mask->src)) { 3989 field_flags |= IAVF_CLOUD_FIELD_IMAC; 3990 } else { 3991 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n", 3992 match.mask->src); 3993 return -EINVAL; 3994 } 3995 } 3996 3997 if (!is_zero_ether_addr(match.key->dst)) 3998 if (is_valid_ether_addr(match.key->dst) || 3999 is_multicast_ether_addr(match.key->dst)) { 4000 /* set the mask if a valid dst_mac address */ 4001 for (i = 0; i < ETH_ALEN; i++) 4002 vf->mask.tcp_spec.dst_mac[i] |= 0xff; 4003 ether_addr_copy(vf->data.tcp_spec.dst_mac, 4004 match.key->dst); 4005 } 4006 4007 if (!is_zero_ether_addr(match.key->src)) 4008 if (is_valid_ether_addr(match.key->src) || 4009 is_multicast_ether_addr(match.key->src)) { 4010 /* set the mask if a valid dst_mac address */ 4011 for (i = 0; i < ETH_ALEN; i++) 4012 vf->mask.tcp_spec.src_mac[i] |= 0xff; 4013 ether_addr_copy(vf->data.tcp_spec.src_mac, 4014 match.key->src); 4015 } 4016 } 4017 4018 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 4019 struct flow_match_vlan match; 4020 4021 flow_rule_match_vlan(rule, &match); 4022 if (match.mask->vlan_id) { 4023 if (match.mask->vlan_id == VLAN_VID_MASK) { 4024 field_flags |= IAVF_CLOUD_FIELD_IVLAN; 4025 } else { 4026 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n", 4027 match.mask->vlan_id); 4028 return -EINVAL; 4029 } 4030 } 4031 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff); 4032 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id); 4033 } 4034 4035 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 4036 struct flow_match_control match; 4037 4038 flow_rule_match_control(rule, &match); 4039 addr_type = match.key->addr_type; 4040 4041 if (flow_rule_has_control_flags(match.mask->flags, 4042 f->common.extack)) 4043 return -EOPNOTSUPP; 4044 } 4045 4046 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 4047 struct flow_match_ipv4_addrs match; 4048 4049 flow_rule_match_ipv4_addrs(rule, &match); 4050 if (match.mask->dst) { 4051 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 4052 field_flags |= IAVF_CLOUD_FIELD_IIP; 4053 } else { 4054 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n", 4055 be32_to_cpu(match.mask->dst)); 4056 return -EINVAL; 4057 } 4058 } 4059 4060 if (match.mask->src) { 4061 if (match.mask->src == cpu_to_be32(0xffffffff)) { 4062 field_flags |= IAVF_CLOUD_FIELD_IIP; 4063 } else { 4064 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n", 4065 be32_to_cpu(match.mask->src)); 4066 return -EINVAL; 4067 } 4068 } 4069 4070 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) { 4071 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n"); 4072 return -EINVAL; 4073 } 4074 if (match.key->dst) { 4075 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff); 4076 vf->data.tcp_spec.dst_ip[0] = match.key->dst; 4077 } 4078 if (match.key->src) { 4079 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff); 4080 vf->data.tcp_spec.src_ip[0] = match.key->src; 4081 } 4082 } 4083 4084 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 4085 struct flow_match_ipv6_addrs match; 4086 4087 flow_rule_match_ipv6_addrs(rule, &match); 4088 4089 /* validate mask, make sure it is not IPV6_ADDR_ANY */ 4090 if (ipv6_addr_any(&match.mask->dst)) { 4091 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n", 4092 IPV6_ADDR_ANY); 4093 return -EINVAL; 4094 } 4095 4096 /* src and dest IPv6 address should not be LOOPBACK 4097 * (0:0:0:0:0:0:0:1) which can be represented as ::1 4098 */ 4099 if (ipv6_addr_loopback(&match.key->dst) || 4100 ipv6_addr_loopback(&match.key->src)) { 4101 dev_err(&adapter->pdev->dev, 4102 "ipv6 addr should not be loopback\n"); 4103 return -EINVAL; 4104 } 4105 if (!ipv6_addr_any(&match.mask->dst) || 4106 !ipv6_addr_any(&match.mask->src)) 4107 field_flags |= IAVF_CLOUD_FIELD_IIP; 4108 4109 for (i = 0; i < 4; i++) 4110 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff); 4111 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32, 4112 sizeof(vf->data.tcp_spec.dst_ip)); 4113 for (i = 0; i < 4; i++) 4114 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff); 4115 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32, 4116 sizeof(vf->data.tcp_spec.src_ip)); 4117 } 4118 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 4119 struct flow_match_ports match; 4120 4121 flow_rule_match_ports(rule, &match); 4122 if (match.mask->src) { 4123 if (match.mask->src == cpu_to_be16(0xffff)) { 4124 field_flags |= IAVF_CLOUD_FIELD_IIP; 4125 } else { 4126 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n", 4127 be16_to_cpu(match.mask->src)); 4128 return -EINVAL; 4129 } 4130 } 4131 4132 if (match.mask->dst) { 4133 if (match.mask->dst == cpu_to_be16(0xffff)) { 4134 field_flags |= IAVF_CLOUD_FIELD_IIP; 4135 } else { 4136 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n", 4137 be16_to_cpu(match.mask->dst)); 4138 return -EINVAL; 4139 } 4140 } 4141 if (match.key->dst) { 4142 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff); 4143 vf->data.tcp_spec.dst_port = match.key->dst; 4144 } 4145 4146 if (match.key->src) { 4147 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff); 4148 vf->data.tcp_spec.src_port = match.key->src; 4149 } 4150 } 4151 vf->field_flags = field_flags; 4152 4153 return 0; 4154 } 4155 4156 /** 4157 * iavf_handle_tclass - Forward to a traffic class on the device 4158 * @adapter: board private structure 4159 * @tc: traffic class index on the device 4160 * @filter: pointer to cloud filter structure 4161 */ 4162 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc, 4163 struct iavf_cloud_filter *filter) 4164 { 4165 if (tc == 0) 4166 return 0; 4167 if (tc < adapter->num_tc) { 4168 if (!filter->f.data.tcp_spec.dst_port) { 4169 dev_err(&adapter->pdev->dev, 4170 "Specify destination port to redirect to traffic class other than TC0\n"); 4171 return -EINVAL; 4172 } 4173 } 4174 /* redirect to a traffic class on the same device */ 4175 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT; 4176 filter->f.action_meta = tc; 4177 return 0; 4178 } 4179 4180 /** 4181 * iavf_find_cf - Find the cloud filter in the list 4182 * @adapter: Board private structure 4183 * @cookie: filter specific cookie 4184 * 4185 * Returns ptr to the filter object or NULL. Must be called while holding the 4186 * cloud_filter_list_lock. 4187 */ 4188 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter, 4189 unsigned long *cookie) 4190 { 4191 struct iavf_cloud_filter *filter = NULL; 4192 4193 if (!cookie) 4194 return NULL; 4195 4196 list_for_each_entry(filter, &adapter->cloud_filter_list, list) { 4197 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 4198 return filter; 4199 } 4200 return NULL; 4201 } 4202 4203 /** 4204 * iavf_configure_clsflower - Add tc flower filters 4205 * @adapter: board private structure 4206 * @cls_flower: Pointer to struct flow_cls_offload 4207 */ 4208 static int iavf_configure_clsflower(struct iavf_adapter *adapter, 4209 struct flow_cls_offload *cls_flower) 4210 { 4211 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); 4212 struct iavf_cloud_filter *filter = NULL; 4213 int err = -EINVAL, count = 50; 4214 4215 if (tc < 0) { 4216 dev_err(&adapter->pdev->dev, "Invalid traffic class\n"); 4217 return -EINVAL; 4218 } 4219 4220 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 4221 if (!filter) 4222 return -ENOMEM; 4223 4224 while (!mutex_trylock(&adapter->crit_lock)) { 4225 if (--count == 0) { 4226 kfree(filter); 4227 return err; 4228 } 4229 udelay(1); 4230 } 4231 4232 filter->cookie = cls_flower->cookie; 4233 4234 /* bail out here if filter already exists */ 4235 spin_lock_bh(&adapter->cloud_filter_list_lock); 4236 if (iavf_find_cf(adapter, &cls_flower->cookie)) { 4237 dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n"); 4238 err = -EEXIST; 4239 goto spin_unlock; 4240 } 4241 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4242 4243 /* set the mask to all zeroes to begin with */ 4244 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec)); 4245 /* start out with flow type and eth type IPv4 to begin with */ 4246 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW; 4247 err = iavf_parse_cls_flower(adapter, cls_flower, filter); 4248 if (err) 4249 goto err; 4250 4251 err = iavf_handle_tclass(adapter, tc, filter); 4252 if (err) 4253 goto err; 4254 4255 /* add filter to the list */ 4256 spin_lock_bh(&adapter->cloud_filter_list_lock); 4257 list_add_tail(&filter->list, &adapter->cloud_filter_list); 4258 adapter->num_cloud_filters++; 4259 filter->add = true; 4260 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 4261 spin_unlock: 4262 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4263 err: 4264 if (err) 4265 kfree(filter); 4266 4267 mutex_unlock(&adapter->crit_lock); 4268 return err; 4269 } 4270 4271 /** 4272 * iavf_delete_clsflower - Remove tc flower filters 4273 * @adapter: board private structure 4274 * @cls_flower: Pointer to struct flow_cls_offload 4275 */ 4276 static int iavf_delete_clsflower(struct iavf_adapter *adapter, 4277 struct flow_cls_offload *cls_flower) 4278 { 4279 struct iavf_cloud_filter *filter = NULL; 4280 int err = 0; 4281 4282 spin_lock_bh(&adapter->cloud_filter_list_lock); 4283 filter = iavf_find_cf(adapter, &cls_flower->cookie); 4284 if (filter) { 4285 filter->del = true; 4286 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 4287 } else { 4288 err = -EINVAL; 4289 } 4290 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4291 4292 return err; 4293 } 4294 4295 /** 4296 * iavf_setup_tc_cls_flower - flower classifier offloads 4297 * @adapter: pointer to iavf adapter structure 4298 * @cls_flower: pointer to flow_cls_offload struct with flow info 4299 */ 4300 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter, 4301 struct flow_cls_offload *cls_flower) 4302 { 4303 switch (cls_flower->command) { 4304 case FLOW_CLS_REPLACE: 4305 return iavf_configure_clsflower(adapter, cls_flower); 4306 case FLOW_CLS_DESTROY: 4307 return iavf_delete_clsflower(adapter, cls_flower); 4308 case FLOW_CLS_STATS: 4309 return -EOPNOTSUPP; 4310 default: 4311 return -EOPNOTSUPP; 4312 } 4313 } 4314 4315 /** 4316 * iavf_add_cls_u32 - Add U32 classifier offloads 4317 * @adapter: pointer to iavf adapter structure 4318 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info 4319 * 4320 * Return: 0 on success or negative errno on failure. 4321 */ 4322 static int iavf_add_cls_u32(struct iavf_adapter *adapter, 4323 struct tc_cls_u32_offload *cls_u32) 4324 { 4325 struct netlink_ext_ack *extack = cls_u32->common.extack; 4326 struct virtchnl_fdir_rule *rule_cfg; 4327 struct virtchnl_filter_action *vact; 4328 struct virtchnl_proto_hdrs *hdrs; 4329 struct ethhdr *spec_h, *mask_h; 4330 const struct tc_action *act; 4331 struct iavf_fdir_fltr *fltr; 4332 struct tcf_exts *exts; 4333 unsigned int q_index; 4334 int i, status = 0; 4335 int off_base = 0; 4336 4337 if (cls_u32->knode.link_handle) { 4338 NL_SET_ERR_MSG_MOD(extack, "Linking not supported"); 4339 return -EOPNOTSUPP; 4340 } 4341 4342 fltr = kzalloc(sizeof(*fltr), GFP_KERNEL); 4343 if (!fltr) 4344 return -ENOMEM; 4345 4346 rule_cfg = &fltr->vc_add_msg.rule_cfg; 4347 hdrs = &rule_cfg->proto_hdrs; 4348 hdrs->count = 0; 4349 4350 /* The parser lib at the PF expects the packet starting with MAC hdr */ 4351 switch (ntohs(cls_u32->common.protocol)) { 4352 case ETH_P_802_3: 4353 break; 4354 case ETH_P_IP: 4355 spec_h = (struct ethhdr *)hdrs->raw.spec; 4356 mask_h = (struct ethhdr *)hdrs->raw.mask; 4357 spec_h->h_proto = htons(ETH_P_IP); 4358 mask_h->h_proto = htons(0xFFFF); 4359 off_base += ETH_HLEN; 4360 break; 4361 default: 4362 NL_SET_ERR_MSG_MOD(extack, "Only 802_3 and ip filter protocols are supported"); 4363 status = -EOPNOTSUPP; 4364 goto free_alloc; 4365 } 4366 4367 for (i = 0; i < cls_u32->knode.sel->nkeys; i++) { 4368 __be32 val, mask; 4369 int off; 4370 4371 off = off_base + cls_u32->knode.sel->keys[i].off; 4372 val = cls_u32->knode.sel->keys[i].val; 4373 mask = cls_u32->knode.sel->keys[i].mask; 4374 4375 if (off >= sizeof(hdrs->raw.spec)) { 4376 NL_SET_ERR_MSG_MOD(extack, "Input exceeds maximum allowed."); 4377 status = -EINVAL; 4378 goto free_alloc; 4379 } 4380 4381 memcpy(&hdrs->raw.spec[off], &val, sizeof(val)); 4382 memcpy(&hdrs->raw.mask[off], &mask, sizeof(mask)); 4383 hdrs->raw.pkt_len = off + sizeof(val); 4384 } 4385 4386 /* Only one action is allowed */ 4387 rule_cfg->action_set.count = 1; 4388 vact = &rule_cfg->action_set.actions[0]; 4389 exts = cls_u32->knode.exts; 4390 4391 tcf_exts_for_each_action(i, act, exts) { 4392 /* FDIR queue */ 4393 if (is_tcf_skbedit_rx_queue_mapping(act)) { 4394 q_index = tcf_skbedit_rx_queue_mapping(act); 4395 if (q_index >= adapter->num_active_queues) { 4396 status = -EINVAL; 4397 goto free_alloc; 4398 } 4399 4400 vact->type = VIRTCHNL_ACTION_QUEUE; 4401 vact->act_conf.queue.index = q_index; 4402 break; 4403 } 4404 4405 /* Drop */ 4406 if (is_tcf_gact_shot(act)) { 4407 vact->type = VIRTCHNL_ACTION_DROP; 4408 break; 4409 } 4410 4411 /* Unsupported action */ 4412 NL_SET_ERR_MSG_MOD(extack, "Unsupported action."); 4413 status = -EOPNOTSUPP; 4414 goto free_alloc; 4415 } 4416 4417 fltr->vc_add_msg.vsi_id = adapter->vsi.id; 4418 fltr->cls_u32_handle = cls_u32->knode.handle; 4419 return iavf_fdir_add_fltr(adapter, fltr); 4420 4421 free_alloc: 4422 kfree(fltr); 4423 return status; 4424 } 4425 4426 /** 4427 * iavf_del_cls_u32 - Delete U32 classifier offloads 4428 * @adapter: pointer to iavf adapter structure 4429 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info 4430 * 4431 * Return: 0 on success or negative errno on failure. 4432 */ 4433 static int iavf_del_cls_u32(struct iavf_adapter *adapter, 4434 struct tc_cls_u32_offload *cls_u32) 4435 { 4436 return iavf_fdir_del_fltr(adapter, true, cls_u32->knode.handle); 4437 } 4438 4439 /** 4440 * iavf_setup_tc_cls_u32 - U32 filter offloads 4441 * @adapter: pointer to iavf adapter structure 4442 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info 4443 * 4444 * Return: 0 on success or negative errno on failure. 4445 */ 4446 static int iavf_setup_tc_cls_u32(struct iavf_adapter *adapter, 4447 struct tc_cls_u32_offload *cls_u32) 4448 { 4449 if (!TC_U32_SUPPORT(adapter) || !FDIR_FLTR_SUPPORT(adapter)) 4450 return -EOPNOTSUPP; 4451 4452 switch (cls_u32->command) { 4453 case TC_CLSU32_NEW_KNODE: 4454 case TC_CLSU32_REPLACE_KNODE: 4455 return iavf_add_cls_u32(adapter, cls_u32); 4456 case TC_CLSU32_DELETE_KNODE: 4457 return iavf_del_cls_u32(adapter, cls_u32); 4458 default: 4459 return -EOPNOTSUPP; 4460 } 4461 } 4462 4463 /** 4464 * iavf_setup_tc_block_cb - block callback for tc 4465 * @type: type of offload 4466 * @type_data: offload data 4467 * @cb_priv: 4468 * 4469 * This function is the block callback for traffic classes 4470 **/ 4471 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 4472 void *cb_priv) 4473 { 4474 struct iavf_adapter *adapter = cb_priv; 4475 4476 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data)) 4477 return -EOPNOTSUPP; 4478 4479 switch (type) { 4480 case TC_SETUP_CLSFLOWER: 4481 return iavf_setup_tc_cls_flower(cb_priv, type_data); 4482 case TC_SETUP_CLSU32: 4483 return iavf_setup_tc_cls_u32(cb_priv, type_data); 4484 default: 4485 return -EOPNOTSUPP; 4486 } 4487 } 4488 4489 static LIST_HEAD(iavf_block_cb_list); 4490 4491 /** 4492 * iavf_setup_tc - configure multiple traffic classes 4493 * @netdev: network interface device structure 4494 * @type: type of offload 4495 * @type_data: tc offload data 4496 * 4497 * This function is the callback to ndo_setup_tc in the 4498 * netdev_ops. 4499 * 4500 * Returns 0 on success 4501 **/ 4502 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type, 4503 void *type_data) 4504 { 4505 struct iavf_adapter *adapter = netdev_priv(netdev); 4506 4507 switch (type) { 4508 case TC_SETUP_QDISC_MQPRIO: 4509 return __iavf_setup_tc(netdev, type_data); 4510 case TC_SETUP_BLOCK: 4511 return flow_block_cb_setup_simple(type_data, 4512 &iavf_block_cb_list, 4513 iavf_setup_tc_block_cb, 4514 adapter, adapter, true); 4515 default: 4516 return -EOPNOTSUPP; 4517 } 4518 } 4519 4520 /** 4521 * iavf_restore_fdir_filters 4522 * @adapter: board private structure 4523 * 4524 * Restore existing FDIR filters when VF netdev comes back up. 4525 **/ 4526 static void iavf_restore_fdir_filters(struct iavf_adapter *adapter) 4527 { 4528 struct iavf_fdir_fltr *f; 4529 4530 spin_lock_bh(&adapter->fdir_fltr_lock); 4531 list_for_each_entry(f, &adapter->fdir_list_head, list) { 4532 if (f->state == IAVF_FDIR_FLTR_DIS_REQUEST) { 4533 /* Cancel a request, keep filter as active */ 4534 f->state = IAVF_FDIR_FLTR_ACTIVE; 4535 } else if (f->state == IAVF_FDIR_FLTR_DIS_PENDING || 4536 f->state == IAVF_FDIR_FLTR_INACTIVE) { 4537 /* Add filters which are inactive or have a pending 4538 * request to PF to be deleted 4539 */ 4540 f->state = IAVF_FDIR_FLTR_ADD_REQUEST; 4541 adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER; 4542 } 4543 } 4544 spin_unlock_bh(&adapter->fdir_fltr_lock); 4545 } 4546 4547 /** 4548 * iavf_open - Called when a network interface is made active 4549 * @netdev: network interface device structure 4550 * 4551 * Returns 0 on success, negative value on failure 4552 * 4553 * The open entry point is called when a network interface is made 4554 * active by the system (IFF_UP). At this point all resources needed 4555 * for transmit and receive operations are allocated, the interrupt 4556 * handler is registered with the OS, the watchdog is started, 4557 * and the stack is notified that the interface is ready. 4558 **/ 4559 static int iavf_open(struct net_device *netdev) 4560 { 4561 struct iavf_adapter *adapter = netdev_priv(netdev); 4562 int err; 4563 4564 netdev_assert_locked(netdev); 4565 4566 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) { 4567 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n"); 4568 return -EIO; 4569 } 4570 4571 while (!mutex_trylock(&adapter->crit_lock)) { 4572 /* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock 4573 * is already taken and iavf_open is called from an upper 4574 * device's notifier reacting on NETDEV_REGISTER event. 4575 * We have to leave here to avoid dead lock. 4576 */ 4577 if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER) 4578 return -EBUSY; 4579 4580 usleep_range(500, 1000); 4581 } 4582 4583 if (adapter->state != __IAVF_DOWN) { 4584 err = -EBUSY; 4585 goto err_unlock; 4586 } 4587 4588 if (adapter->state == __IAVF_RUNNING && 4589 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) { 4590 dev_dbg(&adapter->pdev->dev, "VF is already open.\n"); 4591 err = 0; 4592 goto err_unlock; 4593 } 4594 4595 /* allocate transmit descriptors */ 4596 err = iavf_setup_all_tx_resources(adapter); 4597 if (err) 4598 goto err_setup_tx; 4599 4600 /* allocate receive descriptors */ 4601 err = iavf_setup_all_rx_resources(adapter); 4602 if (err) 4603 goto err_setup_rx; 4604 4605 /* clear any pending interrupts, may auto mask */ 4606 err = iavf_request_traffic_irqs(adapter, netdev->name); 4607 if (err) 4608 goto err_req_irq; 4609 4610 spin_lock_bh(&adapter->mac_vlan_list_lock); 4611 4612 iavf_add_filter(adapter, adapter->hw.mac.addr); 4613 4614 spin_unlock_bh(&adapter->mac_vlan_list_lock); 4615 4616 /* Restore filters that were removed with IFF_DOWN */ 4617 iavf_restore_filters(adapter); 4618 iavf_restore_fdir_filters(adapter); 4619 4620 iavf_configure(adapter); 4621 4622 iavf_up_complete(adapter); 4623 4624 iavf_irq_enable(adapter, true); 4625 4626 mutex_unlock(&adapter->crit_lock); 4627 4628 return 0; 4629 4630 err_req_irq: 4631 iavf_down(adapter); 4632 iavf_free_traffic_irqs(adapter); 4633 err_setup_rx: 4634 iavf_free_all_rx_resources(adapter); 4635 err_setup_tx: 4636 iavf_free_all_tx_resources(adapter); 4637 err_unlock: 4638 mutex_unlock(&adapter->crit_lock); 4639 4640 return err; 4641 } 4642 4643 /** 4644 * iavf_close - Disables a network interface 4645 * @netdev: network interface device structure 4646 * 4647 * Returns 0, this is not allowed to fail 4648 * 4649 * The close entry point is called when an interface is de-activated 4650 * by the OS. The hardware is still under the drivers control, but 4651 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue) 4652 * are freed, along with all transmit and receive resources. 4653 **/ 4654 static int iavf_close(struct net_device *netdev) 4655 { 4656 struct iavf_adapter *adapter = netdev_priv(netdev); 4657 u64 aq_to_restore; 4658 int status; 4659 4660 netdev_assert_locked(netdev); 4661 4662 mutex_lock(&adapter->crit_lock); 4663 4664 if (adapter->state <= __IAVF_DOWN_PENDING) { 4665 mutex_unlock(&adapter->crit_lock); 4666 return 0; 4667 } 4668 4669 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 4670 /* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before 4671 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl 4672 * deadlock with adminq_task() until iavf_close timeouts. We must send 4673 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make 4674 * disable queues possible for vf. Give only necessary flags to 4675 * iavf_down and save other to set them right before iavf_close() 4676 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and 4677 * iavf will be in DOWN state. 4678 */ 4679 aq_to_restore = adapter->aq_required; 4680 adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG; 4681 4682 /* Remove flags which we do not want to send after close or we want to 4683 * send before disable queues. 4684 */ 4685 aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG | 4686 IAVF_FLAG_AQ_ENABLE_QUEUES | 4687 IAVF_FLAG_AQ_CONFIGURE_QUEUES | 4688 IAVF_FLAG_AQ_ADD_VLAN_FILTER | 4689 IAVF_FLAG_AQ_ADD_MAC_FILTER | 4690 IAVF_FLAG_AQ_ADD_CLOUD_FILTER | 4691 IAVF_FLAG_AQ_ADD_FDIR_FILTER | 4692 IAVF_FLAG_AQ_ADD_ADV_RSS_CFG); 4693 4694 iavf_down(adapter); 4695 iavf_change_state(adapter, __IAVF_DOWN_PENDING); 4696 iavf_free_traffic_irqs(adapter); 4697 4698 mutex_unlock(&adapter->crit_lock); 4699 netdev_unlock(netdev); 4700 4701 /* We explicitly don't free resources here because the hardware is 4702 * still active and can DMA into memory. Resources are cleared in 4703 * iavf_virtchnl_completion() after we get confirmation from the PF 4704 * driver that the rings have been stopped. 4705 * 4706 * Also, we wait for state to transition to __IAVF_DOWN before 4707 * returning. State change occurs in iavf_virtchnl_completion() after 4708 * VF resources are released (which occurs after PF driver processes and 4709 * responds to admin queue commands). 4710 */ 4711 4712 status = wait_event_timeout(adapter->down_waitqueue, 4713 adapter->state == __IAVF_DOWN, 4714 msecs_to_jiffies(500)); 4715 if (!status) 4716 netdev_warn(netdev, "Device resources not yet released\n"); 4717 4718 netdev_lock(netdev); 4719 mutex_lock(&adapter->crit_lock); 4720 adapter->aq_required |= aq_to_restore; 4721 mutex_unlock(&adapter->crit_lock); 4722 return 0; 4723 } 4724 4725 /** 4726 * iavf_change_mtu - Change the Maximum Transfer Unit 4727 * @netdev: network interface device structure 4728 * @new_mtu: new value for maximum frame size 4729 * 4730 * Returns 0 on success, negative on failure 4731 **/ 4732 static int iavf_change_mtu(struct net_device *netdev, int new_mtu) 4733 { 4734 struct iavf_adapter *adapter = netdev_priv(netdev); 4735 int ret = 0; 4736 4737 netdev_dbg(netdev, "changing MTU from %d to %d\n", 4738 netdev->mtu, new_mtu); 4739 WRITE_ONCE(netdev->mtu, new_mtu); 4740 4741 if (netif_running(netdev)) { 4742 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 4743 ret = iavf_wait_for_reset(adapter); 4744 if (ret < 0) 4745 netdev_warn(netdev, "MTU change interrupted waiting for reset"); 4746 else if (ret) 4747 netdev_warn(netdev, "MTU change timed out waiting for reset"); 4748 } 4749 4750 return ret; 4751 } 4752 4753 /** 4754 * iavf_disable_fdir - disable Flow Director and clear existing filters 4755 * @adapter: board private structure 4756 **/ 4757 static void iavf_disable_fdir(struct iavf_adapter *adapter) 4758 { 4759 struct iavf_fdir_fltr *fdir, *fdirtmp; 4760 bool del_filters = false; 4761 4762 adapter->flags &= ~IAVF_FLAG_FDIR_ENABLED; 4763 4764 /* remove all Flow Director filters */ 4765 spin_lock_bh(&adapter->fdir_fltr_lock); 4766 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, 4767 list) { 4768 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST || 4769 fdir->state == IAVF_FDIR_FLTR_INACTIVE) { 4770 /* Delete filters not registered in PF */ 4771 list_del(&fdir->list); 4772 iavf_dec_fdir_active_fltr(adapter, fdir); 4773 kfree(fdir); 4774 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING || 4775 fdir->state == IAVF_FDIR_FLTR_DIS_REQUEST || 4776 fdir->state == IAVF_FDIR_FLTR_ACTIVE) { 4777 /* Filters registered in PF, schedule their deletion */ 4778 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST; 4779 del_filters = true; 4780 } else if (fdir->state == IAVF_FDIR_FLTR_DIS_PENDING) { 4781 /* Request to delete filter already sent to PF, change 4782 * state to DEL_PENDING to delete filter after PF's 4783 * response, not set as INACTIVE 4784 */ 4785 fdir->state = IAVF_FDIR_FLTR_DEL_PENDING; 4786 } 4787 } 4788 spin_unlock_bh(&adapter->fdir_fltr_lock); 4789 4790 if (del_filters) { 4791 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 4792 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 4793 } 4794 } 4795 4796 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 4797 NETIF_F_HW_VLAN_CTAG_TX | \ 4798 NETIF_F_HW_VLAN_STAG_RX | \ 4799 NETIF_F_HW_VLAN_STAG_TX) 4800 4801 /** 4802 * iavf_set_features - set the netdev feature flags 4803 * @netdev: ptr to the netdev being adjusted 4804 * @features: the feature set that the stack is suggesting 4805 * Note: expects to be called while under rtnl_lock() 4806 **/ 4807 static int iavf_set_features(struct net_device *netdev, 4808 netdev_features_t features) 4809 { 4810 struct iavf_adapter *adapter = netdev_priv(netdev); 4811 4812 /* trigger update on any VLAN feature change */ 4813 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^ 4814 (features & NETIF_VLAN_OFFLOAD_FEATURES)) 4815 iavf_set_vlan_offload_features(adapter, netdev->features, 4816 features); 4817 if (CRC_OFFLOAD_ALLOWED(adapter) && 4818 ((netdev->features & NETIF_F_RXFCS) ^ (features & NETIF_F_RXFCS))) 4819 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 4820 4821 if ((netdev->features & NETIF_F_NTUPLE) ^ (features & NETIF_F_NTUPLE)) { 4822 if (features & NETIF_F_NTUPLE) 4823 adapter->flags |= IAVF_FLAG_FDIR_ENABLED; 4824 else 4825 iavf_disable_fdir(adapter); 4826 } 4827 4828 return 0; 4829 } 4830 4831 /** 4832 * iavf_features_check - Validate encapsulated packet conforms to limits 4833 * @skb: skb buff 4834 * @dev: This physical port's netdev 4835 * @features: Offload features that the stack believes apply 4836 **/ 4837 static netdev_features_t iavf_features_check(struct sk_buff *skb, 4838 struct net_device *dev, 4839 netdev_features_t features) 4840 { 4841 size_t len; 4842 4843 /* No point in doing any of this if neither checksum nor GSO are 4844 * being requested for this frame. We can rule out both by just 4845 * checking for CHECKSUM_PARTIAL 4846 */ 4847 if (skb->ip_summed != CHECKSUM_PARTIAL) 4848 return features; 4849 4850 /* We cannot support GSO if the MSS is going to be less than 4851 * 64 bytes. If it is then we need to drop support for GSO. 4852 */ 4853 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 4854 features &= ~NETIF_F_GSO_MASK; 4855 4856 /* MACLEN can support at most 63 words */ 4857 len = skb_network_offset(skb); 4858 if (len & ~(63 * 2)) 4859 goto out_err; 4860 4861 /* IPLEN and EIPLEN can support at most 127 dwords */ 4862 len = skb_network_header_len(skb); 4863 if (len & ~(127 * 4)) 4864 goto out_err; 4865 4866 if (skb->encapsulation) { 4867 /* L4TUNLEN can support 127 words */ 4868 len = skb_inner_network_header(skb) - skb_transport_header(skb); 4869 if (len & ~(127 * 2)) 4870 goto out_err; 4871 4872 /* IPLEN can support at most 127 dwords */ 4873 len = skb_inner_transport_header(skb) - 4874 skb_inner_network_header(skb); 4875 if (len & ~(127 * 4)) 4876 goto out_err; 4877 } 4878 4879 /* No need to validate L4LEN as TCP is the only protocol with a 4880 * flexible value and we support all possible values supported 4881 * by TCP, which is at most 15 dwords 4882 */ 4883 4884 return features; 4885 out_err: 4886 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 4887 } 4888 4889 /** 4890 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off 4891 * @adapter: board private structure 4892 * 4893 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4894 * were negotiated determine the VLAN features that can be toggled on and off. 4895 **/ 4896 static netdev_features_t 4897 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter) 4898 { 4899 netdev_features_t hw_features = 0; 4900 4901 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4902 return hw_features; 4903 4904 /* Enable VLAN features if supported */ 4905 if (VLAN_ALLOWED(adapter)) { 4906 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX | 4907 NETIF_F_HW_VLAN_CTAG_RX); 4908 } else if (VLAN_V2_ALLOWED(adapter)) { 4909 struct virtchnl_vlan_caps *vlan_v2_caps = 4910 &adapter->vlan_v2_caps; 4911 struct virtchnl_vlan_supported_caps *stripping_support = 4912 &vlan_v2_caps->offloads.stripping_support; 4913 struct virtchnl_vlan_supported_caps *insertion_support = 4914 &vlan_v2_caps->offloads.insertion_support; 4915 4916 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4917 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4918 if (stripping_support->outer & 4919 VIRTCHNL_VLAN_ETHERTYPE_8100) 4920 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4921 if (stripping_support->outer & 4922 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4923 hw_features |= NETIF_F_HW_VLAN_STAG_RX; 4924 } else if (stripping_support->inner != 4925 VIRTCHNL_VLAN_UNSUPPORTED && 4926 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4927 if (stripping_support->inner & 4928 VIRTCHNL_VLAN_ETHERTYPE_8100) 4929 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4930 } 4931 4932 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4933 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4934 if (insertion_support->outer & 4935 VIRTCHNL_VLAN_ETHERTYPE_8100) 4936 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4937 if (insertion_support->outer & 4938 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4939 hw_features |= NETIF_F_HW_VLAN_STAG_TX; 4940 } else if (insertion_support->inner && 4941 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4942 if (insertion_support->inner & 4943 VIRTCHNL_VLAN_ETHERTYPE_8100) 4944 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4945 } 4946 } 4947 4948 if (CRC_OFFLOAD_ALLOWED(adapter)) 4949 hw_features |= NETIF_F_RXFCS; 4950 4951 return hw_features; 4952 } 4953 4954 /** 4955 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures 4956 * @adapter: board private structure 4957 * 4958 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4959 * were negotiated determine the VLAN features that are enabled by default. 4960 **/ 4961 static netdev_features_t 4962 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter) 4963 { 4964 netdev_features_t features = 0; 4965 4966 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4967 return features; 4968 4969 if (VLAN_ALLOWED(adapter)) { 4970 features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4971 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX; 4972 } else if (VLAN_V2_ALLOWED(adapter)) { 4973 struct virtchnl_vlan_caps *vlan_v2_caps = 4974 &adapter->vlan_v2_caps; 4975 struct virtchnl_vlan_supported_caps *filtering_support = 4976 &vlan_v2_caps->filtering.filtering_support; 4977 struct virtchnl_vlan_supported_caps *stripping_support = 4978 &vlan_v2_caps->offloads.stripping_support; 4979 struct virtchnl_vlan_supported_caps *insertion_support = 4980 &vlan_v2_caps->offloads.insertion_support; 4981 u32 ethertype_init; 4982 4983 /* give priority to outer stripping and don't support both outer 4984 * and inner stripping 4985 */ 4986 ethertype_init = vlan_v2_caps->offloads.ethertype_init; 4987 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4988 if (stripping_support->outer & 4989 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4990 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4991 features |= NETIF_F_HW_VLAN_CTAG_RX; 4992 else if (stripping_support->outer & 4993 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4994 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4995 features |= NETIF_F_HW_VLAN_STAG_RX; 4996 } else if (stripping_support->inner != 4997 VIRTCHNL_VLAN_UNSUPPORTED) { 4998 if (stripping_support->inner & 4999 VIRTCHNL_VLAN_ETHERTYPE_8100 && 5000 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 5001 features |= NETIF_F_HW_VLAN_CTAG_RX; 5002 } 5003 5004 /* give priority to outer insertion and don't support both outer 5005 * and inner insertion 5006 */ 5007 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 5008 if (insertion_support->outer & 5009 VIRTCHNL_VLAN_ETHERTYPE_8100 && 5010 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 5011 features |= NETIF_F_HW_VLAN_CTAG_TX; 5012 else if (insertion_support->outer & 5013 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 5014 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 5015 features |= NETIF_F_HW_VLAN_STAG_TX; 5016 } else if (insertion_support->inner != 5017 VIRTCHNL_VLAN_UNSUPPORTED) { 5018 if (insertion_support->inner & 5019 VIRTCHNL_VLAN_ETHERTYPE_8100 && 5020 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 5021 features |= NETIF_F_HW_VLAN_CTAG_TX; 5022 } 5023 5024 /* give priority to outer filtering and don't bother if both 5025 * outer and inner filtering are enabled 5026 */ 5027 ethertype_init = vlan_v2_caps->filtering.ethertype_init; 5028 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 5029 if (filtering_support->outer & 5030 VIRTCHNL_VLAN_ETHERTYPE_8100 && 5031 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 5032 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 5033 if (filtering_support->outer & 5034 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 5035 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 5036 features |= NETIF_F_HW_VLAN_STAG_FILTER; 5037 } else if (filtering_support->inner != 5038 VIRTCHNL_VLAN_UNSUPPORTED) { 5039 if (filtering_support->inner & 5040 VIRTCHNL_VLAN_ETHERTYPE_8100 && 5041 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 5042 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 5043 if (filtering_support->inner & 5044 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 5045 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 5046 features |= NETIF_F_HW_VLAN_STAG_FILTER; 5047 } 5048 } 5049 5050 return features; 5051 } 5052 5053 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \ 5054 (!(((requested) & (feature_bit)) && \ 5055 !((allowed) & (feature_bit)))) 5056 5057 /** 5058 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support 5059 * @adapter: board private structure 5060 * @requested_features: stack requested NETDEV features 5061 **/ 5062 static netdev_features_t 5063 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter, 5064 netdev_features_t requested_features) 5065 { 5066 netdev_features_t allowed_features; 5067 5068 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) | 5069 iavf_get_netdev_vlan_features(adapter); 5070 5071 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 5072 allowed_features, 5073 NETIF_F_HW_VLAN_CTAG_TX)) 5074 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX; 5075 5076 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 5077 allowed_features, 5078 NETIF_F_HW_VLAN_CTAG_RX)) 5079 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX; 5080 5081 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 5082 allowed_features, 5083 NETIF_F_HW_VLAN_STAG_TX)) 5084 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX; 5085 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 5086 allowed_features, 5087 NETIF_F_HW_VLAN_STAG_RX)) 5088 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX; 5089 5090 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 5091 allowed_features, 5092 NETIF_F_HW_VLAN_CTAG_FILTER)) 5093 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 5094 5095 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 5096 allowed_features, 5097 NETIF_F_HW_VLAN_STAG_FILTER)) 5098 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER; 5099 5100 if ((requested_features & 5101 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 5102 (requested_features & 5103 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) && 5104 adapter->vlan_v2_caps.offloads.ethertype_match == 5105 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) { 5106 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 5107 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX | 5108 NETIF_F_HW_VLAN_STAG_TX); 5109 } 5110 5111 return requested_features; 5112 } 5113 5114 /** 5115 * iavf_fix_strip_features - fix NETDEV CRC and VLAN strip features 5116 * @adapter: board private structure 5117 * @requested_features: stack requested NETDEV features 5118 * 5119 * Returns fixed-up features bits 5120 **/ 5121 static netdev_features_t 5122 iavf_fix_strip_features(struct iavf_adapter *adapter, 5123 netdev_features_t requested_features) 5124 { 5125 struct net_device *netdev = adapter->netdev; 5126 bool crc_offload_req, is_vlan_strip; 5127 netdev_features_t vlan_strip; 5128 int num_non_zero_vlan; 5129 5130 crc_offload_req = CRC_OFFLOAD_ALLOWED(adapter) && 5131 (requested_features & NETIF_F_RXFCS); 5132 num_non_zero_vlan = iavf_get_num_vlans_added(adapter); 5133 vlan_strip = (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX); 5134 is_vlan_strip = requested_features & vlan_strip; 5135 5136 if (!crc_offload_req) 5137 return requested_features; 5138 5139 if (!num_non_zero_vlan && (netdev->features & vlan_strip) && 5140 !(netdev->features & NETIF_F_RXFCS) && is_vlan_strip) { 5141 requested_features &= ~vlan_strip; 5142 netdev_info(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 5143 return requested_features; 5144 } 5145 5146 if ((netdev->features & NETIF_F_RXFCS) && is_vlan_strip) { 5147 requested_features &= ~vlan_strip; 5148 if (!(netdev->features & vlan_strip)) 5149 netdev_info(netdev, "To enable VLAN stripping, first need to enable FCS/CRC stripping"); 5150 5151 return requested_features; 5152 } 5153 5154 if (num_non_zero_vlan && is_vlan_strip && 5155 !(netdev->features & NETIF_F_RXFCS)) { 5156 requested_features &= ~NETIF_F_RXFCS; 5157 netdev_info(netdev, "To disable FCS/CRC stripping, first need to disable VLAN stripping"); 5158 } 5159 5160 return requested_features; 5161 } 5162 5163 /** 5164 * iavf_fix_features - fix up the netdev feature bits 5165 * @netdev: our net device 5166 * @features: desired feature bits 5167 * 5168 * Returns fixed-up features bits 5169 **/ 5170 static netdev_features_t iavf_fix_features(struct net_device *netdev, 5171 netdev_features_t features) 5172 { 5173 struct iavf_adapter *adapter = netdev_priv(netdev); 5174 5175 features = iavf_fix_netdev_vlan_features(adapter, features); 5176 5177 if (!FDIR_FLTR_SUPPORT(adapter)) 5178 features &= ~NETIF_F_NTUPLE; 5179 5180 return iavf_fix_strip_features(adapter, features); 5181 } 5182 5183 static int iavf_hwstamp_get(struct net_device *netdev, 5184 struct kernel_hwtstamp_config *config) 5185 { 5186 struct iavf_adapter *adapter = netdev_priv(netdev); 5187 5188 *config = adapter->ptp.hwtstamp_config; 5189 5190 return 0; 5191 } 5192 5193 static int iavf_hwstamp_set(struct net_device *netdev, 5194 struct kernel_hwtstamp_config *config, 5195 struct netlink_ext_ack *extack) 5196 { 5197 struct iavf_adapter *adapter = netdev_priv(netdev); 5198 5199 return iavf_ptp_set_ts_config(adapter, config, extack); 5200 } 5201 5202 static int 5203 iavf_verify_shaper(struct net_shaper_binding *binding, 5204 const struct net_shaper *shaper, 5205 struct netlink_ext_ack *extack) 5206 { 5207 struct iavf_adapter *adapter = netdev_priv(binding->netdev); 5208 u64 vf_max; 5209 5210 if (shaper->handle.scope == NET_SHAPER_SCOPE_QUEUE) { 5211 vf_max = adapter->qos_caps->cap[0].shaper.peak; 5212 if (vf_max && shaper->bw_max > vf_max) { 5213 NL_SET_ERR_MSG_FMT(extack, "Max rate (%llu) of queue %d can't exceed max TX rate of VF (%llu kbps)", 5214 shaper->bw_max, shaper->handle.id, 5215 vf_max); 5216 return -EINVAL; 5217 } 5218 } 5219 return 0; 5220 } 5221 5222 static int 5223 iavf_shaper_set(struct net_shaper_binding *binding, 5224 const struct net_shaper *shaper, 5225 struct netlink_ext_ack *extack) 5226 { 5227 struct iavf_adapter *adapter = netdev_priv(binding->netdev); 5228 const struct net_shaper_handle *handle = &shaper->handle; 5229 struct iavf_ring *tx_ring; 5230 int ret = 0; 5231 5232 mutex_lock(&adapter->crit_lock); 5233 if (handle->id >= adapter->num_active_queues) 5234 goto unlock; 5235 5236 ret = iavf_verify_shaper(binding, shaper, extack); 5237 if (ret) 5238 goto unlock; 5239 5240 tx_ring = &adapter->tx_rings[handle->id]; 5241 5242 tx_ring->q_shaper.bw_min = div_u64(shaper->bw_min, 1000); 5243 tx_ring->q_shaper.bw_max = div_u64(shaper->bw_max, 1000); 5244 tx_ring->q_shaper_update = true; 5245 5246 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW; 5247 5248 unlock: 5249 mutex_unlock(&adapter->crit_lock); 5250 return ret; 5251 } 5252 5253 static int iavf_shaper_del(struct net_shaper_binding *binding, 5254 const struct net_shaper_handle *handle, 5255 struct netlink_ext_ack *extack) 5256 { 5257 struct iavf_adapter *adapter = netdev_priv(binding->netdev); 5258 struct iavf_ring *tx_ring; 5259 5260 mutex_lock(&adapter->crit_lock); 5261 if (handle->id >= adapter->num_active_queues) 5262 goto unlock; 5263 5264 tx_ring = &adapter->tx_rings[handle->id]; 5265 tx_ring->q_shaper.bw_min = 0; 5266 tx_ring->q_shaper.bw_max = 0; 5267 tx_ring->q_shaper_update = true; 5268 5269 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW; 5270 5271 unlock: 5272 mutex_unlock(&adapter->crit_lock); 5273 return 0; 5274 } 5275 5276 static void iavf_shaper_cap(struct net_shaper_binding *binding, 5277 enum net_shaper_scope scope, 5278 unsigned long *flags) 5279 { 5280 if (scope != NET_SHAPER_SCOPE_QUEUE) 5281 return; 5282 5283 *flags = BIT(NET_SHAPER_A_CAPS_SUPPORT_BW_MIN) | 5284 BIT(NET_SHAPER_A_CAPS_SUPPORT_BW_MAX) | 5285 BIT(NET_SHAPER_A_CAPS_SUPPORT_METRIC_BPS); 5286 } 5287 5288 static const struct net_shaper_ops iavf_shaper_ops = { 5289 .set = iavf_shaper_set, 5290 .delete = iavf_shaper_del, 5291 .capabilities = iavf_shaper_cap, 5292 }; 5293 5294 static const struct net_device_ops iavf_netdev_ops = { 5295 .ndo_open = iavf_open, 5296 .ndo_stop = iavf_close, 5297 .ndo_start_xmit = iavf_xmit_frame, 5298 .ndo_set_rx_mode = iavf_set_rx_mode, 5299 .ndo_validate_addr = eth_validate_addr, 5300 .ndo_set_mac_address = iavf_set_mac, 5301 .ndo_change_mtu = iavf_change_mtu, 5302 .ndo_tx_timeout = iavf_tx_timeout, 5303 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid, 5304 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid, 5305 .ndo_features_check = iavf_features_check, 5306 .ndo_fix_features = iavf_fix_features, 5307 .ndo_set_features = iavf_set_features, 5308 .ndo_setup_tc = iavf_setup_tc, 5309 .net_shaper_ops = &iavf_shaper_ops, 5310 .ndo_hwtstamp_get = iavf_hwstamp_get, 5311 .ndo_hwtstamp_set = iavf_hwstamp_set, 5312 }; 5313 5314 /** 5315 * iavf_check_reset_complete - check that VF reset is complete 5316 * @hw: pointer to hw struct 5317 * 5318 * Returns 0 if device is ready to use, or -EBUSY if it's in reset. 5319 **/ 5320 static int iavf_check_reset_complete(struct iavf_hw *hw) 5321 { 5322 u32 rstat; 5323 int i; 5324 5325 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 5326 rstat = rd32(hw, IAVF_VFGEN_RSTAT) & 5327 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 5328 if ((rstat == VIRTCHNL_VFR_VFACTIVE) || 5329 (rstat == VIRTCHNL_VFR_COMPLETED)) 5330 return 0; 5331 msleep(IAVF_RESET_WAIT_MS); 5332 } 5333 return -EBUSY; 5334 } 5335 5336 /** 5337 * iavf_process_config - Process the config information we got from the PF 5338 * @adapter: board private structure 5339 * 5340 * Verify that we have a valid config struct, and set up our netdev features 5341 * and our VSI struct. 5342 **/ 5343 int iavf_process_config(struct iavf_adapter *adapter) 5344 { 5345 struct virtchnl_vf_resource *vfres = adapter->vf_res; 5346 netdev_features_t hw_vlan_features, vlan_features; 5347 struct net_device *netdev = adapter->netdev; 5348 netdev_features_t hw_enc_features; 5349 netdev_features_t hw_features; 5350 5351 hw_enc_features = NETIF_F_SG | 5352 NETIF_F_IP_CSUM | 5353 NETIF_F_IPV6_CSUM | 5354 NETIF_F_HIGHDMA | 5355 NETIF_F_SOFT_FEATURES | 5356 NETIF_F_TSO | 5357 NETIF_F_TSO_ECN | 5358 NETIF_F_TSO6 | 5359 NETIF_F_SCTP_CRC | 5360 NETIF_F_RXHASH | 5361 NETIF_F_RXCSUM | 5362 0; 5363 5364 /* advertise to stack only if offloads for encapsulated packets is 5365 * supported 5366 */ 5367 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) { 5368 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL | 5369 NETIF_F_GSO_GRE | 5370 NETIF_F_GSO_GRE_CSUM | 5371 NETIF_F_GSO_IPXIP4 | 5372 NETIF_F_GSO_IPXIP6 | 5373 NETIF_F_GSO_UDP_TUNNEL_CSUM | 5374 NETIF_F_GSO_PARTIAL | 5375 0; 5376 5377 if (!(vfres->vf_cap_flags & 5378 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)) 5379 netdev->gso_partial_features |= 5380 NETIF_F_GSO_UDP_TUNNEL_CSUM; 5381 5382 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 5383 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 5384 netdev->hw_enc_features |= hw_enc_features; 5385 } 5386 /* record features VLANs can make use of */ 5387 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 5388 5389 /* Write features and hw_features separately to avoid polluting 5390 * with, or dropping, features that are set when we registered. 5391 */ 5392 hw_features = hw_enc_features; 5393 5394 /* get HW VLAN features that can be toggled */ 5395 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter); 5396 5397 /* Enable HW TC offload if ADQ or tc U32 is supported */ 5398 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ || 5399 TC_U32_SUPPORT(adapter)) 5400 hw_features |= NETIF_F_HW_TC; 5401 5402 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO) 5403 hw_features |= NETIF_F_GSO_UDP_L4; 5404 5405 netdev->hw_features |= hw_features | hw_vlan_features; 5406 vlan_features = iavf_get_netdev_vlan_features(adapter); 5407 5408 netdev->features |= hw_features | vlan_features; 5409 5410 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) 5411 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 5412 5413 if (FDIR_FLTR_SUPPORT(adapter)) { 5414 netdev->hw_features |= NETIF_F_NTUPLE; 5415 netdev->features |= NETIF_F_NTUPLE; 5416 adapter->flags |= IAVF_FLAG_FDIR_ENABLED; 5417 } 5418 5419 netdev->priv_flags |= IFF_UNICAST_FLT; 5420 5421 /* Do not turn on offloads when they are requested to be turned off. 5422 * TSO needs minimum 576 bytes to work correctly. 5423 */ 5424 if (netdev->wanted_features) { 5425 if (!(netdev->wanted_features & NETIF_F_TSO) || 5426 netdev->mtu < 576) 5427 netdev->features &= ~NETIF_F_TSO; 5428 if (!(netdev->wanted_features & NETIF_F_TSO6) || 5429 netdev->mtu < 576) 5430 netdev->features &= ~NETIF_F_TSO6; 5431 if (!(netdev->wanted_features & NETIF_F_TSO_ECN)) 5432 netdev->features &= ~NETIF_F_TSO_ECN; 5433 if (!(netdev->wanted_features & NETIF_F_GRO)) 5434 netdev->features &= ~NETIF_F_GRO; 5435 if (!(netdev->wanted_features & NETIF_F_GSO)) 5436 netdev->features &= ~NETIF_F_GSO; 5437 } 5438 5439 return 0; 5440 } 5441 5442 /** 5443 * iavf_probe - Device Initialization Routine 5444 * @pdev: PCI device information struct 5445 * @ent: entry in iavf_pci_tbl 5446 * 5447 * Returns 0 on success, negative on failure 5448 * 5449 * iavf_probe initializes an adapter identified by a pci_dev structure. 5450 * The OS initialization, configuring of the adapter private structure, 5451 * and a hardware reset occur. 5452 **/ 5453 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 5454 { 5455 struct net_device *netdev; 5456 struct iavf_adapter *adapter = NULL; 5457 struct iavf_hw *hw = NULL; 5458 int err, len; 5459 5460 err = pci_enable_device(pdev); 5461 if (err) 5462 return err; 5463 5464 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 5465 if (err) { 5466 dev_err(&pdev->dev, 5467 "DMA configuration failed: 0x%x\n", err); 5468 goto err_dma; 5469 } 5470 5471 err = pci_request_regions(pdev, iavf_driver_name); 5472 if (err) { 5473 dev_err(&pdev->dev, 5474 "pci_request_regions failed 0x%x\n", err); 5475 goto err_pci_reg; 5476 } 5477 5478 pci_set_master(pdev); 5479 5480 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter), 5481 IAVF_MAX_REQ_QUEUES); 5482 if (!netdev) { 5483 err = -ENOMEM; 5484 goto err_alloc_etherdev; 5485 } 5486 5487 SET_NETDEV_DEV(netdev, &pdev->dev); 5488 5489 pci_set_drvdata(pdev, netdev); 5490 adapter = netdev_priv(netdev); 5491 5492 adapter->netdev = netdev; 5493 adapter->pdev = pdev; 5494 5495 hw = &adapter->hw; 5496 hw->back = adapter; 5497 5498 adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM, 5499 iavf_driver_name); 5500 if (!adapter->wq) { 5501 err = -ENOMEM; 5502 goto err_alloc_wq; 5503 } 5504 5505 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; 5506 iavf_change_state(adapter, __IAVF_STARTUP); 5507 5508 /* Call save state here because it relies on the adapter struct. */ 5509 pci_save_state(pdev); 5510 5511 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 5512 pci_resource_len(pdev, 0)); 5513 if (!hw->hw_addr) { 5514 err = -EIO; 5515 goto err_ioremap; 5516 } 5517 hw->vendor_id = pdev->vendor; 5518 hw->device_id = pdev->device; 5519 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5520 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5521 hw->subsystem_device_id = pdev->subsystem_device; 5522 hw->bus.device = PCI_SLOT(pdev->devfn); 5523 hw->bus.func = PCI_FUNC(pdev->devfn); 5524 hw->bus.bus_id = pdev->bus->number; 5525 5526 len = struct_size(adapter->qos_caps, cap, IAVF_MAX_QOS_TC_NUM); 5527 adapter->qos_caps = kzalloc(len, GFP_KERNEL); 5528 if (!adapter->qos_caps) { 5529 err = -ENOMEM; 5530 goto err_alloc_qos_cap; 5531 } 5532 5533 /* set up the locks for the AQ, do this only once in probe 5534 * and destroy them only once in remove 5535 */ 5536 mutex_init(&adapter->crit_lock); 5537 mutex_init(&hw->aq.asq_mutex); 5538 mutex_init(&hw->aq.arq_mutex); 5539 5540 spin_lock_init(&adapter->mac_vlan_list_lock); 5541 spin_lock_init(&adapter->cloud_filter_list_lock); 5542 spin_lock_init(&adapter->fdir_fltr_lock); 5543 spin_lock_init(&adapter->adv_rss_lock); 5544 spin_lock_init(&adapter->current_netdev_promisc_flags_lock); 5545 5546 INIT_LIST_HEAD(&adapter->mac_filter_list); 5547 INIT_LIST_HEAD(&adapter->vlan_filter_list); 5548 INIT_LIST_HEAD(&adapter->cloud_filter_list); 5549 INIT_LIST_HEAD(&adapter->fdir_list_head); 5550 INIT_LIST_HEAD(&adapter->adv_rss_list_head); 5551 5552 INIT_WORK(&adapter->reset_task, iavf_reset_task); 5553 INIT_WORK(&adapter->adminq_task, iavf_adminq_task); 5554 INIT_WORK(&adapter->finish_config, iavf_finish_config); 5555 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task); 5556 5557 /* Setup the wait queue for indicating transition to down status */ 5558 init_waitqueue_head(&adapter->down_waitqueue); 5559 5560 /* Setup the wait queue for indicating transition to running state */ 5561 init_waitqueue_head(&adapter->reset_waitqueue); 5562 5563 /* Setup the wait queue for indicating virtchannel events */ 5564 init_waitqueue_head(&adapter->vc_waitqueue); 5565 5566 INIT_LIST_HEAD(&adapter->ptp.aq_cmds); 5567 init_waitqueue_head(&adapter->ptp.phc_time_waitqueue); 5568 mutex_init(&adapter->ptp.aq_cmd_lock); 5569 5570 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 5571 msecs_to_jiffies(5 * (pdev->devfn & 0x07))); 5572 /* Initialization goes on in the work. Do not add more of it below. */ 5573 return 0; 5574 5575 err_alloc_qos_cap: 5576 iounmap(hw->hw_addr); 5577 err_ioremap: 5578 destroy_workqueue(adapter->wq); 5579 err_alloc_wq: 5580 free_netdev(netdev); 5581 err_alloc_etherdev: 5582 pci_release_regions(pdev); 5583 err_pci_reg: 5584 err_dma: 5585 pci_disable_device(pdev); 5586 return err; 5587 } 5588 5589 /** 5590 * iavf_suspend - Power management suspend routine 5591 * @dev_d: device info pointer 5592 * 5593 * Called when the system (VM) is entering sleep/suspend. 5594 **/ 5595 static int iavf_suspend(struct device *dev_d) 5596 { 5597 struct net_device *netdev = dev_get_drvdata(dev_d); 5598 struct iavf_adapter *adapter = netdev_priv(netdev); 5599 5600 netif_device_detach(netdev); 5601 5602 netdev_lock(netdev); 5603 mutex_lock(&adapter->crit_lock); 5604 5605 if (netif_running(netdev)) { 5606 rtnl_lock(); 5607 iavf_down(adapter); 5608 rtnl_unlock(); 5609 } 5610 iavf_free_misc_irq(adapter); 5611 iavf_reset_interrupt_capability(adapter); 5612 5613 mutex_unlock(&adapter->crit_lock); 5614 netdev_unlock(netdev); 5615 5616 return 0; 5617 } 5618 5619 /** 5620 * iavf_resume - Power management resume routine 5621 * @dev_d: device info pointer 5622 * 5623 * Called when the system (VM) is resumed from sleep/suspend. 5624 **/ 5625 static int iavf_resume(struct device *dev_d) 5626 { 5627 struct pci_dev *pdev = to_pci_dev(dev_d); 5628 struct iavf_adapter *adapter; 5629 u32 err; 5630 5631 adapter = iavf_pdev_to_adapter(pdev); 5632 5633 pci_set_master(pdev); 5634 5635 rtnl_lock(); 5636 err = iavf_set_interrupt_capability(adapter); 5637 if (err) { 5638 rtnl_unlock(); 5639 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n"); 5640 return err; 5641 } 5642 err = iavf_request_misc_irq(adapter); 5643 rtnl_unlock(); 5644 if (err) { 5645 dev_err(&pdev->dev, "Cannot get interrupt vector.\n"); 5646 return err; 5647 } 5648 5649 queue_work(adapter->wq, &adapter->reset_task); 5650 5651 netif_device_attach(adapter->netdev); 5652 5653 return err; 5654 } 5655 5656 /** 5657 * iavf_remove - Device Removal Routine 5658 * @pdev: PCI device information struct 5659 * 5660 * iavf_remove is called by the PCI subsystem to alert the driver 5661 * that it should release a PCI device. The could be caused by a 5662 * Hot-Plug event, or because the driver is going to be removed from 5663 * memory. 5664 **/ 5665 static void iavf_remove(struct pci_dev *pdev) 5666 { 5667 struct iavf_fdir_fltr *fdir, *fdirtmp; 5668 struct iavf_vlan_filter *vlf, *vlftmp; 5669 struct iavf_cloud_filter *cf, *cftmp; 5670 struct iavf_adv_rss *rss, *rsstmp; 5671 struct iavf_mac_filter *f, *ftmp; 5672 struct iavf_adapter *adapter; 5673 struct net_device *netdev; 5674 struct iavf_hw *hw; 5675 5676 /* Don't proceed with remove if netdev is already freed */ 5677 netdev = pci_get_drvdata(pdev); 5678 if (!netdev) 5679 return; 5680 5681 adapter = iavf_pdev_to_adapter(pdev); 5682 hw = &adapter->hw; 5683 5684 if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 5685 return; 5686 5687 /* Wait until port initialization is complete. 5688 * There are flows where register/unregister netdev may race. 5689 */ 5690 while (1) { 5691 mutex_lock(&adapter->crit_lock); 5692 if (adapter->state == __IAVF_RUNNING || 5693 adapter->state == __IAVF_DOWN || 5694 adapter->state == __IAVF_INIT_FAILED) { 5695 mutex_unlock(&adapter->crit_lock); 5696 break; 5697 } 5698 /* Simply return if we already went through iavf_shutdown */ 5699 if (adapter->state == __IAVF_REMOVE) { 5700 mutex_unlock(&adapter->crit_lock); 5701 return; 5702 } 5703 5704 mutex_unlock(&adapter->crit_lock); 5705 usleep_range(500, 1000); 5706 } 5707 cancel_delayed_work_sync(&adapter->watchdog_task); 5708 cancel_work_sync(&adapter->finish_config); 5709 5710 if (netdev->reg_state == NETREG_REGISTERED) 5711 unregister_netdev(netdev); 5712 5713 netdev_lock(netdev); 5714 mutex_lock(&adapter->crit_lock); 5715 dev_info(&adapter->pdev->dev, "Removing device\n"); 5716 iavf_change_state(adapter, __IAVF_REMOVE); 5717 5718 iavf_request_reset(adapter); 5719 msleep(50); 5720 /* If the FW isn't responding, kick it once, but only once. */ 5721 if (!iavf_asq_done(hw)) { 5722 iavf_request_reset(adapter); 5723 msleep(50); 5724 } 5725 5726 iavf_ptp_release(adapter); 5727 5728 iavf_misc_irq_disable(adapter); 5729 /* Shut down all the garbage mashers on the detention level */ 5730 cancel_work_sync(&adapter->reset_task); 5731 cancel_delayed_work_sync(&adapter->watchdog_task); 5732 cancel_work_sync(&adapter->adminq_task); 5733 5734 adapter->aq_required = 0; 5735 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 5736 5737 iavf_free_all_tx_resources(adapter); 5738 iavf_free_all_rx_resources(adapter); 5739 iavf_free_misc_irq(adapter); 5740 iavf_free_interrupt_scheme(adapter); 5741 5742 iavf_free_rss(adapter); 5743 5744 if (hw->aq.asq.count) 5745 iavf_shutdown_adminq(hw); 5746 5747 /* destroy the locks only once, here */ 5748 mutex_destroy(&hw->aq.arq_mutex); 5749 mutex_destroy(&hw->aq.asq_mutex); 5750 mutex_unlock(&adapter->crit_lock); 5751 mutex_destroy(&adapter->crit_lock); 5752 netdev_unlock(netdev); 5753 5754 iounmap(hw->hw_addr); 5755 pci_release_regions(pdev); 5756 kfree(adapter->vf_res); 5757 spin_lock_bh(&adapter->mac_vlan_list_lock); 5758 /* If we got removed before an up/down sequence, we've got a filter 5759 * hanging out there that we need to get rid of. 5760 */ 5761 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 5762 list_del(&f->list); 5763 kfree(f); 5764 } 5765 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 5766 list) { 5767 list_del(&vlf->list); 5768 kfree(vlf); 5769 } 5770 5771 spin_unlock_bh(&adapter->mac_vlan_list_lock); 5772 5773 spin_lock_bh(&adapter->cloud_filter_list_lock); 5774 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 5775 list_del(&cf->list); 5776 kfree(cf); 5777 } 5778 spin_unlock_bh(&adapter->cloud_filter_list_lock); 5779 5780 spin_lock_bh(&adapter->fdir_fltr_lock); 5781 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) { 5782 list_del(&fdir->list); 5783 kfree(fdir); 5784 } 5785 spin_unlock_bh(&adapter->fdir_fltr_lock); 5786 5787 spin_lock_bh(&adapter->adv_rss_lock); 5788 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 5789 list) { 5790 list_del(&rss->list); 5791 kfree(rss); 5792 } 5793 spin_unlock_bh(&adapter->adv_rss_lock); 5794 5795 destroy_workqueue(adapter->wq); 5796 5797 pci_set_drvdata(pdev, NULL); 5798 5799 free_netdev(netdev); 5800 5801 pci_disable_device(pdev); 5802 } 5803 5804 /** 5805 * iavf_shutdown - Shutdown the device in preparation for a reboot 5806 * @pdev: pci device structure 5807 **/ 5808 static void iavf_shutdown(struct pci_dev *pdev) 5809 { 5810 iavf_remove(pdev); 5811 5812 if (system_state == SYSTEM_POWER_OFF) 5813 pci_set_power_state(pdev, PCI_D3hot); 5814 } 5815 5816 static DEFINE_SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume); 5817 5818 static struct pci_driver iavf_driver = { 5819 .name = iavf_driver_name, 5820 .id_table = iavf_pci_tbl, 5821 .probe = iavf_probe, 5822 .remove = iavf_remove, 5823 .driver.pm = pm_sleep_ptr(&iavf_pm_ops), 5824 .shutdown = iavf_shutdown, 5825 }; 5826 5827 /** 5828 * iavf_init_module - Driver Registration Routine 5829 * 5830 * iavf_init_module is the first routine called when the driver is 5831 * loaded. All it does is register with the PCI subsystem. 5832 **/ 5833 static int __init iavf_init_module(void) 5834 { 5835 pr_info("iavf: %s\n", iavf_driver_string); 5836 5837 pr_info("%s\n", iavf_copyright); 5838 5839 return pci_register_driver(&iavf_driver); 5840 } 5841 5842 module_init(iavf_init_module); 5843 5844 /** 5845 * iavf_exit_module - Driver Exit Cleanup Routine 5846 * 5847 * iavf_exit_module is called just before the driver is removed 5848 * from memory. 5849 **/ 5850 static void __exit iavf_exit_module(void) 5851 { 5852 pci_unregister_driver(&iavf_driver); 5853 } 5854 5855 module_exit(iavf_exit_module); 5856 5857 /* iavf_main.c */ 5858