1c6e0d914SCasey Leedom /*
2c6e0d914SCasey Leedom * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3c6e0d914SCasey Leedom * driver for Linux.
4c6e0d914SCasey Leedom *
5c6e0d914SCasey Leedom * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6c6e0d914SCasey Leedom *
7c6e0d914SCasey Leedom * This software is available to you under a choice of one of two
8c6e0d914SCasey Leedom * licenses. You may choose to be licensed under the terms of the GNU
9c6e0d914SCasey Leedom * General Public License (GPL) Version 2, available from the file
10c6e0d914SCasey Leedom * COPYING in the main directory of this source tree, or the
11c6e0d914SCasey Leedom * OpenIB.org BSD license below:
12c6e0d914SCasey Leedom *
13c6e0d914SCasey Leedom * Redistribution and use in source and binary forms, with or
14c6e0d914SCasey Leedom * without modification, are permitted provided that the following
15c6e0d914SCasey Leedom * conditions are met:
16c6e0d914SCasey Leedom *
17c6e0d914SCasey Leedom * - Redistributions of source code must retain the above
18c6e0d914SCasey Leedom * copyright notice, this list of conditions and the following
19c6e0d914SCasey Leedom * disclaimer.
20c6e0d914SCasey Leedom *
21c6e0d914SCasey Leedom * - Redistributions in binary form must reproduce the above
22c6e0d914SCasey Leedom * copyright notice, this list of conditions and the following
23c6e0d914SCasey Leedom * disclaimer in the documentation and/or other materials
24c6e0d914SCasey Leedom * provided with the distribution.
25c6e0d914SCasey Leedom *
26c6e0d914SCasey Leedom * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27c6e0d914SCasey Leedom * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28c6e0d914SCasey Leedom * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29c6e0d914SCasey Leedom * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30c6e0d914SCasey Leedom * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31c6e0d914SCasey Leedom * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32c6e0d914SCasey Leedom * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33c6e0d914SCasey Leedom * SOFTWARE.
34c6e0d914SCasey Leedom */
35c6e0d914SCasey Leedom
36c6e0d914SCasey Leedom #include <linux/skbuff.h>
37c6e0d914SCasey Leedom #include <linux/netdevice.h>
38c6e0d914SCasey Leedom #include <linux/etherdevice.h>
39c6e0d914SCasey Leedom #include <linux/if_vlan.h>
40c6e0d914SCasey Leedom #include <linux/ip.h>
41c6e0d914SCasey Leedom #include <net/ipv6.h>
42c6e0d914SCasey Leedom #include <net/tcp.h>
43c6e0d914SCasey Leedom #include <linux/dma-mapping.h>
4470c71606SPaul Gortmaker #include <linux/prefetch.h>
45c6e0d914SCasey Leedom
46c6e0d914SCasey Leedom #include "t4vf_common.h"
47c6e0d914SCasey Leedom #include "t4vf_defs.h"
48c6e0d914SCasey Leedom
49c6e0d914SCasey Leedom #include "../cxgb4/t4_regs.h"
50f612b815SHariprasad Shenai #include "../cxgb4/t4_values.h"
51c6e0d914SCasey Leedom #include "../cxgb4/t4fw_api.h"
52c6e0d914SCasey Leedom #include "../cxgb4/t4_msg.h"
53c6e0d914SCasey Leedom
54c6e0d914SCasey Leedom /*
55c6e0d914SCasey Leedom * Constants ...
56c6e0d914SCasey Leedom */
57c6e0d914SCasey Leedom enum {
58c6e0d914SCasey Leedom /*
59c6e0d914SCasey Leedom * Egress Queue sizes, producer and consumer indices are all in units
60c6e0d914SCasey Leedom * of Egress Context Units bytes. Note that as far as the hardware is
61c6e0d914SCasey Leedom * concerned, the free list is an Egress Queue (the host produces free
62c6e0d914SCasey Leedom * buffers which the hardware consumes) and free list entries are
63c6e0d914SCasey Leedom * 64-bit PCI DMA addresses.
64c6e0d914SCasey Leedom */
65c6e0d914SCasey Leedom EQ_UNIT = SGE_EQ_IDXSIZE,
66c6e0d914SCasey Leedom FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
67c6e0d914SCasey Leedom TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
68c6e0d914SCasey Leedom
69c6e0d914SCasey Leedom /*
70c6e0d914SCasey Leedom * Max number of TX descriptors we clean up at a time. Should be
71c6e0d914SCasey Leedom * modest as freeing skbs isn't cheap and it happens while holding
72c6e0d914SCasey Leedom * locks. We just need to free packets faster than they arrive, we
73c6e0d914SCasey Leedom * eventually catch up and keep the amortized cost reasonable.
74c6e0d914SCasey Leedom */
75c6e0d914SCasey Leedom MAX_TX_RECLAIM = 16,
76c6e0d914SCasey Leedom
77c6e0d914SCasey Leedom /*
78c6e0d914SCasey Leedom * Max number of Rx buffers we replenish at a time. Again keep this
79c6e0d914SCasey Leedom * modest, allocating buffers isn't cheap either.
80c6e0d914SCasey Leedom */
81c6e0d914SCasey Leedom MAX_RX_REFILL = 16,
82c6e0d914SCasey Leedom
83c6e0d914SCasey Leedom /*
84c6e0d914SCasey Leedom * Period of the Rx queue check timer. This timer is infrequent as it
85c6e0d914SCasey Leedom * has something to do only when the system experiences severe memory
86c6e0d914SCasey Leedom * shortage.
87c6e0d914SCasey Leedom */
88c6e0d914SCasey Leedom RX_QCHECK_PERIOD = (HZ / 2),
89c6e0d914SCasey Leedom
90c6e0d914SCasey Leedom /*
91c6e0d914SCasey Leedom * Period of the TX queue check timer and the maximum number of TX
92c6e0d914SCasey Leedom * descriptors to be reclaimed by the TX timer.
93c6e0d914SCasey Leedom */
94c6e0d914SCasey Leedom TX_QCHECK_PERIOD = (HZ / 2),
95c6e0d914SCasey Leedom MAX_TIMER_TX_RECLAIM = 100,
96c6e0d914SCasey Leedom
97c6e0d914SCasey Leedom /*
98c6e0d914SCasey Leedom * Suspend an Ethernet TX queue with fewer available descriptors than
99c6e0d914SCasey Leedom * this. We always want to have room for a maximum sized packet:
100c6e0d914SCasey Leedom * inline immediate data + MAX_SKB_FRAGS. This is the same as
101c6e0d914SCasey Leedom * calc_tx_flits() for a TSO packet with nr_frags == MAX_SKB_FRAGS
102c6e0d914SCasey Leedom * (see that function and its helpers for a description of the
103c6e0d914SCasey Leedom * calculation).
104c6e0d914SCasey Leedom */
105c6e0d914SCasey Leedom ETHTXQ_MAX_FRAGS = MAX_SKB_FRAGS + 1,
106c6e0d914SCasey Leedom ETHTXQ_MAX_SGL_LEN = ((3 * (ETHTXQ_MAX_FRAGS-1))/2 +
107c6e0d914SCasey Leedom ((ETHTXQ_MAX_FRAGS-1) & 1) +
108c6e0d914SCasey Leedom 2),
109c6e0d914SCasey Leedom ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
110c6e0d914SCasey Leedom sizeof(struct cpl_tx_pkt_lso_core) +
111c6e0d914SCasey Leedom sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
112c6e0d914SCasey Leedom ETHTXQ_MAX_FLITS = ETHTXQ_MAX_SGL_LEN + ETHTXQ_MAX_HDR,
113c6e0d914SCasey Leedom
114c6e0d914SCasey Leedom ETHTXQ_STOP_THRES = 1 + DIV_ROUND_UP(ETHTXQ_MAX_FLITS, TXD_PER_EQ_UNIT),
115c6e0d914SCasey Leedom
116c6e0d914SCasey Leedom /*
117c6e0d914SCasey Leedom * Max TX descriptor space we allow for an Ethernet packet to be
118c6e0d914SCasey Leedom * inlined into a WR. This is limited by the maximum value which
119c6e0d914SCasey Leedom * we can specify for immediate data in the firmware Ethernet TX
120c6e0d914SCasey Leedom * Work Request.
121c6e0d914SCasey Leedom */
122e2ac9628SHariprasad Shenai MAX_IMM_TX_PKT_LEN = FW_WR_IMMDLEN_M,
123c6e0d914SCasey Leedom
124c6e0d914SCasey Leedom /*
125c6e0d914SCasey Leedom * Max size of a WR sent through a control TX queue.
126c6e0d914SCasey Leedom */
127c6e0d914SCasey Leedom MAX_CTRL_WR_LEN = 256,
128c6e0d914SCasey Leedom
129c6e0d914SCasey Leedom /*
130c6e0d914SCasey Leedom * Maximum amount of data which we'll ever need to inline into a
131c6e0d914SCasey Leedom * TX ring: max(MAX_IMM_TX_PKT_LEN, MAX_CTRL_WR_LEN).
132c6e0d914SCasey Leedom */
133c6e0d914SCasey Leedom MAX_IMM_TX_LEN = (MAX_IMM_TX_PKT_LEN > MAX_CTRL_WR_LEN
134c6e0d914SCasey Leedom ? MAX_IMM_TX_PKT_LEN
135c6e0d914SCasey Leedom : MAX_CTRL_WR_LEN),
136c6e0d914SCasey Leedom
137c6e0d914SCasey Leedom /*
138c6e0d914SCasey Leedom * For incoming packets less than RX_COPY_THRES, we copy the data into
139c6e0d914SCasey Leedom * an skb rather than referencing the data. We allocate enough
140c6e0d914SCasey Leedom * in-line room in skb's to accommodate pulling in RX_PULL_LEN bytes
141c6e0d914SCasey Leedom * of the data (header).
142c6e0d914SCasey Leedom */
143c6e0d914SCasey Leedom RX_COPY_THRES = 256,
144c6e0d914SCasey Leedom RX_PULL_LEN = 128,
145c6e0d914SCasey Leedom
146c6e0d914SCasey Leedom /*
147eb6c503dSCasey Leedom * Main body length for sk_buffs used for RX Ethernet packets with
148eb6c503dSCasey Leedom * fragments. Should be >= RX_PULL_LEN but possibly bigger to give
149eb6c503dSCasey Leedom * pskb_may_pull() some room.
150c6e0d914SCasey Leedom */
151eb6c503dSCasey Leedom RX_SKB_LEN = 512,
152eb6c503dSCasey Leedom };
153c6e0d914SCasey Leedom
154c6e0d914SCasey Leedom /*
155c6e0d914SCasey Leedom * Software state per TX descriptor.
156c6e0d914SCasey Leedom */
157c6e0d914SCasey Leedom struct tx_sw_desc {
158c6e0d914SCasey Leedom struct sk_buff *skb; /* socket buffer of TX data source */
159c6e0d914SCasey Leedom struct ulptx_sgl *sgl; /* scatter/gather list in TX Queue */
160c6e0d914SCasey Leedom };
161c6e0d914SCasey Leedom
162c6e0d914SCasey Leedom /*
163c6e0d914SCasey Leedom * Software state per RX Free List descriptor. We keep track of the allocated
164c6e0d914SCasey Leedom * FL page, its size, and its PCI DMA address (if the page is mapped). The FL
165c6e0d914SCasey Leedom * page size and its PCI DMA mapped state are stored in the low bits of the
166c6e0d914SCasey Leedom * PCI DMA address as per below.
167c6e0d914SCasey Leedom */
168c6e0d914SCasey Leedom struct rx_sw_desc {
169c6e0d914SCasey Leedom struct page *page; /* Free List page buffer */
170c6e0d914SCasey Leedom dma_addr_t dma_addr; /* PCI DMA address (if mapped) */
171c6e0d914SCasey Leedom /* and flags (see below) */
172c6e0d914SCasey Leedom };
173c6e0d914SCasey Leedom
174c6e0d914SCasey Leedom /*
175c6e0d914SCasey Leedom * The low bits of rx_sw_desc.dma_addr have special meaning. Note that the
176c6e0d914SCasey Leedom * SGE also uses the low 4 bits to determine the size of the buffer. It uses
177c6e0d914SCasey Leedom * those bits to index into the SGE_FL_BUFFER_SIZE[index] register array.
178c6e0d914SCasey Leedom * Since we only use SGE_FL_BUFFER_SIZE0 and SGE_FL_BUFFER_SIZE1, these low 4
179c6e0d914SCasey Leedom * bits can only contain a 0 or a 1 to indicate which size buffer we're giving
180c6e0d914SCasey Leedom * to the SGE. Thus, our software state of "is the buffer mapped for DMA" is
181c6e0d914SCasey Leedom * maintained in an inverse sense so the hardware never sees that bit high.
182c6e0d914SCasey Leedom */
183c6e0d914SCasey Leedom enum {
184c6e0d914SCasey Leedom RX_LARGE_BUF = 1 << 0, /* buffer is SGE_FL_BUFFER_SIZE[1] */
185c6e0d914SCasey Leedom RX_UNMAPPED_BUF = 1 << 1, /* buffer is not mapped */
186c6e0d914SCasey Leedom };
187c6e0d914SCasey Leedom
188c6e0d914SCasey Leedom /**
189c6e0d914SCasey Leedom * get_buf_addr - return DMA buffer address of software descriptor
190c6e0d914SCasey Leedom * @sdesc: pointer to the software buffer descriptor
191c6e0d914SCasey Leedom *
192c6e0d914SCasey Leedom * Return the DMA buffer address of a software descriptor (stripping out
193c6e0d914SCasey Leedom * our low-order flag bits).
194c6e0d914SCasey Leedom */
get_buf_addr(const struct rx_sw_desc * sdesc)195c6e0d914SCasey Leedom static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *sdesc)
196c6e0d914SCasey Leedom {
197c6e0d914SCasey Leedom return sdesc->dma_addr & ~(dma_addr_t)(RX_LARGE_BUF | RX_UNMAPPED_BUF);
198c6e0d914SCasey Leedom }
199c6e0d914SCasey Leedom
200c6e0d914SCasey Leedom /**
201c6e0d914SCasey Leedom * is_buf_mapped - is buffer mapped for DMA?
202c6e0d914SCasey Leedom * @sdesc: pointer to the software buffer descriptor
203c6e0d914SCasey Leedom *
204c6e0d914SCasey Leedom * Determine whether the buffer associated with a software descriptor in
205c6e0d914SCasey Leedom * mapped for DMA or not.
206c6e0d914SCasey Leedom */
is_buf_mapped(const struct rx_sw_desc * sdesc)207c6e0d914SCasey Leedom static inline bool is_buf_mapped(const struct rx_sw_desc *sdesc)
208c6e0d914SCasey Leedom {
209c6e0d914SCasey Leedom return !(sdesc->dma_addr & RX_UNMAPPED_BUF);
210c6e0d914SCasey Leedom }
211c6e0d914SCasey Leedom
212c6e0d914SCasey Leedom /**
213c6e0d914SCasey Leedom * need_skb_unmap - does the platform need unmapping of sk_buffs?
214c6e0d914SCasey Leedom *
21525985edcSLucas De Marchi * Returns true if the platform needs sk_buff unmapping. The compiler
21625985edcSLucas De Marchi * optimizes away unnecessary code if this returns true.
217c6e0d914SCasey Leedom */
need_skb_unmap(void)218c6e0d914SCasey Leedom static inline int need_skb_unmap(void)
219c6e0d914SCasey Leedom {
22057b2eaf7SFUJITA Tomonori #ifdef CONFIG_NEED_DMA_MAP_STATE
22157b2eaf7SFUJITA Tomonori return 1;
22257b2eaf7SFUJITA Tomonori #else
22357b2eaf7SFUJITA Tomonori return 0;
22457b2eaf7SFUJITA Tomonori #endif
225c6e0d914SCasey Leedom }
226c6e0d914SCasey Leedom
227c6e0d914SCasey Leedom /**
228c6e0d914SCasey Leedom * txq_avail - return the number of available slots in a TX queue
229c6e0d914SCasey Leedom * @tq: the TX queue
230c6e0d914SCasey Leedom *
231c6e0d914SCasey Leedom * Returns the number of available descriptors in a TX queue.
232c6e0d914SCasey Leedom */
txq_avail(const struct sge_txq * tq)233c6e0d914SCasey Leedom static inline unsigned int txq_avail(const struct sge_txq *tq)
234c6e0d914SCasey Leedom {
235c6e0d914SCasey Leedom return tq->size - 1 - tq->in_use;
236c6e0d914SCasey Leedom }
237c6e0d914SCasey Leedom
238c6e0d914SCasey Leedom /**
239c6e0d914SCasey Leedom * fl_cap - return the capacity of a Free List
240c6e0d914SCasey Leedom * @fl: the Free List
241c6e0d914SCasey Leedom *
242c6e0d914SCasey Leedom * Returns the capacity of a Free List. The capacity is less than the
243c6e0d914SCasey Leedom * size because an Egress Queue Index Unit worth of descriptors needs to
244c6e0d914SCasey Leedom * be left unpopulated, otherwise the Producer and Consumer indices PIDX
245c6e0d914SCasey Leedom * and CIDX will match and the hardware will think the FL is empty.
246c6e0d914SCasey Leedom */
fl_cap(const struct sge_fl * fl)247c6e0d914SCasey Leedom static inline unsigned int fl_cap(const struct sge_fl *fl)
248c6e0d914SCasey Leedom {
249c6e0d914SCasey Leedom return fl->size - FL_PER_EQ_UNIT;
250c6e0d914SCasey Leedom }
251c6e0d914SCasey Leedom
252c6e0d914SCasey Leedom /**
253c6e0d914SCasey Leedom * fl_starving - return whether a Free List is starving.
25465f6ecc9SHariprasad Shenai * @adapter: pointer to the adapter
255c6e0d914SCasey Leedom * @fl: the Free List
256c6e0d914SCasey Leedom *
257c6e0d914SCasey Leedom * Tests specified Free List to see whether the number of buffers
258c6e0d914SCasey Leedom * available to the hardware has falled below our "starvation"
25925985edcSLucas De Marchi * threshold.
260c6e0d914SCasey Leedom */
fl_starving(const struct adapter * adapter,const struct sge_fl * fl)26165f6ecc9SHariprasad Shenai static inline bool fl_starving(const struct adapter *adapter,
26265f6ecc9SHariprasad Shenai const struct sge_fl *fl)
263c6e0d914SCasey Leedom {
26465f6ecc9SHariprasad Shenai const struct sge *s = &adapter->sge;
26565f6ecc9SHariprasad Shenai
26665f6ecc9SHariprasad Shenai return fl->avail - fl->pend_cred <= s->fl_starve_thres;
267c6e0d914SCasey Leedom }
268c6e0d914SCasey Leedom
269c6e0d914SCasey Leedom /**
270c6e0d914SCasey Leedom * map_skb - map an skb for DMA to the device
271c6e0d914SCasey Leedom * @dev: the egress net device
272c6e0d914SCasey Leedom * @skb: the packet to map
273c6e0d914SCasey Leedom * @addr: a pointer to the base of the DMA mapping array
274c6e0d914SCasey Leedom *
275c6e0d914SCasey Leedom * Map an skb for DMA to the device and return an array of DMA addresses.
276c6e0d914SCasey Leedom */
map_skb(struct device * dev,const struct sk_buff * skb,dma_addr_t * addr)277c6e0d914SCasey Leedom static int map_skb(struct device *dev, const struct sk_buff *skb,
278c6e0d914SCasey Leedom dma_addr_t *addr)
279c6e0d914SCasey Leedom {
280c6e0d914SCasey Leedom const skb_frag_t *fp, *end;
281c6e0d914SCasey Leedom const struct skb_shared_info *si;
282c6e0d914SCasey Leedom
283c6e0d914SCasey Leedom *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
284c6e0d914SCasey Leedom if (dma_mapping_error(dev, *addr))
285c6e0d914SCasey Leedom goto out_err;
286c6e0d914SCasey Leedom
287c6e0d914SCasey Leedom si = skb_shinfo(skb);
288c6e0d914SCasey Leedom end = &si->frags[si->nr_frags];
289c6e0d914SCasey Leedom for (fp = si->frags; fp < end; fp++) {
290a0006a86SIan Campbell *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
291a0006a86SIan Campbell DMA_TO_DEVICE);
292c6e0d914SCasey Leedom if (dma_mapping_error(dev, *addr))
293c6e0d914SCasey Leedom goto unwind;
294c6e0d914SCasey Leedom }
295c6e0d914SCasey Leedom return 0;
296c6e0d914SCasey Leedom
297c6e0d914SCasey Leedom unwind:
298c6e0d914SCasey Leedom while (fp-- > si->frags)
2999e903e08SEric Dumazet dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
300c6e0d914SCasey Leedom dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
301c6e0d914SCasey Leedom
302c6e0d914SCasey Leedom out_err:
303c6e0d914SCasey Leedom return -ENOMEM;
304c6e0d914SCasey Leedom }
305c6e0d914SCasey Leedom
unmap_sgl(struct device * dev,const struct sk_buff * skb,const struct ulptx_sgl * sgl,const struct sge_txq * tq)306c6e0d914SCasey Leedom static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
307c6e0d914SCasey Leedom const struct ulptx_sgl *sgl, const struct sge_txq *tq)
308c6e0d914SCasey Leedom {
309c6e0d914SCasey Leedom const struct ulptx_sge_pair *p;
310c6e0d914SCasey Leedom unsigned int nfrags = skb_shinfo(skb)->nr_frags;
311c6e0d914SCasey Leedom
312c6e0d914SCasey Leedom if (likely(skb_headlen(skb)))
313c6e0d914SCasey Leedom dma_unmap_single(dev, be64_to_cpu(sgl->addr0),
314c6e0d914SCasey Leedom be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
315c6e0d914SCasey Leedom else {
316c6e0d914SCasey Leedom dma_unmap_page(dev, be64_to_cpu(sgl->addr0),
317c6e0d914SCasey Leedom be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
318c6e0d914SCasey Leedom nfrags--;
319c6e0d914SCasey Leedom }
320c6e0d914SCasey Leedom
321c6e0d914SCasey Leedom /*
322c6e0d914SCasey Leedom * the complexity below is because of the possibility of a wrap-around
323c6e0d914SCasey Leedom * in the middle of an SGL
324c6e0d914SCasey Leedom */
325c6e0d914SCasey Leedom for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
326c6e0d914SCasey Leedom if (likely((u8 *)(p + 1) <= (u8 *)tq->stat)) {
327c6e0d914SCasey Leedom unmap:
328c6e0d914SCasey Leedom dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
329c6e0d914SCasey Leedom be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
330c6e0d914SCasey Leedom dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
331c6e0d914SCasey Leedom be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
332c6e0d914SCasey Leedom p++;
333c6e0d914SCasey Leedom } else if ((u8 *)p == (u8 *)tq->stat) {
334c6e0d914SCasey Leedom p = (const struct ulptx_sge_pair *)tq->desc;
335c6e0d914SCasey Leedom goto unmap;
336c6e0d914SCasey Leedom } else if ((u8 *)p + 8 == (u8 *)tq->stat) {
337c6e0d914SCasey Leedom const __be64 *addr = (const __be64 *)tq->desc;
338c6e0d914SCasey Leedom
339c6e0d914SCasey Leedom dma_unmap_page(dev, be64_to_cpu(addr[0]),
340c6e0d914SCasey Leedom be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
341c6e0d914SCasey Leedom dma_unmap_page(dev, be64_to_cpu(addr[1]),
342c6e0d914SCasey Leedom be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
343c6e0d914SCasey Leedom p = (const struct ulptx_sge_pair *)&addr[2];
344c6e0d914SCasey Leedom } else {
345c6e0d914SCasey Leedom const __be64 *addr = (const __be64 *)tq->desc;
346c6e0d914SCasey Leedom
347c6e0d914SCasey Leedom dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
348c6e0d914SCasey Leedom be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
349c6e0d914SCasey Leedom dma_unmap_page(dev, be64_to_cpu(addr[0]),
350c6e0d914SCasey Leedom be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
351c6e0d914SCasey Leedom p = (const struct ulptx_sge_pair *)&addr[1];
352c6e0d914SCasey Leedom }
353c6e0d914SCasey Leedom }
354c6e0d914SCasey Leedom if (nfrags) {
355c6e0d914SCasey Leedom __be64 addr;
356c6e0d914SCasey Leedom
357c6e0d914SCasey Leedom if ((u8 *)p == (u8 *)tq->stat)
358c6e0d914SCasey Leedom p = (const struct ulptx_sge_pair *)tq->desc;
359c6e0d914SCasey Leedom addr = ((u8 *)p + 16 <= (u8 *)tq->stat
360c6e0d914SCasey Leedom ? p->addr[0]
361c6e0d914SCasey Leedom : *(const __be64 *)tq->desc);
362c6e0d914SCasey Leedom dma_unmap_page(dev, be64_to_cpu(addr), be32_to_cpu(p->len[0]),
363c6e0d914SCasey Leedom DMA_TO_DEVICE);
364c6e0d914SCasey Leedom }
365c6e0d914SCasey Leedom }
366c6e0d914SCasey Leedom
367c6e0d914SCasey Leedom /**
368c6e0d914SCasey Leedom * free_tx_desc - reclaims TX descriptors and their buffers
369c6e0d914SCasey Leedom * @adapter: the adapter
370c6e0d914SCasey Leedom * @tq: the TX queue to reclaim descriptors from
371c6e0d914SCasey Leedom * @n: the number of descriptors to reclaim
372c6e0d914SCasey Leedom * @unmap: whether the buffers should be unmapped for DMA
373c6e0d914SCasey Leedom *
374c6e0d914SCasey Leedom * Reclaims TX descriptors from an SGE TX queue and frees the associated
375c6e0d914SCasey Leedom * TX buffers. Called with the TX queue lock held.
376c6e0d914SCasey Leedom */
free_tx_desc(struct adapter * adapter,struct sge_txq * tq,unsigned int n,bool unmap)377c6e0d914SCasey Leedom static void free_tx_desc(struct adapter *adapter, struct sge_txq *tq,
378c6e0d914SCasey Leedom unsigned int n, bool unmap)
379c6e0d914SCasey Leedom {
380c6e0d914SCasey Leedom struct tx_sw_desc *sdesc;
381c6e0d914SCasey Leedom unsigned int cidx = tq->cidx;
382c6e0d914SCasey Leedom struct device *dev = adapter->pdev_dev;
383c6e0d914SCasey Leedom
384c6e0d914SCasey Leedom const int need_unmap = need_skb_unmap() && unmap;
385c6e0d914SCasey Leedom
386c6e0d914SCasey Leedom sdesc = &tq->sdesc[cidx];
387c6e0d914SCasey Leedom while (n--) {
388c6e0d914SCasey Leedom /*
389c6e0d914SCasey Leedom * If we kept a reference to the original TX skb, we need to
390c6e0d914SCasey Leedom * unmap it from PCI DMA space (if required) and free it.
391c6e0d914SCasey Leedom */
392c6e0d914SCasey Leedom if (sdesc->skb) {
393c6e0d914SCasey Leedom if (need_unmap)
394c6e0d914SCasey Leedom unmap_sgl(dev, sdesc->skb, sdesc->sgl, tq);
39542ffda5fSEric W. Biederman dev_consume_skb_any(sdesc->skb);
396c6e0d914SCasey Leedom sdesc->skb = NULL;
397c6e0d914SCasey Leedom }
398c6e0d914SCasey Leedom
399c6e0d914SCasey Leedom sdesc++;
400c6e0d914SCasey Leedom if (++cidx == tq->size) {
401c6e0d914SCasey Leedom cidx = 0;
402c6e0d914SCasey Leedom sdesc = tq->sdesc;
403c6e0d914SCasey Leedom }
404c6e0d914SCasey Leedom }
405c6e0d914SCasey Leedom tq->cidx = cidx;
406c6e0d914SCasey Leedom }
407c6e0d914SCasey Leedom
408c6e0d914SCasey Leedom /*
409c6e0d914SCasey Leedom * Return the number of reclaimable descriptors in a TX queue.
410c6e0d914SCasey Leedom */
reclaimable(const struct sge_txq * tq)411c6e0d914SCasey Leedom static inline int reclaimable(const struct sge_txq *tq)
412c6e0d914SCasey Leedom {
413c6e0d914SCasey Leedom int hw_cidx = be16_to_cpu(tq->stat->cidx);
414c6e0d914SCasey Leedom int reclaimable = hw_cidx - tq->cidx;
415c6e0d914SCasey Leedom if (reclaimable < 0)
416c6e0d914SCasey Leedom reclaimable += tq->size;
417c6e0d914SCasey Leedom return reclaimable;
418c6e0d914SCasey Leedom }
419c6e0d914SCasey Leedom
420c6e0d914SCasey Leedom /**
421c6e0d914SCasey Leedom * reclaim_completed_tx - reclaims completed TX descriptors
422c6e0d914SCasey Leedom * @adapter: the adapter
423c6e0d914SCasey Leedom * @tq: the TX queue to reclaim completed descriptors from
424c6e0d914SCasey Leedom * @unmap: whether the buffers should be unmapped for DMA
425c6e0d914SCasey Leedom *
426c6e0d914SCasey Leedom * Reclaims TX descriptors that the SGE has indicated it has processed,
427c6e0d914SCasey Leedom * and frees the associated buffers if possible. Called with the TX
428c6e0d914SCasey Leedom * queue locked.
429c6e0d914SCasey Leedom */
reclaim_completed_tx(struct adapter * adapter,struct sge_txq * tq,bool unmap)430c6e0d914SCasey Leedom static inline void reclaim_completed_tx(struct adapter *adapter,
431c6e0d914SCasey Leedom struct sge_txq *tq,
432c6e0d914SCasey Leedom bool unmap)
433c6e0d914SCasey Leedom {
434c6e0d914SCasey Leedom int avail = reclaimable(tq);
435c6e0d914SCasey Leedom
436c6e0d914SCasey Leedom if (avail) {
437c6e0d914SCasey Leedom /*
438c6e0d914SCasey Leedom * Limit the amount of clean up work we do at a time to keep
439c6e0d914SCasey Leedom * the TX lock hold time O(1).
440c6e0d914SCasey Leedom */
441c6e0d914SCasey Leedom if (avail > MAX_TX_RECLAIM)
442c6e0d914SCasey Leedom avail = MAX_TX_RECLAIM;
443c6e0d914SCasey Leedom
444c6e0d914SCasey Leedom free_tx_desc(adapter, tq, avail, unmap);
445c6e0d914SCasey Leedom tq->in_use -= avail;
446c6e0d914SCasey Leedom }
447c6e0d914SCasey Leedom }
448c6e0d914SCasey Leedom
449c6e0d914SCasey Leedom /**
450c6e0d914SCasey Leedom * get_buf_size - return the size of an RX Free List buffer.
45165f6ecc9SHariprasad Shenai * @adapter: pointer to the associated adapter
452c6e0d914SCasey Leedom * @sdesc: pointer to the software buffer descriptor
453c6e0d914SCasey Leedom */
get_buf_size(const struct adapter * adapter,const struct rx_sw_desc * sdesc)45465f6ecc9SHariprasad Shenai static inline int get_buf_size(const struct adapter *adapter,
45565f6ecc9SHariprasad Shenai const struct rx_sw_desc *sdesc)
456c6e0d914SCasey Leedom {
45765f6ecc9SHariprasad Shenai const struct sge *s = &adapter->sge;
45865f6ecc9SHariprasad Shenai
45965f6ecc9SHariprasad Shenai return (s->fl_pg_order > 0 && (sdesc->dma_addr & RX_LARGE_BUF)
46065f6ecc9SHariprasad Shenai ? (PAGE_SIZE << s->fl_pg_order) : PAGE_SIZE);
461c6e0d914SCasey Leedom }
462c6e0d914SCasey Leedom
463c6e0d914SCasey Leedom /**
464c6e0d914SCasey Leedom * free_rx_bufs - free RX buffers on an SGE Free List
465c6e0d914SCasey Leedom * @adapter: the adapter
466c6e0d914SCasey Leedom * @fl: the SGE Free List to free buffers from
467c6e0d914SCasey Leedom * @n: how many buffers to free
468c6e0d914SCasey Leedom *
469c6e0d914SCasey Leedom * Release the next @n buffers on an SGE Free List RX queue. The
470c6e0d914SCasey Leedom * buffers must be made inaccessible to hardware before calling this
471c6e0d914SCasey Leedom * function.
472c6e0d914SCasey Leedom */
free_rx_bufs(struct adapter * adapter,struct sge_fl * fl,int n)473c6e0d914SCasey Leedom static void free_rx_bufs(struct adapter *adapter, struct sge_fl *fl, int n)
474c6e0d914SCasey Leedom {
475c6e0d914SCasey Leedom while (n--) {
476c6e0d914SCasey Leedom struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
477c6e0d914SCasey Leedom
478c6e0d914SCasey Leedom if (is_buf_mapped(sdesc))
479c6e0d914SCasey Leedom dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
48065f6ecc9SHariprasad Shenai get_buf_size(adapter, sdesc),
4814489d8f5SChristophe JAILLET DMA_FROM_DEVICE);
482c6e0d914SCasey Leedom put_page(sdesc->page);
483c6e0d914SCasey Leedom sdesc->page = NULL;
484c6e0d914SCasey Leedom if (++fl->cidx == fl->size)
485c6e0d914SCasey Leedom fl->cidx = 0;
486c6e0d914SCasey Leedom fl->avail--;
487c6e0d914SCasey Leedom }
488c6e0d914SCasey Leedom }
489c6e0d914SCasey Leedom
490c6e0d914SCasey Leedom /**
491c6e0d914SCasey Leedom * unmap_rx_buf - unmap the current RX buffer on an SGE Free List
492c6e0d914SCasey Leedom * @adapter: the adapter
493c6e0d914SCasey Leedom * @fl: the SGE Free List
494c6e0d914SCasey Leedom *
495c6e0d914SCasey Leedom * Unmap the current buffer on an SGE Free List RX queue. The
496c6e0d914SCasey Leedom * buffer must be made inaccessible to HW before calling this function.
497c6e0d914SCasey Leedom *
498c6e0d914SCasey Leedom * This is similar to @free_rx_bufs above but does not free the buffer.
499c6e0d914SCasey Leedom * Do note that the FL still loses any further access to the buffer.
500c6e0d914SCasey Leedom * This is used predominantly to "transfer ownership" of an FL buffer
501c6e0d914SCasey Leedom * to another entity (typically an skb's fragment list).
502c6e0d914SCasey Leedom */
unmap_rx_buf(struct adapter * adapter,struct sge_fl * fl)503c6e0d914SCasey Leedom static void unmap_rx_buf(struct adapter *adapter, struct sge_fl *fl)
504c6e0d914SCasey Leedom {
505c6e0d914SCasey Leedom struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
506c6e0d914SCasey Leedom
507c6e0d914SCasey Leedom if (is_buf_mapped(sdesc))
508c6e0d914SCasey Leedom dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
50965f6ecc9SHariprasad Shenai get_buf_size(adapter, sdesc),
5104489d8f5SChristophe JAILLET DMA_FROM_DEVICE);
511c6e0d914SCasey Leedom sdesc->page = NULL;
512c6e0d914SCasey Leedom if (++fl->cidx == fl->size)
513c6e0d914SCasey Leedom fl->cidx = 0;
514c6e0d914SCasey Leedom fl->avail--;
515c6e0d914SCasey Leedom }
516c6e0d914SCasey Leedom
517c6e0d914SCasey Leedom /**
518c6e0d914SCasey Leedom * ring_fl_db - righ doorbell on free list
519c6e0d914SCasey Leedom * @adapter: the adapter
520c6e0d914SCasey Leedom * @fl: the Free List whose doorbell should be rung ...
521c6e0d914SCasey Leedom *
522c6e0d914SCasey Leedom * Tell the Scatter Gather Engine that there are new free list entries
523c6e0d914SCasey Leedom * available.
524c6e0d914SCasey Leedom */
ring_fl_db(struct adapter * adapter,struct sge_fl * fl)525c6e0d914SCasey Leedom static inline void ring_fl_db(struct adapter *adapter, struct sge_fl *fl)
526c6e0d914SCasey Leedom {
52741fc2e41SHariprasad Shenai u32 val = adapter->params.arch.sge_fl_db;
528622c62b5SSantosh Rastapur
529df64e4d3SHariprasad Shenai /* The SGE keeps track of its Producer and Consumer Indices in terms
530c6e0d914SCasey Leedom * of Egress Queue Units so we can only tell it about integral numbers
531c6e0d914SCasey Leedom * of multiples of Free List Entries per Egress Queue Units ...
532c6e0d914SCasey Leedom */
533c6e0d914SCasey Leedom if (fl->pend_cred >= FL_PER_EQ_UNIT) {
534df64e4d3SHariprasad Shenai if (is_t4(adapter->params.chip))
53541fc2e41SHariprasad Shenai val |= PIDX_V(fl->pend_cred / FL_PER_EQ_UNIT);
536df64e4d3SHariprasad Shenai else
53741fc2e41SHariprasad Shenai val |= PIDX_T5_V(fl->pend_cred / FL_PER_EQ_UNIT);
538df64e4d3SHariprasad Shenai
539df64e4d3SHariprasad Shenai /* Make sure all memory writes to the Free List queue are
540df64e4d3SHariprasad Shenai * committed before we tell the hardware about them.
541df64e4d3SHariprasad Shenai */
542c6e0d914SCasey Leedom wmb();
543df64e4d3SHariprasad Shenai
544df64e4d3SHariprasad Shenai /* If we don't have access to the new User Doorbell (T5+), use
545df64e4d3SHariprasad Shenai * the old doorbell mechanism; otherwise use the new BAR2
546df64e4d3SHariprasad Shenai * mechanism.
547df64e4d3SHariprasad Shenai */
548df64e4d3SHariprasad Shenai if (unlikely(fl->bar2_addr == NULL)) {
549df64e4d3SHariprasad Shenai t4_write_reg(adapter,
550df64e4d3SHariprasad Shenai T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
551f612b815SHariprasad Shenai QID_V(fl->cntxt_id) | val);
552df64e4d3SHariprasad Shenai } else {
553f612b815SHariprasad Shenai writel(val | QID_V(fl->bar2_qid),
554df64e4d3SHariprasad Shenai fl->bar2_addr + SGE_UDB_KDOORBELL);
555df64e4d3SHariprasad Shenai
556df64e4d3SHariprasad Shenai /* This Write memory Barrier will force the write to
557df64e4d3SHariprasad Shenai * the User Doorbell area to be flushed.
558df64e4d3SHariprasad Shenai */
559df64e4d3SHariprasad Shenai wmb();
560df64e4d3SHariprasad Shenai }
561c6e0d914SCasey Leedom fl->pend_cred %= FL_PER_EQ_UNIT;
562c6e0d914SCasey Leedom }
563c6e0d914SCasey Leedom }
564c6e0d914SCasey Leedom
565c6e0d914SCasey Leedom /**
566c6e0d914SCasey Leedom * set_rx_sw_desc - initialize software RX buffer descriptor
567c6e0d914SCasey Leedom * @sdesc: pointer to the softwore RX buffer descriptor
568c6e0d914SCasey Leedom * @page: pointer to the page data structure backing the RX buffer
569c6e0d914SCasey Leedom * @dma_addr: PCI DMA address (possibly with low-bit flags)
570c6e0d914SCasey Leedom */
set_rx_sw_desc(struct rx_sw_desc * sdesc,struct page * page,dma_addr_t dma_addr)571c6e0d914SCasey Leedom static inline void set_rx_sw_desc(struct rx_sw_desc *sdesc, struct page *page,
572c6e0d914SCasey Leedom dma_addr_t dma_addr)
573c6e0d914SCasey Leedom {
574c6e0d914SCasey Leedom sdesc->page = page;
575c6e0d914SCasey Leedom sdesc->dma_addr = dma_addr;
576c6e0d914SCasey Leedom }
577c6e0d914SCasey Leedom
578c6e0d914SCasey Leedom /*
579c6e0d914SCasey Leedom * Support for poisoning RX buffers ...
580c6e0d914SCasey Leedom */
581c6e0d914SCasey Leedom #define POISON_BUF_VAL -1
582c6e0d914SCasey Leedom
poison_buf(struct page * page,size_t sz)583c6e0d914SCasey Leedom static inline void poison_buf(struct page *page, size_t sz)
584c6e0d914SCasey Leedom {
585c6e0d914SCasey Leedom #if POISON_BUF_VAL >= 0
586c6e0d914SCasey Leedom memset(page_address(page), POISON_BUF_VAL, sz);
587c6e0d914SCasey Leedom #endif
588c6e0d914SCasey Leedom }
589c6e0d914SCasey Leedom
590c6e0d914SCasey Leedom /**
591c6e0d914SCasey Leedom * refill_fl - refill an SGE RX buffer ring
592c6e0d914SCasey Leedom * @adapter: the adapter
593c6e0d914SCasey Leedom * @fl: the Free List ring to refill
594c6e0d914SCasey Leedom * @n: the number of new buffers to allocate
595c6e0d914SCasey Leedom * @gfp: the gfp flags for the allocations
596c6e0d914SCasey Leedom *
597c6e0d914SCasey Leedom * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
598c6e0d914SCasey Leedom * allocated with the supplied gfp flags. The caller must assure that
599c6e0d914SCasey Leedom * @n does not exceed the queue's capacity -- i.e. (cidx == pidx) _IN
600c6e0d914SCasey Leedom * EGRESS QUEUE UNITS_ indicates an empty Free List! Returns the number
601c6e0d914SCasey Leedom * of buffers allocated. If afterwards the queue is found critically low,
602c6e0d914SCasey Leedom * mark it as starving in the bitmap of starving FLs.
603c6e0d914SCasey Leedom */
refill_fl(struct adapter * adapter,struct sge_fl * fl,int n,gfp_t gfp)604c6e0d914SCasey Leedom static unsigned int refill_fl(struct adapter *adapter, struct sge_fl *fl,
605c6e0d914SCasey Leedom int n, gfp_t gfp)
606c6e0d914SCasey Leedom {
60765f6ecc9SHariprasad Shenai struct sge *s = &adapter->sge;
608c6e0d914SCasey Leedom struct page *page;
609c6e0d914SCasey Leedom dma_addr_t dma_addr;
610c6e0d914SCasey Leedom unsigned int cred = fl->avail;
611c6e0d914SCasey Leedom __be64 *d = &fl->desc[fl->pidx];
612c6e0d914SCasey Leedom struct rx_sw_desc *sdesc = &fl->sdesc[fl->pidx];
613c6e0d914SCasey Leedom
614c6e0d914SCasey Leedom /*
615c6e0d914SCasey Leedom * Sanity: ensure that the result of adding n Free List buffers
616c6e0d914SCasey Leedom * won't result in wrapping the SGE's Producer Index around to
617c6e0d914SCasey Leedom * it's Consumer Index thereby indicating an empty Free List ...
618c6e0d914SCasey Leedom */
619c6e0d914SCasey Leedom BUG_ON(fl->avail + n > fl->size - FL_PER_EQ_UNIT);
620c6e0d914SCasey Leedom
621aa9cd31cSAlexander Duyck gfp |= __GFP_NOWARN;
622aa9cd31cSAlexander Duyck
623c6e0d914SCasey Leedom /*
624c6e0d914SCasey Leedom * If we support large pages, prefer large buffers and fail over to
625c6e0d914SCasey Leedom * small pages if we can't allocate large pages to satisfy the refill.
626c6e0d914SCasey Leedom * If we don't support large pages, drop directly into the small page
627c6e0d914SCasey Leedom * allocation code.
628c6e0d914SCasey Leedom */
62965f6ecc9SHariprasad Shenai if (s->fl_pg_order == 0)
630c6e0d914SCasey Leedom goto alloc_small_pages;
631c6e0d914SCasey Leedom
632c6e0d914SCasey Leedom while (n) {
633076ce448SDavid S. Miller page = __dev_alloc_pages(gfp, s->fl_pg_order);
634c6e0d914SCasey Leedom if (unlikely(!page)) {
635c6e0d914SCasey Leedom /*
636c6e0d914SCasey Leedom * We've failed inour attempt to allocate a "large
637c6e0d914SCasey Leedom * page". Fail over to the "small page" allocation
638c6e0d914SCasey Leedom * below.
639c6e0d914SCasey Leedom */
640c6e0d914SCasey Leedom fl->large_alloc_failed++;
641c6e0d914SCasey Leedom break;
642c6e0d914SCasey Leedom }
64365f6ecc9SHariprasad Shenai poison_buf(page, PAGE_SIZE << s->fl_pg_order);
644c6e0d914SCasey Leedom
645c6e0d914SCasey Leedom dma_addr = dma_map_page(adapter->pdev_dev, page, 0,
64665f6ecc9SHariprasad Shenai PAGE_SIZE << s->fl_pg_order,
6474489d8f5SChristophe JAILLET DMA_FROM_DEVICE);
648c6e0d914SCasey Leedom if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
649c6e0d914SCasey Leedom /*
650c6e0d914SCasey Leedom * We've run out of DMA mapping space. Free up the
651c6e0d914SCasey Leedom * buffer and return with what we've managed to put
652c6e0d914SCasey Leedom * into the free list. We don't want to fail over to
653c6e0d914SCasey Leedom * the small page allocation below in this case
654c6e0d914SCasey Leedom * because DMA mapping resources are typically
655c6e0d914SCasey Leedom * critical resources once they become scarse.
656c6e0d914SCasey Leedom */
65765f6ecc9SHariprasad Shenai __free_pages(page, s->fl_pg_order);
658c6e0d914SCasey Leedom goto out;
659c6e0d914SCasey Leedom }
660c6e0d914SCasey Leedom dma_addr |= RX_LARGE_BUF;
661c6e0d914SCasey Leedom *d++ = cpu_to_be64(dma_addr);
662c6e0d914SCasey Leedom
663c6e0d914SCasey Leedom set_rx_sw_desc(sdesc, page, dma_addr);
664c6e0d914SCasey Leedom sdesc++;
665c6e0d914SCasey Leedom
666c6e0d914SCasey Leedom fl->avail++;
667c6e0d914SCasey Leedom if (++fl->pidx == fl->size) {
668c6e0d914SCasey Leedom fl->pidx = 0;
669c6e0d914SCasey Leedom sdesc = fl->sdesc;
670c6e0d914SCasey Leedom d = fl->desc;
671c6e0d914SCasey Leedom }
672c6e0d914SCasey Leedom n--;
673c6e0d914SCasey Leedom }
674c6e0d914SCasey Leedom
675c6e0d914SCasey Leedom alloc_small_pages:
676c6e0d914SCasey Leedom while (n--) {
677aa9cd31cSAlexander Duyck page = __dev_alloc_page(gfp);
678c6e0d914SCasey Leedom if (unlikely(!page)) {
679c6e0d914SCasey Leedom fl->alloc_failed++;
680c6e0d914SCasey Leedom break;
681c6e0d914SCasey Leedom }
682c6e0d914SCasey Leedom poison_buf(page, PAGE_SIZE);
683c6e0d914SCasey Leedom
684c6e0d914SCasey Leedom dma_addr = dma_map_page(adapter->pdev_dev, page, 0, PAGE_SIZE,
6854489d8f5SChristophe JAILLET DMA_FROM_DEVICE);
686c6e0d914SCasey Leedom if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
6871f2149c1SEric Dumazet put_page(page);
688c6e0d914SCasey Leedom break;
689c6e0d914SCasey Leedom }
690c6e0d914SCasey Leedom *d++ = cpu_to_be64(dma_addr);
691c6e0d914SCasey Leedom
692c6e0d914SCasey Leedom set_rx_sw_desc(sdesc, page, dma_addr);
693c6e0d914SCasey Leedom sdesc++;
694c6e0d914SCasey Leedom
695c6e0d914SCasey Leedom fl->avail++;
696c6e0d914SCasey Leedom if (++fl->pidx == fl->size) {
697c6e0d914SCasey Leedom fl->pidx = 0;
698c6e0d914SCasey Leedom sdesc = fl->sdesc;
699c6e0d914SCasey Leedom d = fl->desc;
700c6e0d914SCasey Leedom }
701c6e0d914SCasey Leedom }
702c6e0d914SCasey Leedom
703c6e0d914SCasey Leedom out:
704c6e0d914SCasey Leedom /*
705c6e0d914SCasey Leedom * Update our accounting state to incorporate the new Free List
706c6e0d914SCasey Leedom * buffers, tell the hardware about them and return the number of
70790802ed9SPaul Bolle * buffers which we were able to allocate.
708c6e0d914SCasey Leedom */
709c6e0d914SCasey Leedom cred = fl->avail - cred;
710c6e0d914SCasey Leedom fl->pend_cred += cred;
711c6e0d914SCasey Leedom ring_fl_db(adapter, fl);
712c6e0d914SCasey Leedom
71365f6ecc9SHariprasad Shenai if (unlikely(fl_starving(adapter, fl))) {
714c6e0d914SCasey Leedom smp_wmb();
715c6e0d914SCasey Leedom set_bit(fl->cntxt_id, adapter->sge.starving_fl);
716c6e0d914SCasey Leedom }
717c6e0d914SCasey Leedom
718c6e0d914SCasey Leedom return cred;
719c6e0d914SCasey Leedom }
720c6e0d914SCasey Leedom
721c6e0d914SCasey Leedom /*
722c6e0d914SCasey Leedom * Refill a Free List to its capacity or the Maximum Refill Increment,
723c6e0d914SCasey Leedom * whichever is smaller ...
724c6e0d914SCasey Leedom */
__refill_fl(struct adapter * adapter,struct sge_fl * fl)725c6e0d914SCasey Leedom static inline void __refill_fl(struct adapter *adapter, struct sge_fl *fl)
726c6e0d914SCasey Leedom {
727c6e0d914SCasey Leedom refill_fl(adapter, fl,
728c6e0d914SCasey Leedom min((unsigned int)MAX_RX_REFILL, fl_cap(fl) - fl->avail),
729c6e0d914SCasey Leedom GFP_ATOMIC);
730c6e0d914SCasey Leedom }
731c6e0d914SCasey Leedom
732c6e0d914SCasey Leedom /**
733c6e0d914SCasey Leedom * alloc_ring - allocate resources for an SGE descriptor ring
734c6e0d914SCasey Leedom * @dev: the PCI device's core device
735c6e0d914SCasey Leedom * @nelem: the number of descriptors
736c6e0d914SCasey Leedom * @hwsize: the size of each hardware descriptor
737c6e0d914SCasey Leedom * @swsize: the size of each software descriptor
738c6e0d914SCasey Leedom * @busaddrp: the physical PCI bus address of the allocated ring
739c6e0d914SCasey Leedom * @swringp: return address pointer for software ring
740c6e0d914SCasey Leedom * @stat_size: extra space in hardware ring for status information
741c6e0d914SCasey Leedom *
742c6e0d914SCasey Leedom * Allocates resources for an SGE descriptor ring, such as TX queues,
743c6e0d914SCasey Leedom * free buffer lists, response queues, etc. Each SGE ring requires
744c6e0d914SCasey Leedom * space for its hardware descriptors plus, optionally, space for software
745c6e0d914SCasey Leedom * state associated with each hardware entry (the metadata). The function
746c6e0d914SCasey Leedom * returns three values: the virtual address for the hardware ring (the
747c6e0d914SCasey Leedom * return value of the function), the PCI bus address of the hardware
748c6e0d914SCasey Leedom * ring (in *busaddrp), and the address of the software ring (in swringp).
749c6e0d914SCasey Leedom * Both the hardware and software rings are returned zeroed out.
750c6e0d914SCasey Leedom */
alloc_ring(struct device * dev,size_t nelem,size_t hwsize,size_t swsize,dma_addr_t * busaddrp,void * swringp,size_t stat_size)751c6e0d914SCasey Leedom static void *alloc_ring(struct device *dev, size_t nelem, size_t hwsize,
752c6e0d914SCasey Leedom size_t swsize, dma_addr_t *busaddrp, void *swringp,
753c6e0d914SCasey Leedom size_t stat_size)
754c6e0d914SCasey Leedom {
755c6e0d914SCasey Leedom /*
756c6e0d914SCasey Leedom * Allocate the hardware ring and PCI DMA bus address space for said.
757c6e0d914SCasey Leedom */
758c6e0d914SCasey Leedom size_t hwlen = nelem * hwsize + stat_size;
759750afb08SLuis Chamberlain void *hwring = dma_alloc_coherent(dev, hwlen, busaddrp, GFP_KERNEL);
760c6e0d914SCasey Leedom
761c6e0d914SCasey Leedom if (!hwring)
762c6e0d914SCasey Leedom return NULL;
763c6e0d914SCasey Leedom
764c6e0d914SCasey Leedom /*
765c6e0d914SCasey Leedom * If the caller wants a software ring, allocate it and return a
766c6e0d914SCasey Leedom * pointer to it in *swringp.
767c6e0d914SCasey Leedom */
768c6e0d914SCasey Leedom BUG_ON((swsize != 0) != (swringp != NULL));
769c6e0d914SCasey Leedom if (swsize) {
770c6e0d914SCasey Leedom void *swring = kcalloc(nelem, swsize, GFP_KERNEL);
771c6e0d914SCasey Leedom
772c6e0d914SCasey Leedom if (!swring) {
773c6e0d914SCasey Leedom dma_free_coherent(dev, hwlen, hwring, *busaddrp);
774c6e0d914SCasey Leedom return NULL;
775c6e0d914SCasey Leedom }
776c6e0d914SCasey Leedom *(void **)swringp = swring;
777c6e0d914SCasey Leedom }
778c6e0d914SCasey Leedom
779c6e0d914SCasey Leedom return hwring;
780c6e0d914SCasey Leedom }
781c6e0d914SCasey Leedom
782c6e0d914SCasey Leedom /**
783c6e0d914SCasey Leedom * sgl_len - calculates the size of an SGL of the given capacity
784c6e0d914SCasey Leedom * @n: the number of SGL entries
785c6e0d914SCasey Leedom *
786c6e0d914SCasey Leedom * Calculates the number of flits (8-byte units) needed for a Direct
787c6e0d914SCasey Leedom * Scatter/Gather List that can hold the given number of entries.
788c6e0d914SCasey Leedom */
sgl_len(unsigned int n)789c6e0d914SCasey Leedom static inline unsigned int sgl_len(unsigned int n)
790c6e0d914SCasey Leedom {
791c6e0d914SCasey Leedom /*
792c6e0d914SCasey Leedom * A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
793c6e0d914SCasey Leedom * addresses. The DSGL Work Request starts off with a 32-bit DSGL
794c6e0d914SCasey Leedom * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
795c6e0d914SCasey Leedom * repeated sequences of { Length[i], Length[i+1], Address[i],
796c6e0d914SCasey Leedom * Address[i+1] } (this ensures that all addresses are on 64-bit
797c6e0d914SCasey Leedom * boundaries). If N is even, then Length[N+1] should be set to 0 and
798c6e0d914SCasey Leedom * Address[N+1] is omitted.
799c6e0d914SCasey Leedom *
800c6e0d914SCasey Leedom * The following calculation incorporates all of the above. It's
801c6e0d914SCasey Leedom * somewhat hard to follow but, briefly: the "+2" accounts for the
802c6e0d914SCasey Leedom * first two flits which include the DSGL header, Length0 and
803c6e0d914SCasey Leedom * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
804c6e0d914SCasey Leedom * flits for every pair of the remaining N) +1 if (n-1) is odd; and
805c6e0d914SCasey Leedom * finally the "+((n-1)&1)" adds the one remaining flit needed if
806c6e0d914SCasey Leedom * (n-1) is odd ...
807c6e0d914SCasey Leedom */
808c6e0d914SCasey Leedom n--;
809c6e0d914SCasey Leedom return (3 * n) / 2 + (n & 1) + 2;
810c6e0d914SCasey Leedom }
811c6e0d914SCasey Leedom
812c6e0d914SCasey Leedom /**
813c6e0d914SCasey Leedom * flits_to_desc - returns the num of TX descriptors for the given flits
814c6e0d914SCasey Leedom * @flits: the number of flits
815c6e0d914SCasey Leedom *
816c6e0d914SCasey Leedom * Returns the number of TX descriptors needed for the supplied number
817c6e0d914SCasey Leedom * of flits.
818c6e0d914SCasey Leedom */
flits_to_desc(unsigned int flits)819c6e0d914SCasey Leedom static inline unsigned int flits_to_desc(unsigned int flits)
820c6e0d914SCasey Leedom {
821c6e0d914SCasey Leedom BUG_ON(flits > SGE_MAX_WR_LEN / sizeof(__be64));
822c6e0d914SCasey Leedom return DIV_ROUND_UP(flits, TXD_PER_EQ_UNIT);
823c6e0d914SCasey Leedom }
824c6e0d914SCasey Leedom
825c6e0d914SCasey Leedom /**
826c6e0d914SCasey Leedom * is_eth_imm - can an Ethernet packet be sent as immediate data?
827c6e0d914SCasey Leedom * @skb: the packet
828c6e0d914SCasey Leedom *
829c6e0d914SCasey Leedom * Returns whether an Ethernet packet is small enough to fit completely as
830c6e0d914SCasey Leedom * immediate data.
831c6e0d914SCasey Leedom */
is_eth_imm(const struct sk_buff * skb)832c6e0d914SCasey Leedom static inline int is_eth_imm(const struct sk_buff *skb)
833c6e0d914SCasey Leedom {
834c6e0d914SCasey Leedom /*
835c6e0d914SCasey Leedom * The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
836c6e0d914SCasey Leedom * which does not accommodate immediate data. We could dike out all
837c6e0d914SCasey Leedom * of the support code for immediate data but that would tie our hands
838c6e0d914SCasey Leedom * too much if we ever want to enhace the firmware. It would also
839c6e0d914SCasey Leedom * create more differences between the PF and VF Drivers.
840c6e0d914SCasey Leedom */
841c6e0d914SCasey Leedom return false;
842c6e0d914SCasey Leedom }
843c6e0d914SCasey Leedom
844c6e0d914SCasey Leedom /**
845c6e0d914SCasey Leedom * calc_tx_flits - calculate the number of flits for a packet TX WR
846c6e0d914SCasey Leedom * @skb: the packet
847c6e0d914SCasey Leedom *
848c6e0d914SCasey Leedom * Returns the number of flits needed for a TX Work Request for the
849c6e0d914SCasey Leedom * given Ethernet packet, including the needed WR and CPL headers.
850c6e0d914SCasey Leedom */
calc_tx_flits(const struct sk_buff * skb)851c6e0d914SCasey Leedom static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
852c6e0d914SCasey Leedom {
853c6e0d914SCasey Leedom unsigned int flits;
854c6e0d914SCasey Leedom
855c6e0d914SCasey Leedom /*
856c6e0d914SCasey Leedom * If the skb is small enough, we can pump it out as a work request
857c6e0d914SCasey Leedom * with only immediate data. In that case we just have to have the
858c6e0d914SCasey Leedom * TX Packet header plus the skb data in the Work Request.
859c6e0d914SCasey Leedom */
860c6e0d914SCasey Leedom if (is_eth_imm(skb))
861c6e0d914SCasey Leedom return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
862c6e0d914SCasey Leedom sizeof(__be64));
863c6e0d914SCasey Leedom
864c6e0d914SCasey Leedom /*
865c6e0d914SCasey Leedom * Otherwise, we're going to have to construct a Scatter gather list
866c6e0d914SCasey Leedom * of the skb body and fragments. We also include the flits necessary
867c6e0d914SCasey Leedom * for the TX Packet Work Request and CPL. We always have a firmware
868c6e0d914SCasey Leedom * Write Header (incorporated as part of the cpl_tx_pkt_lso and
869c6e0d914SCasey Leedom * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
870c6e0d914SCasey Leedom * message or, if we're doing a Large Send Offload, an LSO CPL message
871dbedd44eSJoe Perches * with an embedded TX Packet Write CPL message.
872c6e0d914SCasey Leedom */
873c6e0d914SCasey Leedom flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
874c6e0d914SCasey Leedom if (skb_shinfo(skb)->gso_size)
875c6e0d914SCasey Leedom flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
876c6e0d914SCasey Leedom sizeof(struct cpl_tx_pkt_lso_core) +
877c6e0d914SCasey Leedom sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
878c6e0d914SCasey Leedom else
879c6e0d914SCasey Leedom flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
880c6e0d914SCasey Leedom sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
881c6e0d914SCasey Leedom return flits;
882c6e0d914SCasey Leedom }
883c6e0d914SCasey Leedom
884c6e0d914SCasey Leedom /**
885c6e0d914SCasey Leedom * write_sgl - populate a Scatter/Gather List for a packet
886c6e0d914SCasey Leedom * @skb: the packet
887c6e0d914SCasey Leedom * @tq: the TX queue we are writing into
888c6e0d914SCasey Leedom * @sgl: starting location for writing the SGL
889c6e0d914SCasey Leedom * @end: points right after the end of the SGL
890c6e0d914SCasey Leedom * @start: start offset into skb main-body data to include in the SGL
891c6e0d914SCasey Leedom * @addr: the list of DMA bus addresses for the SGL elements
892c6e0d914SCasey Leedom *
893c6e0d914SCasey Leedom * Generates a Scatter/Gather List for the buffers that make up a packet.
894c6e0d914SCasey Leedom * The caller must provide adequate space for the SGL that will be written.
895c6e0d914SCasey Leedom * The SGL includes all of the packet's page fragments and the data in its
896c6e0d914SCasey Leedom * main body except for the first @start bytes. @pos must be 16-byte
897c6e0d914SCasey Leedom * aligned and within a TX descriptor with available space. @end points
898c6e0d914SCasey Leedom * write after the end of the SGL but does not account for any potential
899c6e0d914SCasey Leedom * wrap around, i.e., @end > @tq->stat.
900c6e0d914SCasey Leedom */
write_sgl(const struct sk_buff * skb,struct sge_txq * tq,struct ulptx_sgl * sgl,u64 * end,unsigned int start,const dma_addr_t * addr)901c6e0d914SCasey Leedom static void write_sgl(const struct sk_buff *skb, struct sge_txq *tq,
902c6e0d914SCasey Leedom struct ulptx_sgl *sgl, u64 *end, unsigned int start,
903c6e0d914SCasey Leedom const dma_addr_t *addr)
904c6e0d914SCasey Leedom {
905c6e0d914SCasey Leedom unsigned int i, len;
906c6e0d914SCasey Leedom struct ulptx_sge_pair *to;
907c6e0d914SCasey Leedom const struct skb_shared_info *si = skb_shinfo(skb);
908c6e0d914SCasey Leedom unsigned int nfrags = si->nr_frags;
909c6e0d914SCasey Leedom struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
910c6e0d914SCasey Leedom
911c6e0d914SCasey Leedom len = skb_headlen(skb) - start;
912c6e0d914SCasey Leedom if (likely(len)) {
913c6e0d914SCasey Leedom sgl->len0 = htonl(len);
914c6e0d914SCasey Leedom sgl->addr0 = cpu_to_be64(addr[0] + start);
915c6e0d914SCasey Leedom nfrags++;
916c6e0d914SCasey Leedom } else {
9179e903e08SEric Dumazet sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
918c6e0d914SCasey Leedom sgl->addr0 = cpu_to_be64(addr[1]);
919c6e0d914SCasey Leedom }
920c6e0d914SCasey Leedom
921d7990b0cSAnish Bhatt sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
922bdc590b9SHariprasad Shenai ULPTX_NSGE_V(nfrags));
923c6e0d914SCasey Leedom if (likely(--nfrags == 0))
924c6e0d914SCasey Leedom return;
925c6e0d914SCasey Leedom /*
926c6e0d914SCasey Leedom * Most of the complexity below deals with the possibility we hit the
927c6e0d914SCasey Leedom * end of the queue in the middle of writing the SGL. For this case
928c6e0d914SCasey Leedom * only we create the SGL in a temporary buffer and then copy it.
929c6e0d914SCasey Leedom */
930c6e0d914SCasey Leedom to = (u8 *)end > (u8 *)tq->stat ? buf : sgl->sge;
931c6e0d914SCasey Leedom
932c6e0d914SCasey Leedom for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
9339e903e08SEric Dumazet to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
9349e903e08SEric Dumazet to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
935c6e0d914SCasey Leedom to->addr[0] = cpu_to_be64(addr[i]);
936c6e0d914SCasey Leedom to->addr[1] = cpu_to_be64(addr[++i]);
937c6e0d914SCasey Leedom }
938c6e0d914SCasey Leedom if (nfrags) {
9399e903e08SEric Dumazet to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
940c6e0d914SCasey Leedom to->len[1] = cpu_to_be32(0);
941c6e0d914SCasey Leedom to->addr[0] = cpu_to_be64(addr[i + 1]);
942c6e0d914SCasey Leedom }
943c6e0d914SCasey Leedom if (unlikely((u8 *)end > (u8 *)tq->stat)) {
944c6e0d914SCasey Leedom unsigned int part0 = (u8 *)tq->stat - (u8 *)sgl->sge, part1;
945c6e0d914SCasey Leedom
946c6e0d914SCasey Leedom if (likely(part0))
947c6e0d914SCasey Leedom memcpy(sgl->sge, buf, part0);
948c6e0d914SCasey Leedom part1 = (u8 *)end - (u8 *)tq->stat;
949c6e0d914SCasey Leedom memcpy(tq->desc, (u8 *)buf + part0, part1);
950c6e0d914SCasey Leedom end = (void *)tq->desc + part1;
951c6e0d914SCasey Leedom }
952c6e0d914SCasey Leedom if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */
95364699336SJoe Perches *end = 0;
954c6e0d914SCasey Leedom }
955c6e0d914SCasey Leedom
956c6e0d914SCasey Leedom /**
9571eb00ff5SYang Shen * ring_tx_db - check and potentially ring a TX queue's doorbell
958c6e0d914SCasey Leedom * @adapter: the adapter
959c6e0d914SCasey Leedom * @tq: the TX queue
960c6e0d914SCasey Leedom * @n: number of new descriptors to give to HW
961c6e0d914SCasey Leedom *
962c6e0d914SCasey Leedom * Ring the doorbel for a TX queue.
963c6e0d914SCasey Leedom */
ring_tx_db(struct adapter * adapter,struct sge_txq * tq,int n)964c6e0d914SCasey Leedom static inline void ring_tx_db(struct adapter *adapter, struct sge_txq *tq,
965c6e0d914SCasey Leedom int n)
966c6e0d914SCasey Leedom {
967df64e4d3SHariprasad Shenai /* Make sure that all writes to the TX Descriptors are committed
968df64e4d3SHariprasad Shenai * before we tell the hardware about them.
969c6e0d914SCasey Leedom */
970c6e0d914SCasey Leedom wmb();
971df64e4d3SHariprasad Shenai
972df64e4d3SHariprasad Shenai /* If we don't have access to the new User Doorbell (T5+), use the old
973df64e4d3SHariprasad Shenai * doorbell mechanism; otherwise use the new BAR2 mechanism.
974df64e4d3SHariprasad Shenai */
975df64e4d3SHariprasad Shenai if (unlikely(tq->bar2_addr == NULL)) {
976f612b815SHariprasad Shenai u32 val = PIDX_V(n);
977df64e4d3SHariprasad Shenai
978c6e0d914SCasey Leedom t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
979f612b815SHariprasad Shenai QID_V(tq->cntxt_id) | val);
980df64e4d3SHariprasad Shenai } else {
981f612b815SHariprasad Shenai u32 val = PIDX_T5_V(n);
982df64e4d3SHariprasad Shenai
983df64e4d3SHariprasad Shenai /* T4 and later chips share the same PIDX field offset within
984df64e4d3SHariprasad Shenai * the doorbell, but T5 and later shrank the field in order to
985df64e4d3SHariprasad Shenai * gain a bit for Doorbell Priority. The field was absurdly
986df64e4d3SHariprasad Shenai * large in the first place (14 bits) so we just use the T5
987df64e4d3SHariprasad Shenai * and later limits and warn if a Queue ID is too large.
988df64e4d3SHariprasad Shenai */
989f612b815SHariprasad Shenai WARN_ON(val & DBPRIO_F);
990df64e4d3SHariprasad Shenai
991df64e4d3SHariprasad Shenai /* If we're only writing a single Egress Unit and the BAR2
992df64e4d3SHariprasad Shenai * Queue ID is 0, we can use the Write Combining Doorbell
993df64e4d3SHariprasad Shenai * Gather Buffer; otherwise we use the simple doorbell.
994df64e4d3SHariprasad Shenai */
995df64e4d3SHariprasad Shenai if (n == 1 && tq->bar2_qid == 0) {
996df64e4d3SHariprasad Shenai unsigned int index = (tq->pidx
997df64e4d3SHariprasad Shenai ? (tq->pidx - 1)
998df64e4d3SHariprasad Shenai : (tq->size - 1));
999df64e4d3SHariprasad Shenai __be64 *src = (__be64 *)&tq->desc[index];
10002ff2acf1SHariprasad Shenai __be64 __iomem *dst = (__be64 __iomem *)(tq->bar2_addr +
1001df64e4d3SHariprasad Shenai SGE_UDB_WCDOORBELL);
1002df64e4d3SHariprasad Shenai unsigned int count = EQ_UNIT / sizeof(__be64);
1003df64e4d3SHariprasad Shenai
1004df64e4d3SHariprasad Shenai /* Copy the TX Descriptor in a tight loop in order to
1005df64e4d3SHariprasad Shenai * try to get it to the adapter in a single Write
1006df64e4d3SHariprasad Shenai * Combined transfer on the PCI-E Bus. If the Write
1007df64e4d3SHariprasad Shenai * Combine fails (say because of an interrupt, etc.)
1008df64e4d3SHariprasad Shenai * the hardware will simply take the last write as a
1009df64e4d3SHariprasad Shenai * simple doorbell write with a PIDX Increment of 1
1010df64e4d3SHariprasad Shenai * and will fetch the TX Descriptor from memory via
1011df64e4d3SHariprasad Shenai * DMA.
1012df64e4d3SHariprasad Shenai */
1013df64e4d3SHariprasad Shenai while (count) {
10142ff2acf1SHariprasad Shenai /* the (__force u64) is because the compiler
10152ff2acf1SHariprasad Shenai * doesn't understand the endian swizzling
10162ff2acf1SHariprasad Shenai * going on
10172ff2acf1SHariprasad Shenai */
10182ff2acf1SHariprasad Shenai writeq((__force u64)*src, dst);
1019df64e4d3SHariprasad Shenai src++;
1020df64e4d3SHariprasad Shenai dst++;
1021df64e4d3SHariprasad Shenai count--;
1022df64e4d3SHariprasad Shenai }
1023df64e4d3SHariprasad Shenai } else
1024f612b815SHariprasad Shenai writel(val | QID_V(tq->bar2_qid),
1025df64e4d3SHariprasad Shenai tq->bar2_addr + SGE_UDB_KDOORBELL);
1026df64e4d3SHariprasad Shenai
1027df64e4d3SHariprasad Shenai /* This Write Memory Barrier will force the write to the User
1028df64e4d3SHariprasad Shenai * Doorbell area to be flushed. This is needed to prevent
1029df64e4d3SHariprasad Shenai * writes on different CPUs for the same queue from hitting
1030df64e4d3SHariprasad Shenai * the adapter out of order. This is required when some Work
1031df64e4d3SHariprasad Shenai * Requests take the Write Combine Gather Buffer path (user
1032df64e4d3SHariprasad Shenai * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
1033df64e4d3SHariprasad Shenai * take the traditional path where we simply increment the
1034df64e4d3SHariprasad Shenai * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
1035df64e4d3SHariprasad Shenai * hardware DMA read the actual Work Request.
1036df64e4d3SHariprasad Shenai */
1037df64e4d3SHariprasad Shenai wmb();
1038df64e4d3SHariprasad Shenai }
1039c6e0d914SCasey Leedom }
1040c6e0d914SCasey Leedom
1041c6e0d914SCasey Leedom /**
1042c6e0d914SCasey Leedom * inline_tx_skb - inline a packet's data into TX descriptors
1043c6e0d914SCasey Leedom * @skb: the packet
1044c6e0d914SCasey Leedom * @tq: the TX queue where the packet will be inlined
1045c6e0d914SCasey Leedom * @pos: starting position in the TX queue to inline the packet
1046c6e0d914SCasey Leedom *
1047c6e0d914SCasey Leedom * Inline a packet's contents directly into TX descriptors, starting at
1048c6e0d914SCasey Leedom * the given position within the TX DMA ring.
1049c6e0d914SCasey Leedom * Most of the complexity of this operation is dealing with wrap arounds
1050c6e0d914SCasey Leedom * in the middle of the packet we want to inline.
1051c6e0d914SCasey Leedom */
inline_tx_skb(const struct sk_buff * skb,const struct sge_txq * tq,void * pos)1052c6e0d914SCasey Leedom static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *tq,
1053c6e0d914SCasey Leedom void *pos)
1054c6e0d914SCasey Leedom {
1055c6e0d914SCasey Leedom u64 *p;
1056c6e0d914SCasey Leedom int left = (void *)tq->stat - pos;
1057c6e0d914SCasey Leedom
1058c6e0d914SCasey Leedom if (likely(skb->len <= left)) {
1059c6e0d914SCasey Leedom if (likely(!skb->data_len))
1060c6e0d914SCasey Leedom skb_copy_from_linear_data(skb, pos, skb->len);
1061c6e0d914SCasey Leedom else
1062c6e0d914SCasey Leedom skb_copy_bits(skb, 0, pos, skb->len);
1063c6e0d914SCasey Leedom pos += skb->len;
1064c6e0d914SCasey Leedom } else {
1065c6e0d914SCasey Leedom skb_copy_bits(skb, 0, pos, left);
1066c6e0d914SCasey Leedom skb_copy_bits(skb, left, tq->desc, skb->len - left);
1067c6e0d914SCasey Leedom pos = (void *)tq->desc + (skb->len - left);
1068c6e0d914SCasey Leedom }
1069c6e0d914SCasey Leedom
1070c6e0d914SCasey Leedom /* 0-pad to multiple of 16 */
1071c6e0d914SCasey Leedom p = PTR_ALIGN(pos, 8);
1072c6e0d914SCasey Leedom if ((uintptr_t)p & 8)
1073c6e0d914SCasey Leedom *p = 0;
1074c6e0d914SCasey Leedom }
1075c6e0d914SCasey Leedom
1076c6e0d914SCasey Leedom /*
1077c6e0d914SCasey Leedom * Figure out what HW csum a packet wants and return the appropriate control
1078c6e0d914SCasey Leedom * bits.
1079c6e0d914SCasey Leedom */
hwcsum(enum chip_type chip,const struct sk_buff * skb)108041fc2e41SHariprasad Shenai static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb)
1081c6e0d914SCasey Leedom {
1082c6e0d914SCasey Leedom int csum_type;
1083c6e0d914SCasey Leedom const struct iphdr *iph = ip_hdr(skb);
1084c6e0d914SCasey Leedom
1085c6e0d914SCasey Leedom if (iph->version == 4) {
1086c6e0d914SCasey Leedom if (iph->protocol == IPPROTO_TCP)
1087c6e0d914SCasey Leedom csum_type = TX_CSUM_TCPIP;
1088c6e0d914SCasey Leedom else if (iph->protocol == IPPROTO_UDP)
1089c6e0d914SCasey Leedom csum_type = TX_CSUM_UDPIP;
1090c6e0d914SCasey Leedom else {
1091c6e0d914SCasey Leedom nocsum:
1092c6e0d914SCasey Leedom /*
1093c6e0d914SCasey Leedom * unknown protocol, disable HW csum
1094c6e0d914SCasey Leedom * and hope a bad packet is detected
1095c6e0d914SCasey Leedom */
10961ecc7b7aSHariprasad Shenai return TXPKT_L4CSUM_DIS_F;
1097c6e0d914SCasey Leedom }
1098c6e0d914SCasey Leedom } else {
1099c6e0d914SCasey Leedom /*
1100c6e0d914SCasey Leedom * this doesn't work with extension headers
1101c6e0d914SCasey Leedom */
1102c6e0d914SCasey Leedom const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
1103c6e0d914SCasey Leedom
1104c6e0d914SCasey Leedom if (ip6h->nexthdr == IPPROTO_TCP)
1105c6e0d914SCasey Leedom csum_type = TX_CSUM_TCPIP6;
1106c6e0d914SCasey Leedom else if (ip6h->nexthdr == IPPROTO_UDP)
1107c6e0d914SCasey Leedom csum_type = TX_CSUM_UDPIP6;
1108c6e0d914SCasey Leedom else
1109c6e0d914SCasey Leedom goto nocsum;
1110c6e0d914SCasey Leedom }
1111c6e0d914SCasey Leedom
111241fc2e41SHariprasad Shenai if (likely(csum_type >= TX_CSUM_TCPIP)) {
111341fc2e41SHariprasad Shenai u64 hdr_len = TXPKT_IPHDR_LEN_V(skb_network_header_len(skb));
111441fc2e41SHariprasad Shenai int eth_hdr_len = skb_network_offset(skb) - ETH_HLEN;
111541fc2e41SHariprasad Shenai
111641fc2e41SHariprasad Shenai if (chip <= CHELSIO_T5)
111741fc2e41SHariprasad Shenai hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len);
111841fc2e41SHariprasad Shenai else
111941fc2e41SHariprasad Shenai hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len);
112041fc2e41SHariprasad Shenai return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len;
112141fc2e41SHariprasad Shenai } else {
1122c6e0d914SCasey Leedom int start = skb_transport_offset(skb);
1123c6e0d914SCasey Leedom
11241ecc7b7aSHariprasad Shenai return TXPKT_CSUM_TYPE_V(csum_type) |
11251ecc7b7aSHariprasad Shenai TXPKT_CSUM_START_V(start) |
11261ecc7b7aSHariprasad Shenai TXPKT_CSUM_LOC_V(start + skb->csum_offset);
1127c6e0d914SCasey Leedom }
1128c6e0d914SCasey Leedom }
1129c6e0d914SCasey Leedom
1130c6e0d914SCasey Leedom /*
1131c6e0d914SCasey Leedom * Stop an Ethernet TX queue and record that state change.
1132c6e0d914SCasey Leedom */
txq_stop(struct sge_eth_txq * txq)1133c6e0d914SCasey Leedom static void txq_stop(struct sge_eth_txq *txq)
1134c6e0d914SCasey Leedom {
1135c6e0d914SCasey Leedom netif_tx_stop_queue(txq->txq);
1136c6e0d914SCasey Leedom txq->q.stops++;
1137c6e0d914SCasey Leedom }
1138c6e0d914SCasey Leedom
1139c6e0d914SCasey Leedom /*
1140c6e0d914SCasey Leedom * Advance our software state for a TX queue by adding n in use descriptors.
1141c6e0d914SCasey Leedom */
txq_advance(struct sge_txq * tq,unsigned int n)1142c6e0d914SCasey Leedom static inline void txq_advance(struct sge_txq *tq, unsigned int n)
1143c6e0d914SCasey Leedom {
1144c6e0d914SCasey Leedom tq->in_use += n;
1145c6e0d914SCasey Leedom tq->pidx += n;
1146c6e0d914SCasey Leedom if (tq->pidx >= tq->size)
1147c6e0d914SCasey Leedom tq->pidx -= tq->size;
1148c6e0d914SCasey Leedom }
1149c6e0d914SCasey Leedom
1150c6e0d914SCasey Leedom /**
1151c6e0d914SCasey Leedom * t4vf_eth_xmit - add a packet to an Ethernet TX queue
1152c6e0d914SCasey Leedom * @skb: the packet
1153c6e0d914SCasey Leedom * @dev: the egress net device
1154c6e0d914SCasey Leedom *
1155c6e0d914SCasey Leedom * Add a packet to an SGE Ethernet TX queue. Runs with softirqs disabled.
1156c6e0d914SCasey Leedom */
t4vf_eth_xmit(struct sk_buff * skb,struct net_device * dev)11572a784784SLuc Van Oostenryck netdev_tx_t t4vf_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1158c6e0d914SCasey Leedom {
11597f9dd2faSCasey Leedom u32 wr_mid;
1160c6e0d914SCasey Leedom u64 cntrl, *end;
1161637d3e99SHariprasad Shenai int qidx, credits, max_pkt_len;
1162c6e0d914SCasey Leedom unsigned int flits, ndesc;
1163c6e0d914SCasey Leedom struct adapter *adapter;
1164c6e0d914SCasey Leedom struct sge_eth_txq *txq;
1165c6e0d914SCasey Leedom const struct port_info *pi;
1166c6e0d914SCasey Leedom struct fw_eth_tx_pkt_vm_wr *wr;
1167c6e0d914SCasey Leedom struct cpl_tx_pkt_core *cpl;
1168c6e0d914SCasey Leedom const struct skb_shared_info *ssi;
1169c6e0d914SCasey Leedom dma_addr_t addr[MAX_SKB_FRAGS + 1];
1170641d3ef0SKees Cook const size_t fw_hdr_copy_len = sizeof(wr->firmware);
1171c6e0d914SCasey Leedom
1172c6e0d914SCasey Leedom /*
1173c6e0d914SCasey Leedom * The chip minimum packet length is 10 octets but the firmware
1174c6e0d914SCasey Leedom * command that we are using requires that we copy the Ethernet header
1175c6e0d914SCasey Leedom * (including the VLAN tag) into the header so we reject anything
1176c6e0d914SCasey Leedom * smaller than that ...
1177c6e0d914SCasey Leedom */
1178c6e0d914SCasey Leedom if (unlikely(skb->len < fw_hdr_copy_len))
1179c6e0d914SCasey Leedom goto out_free;
1180c6e0d914SCasey Leedom
1181637d3e99SHariprasad Shenai /* Discard the packet if the length is greater than mtu */
1182637d3e99SHariprasad Shenai max_pkt_len = ETH_HLEN + dev->mtu;
11838d09e6b8SHariprasad Shenai if (skb_vlan_tagged(skb))
1184637d3e99SHariprasad Shenai max_pkt_len += VLAN_HLEN;
1185637d3e99SHariprasad Shenai if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
1186637d3e99SHariprasad Shenai goto out_free;
1187637d3e99SHariprasad Shenai
1188c6e0d914SCasey Leedom /*
1189c6e0d914SCasey Leedom * Figure out which TX Queue we're going to use.
1190c6e0d914SCasey Leedom */
1191c6e0d914SCasey Leedom pi = netdev_priv(dev);
1192c6e0d914SCasey Leedom adapter = pi->adapter;
1193c6e0d914SCasey Leedom qidx = skb_get_queue_mapping(skb);
1194c6e0d914SCasey Leedom BUG_ON(qidx >= pi->nqsets);
1195c6e0d914SCasey Leedom txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
1196c6e0d914SCasey Leedom
11979d5fd927SGanesh Goudar if (pi->vlan_id && !skb_vlan_tag_present(skb))
11989d5fd927SGanesh Goudar __vlan_hwaccel_put_tag(skb, cpu_to_be16(ETH_P_8021Q),
11999d5fd927SGanesh Goudar pi->vlan_id);
12009d5fd927SGanesh Goudar
1201c6e0d914SCasey Leedom /*
1202c6e0d914SCasey Leedom * Take this opportunity to reclaim any TX Descriptors whose DMA
1203c6e0d914SCasey Leedom * transfers have completed.
1204c6e0d914SCasey Leedom */
1205c6e0d914SCasey Leedom reclaim_completed_tx(adapter, &txq->q, true);
1206c6e0d914SCasey Leedom
1207c6e0d914SCasey Leedom /*
1208c6e0d914SCasey Leedom * Calculate the number of flits and TX Descriptors we're going to
1209c6e0d914SCasey Leedom * need along with how many TX Descriptors will be left over after
1210c6e0d914SCasey Leedom * we inject our Work Request.
1211c6e0d914SCasey Leedom */
1212c6e0d914SCasey Leedom flits = calc_tx_flits(skb);
1213c6e0d914SCasey Leedom ndesc = flits_to_desc(flits);
1214c6e0d914SCasey Leedom credits = txq_avail(&txq->q) - ndesc;
1215c6e0d914SCasey Leedom
1216c6e0d914SCasey Leedom if (unlikely(credits < 0)) {
1217c6e0d914SCasey Leedom /*
1218c6e0d914SCasey Leedom * Not enough room for this packet's Work Request. Stop the
1219c6e0d914SCasey Leedom * TX Queue and return a "busy" condition. The queue will get
1220c6e0d914SCasey Leedom * started later on when the firmware informs us that space
1221c6e0d914SCasey Leedom * has opened up.
1222c6e0d914SCasey Leedom */
1223c6e0d914SCasey Leedom txq_stop(txq);
1224c6e0d914SCasey Leedom dev_err(adapter->pdev_dev,
1225c6e0d914SCasey Leedom "%s: TX ring %u full while queue awake!\n",
1226c6e0d914SCasey Leedom dev->name, qidx);
1227c6e0d914SCasey Leedom return NETDEV_TX_BUSY;
1228c6e0d914SCasey Leedom }
1229c6e0d914SCasey Leedom
1230c6e0d914SCasey Leedom if (!is_eth_imm(skb) &&
1231c6e0d914SCasey Leedom unlikely(map_skb(adapter->pdev_dev, skb, addr) < 0)) {
1232c6e0d914SCasey Leedom /*
1233c6e0d914SCasey Leedom * We need to map the skb into PCI DMA space (because it can't
1234c6e0d914SCasey Leedom * be in-lined directly into the Work Request) and the mapping
1235c6e0d914SCasey Leedom * operation failed. Record the error and drop the packet.
1236c6e0d914SCasey Leedom */
1237c6e0d914SCasey Leedom txq->mapping_err++;
1238c6e0d914SCasey Leedom goto out_free;
1239c6e0d914SCasey Leedom }
1240c6e0d914SCasey Leedom
1241e2ac9628SHariprasad Shenai wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1242c6e0d914SCasey Leedom if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1243c6e0d914SCasey Leedom /*
1244c6e0d914SCasey Leedom * After we're done injecting the Work Request for this
124525985edcSLucas De Marchi * packet, we'll be below our "stop threshold" so stop the TX
12467f9dd2faSCasey Leedom * Queue now and schedule a request for an SGE Egress Queue
12477f9dd2faSCasey Leedom * Update message. The queue will get started later on when
12487f9dd2faSCasey Leedom * the firmware processes this Work Request and sends us an
12497f9dd2faSCasey Leedom * Egress Queue Status Update message indicating that space
12507f9dd2faSCasey Leedom * has opened up.
1251c6e0d914SCasey Leedom */
1252c6e0d914SCasey Leedom txq_stop(txq);
1253e2ac9628SHariprasad Shenai wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1254c6e0d914SCasey Leedom }
1255c6e0d914SCasey Leedom
1256c6e0d914SCasey Leedom /*
1257c6e0d914SCasey Leedom * Start filling in our Work Request. Note that we do _not_ handle
1258c6e0d914SCasey Leedom * the WR Header wrapping around the TX Descriptor Ring. If our
1259c6e0d914SCasey Leedom * maximum header size ever exceeds one TX Descriptor, we'll need to
1260c6e0d914SCasey Leedom * do something else here.
1261c6e0d914SCasey Leedom */
1262c6e0d914SCasey Leedom BUG_ON(DIV_ROUND_UP(ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
1263c6e0d914SCasey Leedom wr = (void *)&txq->q.desc[txq->q.pidx];
12647f9dd2faSCasey Leedom wr->equiq_to_len16 = cpu_to_be32(wr_mid);
12652ff2acf1SHariprasad Shenai wr->r3[0] = cpu_to_be32(0);
12662ff2acf1SHariprasad Shenai wr->r3[1] = cpu_to_be32(0);
1267641d3ef0SKees Cook skb_copy_from_linear_data(skb, &wr->firmware, fw_hdr_copy_len);
1268c6e0d914SCasey Leedom end = (u64 *)wr + flits;
1269c6e0d914SCasey Leedom
1270c6e0d914SCasey Leedom /*
1271c6e0d914SCasey Leedom * If this is a Large Send Offload packet we'll put in an LSO CPL
1272c6e0d914SCasey Leedom * message with an encapsulated TX Packet CPL message. Otherwise we
1273c6e0d914SCasey Leedom * just use a TX Packet CPL message.
1274c6e0d914SCasey Leedom */
1275c6e0d914SCasey Leedom ssi = skb_shinfo(skb);
1276c6e0d914SCasey Leedom if (ssi->gso_size) {
1277c6e0d914SCasey Leedom struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1278c6e0d914SCasey Leedom bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1279c6e0d914SCasey Leedom int l3hdr_len = skb_network_header_len(skb);
1280c6e0d914SCasey Leedom int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1281c6e0d914SCasey Leedom
1282c6e0d914SCasey Leedom wr->op_immdlen =
1283e2ac9628SHariprasad Shenai cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1284e2ac9628SHariprasad Shenai FW_WR_IMMDLEN_V(sizeof(*lso) +
1285c6e0d914SCasey Leedom sizeof(*cpl)));
1286c6e0d914SCasey Leedom /*
1287c6e0d914SCasey Leedom * Fill in the LSO CPL message.
1288c6e0d914SCasey Leedom */
1289c6e0d914SCasey Leedom lso->lso_ctrl =
12901ecc7b7aSHariprasad Shenai cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
12911ecc7b7aSHariprasad Shenai LSO_FIRST_SLICE_F |
12921ecc7b7aSHariprasad Shenai LSO_LAST_SLICE_F |
12931ecc7b7aSHariprasad Shenai LSO_IPV6_V(v6) |
12941ecc7b7aSHariprasad Shenai LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
12951ecc7b7aSHariprasad Shenai LSO_IPHDR_LEN_V(l3hdr_len / 4) |
12961ecc7b7aSHariprasad Shenai LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1297c6e0d914SCasey Leedom lso->ipid_ofst = cpu_to_be16(0);
1298c6e0d914SCasey Leedom lso->mss = cpu_to_be16(ssi->gso_size);
1299c6e0d914SCasey Leedom lso->seqno_offset = cpu_to_be32(0);
13007207c0d1SHariprasad Shenai if (is_t4(adapter->params.chip))
1301c6e0d914SCasey Leedom lso->len = cpu_to_be32(skb->len);
13027207c0d1SHariprasad Shenai else
13031ecc7b7aSHariprasad Shenai lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len));
1304c6e0d914SCasey Leedom
1305c6e0d914SCasey Leedom /*
1306c6e0d914SCasey Leedom * Set up TX Packet CPL pointer, control word and perform
1307c6e0d914SCasey Leedom * accounting.
1308c6e0d914SCasey Leedom */
1309c6e0d914SCasey Leedom cpl = (void *)(lso + 1);
131041fc2e41SHariprasad Shenai
131141fc2e41SHariprasad Shenai if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
131241fc2e41SHariprasad Shenai cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len);
131341fc2e41SHariprasad Shenai else
131441fc2e41SHariprasad Shenai cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
131541fc2e41SHariprasad Shenai
131641fc2e41SHariprasad Shenai cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
13171ecc7b7aSHariprasad Shenai TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
131841fc2e41SHariprasad Shenai TXPKT_IPHDR_LEN_V(l3hdr_len);
1319c6e0d914SCasey Leedom txq->tso++;
1320c6e0d914SCasey Leedom txq->tx_cso += ssi->gso_segs;
1321c6e0d914SCasey Leedom } else {
1322c6e0d914SCasey Leedom int len;
1323c6e0d914SCasey Leedom
1324c6e0d914SCasey Leedom len = is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl);
1325c6e0d914SCasey Leedom wr->op_immdlen =
1326e2ac9628SHariprasad Shenai cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1327e2ac9628SHariprasad Shenai FW_WR_IMMDLEN_V(len));
1328c6e0d914SCasey Leedom
1329c6e0d914SCasey Leedom /*
1330c6e0d914SCasey Leedom * Set up TX Packet CPL pointer, control word and perform
1331c6e0d914SCasey Leedom * accounting.
1332c6e0d914SCasey Leedom */
1333c6e0d914SCasey Leedom cpl = (void *)(wr + 1);
1334c6e0d914SCasey Leedom if (skb->ip_summed == CHECKSUM_PARTIAL) {
133541fc2e41SHariprasad Shenai cntrl = hwcsum(adapter->params.chip, skb) |
133641fc2e41SHariprasad Shenai TXPKT_IPCSUM_DIS_F;
1337c6e0d914SCasey Leedom txq->tx_cso++;
1338c6e0d914SCasey Leedom } else
13391ecc7b7aSHariprasad Shenai cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1340c6e0d914SCasey Leedom }
1341c6e0d914SCasey Leedom
1342c6e0d914SCasey Leedom /*
1343c6e0d914SCasey Leedom * If there's a VLAN tag present, add that to the list of things to
1344c6e0d914SCasey Leedom * do in this Work Request.
1345c6e0d914SCasey Leedom */
1346df8a39deSJiri Pirko if (skb_vlan_tag_present(skb)) {
1347c6e0d914SCasey Leedom txq->vlan_ins++;
13481ecc7b7aSHariprasad Shenai cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1349c6e0d914SCasey Leedom }
1350c6e0d914SCasey Leedom
1351c6e0d914SCasey Leedom /*
1352c6e0d914SCasey Leedom * Fill in the TX Packet CPL message header.
1353c6e0d914SCasey Leedom */
13541ecc7b7aSHariprasad Shenai cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
13551ecc7b7aSHariprasad Shenai TXPKT_INTF_V(pi->port_id) |
13561ecc7b7aSHariprasad Shenai TXPKT_PF_V(0));
1357c6e0d914SCasey Leedom cpl->pack = cpu_to_be16(0);
1358c6e0d914SCasey Leedom cpl->len = cpu_to_be16(skb->len);
1359c6e0d914SCasey Leedom cpl->ctrl1 = cpu_to_be64(cntrl);
1360c6e0d914SCasey Leedom
1361c6e0d914SCasey Leedom #ifdef T4_TRACE
1362c6e0d914SCasey Leedom T4_TRACE5(adapter->tb[txq->q.cntxt_id & 7],
1363c6e0d914SCasey Leedom "eth_xmit: ndesc %u, credits %u, pidx %u, len %u, frags %u",
1364c6e0d914SCasey Leedom ndesc, credits, txq->q.pidx, skb->len, ssi->nr_frags);
1365c6e0d914SCasey Leedom #endif
1366c6e0d914SCasey Leedom
1367c6e0d914SCasey Leedom /*
1368c6e0d914SCasey Leedom * Fill in the body of the TX Packet CPL message with either in-lined
1369c6e0d914SCasey Leedom * data or a Scatter/Gather List.
1370c6e0d914SCasey Leedom */
1371c6e0d914SCasey Leedom if (is_eth_imm(skb)) {
1372c6e0d914SCasey Leedom /*
1373c6e0d914SCasey Leedom * In-line the packet's data and free the skb since we don't
1374c6e0d914SCasey Leedom * need it any longer.
1375c6e0d914SCasey Leedom */
1376c6e0d914SCasey Leedom inline_tx_skb(skb, &txq->q, cpl + 1);
137742ffda5fSEric W. Biederman dev_consume_skb_any(skb);
1378c6e0d914SCasey Leedom } else {
1379c6e0d914SCasey Leedom /*
1380c6e0d914SCasey Leedom * Write the skb's Scatter/Gather list into the TX Packet CPL
1381c6e0d914SCasey Leedom * message and retain a pointer to the skb so we can free it
1382c6e0d914SCasey Leedom * later when its DMA completes. (We store the skb pointer
1383c6e0d914SCasey Leedom * in the Software Descriptor corresponding to the last TX
1384c6e0d914SCasey Leedom * Descriptor used by the Work Request.)
1385c6e0d914SCasey Leedom *
1386c6e0d914SCasey Leedom * The retained skb will be freed when the corresponding TX
1387c6e0d914SCasey Leedom * Descriptors are reclaimed after their DMAs complete.
1388c6e0d914SCasey Leedom * However, this could take quite a while since, in general,
1389c6e0d914SCasey Leedom * the hardware is set up to be lazy about sending DMA
1390c6e0d914SCasey Leedom * completion notifications to us and we mostly perform TX
1391c6e0d914SCasey Leedom * reclaims in the transmit routine.
1392c6e0d914SCasey Leedom *
1393c6e0d914SCasey Leedom * This is good for performamce but means that we rely on new
1394c6e0d914SCasey Leedom * TX packets arriving to run the destructors of completed
1395c6e0d914SCasey Leedom * packets, which open up space in their sockets' send queues.
1396c6e0d914SCasey Leedom * Sometimes we do not get such new packets causing TX to
1397c6e0d914SCasey Leedom * stall. A single UDP transmitter is a good example of this
1398c6e0d914SCasey Leedom * situation. We have a clean up timer that periodically
1399c6e0d914SCasey Leedom * reclaims completed packets but it doesn't run often enough
1400c6e0d914SCasey Leedom * (nor do we want it to) to prevent lengthy stalls. A
1401c6e0d914SCasey Leedom * solution to this problem is to run the destructor early,
1402c6e0d914SCasey Leedom * after the packet is queued but before it's DMAd. A con is
1403c6e0d914SCasey Leedom * that we lie to socket memory accounting, but the amount of
1404c6e0d914SCasey Leedom * extra memory is reasonable (limited by the number of TX
1405c6e0d914SCasey Leedom * descriptors), the packets do actually get freed quickly by
1406c6e0d914SCasey Leedom * new packets almost always, and for protocols like TCP that
1407c6e0d914SCasey Leedom * wait for acks to really free up the data the extra memory
1408c6e0d914SCasey Leedom * is even less. On the positive side we run the destructors
1409c6e0d914SCasey Leedom * on the sending CPU rather than on a potentially different
141064bb336cSCasey Leedom * completing CPU, usually a good thing.
1411c6e0d914SCasey Leedom *
1412c6e0d914SCasey Leedom * Run the destructor before telling the DMA engine about the
1413c6e0d914SCasey Leedom * packet to make sure it doesn't complete and get freed
1414c6e0d914SCasey Leedom * prematurely.
1415c6e0d914SCasey Leedom */
1416c6e0d914SCasey Leedom struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
1417c6e0d914SCasey Leedom struct sge_txq *tq = &txq->q;
1418c6e0d914SCasey Leedom int last_desc;
1419c6e0d914SCasey Leedom
1420c6e0d914SCasey Leedom /*
1421c6e0d914SCasey Leedom * If the Work Request header was an exact multiple of our TX
1422c6e0d914SCasey Leedom * Descriptor length, then it's possible that the starting SGL
1423c6e0d914SCasey Leedom * pointer lines up exactly with the end of our TX Descriptor
1424c6e0d914SCasey Leedom * ring. If that's the case, wrap around to the beginning
1425c6e0d914SCasey Leedom * here ...
1426c6e0d914SCasey Leedom */
1427c6e0d914SCasey Leedom if (unlikely((void *)sgl == (void *)tq->stat)) {
1428c6e0d914SCasey Leedom sgl = (void *)tq->desc;
142964699336SJoe Perches end = ((void *)tq->desc + ((void *)end - (void *)tq->stat));
1430c6e0d914SCasey Leedom }
1431c6e0d914SCasey Leedom
1432c6e0d914SCasey Leedom write_sgl(skb, tq, sgl, end, 0, addr);
1433c6e0d914SCasey Leedom skb_orphan(skb);
1434c6e0d914SCasey Leedom
1435c6e0d914SCasey Leedom last_desc = tq->pidx + ndesc - 1;
1436c6e0d914SCasey Leedom if (last_desc >= tq->size)
1437c6e0d914SCasey Leedom last_desc -= tq->size;
1438c6e0d914SCasey Leedom tq->sdesc[last_desc].skb = skb;
1439c6e0d914SCasey Leedom tq->sdesc[last_desc].sgl = sgl;
1440c6e0d914SCasey Leedom }
1441c6e0d914SCasey Leedom
1442c6e0d914SCasey Leedom /*
1443c6e0d914SCasey Leedom * Advance our internal TX Queue state, tell the hardware about
1444c6e0d914SCasey Leedom * the new TX descriptors and return success.
1445c6e0d914SCasey Leedom */
1446c6e0d914SCasey Leedom txq_advance(&txq->q, ndesc);
1447860e9538SFlorian Westphal netif_trans_update(dev);
1448c6e0d914SCasey Leedom ring_tx_db(adapter, &txq->q, ndesc);
1449c6e0d914SCasey Leedom return NETDEV_TX_OK;
1450c6e0d914SCasey Leedom
1451c6e0d914SCasey Leedom out_free:
1452c6e0d914SCasey Leedom /*
1453c6e0d914SCasey Leedom * An error of some sort happened. Free the TX skb and tell the
1454c6e0d914SCasey Leedom * OS that we've "dealt" with the packet ...
1455c6e0d914SCasey Leedom */
145642ffda5fSEric W. Biederman dev_kfree_skb_any(skb);
1457c6e0d914SCasey Leedom return NETDEV_TX_OK;
1458c6e0d914SCasey Leedom }
1459c6e0d914SCasey Leedom
1460c6e0d914SCasey Leedom /**
1461a0006a86SIan Campbell * copy_frags - copy fragments from gather list into skb_shared_info
1462a0006a86SIan Campbell * @skb: destination skb
1463a0006a86SIan Campbell * @gl: source internal packet gather list
1464a0006a86SIan Campbell * @offset: packet start offset in first page
1465a0006a86SIan Campbell *
1466a0006a86SIan Campbell * Copy an internal packet gather list into a Linux skb_shared_info
1467a0006a86SIan Campbell * structure.
1468a0006a86SIan Campbell */
copy_frags(struct sk_buff * skb,const struct pkt_gl * gl,unsigned int offset)1469a0006a86SIan Campbell static inline void copy_frags(struct sk_buff *skb,
1470a0006a86SIan Campbell const struct pkt_gl *gl,
1471a0006a86SIan Campbell unsigned int offset)
1472a0006a86SIan Campbell {
1473a0006a86SIan Campbell int i;
1474a0006a86SIan Campbell
1475a0006a86SIan Campbell /* usually there's just one frag */
1476a0006a86SIan Campbell __skb_fill_page_desc(skb, 0, gl->frags[0].page,
1477a0006a86SIan Campbell gl->frags[0].offset + offset,
1478a0006a86SIan Campbell gl->frags[0].size - offset);
1479a0006a86SIan Campbell skb_shinfo(skb)->nr_frags = gl->nfrags;
1480a0006a86SIan Campbell for (i = 1; i < gl->nfrags; i++)
1481a0006a86SIan Campbell __skb_fill_page_desc(skb, i, gl->frags[i].page,
1482a0006a86SIan Campbell gl->frags[i].offset,
1483a0006a86SIan Campbell gl->frags[i].size);
1484a0006a86SIan Campbell
1485a0006a86SIan Campbell /* get a reference to the last page, we don't own it */
1486a0006a86SIan Campbell get_page(gl->frags[gl->nfrags - 1].page);
1487a0006a86SIan Campbell }
1488a0006a86SIan Campbell
1489a0006a86SIan Campbell /**
1490eb6c503dSCasey Leedom * t4vf_pktgl_to_skb - build an sk_buff from a packet gather list
1491eb6c503dSCasey Leedom * @gl: the gather list
1492eb6c503dSCasey Leedom * @skb_len: size of sk_buff main body if it carries fragments
1493eb6c503dSCasey Leedom * @pull_len: amount of data to move to the sk_buff's main body
1494eb6c503dSCasey Leedom *
1495eb6c503dSCasey Leedom * Builds an sk_buff from the given packet gather list. Returns the
1496eb6c503dSCasey Leedom * sk_buff or %NULL if sk_buff allocation failed.
1497eb6c503dSCasey Leedom */
t4vf_pktgl_to_skb(const struct pkt_gl * gl,unsigned int skb_len,unsigned int pull_len)14988a67d1c6SSachin Kamat static struct sk_buff *t4vf_pktgl_to_skb(const struct pkt_gl *gl,
14998a67d1c6SSachin Kamat unsigned int skb_len,
15008a67d1c6SSachin Kamat unsigned int pull_len)
1501eb6c503dSCasey Leedom {
1502eb6c503dSCasey Leedom struct sk_buff *skb;
1503eb6c503dSCasey Leedom
1504eb6c503dSCasey Leedom /*
1505eb6c503dSCasey Leedom * If the ingress packet is small enough, allocate an skb large enough
1506eb6c503dSCasey Leedom * for all of the data and copy it inline. Otherwise, allocate an skb
1507eb6c503dSCasey Leedom * with enough room to pull in the header and reference the rest of
1508eb6c503dSCasey Leedom * the data via the skb fragment list.
1509eb6c503dSCasey Leedom *
1510eb6c503dSCasey Leedom * Below we rely on RX_COPY_THRES being less than the smallest Rx
1511eb6c503dSCasey Leedom * buff! size, which is expected since buffers are at least
1512eb6c503dSCasey Leedom * PAGE_SIZEd. In this case packets up to RX_COPY_THRES have only one
1513eb6c503dSCasey Leedom * fragment.
1514eb6c503dSCasey Leedom */
1515eb6c503dSCasey Leedom if (gl->tot_len <= RX_COPY_THRES) {
1516eb6c503dSCasey Leedom /* small packets have only one fragment */
1517eb6c503dSCasey Leedom skb = alloc_skb(gl->tot_len, GFP_ATOMIC);
1518eb6c503dSCasey Leedom if (unlikely(!skb))
1519eb6c503dSCasey Leedom goto out;
1520eb6c503dSCasey Leedom __skb_put(skb, gl->tot_len);
1521eb6c503dSCasey Leedom skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
1522eb6c503dSCasey Leedom } else {
1523eb6c503dSCasey Leedom skb = alloc_skb(skb_len, GFP_ATOMIC);
1524eb6c503dSCasey Leedom if (unlikely(!skb))
1525eb6c503dSCasey Leedom goto out;
1526eb6c503dSCasey Leedom __skb_put(skb, pull_len);
1527eb6c503dSCasey Leedom skb_copy_to_linear_data(skb, gl->va, pull_len);
1528eb6c503dSCasey Leedom
1529a0006a86SIan Campbell copy_frags(skb, gl, pull_len);
1530eb6c503dSCasey Leedom skb->len = gl->tot_len;
1531eb6c503dSCasey Leedom skb->data_len = skb->len - pull_len;
1532eb6c503dSCasey Leedom skb->truesize += skb->data_len;
1533eb6c503dSCasey Leedom }
1534eb6c503dSCasey Leedom
1535eb6c503dSCasey Leedom out:
1536eb6c503dSCasey Leedom return skb;
1537eb6c503dSCasey Leedom }
1538eb6c503dSCasey Leedom
1539eb6c503dSCasey Leedom /**
1540c6e0d914SCasey Leedom * t4vf_pktgl_free - free a packet gather list
1541c6e0d914SCasey Leedom * @gl: the gather list
1542c6e0d914SCasey Leedom *
1543c6e0d914SCasey Leedom * Releases the pages of a packet gather list. We do not own the last
1544c6e0d914SCasey Leedom * page on the list and do not free it.
1545c6e0d914SCasey Leedom */
t4vf_pktgl_free(const struct pkt_gl * gl)15468a67d1c6SSachin Kamat static void t4vf_pktgl_free(const struct pkt_gl *gl)
1547c6e0d914SCasey Leedom {
1548c6e0d914SCasey Leedom int frag;
1549c6e0d914SCasey Leedom
1550c6e0d914SCasey Leedom frag = gl->nfrags - 1;
1551c6e0d914SCasey Leedom while (frag--)
1552c6e0d914SCasey Leedom put_page(gl->frags[frag].page);
1553c6e0d914SCasey Leedom }
1554c6e0d914SCasey Leedom
1555c6e0d914SCasey Leedom /**
1556c6e0d914SCasey Leedom * do_gro - perform Generic Receive Offload ingress packet processing
1557c6e0d914SCasey Leedom * @rxq: ingress RX Ethernet Queue
1558c6e0d914SCasey Leedom * @gl: gather list for ingress packet
1559c6e0d914SCasey Leedom * @pkt: CPL header for last packet fragment
1560c6e0d914SCasey Leedom *
1561c6e0d914SCasey Leedom * Perform Generic Receive Offload (GRO) ingress packet processing.
1562c6e0d914SCasey Leedom * We use the standard Linux GRO interfaces for this.
1563c6e0d914SCasey Leedom */
do_gro(struct sge_eth_rxq * rxq,const struct pkt_gl * gl,const struct cpl_rx_pkt * pkt)1564c6e0d914SCasey Leedom static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
1565c6e0d914SCasey Leedom const struct cpl_rx_pkt *pkt)
1566c6e0d914SCasey Leedom {
156765f6ecc9SHariprasad Shenai struct adapter *adapter = rxq->rspq.adapter;
156865f6ecc9SHariprasad Shenai struct sge *s = &adapter->sge;
15699d5fd927SGanesh Goudar struct port_info *pi;
1570c6e0d914SCasey Leedom int ret;
1571c6e0d914SCasey Leedom struct sk_buff *skb;
1572c6e0d914SCasey Leedom
1573c6e0d914SCasey Leedom skb = napi_get_frags(&rxq->rspq.napi);
1574c6e0d914SCasey Leedom if (unlikely(!skb)) {
1575c6e0d914SCasey Leedom t4vf_pktgl_free(gl);
1576c6e0d914SCasey Leedom rxq->stats.rx_drops++;
1577c6e0d914SCasey Leedom return;
1578c6e0d914SCasey Leedom }
1579c6e0d914SCasey Leedom
158065f6ecc9SHariprasad Shenai copy_frags(skb, gl, s->pktshift);
158165f6ecc9SHariprasad Shenai skb->len = gl->tot_len - s->pktshift;
1582c6e0d914SCasey Leedom skb->data_len = skb->len;
1583c6e0d914SCasey Leedom skb->truesize += skb->data_len;
1584c6e0d914SCasey Leedom skb->ip_summed = CHECKSUM_UNNECESSARY;
1585c6e0d914SCasey Leedom skb_record_rx_queue(skb, rxq->rspq.idx);
15869d5fd927SGanesh Goudar pi = netdev_priv(skb->dev);
1587c6e0d914SCasey Leedom
15889d5fd927SGanesh Goudar if (pkt->vlan_ex && !pi->vlan_id) {
158986a9bad3SPatrick McHardy __vlan_hwaccel_put_tag(skb, cpu_to_be16(ETH_P_8021Q),
159086a9bad3SPatrick McHardy be16_to_cpu(pkt->vlan));
1591af32de0eSVipul Pandya rxq->stats.vlan_ex++;
1592af32de0eSVipul Pandya }
1593c6e0d914SCasey Leedom ret = napi_gro_frags(&rxq->rspq.napi);
1594c6e0d914SCasey Leedom
1595c6e0d914SCasey Leedom if (ret == GRO_HELD)
1596c6e0d914SCasey Leedom rxq->stats.lro_pkts++;
1597c6e0d914SCasey Leedom else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
1598c6e0d914SCasey Leedom rxq->stats.lro_merged++;
1599c6e0d914SCasey Leedom rxq->stats.pkts++;
1600c6e0d914SCasey Leedom rxq->stats.rx_cso++;
1601c6e0d914SCasey Leedom }
1602c6e0d914SCasey Leedom
1603c6e0d914SCasey Leedom /**
1604c6e0d914SCasey Leedom * t4vf_ethrx_handler - process an ingress ethernet packet
1605c6e0d914SCasey Leedom * @rspq: the response queue that received the packet
1606c6e0d914SCasey Leedom * @rsp: the response queue descriptor holding the RX_PKT message
1607c6e0d914SCasey Leedom * @gl: the gather list of packet fragments
1608c6e0d914SCasey Leedom *
1609c6e0d914SCasey Leedom * Process an ingress ethernet packet and deliver it to the stack.
1610c6e0d914SCasey Leedom */
t4vf_ethrx_handler(struct sge_rspq * rspq,const __be64 * rsp,const struct pkt_gl * gl)1611c6e0d914SCasey Leedom int t4vf_ethrx_handler(struct sge_rspq *rspq, const __be64 *rsp,
1612c6e0d914SCasey Leedom const struct pkt_gl *gl)
1613c6e0d914SCasey Leedom {
1614c6e0d914SCasey Leedom struct sk_buff *skb;
16158b9a4d56SVipul Pandya const struct cpl_rx_pkt *pkt = (void *)rsp;
1616c3136f55SHariprasad Shenai bool csum_ok = pkt->csum_calc && !pkt->err_vec &&
1617c3136f55SHariprasad Shenai (rspq->netdev->features & NETIF_F_RXCSUM);
1618c6e0d914SCasey Leedom struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
161965f6ecc9SHariprasad Shenai struct adapter *adapter = rspq->adapter;
162065f6ecc9SHariprasad Shenai struct sge *s = &adapter->sge;
16219d5fd927SGanesh Goudar struct port_info *pi;
1622c6e0d914SCasey Leedom
1623c6e0d914SCasey Leedom /*
1624c6e0d914SCasey Leedom * If this is a good TCP packet and we have Generic Receive Offload
1625c6e0d914SCasey Leedom * enabled, handle the packet in the GRO path.
1626c6e0d914SCasey Leedom */
1627bdc590b9SHariprasad Shenai if ((pkt->l2info & cpu_to_be32(RXF_TCP_F)) &&
1628c6e0d914SCasey Leedom (rspq->netdev->features & NETIF_F_GRO) && csum_ok &&
1629c6e0d914SCasey Leedom !pkt->ip_frag) {
1630c6e0d914SCasey Leedom do_gro(rxq, gl, pkt);
1631c6e0d914SCasey Leedom return 0;
1632c6e0d914SCasey Leedom }
1633c6e0d914SCasey Leedom
1634c6e0d914SCasey Leedom /*
1635eb6c503dSCasey Leedom * Convert the Packet Gather List into an skb.
1636c6e0d914SCasey Leedom */
1637eb6c503dSCasey Leedom skb = t4vf_pktgl_to_skb(gl, RX_SKB_LEN, RX_PULL_LEN);
1638eb6c503dSCasey Leedom if (unlikely(!skb)) {
1639eb6c503dSCasey Leedom t4vf_pktgl_free(gl);
1640eb6c503dSCasey Leedom rxq->stats.rx_drops++;
1641eb6c503dSCasey Leedom return 0;
1642c6e0d914SCasey Leedom }
164365f6ecc9SHariprasad Shenai __skb_pull(skb, s->pktshift);
1644c6e0d914SCasey Leedom skb->protocol = eth_type_trans(skb, rspq->netdev);
1645c6e0d914SCasey Leedom skb_record_rx_queue(skb, rspq->idx);
16469d5fd927SGanesh Goudar pi = netdev_priv(skb->dev);
1647c6e0d914SCasey Leedom rxq->stats.pkts++;
1648c6e0d914SCasey Leedom
1649c3136f55SHariprasad Shenai if (csum_ok && !pkt->err_vec &&
1650bdc590b9SHariprasad Shenai (be32_to_cpu(pkt->l2info) & (RXF_UDP_F | RXF_TCP_F))) {
16515400e54aSHariprasad Shenai if (!pkt->ip_frag) {
1652c6e0d914SCasey Leedom skb->ip_summed = CHECKSUM_UNNECESSARY;
16535400e54aSHariprasad Shenai rxq->stats.rx_cso++;
16545400e54aSHariprasad Shenai } else if (pkt->l2info & htonl(RXF_IP_F)) {
1655c6e0d914SCasey Leedom __sum16 c = (__force __sum16)pkt->csum;
1656c6e0d914SCasey Leedom skb->csum = csum_unfold(c);
1657c6e0d914SCasey Leedom skb->ip_summed = CHECKSUM_COMPLETE;
1658c6e0d914SCasey Leedom rxq->stats.rx_cso++;
16595400e54aSHariprasad Shenai }
1660c6e0d914SCasey Leedom } else
1661bc8acf2cSEric Dumazet skb_checksum_none_assert(skb);
1662c6e0d914SCasey Leedom
16639d5fd927SGanesh Goudar if (pkt->vlan_ex && !pi->vlan_id) {
1664c6e0d914SCasey Leedom rxq->stats.vlan_ex++;
16659d5fd927SGanesh Goudar __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
16669d5fd927SGanesh Goudar be16_to_cpu(pkt->vlan));
166787737663SJiri Pirko }
166887737663SJiri Pirko
1669c6e0d914SCasey Leedom netif_receive_skb(skb);
1670c6e0d914SCasey Leedom
1671c6e0d914SCasey Leedom return 0;
1672c6e0d914SCasey Leedom }
1673c6e0d914SCasey Leedom
1674c6e0d914SCasey Leedom /**
1675c6e0d914SCasey Leedom * is_new_response - check if a response is newly written
1676c6e0d914SCasey Leedom * @rc: the response control descriptor
1677c6e0d914SCasey Leedom * @rspq: the response queue
1678c6e0d914SCasey Leedom *
1679c6e0d914SCasey Leedom * Returns true if a response descriptor contains a yet unprocessed
1680c6e0d914SCasey Leedom * response.
1681c6e0d914SCasey Leedom */
is_new_response(const struct rsp_ctrl * rc,const struct sge_rspq * rspq)1682c6e0d914SCasey Leedom static inline bool is_new_response(const struct rsp_ctrl *rc,
1683c6e0d914SCasey Leedom const struct sge_rspq *rspq)
1684c6e0d914SCasey Leedom {
16851ecc7b7aSHariprasad Shenai return ((rc->type_gen >> RSPD_GEN_S) & 0x1) == rspq->gen;
1686c6e0d914SCasey Leedom }
1687c6e0d914SCasey Leedom
1688c6e0d914SCasey Leedom /**
1689c6e0d914SCasey Leedom * restore_rx_bufs - put back a packet's RX buffers
1690c6e0d914SCasey Leedom * @gl: the packet gather list
1691c6e0d914SCasey Leedom * @fl: the SGE Free List
169220bb0c8fSRahul Lakkireddy * @frags: how many fragments in @si
1693c6e0d914SCasey Leedom *
1694c6e0d914SCasey Leedom * Called when we find out that the current packet, @si, can't be
1695c6e0d914SCasey Leedom * processed right away for some reason. This is a very rare event and
1696c6e0d914SCasey Leedom * there's no effort to make this suspension/resumption process
1697c6e0d914SCasey Leedom * particularly efficient.
1698c6e0d914SCasey Leedom *
1699c6e0d914SCasey Leedom * We implement the suspension by putting all of the RX buffers associated
1700c6e0d914SCasey Leedom * with the current packet back on the original Free List. The buffers
1701c6e0d914SCasey Leedom * have already been unmapped and are left unmapped, we mark them as
1702c6e0d914SCasey Leedom * unmapped in order to prevent further unmapping attempts. (Effectively
1703c6e0d914SCasey Leedom * this function undoes the series of @unmap_rx_buf calls which were done
1704c6e0d914SCasey Leedom * to create the current packet's gather list.) This leaves us ready to
1705c6e0d914SCasey Leedom * restart processing of the packet the next time we start processing the
1706c6e0d914SCasey Leedom * RX Queue ...
1707c6e0d914SCasey Leedom */
restore_rx_bufs(const struct pkt_gl * gl,struct sge_fl * fl,int frags)1708c6e0d914SCasey Leedom static void restore_rx_bufs(const struct pkt_gl *gl, struct sge_fl *fl,
1709c6e0d914SCasey Leedom int frags)
1710c6e0d914SCasey Leedom {
1711c6e0d914SCasey Leedom struct rx_sw_desc *sdesc;
1712c6e0d914SCasey Leedom
1713c6e0d914SCasey Leedom while (frags--) {
1714c6e0d914SCasey Leedom if (fl->cidx == 0)
1715c6e0d914SCasey Leedom fl->cidx = fl->size - 1;
1716c6e0d914SCasey Leedom else
1717c6e0d914SCasey Leedom fl->cidx--;
1718c6e0d914SCasey Leedom sdesc = &fl->sdesc[fl->cidx];
1719c6e0d914SCasey Leedom sdesc->page = gl->frags[frags].page;
1720c6e0d914SCasey Leedom sdesc->dma_addr |= RX_UNMAPPED_BUF;
1721c6e0d914SCasey Leedom fl->avail++;
1722c6e0d914SCasey Leedom }
1723c6e0d914SCasey Leedom }
1724c6e0d914SCasey Leedom
1725c6e0d914SCasey Leedom /**
1726c6e0d914SCasey Leedom * rspq_next - advance to the next entry in a response queue
1727c6e0d914SCasey Leedom * @rspq: the queue
1728c6e0d914SCasey Leedom *
1729c6e0d914SCasey Leedom * Updates the state of a response queue to advance it to the next entry.
1730c6e0d914SCasey Leedom */
rspq_next(struct sge_rspq * rspq)1731c6e0d914SCasey Leedom static inline void rspq_next(struct sge_rspq *rspq)
1732c6e0d914SCasey Leedom {
1733c6e0d914SCasey Leedom rspq->cur_desc = (void *)rspq->cur_desc + rspq->iqe_len;
1734c6e0d914SCasey Leedom if (unlikely(++rspq->cidx == rspq->size)) {
1735c6e0d914SCasey Leedom rspq->cidx = 0;
1736c6e0d914SCasey Leedom rspq->gen ^= 1;
1737c6e0d914SCasey Leedom rspq->cur_desc = rspq->desc;
1738c6e0d914SCasey Leedom }
1739c6e0d914SCasey Leedom }
1740c6e0d914SCasey Leedom
1741c6e0d914SCasey Leedom /**
1742c6e0d914SCasey Leedom * process_responses - process responses from an SGE response queue
1743c6e0d914SCasey Leedom * @rspq: the ingress response queue to process
1744c6e0d914SCasey Leedom * @budget: how many responses can be processed in this round
1745c6e0d914SCasey Leedom *
1746c6e0d914SCasey Leedom * Process responses from a Scatter Gather Engine response queue up to
1747c6e0d914SCasey Leedom * the supplied budget. Responses include received packets as well as
1748c6e0d914SCasey Leedom * control messages from firmware or hardware.
1749c6e0d914SCasey Leedom *
1750c6e0d914SCasey Leedom * Additionally choose the interrupt holdoff time for the next interrupt
1751c6e0d914SCasey Leedom * on this queue. If the system is under memory shortage use a fairly
1752c6e0d914SCasey Leedom * long delay to help recovery.
1753c6e0d914SCasey Leedom */
process_responses(struct sge_rspq * rspq,int budget)17548a67d1c6SSachin Kamat static int process_responses(struct sge_rspq *rspq, int budget)
1755c6e0d914SCasey Leedom {
1756c6e0d914SCasey Leedom struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
175765f6ecc9SHariprasad Shenai struct adapter *adapter = rspq->adapter;
175865f6ecc9SHariprasad Shenai struct sge *s = &adapter->sge;
1759c6e0d914SCasey Leedom int budget_left = budget;
1760c6e0d914SCasey Leedom
1761c6e0d914SCasey Leedom while (likely(budget_left)) {
1762c6e0d914SCasey Leedom int ret, rsp_type;
1763c6e0d914SCasey Leedom const struct rsp_ctrl *rc;
1764c6e0d914SCasey Leedom
1765c6e0d914SCasey Leedom rc = (void *)rspq->cur_desc + (rspq->iqe_len - sizeof(*rc));
1766c6e0d914SCasey Leedom if (!is_new_response(rc, rspq))
1767c6e0d914SCasey Leedom break;
1768c6e0d914SCasey Leedom
1769c6e0d914SCasey Leedom /*
1770c6e0d914SCasey Leedom * Figure out what kind of response we've received from the
1771c6e0d914SCasey Leedom * SGE.
1772c6e0d914SCasey Leedom */
1773019be1cfSAlexander Duyck dma_rmb();
17741ecc7b7aSHariprasad Shenai rsp_type = RSPD_TYPE_G(rc->type_gen);
17751ecc7b7aSHariprasad Shenai if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) {
1776a0006a86SIan Campbell struct page_frag *fp;
1777c6e0d914SCasey Leedom struct pkt_gl gl;
1778c6e0d914SCasey Leedom const struct rx_sw_desc *sdesc;
1779c6e0d914SCasey Leedom u32 bufsz, frag;
1780c6e0d914SCasey Leedom u32 len = be32_to_cpu(rc->pldbuflen_qid);
1781c6e0d914SCasey Leedom
1782c6e0d914SCasey Leedom /*
1783c6e0d914SCasey Leedom * If we get a "new buffer" message from the SGE we
1784c6e0d914SCasey Leedom * need to move on to the next Free List buffer.
1785c6e0d914SCasey Leedom */
17861ecc7b7aSHariprasad Shenai if (len & RSPD_NEWBUF_F) {
1787c6e0d914SCasey Leedom /*
1788c6e0d914SCasey Leedom * We get one "new buffer" message when we
1789c6e0d914SCasey Leedom * first start up a queue so we need to ignore
1790c6e0d914SCasey Leedom * it when our offset into the buffer is 0.
1791c6e0d914SCasey Leedom */
1792c6e0d914SCasey Leedom if (likely(rspq->offset > 0)) {
1793c6e0d914SCasey Leedom free_rx_bufs(rspq->adapter, &rxq->fl,
1794c6e0d914SCasey Leedom 1);
1795c6e0d914SCasey Leedom rspq->offset = 0;
1796c6e0d914SCasey Leedom }
17971ecc7b7aSHariprasad Shenai len = RSPD_LEN_G(len);
1798c6e0d914SCasey Leedom }
1799b94e72e2SCasey Leedom gl.tot_len = len;
1800c6e0d914SCasey Leedom
1801c6e0d914SCasey Leedom /*
1802c6e0d914SCasey Leedom * Gather packet fragments.
1803c6e0d914SCasey Leedom */
1804c6e0d914SCasey Leedom for (frag = 0, fp = gl.frags; /**/; frag++, fp++) {
1805c6e0d914SCasey Leedom BUG_ON(frag >= MAX_SKB_FRAGS);
1806c6e0d914SCasey Leedom BUG_ON(rxq->fl.avail == 0);
1807c6e0d914SCasey Leedom sdesc = &rxq->fl.sdesc[rxq->fl.cidx];
180865f6ecc9SHariprasad Shenai bufsz = get_buf_size(adapter, sdesc);
1809c6e0d914SCasey Leedom fp->page = sdesc->page;
1810a0006a86SIan Campbell fp->offset = rspq->offset;
1811a0006a86SIan Campbell fp->size = min(bufsz, len);
1812a0006a86SIan Campbell len -= fp->size;
1813c6e0d914SCasey Leedom if (!len)
1814c6e0d914SCasey Leedom break;
1815c6e0d914SCasey Leedom unmap_rx_buf(rspq->adapter, &rxq->fl);
1816c6e0d914SCasey Leedom }
1817c6e0d914SCasey Leedom gl.nfrags = frag+1;
1818c6e0d914SCasey Leedom
1819c6e0d914SCasey Leedom /*
1820c6e0d914SCasey Leedom * Last buffer remains mapped so explicitly make it
1821c6e0d914SCasey Leedom * coherent for CPU access and start preloading first
1822c6e0d914SCasey Leedom * cache line ...
1823c6e0d914SCasey Leedom */
1824c6e0d914SCasey Leedom dma_sync_single_for_cpu(rspq->adapter->pdev_dev,
1825c6e0d914SCasey Leedom get_buf_addr(sdesc),
1826a0006a86SIan Campbell fp->size, DMA_FROM_DEVICE);
1827c6e0d914SCasey Leedom gl.va = (page_address(gl.frags[0].page) +
1828a0006a86SIan Campbell gl.frags[0].offset);
1829c6e0d914SCasey Leedom prefetch(gl.va);
1830c6e0d914SCasey Leedom
1831c6e0d914SCasey Leedom /*
1832c6e0d914SCasey Leedom * Hand the new ingress packet to the handler for
1833c6e0d914SCasey Leedom * this Response Queue.
1834c6e0d914SCasey Leedom */
1835c6e0d914SCasey Leedom ret = rspq->handler(rspq, rspq->cur_desc, &gl);
1836c6e0d914SCasey Leedom if (likely(ret == 0))
183765f6ecc9SHariprasad Shenai rspq->offset += ALIGN(fp->size, s->fl_align);
1838c6e0d914SCasey Leedom else
1839c6e0d914SCasey Leedom restore_rx_bufs(&gl, &rxq->fl, frag);
18401ecc7b7aSHariprasad Shenai } else if (likely(rsp_type == RSPD_TYPE_CPL_X)) {
1841c6e0d914SCasey Leedom ret = rspq->handler(rspq, rspq->cur_desc, NULL);
1842c6e0d914SCasey Leedom } else {
18431ecc7b7aSHariprasad Shenai WARN_ON(rsp_type > RSPD_TYPE_CPL_X);
1844c6e0d914SCasey Leedom ret = 0;
1845c6e0d914SCasey Leedom }
1846c6e0d914SCasey Leedom
1847c6e0d914SCasey Leedom if (unlikely(ret)) {
1848c6e0d914SCasey Leedom /*
1849c6e0d914SCasey Leedom * Couldn't process descriptor, back off for recovery.
1850c6e0d914SCasey Leedom * We use the SGE's last timer which has the longest
1851c6e0d914SCasey Leedom * interrupt coalescing value ...
1852c6e0d914SCasey Leedom */
1853c6e0d914SCasey Leedom const int NOMEM_TIMER_IDX = SGE_NTIMERS-1;
1854c6e0d914SCasey Leedom rspq->next_intr_params =
18551ecc7b7aSHariprasad Shenai QINTR_TIMER_IDX_V(NOMEM_TIMER_IDX);
1856c6e0d914SCasey Leedom break;
1857c6e0d914SCasey Leedom }
1858c6e0d914SCasey Leedom
1859c6e0d914SCasey Leedom rspq_next(rspq);
1860c6e0d914SCasey Leedom budget_left--;
1861c6e0d914SCasey Leedom }
1862c6e0d914SCasey Leedom
1863c6e0d914SCasey Leedom /*
1864c6e0d914SCasey Leedom * If this is a Response Queue with an associated Free List and
1865c6e0d914SCasey Leedom * at least two Egress Queue units available in the Free List
1866c6e0d914SCasey Leedom * for new buffer pointers, refill the Free List.
1867c6e0d914SCasey Leedom */
1868c6e0d914SCasey Leedom if (rspq->offset >= 0 &&
1869da08e425SHariprasad Shenai fl_cap(&rxq->fl) - rxq->fl.avail >= 2*FL_PER_EQ_UNIT)
1870c6e0d914SCasey Leedom __refill_fl(rspq->adapter, &rxq->fl);
1871c6e0d914SCasey Leedom return budget - budget_left;
1872c6e0d914SCasey Leedom }
1873c6e0d914SCasey Leedom
1874c6e0d914SCasey Leedom /**
1875c6e0d914SCasey Leedom * napi_rx_handler - the NAPI handler for RX processing
1876c6e0d914SCasey Leedom * @napi: the napi instance
1877c6e0d914SCasey Leedom * @budget: how many packets we can process in this round
1878c6e0d914SCasey Leedom *
1879c6e0d914SCasey Leedom * Handler for new data events when using NAPI. This does not need any
1880c6e0d914SCasey Leedom * locking or protection from interrupts as data interrupts are off at
1881c6e0d914SCasey Leedom * this point and other adapter interrupts do not interfere (the latter
1882c6e0d914SCasey Leedom * in not a concern at all with MSI-X as non-data interrupts then have
1883c6e0d914SCasey Leedom * a separate handler).
1884c6e0d914SCasey Leedom */
napi_rx_handler(struct napi_struct * napi,int budget)1885c6e0d914SCasey Leedom static int napi_rx_handler(struct napi_struct *napi, int budget)
1886c6e0d914SCasey Leedom {
1887c6e0d914SCasey Leedom unsigned int intr_params;
1888c6e0d914SCasey Leedom struct sge_rspq *rspq = container_of(napi, struct sge_rspq, napi);
1889c6e0d914SCasey Leedom int work_done = process_responses(rspq, budget);
1890df64e4d3SHariprasad Shenai u32 val;
1891c6e0d914SCasey Leedom
1892c6e0d914SCasey Leedom if (likely(work_done < budget)) {
18936ad20165SEric Dumazet napi_complete_done(napi, work_done);
1894c6e0d914SCasey Leedom intr_params = rspq->next_intr_params;
1895c6e0d914SCasey Leedom rspq->next_intr_params = rspq->intr_params;
1896c6e0d914SCasey Leedom } else
18971ecc7b7aSHariprasad Shenai intr_params = QINTR_TIMER_IDX_V(SGE_TIMER_UPD_CIDX);
1898c6e0d914SCasey Leedom
189968dc9d36SCasey Leedom if (unlikely(work_done == 0))
190068dc9d36SCasey Leedom rspq->unhandled_irqs++;
190168dc9d36SCasey Leedom
1902f612b815SHariprasad Shenai val = CIDXINC_V(work_done) | SEINTARM_V(intr_params);
190371d3c0b4SHariprasad Shenai /* If we don't have access to the new User GTS (T5+), use the old
190471d3c0b4SHariprasad Shenai * doorbell mechanism; otherwise use the new BAR2 mechanism.
190571d3c0b4SHariprasad Shenai */
190671d3c0b4SHariprasad Shenai if (unlikely(!rspq->bar2_addr)) {
1907c6e0d914SCasey Leedom t4_write_reg(rspq->adapter,
1908c6e0d914SCasey Leedom T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
1909f612b815SHariprasad Shenai val | INGRESSQID_V((u32)rspq->cntxt_id));
1910df64e4d3SHariprasad Shenai } else {
1911f612b815SHariprasad Shenai writel(val | INGRESSQID_V(rspq->bar2_qid),
1912df64e4d3SHariprasad Shenai rspq->bar2_addr + SGE_UDB_GTS);
1913df64e4d3SHariprasad Shenai wmb();
1914df64e4d3SHariprasad Shenai }
1915c6e0d914SCasey Leedom return work_done;
1916c6e0d914SCasey Leedom }
1917c6e0d914SCasey Leedom
1918c6e0d914SCasey Leedom /*
1919c6e0d914SCasey Leedom * The MSI-X interrupt handler for an SGE response queue for the NAPI case
1920c6e0d914SCasey Leedom * (i.e., response queue serviced by NAPI polling).
1921c6e0d914SCasey Leedom */
t4vf_sge_intr_msix(int irq,void * cookie)1922c6e0d914SCasey Leedom irqreturn_t t4vf_sge_intr_msix(int irq, void *cookie)
1923c6e0d914SCasey Leedom {
1924c6e0d914SCasey Leedom struct sge_rspq *rspq = cookie;
1925c6e0d914SCasey Leedom
1926c6e0d914SCasey Leedom napi_schedule(&rspq->napi);
1927c6e0d914SCasey Leedom return IRQ_HANDLED;
1928c6e0d914SCasey Leedom }
1929c6e0d914SCasey Leedom
1930c6e0d914SCasey Leedom /*
1931c6e0d914SCasey Leedom * Process the indirect interrupt entries in the interrupt queue and kick off
1932c6e0d914SCasey Leedom * NAPI for each queue that has generated an entry.
1933c6e0d914SCasey Leedom */
process_intrq(struct adapter * adapter)1934c6e0d914SCasey Leedom static unsigned int process_intrq(struct adapter *adapter)
1935c6e0d914SCasey Leedom {
1936c6e0d914SCasey Leedom struct sge *s = &adapter->sge;
1937c6e0d914SCasey Leedom struct sge_rspq *intrq = &s->intrq;
1938c6e0d914SCasey Leedom unsigned int work_done;
1939df64e4d3SHariprasad Shenai u32 val;
1940c6e0d914SCasey Leedom
1941c6e0d914SCasey Leedom spin_lock(&adapter->sge.intrq_lock);
1942c6e0d914SCasey Leedom for (work_done = 0; ; work_done++) {
1943c6e0d914SCasey Leedom const struct rsp_ctrl *rc;
1944c6e0d914SCasey Leedom unsigned int qid, iq_idx;
1945c6e0d914SCasey Leedom struct sge_rspq *rspq;
1946c6e0d914SCasey Leedom
1947c6e0d914SCasey Leedom /*
1948c6e0d914SCasey Leedom * Grab the next response from the interrupt queue and bail
1949c6e0d914SCasey Leedom * out if it's not a new response.
1950c6e0d914SCasey Leedom */
1951c6e0d914SCasey Leedom rc = (void *)intrq->cur_desc + (intrq->iqe_len - sizeof(*rc));
1952c6e0d914SCasey Leedom if (!is_new_response(rc, intrq))
1953c6e0d914SCasey Leedom break;
1954c6e0d914SCasey Leedom
1955c6e0d914SCasey Leedom /*
1956c6e0d914SCasey Leedom * If the response isn't a forwarded interrupt message issue a
1957c6e0d914SCasey Leedom * error and go on to the next response message. This should
1958c6e0d914SCasey Leedom * never happen ...
1959c6e0d914SCasey Leedom */
1960019be1cfSAlexander Duyck dma_rmb();
19611ecc7b7aSHariprasad Shenai if (unlikely(RSPD_TYPE_G(rc->type_gen) != RSPD_TYPE_INTR_X)) {
1962c6e0d914SCasey Leedom dev_err(adapter->pdev_dev,
1963c6e0d914SCasey Leedom "Unexpected INTRQ response type %d\n",
19641ecc7b7aSHariprasad Shenai RSPD_TYPE_G(rc->type_gen));
1965c6e0d914SCasey Leedom continue;
1966c6e0d914SCasey Leedom }
1967c6e0d914SCasey Leedom
1968c6e0d914SCasey Leedom /*
1969c6e0d914SCasey Leedom * Extract the Queue ID from the interrupt message and perform
1970c6e0d914SCasey Leedom * sanity checking to make sure it really refers to one of our
1971c6e0d914SCasey Leedom * Ingress Queues which is active and matches the queue's ID.
1972c6e0d914SCasey Leedom * None of these error conditions should ever happen so we may
1973c6e0d914SCasey Leedom * want to either make them fatal and/or conditionalized under
1974c6e0d914SCasey Leedom * DEBUG.
1975c6e0d914SCasey Leedom */
19761ecc7b7aSHariprasad Shenai qid = RSPD_QID_G(be32_to_cpu(rc->pldbuflen_qid));
1977c6e0d914SCasey Leedom iq_idx = IQ_IDX(s, qid);
1978c6e0d914SCasey Leedom if (unlikely(iq_idx >= MAX_INGQ)) {
1979c6e0d914SCasey Leedom dev_err(adapter->pdev_dev,
1980c6e0d914SCasey Leedom "Ingress QID %d out of range\n", qid);
1981c6e0d914SCasey Leedom continue;
1982c6e0d914SCasey Leedom }
1983c6e0d914SCasey Leedom rspq = s->ingr_map[iq_idx];
1984c6e0d914SCasey Leedom if (unlikely(rspq == NULL)) {
1985c6e0d914SCasey Leedom dev_err(adapter->pdev_dev,
1986c6e0d914SCasey Leedom "Ingress QID %d RSPQ=NULL\n", qid);
1987c6e0d914SCasey Leedom continue;
1988c6e0d914SCasey Leedom }
1989c6e0d914SCasey Leedom if (unlikely(rspq->abs_id != qid)) {
1990c6e0d914SCasey Leedom dev_err(adapter->pdev_dev,
1991c6e0d914SCasey Leedom "Ingress QID %d refers to RSPQ %d\n",
1992c6e0d914SCasey Leedom qid, rspq->abs_id);
1993c6e0d914SCasey Leedom continue;
1994c6e0d914SCasey Leedom }
1995c6e0d914SCasey Leedom
1996c6e0d914SCasey Leedom /*
1997c6e0d914SCasey Leedom * Schedule NAPI processing on the indicated Response Queue
1998c6e0d914SCasey Leedom * and move on to the next entry in the Forwarded Interrupt
1999c6e0d914SCasey Leedom * Queue.
2000c6e0d914SCasey Leedom */
2001c6e0d914SCasey Leedom napi_schedule(&rspq->napi);
2002c6e0d914SCasey Leedom rspq_next(intrq);
2003c6e0d914SCasey Leedom }
2004c6e0d914SCasey Leedom
2005f612b815SHariprasad Shenai val = CIDXINC_V(work_done) | SEINTARM_V(intrq->intr_params);
200671d3c0b4SHariprasad Shenai /* If we don't have access to the new User GTS (T5+), use the old
200771d3c0b4SHariprasad Shenai * doorbell mechanism; otherwise use the new BAR2 mechanism.
200871d3c0b4SHariprasad Shenai */
200971d3c0b4SHariprasad Shenai if (unlikely(!intrq->bar2_addr)) {
2010c6e0d914SCasey Leedom t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
2011f612b815SHariprasad Shenai val | INGRESSQID_V(intrq->cntxt_id));
201271d3c0b4SHariprasad Shenai } else {
2013f612b815SHariprasad Shenai writel(val | INGRESSQID_V(intrq->bar2_qid),
2014df64e4d3SHariprasad Shenai intrq->bar2_addr + SGE_UDB_GTS);
2015df64e4d3SHariprasad Shenai wmb();
2016df64e4d3SHariprasad Shenai }
2017c6e0d914SCasey Leedom
2018c6e0d914SCasey Leedom spin_unlock(&adapter->sge.intrq_lock);
2019c6e0d914SCasey Leedom
2020c6e0d914SCasey Leedom return work_done;
2021c6e0d914SCasey Leedom }
2022c6e0d914SCasey Leedom
2023c6e0d914SCasey Leedom /*
2024c6e0d914SCasey Leedom * The MSI interrupt handler handles data events from SGE response queues as
2025c6e0d914SCasey Leedom * well as error and other async events as they all use the same MSI vector.
2026c6e0d914SCasey Leedom */
t4vf_intr_msi(int irq,void * cookie)20278a67d1c6SSachin Kamat static irqreturn_t t4vf_intr_msi(int irq, void *cookie)
2028c6e0d914SCasey Leedom {
2029c6e0d914SCasey Leedom struct adapter *adapter = cookie;
2030c6e0d914SCasey Leedom
2031c6e0d914SCasey Leedom process_intrq(adapter);
2032c6e0d914SCasey Leedom return IRQ_HANDLED;
2033c6e0d914SCasey Leedom }
2034c6e0d914SCasey Leedom
2035c6e0d914SCasey Leedom /**
2036c6e0d914SCasey Leedom * t4vf_intr_handler - select the top-level interrupt handler
2037c6e0d914SCasey Leedom * @adapter: the adapter
2038c6e0d914SCasey Leedom *
2039c6e0d914SCasey Leedom * Selects the top-level interrupt handler based on the type of interrupts
2040c6e0d914SCasey Leedom * (MSI-X or MSI).
2041c6e0d914SCasey Leedom */
t4vf_intr_handler(struct adapter * adapter)2042c6e0d914SCasey Leedom irq_handler_t t4vf_intr_handler(struct adapter *adapter)
2043c6e0d914SCasey Leedom {
20443d78bfaaSArjun Vynipadath BUG_ON((adapter->flags &
20453d78bfaaSArjun Vynipadath (CXGB4VF_USING_MSIX | CXGB4VF_USING_MSI)) == 0);
20463d78bfaaSArjun Vynipadath if (adapter->flags & CXGB4VF_USING_MSIX)
2047c6e0d914SCasey Leedom return t4vf_sge_intr_msix;
2048c6e0d914SCasey Leedom else
2049c6e0d914SCasey Leedom return t4vf_intr_msi;
2050c6e0d914SCasey Leedom }
2051c6e0d914SCasey Leedom
2052c6e0d914SCasey Leedom /**
2053c6e0d914SCasey Leedom * sge_rx_timer_cb - perform periodic maintenance of SGE RX queues
205420bb0c8fSRahul Lakkireddy * @t: Rx timer
2055c6e0d914SCasey Leedom *
2056c6e0d914SCasey Leedom * Runs periodically from a timer to perform maintenance of SGE RX queues.
2057c6e0d914SCasey Leedom *
2058c6e0d914SCasey Leedom * a) Replenishes RX queues that have run out due to memory shortage.
2059c6e0d914SCasey Leedom * Normally new RX buffers are added when existing ones are consumed but
2060c6e0d914SCasey Leedom * when out of memory a queue can become empty. We schedule NAPI to do
2061c6e0d914SCasey Leedom * the actual refill.
2062c6e0d914SCasey Leedom */
sge_rx_timer_cb(struct timer_list * t)20630e23daebSKees Cook static void sge_rx_timer_cb(struct timer_list *t)
2064c6e0d914SCasey Leedom {
2065*41cb0855SIngo Molnar struct adapter *adapter = timer_container_of(adapter, t, sge.rx_timer);
2066c6e0d914SCasey Leedom struct sge *s = &adapter->sge;
2067c6e0d914SCasey Leedom unsigned int i;
2068c6e0d914SCasey Leedom
2069c6e0d914SCasey Leedom /*
2070c6e0d914SCasey Leedom * Scan the "Starving Free Lists" flag array looking for any Free
2071c6e0d914SCasey Leedom * Lists in need of more free buffers. If we find one and it's not
2072c6e0d914SCasey Leedom * being actively polled, then bump its "starving" counter and attempt
2073c6e0d914SCasey Leedom * to refill it. If we're successful in adding enough buffers to push
2074c6e0d914SCasey Leedom * the Free List over the starving threshold, then we can clear its
2075c6e0d914SCasey Leedom * "starving" status.
2076c6e0d914SCasey Leedom */
2077c6e0d914SCasey Leedom for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++) {
2078c6e0d914SCasey Leedom unsigned long m;
2079c6e0d914SCasey Leedom
2080c6e0d914SCasey Leedom for (m = s->starving_fl[i]; m; m &= m - 1) {
2081c6e0d914SCasey Leedom unsigned int id = __ffs(m) + i * BITS_PER_LONG;
2082c6e0d914SCasey Leedom struct sge_fl *fl = s->egr_map[id];
2083c6e0d914SCasey Leedom
2084c6e0d914SCasey Leedom clear_bit(id, s->starving_fl);
20854e857c58SPeter Zijlstra smp_mb__after_atomic();
2086c6e0d914SCasey Leedom
2087c6e0d914SCasey Leedom /*
2088c6e0d914SCasey Leedom * Since we are accessing fl without a lock there's a
2089c6e0d914SCasey Leedom * small probability of a false positive where we
2090c6e0d914SCasey Leedom * schedule napi but the FL is no longer starving.
2091c6e0d914SCasey Leedom * No biggie.
2092c6e0d914SCasey Leedom */
209365f6ecc9SHariprasad Shenai if (fl_starving(adapter, fl)) {
2094c6e0d914SCasey Leedom struct sge_eth_rxq *rxq;
2095c6e0d914SCasey Leedom
2096c6e0d914SCasey Leedom rxq = container_of(fl, struct sge_eth_rxq, fl);
209773382e91SChristian Marangi if (napi_schedule(&rxq->rspq.napi))
2098c6e0d914SCasey Leedom fl->starving++;
2099c6e0d914SCasey Leedom else
2100c6e0d914SCasey Leedom set_bit(id, s->starving_fl);
2101c6e0d914SCasey Leedom }
2102c6e0d914SCasey Leedom }
2103c6e0d914SCasey Leedom }
2104c6e0d914SCasey Leedom
2105c6e0d914SCasey Leedom /*
2106c6e0d914SCasey Leedom * Reschedule the next scan for starving Free Lists ...
2107c6e0d914SCasey Leedom */
2108c6e0d914SCasey Leedom mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
2109c6e0d914SCasey Leedom }
2110c6e0d914SCasey Leedom
2111c6e0d914SCasey Leedom /**
2112c6e0d914SCasey Leedom * sge_tx_timer_cb - perform periodic maintenance of SGE Tx queues
211320bb0c8fSRahul Lakkireddy * @t: Tx timer
2114c6e0d914SCasey Leedom *
2115c6e0d914SCasey Leedom * Runs periodically from a timer to perform maintenance of SGE TX queues.
2116c6e0d914SCasey Leedom *
2117c6e0d914SCasey Leedom * b) Reclaims completed Tx packets for the Ethernet queues. Normally
2118c6e0d914SCasey Leedom * packets are cleaned up by new Tx packets, this timer cleans up packets
2119c6e0d914SCasey Leedom * when no new packets are being submitted. This is essential for pktgen,
2120c6e0d914SCasey Leedom * at least.
2121c6e0d914SCasey Leedom */
sge_tx_timer_cb(struct timer_list * t)21220e23daebSKees Cook static void sge_tx_timer_cb(struct timer_list *t)
2123c6e0d914SCasey Leedom {
2124*41cb0855SIngo Molnar struct adapter *adapter = timer_container_of(adapter, t, sge.tx_timer);
2125c6e0d914SCasey Leedom struct sge *s = &adapter->sge;
2126c6e0d914SCasey Leedom unsigned int i, budget;
2127c6e0d914SCasey Leedom
2128c6e0d914SCasey Leedom budget = MAX_TIMER_TX_RECLAIM;
2129c6e0d914SCasey Leedom i = s->ethtxq_rover;
2130c6e0d914SCasey Leedom do {
2131c6e0d914SCasey Leedom struct sge_eth_txq *txq = &s->ethtxq[i];
2132c6e0d914SCasey Leedom
2133c6e0d914SCasey Leedom if (reclaimable(&txq->q) && __netif_tx_trylock(txq->txq)) {
2134c6e0d914SCasey Leedom int avail = reclaimable(&txq->q);
2135c6e0d914SCasey Leedom
2136c6e0d914SCasey Leedom if (avail > budget)
2137c6e0d914SCasey Leedom avail = budget;
2138c6e0d914SCasey Leedom
2139c6e0d914SCasey Leedom free_tx_desc(adapter, &txq->q, avail, true);
2140c6e0d914SCasey Leedom txq->q.in_use -= avail;
2141c6e0d914SCasey Leedom __netif_tx_unlock(txq->txq);
2142c6e0d914SCasey Leedom
2143c6e0d914SCasey Leedom budget -= avail;
2144c6e0d914SCasey Leedom if (!budget)
2145c6e0d914SCasey Leedom break;
2146c6e0d914SCasey Leedom }
2147c6e0d914SCasey Leedom
2148c6e0d914SCasey Leedom i++;
2149c6e0d914SCasey Leedom if (i >= s->ethqsets)
2150c6e0d914SCasey Leedom i = 0;
2151c6e0d914SCasey Leedom } while (i != s->ethtxq_rover);
2152c6e0d914SCasey Leedom s->ethtxq_rover = i;
2153c6e0d914SCasey Leedom
2154c6e0d914SCasey Leedom /*
2155c6e0d914SCasey Leedom * If we found too many reclaimable packets schedule a timer in the
2156c6e0d914SCasey Leedom * near future to continue where we left off. Otherwise the next timer
2157c6e0d914SCasey Leedom * will be at its normal interval.
2158c6e0d914SCasey Leedom */
2159c6e0d914SCasey Leedom mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
2160c6e0d914SCasey Leedom }
2161c6e0d914SCasey Leedom
2162c6e0d914SCasey Leedom /**
2163df64e4d3SHariprasad Shenai * bar2_address - return the BAR2 address for an SGE Queue's Registers
2164df64e4d3SHariprasad Shenai * @adapter: the adapter
2165df64e4d3SHariprasad Shenai * @qid: the SGE Queue ID
2166df64e4d3SHariprasad Shenai * @qtype: the SGE Queue Type (Egress or Ingress)
2167df64e4d3SHariprasad Shenai * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
2168df64e4d3SHariprasad Shenai *
2169df64e4d3SHariprasad Shenai * Returns the BAR2 address for the SGE Queue Registers associated with
2170df64e4d3SHariprasad Shenai * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also
2171df64e4d3SHariprasad Shenai * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
2172df64e4d3SHariprasad Shenai * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID"
2173df64e4d3SHariprasad Shenai * Registers are supported (e.g. the Write Combining Doorbell Buffer).
2174df64e4d3SHariprasad Shenai */
bar2_address(struct adapter * adapter,unsigned int qid,enum t4_bar2_qtype qtype,unsigned int * pbar2_qid)2175df64e4d3SHariprasad Shenai static void __iomem *bar2_address(struct adapter *adapter,
2176df64e4d3SHariprasad Shenai unsigned int qid,
2177df64e4d3SHariprasad Shenai enum t4_bar2_qtype qtype,
2178df64e4d3SHariprasad Shenai unsigned int *pbar2_qid)
2179df64e4d3SHariprasad Shenai {
2180df64e4d3SHariprasad Shenai u64 bar2_qoffset;
2181df64e4d3SHariprasad Shenai int ret;
2182df64e4d3SHariprasad Shenai
2183b2612722SHariprasad Shenai ret = t4vf_bar2_sge_qregs(adapter, qid, qtype,
2184df64e4d3SHariprasad Shenai &bar2_qoffset, pbar2_qid);
2185df64e4d3SHariprasad Shenai if (ret)
2186df64e4d3SHariprasad Shenai return NULL;
2187df64e4d3SHariprasad Shenai
2188df64e4d3SHariprasad Shenai return adapter->bar2 + bar2_qoffset;
2189df64e4d3SHariprasad Shenai }
2190df64e4d3SHariprasad Shenai
2191df64e4d3SHariprasad Shenai /**
2192c6e0d914SCasey Leedom * t4vf_sge_alloc_rxq - allocate an SGE RX Queue
2193c6e0d914SCasey Leedom * @adapter: the adapter
2194c6e0d914SCasey Leedom * @rspq: pointer to the new rxq's Response Queue to be filled in
2195c6e0d914SCasey Leedom * @iqasynch: if 0, a normal rspq; if 1, an asynchronous event queue
2196c6e0d914SCasey Leedom * @dev: the network device associated with the new rspq
2197c6e0d914SCasey Leedom * @intr_dest: MSI-X vector index (overriden in MSI mode)
2198c6e0d914SCasey Leedom * @fl: pointer to the new rxq's Free List to be filled in
2199c6e0d914SCasey Leedom * @hnd: the interrupt handler to invoke for the rspq
2200c6e0d914SCasey Leedom */
t4vf_sge_alloc_rxq(struct adapter * adapter,struct sge_rspq * rspq,bool iqasynch,struct net_device * dev,int intr_dest,struct sge_fl * fl,rspq_handler_t hnd)2201c6e0d914SCasey Leedom int t4vf_sge_alloc_rxq(struct adapter *adapter, struct sge_rspq *rspq,
2202c6e0d914SCasey Leedom bool iqasynch, struct net_device *dev,
2203c6e0d914SCasey Leedom int intr_dest,
2204c6e0d914SCasey Leedom struct sge_fl *fl, rspq_handler_t hnd)
2205c6e0d914SCasey Leedom {
220665f6ecc9SHariprasad Shenai struct sge *s = &adapter->sge;
2207c6e0d914SCasey Leedom struct port_info *pi = netdev_priv(dev);
2208c6e0d914SCasey Leedom struct fw_iq_cmd cmd, rpl;
2209c6e0d914SCasey Leedom int ret, iqandst, flsz = 0;
22103d78bfaaSArjun Vynipadath int relaxed = !(adapter->flags & CXGB4VF_ROOT_NO_RELAXED_ORDERING);
2211c6e0d914SCasey Leedom
2212c6e0d914SCasey Leedom /*
2213c6e0d914SCasey Leedom * If we're using MSI interrupts and we're not initializing the
2214c6e0d914SCasey Leedom * Forwarded Interrupt Queue itself, then set up this queue for
2215c6e0d914SCasey Leedom * indirect interrupts to the Forwarded Interrupt Queue. Obviously
2216c6e0d914SCasey Leedom * the Forwarded Interrupt Queue must be set up before any other
2217c6e0d914SCasey Leedom * ingress queue ...
2218c6e0d914SCasey Leedom */
22193d78bfaaSArjun Vynipadath if ((adapter->flags & CXGB4VF_USING_MSI) &&
22203d78bfaaSArjun Vynipadath rspq != &adapter->sge.intrq) {
2221c6e0d914SCasey Leedom iqandst = SGE_INTRDST_IQ;
2222c6e0d914SCasey Leedom intr_dest = adapter->sge.intrq.abs_id;
2223c6e0d914SCasey Leedom } else
2224c6e0d914SCasey Leedom iqandst = SGE_INTRDST_PCI;
2225c6e0d914SCasey Leedom
2226c6e0d914SCasey Leedom /*
2227c6e0d914SCasey Leedom * Allocate the hardware ring for the Response Queue. The size needs
2228c6e0d914SCasey Leedom * to be a multiple of 16 which includes the mandatory status entry
2229c6e0d914SCasey Leedom * (regardless of whether the Status Page capabilities are enabled or
2230c6e0d914SCasey Leedom * not).
2231c6e0d914SCasey Leedom */
2232c6e0d914SCasey Leedom rspq->size = roundup(rspq->size, 16);
2233c6e0d914SCasey Leedom rspq->desc = alloc_ring(adapter->pdev_dev, rspq->size, rspq->iqe_len,
2234c6e0d914SCasey Leedom 0, &rspq->phys_addr, NULL, 0);
2235c6e0d914SCasey Leedom if (!rspq->desc)
2236c6e0d914SCasey Leedom return -ENOMEM;
2237c6e0d914SCasey Leedom
2238c6e0d914SCasey Leedom /*
2239c6e0d914SCasey Leedom * Fill in the Ingress Queue Command. Note: Ideally this code would
2240c6e0d914SCasey Leedom * be in t4vf_hw.c but there are so many parameters and dependencies
2241c6e0d914SCasey Leedom * on our Linux SGE state that we would end up having to pass tons of
2242c6e0d914SCasey Leedom * parameters. We'll have to think about how this might be migrated
2243c6e0d914SCasey Leedom * into OS-independent common code ...
2244c6e0d914SCasey Leedom */
2245c6e0d914SCasey Leedom memset(&cmd, 0, sizeof(cmd));
2246e2ac9628SHariprasad Shenai cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
2247e2ac9628SHariprasad Shenai FW_CMD_REQUEST_F |
2248e2ac9628SHariprasad Shenai FW_CMD_WRITE_F |
2249e2ac9628SHariprasad Shenai FW_CMD_EXEC_F);
22506e4b51a6SHariprasad Shenai cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_ALLOC_F |
22516e4b51a6SHariprasad Shenai FW_IQ_CMD_IQSTART_F |
2252c6e0d914SCasey Leedom FW_LEN16(cmd));
2253c6e0d914SCasey Leedom cmd.type_to_iqandstindex =
22546e4b51a6SHariprasad Shenai cpu_to_be32(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
22556e4b51a6SHariprasad Shenai FW_IQ_CMD_IQASYNCH_V(iqasynch) |
22566e4b51a6SHariprasad Shenai FW_IQ_CMD_VIID_V(pi->viid) |
22576e4b51a6SHariprasad Shenai FW_IQ_CMD_IQANDST_V(iqandst) |
22586e4b51a6SHariprasad Shenai FW_IQ_CMD_IQANUS_V(1) |
22596e4b51a6SHariprasad Shenai FW_IQ_CMD_IQANUD_V(SGE_UPDATEDEL_INTR) |
22606e4b51a6SHariprasad Shenai FW_IQ_CMD_IQANDSTINDEX_V(intr_dest));
2261c6e0d914SCasey Leedom cmd.iqdroprss_to_iqesize =
22626e4b51a6SHariprasad Shenai cpu_to_be16(FW_IQ_CMD_IQPCIECH_V(pi->port_id) |
22636e4b51a6SHariprasad Shenai FW_IQ_CMD_IQGTSMODE_F |
22646e4b51a6SHariprasad Shenai FW_IQ_CMD_IQINTCNTTHRESH_V(rspq->pktcnt_idx) |
22656e4b51a6SHariprasad Shenai FW_IQ_CMD_IQESIZE_V(ilog2(rspq->iqe_len) - 4));
2266c6e0d914SCasey Leedom cmd.iqsize = cpu_to_be16(rspq->size);
2267c6e0d914SCasey Leedom cmd.iqaddr = cpu_to_be64(rspq->phys_addr);
2268c6e0d914SCasey Leedom
2269c6e0d914SCasey Leedom if (fl) {
2270d429005fSVishal Kulkarni unsigned int chip_ver =
227141fc2e41SHariprasad Shenai CHELSIO_CHIP_VERSION(adapter->params.chip);
2272c6e0d914SCasey Leedom /*
2273c6e0d914SCasey Leedom * Allocate the ring for the hardware free list (with space
2274c6e0d914SCasey Leedom * for its status page) along with the associated software
2275c6e0d914SCasey Leedom * descriptor ring. The free list size needs to be a multiple
227613432997SHariprasad Shenai * of the Egress Queue Unit and at least 2 Egress Units larger
227713432997SHariprasad Shenai * than the SGE's Egress Congrestion Threshold
227813432997SHariprasad Shenai * (fl_starve_thres - 1).
2279c6e0d914SCasey Leedom */
228013432997SHariprasad Shenai if (fl->size < s->fl_starve_thres - 1 + 2 * FL_PER_EQ_UNIT)
228113432997SHariprasad Shenai fl->size = s->fl_starve_thres - 1 + 2 * FL_PER_EQ_UNIT;
2282c6e0d914SCasey Leedom fl->size = roundup(fl->size, FL_PER_EQ_UNIT);
2283c6e0d914SCasey Leedom fl->desc = alloc_ring(adapter->pdev_dev, fl->size,
2284c6e0d914SCasey Leedom sizeof(__be64), sizeof(struct rx_sw_desc),
228565f6ecc9SHariprasad Shenai &fl->addr, &fl->sdesc, s->stat_len);
2286c6e0d914SCasey Leedom if (!fl->desc) {
2287c6e0d914SCasey Leedom ret = -ENOMEM;
2288c6e0d914SCasey Leedom goto err;
2289c6e0d914SCasey Leedom }
2290c6e0d914SCasey Leedom
2291c6e0d914SCasey Leedom /*
2292c6e0d914SCasey Leedom * Calculate the size of the hardware free list ring plus
2293caedda35SCasey Leedom * Status Page (which the SGE will place after the end of the
2294c6e0d914SCasey Leedom * free list ring) in Egress Queue Units.
2295c6e0d914SCasey Leedom */
2296c6e0d914SCasey Leedom flsz = (fl->size / FL_PER_EQ_UNIT +
229765f6ecc9SHariprasad Shenai s->stat_len / EQ_UNIT);
2298c6e0d914SCasey Leedom
2299c6e0d914SCasey Leedom /*
2300c6e0d914SCasey Leedom * Fill in all the relevant firmware Ingress Queue Command
2301c6e0d914SCasey Leedom * fields for the free list.
2302c6e0d914SCasey Leedom */
2303c6e0d914SCasey Leedom cmd.iqns_to_fl0congen =
2304c6e0d914SCasey Leedom cpu_to_be32(
23056e4b51a6SHariprasad Shenai FW_IQ_CMD_FL0HOSTFCMODE_V(SGE_HOSTFCMODE_NONE) |
23066e4b51a6SHariprasad Shenai FW_IQ_CMD_FL0PACKEN_F |
2307b629276dSCasey Leedom FW_IQ_CMD_FL0FETCHRO_V(relaxed) |
2308b629276dSCasey Leedom FW_IQ_CMD_FL0DATARO_V(relaxed) |
23096e4b51a6SHariprasad Shenai FW_IQ_CMD_FL0PADEN_F);
2310edadad80SHariprasad Shenai
2311edadad80SHariprasad Shenai /* In T6, for egress queue type FL there is internal overhead
2312edadad80SHariprasad Shenai * of 16B for header going into FLM module. Hence the maximum
2313edadad80SHariprasad Shenai * allowed burst size is 448 bytes. For T4/T5, the hardware
2314edadad80SHariprasad Shenai * doesn't coalesce fetch requests if more than 64 bytes of
2315edadad80SHariprasad Shenai * Free List pointers are provided, so we use a 128-byte Fetch
2316edadad80SHariprasad Shenai * Burst Minimum there (T6 implements coalescing so we can use
2317edadad80SHariprasad Shenai * the smaller 64-byte value there).
2318edadad80SHariprasad Shenai */
2319c6e0d914SCasey Leedom cmd.fl0dcaen_to_fl0cidxfthresh =
2320c6e0d914SCasey Leedom cpu_to_be16(
2321d429005fSVishal Kulkarni FW_IQ_CMD_FL0FBMIN_V(chip_ver <= CHELSIO_T5
2322d429005fSVishal Kulkarni ? FETCHBURSTMIN_128B_X
2323d429005fSVishal Kulkarni : FETCHBURSTMIN_64B_T6_X) |
2324d429005fSVishal Kulkarni FW_IQ_CMD_FL0FBMAX_V((chip_ver <= CHELSIO_T5) ?
232541fc2e41SHariprasad Shenai FETCHBURSTMAX_512B_X :
232641fc2e41SHariprasad Shenai FETCHBURSTMAX_256B_X));
2327c6e0d914SCasey Leedom cmd.fl0size = cpu_to_be16(flsz);
2328c6e0d914SCasey Leedom cmd.fl0addr = cpu_to_be64(fl->addr);
2329c6e0d914SCasey Leedom }
2330c6e0d914SCasey Leedom
2331c6e0d914SCasey Leedom /*
2332c6e0d914SCasey Leedom * Issue the firmware Ingress Queue Command and extract the results if
2333c6e0d914SCasey Leedom * it completes successfully.
2334c6e0d914SCasey Leedom */
2335c6e0d914SCasey Leedom ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
2336c6e0d914SCasey Leedom if (ret)
2337c6e0d914SCasey Leedom goto err;
2338c6e0d914SCasey Leedom
2339b48b89f9SJakub Kicinski netif_napi_add(dev, &rspq->napi, napi_rx_handler);
2340c6e0d914SCasey Leedom rspq->cur_desc = rspq->desc;
2341c6e0d914SCasey Leedom rspq->cidx = 0;
2342c6e0d914SCasey Leedom rspq->gen = 1;
2343c6e0d914SCasey Leedom rspq->next_intr_params = rspq->intr_params;
2344c6e0d914SCasey Leedom rspq->cntxt_id = be16_to_cpu(rpl.iqid);
2345df64e4d3SHariprasad Shenai rspq->bar2_addr = bar2_address(adapter,
2346df64e4d3SHariprasad Shenai rspq->cntxt_id,
2347df64e4d3SHariprasad Shenai T4_BAR2_QTYPE_INGRESS,
2348df64e4d3SHariprasad Shenai &rspq->bar2_qid);
2349c6e0d914SCasey Leedom rspq->abs_id = be16_to_cpu(rpl.physiqid);
2350c6e0d914SCasey Leedom rspq->size--; /* subtract status entry */
2351c6e0d914SCasey Leedom rspq->adapter = adapter;
2352c6e0d914SCasey Leedom rspq->netdev = dev;
2353c6e0d914SCasey Leedom rspq->handler = hnd;
2354c6e0d914SCasey Leedom
2355c6e0d914SCasey Leedom /* set offset to -1 to distinguish ingress queues without FL */
2356c6e0d914SCasey Leedom rspq->offset = fl ? 0 : -1;
2357c6e0d914SCasey Leedom
2358c6e0d914SCasey Leedom if (fl) {
2359c6e0d914SCasey Leedom fl->cntxt_id = be16_to_cpu(rpl.fl0id);
2360c6e0d914SCasey Leedom fl->avail = 0;
2361c6e0d914SCasey Leedom fl->pend_cred = 0;
2362c6e0d914SCasey Leedom fl->pidx = 0;
2363c6e0d914SCasey Leedom fl->cidx = 0;
2364c6e0d914SCasey Leedom fl->alloc_failed = 0;
2365c6e0d914SCasey Leedom fl->large_alloc_failed = 0;
2366c6e0d914SCasey Leedom fl->starving = 0;
2367df64e4d3SHariprasad Shenai
2368df64e4d3SHariprasad Shenai /* Note, we must initialize the BAR2 Free List User Doorbell
2369df64e4d3SHariprasad Shenai * information before refilling the Free List!
2370df64e4d3SHariprasad Shenai */
2371df64e4d3SHariprasad Shenai fl->bar2_addr = bar2_address(adapter,
2372df64e4d3SHariprasad Shenai fl->cntxt_id,
2373df64e4d3SHariprasad Shenai T4_BAR2_QTYPE_EGRESS,
2374df64e4d3SHariprasad Shenai &fl->bar2_qid);
2375df64e4d3SHariprasad Shenai
2376c6e0d914SCasey Leedom refill_fl(adapter, fl, fl_cap(fl), GFP_KERNEL);
2377c6e0d914SCasey Leedom }
2378c6e0d914SCasey Leedom
2379c6e0d914SCasey Leedom return 0;
2380c6e0d914SCasey Leedom
2381c6e0d914SCasey Leedom err:
2382c6e0d914SCasey Leedom /*
2383c6e0d914SCasey Leedom * An error occurred. Clean up our partial allocation state and
2384c6e0d914SCasey Leedom * return the error.
2385c6e0d914SCasey Leedom */
2386c6e0d914SCasey Leedom if (rspq->desc) {
2387c6e0d914SCasey Leedom dma_free_coherent(adapter->pdev_dev, rspq->size * rspq->iqe_len,
2388c6e0d914SCasey Leedom rspq->desc, rspq->phys_addr);
2389c6e0d914SCasey Leedom rspq->desc = NULL;
2390c6e0d914SCasey Leedom }
2391c6e0d914SCasey Leedom if (fl && fl->desc) {
2392c6e0d914SCasey Leedom kfree(fl->sdesc);
2393c6e0d914SCasey Leedom fl->sdesc = NULL;
2394c6e0d914SCasey Leedom dma_free_coherent(adapter->pdev_dev, flsz * EQ_UNIT,
2395c6e0d914SCasey Leedom fl->desc, fl->addr);
2396c6e0d914SCasey Leedom fl->desc = NULL;
2397c6e0d914SCasey Leedom }
2398c6e0d914SCasey Leedom return ret;
2399c6e0d914SCasey Leedom }
2400c6e0d914SCasey Leedom
2401c6e0d914SCasey Leedom /**
2402c6e0d914SCasey Leedom * t4vf_sge_alloc_eth_txq - allocate an SGE Ethernet TX Queue
2403c6e0d914SCasey Leedom * @adapter: the adapter
2404c6e0d914SCasey Leedom * @txq: pointer to the new txq to be filled in
240520bb0c8fSRahul Lakkireddy * @dev: the network device
2406c6e0d914SCasey Leedom * @devq: the network TX queue associated with the new txq
2407c6e0d914SCasey Leedom * @iqid: the relative ingress queue ID to which events relating to
2408c6e0d914SCasey Leedom * the new txq should be directed
2409c6e0d914SCasey Leedom */
t4vf_sge_alloc_eth_txq(struct adapter * adapter,struct sge_eth_txq * txq,struct net_device * dev,struct netdev_queue * devq,unsigned int iqid)2410c6e0d914SCasey Leedom int t4vf_sge_alloc_eth_txq(struct adapter *adapter, struct sge_eth_txq *txq,
2411c6e0d914SCasey Leedom struct net_device *dev, struct netdev_queue *devq,
2412c6e0d914SCasey Leedom unsigned int iqid)
2413c6e0d914SCasey Leedom {
2414d429005fSVishal Kulkarni unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
2415d429005fSVishal Kulkarni struct port_info *pi = netdev_priv(dev);
2416d429005fSVishal Kulkarni struct fw_eq_eth_cmd cmd, rpl;
241765f6ecc9SHariprasad Shenai struct sge *s = &adapter->sge;
2418c6e0d914SCasey Leedom int ret, nentries;
2419c6e0d914SCasey Leedom
2420c6e0d914SCasey Leedom /*
2421caedda35SCasey Leedom * Calculate the size of the hardware TX Queue (including the Status
2422caedda35SCasey Leedom * Page on the end of the TX Queue) in units of TX Descriptors.
2423c6e0d914SCasey Leedom */
242465f6ecc9SHariprasad Shenai nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2425c6e0d914SCasey Leedom
2426c6e0d914SCasey Leedom /*
2427c6e0d914SCasey Leedom * Allocate the hardware ring for the TX ring (with space for its
2428c6e0d914SCasey Leedom * status page) along with the associated software descriptor ring.
2429c6e0d914SCasey Leedom */
2430c6e0d914SCasey Leedom txq->q.desc = alloc_ring(adapter->pdev_dev, txq->q.size,
2431c6e0d914SCasey Leedom sizeof(struct tx_desc),
2432c6e0d914SCasey Leedom sizeof(struct tx_sw_desc),
243365f6ecc9SHariprasad Shenai &txq->q.phys_addr, &txq->q.sdesc, s->stat_len);
2434c6e0d914SCasey Leedom if (!txq->q.desc)
2435c6e0d914SCasey Leedom return -ENOMEM;
2436c6e0d914SCasey Leedom
2437c6e0d914SCasey Leedom /*
2438c6e0d914SCasey Leedom * Fill in the Egress Queue Command. Note: As with the direct use of
2439c6e0d914SCasey Leedom * the firmware Ingress Queue COmmand above in our RXQ allocation
2440c6e0d914SCasey Leedom * routine, ideally, this code would be in t4vf_hw.c. Again, we'll
2441c6e0d914SCasey Leedom * have to see if there's some reasonable way to parameterize it
2442c6e0d914SCasey Leedom * into the common code ...
2443c6e0d914SCasey Leedom */
2444c6e0d914SCasey Leedom memset(&cmd, 0, sizeof(cmd));
2445e2ac9628SHariprasad Shenai cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
2446e2ac9628SHariprasad Shenai FW_CMD_REQUEST_F |
2447e2ac9628SHariprasad Shenai FW_CMD_WRITE_F |
2448e2ac9628SHariprasad Shenai FW_CMD_EXEC_F);
24496e4b51a6SHariprasad Shenai cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_ALLOC_F |
24506e4b51a6SHariprasad Shenai FW_EQ_ETH_CMD_EQSTART_F |
2451c6e0d914SCasey Leedom FW_LEN16(cmd));
2452d429005fSVishal Kulkarni cmd.autoequiqe_to_viid = cpu_to_be32(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
24536e4b51a6SHariprasad Shenai FW_EQ_ETH_CMD_VIID_V(pi->viid));
2454c6e0d914SCasey Leedom cmd.fetchszm_to_iqid =
24556e4b51a6SHariprasad Shenai cpu_to_be32(FW_EQ_ETH_CMD_HOSTFCMODE_V(SGE_HOSTFCMODE_STPG) |
24566e4b51a6SHariprasad Shenai FW_EQ_ETH_CMD_PCIECHN_V(pi->port_id) |
24576e4b51a6SHariprasad Shenai FW_EQ_ETH_CMD_IQID_V(iqid));
2458c6e0d914SCasey Leedom cmd.dcaen_to_eqsize =
2459d429005fSVishal Kulkarni cpu_to_be32(FW_EQ_ETH_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
2460d429005fSVishal Kulkarni ? FETCHBURSTMIN_64B_X
2461d429005fSVishal Kulkarni : FETCHBURSTMIN_64B_T6_X) |
2462d429005fSVishal Kulkarni FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
24636e4b51a6SHariprasad Shenai FW_EQ_ETH_CMD_CIDXFTHRESH_V(
2464d429005fSVishal Kulkarni CIDXFLUSHTHRESH_32_X) |
24656e4b51a6SHariprasad Shenai FW_EQ_ETH_CMD_EQSIZE_V(nentries));
2466c6e0d914SCasey Leedom cmd.eqaddr = cpu_to_be64(txq->q.phys_addr);
2467c6e0d914SCasey Leedom
2468c6e0d914SCasey Leedom /*
2469c6e0d914SCasey Leedom * Issue the firmware Egress Queue Command and extract the results if
2470c6e0d914SCasey Leedom * it completes successfully.
2471c6e0d914SCasey Leedom */
2472c6e0d914SCasey Leedom ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
2473c6e0d914SCasey Leedom if (ret) {
2474c6e0d914SCasey Leedom /*
2475c6e0d914SCasey Leedom * The girmware Ingress Queue Command failed for some reason.
2476c6e0d914SCasey Leedom * Free up our partial allocation state and return the error.
2477c6e0d914SCasey Leedom */
2478c6e0d914SCasey Leedom kfree(txq->q.sdesc);
2479c6e0d914SCasey Leedom txq->q.sdesc = NULL;
2480c6e0d914SCasey Leedom dma_free_coherent(adapter->pdev_dev,
2481c6e0d914SCasey Leedom nentries * sizeof(struct tx_desc),
2482c6e0d914SCasey Leedom txq->q.desc, txq->q.phys_addr);
2483c6e0d914SCasey Leedom txq->q.desc = NULL;
2484c6e0d914SCasey Leedom return ret;
2485c6e0d914SCasey Leedom }
2486c6e0d914SCasey Leedom
2487c6e0d914SCasey Leedom txq->q.in_use = 0;
2488c6e0d914SCasey Leedom txq->q.cidx = 0;
2489c6e0d914SCasey Leedom txq->q.pidx = 0;
2490c6e0d914SCasey Leedom txq->q.stat = (void *)&txq->q.desc[txq->q.size];
24916e4b51a6SHariprasad Shenai txq->q.cntxt_id = FW_EQ_ETH_CMD_EQID_G(be32_to_cpu(rpl.eqid_pkd));
2492df64e4d3SHariprasad Shenai txq->q.bar2_addr = bar2_address(adapter,
2493df64e4d3SHariprasad Shenai txq->q.cntxt_id,
2494df64e4d3SHariprasad Shenai T4_BAR2_QTYPE_EGRESS,
2495df64e4d3SHariprasad Shenai &txq->q.bar2_qid);
2496c6e0d914SCasey Leedom txq->q.abs_id =
24976e4b51a6SHariprasad Shenai FW_EQ_ETH_CMD_PHYSEQID_G(be32_to_cpu(rpl.physeqid_pkd));
2498c6e0d914SCasey Leedom txq->txq = devq;
2499c6e0d914SCasey Leedom txq->tso = 0;
2500c6e0d914SCasey Leedom txq->tx_cso = 0;
2501c6e0d914SCasey Leedom txq->vlan_ins = 0;
2502c6e0d914SCasey Leedom txq->q.stops = 0;
2503c6e0d914SCasey Leedom txq->q.restarts = 0;
2504c6e0d914SCasey Leedom txq->mapping_err = 0;
2505c6e0d914SCasey Leedom return 0;
2506c6e0d914SCasey Leedom }
2507c6e0d914SCasey Leedom
2508c6e0d914SCasey Leedom /*
2509c6e0d914SCasey Leedom * Free the DMA map resources associated with a TX queue.
2510c6e0d914SCasey Leedom */
free_txq(struct adapter * adapter,struct sge_txq * tq)2511c6e0d914SCasey Leedom static void free_txq(struct adapter *adapter, struct sge_txq *tq)
2512c6e0d914SCasey Leedom {
251365f6ecc9SHariprasad Shenai struct sge *s = &adapter->sge;
251465f6ecc9SHariprasad Shenai
2515c6e0d914SCasey Leedom dma_free_coherent(adapter->pdev_dev,
251665f6ecc9SHariprasad Shenai tq->size * sizeof(*tq->desc) + s->stat_len,
2517c6e0d914SCasey Leedom tq->desc, tq->phys_addr);
2518c6e0d914SCasey Leedom tq->cntxt_id = 0;
2519c6e0d914SCasey Leedom tq->sdesc = NULL;
2520c6e0d914SCasey Leedom tq->desc = NULL;
2521c6e0d914SCasey Leedom }
2522c6e0d914SCasey Leedom
2523c6e0d914SCasey Leedom /*
2524c6e0d914SCasey Leedom * Free the resources associated with a response queue (possibly including a
2525c6e0d914SCasey Leedom * free list).
2526c6e0d914SCasey Leedom */
free_rspq_fl(struct adapter * adapter,struct sge_rspq * rspq,struct sge_fl * fl)2527c6e0d914SCasey Leedom static void free_rspq_fl(struct adapter *adapter, struct sge_rspq *rspq,
2528c6e0d914SCasey Leedom struct sge_fl *fl)
2529c6e0d914SCasey Leedom {
253065f6ecc9SHariprasad Shenai struct sge *s = &adapter->sge;
2531c6e0d914SCasey Leedom unsigned int flid = fl ? fl->cntxt_id : 0xffff;
2532c6e0d914SCasey Leedom
2533c6e0d914SCasey Leedom t4vf_iq_free(adapter, FW_IQ_TYPE_FL_INT_CAP,
2534c6e0d914SCasey Leedom rspq->cntxt_id, flid, 0xffff);
2535c6e0d914SCasey Leedom dma_free_coherent(adapter->pdev_dev, (rspq->size + 1) * rspq->iqe_len,
2536c6e0d914SCasey Leedom rspq->desc, rspq->phys_addr);
2537c6e0d914SCasey Leedom netif_napi_del(&rspq->napi);
2538c6e0d914SCasey Leedom rspq->netdev = NULL;
2539c6e0d914SCasey Leedom rspq->cntxt_id = 0;
2540c6e0d914SCasey Leedom rspq->abs_id = 0;
2541c6e0d914SCasey Leedom rspq->desc = NULL;
2542c6e0d914SCasey Leedom
2543c6e0d914SCasey Leedom if (fl) {
2544c6e0d914SCasey Leedom free_rx_bufs(adapter, fl, fl->avail);
2545c6e0d914SCasey Leedom dma_free_coherent(adapter->pdev_dev,
254665f6ecc9SHariprasad Shenai fl->size * sizeof(*fl->desc) + s->stat_len,
2547c6e0d914SCasey Leedom fl->desc, fl->addr);
2548c6e0d914SCasey Leedom kfree(fl->sdesc);
2549c6e0d914SCasey Leedom fl->sdesc = NULL;
2550c6e0d914SCasey Leedom fl->cntxt_id = 0;
2551c6e0d914SCasey Leedom fl->desc = NULL;
2552c6e0d914SCasey Leedom }
2553c6e0d914SCasey Leedom }
2554c6e0d914SCasey Leedom
2555c6e0d914SCasey Leedom /**
2556c6e0d914SCasey Leedom * t4vf_free_sge_resources - free SGE resources
2557c6e0d914SCasey Leedom * @adapter: the adapter
2558c6e0d914SCasey Leedom *
2559c6e0d914SCasey Leedom * Frees resources used by the SGE queue sets.
2560c6e0d914SCasey Leedom */
t4vf_free_sge_resources(struct adapter * adapter)2561c6e0d914SCasey Leedom void t4vf_free_sge_resources(struct adapter *adapter)
2562c6e0d914SCasey Leedom {
2563c6e0d914SCasey Leedom struct sge *s = &adapter->sge;
2564c6e0d914SCasey Leedom struct sge_eth_rxq *rxq = s->ethrxq;
2565c6e0d914SCasey Leedom struct sge_eth_txq *txq = s->ethtxq;
2566c6e0d914SCasey Leedom struct sge_rspq *evtq = &s->fw_evtq;
2567c6e0d914SCasey Leedom struct sge_rspq *intrq = &s->intrq;
2568c6e0d914SCasey Leedom int qs;
2569c6e0d914SCasey Leedom
2570b97d13a5SCasey Leedom for (qs = 0; qs < adapter->sge.ethqsets; qs++, rxq++, txq++) {
2571c6e0d914SCasey Leedom if (rxq->rspq.desc)
2572c6e0d914SCasey Leedom free_rspq_fl(adapter, &rxq->rspq, &rxq->fl);
2573c6e0d914SCasey Leedom if (txq->q.desc) {
2574c6e0d914SCasey Leedom t4vf_eth_eq_free(adapter, txq->q.cntxt_id);
2575c6e0d914SCasey Leedom free_tx_desc(adapter, &txq->q, txq->q.in_use, true);
2576c6e0d914SCasey Leedom kfree(txq->q.sdesc);
2577c6e0d914SCasey Leedom free_txq(adapter, &txq->q);
2578c6e0d914SCasey Leedom }
2579c6e0d914SCasey Leedom }
2580c6e0d914SCasey Leedom if (evtq->desc)
2581c6e0d914SCasey Leedom free_rspq_fl(adapter, evtq, NULL);
2582c6e0d914SCasey Leedom if (intrq->desc)
2583c6e0d914SCasey Leedom free_rspq_fl(adapter, intrq, NULL);
2584c6e0d914SCasey Leedom }
2585c6e0d914SCasey Leedom
2586c6e0d914SCasey Leedom /**
2587c6e0d914SCasey Leedom * t4vf_sge_start - enable SGE operation
2588c6e0d914SCasey Leedom * @adapter: the adapter
2589c6e0d914SCasey Leedom *
2590c6e0d914SCasey Leedom * Start tasklets and timers associated with the DMA engine.
2591c6e0d914SCasey Leedom */
t4vf_sge_start(struct adapter * adapter)2592c6e0d914SCasey Leedom void t4vf_sge_start(struct adapter *adapter)
2593c6e0d914SCasey Leedom {
2594c6e0d914SCasey Leedom adapter->sge.ethtxq_rover = 0;
2595c6e0d914SCasey Leedom mod_timer(&adapter->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
2596c6e0d914SCasey Leedom mod_timer(&adapter->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
2597c6e0d914SCasey Leedom }
2598c6e0d914SCasey Leedom
2599c6e0d914SCasey Leedom /**
2600c6e0d914SCasey Leedom * t4vf_sge_stop - disable SGE operation
2601c6e0d914SCasey Leedom * @adapter: the adapter
2602c6e0d914SCasey Leedom *
2603c6e0d914SCasey Leedom * Stop tasklets and timers associated with the DMA engine. Note that
2604c6e0d914SCasey Leedom * this is effective only if measures have been taken to disable any HW
2605c6e0d914SCasey Leedom * events that may restart them.
2606c6e0d914SCasey Leedom */
t4vf_sge_stop(struct adapter * adapter)2607c6e0d914SCasey Leedom void t4vf_sge_stop(struct adapter *adapter)
2608c6e0d914SCasey Leedom {
2609c6e0d914SCasey Leedom struct sge *s = &adapter->sge;
2610c6e0d914SCasey Leedom
2611c6e0d914SCasey Leedom if (s->rx_timer.function)
26128fa7292fSThomas Gleixner timer_delete_sync(&s->rx_timer);
2613c6e0d914SCasey Leedom if (s->tx_timer.function)
26148fa7292fSThomas Gleixner timer_delete_sync(&s->tx_timer);
2615c6e0d914SCasey Leedom }
2616c6e0d914SCasey Leedom
2617c6e0d914SCasey Leedom /**
2618c6e0d914SCasey Leedom * t4vf_sge_init - initialize SGE
2619c6e0d914SCasey Leedom * @adapter: the adapter
2620c6e0d914SCasey Leedom *
2621c6e0d914SCasey Leedom * Performs SGE initialization needed every time after a chip reset.
2622c6e0d914SCasey Leedom * We do not initialize any of the queue sets here, instead the driver
2623c6e0d914SCasey Leedom * top-level must request those individually. We also do not enable DMA
2624c6e0d914SCasey Leedom * here, that should be done after the queues have been set up.
2625c6e0d914SCasey Leedom */
t4vf_sge_init(struct adapter * adapter)2626c6e0d914SCasey Leedom int t4vf_sge_init(struct adapter *adapter)
2627c6e0d914SCasey Leedom {
2628c6e0d914SCasey Leedom struct sge_params *sge_params = &adapter->params.sge;
2629ea0a4210SArjun Vynipadath u32 fl_small_pg = sge_params->sge_fl_buffer_size[0];
2630ea0a4210SArjun Vynipadath u32 fl_large_pg = sge_params->sge_fl_buffer_size[1];
2631c6e0d914SCasey Leedom struct sge *s = &adapter->sge;
2632c6e0d914SCasey Leedom
2633c6e0d914SCasey Leedom /*
2634c6e0d914SCasey Leedom * Start by vetting the basic SGE parameters which have been set up by
2635c6e0d914SCasey Leedom * the Physical Function Driver. Ideally we should be able to deal
2636c6e0d914SCasey Leedom * with _any_ configuration. Practice is different ...
2637c6e0d914SCasey Leedom */
2638ea0a4210SArjun Vynipadath
2639ea0a4210SArjun Vynipadath /* We only bother using the Large Page logic if the Large Page Buffer
2640ea0a4210SArjun Vynipadath * is larger than our Page Size Buffer.
2641ea0a4210SArjun Vynipadath */
2642ea0a4210SArjun Vynipadath if (fl_large_pg <= fl_small_pg)
2643ea0a4210SArjun Vynipadath fl_large_pg = 0;
2644ea0a4210SArjun Vynipadath
2645ea0a4210SArjun Vynipadath /* The Page Size Buffer must be exactly equal to our Page Size and the
2646ea0a4210SArjun Vynipadath * Large Page Size Buffer should be 0 (per above) or a power of 2.
2647ea0a4210SArjun Vynipadath */
2648ea0a4210SArjun Vynipadath if (fl_small_pg != PAGE_SIZE ||
2649ea0a4210SArjun Vynipadath (fl_large_pg & (fl_large_pg - 1)) != 0) {
2650c6e0d914SCasey Leedom dev_err(adapter->pdev_dev, "bad SGE FL buffer sizes [%d, %d]\n",
2651ea0a4210SArjun Vynipadath fl_small_pg, fl_large_pg);
2652c6e0d914SCasey Leedom return -EINVAL;
2653c6e0d914SCasey Leedom }
2654cb440364SHariprasad Shenai if ((sge_params->sge_control & RXPKTCPLMODE_F) !=
2655cb440364SHariprasad Shenai RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
2656c6e0d914SCasey Leedom dev_err(adapter->pdev_dev, "bad SGE CPL MODE\n");
2657c6e0d914SCasey Leedom return -EINVAL;
2658c6e0d914SCasey Leedom }
2659c6e0d914SCasey Leedom
2660c6e0d914SCasey Leedom /*
2661c6e0d914SCasey Leedom * Now translate the adapter parameters into our internal forms.
2662c6e0d914SCasey Leedom */
2663ea0a4210SArjun Vynipadath if (fl_large_pg)
2664ea0a4210SArjun Vynipadath s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
2665f612b815SHariprasad Shenai s->stat_len = ((sge_params->sge_control & EGRSTATUSPAGESIZE_F)
266652367a76SVipul Pandya ? 128 : 64);
2667f612b815SHariprasad Shenai s->pktshift = PKTSHIFT_G(sge_params->sge_control);
2668cb440364SHariprasad Shenai s->fl_align = t4vf_fl_pkt_align(adapter);
2669c6e0d914SCasey Leedom
267050d21a66SHariprasad Shenai /* A FL with <= fl_starve_thres buffers is starving and a periodic
267150d21a66SHariprasad Shenai * timer will attempt to refill it. This needs to be larger than the
267250d21a66SHariprasad Shenai * SGE's Egress Congestion Threshold. If it isn't, then we can get
267350d21a66SHariprasad Shenai * stuck waiting for new packets while the SGE is waiting for us to
267450d21a66SHariprasad Shenai * give it more Free List entries. (Note that the SGE's Egress
267550d21a66SHariprasad Shenai * Congestion Threshold is in units of 2 Free List pointers.)
267650d21a66SHariprasad Shenai */
2677ea6f82feSHariprasad Shenai switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
2678ea6f82feSHariprasad Shenai case CHELSIO_T4:
2679ea6f82feSHariprasad Shenai s->fl_starve_thres =
2680ea6f82feSHariprasad Shenai EGRTHRESHOLD_G(sge_params->sge_congestion_control);
2681ea6f82feSHariprasad Shenai break;
2682ea6f82feSHariprasad Shenai case CHELSIO_T5:
2683ea6f82feSHariprasad Shenai s->fl_starve_thres =
2684ea6f82feSHariprasad Shenai EGRTHRESHOLDPACKING_G(sge_params->sge_congestion_control);
2685ea6f82feSHariprasad Shenai break;
2686ea6f82feSHariprasad Shenai case CHELSIO_T6:
2687ea6f82feSHariprasad Shenai default:
2688ea6f82feSHariprasad Shenai s->fl_starve_thres =
2689ea6f82feSHariprasad Shenai T6_EGRTHRESHOLDPACKING_G(sge_params->sge_congestion_control);
2690ea6f82feSHariprasad Shenai break;
2691ea6f82feSHariprasad Shenai }
2692ea6f82feSHariprasad Shenai s->fl_starve_thres = s->fl_starve_thres * 2 + 1;
2693c6e0d914SCasey Leedom
2694c6e0d914SCasey Leedom /*
2695c6e0d914SCasey Leedom * Set up tasklet timers.
2696c6e0d914SCasey Leedom */
26970e23daebSKees Cook timer_setup(&s->rx_timer, sge_rx_timer_cb, 0);
26980e23daebSKees Cook timer_setup(&s->tx_timer, sge_tx_timer_cb, 0);
2699c6e0d914SCasey Leedom
2700c6e0d914SCasey Leedom /*
2701c6e0d914SCasey Leedom * Initialize Forwarded Interrupt Queue lock.
2702c6e0d914SCasey Leedom */
2703c6e0d914SCasey Leedom spin_lock_init(&s->intrq_lock);
2704c6e0d914SCasey Leedom
2705c6e0d914SCasey Leedom return 0;
2706c6e0d914SCasey Leedom }
2707