1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Renesas R-Car CAN FD device driver 3 * 4 * Copyright (C) 2015 Renesas Electronics Corp. 5 */ 6 7 /* The R-Car CAN FD controller can operate in either one of the below two modes 8 * - CAN FD only mode 9 * - Classical CAN (CAN 2.0) only mode 10 * 11 * This driver puts the controller in CAN FD only mode by default. In this 12 * mode, the controller acts as a CAN FD node that can also interoperate with 13 * CAN 2.0 nodes. 14 * 15 * To switch the controller to Classical CAN (CAN 2.0) only mode, add 16 * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is 17 * also required to switch modes. 18 * 19 * Note: The h/w manual register naming convention is clumsy and not acceptable 20 * to use as it is in the driver. However, those names are added as comments 21 * wherever it is modified to a readable name. 22 */ 23 24 #include <linux/bitmap.h> 25 #include <linux/bitops.h> 26 #include <linux/can/dev.h> 27 #include <linux/clk.h> 28 #include <linux/errno.h> 29 #include <linux/ethtool.h> 30 #include <linux/interrupt.h> 31 #include <linux/iopoll.h> 32 #include <linux/kernel.h> 33 #include <linux/module.h> 34 #include <linux/moduleparam.h> 35 #include <linux/netdevice.h> 36 #include <linux/of.h> 37 #include <linux/phy/phy.h> 38 #include <linux/platform_device.h> 39 #include <linux/reset.h> 40 #include <linux/types.h> 41 42 #define RCANFD_DRV_NAME "rcar_canfd" 43 44 /* Global register bits */ 45 46 /* RSCFDnCFDGRMCFG */ 47 #define RCANFD_GRMCFG_RCMC BIT(0) 48 49 /* RSCFDnCFDGCFG / RSCFDnGCFG */ 50 #define RCANFD_GCFG_EEFE BIT(6) 51 #define RCANFD_GCFG_CMPOC BIT(5) /* CAN FD only */ 52 #define RCANFD_GCFG_DCS BIT(4) 53 #define RCANFD_GCFG_DCE BIT(1) 54 #define RCANFD_GCFG_TPRI BIT(0) 55 56 /* RSCFDnCFDGCTR / RSCFDnGCTR */ 57 #define RCANFD_GCTR_TSRST BIT(16) 58 #define RCANFD_GCTR_CFMPOFIE BIT(11) /* CAN FD only */ 59 #define RCANFD_GCTR_THLEIE BIT(10) 60 #define RCANFD_GCTR_MEIE BIT(9) 61 #define RCANFD_GCTR_DEIE BIT(8) 62 #define RCANFD_GCTR_GSLPR BIT(2) 63 #define RCANFD_GCTR_GMDC_MASK (0x3) 64 #define RCANFD_GCTR_GMDC_GOPM (0x0) 65 #define RCANFD_GCTR_GMDC_GRESET (0x1) 66 #define RCANFD_GCTR_GMDC_GTEST (0x2) 67 68 /* RSCFDnCFDGSTS / RSCFDnGSTS */ 69 #define RCANFD_GSTS_GRAMINIT BIT(3) 70 #define RCANFD_GSTS_GSLPSTS BIT(2) 71 #define RCANFD_GSTS_GHLTSTS BIT(1) 72 #define RCANFD_GSTS_GRSTSTS BIT(0) 73 /* Non-operational status */ 74 #define RCANFD_GSTS_GNOPM (BIT(0) | BIT(1) | BIT(2) | BIT(3)) 75 76 /* RSCFDnCFDGERFL / RSCFDnGERFL */ 77 #define RCANFD_GERFL_EEF0_7 GENMASK(23, 16) 78 #define RCANFD_GERFL_EEF(ch) BIT(16 + (ch)) 79 #define RCANFD_GERFL_CMPOF BIT(3) /* CAN FD only */ 80 #define RCANFD_GERFL_THLES BIT(2) 81 #define RCANFD_GERFL_MES BIT(1) 82 #define RCANFD_GERFL_DEF BIT(0) 83 84 #define RCANFD_GERFL_ERR(gpriv, x) \ 85 ((x) & (reg_gen4(gpriv, RCANFD_GERFL_EEF0_7, \ 86 RCANFD_GERFL_EEF(0) | RCANFD_GERFL_EEF(1)) | \ 87 RCANFD_GERFL_MES | \ 88 ((gpriv)->fdmode ? RCANFD_GERFL_CMPOF : 0))) 89 90 /* AFL Rx rules registers */ 91 92 /* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */ 93 #define RCANFD_GAFLCFG_SETRNC(gpriv, n, x) \ 94 (((x) & reg_gen4(gpriv, 0x1ff, 0xff)) << \ 95 (reg_gen4(gpriv, 16, 24) - ((n) & 1) * reg_gen4(gpriv, 16, 8))) 96 97 #define RCANFD_GAFLCFG_GETRNC(gpriv, n, x) \ 98 (((x) >> (reg_gen4(gpriv, 16, 24) - ((n) & 1) * reg_gen4(gpriv, 16, 8))) & \ 99 reg_gen4(gpriv, 0x1ff, 0xff)) 100 101 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */ 102 #define RCANFD_GAFLECTR_AFLDAE BIT(8) 103 #define RCANFD_GAFLECTR_AFLPN(gpriv, x) ((x) & reg_gen4(gpriv, 0x7f, 0x1f)) 104 105 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */ 106 #define RCANFD_GAFLID_GAFLLB BIT(29) 107 108 /* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */ 109 #define RCANFD_GAFLP1_GAFLFDP(x) (1 << (x)) 110 111 /* Channel register bits */ 112 113 /* RSCFDnCmCFG - Classical CAN only */ 114 #define RCANFD_CFG_SJW(x) (((x) & 0x3) << 24) 115 #define RCANFD_CFG_TSEG2(x) (((x) & 0x7) << 20) 116 #define RCANFD_CFG_TSEG1(x) (((x) & 0xf) << 16) 117 #define RCANFD_CFG_BRP(x) (((x) & 0x3ff) << 0) 118 119 /* RSCFDnCFDCmNCFG - CAN FD only */ 120 #define RCANFD_NCFG_NTSEG2(gpriv, x) \ 121 (((x) & reg_gen4(gpriv, 0x7f, 0x1f)) << reg_gen4(gpriv, 25, 24)) 122 123 #define RCANFD_NCFG_NTSEG1(gpriv, x) \ 124 (((x) & reg_gen4(gpriv, 0xff, 0x7f)) << reg_gen4(gpriv, 17, 16)) 125 126 #define RCANFD_NCFG_NSJW(gpriv, x) \ 127 (((x) & reg_gen4(gpriv, 0x7f, 0x1f)) << reg_gen4(gpriv, 10, 11)) 128 129 #define RCANFD_NCFG_NBRP(x) (((x) & 0x3ff) << 0) 130 131 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */ 132 #define RCANFD_CCTR_CTME BIT(24) 133 #define RCANFD_CCTR_ERRD BIT(23) 134 #define RCANFD_CCTR_BOM_MASK (0x3 << 21) 135 #define RCANFD_CCTR_BOM_ISO (0x0 << 21) 136 #define RCANFD_CCTR_BOM_BENTRY (0x1 << 21) 137 #define RCANFD_CCTR_BOM_BEND (0x2 << 21) 138 #define RCANFD_CCTR_TDCVFIE BIT(19) 139 #define RCANFD_CCTR_SOCOIE BIT(18) 140 #define RCANFD_CCTR_EOCOIE BIT(17) 141 #define RCANFD_CCTR_TAIE BIT(16) 142 #define RCANFD_CCTR_ALIE BIT(15) 143 #define RCANFD_CCTR_BLIE BIT(14) 144 #define RCANFD_CCTR_OLIE BIT(13) 145 #define RCANFD_CCTR_BORIE BIT(12) 146 #define RCANFD_CCTR_BOEIE BIT(11) 147 #define RCANFD_CCTR_EPIE BIT(10) 148 #define RCANFD_CCTR_EWIE BIT(9) 149 #define RCANFD_CCTR_BEIE BIT(8) 150 #define RCANFD_CCTR_CSLPR BIT(2) 151 #define RCANFD_CCTR_CHMDC_MASK (0x3) 152 #define RCANFD_CCTR_CHDMC_COPM (0x0) 153 #define RCANFD_CCTR_CHDMC_CRESET (0x1) 154 #define RCANFD_CCTR_CHDMC_CHLT (0x2) 155 156 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */ 157 #define RCANFD_CSTS_COMSTS BIT(7) 158 #define RCANFD_CSTS_RECSTS BIT(6) 159 #define RCANFD_CSTS_TRMSTS BIT(5) 160 #define RCANFD_CSTS_BOSTS BIT(4) 161 #define RCANFD_CSTS_EPSTS BIT(3) 162 #define RCANFD_CSTS_SLPSTS BIT(2) 163 #define RCANFD_CSTS_HLTSTS BIT(1) 164 #define RCANFD_CSTS_CRSTSTS BIT(0) 165 166 #define RCANFD_CSTS_TECCNT(x) (((x) >> 24) & 0xff) 167 #define RCANFD_CSTS_RECCNT(x) (((x) >> 16) & 0xff) 168 169 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */ 170 #define RCANFD_CERFL_ADERR BIT(14) 171 #define RCANFD_CERFL_B0ERR BIT(13) 172 #define RCANFD_CERFL_B1ERR BIT(12) 173 #define RCANFD_CERFL_CERR BIT(11) 174 #define RCANFD_CERFL_AERR BIT(10) 175 #define RCANFD_CERFL_FERR BIT(9) 176 #define RCANFD_CERFL_SERR BIT(8) 177 #define RCANFD_CERFL_ALF BIT(7) 178 #define RCANFD_CERFL_BLF BIT(6) 179 #define RCANFD_CERFL_OVLF BIT(5) 180 #define RCANFD_CERFL_BORF BIT(4) 181 #define RCANFD_CERFL_BOEF BIT(3) 182 #define RCANFD_CERFL_EPF BIT(2) 183 #define RCANFD_CERFL_EWF BIT(1) 184 #define RCANFD_CERFL_BEF BIT(0) 185 186 #define RCANFD_CERFL_ERR(x) ((x) & (0x7fff)) /* above bits 14:0 */ 187 188 /* RSCFDnCFDCmDCFG */ 189 #define RCANFD_DCFG_DSJW(gpriv, x) (((x) & reg_gen4(gpriv, 0xf, 0x7)) << 24) 190 191 #define RCANFD_DCFG_DTSEG2(gpriv, x) \ 192 (((x) & reg_gen4(gpriv, 0x0f, 0x7)) << reg_gen4(gpriv, 16, 20)) 193 194 #define RCANFD_DCFG_DTSEG1(gpriv, x) \ 195 (((x) & reg_gen4(gpriv, 0x1f, 0xf)) << reg_gen4(gpriv, 8, 16)) 196 197 #define RCANFD_DCFG_DBRP(x) (((x) & 0xff) << 0) 198 199 /* RSCFDnCFDCmFDCFG */ 200 #define RCANFD_GEN4_FDCFG_CLOE BIT(30) 201 #define RCANFD_GEN4_FDCFG_FDOE BIT(28) 202 #define RCANFD_FDCFG_TDCE BIT(9) 203 #define RCANFD_FDCFG_TDCOC BIT(8) 204 #define RCANFD_FDCFG_TDCO(x) (((x) & 0x7f) >> 16) 205 206 /* RSCFDnCFDRFCCx */ 207 #define RCANFD_RFCC_RFIM BIT(12) 208 #define RCANFD_RFCC_RFDC(x) (((x) & 0x7) << 8) 209 #define RCANFD_RFCC_RFPLS(x) (((x) & 0x7) << 4) 210 #define RCANFD_RFCC_RFIE BIT(1) 211 #define RCANFD_RFCC_RFE BIT(0) 212 213 /* RSCFDnCFDRFSTSx */ 214 #define RCANFD_RFSTS_RFIF BIT(3) 215 #define RCANFD_RFSTS_RFMLT BIT(2) 216 #define RCANFD_RFSTS_RFFLL BIT(1) 217 #define RCANFD_RFSTS_RFEMP BIT(0) 218 219 /* RSCFDnCFDRFIDx */ 220 #define RCANFD_RFID_RFIDE BIT(31) 221 #define RCANFD_RFID_RFRTR BIT(30) 222 223 /* RSCFDnCFDRFPTRx */ 224 #define RCANFD_RFPTR_RFDLC(x) (((x) >> 28) & 0xf) 225 #define RCANFD_RFPTR_RFPTR(x) (((x) >> 16) & 0xfff) 226 #define RCANFD_RFPTR_RFTS(x) (((x) >> 0) & 0xffff) 227 228 /* RSCFDnCFDRFFDSTSx */ 229 #define RCANFD_RFFDSTS_RFFDF BIT(2) 230 #define RCANFD_RFFDSTS_RFBRS BIT(1) 231 #define RCANFD_RFFDSTS_RFESI BIT(0) 232 233 /* Common FIFO bits */ 234 235 /* RSCFDnCFDCFCCk */ 236 #define RCANFD_CFCC_CFTML(gpriv, x) \ 237 (((x) & reg_gen4(gpriv, 0x1f, 0xf)) << reg_gen4(gpriv, 16, 20)) 238 #define RCANFD_CFCC_CFM(gpriv, x) (((x) & 0x3) << reg_gen4(gpriv, 8, 16)) 239 #define RCANFD_CFCC_CFIM BIT(12) 240 #define RCANFD_CFCC_CFDC(gpriv, x) (((x) & 0x7) << reg_gen4(gpriv, 21, 8)) 241 #define RCANFD_CFCC_CFPLS(x) (((x) & 0x7) << 4) 242 #define RCANFD_CFCC_CFTXIE BIT(2) 243 #define RCANFD_CFCC_CFE BIT(0) 244 245 /* RSCFDnCFDCFSTSk */ 246 #define RCANFD_CFSTS_CFMC(x) (((x) >> 8) & 0xff) 247 #define RCANFD_CFSTS_CFTXIF BIT(4) 248 #define RCANFD_CFSTS_CFMLT BIT(2) 249 #define RCANFD_CFSTS_CFFLL BIT(1) 250 #define RCANFD_CFSTS_CFEMP BIT(0) 251 252 /* RSCFDnCFDCFIDk */ 253 #define RCANFD_CFID_CFIDE BIT(31) 254 #define RCANFD_CFID_CFRTR BIT(30) 255 #define RCANFD_CFID_CFID_MASK(x) ((x) & 0x1fffffff) 256 257 /* RSCFDnCFDCFPTRk */ 258 #define RCANFD_CFPTR_CFDLC(x) (((x) & 0xf) << 28) 259 #define RCANFD_CFPTR_CFPTR(x) (((x) & 0xfff) << 16) 260 #define RCANFD_CFPTR_CFTS(x) (((x) & 0xff) << 0) 261 262 /* RSCFDnCFDCFFDCSTSk */ 263 #define RCANFD_CFFDCSTS_CFFDF BIT(2) 264 #define RCANFD_CFFDCSTS_CFBRS BIT(1) 265 #define RCANFD_CFFDCSTS_CFESI BIT(0) 266 267 /* This controller supports either Classical CAN only mode or CAN FD only mode. 268 * These modes are supported in two separate set of register maps & names. 269 * However, some of the register offsets are common for both modes. Those 270 * offsets are listed below as Common registers. 271 * 272 * The CAN FD only mode specific registers & Classical CAN only mode specific 273 * registers are listed separately. Their register names starts with 274 * RCANFD_F_xxx & RCANFD_C_xxx respectively. 275 */ 276 277 /* Common registers */ 278 279 /* RSCFDnCFDCmNCFG / RSCFDnCmCFG */ 280 #define RCANFD_CCFG(m) (0x0000 + (0x10 * (m))) 281 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */ 282 #define RCANFD_CCTR(m) (0x0004 + (0x10 * (m))) 283 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */ 284 #define RCANFD_CSTS(m) (0x0008 + (0x10 * (m))) 285 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */ 286 #define RCANFD_CERFL(m) (0x000C + (0x10 * (m))) 287 288 /* RSCFDnCFDGCFG / RSCFDnGCFG */ 289 #define RCANFD_GCFG (0x0084) 290 /* RSCFDnCFDGCTR / RSCFDnGCTR */ 291 #define RCANFD_GCTR (0x0088) 292 /* RSCFDnCFDGCTS / RSCFDnGCTS */ 293 #define RCANFD_GSTS (0x008c) 294 /* RSCFDnCFDGERFL / RSCFDnGERFL */ 295 #define RCANFD_GERFL (0x0090) 296 /* RSCFDnCFDGTSC / RSCFDnGTSC */ 297 #define RCANFD_GTSC (0x0094) 298 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */ 299 #define RCANFD_GAFLECTR (0x0098) 300 /* RSCFDnCFDGAFLCFG / RSCFDnGAFLCFG */ 301 #define RCANFD_GAFLCFG(ch) (0x009c + (0x04 * ((ch) / 2))) 302 /* RSCFDnCFDRMNB / RSCFDnRMNB */ 303 #define RCANFD_RMNB (0x00a4) 304 /* RSCFDnCFDRMND / RSCFDnRMND */ 305 #define RCANFD_RMND(y) (0x00a8 + (0x04 * (y))) 306 307 /* RSCFDnCFDRFCCx / RSCFDnRFCCx */ 308 #define RCANFD_RFCC(gpriv, x) (reg_gen4(gpriv, 0x00c0, 0x00b8) + (0x04 * (x))) 309 /* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */ 310 #define RCANFD_RFSTS(gpriv, x) (RCANFD_RFCC(gpriv, x) + 0x20) 311 /* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */ 312 #define RCANFD_RFPCTR(gpriv, x) (RCANFD_RFCC(gpriv, x) + 0x40) 313 314 /* Common FIFO Control registers */ 315 316 /* RSCFDnCFDCFCCx / RSCFDnCFCCx */ 317 #define RCANFD_CFCC(gpriv, ch, idx) \ 318 (reg_gen4(gpriv, 0x0120, 0x0118) + (0x0c * (ch)) + (0x04 * (idx))) 319 /* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */ 320 #define RCANFD_CFSTS(gpriv, ch, idx) \ 321 (reg_gen4(gpriv, 0x01e0, 0x0178) + (0x0c * (ch)) + (0x04 * (idx))) 322 /* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */ 323 #define RCANFD_CFPCTR(gpriv, ch, idx) \ 324 (reg_gen4(gpriv, 0x0240, 0x01d8) + (0x0c * (ch)) + (0x04 * (idx))) 325 326 /* RSCFDnCFDFESTS / RSCFDnFESTS */ 327 #define RCANFD_FESTS (0x0238) 328 /* RSCFDnCFDFFSTS / RSCFDnFFSTS */ 329 #define RCANFD_FFSTS (0x023c) 330 /* RSCFDnCFDFMSTS / RSCFDnFMSTS */ 331 #define RCANFD_FMSTS (0x0240) 332 /* RSCFDnCFDRFISTS / RSCFDnRFISTS */ 333 #define RCANFD_RFISTS (0x0244) 334 /* RSCFDnCFDCFRISTS / RSCFDnCFRISTS */ 335 #define RCANFD_CFRISTS (0x0248) 336 /* RSCFDnCFDCFTISTS / RSCFDnCFTISTS */ 337 #define RCANFD_CFTISTS (0x024c) 338 339 /* RSCFDnCFDTMCp / RSCFDnTMCp */ 340 #define RCANFD_TMC(p) (0x0250 + (0x01 * (p))) 341 /* RSCFDnCFDTMSTSp / RSCFDnTMSTSp */ 342 #define RCANFD_TMSTS(p) (0x02d0 + (0x01 * (p))) 343 344 /* RSCFDnCFDTMTRSTSp / RSCFDnTMTRSTSp */ 345 #define RCANFD_TMTRSTS(y) (0x0350 + (0x04 * (y))) 346 /* RSCFDnCFDTMTARSTSp / RSCFDnTMTARSTSp */ 347 #define RCANFD_TMTARSTS(y) (0x0360 + (0x04 * (y))) 348 /* RSCFDnCFDTMTCSTSp / RSCFDnTMTCSTSp */ 349 #define RCANFD_TMTCSTS(y) (0x0370 + (0x04 * (y))) 350 /* RSCFDnCFDTMTASTSp / RSCFDnTMTASTSp */ 351 #define RCANFD_TMTASTS(y) (0x0380 + (0x04 * (y))) 352 /* RSCFDnCFDTMIECy / RSCFDnTMIECy */ 353 #define RCANFD_TMIEC(y) (0x0390 + (0x04 * (y))) 354 355 /* RSCFDnCFDTXQCCm / RSCFDnTXQCCm */ 356 #define RCANFD_TXQCC(m) (0x03a0 + (0x04 * (m))) 357 /* RSCFDnCFDTXQSTSm / RSCFDnTXQSTSm */ 358 #define RCANFD_TXQSTS(m) (0x03c0 + (0x04 * (m))) 359 /* RSCFDnCFDTXQPCTRm / RSCFDnTXQPCTRm */ 360 #define RCANFD_TXQPCTR(m) (0x03e0 + (0x04 * (m))) 361 362 /* RSCFDnCFDTHLCCm / RSCFDnTHLCCm */ 363 #define RCANFD_THLCC(m) (0x0400 + (0x04 * (m))) 364 /* RSCFDnCFDTHLSTSm / RSCFDnTHLSTSm */ 365 #define RCANFD_THLSTS(m) (0x0420 + (0x04 * (m))) 366 /* RSCFDnCFDTHLPCTRm / RSCFDnTHLPCTRm */ 367 #define RCANFD_THLPCTR(m) (0x0440 + (0x04 * (m))) 368 369 /* RSCFDnCFDGTINTSTS0 / RSCFDnGTINTSTS0 */ 370 #define RCANFD_GTINTSTS0 (0x0460) 371 /* RSCFDnCFDGTINTSTS1 / RSCFDnGTINTSTS1 */ 372 #define RCANFD_GTINTSTS1 (0x0464) 373 /* RSCFDnCFDGTSTCFG / RSCFDnGTSTCFG */ 374 #define RCANFD_GTSTCFG (0x0468) 375 /* RSCFDnCFDGTSTCTR / RSCFDnGTSTCTR */ 376 #define RCANFD_GTSTCTR (0x046c) 377 /* RSCFDnCFDGLOCKK / RSCFDnGLOCKK */ 378 #define RCANFD_GLOCKK (0x047c) 379 /* RSCFDnCFDGRMCFG */ 380 #define RCANFD_GRMCFG (0x04fc) 381 382 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */ 383 #define RCANFD_GAFLID(offset, j) ((offset) + (0x10 * (j))) 384 /* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */ 385 #define RCANFD_GAFLM(offset, j) ((offset) + 0x04 + (0x10 * (j))) 386 /* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */ 387 #define RCANFD_GAFLP0(offset, j) ((offset) + 0x08 + (0x10 * (j))) 388 /* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */ 389 #define RCANFD_GAFLP1(offset, j) ((offset) + 0x0c + (0x10 * (j))) 390 391 /* Classical CAN only mode register map */ 392 393 /* RSCFDnGAFLXXXj offset */ 394 #define RCANFD_C_GAFL_OFFSET (0x0500) 395 396 /* RSCFDnRMXXXq -> RCANFD_C_RMXXX(q) */ 397 #define RCANFD_C_RMID(q) (0x0600 + (0x10 * (q))) 398 #define RCANFD_C_RMPTR(q) (0x0604 + (0x10 * (q))) 399 #define RCANFD_C_RMDF0(q) (0x0608 + (0x10 * (q))) 400 #define RCANFD_C_RMDF1(q) (0x060c + (0x10 * (q))) 401 402 /* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */ 403 #define RCANFD_C_RFOFFSET (0x0e00) 404 #define RCANFD_C_RFID(x) (RCANFD_C_RFOFFSET + (0x10 * (x))) 405 #define RCANFD_C_RFPTR(x) (RCANFD_C_RFOFFSET + 0x04 + (0x10 * (x))) 406 #define RCANFD_C_RFDF(x, df) \ 407 (RCANFD_C_RFOFFSET + 0x08 + (0x10 * (x)) + (0x04 * (df))) 408 409 /* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */ 410 #define RCANFD_C_CFOFFSET (0x0e80) 411 412 #define RCANFD_C_CFID(ch, idx) \ 413 (RCANFD_C_CFOFFSET + (0x30 * (ch)) + (0x10 * (idx))) 414 415 #define RCANFD_C_CFPTR(ch, idx) \ 416 (RCANFD_C_CFOFFSET + 0x04 + (0x30 * (ch)) + (0x10 * (idx))) 417 418 #define RCANFD_C_CFDF(ch, idx, df) \ 419 (RCANFD_C_CFOFFSET + 0x08 + (0x30 * (ch)) + (0x10 * (idx)) + (0x04 * (df))) 420 421 /* RSCFDnTMXXp -> RCANFD_C_TMXX(p) */ 422 #define RCANFD_C_TMID(p) (0x1000 + (0x10 * (p))) 423 #define RCANFD_C_TMPTR(p) (0x1004 + (0x10 * (p))) 424 #define RCANFD_C_TMDF0(p) (0x1008 + (0x10 * (p))) 425 #define RCANFD_C_TMDF1(p) (0x100c + (0x10 * (p))) 426 427 /* RSCFDnTHLACCm */ 428 #define RCANFD_C_THLACC(m) (0x1800 + (0x04 * (m))) 429 /* RSCFDnRPGACCr */ 430 #define RCANFD_C_RPGACC(r) (0x1900 + (0x04 * (r))) 431 432 /* R-Car Gen4 Classical and CAN FD mode specific register map */ 433 #define RCANFD_GEN4_FDCFG(m) (0x1404 + (0x20 * (m))) 434 435 #define RCANFD_GEN4_GAFL_OFFSET (0x1800) 436 437 /* CAN FD mode specific register map */ 438 439 /* RSCFDnCFDCmXXX -> RCANFD_F_XXX(m) */ 440 #define RCANFD_F_DCFG(gpriv, m) (reg_gen4(gpriv, 0x1400, 0x0500) + (0x20 * (m))) 441 #define RCANFD_F_CFDCFG(m) (0x0504 + (0x20 * (m))) 442 #define RCANFD_F_CFDCTR(m) (0x0508 + (0x20 * (m))) 443 #define RCANFD_F_CFDSTS(m) (0x050c + (0x20 * (m))) 444 #define RCANFD_F_CFDCRC(m) (0x0510 + (0x20 * (m))) 445 446 /* RSCFDnCFDGAFLXXXj offset */ 447 #define RCANFD_F_GAFL_OFFSET (0x1000) 448 449 /* RSCFDnCFDRMXXXq -> RCANFD_F_RMXXX(q) */ 450 #define RCANFD_F_RMID(q) (0x2000 + (0x20 * (q))) 451 #define RCANFD_F_RMPTR(q) (0x2004 + (0x20 * (q))) 452 #define RCANFD_F_RMFDSTS(q) (0x2008 + (0x20 * (q))) 453 #define RCANFD_F_RMDF(q, b) (0x200c + (0x04 * (b)) + (0x20 * (q))) 454 455 /* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */ 456 #define RCANFD_F_RFOFFSET(gpriv) reg_gen4(gpriv, 0x6000, 0x3000) 457 #define RCANFD_F_RFID(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + (0x80 * (x))) 458 #define RCANFD_F_RFPTR(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + 0x04 + (0x80 * (x))) 459 #define RCANFD_F_RFFDSTS(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + 0x08 + (0x80 * (x))) 460 #define RCANFD_F_RFDF(gpriv, x, df) \ 461 (RCANFD_F_RFOFFSET(gpriv) + 0x0c + (0x80 * (x)) + (0x04 * (df))) 462 463 /* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */ 464 #define RCANFD_F_CFOFFSET(gpriv) reg_gen4(gpriv, 0x6400, 0x3400) 465 466 #define RCANFD_F_CFID(gpriv, ch, idx) \ 467 (RCANFD_F_CFOFFSET(gpriv) + (0x180 * (ch)) + (0x80 * (idx))) 468 469 #define RCANFD_F_CFPTR(gpriv, ch, idx) \ 470 (RCANFD_F_CFOFFSET(gpriv) + 0x04 + (0x180 * (ch)) + (0x80 * (idx))) 471 472 #define RCANFD_F_CFFDCSTS(gpriv, ch, idx) \ 473 (RCANFD_F_CFOFFSET(gpriv) + 0x08 + (0x180 * (ch)) + (0x80 * (idx))) 474 475 #define RCANFD_F_CFDF(gpriv, ch, idx, df) \ 476 (RCANFD_F_CFOFFSET(gpriv) + 0x0c + (0x180 * (ch)) + (0x80 * (idx)) + \ 477 (0x04 * (df))) 478 479 /* RSCFDnCFDTMXXp -> RCANFD_F_TMXX(p) */ 480 #define RCANFD_F_TMID(p) (0x4000 + (0x20 * (p))) 481 #define RCANFD_F_TMPTR(p) (0x4004 + (0x20 * (p))) 482 #define RCANFD_F_TMFDCTR(p) (0x4008 + (0x20 * (p))) 483 #define RCANFD_F_TMDF(p, b) (0x400c + (0x20 * (p)) + (0x04 * (b))) 484 485 /* RSCFDnCFDTHLACCm */ 486 #define RCANFD_F_THLACC(m) (0x6000 + (0x04 * (m))) 487 /* RSCFDnCFDRPGACCr */ 488 #define RCANFD_F_RPGACC(r) (0x6400 + (0x04 * (r))) 489 490 /* Constants */ 491 #define RCANFD_FIFO_DEPTH 8 /* Tx FIFO depth */ 492 #define RCANFD_NAPI_WEIGHT 8 /* Rx poll quota */ 493 494 #define RCANFD_NUM_CHANNELS 8 /* Eight channels max */ 495 #define RCANFD_CHANNELS_MASK BIT((RCANFD_NUM_CHANNELS) - 1) 496 497 #define RCANFD_GAFL_PAGENUM(entry) ((entry) / 16) 498 #define RCANFD_CHANNEL_NUMRULES 1 /* only one rule per channel */ 499 500 /* Rx FIFO is a global resource of the controller. There are 8 such FIFOs 501 * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel 502 * number is added to RFFIFO index. 503 */ 504 #define RCANFD_RFFIFO_IDX 0 505 506 /* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common 507 * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx. 508 */ 509 #define RCANFD_CFFIFO_IDX 0 510 511 struct rcar_canfd_global; 512 513 struct rcar_canfd_hw_info { 514 u8 max_channels; 515 u8 postdiv; 516 /* hardware features */ 517 unsigned shared_global_irqs:1; /* Has shared global irqs */ 518 unsigned multi_channel_irqs:1; /* Has multiple channel irqs */ 519 }; 520 521 /* Channel priv data */ 522 struct rcar_canfd_channel { 523 struct can_priv can; /* Must be the first member */ 524 struct net_device *ndev; 525 struct rcar_canfd_global *gpriv; /* Controller reference */ 526 void __iomem *base; /* Register base address */ 527 struct phy *transceiver; /* Optional transceiver */ 528 struct napi_struct napi; 529 u32 tx_head; /* Incremented on xmit */ 530 u32 tx_tail; /* Incremented on xmit done */ 531 u32 channel; /* Channel number */ 532 spinlock_t tx_lock; /* To protect tx path */ 533 }; 534 535 /* Global priv data */ 536 struct rcar_canfd_global { 537 struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS]; 538 void __iomem *base; /* Register base address */ 539 struct platform_device *pdev; /* Respective platform device */ 540 struct clk *clkp; /* Peripheral clock */ 541 struct clk *can_clk; /* fCAN clock */ 542 unsigned long channels_mask; /* Enabled channels mask */ 543 bool extclk; /* CANFD or Ext clock */ 544 bool fdmode; /* CAN FD or Classical CAN only mode */ 545 struct reset_control *rstc1; 546 struct reset_control *rstc2; 547 const struct rcar_canfd_hw_info *info; 548 }; 549 550 /* CAN FD mode nominal rate constants */ 551 static const struct can_bittiming_const rcar_canfd_nom_bittiming_const = { 552 .name = RCANFD_DRV_NAME, 553 .tseg1_min = 2, 554 .tseg1_max = 128, 555 .tseg2_min = 2, 556 .tseg2_max = 32, 557 .sjw_max = 32, 558 .brp_min = 1, 559 .brp_max = 1024, 560 .brp_inc = 1, 561 }; 562 563 /* CAN FD mode data rate constants */ 564 static const struct can_bittiming_const rcar_canfd_data_bittiming_const = { 565 .name = RCANFD_DRV_NAME, 566 .tseg1_min = 2, 567 .tseg1_max = 16, 568 .tseg2_min = 2, 569 .tseg2_max = 8, 570 .sjw_max = 8, 571 .brp_min = 1, 572 .brp_max = 256, 573 .brp_inc = 1, 574 }; 575 576 /* Classical CAN mode bitrate constants */ 577 static const struct can_bittiming_const rcar_canfd_bittiming_const = { 578 .name = RCANFD_DRV_NAME, 579 .tseg1_min = 4, 580 .tseg1_max = 16, 581 .tseg2_min = 2, 582 .tseg2_max = 8, 583 .sjw_max = 4, 584 .brp_min = 1, 585 .brp_max = 1024, 586 .brp_inc = 1, 587 }; 588 589 static const struct rcar_canfd_hw_info rcar_gen3_hw_info = { 590 .max_channels = 2, 591 .postdiv = 2, 592 .shared_global_irqs = 1, 593 }; 594 595 static const struct rcar_canfd_hw_info rcar_gen4_hw_info = { 596 .max_channels = 8, 597 .postdiv = 2, 598 .shared_global_irqs = 1, 599 }; 600 601 static const struct rcar_canfd_hw_info rzg2l_hw_info = { 602 .max_channels = 2, 603 .postdiv = 1, 604 .multi_channel_irqs = 1, 605 }; 606 607 /* Helper functions */ 608 static inline bool is_gen4(struct rcar_canfd_global *gpriv) 609 { 610 return gpriv->info == &rcar_gen4_hw_info; 611 } 612 613 static inline u32 reg_gen4(struct rcar_canfd_global *gpriv, 614 u32 gen4, u32 not_gen4) 615 { 616 return is_gen4(gpriv) ? gen4 : not_gen4; 617 } 618 619 static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg) 620 { 621 u32 data = readl(reg); 622 623 data &= ~mask; 624 data |= (val & mask); 625 writel(data, reg); 626 } 627 628 static inline u32 rcar_canfd_read(void __iomem *base, u32 offset) 629 { 630 return readl(base + offset); 631 } 632 633 static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val) 634 { 635 writel(val, base + offset); 636 } 637 638 static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val) 639 { 640 rcar_canfd_update(val, val, base + reg); 641 } 642 643 static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val) 644 { 645 rcar_canfd_update(val, 0, base + reg); 646 } 647 648 static void rcar_canfd_update_bit(void __iomem *base, u32 reg, 649 u32 mask, u32 val) 650 { 651 rcar_canfd_update(mask, val, base + reg); 652 } 653 654 static void rcar_canfd_get_data(struct rcar_canfd_channel *priv, 655 struct canfd_frame *cf, u32 off) 656 { 657 u32 i, lwords; 658 659 lwords = DIV_ROUND_UP(cf->len, sizeof(u32)); 660 for (i = 0; i < lwords; i++) 661 *((u32 *)cf->data + i) = 662 rcar_canfd_read(priv->base, off + i * sizeof(u32)); 663 } 664 665 static void rcar_canfd_put_data(struct rcar_canfd_channel *priv, 666 struct canfd_frame *cf, u32 off) 667 { 668 u32 i, lwords; 669 670 lwords = DIV_ROUND_UP(cf->len, sizeof(u32)); 671 for (i = 0; i < lwords; i++) 672 rcar_canfd_write(priv->base, off + i * sizeof(u32), 673 *((u32 *)cf->data + i)); 674 } 675 676 static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev) 677 { 678 u32 i; 679 680 for (i = 0; i < RCANFD_FIFO_DEPTH; i++) 681 can_free_echo_skb(ndev, i, NULL); 682 } 683 684 static void rcar_canfd_set_mode(struct rcar_canfd_global *gpriv) 685 { 686 if (is_gen4(gpriv)) { 687 u32 ch, val = gpriv->fdmode ? RCANFD_GEN4_FDCFG_FDOE 688 : RCANFD_GEN4_FDCFG_CLOE; 689 690 for_each_set_bit(ch, &gpriv->channels_mask, 691 gpriv->info->max_channels) 692 rcar_canfd_set_bit(gpriv->base, RCANFD_GEN4_FDCFG(ch), 693 val); 694 } else { 695 if (gpriv->fdmode) 696 rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG, 697 RCANFD_GRMCFG_RCMC); 698 else 699 rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG, 700 RCANFD_GRMCFG_RCMC); 701 } 702 } 703 704 static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv) 705 { 706 u32 sts, ch; 707 int err; 708 709 /* Check RAMINIT flag as CAN RAM initialization takes place 710 * after the MCU reset 711 */ 712 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 713 !(sts & RCANFD_GSTS_GRAMINIT), 2, 500000); 714 if (err) { 715 dev_dbg(&gpriv->pdev->dev, "global raminit failed\n"); 716 return err; 717 } 718 719 /* Transition to Global Reset mode */ 720 rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR); 721 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, 722 RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET); 723 724 /* Ensure Global reset mode */ 725 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 726 (sts & RCANFD_GSTS_GRSTSTS), 2, 500000); 727 if (err) { 728 dev_dbg(&gpriv->pdev->dev, "global reset failed\n"); 729 return err; 730 } 731 732 /* Reset Global error flags */ 733 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0); 734 735 /* Set the controller into appropriate mode */ 736 rcar_canfd_set_mode(gpriv); 737 738 /* Transition all Channels to reset mode */ 739 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 740 rcar_canfd_clear_bit(gpriv->base, 741 RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR); 742 743 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch), 744 RCANFD_CCTR_CHMDC_MASK, 745 RCANFD_CCTR_CHDMC_CRESET); 746 747 /* Ensure Channel reset mode */ 748 err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts, 749 (sts & RCANFD_CSTS_CRSTSTS), 750 2, 500000); 751 if (err) { 752 dev_dbg(&gpriv->pdev->dev, 753 "channel %u reset failed\n", ch); 754 return err; 755 } 756 } 757 return 0; 758 } 759 760 static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv) 761 { 762 u32 cfg, ch; 763 764 /* Global configuration settings */ 765 766 /* ECC Error flag Enable */ 767 cfg = RCANFD_GCFG_EEFE; 768 769 if (gpriv->fdmode) 770 /* Truncate payload to configured message size RFPLS */ 771 cfg |= RCANFD_GCFG_CMPOC; 772 773 /* Set External Clock if selected */ 774 if (gpriv->extclk) 775 cfg |= RCANFD_GCFG_DCS; 776 777 rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg); 778 779 /* Channel configuration settings */ 780 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 781 rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch), 782 RCANFD_CCTR_ERRD); 783 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch), 784 RCANFD_CCTR_BOM_MASK, 785 RCANFD_CCTR_BOM_BENTRY); 786 } 787 } 788 789 static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv, 790 u32 ch, u32 rule_entry) 791 { 792 int offset, page, num_rules = RCANFD_CHANNEL_NUMRULES; 793 u32 rule_entry_index = rule_entry % 16; 794 u32 ridx = ch + RCANFD_RFFIFO_IDX; 795 796 /* Enable write access to entry */ 797 page = RCANFD_GAFL_PAGENUM(rule_entry); 798 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR, 799 (RCANFD_GAFLECTR_AFLPN(gpriv, page) | 800 RCANFD_GAFLECTR_AFLDAE)); 801 802 /* Write number of rules for channel */ 803 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG(ch), 804 RCANFD_GAFLCFG_SETRNC(gpriv, ch, num_rules)); 805 if (is_gen4(gpriv)) 806 offset = RCANFD_GEN4_GAFL_OFFSET; 807 else if (gpriv->fdmode) 808 offset = RCANFD_F_GAFL_OFFSET; 809 else 810 offset = RCANFD_C_GAFL_OFFSET; 811 812 /* Accept all IDs */ 813 rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, rule_entry_index), 0); 814 /* IDE or RTR is not considered for matching */ 815 rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, rule_entry_index), 0); 816 /* Any data length accepted */ 817 rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, rule_entry_index), 0); 818 /* Place the msg in corresponding Rx FIFO entry */ 819 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLP1(offset, rule_entry_index), 820 RCANFD_GAFLP1_GAFLFDP(ridx)); 821 822 /* Disable write access to page */ 823 rcar_canfd_clear_bit(gpriv->base, 824 RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE); 825 } 826 827 static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch) 828 { 829 /* Rx FIFO is used for reception */ 830 u32 cfg; 831 u16 rfdc, rfpls; 832 833 /* Select Rx FIFO based on channel */ 834 u32 ridx = ch + RCANFD_RFFIFO_IDX; 835 836 rfdc = 2; /* b010 - 8 messages Rx FIFO depth */ 837 if (gpriv->fdmode) 838 rfpls = 7; /* b111 - Max 64 bytes payload */ 839 else 840 rfpls = 0; /* b000 - Max 8 bytes payload */ 841 842 cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) | 843 RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE); 844 rcar_canfd_write(gpriv->base, RCANFD_RFCC(gpriv, ridx), cfg); 845 } 846 847 static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch) 848 { 849 /* Tx/Rx(Common) FIFO configured in Tx mode is 850 * used for transmission 851 * 852 * Each channel has 3 Common FIFO dedicated to them. 853 * Use the 1st (index 0) out of 3 854 */ 855 u32 cfg; 856 u16 cftml, cfm, cfdc, cfpls; 857 858 cftml = 0; /* 0th buffer */ 859 cfm = 1; /* b01 - Transmit mode */ 860 cfdc = 2; /* b010 - 8 messages Tx FIFO depth */ 861 if (gpriv->fdmode) 862 cfpls = 7; /* b111 - Max 64 bytes payload */ 863 else 864 cfpls = 0; /* b000 - Max 8 bytes payload */ 865 866 cfg = (RCANFD_CFCC_CFTML(gpriv, cftml) | RCANFD_CFCC_CFM(gpriv, cfm) | 867 RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(gpriv, cfdc) | 868 RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE); 869 rcar_canfd_write(gpriv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), cfg); 870 871 if (gpriv->fdmode) 872 /* Clear FD mode specific control/status register */ 873 rcar_canfd_write(gpriv->base, 874 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 0); 875 } 876 877 static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv) 878 { 879 u32 ctr; 880 881 /* Clear any stray error interrupt flags */ 882 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0); 883 884 /* Global interrupts setup */ 885 ctr = RCANFD_GCTR_MEIE; 886 if (gpriv->fdmode) 887 ctr |= RCANFD_GCTR_CFMPOFIE; 888 889 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr); 890 } 891 892 static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global 893 *gpriv) 894 { 895 /* Disable all interrupts */ 896 rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0); 897 898 /* Clear any stray error interrupt flags */ 899 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0); 900 } 901 902 static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel 903 *priv) 904 { 905 u32 ctr, ch = priv->channel; 906 907 /* Clear any stray error flags */ 908 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0); 909 910 /* Channel interrupts setup */ 911 ctr = (RCANFD_CCTR_TAIE | 912 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE | 913 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE | 914 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE | 915 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE); 916 rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr); 917 } 918 919 static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel 920 *priv) 921 { 922 u32 ctr, ch = priv->channel; 923 924 ctr = (RCANFD_CCTR_TAIE | 925 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE | 926 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE | 927 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE | 928 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE); 929 rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr); 930 931 /* Clear any stray error flags */ 932 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0); 933 } 934 935 static void rcar_canfd_global_error(struct net_device *ndev) 936 { 937 struct rcar_canfd_channel *priv = netdev_priv(ndev); 938 struct rcar_canfd_global *gpriv = priv->gpriv; 939 struct net_device_stats *stats = &ndev->stats; 940 u32 ch = priv->channel; 941 u32 gerfl, sts; 942 u32 ridx = ch + RCANFD_RFFIFO_IDX; 943 944 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL); 945 if (gerfl & RCANFD_GERFL_EEF(ch)) { 946 netdev_dbg(ndev, "Ch%u: ECC Error flag\n", ch); 947 stats->tx_dropped++; 948 } 949 if (gerfl & RCANFD_GERFL_MES) { 950 sts = rcar_canfd_read(priv->base, 951 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX)); 952 if (sts & RCANFD_CFSTS_CFMLT) { 953 netdev_dbg(ndev, "Tx Message Lost flag\n"); 954 stats->tx_dropped++; 955 rcar_canfd_write(priv->base, 956 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 957 sts & ~RCANFD_CFSTS_CFMLT); 958 } 959 960 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx)); 961 if (sts & RCANFD_RFSTS_RFMLT) { 962 netdev_dbg(ndev, "Rx Message Lost flag\n"); 963 stats->rx_dropped++; 964 rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx), 965 sts & ~RCANFD_RFSTS_RFMLT); 966 } 967 } 968 if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) { 969 /* Message Lost flag will be set for respective channel 970 * when this condition happens with counters and flags 971 * already updated. 972 */ 973 netdev_dbg(ndev, "global payload overflow interrupt\n"); 974 } 975 976 /* Clear all global error interrupts. Only affected channels bits 977 * get cleared 978 */ 979 rcar_canfd_write(priv->base, RCANFD_GERFL, 0); 980 } 981 982 static void rcar_canfd_error(struct net_device *ndev, u32 cerfl, 983 u16 txerr, u16 rxerr) 984 { 985 struct rcar_canfd_channel *priv = netdev_priv(ndev); 986 struct net_device_stats *stats = &ndev->stats; 987 struct can_frame *cf; 988 struct sk_buff *skb; 989 u32 ch = priv->channel; 990 991 netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr); 992 993 /* Propagate the error condition to the CAN stack */ 994 skb = alloc_can_err_skb(ndev, &cf); 995 if (!skb) { 996 stats->rx_dropped++; 997 return; 998 } 999 1000 /* Channel error interrupts */ 1001 if (cerfl & RCANFD_CERFL_BEF) { 1002 netdev_dbg(ndev, "Bus error\n"); 1003 cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT; 1004 cf->data[2] = CAN_ERR_PROT_UNSPEC; 1005 priv->can.can_stats.bus_error++; 1006 } 1007 if (cerfl & RCANFD_CERFL_ADERR) { 1008 netdev_dbg(ndev, "ACK Delimiter Error\n"); 1009 stats->tx_errors++; 1010 cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL; 1011 } 1012 if (cerfl & RCANFD_CERFL_B0ERR) { 1013 netdev_dbg(ndev, "Bit Error (dominant)\n"); 1014 stats->tx_errors++; 1015 cf->data[2] |= CAN_ERR_PROT_BIT0; 1016 } 1017 if (cerfl & RCANFD_CERFL_B1ERR) { 1018 netdev_dbg(ndev, "Bit Error (recessive)\n"); 1019 stats->tx_errors++; 1020 cf->data[2] |= CAN_ERR_PROT_BIT1; 1021 } 1022 if (cerfl & RCANFD_CERFL_CERR) { 1023 netdev_dbg(ndev, "CRC Error\n"); 1024 stats->rx_errors++; 1025 cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ; 1026 } 1027 if (cerfl & RCANFD_CERFL_AERR) { 1028 netdev_dbg(ndev, "ACK Error\n"); 1029 stats->tx_errors++; 1030 cf->can_id |= CAN_ERR_ACK; 1031 cf->data[3] |= CAN_ERR_PROT_LOC_ACK; 1032 } 1033 if (cerfl & RCANFD_CERFL_FERR) { 1034 netdev_dbg(ndev, "Form Error\n"); 1035 stats->rx_errors++; 1036 cf->data[2] |= CAN_ERR_PROT_FORM; 1037 } 1038 if (cerfl & RCANFD_CERFL_SERR) { 1039 netdev_dbg(ndev, "Stuff Error\n"); 1040 stats->rx_errors++; 1041 cf->data[2] |= CAN_ERR_PROT_STUFF; 1042 } 1043 if (cerfl & RCANFD_CERFL_ALF) { 1044 netdev_dbg(ndev, "Arbitration lost Error\n"); 1045 priv->can.can_stats.arbitration_lost++; 1046 cf->can_id |= CAN_ERR_LOSTARB; 1047 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC; 1048 } 1049 if (cerfl & RCANFD_CERFL_BLF) { 1050 netdev_dbg(ndev, "Bus Lock Error\n"); 1051 stats->rx_errors++; 1052 cf->can_id |= CAN_ERR_BUSERROR; 1053 } 1054 if (cerfl & RCANFD_CERFL_EWF) { 1055 netdev_dbg(ndev, "Error warning interrupt\n"); 1056 priv->can.state = CAN_STATE_ERROR_WARNING; 1057 priv->can.can_stats.error_warning++; 1058 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT; 1059 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING : 1060 CAN_ERR_CRTL_RX_WARNING; 1061 cf->data[6] = txerr; 1062 cf->data[7] = rxerr; 1063 } 1064 if (cerfl & RCANFD_CERFL_EPF) { 1065 netdev_dbg(ndev, "Error passive interrupt\n"); 1066 priv->can.state = CAN_STATE_ERROR_PASSIVE; 1067 priv->can.can_stats.error_passive++; 1068 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT; 1069 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE : 1070 CAN_ERR_CRTL_RX_PASSIVE; 1071 cf->data[6] = txerr; 1072 cf->data[7] = rxerr; 1073 } 1074 if (cerfl & RCANFD_CERFL_BOEF) { 1075 netdev_dbg(ndev, "Bus-off entry interrupt\n"); 1076 rcar_canfd_tx_failure_cleanup(ndev); 1077 priv->can.state = CAN_STATE_BUS_OFF; 1078 priv->can.can_stats.bus_off++; 1079 can_bus_off(ndev); 1080 cf->can_id |= CAN_ERR_BUSOFF; 1081 } 1082 if (cerfl & RCANFD_CERFL_OVLF) { 1083 netdev_dbg(ndev, 1084 "Overload Frame Transmission error interrupt\n"); 1085 stats->tx_errors++; 1086 cf->can_id |= CAN_ERR_PROT; 1087 cf->data[2] |= CAN_ERR_PROT_OVERLOAD; 1088 } 1089 1090 /* Clear channel error interrupts that are handled */ 1091 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 1092 RCANFD_CERFL_ERR(~cerfl)); 1093 netif_rx(skb); 1094 } 1095 1096 static void rcar_canfd_tx_done(struct net_device *ndev) 1097 { 1098 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1099 struct rcar_canfd_global *gpriv = priv->gpriv; 1100 struct net_device_stats *stats = &ndev->stats; 1101 u32 sts; 1102 unsigned long flags; 1103 u32 ch = priv->channel; 1104 1105 do { 1106 u8 unsent, sent; 1107 1108 sent = priv->tx_tail % RCANFD_FIFO_DEPTH; 1109 stats->tx_packets++; 1110 stats->tx_bytes += can_get_echo_skb(ndev, sent, NULL); 1111 1112 spin_lock_irqsave(&priv->tx_lock, flags); 1113 priv->tx_tail++; 1114 sts = rcar_canfd_read(priv->base, 1115 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX)); 1116 unsent = RCANFD_CFSTS_CFMC(sts); 1117 1118 /* Wake producer only when there is room */ 1119 if (unsent != RCANFD_FIFO_DEPTH) 1120 netif_wake_queue(ndev); 1121 1122 if (priv->tx_head - priv->tx_tail <= unsent) { 1123 spin_unlock_irqrestore(&priv->tx_lock, flags); 1124 break; 1125 } 1126 spin_unlock_irqrestore(&priv->tx_lock, flags); 1127 1128 } while (1); 1129 1130 /* Clear interrupt */ 1131 rcar_canfd_write(priv->base, RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 1132 sts & ~RCANFD_CFSTS_CFTXIF); 1133 } 1134 1135 static void rcar_canfd_handle_global_err(struct rcar_canfd_global *gpriv, u32 ch) 1136 { 1137 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1138 struct net_device *ndev = priv->ndev; 1139 u32 gerfl; 1140 1141 /* Handle global error interrupts */ 1142 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL); 1143 if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl))) 1144 rcar_canfd_global_error(ndev); 1145 } 1146 1147 static irqreturn_t rcar_canfd_global_err_interrupt(int irq, void *dev_id) 1148 { 1149 struct rcar_canfd_global *gpriv = dev_id; 1150 u32 ch; 1151 1152 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) 1153 rcar_canfd_handle_global_err(gpriv, ch); 1154 1155 return IRQ_HANDLED; 1156 } 1157 1158 static void rcar_canfd_handle_global_receive(struct rcar_canfd_global *gpriv, u32 ch) 1159 { 1160 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1161 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1162 u32 sts, cc; 1163 1164 /* Handle Rx interrupts */ 1165 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx)); 1166 cc = rcar_canfd_read(priv->base, RCANFD_RFCC(gpriv, ridx)); 1167 if (likely(sts & RCANFD_RFSTS_RFIF && 1168 cc & RCANFD_RFCC_RFIE)) { 1169 if (napi_schedule_prep(&priv->napi)) { 1170 /* Disable Rx FIFO interrupts */ 1171 rcar_canfd_clear_bit(priv->base, 1172 RCANFD_RFCC(gpriv, ridx), 1173 RCANFD_RFCC_RFIE); 1174 __napi_schedule(&priv->napi); 1175 } 1176 } 1177 } 1178 1179 static irqreturn_t rcar_canfd_global_receive_fifo_interrupt(int irq, void *dev_id) 1180 { 1181 struct rcar_canfd_global *gpriv = dev_id; 1182 u32 ch; 1183 1184 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) 1185 rcar_canfd_handle_global_receive(gpriv, ch); 1186 1187 return IRQ_HANDLED; 1188 } 1189 1190 static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id) 1191 { 1192 struct rcar_canfd_global *gpriv = dev_id; 1193 u32 ch; 1194 1195 /* Global error interrupts still indicate a condition specific 1196 * to a channel. RxFIFO interrupt is a global interrupt. 1197 */ 1198 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 1199 rcar_canfd_handle_global_err(gpriv, ch); 1200 rcar_canfd_handle_global_receive(gpriv, ch); 1201 } 1202 return IRQ_HANDLED; 1203 } 1204 1205 static void rcar_canfd_state_change(struct net_device *ndev, 1206 u16 txerr, u16 rxerr) 1207 { 1208 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1209 struct net_device_stats *stats = &ndev->stats; 1210 enum can_state rx_state, tx_state, state = priv->can.state; 1211 struct can_frame *cf; 1212 struct sk_buff *skb; 1213 1214 /* Handle transition from error to normal states */ 1215 if (txerr < 96 && rxerr < 96) 1216 state = CAN_STATE_ERROR_ACTIVE; 1217 else if (txerr < 128 && rxerr < 128) 1218 state = CAN_STATE_ERROR_WARNING; 1219 1220 if (state != priv->can.state) { 1221 netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n", 1222 state, priv->can.state, txerr, rxerr); 1223 skb = alloc_can_err_skb(ndev, &cf); 1224 if (!skb) { 1225 stats->rx_dropped++; 1226 return; 1227 } 1228 tx_state = txerr >= rxerr ? state : 0; 1229 rx_state = txerr <= rxerr ? state : 0; 1230 1231 can_change_state(ndev, cf, tx_state, rx_state); 1232 netif_rx(skb); 1233 } 1234 } 1235 1236 static void rcar_canfd_handle_channel_tx(struct rcar_canfd_global *gpriv, u32 ch) 1237 { 1238 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1239 struct net_device *ndev = priv->ndev; 1240 u32 sts; 1241 1242 /* Handle Tx interrupts */ 1243 sts = rcar_canfd_read(priv->base, 1244 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX)); 1245 if (likely(sts & RCANFD_CFSTS_CFTXIF)) 1246 rcar_canfd_tx_done(ndev); 1247 } 1248 1249 static irqreturn_t rcar_canfd_channel_tx_interrupt(int irq, void *dev_id) 1250 { 1251 struct rcar_canfd_channel *priv = dev_id; 1252 1253 rcar_canfd_handle_channel_tx(priv->gpriv, priv->channel); 1254 1255 return IRQ_HANDLED; 1256 } 1257 1258 static void rcar_canfd_handle_channel_err(struct rcar_canfd_global *gpriv, u32 ch) 1259 { 1260 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1261 struct net_device *ndev = priv->ndev; 1262 u16 txerr, rxerr; 1263 u32 sts, cerfl; 1264 1265 /* Handle channel error interrupts */ 1266 cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch)); 1267 sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch)); 1268 txerr = RCANFD_CSTS_TECCNT(sts); 1269 rxerr = RCANFD_CSTS_RECCNT(sts); 1270 if (unlikely(RCANFD_CERFL_ERR(cerfl))) 1271 rcar_canfd_error(ndev, cerfl, txerr, rxerr); 1272 1273 /* Handle state change to lower states */ 1274 if (unlikely(priv->can.state != CAN_STATE_ERROR_ACTIVE && 1275 priv->can.state != CAN_STATE_BUS_OFF)) 1276 rcar_canfd_state_change(ndev, txerr, rxerr); 1277 } 1278 1279 static irqreturn_t rcar_canfd_channel_err_interrupt(int irq, void *dev_id) 1280 { 1281 struct rcar_canfd_channel *priv = dev_id; 1282 1283 rcar_canfd_handle_channel_err(priv->gpriv, priv->channel); 1284 1285 return IRQ_HANDLED; 1286 } 1287 1288 static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id) 1289 { 1290 struct rcar_canfd_global *gpriv = dev_id; 1291 u32 ch; 1292 1293 /* Common FIFO is a per channel resource */ 1294 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 1295 rcar_canfd_handle_channel_err(gpriv, ch); 1296 rcar_canfd_handle_channel_tx(gpriv, ch); 1297 } 1298 1299 return IRQ_HANDLED; 1300 } 1301 1302 static void rcar_canfd_set_bittiming(struct net_device *dev) 1303 { 1304 struct rcar_canfd_channel *priv = netdev_priv(dev); 1305 struct rcar_canfd_global *gpriv = priv->gpriv; 1306 const struct can_bittiming *bt = &priv->can.bittiming; 1307 const struct can_bittiming *dbt = &priv->can.data_bittiming; 1308 u16 brp, sjw, tseg1, tseg2; 1309 u32 cfg; 1310 u32 ch = priv->channel; 1311 1312 /* Nominal bit timing settings */ 1313 brp = bt->brp - 1; 1314 sjw = bt->sjw - 1; 1315 tseg1 = bt->prop_seg + bt->phase_seg1 - 1; 1316 tseg2 = bt->phase_seg2 - 1; 1317 1318 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { 1319 /* CAN FD only mode */ 1320 cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) | RCANFD_NCFG_NBRP(brp) | 1321 RCANFD_NCFG_NSJW(gpriv, sjw) | RCANFD_NCFG_NTSEG2(gpriv, tseg2)); 1322 1323 rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg); 1324 netdev_dbg(priv->ndev, "nrate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n", 1325 brp, sjw, tseg1, tseg2); 1326 1327 /* Data bit timing settings */ 1328 brp = dbt->brp - 1; 1329 sjw = dbt->sjw - 1; 1330 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1; 1331 tseg2 = dbt->phase_seg2 - 1; 1332 1333 cfg = (RCANFD_DCFG_DTSEG1(gpriv, tseg1) | RCANFD_DCFG_DBRP(brp) | 1334 RCANFD_DCFG_DSJW(gpriv, sjw) | RCANFD_DCFG_DTSEG2(gpriv, tseg2)); 1335 1336 rcar_canfd_write(priv->base, RCANFD_F_DCFG(gpriv, ch), cfg); 1337 netdev_dbg(priv->ndev, "drate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n", 1338 brp, sjw, tseg1, tseg2); 1339 } else { 1340 /* Classical CAN only mode */ 1341 if (is_gen4(gpriv)) { 1342 cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) | 1343 RCANFD_NCFG_NBRP(brp) | 1344 RCANFD_NCFG_NSJW(gpriv, sjw) | 1345 RCANFD_NCFG_NTSEG2(gpriv, tseg2)); 1346 } else { 1347 cfg = (RCANFD_CFG_TSEG1(tseg1) | 1348 RCANFD_CFG_BRP(brp) | 1349 RCANFD_CFG_SJW(sjw) | 1350 RCANFD_CFG_TSEG2(tseg2)); 1351 } 1352 1353 rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg); 1354 netdev_dbg(priv->ndev, 1355 "rate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n", 1356 brp, sjw, tseg1, tseg2); 1357 } 1358 } 1359 1360 static int rcar_canfd_start(struct net_device *ndev) 1361 { 1362 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1363 struct rcar_canfd_global *gpriv = priv->gpriv; 1364 int err = -EOPNOTSUPP; 1365 u32 sts, ch = priv->channel; 1366 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1367 1368 rcar_canfd_set_bittiming(ndev); 1369 1370 rcar_canfd_enable_channel_interrupts(priv); 1371 1372 /* Set channel to Operational mode */ 1373 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch), 1374 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM); 1375 1376 /* Verify channel mode change */ 1377 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts, 1378 (sts & RCANFD_CSTS_COMSTS), 2, 500000); 1379 if (err) { 1380 netdev_err(ndev, "channel %u communication state failed\n", ch); 1381 goto fail_mode_change; 1382 } 1383 1384 /* Enable Common & Rx FIFO */ 1385 rcar_canfd_set_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), 1386 RCANFD_CFCC_CFE); 1387 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE); 1388 1389 priv->can.state = CAN_STATE_ERROR_ACTIVE; 1390 return 0; 1391 1392 fail_mode_change: 1393 rcar_canfd_disable_channel_interrupts(priv); 1394 return err; 1395 } 1396 1397 static int rcar_canfd_open(struct net_device *ndev) 1398 { 1399 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1400 struct rcar_canfd_global *gpriv = priv->gpriv; 1401 int err; 1402 1403 err = phy_power_on(priv->transceiver); 1404 if (err) { 1405 netdev_err(ndev, "failed to power on PHY: %pe\n", ERR_PTR(err)); 1406 return err; 1407 } 1408 1409 /* Peripheral clock is already enabled in probe */ 1410 err = clk_prepare_enable(gpriv->can_clk); 1411 if (err) { 1412 netdev_err(ndev, "failed to enable CAN clock: %pe\n", ERR_PTR(err)); 1413 goto out_phy; 1414 } 1415 1416 err = open_candev(ndev); 1417 if (err) { 1418 netdev_err(ndev, "open_candev() failed: %pe\n", ERR_PTR(err)); 1419 goto out_can_clock; 1420 } 1421 1422 napi_enable(&priv->napi); 1423 err = rcar_canfd_start(ndev); 1424 if (err) 1425 goto out_close; 1426 netif_start_queue(ndev); 1427 return 0; 1428 out_close: 1429 napi_disable(&priv->napi); 1430 close_candev(ndev); 1431 out_can_clock: 1432 clk_disable_unprepare(gpriv->can_clk); 1433 out_phy: 1434 phy_power_off(priv->transceiver); 1435 return err; 1436 } 1437 1438 static void rcar_canfd_stop(struct net_device *ndev) 1439 { 1440 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1441 struct rcar_canfd_global *gpriv = priv->gpriv; 1442 int err; 1443 u32 sts, ch = priv->channel; 1444 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1445 1446 /* Transition to channel reset mode */ 1447 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch), 1448 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET); 1449 1450 /* Check Channel reset mode */ 1451 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts, 1452 (sts & RCANFD_CSTS_CRSTSTS), 2, 500000); 1453 if (err) 1454 netdev_err(ndev, "channel %u reset failed\n", ch); 1455 1456 rcar_canfd_disable_channel_interrupts(priv); 1457 1458 /* Disable Common & Rx FIFO */ 1459 rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), 1460 RCANFD_CFCC_CFE); 1461 rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE); 1462 1463 /* Set the state as STOPPED */ 1464 priv->can.state = CAN_STATE_STOPPED; 1465 } 1466 1467 static int rcar_canfd_close(struct net_device *ndev) 1468 { 1469 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1470 struct rcar_canfd_global *gpriv = priv->gpriv; 1471 1472 netif_stop_queue(ndev); 1473 rcar_canfd_stop(ndev); 1474 napi_disable(&priv->napi); 1475 clk_disable_unprepare(gpriv->can_clk); 1476 close_candev(ndev); 1477 phy_power_off(priv->transceiver); 1478 return 0; 1479 } 1480 1481 static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb, 1482 struct net_device *ndev) 1483 { 1484 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1485 struct rcar_canfd_global *gpriv = priv->gpriv; 1486 struct canfd_frame *cf = (struct canfd_frame *)skb->data; 1487 u32 sts = 0, id, dlc; 1488 unsigned long flags; 1489 u32 ch = priv->channel; 1490 1491 if (can_dev_dropped_skb(ndev, skb)) 1492 return NETDEV_TX_OK; 1493 1494 if (cf->can_id & CAN_EFF_FLAG) { 1495 id = cf->can_id & CAN_EFF_MASK; 1496 id |= RCANFD_CFID_CFIDE; 1497 } else { 1498 id = cf->can_id & CAN_SFF_MASK; 1499 } 1500 1501 if (cf->can_id & CAN_RTR_FLAG) 1502 id |= RCANFD_CFID_CFRTR; 1503 1504 dlc = RCANFD_CFPTR_CFDLC(can_fd_len2dlc(cf->len)); 1505 1506 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_gen4(gpriv)) { 1507 rcar_canfd_write(priv->base, 1508 RCANFD_F_CFID(gpriv, ch, RCANFD_CFFIFO_IDX), id); 1509 rcar_canfd_write(priv->base, 1510 RCANFD_F_CFPTR(gpriv, ch, RCANFD_CFFIFO_IDX), dlc); 1511 1512 if (can_is_canfd_skb(skb)) { 1513 /* CAN FD frame format */ 1514 sts |= RCANFD_CFFDCSTS_CFFDF; 1515 if (cf->flags & CANFD_BRS) 1516 sts |= RCANFD_CFFDCSTS_CFBRS; 1517 1518 if (priv->can.state == CAN_STATE_ERROR_PASSIVE) 1519 sts |= RCANFD_CFFDCSTS_CFESI; 1520 } 1521 1522 rcar_canfd_write(priv->base, 1523 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), sts); 1524 1525 rcar_canfd_put_data(priv, cf, 1526 RCANFD_F_CFDF(gpriv, ch, RCANFD_CFFIFO_IDX, 0)); 1527 } else { 1528 rcar_canfd_write(priv->base, 1529 RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id); 1530 rcar_canfd_write(priv->base, 1531 RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc); 1532 rcar_canfd_put_data(priv, cf, 1533 RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0)); 1534 } 1535 1536 can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH, 0); 1537 1538 spin_lock_irqsave(&priv->tx_lock, flags); 1539 priv->tx_head++; 1540 1541 /* Stop the queue if we've filled all FIFO entries */ 1542 if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH) 1543 netif_stop_queue(ndev); 1544 1545 /* Start Tx: Write 0xff to CFPC to increment the CPU-side 1546 * pointer for the Common FIFO 1547 */ 1548 rcar_canfd_write(priv->base, 1549 RCANFD_CFPCTR(gpriv, ch, RCANFD_CFFIFO_IDX), 0xff); 1550 1551 spin_unlock_irqrestore(&priv->tx_lock, flags); 1552 return NETDEV_TX_OK; 1553 } 1554 1555 static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv) 1556 { 1557 struct net_device_stats *stats = &priv->ndev->stats; 1558 struct rcar_canfd_global *gpriv = priv->gpriv; 1559 struct canfd_frame *cf; 1560 struct sk_buff *skb; 1561 u32 sts = 0, id, dlc; 1562 u32 ch = priv->channel; 1563 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1564 1565 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_gen4(gpriv)) { 1566 id = rcar_canfd_read(priv->base, RCANFD_F_RFID(gpriv, ridx)); 1567 dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(gpriv, ridx)); 1568 1569 sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(gpriv, ridx)); 1570 1571 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) && 1572 sts & RCANFD_RFFDSTS_RFFDF) 1573 skb = alloc_canfd_skb(priv->ndev, &cf); 1574 else 1575 skb = alloc_can_skb(priv->ndev, 1576 (struct can_frame **)&cf); 1577 } else { 1578 id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx)); 1579 dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx)); 1580 skb = alloc_can_skb(priv->ndev, (struct can_frame **)&cf); 1581 } 1582 1583 if (!skb) { 1584 stats->rx_dropped++; 1585 return; 1586 } 1587 1588 if (id & RCANFD_RFID_RFIDE) 1589 cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG; 1590 else 1591 cf->can_id = id & CAN_SFF_MASK; 1592 1593 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { 1594 if (sts & RCANFD_RFFDSTS_RFFDF) 1595 cf->len = can_fd_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1596 else 1597 cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1598 1599 if (sts & RCANFD_RFFDSTS_RFESI) { 1600 cf->flags |= CANFD_ESI; 1601 netdev_dbg(priv->ndev, "ESI Error\n"); 1602 } 1603 1604 if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) { 1605 cf->can_id |= CAN_RTR_FLAG; 1606 } else { 1607 if (sts & RCANFD_RFFDSTS_RFBRS) 1608 cf->flags |= CANFD_BRS; 1609 1610 rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0)); 1611 } 1612 } else { 1613 cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1614 if (id & RCANFD_RFID_RFRTR) 1615 cf->can_id |= CAN_RTR_FLAG; 1616 else if (is_gen4(gpriv)) 1617 rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0)); 1618 else 1619 rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0)); 1620 } 1621 1622 /* Write 0xff to RFPC to increment the CPU-side 1623 * pointer of the Rx FIFO 1624 */ 1625 rcar_canfd_write(priv->base, RCANFD_RFPCTR(gpriv, ridx), 0xff); 1626 1627 if (!(cf->can_id & CAN_RTR_FLAG)) 1628 stats->rx_bytes += cf->len; 1629 stats->rx_packets++; 1630 netif_receive_skb(skb); 1631 } 1632 1633 static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota) 1634 { 1635 struct rcar_canfd_channel *priv = 1636 container_of(napi, struct rcar_canfd_channel, napi); 1637 struct rcar_canfd_global *gpriv = priv->gpriv; 1638 int num_pkts; 1639 u32 sts; 1640 u32 ch = priv->channel; 1641 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1642 1643 for (num_pkts = 0; num_pkts < quota; num_pkts++) { 1644 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx)); 1645 /* Check FIFO empty condition */ 1646 if (sts & RCANFD_RFSTS_RFEMP) 1647 break; 1648 1649 rcar_canfd_rx_pkt(priv); 1650 1651 /* Clear interrupt bit */ 1652 if (sts & RCANFD_RFSTS_RFIF) 1653 rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx), 1654 sts & ~RCANFD_RFSTS_RFIF); 1655 } 1656 1657 /* All packets processed */ 1658 if (num_pkts < quota) { 1659 if (napi_complete_done(napi, num_pkts)) { 1660 /* Enable Rx FIFO interrupts */ 1661 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), 1662 RCANFD_RFCC_RFIE); 1663 } 1664 } 1665 return num_pkts; 1666 } 1667 1668 static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode) 1669 { 1670 int err; 1671 1672 switch (mode) { 1673 case CAN_MODE_START: 1674 err = rcar_canfd_start(ndev); 1675 if (err) 1676 return err; 1677 netif_wake_queue(ndev); 1678 return 0; 1679 default: 1680 return -EOPNOTSUPP; 1681 } 1682 } 1683 1684 static int rcar_canfd_get_berr_counter(const struct net_device *dev, 1685 struct can_berr_counter *bec) 1686 { 1687 struct rcar_canfd_channel *priv = netdev_priv(dev); 1688 u32 val, ch = priv->channel; 1689 1690 /* Peripheral clock is already enabled in probe */ 1691 val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch)); 1692 bec->txerr = RCANFD_CSTS_TECCNT(val); 1693 bec->rxerr = RCANFD_CSTS_RECCNT(val); 1694 return 0; 1695 } 1696 1697 static const struct net_device_ops rcar_canfd_netdev_ops = { 1698 .ndo_open = rcar_canfd_open, 1699 .ndo_stop = rcar_canfd_close, 1700 .ndo_start_xmit = rcar_canfd_start_xmit, 1701 .ndo_change_mtu = can_change_mtu, 1702 }; 1703 1704 static const struct ethtool_ops rcar_canfd_ethtool_ops = { 1705 .get_ts_info = ethtool_op_get_ts_info, 1706 }; 1707 1708 static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch, 1709 u32 fcan_freq, struct phy *transceiver) 1710 { 1711 const struct rcar_canfd_hw_info *info = gpriv->info; 1712 struct platform_device *pdev = gpriv->pdev; 1713 struct device *dev = &pdev->dev; 1714 struct rcar_canfd_channel *priv; 1715 struct net_device *ndev; 1716 int err = -ENODEV; 1717 1718 ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH); 1719 if (!ndev) 1720 return -ENOMEM; 1721 1722 priv = netdev_priv(ndev); 1723 1724 ndev->netdev_ops = &rcar_canfd_netdev_ops; 1725 ndev->ethtool_ops = &rcar_canfd_ethtool_ops; 1726 ndev->flags |= IFF_ECHO; 1727 priv->ndev = ndev; 1728 priv->base = gpriv->base; 1729 priv->transceiver = transceiver; 1730 priv->channel = ch; 1731 priv->gpriv = gpriv; 1732 if (transceiver) 1733 priv->can.bitrate_max = transceiver->attrs.max_link_rate; 1734 priv->can.clock.freq = fcan_freq; 1735 dev_info(dev, "can_clk rate is %u\n", priv->can.clock.freq); 1736 1737 if (info->multi_channel_irqs) { 1738 char *irq_name; 1739 int err_irq; 1740 int tx_irq; 1741 1742 err_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_err" : "ch1_err"); 1743 if (err_irq < 0) { 1744 err = err_irq; 1745 goto fail; 1746 } 1747 1748 tx_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_trx" : "ch1_trx"); 1749 if (tx_irq < 0) { 1750 err = tx_irq; 1751 goto fail; 1752 } 1753 1754 irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_err", 1755 ch); 1756 if (!irq_name) { 1757 err = -ENOMEM; 1758 goto fail; 1759 } 1760 err = devm_request_irq(dev, err_irq, 1761 rcar_canfd_channel_err_interrupt, 0, 1762 irq_name, priv); 1763 if (err) { 1764 dev_err(dev, "devm_request_irq CH Err %d failed: %pe\n", 1765 err_irq, ERR_PTR(err)); 1766 goto fail; 1767 } 1768 irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_trx", 1769 ch); 1770 if (!irq_name) { 1771 err = -ENOMEM; 1772 goto fail; 1773 } 1774 err = devm_request_irq(dev, tx_irq, 1775 rcar_canfd_channel_tx_interrupt, 0, 1776 irq_name, priv); 1777 if (err) { 1778 dev_err(dev, "devm_request_irq Tx %d failed: %pe\n", 1779 tx_irq, ERR_PTR(err)); 1780 goto fail; 1781 } 1782 } 1783 1784 if (gpriv->fdmode) { 1785 priv->can.bittiming_const = &rcar_canfd_nom_bittiming_const; 1786 priv->can.data_bittiming_const = 1787 &rcar_canfd_data_bittiming_const; 1788 1789 /* Controller starts in CAN FD only mode */ 1790 err = can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD); 1791 if (err) 1792 goto fail; 1793 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING; 1794 } else { 1795 /* Controller starts in Classical CAN only mode */ 1796 priv->can.bittiming_const = &rcar_canfd_bittiming_const; 1797 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING; 1798 } 1799 1800 priv->can.do_set_mode = rcar_canfd_do_set_mode; 1801 priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter; 1802 SET_NETDEV_DEV(ndev, dev); 1803 1804 netif_napi_add_weight(ndev, &priv->napi, rcar_canfd_rx_poll, 1805 RCANFD_NAPI_WEIGHT); 1806 spin_lock_init(&priv->tx_lock); 1807 gpriv->ch[priv->channel] = priv; 1808 err = register_candev(ndev); 1809 if (err) { 1810 dev_err(dev, "register_candev() failed: %pe\n", ERR_PTR(err)); 1811 goto fail_candev; 1812 } 1813 dev_info(dev, "device registered (channel %u)\n", priv->channel); 1814 return 0; 1815 1816 fail_candev: 1817 netif_napi_del(&priv->napi); 1818 fail: 1819 free_candev(ndev); 1820 return err; 1821 } 1822 1823 static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch) 1824 { 1825 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1826 1827 if (priv) { 1828 unregister_candev(priv->ndev); 1829 netif_napi_del(&priv->napi); 1830 free_candev(priv->ndev); 1831 } 1832 } 1833 1834 static int rcar_canfd_probe(struct platform_device *pdev) 1835 { 1836 struct phy *transceivers[RCANFD_NUM_CHANNELS] = { NULL, }; 1837 const struct rcar_canfd_hw_info *info; 1838 struct device *dev = &pdev->dev; 1839 void __iomem *addr; 1840 u32 sts, ch, fcan_freq; 1841 struct rcar_canfd_global *gpriv; 1842 struct device_node *of_child; 1843 unsigned long channels_mask = 0; 1844 int err, ch_irq, g_irq; 1845 int g_err_irq, g_recc_irq; 1846 u32 rule_entry = 0; 1847 bool fdmode = true; /* CAN FD only mode - default */ 1848 char name[9] = "channelX"; 1849 int i; 1850 1851 info = of_device_get_match_data(dev); 1852 1853 if (of_property_read_bool(dev->of_node, "renesas,no-can-fd")) 1854 fdmode = false; /* Classical CAN only mode */ 1855 1856 for (i = 0; i < info->max_channels; ++i) { 1857 name[7] = '0' + i; 1858 of_child = of_get_child_by_name(dev->of_node, name); 1859 if (of_child && of_device_is_available(of_child)) { 1860 channels_mask |= BIT(i); 1861 transceivers[i] = devm_of_phy_optional_get(dev, 1862 of_child, NULL); 1863 } 1864 of_node_put(of_child); 1865 if (IS_ERR(transceivers[i])) 1866 return PTR_ERR(transceivers[i]); 1867 } 1868 1869 if (info->shared_global_irqs) { 1870 ch_irq = platform_get_irq_byname_optional(pdev, "ch_int"); 1871 if (ch_irq < 0) { 1872 /* For backward compatibility get irq by index */ 1873 ch_irq = platform_get_irq(pdev, 0); 1874 if (ch_irq < 0) 1875 return ch_irq; 1876 } 1877 1878 g_irq = platform_get_irq_byname_optional(pdev, "g_int"); 1879 if (g_irq < 0) { 1880 /* For backward compatibility get irq by index */ 1881 g_irq = platform_get_irq(pdev, 1); 1882 if (g_irq < 0) 1883 return g_irq; 1884 } 1885 } else { 1886 g_err_irq = platform_get_irq_byname(pdev, "g_err"); 1887 if (g_err_irq < 0) 1888 return g_err_irq; 1889 1890 g_recc_irq = platform_get_irq_byname(pdev, "g_recc"); 1891 if (g_recc_irq < 0) 1892 return g_recc_irq; 1893 } 1894 1895 /* Global controller context */ 1896 gpriv = devm_kzalloc(dev, sizeof(*gpriv), GFP_KERNEL); 1897 if (!gpriv) 1898 return -ENOMEM; 1899 1900 gpriv->pdev = pdev; 1901 gpriv->channels_mask = channels_mask; 1902 gpriv->fdmode = fdmode; 1903 gpriv->info = info; 1904 1905 gpriv->rstc1 = devm_reset_control_get_optional_exclusive(dev, "rstp_n"); 1906 if (IS_ERR(gpriv->rstc1)) 1907 return dev_err_probe(dev, PTR_ERR(gpriv->rstc1), 1908 "failed to get rstp_n\n"); 1909 1910 gpriv->rstc2 = devm_reset_control_get_optional_exclusive(dev, "rstc_n"); 1911 if (IS_ERR(gpriv->rstc2)) 1912 return dev_err_probe(dev, PTR_ERR(gpriv->rstc2), 1913 "failed to get rstc_n\n"); 1914 1915 /* Peripheral clock */ 1916 gpriv->clkp = devm_clk_get(dev, "fck"); 1917 if (IS_ERR(gpriv->clkp)) 1918 return dev_err_probe(dev, PTR_ERR(gpriv->clkp), 1919 "cannot get peripheral clock\n"); 1920 1921 /* fCAN clock: Pick External clock. If not available fallback to 1922 * CANFD clock 1923 */ 1924 gpriv->can_clk = devm_clk_get(dev, "can_clk"); 1925 if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) { 1926 gpriv->can_clk = devm_clk_get(dev, "canfd"); 1927 if (IS_ERR(gpriv->can_clk)) 1928 return dev_err_probe(dev, PTR_ERR(gpriv->can_clk), 1929 "cannot get canfd clock\n"); 1930 1931 /* CANFD clock may be further divided within the IP */ 1932 fcan_freq = clk_get_rate(gpriv->can_clk) / info->postdiv; 1933 } else { 1934 fcan_freq = clk_get_rate(gpriv->can_clk); 1935 gpriv->extclk = true; 1936 } 1937 1938 addr = devm_platform_ioremap_resource(pdev, 0); 1939 if (IS_ERR(addr)) { 1940 err = PTR_ERR(addr); 1941 goto fail_dev; 1942 } 1943 gpriv->base = addr; 1944 1945 /* Request IRQ that's common for both channels */ 1946 if (info->shared_global_irqs) { 1947 err = devm_request_irq(dev, ch_irq, 1948 rcar_canfd_channel_interrupt, 0, 1949 "canfd.ch_int", gpriv); 1950 if (err) { 1951 dev_err(dev, "devm_request_irq %d failed: %pe\n", 1952 ch_irq, ERR_PTR(err)); 1953 goto fail_dev; 1954 } 1955 1956 err = devm_request_irq(dev, g_irq, rcar_canfd_global_interrupt, 1957 0, "canfd.g_int", gpriv); 1958 if (err) { 1959 dev_err(dev, "devm_request_irq %d failed: %pe\n", 1960 g_irq, ERR_PTR(err)); 1961 goto fail_dev; 1962 } 1963 } else { 1964 err = devm_request_irq(dev, g_recc_irq, 1965 rcar_canfd_global_receive_fifo_interrupt, 0, 1966 "canfd.g_recc", gpriv); 1967 1968 if (err) { 1969 dev_err(dev, "devm_request_irq %d failed: %pe\n", 1970 g_recc_irq, ERR_PTR(err)); 1971 goto fail_dev; 1972 } 1973 1974 err = devm_request_irq(dev, g_err_irq, 1975 rcar_canfd_global_err_interrupt, 0, 1976 "canfd.g_err", gpriv); 1977 if (err) { 1978 dev_err(dev, "devm_request_irq %d failed: %pe\n", 1979 g_err_irq, ERR_PTR(err)); 1980 goto fail_dev; 1981 } 1982 } 1983 1984 err = reset_control_reset(gpriv->rstc1); 1985 if (err) 1986 goto fail_dev; 1987 err = reset_control_reset(gpriv->rstc2); 1988 if (err) { 1989 reset_control_assert(gpriv->rstc1); 1990 goto fail_dev; 1991 } 1992 1993 /* Enable peripheral clock for register access */ 1994 err = clk_prepare_enable(gpriv->clkp); 1995 if (err) { 1996 dev_err(dev, "failed to enable peripheral clock: %pe\n", 1997 ERR_PTR(err)); 1998 goto fail_reset; 1999 } 2000 2001 err = rcar_canfd_reset_controller(gpriv); 2002 if (err) { 2003 dev_err(dev, "reset controller failed: %pe\n", ERR_PTR(err)); 2004 goto fail_clk; 2005 } 2006 2007 /* Controller in Global reset & Channel reset mode */ 2008 rcar_canfd_configure_controller(gpriv); 2009 2010 /* Configure per channel attributes */ 2011 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) { 2012 /* Configure Channel's Rx fifo */ 2013 rcar_canfd_configure_rx(gpriv, ch); 2014 2015 /* Configure Channel's Tx (Common) fifo */ 2016 rcar_canfd_configure_tx(gpriv, ch); 2017 2018 /* Configure receive rules */ 2019 rcar_canfd_configure_afl_rules(gpriv, ch, rule_entry); 2020 rule_entry += RCANFD_CHANNEL_NUMRULES; 2021 } 2022 2023 /* Configure common interrupts */ 2024 rcar_canfd_enable_global_interrupts(gpriv); 2025 2026 /* Start Global operation mode */ 2027 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK, 2028 RCANFD_GCTR_GMDC_GOPM); 2029 2030 /* Verify mode change */ 2031 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 2032 !(sts & RCANFD_GSTS_GNOPM), 2, 500000); 2033 if (err) { 2034 dev_err(dev, "global operational mode failed\n"); 2035 goto fail_mode; 2036 } 2037 2038 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) { 2039 err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq, 2040 transceivers[ch]); 2041 if (err) 2042 goto fail_channel; 2043 } 2044 2045 platform_set_drvdata(pdev, gpriv); 2046 dev_info(dev, "global operational state (%s clk, %s mode)\n", 2047 gpriv->extclk ? "ext" : "canfd", 2048 gpriv->fdmode ? "fd" : "classical"); 2049 return 0; 2050 2051 fail_channel: 2052 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) 2053 rcar_canfd_channel_remove(gpriv, ch); 2054 fail_mode: 2055 rcar_canfd_disable_global_interrupts(gpriv); 2056 fail_clk: 2057 clk_disable_unprepare(gpriv->clkp); 2058 fail_reset: 2059 reset_control_assert(gpriv->rstc1); 2060 reset_control_assert(gpriv->rstc2); 2061 fail_dev: 2062 return err; 2063 } 2064 2065 static void rcar_canfd_remove(struct platform_device *pdev) 2066 { 2067 struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev); 2068 u32 ch; 2069 2070 rcar_canfd_reset_controller(gpriv); 2071 rcar_canfd_disable_global_interrupts(gpriv); 2072 2073 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 2074 rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]); 2075 rcar_canfd_channel_remove(gpriv, ch); 2076 } 2077 2078 /* Enter global sleep mode */ 2079 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR); 2080 clk_disable_unprepare(gpriv->clkp); 2081 reset_control_assert(gpriv->rstc1); 2082 reset_control_assert(gpriv->rstc2); 2083 } 2084 2085 static int __maybe_unused rcar_canfd_suspend(struct device *dev) 2086 { 2087 return 0; 2088 } 2089 2090 static int __maybe_unused rcar_canfd_resume(struct device *dev) 2091 { 2092 return 0; 2093 } 2094 2095 static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend, 2096 rcar_canfd_resume); 2097 2098 static const __maybe_unused struct of_device_id rcar_canfd_of_table[] = { 2099 { .compatible = "renesas,r8a779a0-canfd", .data = &rcar_gen4_hw_info }, 2100 { .compatible = "renesas,rcar-gen3-canfd", .data = &rcar_gen3_hw_info }, 2101 { .compatible = "renesas,rcar-gen4-canfd", .data = &rcar_gen4_hw_info }, 2102 { .compatible = "renesas,rzg2l-canfd", .data = &rzg2l_hw_info }, 2103 { } 2104 }; 2105 2106 MODULE_DEVICE_TABLE(of, rcar_canfd_of_table); 2107 2108 static struct platform_driver rcar_canfd_driver = { 2109 .driver = { 2110 .name = RCANFD_DRV_NAME, 2111 .of_match_table = of_match_ptr(rcar_canfd_of_table), 2112 .pm = &rcar_canfd_pm_ops, 2113 }, 2114 .probe = rcar_canfd_probe, 2115 .remove = rcar_canfd_remove, 2116 }; 2117 2118 module_platform_driver(rcar_canfd_driver); 2119 2120 MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>"); 2121 MODULE_LICENSE("GPL"); 2122 MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC"); 2123 MODULE_ALIAS("platform:" RCANFD_DRV_NAME); 2124