1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Cadence NAND flash controller driver 4 * 5 * Copyright (C) 2019 Cadence 6 * 7 * Author: Piotr Sroka <piotrs@cadence.com> 8 */ 9 10 #include <linux/bitfield.h> 11 #include <linux/clk.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/dmaengine.h> 14 #include <linux/interrupt.h> 15 #include <linux/module.h> 16 #include <linux/mtd/mtd.h> 17 #include <linux/mtd/rawnand.h> 18 #include <linux/iopoll.h> 19 #include <linux/of.h> 20 #include <linux/platform_device.h> 21 #include <linux/property.h> 22 #include <linux/slab.h> 23 24 /* 25 * HPNFC can work in 3 modes: 26 * - PIO - can work in master or slave DMA 27 * - CDMA - needs Master DMA for accessing command descriptors. 28 * - Generic mode - can use only slave DMA. 29 * CDMA and PIO modes can be used to execute only base commands. 30 * Generic mode can be used to execute any command 31 * on NAND flash memory. Driver uses CDMA mode for 32 * block erasing, page reading, page programing. 33 * Generic mode is used for executing rest of commands. 34 */ 35 36 #define MAX_ADDRESS_CYC 6 37 #define MAX_ERASE_ADDRESS_CYC 3 38 #define MAX_DATA_SIZE 0xFFFC 39 #define DMA_DATA_SIZE_ALIGN 8 40 41 /* Register definition. */ 42 /* 43 * Command register 0. 44 * Writing data to this register will initiate a new transaction 45 * of the NF controller. 46 */ 47 #define CMD_REG0 0x0000 48 /* Command type field mask. */ 49 #define CMD_REG0_CT GENMASK(31, 30) 50 /* Command type CDMA. */ 51 #define CMD_REG0_CT_CDMA 0uL 52 /* Command type generic. */ 53 #define CMD_REG0_CT_GEN 3uL 54 /* Command thread number field mask. */ 55 #define CMD_REG0_TN GENMASK(27, 24) 56 57 /* Command register 2. */ 58 #define CMD_REG2 0x0008 59 /* Command register 3. */ 60 #define CMD_REG3 0x000C 61 /* Pointer register to select which thread status will be selected. */ 62 #define CMD_STATUS_PTR 0x0010 63 /* Command status register for selected thread. */ 64 #define CMD_STATUS 0x0014 65 66 /* Interrupt status register. */ 67 #define INTR_STATUS 0x0110 68 #define INTR_STATUS_SDMA_ERR BIT(22) 69 #define INTR_STATUS_SDMA_TRIGG BIT(21) 70 #define INTR_STATUS_UNSUPP_CMD BIT(19) 71 #define INTR_STATUS_DDMA_TERR BIT(18) 72 #define INTR_STATUS_CDMA_TERR BIT(17) 73 #define INTR_STATUS_CDMA_IDL BIT(16) 74 75 /* Interrupt enable register. */ 76 #define INTR_ENABLE 0x0114 77 #define INTR_ENABLE_INTR_EN BIT(31) 78 #define INTR_ENABLE_SDMA_ERR_EN BIT(22) 79 #define INTR_ENABLE_SDMA_TRIGG_EN BIT(21) 80 #define INTR_ENABLE_UNSUPP_CMD_EN BIT(19) 81 #define INTR_ENABLE_DDMA_TERR_EN BIT(18) 82 #define INTR_ENABLE_CDMA_TERR_EN BIT(17) 83 #define INTR_ENABLE_CDMA_IDLE_EN BIT(16) 84 85 /* Controller internal state. */ 86 #define CTRL_STATUS 0x0118 87 #define CTRL_STATUS_INIT_COMP BIT(9) 88 #define CTRL_STATUS_CTRL_BUSY BIT(8) 89 90 /* Command Engine threads state. */ 91 #define TRD_STATUS 0x0120 92 93 /* Command Engine interrupt thread error status. */ 94 #define TRD_ERR_INT_STATUS 0x0128 95 /* Command Engine interrupt thread error enable. */ 96 #define TRD_ERR_INT_STATUS_EN 0x0130 97 /* Command Engine interrupt thread complete status. */ 98 #define TRD_COMP_INT_STATUS 0x0138 99 100 /* 101 * Transfer config 0 register. 102 * Configures data transfer parameters. 103 */ 104 #define TRAN_CFG_0 0x0400 105 /* Offset value from the beginning of the page. */ 106 #define TRAN_CFG_0_OFFSET GENMASK(31, 16) 107 /* Numbers of sectors to transfer within singlNF device's page. */ 108 #define TRAN_CFG_0_SEC_CNT GENMASK(7, 0) 109 110 /* 111 * Transfer config 1 register. 112 * Configures data transfer parameters. 113 */ 114 #define TRAN_CFG_1 0x0404 115 /* Size of last data sector. */ 116 #define TRAN_CFG_1_LAST_SEC_SIZE GENMASK(31, 16) 117 /* Size of not-last data sector. */ 118 #define TRAN_CFG_1_SECTOR_SIZE GENMASK(15, 0) 119 120 /* ECC engine configuration register 0. */ 121 #define ECC_CONFIG_0 0x0428 122 /* Correction strength. */ 123 #define ECC_CONFIG_0_CORR_STR GENMASK(10, 8) 124 /* Enable erased pages detection mechanism. */ 125 #define ECC_CONFIG_0_ERASE_DET_EN BIT(1) 126 /* Enable controller ECC check bits generation and correction. */ 127 #define ECC_CONFIG_0_ECC_EN BIT(0) 128 129 /* ECC engine configuration register 1. */ 130 #define ECC_CONFIG_1 0x042C 131 132 /* Multiplane settings register. */ 133 #define MULTIPLANE_CFG 0x0434 134 /* Cache operation settings. */ 135 #define CACHE_CFG 0x0438 136 137 /* DMA settings register. */ 138 #define DMA_SETINGS 0x043C 139 /* Enable SDMA error report on access unprepared slave DMA interface. */ 140 #define DMA_SETINGS_SDMA_ERR_RSP BIT(17) 141 142 /* Transferred data block size for the slave DMA module. */ 143 #define SDMA_SIZE 0x0440 144 145 /* Thread number associated with transferred data block 146 * for the slave DMA module. 147 */ 148 #define SDMA_TRD_NUM 0x0444 149 /* Thread number mask. */ 150 #define SDMA_TRD_NUM_SDMA_TRD GENMASK(2, 0) 151 152 #define CONTROL_DATA_CTRL 0x0494 153 /* Thread number mask. */ 154 #define CONTROL_DATA_CTRL_SIZE GENMASK(15, 0) 155 156 #define CTRL_VERSION 0x800 157 #define CTRL_VERSION_REV GENMASK(7, 0) 158 159 /* Available hardware features of the controller. */ 160 #define CTRL_FEATURES 0x804 161 /* Support for NV-DDR2/3 work mode. */ 162 #define CTRL_FEATURES_NVDDR_2_3 BIT(28) 163 /* Support for NV-DDR work mode. */ 164 #define CTRL_FEATURES_NVDDR BIT(27) 165 /* Support for asynchronous work mode. */ 166 #define CTRL_FEATURES_ASYNC BIT(26) 167 /* Support for asynchronous work mode. */ 168 #define CTRL_FEATURES_N_BANKS GENMASK(25, 24) 169 /* Slave and Master DMA data width. */ 170 #define CTRL_FEATURES_DMA_DWITH64 BIT(21) 171 /* Availability of Control Data feature.*/ 172 #define CTRL_FEATURES_CONTROL_DATA BIT(10) 173 174 /* BCH Engine identification register 0 - correction strengths. */ 175 #define BCH_CFG_0 0x838 176 #define BCH_CFG_0_CORR_CAP_0 GENMASK(7, 0) 177 #define BCH_CFG_0_CORR_CAP_1 GENMASK(15, 8) 178 #define BCH_CFG_0_CORR_CAP_2 GENMASK(23, 16) 179 #define BCH_CFG_0_CORR_CAP_3 GENMASK(31, 24) 180 181 /* BCH Engine identification register 1 - correction strengths. */ 182 #define BCH_CFG_1 0x83C 183 #define BCH_CFG_1_CORR_CAP_4 GENMASK(7, 0) 184 #define BCH_CFG_1_CORR_CAP_5 GENMASK(15, 8) 185 #define BCH_CFG_1_CORR_CAP_6 GENMASK(23, 16) 186 #define BCH_CFG_1_CORR_CAP_7 GENMASK(31, 24) 187 188 /* BCH Engine identification register 2 - sector sizes. */ 189 #define BCH_CFG_2 0x840 190 #define BCH_CFG_2_SECT_0 GENMASK(15, 0) 191 #define BCH_CFG_2_SECT_1 GENMASK(31, 16) 192 193 /* BCH Engine identification register 3. */ 194 #define BCH_CFG_3 0x844 195 #define BCH_CFG_3_METADATA_SIZE GENMASK(23, 16) 196 197 /* Ready/Busy# line status. */ 198 #define RBN_SETINGS 0x1004 199 200 /* Common settings. */ 201 #define COMMON_SET 0x1008 202 /* 16 bit device connected to the NAND Flash interface. */ 203 #define COMMON_SET_DEVICE_16BIT BIT(8) 204 205 /* Skip_bytes registers. */ 206 #define SKIP_BYTES_CONF 0x100C 207 #define SKIP_BYTES_MARKER_VALUE GENMASK(31, 16) 208 #define SKIP_BYTES_NUM_OF_BYTES GENMASK(7, 0) 209 210 #define SKIP_BYTES_OFFSET 0x1010 211 #define SKIP_BYTES_OFFSET_VALUE GENMASK(23, 0) 212 213 /* Timings configuration. */ 214 #define ASYNC_TOGGLE_TIMINGS 0x101c 215 #define ASYNC_TOGGLE_TIMINGS_TRH GENMASK(28, 24) 216 #define ASYNC_TOGGLE_TIMINGS_TRP GENMASK(20, 16) 217 #define ASYNC_TOGGLE_TIMINGS_TWH GENMASK(12, 8) 218 #define ASYNC_TOGGLE_TIMINGS_TWP GENMASK(4, 0) 219 220 #define TIMINGS0 0x1024 221 #define TIMINGS0_TADL GENMASK(31, 24) 222 #define TIMINGS0_TCCS GENMASK(23, 16) 223 #define TIMINGS0_TWHR GENMASK(15, 8) 224 #define TIMINGS0_TRHW GENMASK(7, 0) 225 226 #define TIMINGS1 0x1028 227 #define TIMINGS1_TRHZ GENMASK(31, 24) 228 #define TIMINGS1_TWB GENMASK(23, 16) 229 #define TIMINGS1_TVDLY GENMASK(7, 0) 230 231 #define TIMINGS2 0x102c 232 #define TIMINGS2_TFEAT GENMASK(25, 16) 233 #define TIMINGS2_CS_HOLD_TIME GENMASK(13, 8) 234 #define TIMINGS2_CS_SETUP_TIME GENMASK(5, 0) 235 236 /* Configuration of the resynchronization of slave DLL of PHY. */ 237 #define DLL_PHY_CTRL 0x1034 238 #define DLL_PHY_CTRL_DLL_RST_N BIT(24) 239 #define DLL_PHY_CTRL_EXTENDED_WR_MODE BIT(17) 240 #define DLL_PHY_CTRL_EXTENDED_RD_MODE BIT(16) 241 #define DLL_PHY_CTRL_RS_HIGH_WAIT_CNT GENMASK(11, 8) 242 #define DLL_PHY_CTRL_RS_IDLE_CNT GENMASK(7, 0) 243 244 /* Register controlling DQ related timing. */ 245 #define PHY_DQ_TIMING 0x2000 246 /* Register controlling DSQ related timing. */ 247 #define PHY_DQS_TIMING 0x2004 248 #define PHY_DQS_TIMING_DQS_SEL_OE_END GENMASK(3, 0) 249 #define PHY_DQS_TIMING_PHONY_DQS_SEL BIT(16) 250 #define PHY_DQS_TIMING_USE_PHONY_DQS BIT(20) 251 252 /* Register controlling the gate and loopback control related timing. */ 253 #define PHY_GATE_LPBK_CTRL 0x2008 254 #define PHY_GATE_LPBK_CTRL_RDS GENMASK(24, 19) 255 256 /* Register holds the control for the master DLL logic. */ 257 #define PHY_DLL_MASTER_CTRL 0x200C 258 #define PHY_DLL_MASTER_CTRL_BYPASS_MODE BIT(23) 259 260 /* Register holds the control for the slave DLL logic. */ 261 #define PHY_DLL_SLAVE_CTRL 0x2010 262 263 /* This register handles the global control settings for the PHY. */ 264 #define PHY_CTRL 0x2080 265 #define PHY_CTRL_SDR_DQS BIT(14) 266 #define PHY_CTRL_PHONY_DQS GENMASK(9, 4) 267 268 /* 269 * This register handles the global control settings 270 * for the termination selects for reads. 271 */ 272 #define PHY_TSEL 0x2084 273 274 /* Generic command layout. */ 275 #define GCMD_LAY_CS GENMASK_ULL(11, 8) 276 /* 277 * This bit informs the minicotroller if it has to wait for tWB 278 * after sending the last CMD/ADDR/DATA in the sequence. 279 */ 280 #define GCMD_LAY_TWB BIT_ULL(6) 281 /* Type of generic instruction. */ 282 #define GCMD_LAY_INSTR GENMASK_ULL(5, 0) 283 284 /* Generic CMD sequence type. */ 285 #define GCMD_LAY_INSTR_CMD 0 286 /* Generic ADDR sequence type. */ 287 #define GCMD_LAY_INSTR_ADDR 1 288 /* Generic data transfer sequence type. */ 289 #define GCMD_LAY_INSTR_DATA 2 290 291 /* Input part of generic command type of input is command. */ 292 #define GCMD_LAY_INPUT_CMD GENMASK_ULL(23, 16) 293 294 /* Generic command address sequence - address fields. */ 295 #define GCMD_LAY_INPUT_ADDR GENMASK_ULL(63, 16) 296 /* Generic command address sequence - address size. */ 297 #define GCMD_LAY_INPUT_ADDR_SIZE GENMASK_ULL(13, 11) 298 299 /* Transfer direction field of generic command data sequence. */ 300 #define GCMD_DIR BIT_ULL(11) 301 /* Read transfer direction of generic command data sequence. */ 302 #define GCMD_DIR_READ 0 303 /* Write transfer direction of generic command data sequence. */ 304 #define GCMD_DIR_WRITE 1 305 306 /* ECC enabled flag of generic command data sequence - ECC enabled. */ 307 #define GCMD_ECC_EN BIT_ULL(12) 308 /* Generic command data sequence - sector size. */ 309 #define GCMD_SECT_SIZE GENMASK_ULL(31, 16) 310 /* Generic command data sequence - sector count. */ 311 #define GCMD_SECT_CNT GENMASK_ULL(39, 32) 312 /* Generic command data sequence - last sector size. */ 313 #define GCMD_LAST_SIZE GENMASK_ULL(55, 40) 314 315 /* CDMA descriptor fields. */ 316 /* Erase command type of CDMA descriptor. */ 317 #define CDMA_CT_ERASE 0x1000 318 /* Program page command type of CDMA descriptor. */ 319 #define CDMA_CT_WR 0x2100 320 /* Read page command type of CDMA descriptor. */ 321 #define CDMA_CT_RD 0x2200 322 323 /* Flash pointer memory shift. */ 324 #define CDMA_CFPTR_MEM_SHIFT 24 325 /* Flash pointer memory mask. */ 326 #define CDMA_CFPTR_MEM GENMASK(26, 24) 327 328 /* 329 * Command DMA descriptor flags. If set causes issue interrupt after 330 * the completion of descriptor processing. 331 */ 332 #define CDMA_CF_INT BIT(8) 333 /* 334 * Command DMA descriptor flags - the next descriptor 335 * address field is valid and descriptor processing should continue. 336 */ 337 #define CDMA_CF_CONT BIT(9) 338 /* DMA master flag of command DMA descriptor. */ 339 #define CDMA_CF_DMA_MASTER BIT(10) 340 341 /* Operation complete status of command descriptor. */ 342 #define CDMA_CS_COMP BIT(15) 343 /* Operation complete status of command descriptor. */ 344 /* Command descriptor status - operation fail. */ 345 #define CDMA_CS_FAIL BIT(14) 346 /* Command descriptor status - page erased. */ 347 #define CDMA_CS_ERP BIT(11) 348 /* Command descriptor status - timeout occurred. */ 349 #define CDMA_CS_TOUT BIT(10) 350 /* 351 * Maximum amount of correction applied to one ECC sector. 352 * It is part of command descriptor status. 353 */ 354 #define CDMA_CS_MAXERR GENMASK(9, 2) 355 /* Command descriptor status - uncorrectable ECC error. */ 356 #define CDMA_CS_UNCE BIT(1) 357 /* Command descriptor status - descriptor error. */ 358 #define CDMA_CS_ERR BIT(0) 359 360 /* Status of operation - OK. */ 361 #define STAT_OK 0 362 /* Status of operation - FAIL. */ 363 #define STAT_FAIL 2 364 /* Status of operation - uncorrectable ECC error. */ 365 #define STAT_ECC_UNCORR 3 366 /* Status of operation - page erased. */ 367 #define STAT_ERASED 5 368 /* Status of operation - correctable ECC error. */ 369 #define STAT_ECC_CORR 6 370 /* Status of operation - unsuspected state. */ 371 #define STAT_UNKNOWN 7 372 /* Status of operation - operation is not completed yet. */ 373 #define STAT_BUSY 0xFF 374 375 #define BCH_MAX_NUM_CORR_CAPS 8 376 #define BCH_MAX_NUM_SECTOR_SIZES 2 377 378 struct cadence_nand_timings { 379 u32 async_toggle_timings; 380 u32 timings0; 381 u32 timings1; 382 u32 timings2; 383 u32 dll_phy_ctrl; 384 u32 phy_ctrl; 385 u32 phy_dqs_timing; 386 u32 phy_gate_lpbk_ctrl; 387 }; 388 389 /* Command DMA descriptor. */ 390 struct cadence_nand_cdma_desc { 391 /* Next descriptor address. */ 392 u64 next_pointer; 393 394 /* Flash address is a 32-bit address comprising of BANK and ROW ADDR. */ 395 u32 flash_pointer; 396 /*field appears in HPNFC version 13*/ 397 u16 bank; 398 u16 rsvd0; 399 400 /* Operation the controller needs to perform. */ 401 u16 command_type; 402 u16 rsvd1; 403 /* Flags for operation of this command. */ 404 u16 command_flags; 405 u16 rsvd2; 406 407 /* System/host memory address required for data DMA commands. */ 408 u64 memory_pointer; 409 410 /* Status of operation. */ 411 u32 status; 412 u32 rsvd3; 413 414 /* Address pointer to sync buffer location. */ 415 u64 sync_flag_pointer; 416 417 /* Controls the buffer sync mechanism. */ 418 u32 sync_arguments; 419 u32 rsvd4; 420 421 /* Control data pointer. */ 422 u64 ctrl_data_ptr; 423 }; 424 425 /* Interrupt status. */ 426 struct cadence_nand_irq_status { 427 /* Thread operation complete status. */ 428 u32 trd_status; 429 /* Thread operation error. */ 430 u32 trd_error; 431 /* Controller status. */ 432 u32 status; 433 }; 434 435 /* Cadence NAND flash controller capabilities get from driver data. */ 436 struct cadence_nand_dt_devdata { 437 /* Skew value of the output signals of the NAND Flash interface. */ 438 u32 if_skew; 439 /* It informs if slave DMA interface is connected to DMA engine. */ 440 unsigned int has_dma:1; 441 }; 442 443 /* Cadence NAND flash controller capabilities read from registers. */ 444 struct cdns_nand_caps { 445 /* Maximum number of banks supported by hardware. */ 446 u8 max_banks; 447 /* Slave and Master DMA data width in bytes (4 or 8). */ 448 u8 data_dma_width; 449 /* Control Data feature supported. */ 450 bool data_control_supp; 451 /* Is PHY type DLL. */ 452 bool is_phy_type_dll; 453 }; 454 455 struct cdns_nand_ctrl { 456 struct device *dev; 457 struct nand_controller controller; 458 struct cadence_nand_cdma_desc *cdma_desc; 459 /* IP capability. */ 460 const struct cadence_nand_dt_devdata *caps1; 461 struct cdns_nand_caps caps2; 462 u8 ctrl_rev; 463 dma_addr_t dma_cdma_desc; 464 u8 *buf; 465 u32 buf_size; 466 u8 curr_corr_str_idx; 467 468 /* Register interface. */ 469 void __iomem *reg; 470 471 struct { 472 void __iomem *virt; 473 dma_addr_t dma; 474 dma_addr_t iova_dma; 475 u32 size; 476 } io; 477 478 int irq; 479 /* Interrupts that have happened. */ 480 struct cadence_nand_irq_status irq_status; 481 /* Interrupts we are waiting for. */ 482 struct cadence_nand_irq_status irq_mask; 483 struct completion complete; 484 /* Protect irq_mask and irq_status. */ 485 spinlock_t irq_lock; 486 487 int ecc_strengths[BCH_MAX_NUM_CORR_CAPS]; 488 struct nand_ecc_step_info ecc_stepinfos[BCH_MAX_NUM_SECTOR_SIZES]; 489 struct nand_ecc_caps ecc_caps; 490 491 int curr_trans_type; 492 493 struct dma_chan *dmac; 494 495 u32 nf_clk_rate; 496 /* 497 * Estimated Board delay. The value includes the total 498 * round trip delay for the signals and is used for deciding on values 499 * associated with data read capture. 500 */ 501 u32 board_delay; 502 503 struct nand_chip *selected_chip; 504 505 unsigned long assigned_cs; 506 struct list_head chips; 507 u8 bch_metadata_size; 508 }; 509 510 struct cdns_nand_chip { 511 struct cadence_nand_timings timings; 512 struct nand_chip chip; 513 u8 nsels; 514 struct list_head node; 515 516 /* 517 * part of oob area of NAND flash memory page. 518 * This part is available for user to read or write. 519 */ 520 u32 avail_oob_size; 521 522 /* Sector size. There are few sectors per mtd->writesize */ 523 u32 sector_size; 524 u32 sector_count; 525 526 /* Offset of BBM. */ 527 u8 bbm_offs; 528 /* Number of bytes reserved for BBM. */ 529 u8 bbm_len; 530 /* ECC strength index. */ 531 u8 corr_str_idx; 532 533 u8 cs[] __counted_by(nsels); 534 }; 535 536 static inline struct 537 cdns_nand_chip *to_cdns_nand_chip(struct nand_chip *chip) 538 { 539 return container_of(chip, struct cdns_nand_chip, chip); 540 } 541 542 static inline struct 543 cdns_nand_ctrl *to_cdns_nand_ctrl(struct nand_controller *controller) 544 { 545 return container_of(controller, struct cdns_nand_ctrl, controller); 546 } 547 548 static bool 549 cadence_nand_dma_buf_ok(struct cdns_nand_ctrl *cdns_ctrl, const void *buf, 550 u32 buf_len) 551 { 552 u8 data_dma_width = cdns_ctrl->caps2.data_dma_width; 553 554 return buf && virt_addr_valid(buf) && 555 likely(IS_ALIGNED((uintptr_t)buf, data_dma_width)) && 556 likely(IS_ALIGNED(buf_len, DMA_DATA_SIZE_ALIGN)); 557 } 558 559 static int cadence_nand_wait_for_value(struct cdns_nand_ctrl *cdns_ctrl, 560 u32 reg_offset, u32 timeout_us, 561 u32 mask, bool is_clear) 562 { 563 u32 val; 564 int ret; 565 566 ret = readl_relaxed_poll_timeout(cdns_ctrl->reg + reg_offset, 567 val, !(val & mask) == is_clear, 568 10, timeout_us); 569 570 if (ret < 0) { 571 dev_err(cdns_ctrl->dev, 572 "Timeout while waiting for reg %x with mask %x is clear %d\n", 573 reg_offset, mask, is_clear); 574 } 575 576 return ret; 577 } 578 579 static int cadence_nand_set_ecc_enable(struct cdns_nand_ctrl *cdns_ctrl, 580 bool enable) 581 { 582 u32 reg; 583 584 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 585 1000000, 586 CTRL_STATUS_CTRL_BUSY, true)) 587 return -ETIMEDOUT; 588 589 reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0); 590 591 if (enable) 592 reg |= ECC_CONFIG_0_ECC_EN; 593 else 594 reg &= ~ECC_CONFIG_0_ECC_EN; 595 596 writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0); 597 598 return 0; 599 } 600 601 static void cadence_nand_set_ecc_strength(struct cdns_nand_ctrl *cdns_ctrl, 602 u8 corr_str_idx) 603 { 604 u32 reg; 605 606 if (cdns_ctrl->curr_corr_str_idx == corr_str_idx) 607 return; 608 609 reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0); 610 reg &= ~ECC_CONFIG_0_CORR_STR; 611 reg |= FIELD_PREP(ECC_CONFIG_0_CORR_STR, corr_str_idx); 612 writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0); 613 614 cdns_ctrl->curr_corr_str_idx = corr_str_idx; 615 } 616 617 static int cadence_nand_get_ecc_strength_idx(struct cdns_nand_ctrl *cdns_ctrl, 618 u8 strength) 619 { 620 int i, corr_str_idx = -1; 621 622 for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) { 623 if (cdns_ctrl->ecc_strengths[i] == strength) { 624 corr_str_idx = i; 625 break; 626 } 627 } 628 629 return corr_str_idx; 630 } 631 632 static int cadence_nand_set_skip_marker_val(struct cdns_nand_ctrl *cdns_ctrl, 633 u16 marker_value) 634 { 635 u32 reg; 636 637 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 638 1000000, 639 CTRL_STATUS_CTRL_BUSY, true)) 640 return -ETIMEDOUT; 641 642 reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF); 643 reg &= ~SKIP_BYTES_MARKER_VALUE; 644 reg |= FIELD_PREP(SKIP_BYTES_MARKER_VALUE, 645 marker_value); 646 647 writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF); 648 649 return 0; 650 } 651 652 static int cadence_nand_set_skip_bytes_conf(struct cdns_nand_ctrl *cdns_ctrl, 653 u8 num_of_bytes, 654 u32 offset_value, 655 int enable) 656 { 657 u32 reg, skip_bytes_offset; 658 659 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 660 1000000, 661 CTRL_STATUS_CTRL_BUSY, true)) 662 return -ETIMEDOUT; 663 664 if (!enable) { 665 num_of_bytes = 0; 666 offset_value = 0; 667 } 668 669 reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF); 670 reg &= ~SKIP_BYTES_NUM_OF_BYTES; 671 reg |= FIELD_PREP(SKIP_BYTES_NUM_OF_BYTES, 672 num_of_bytes); 673 skip_bytes_offset = FIELD_PREP(SKIP_BYTES_OFFSET_VALUE, 674 offset_value); 675 676 writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF); 677 writel_relaxed(skip_bytes_offset, cdns_ctrl->reg + SKIP_BYTES_OFFSET); 678 679 return 0; 680 } 681 682 /* Functions enables/disables hardware detection of erased data */ 683 static void cadence_nand_set_erase_detection(struct cdns_nand_ctrl *cdns_ctrl, 684 bool enable, 685 u8 bitflips_threshold) 686 { 687 u32 reg; 688 689 reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0); 690 691 if (enable) 692 reg |= ECC_CONFIG_0_ERASE_DET_EN; 693 else 694 reg &= ~ECC_CONFIG_0_ERASE_DET_EN; 695 696 writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0); 697 writel_relaxed(bitflips_threshold, cdns_ctrl->reg + ECC_CONFIG_1); 698 } 699 700 static int cadence_nand_set_access_width16(struct cdns_nand_ctrl *cdns_ctrl, 701 bool bit_bus16) 702 { 703 u32 reg; 704 705 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 706 1000000, 707 CTRL_STATUS_CTRL_BUSY, true)) 708 return -ETIMEDOUT; 709 710 reg = readl_relaxed(cdns_ctrl->reg + COMMON_SET); 711 712 if (!bit_bus16) 713 reg &= ~COMMON_SET_DEVICE_16BIT; 714 else 715 reg |= COMMON_SET_DEVICE_16BIT; 716 writel_relaxed(reg, cdns_ctrl->reg + COMMON_SET); 717 718 return 0; 719 } 720 721 static void 722 cadence_nand_clear_interrupt(struct cdns_nand_ctrl *cdns_ctrl, 723 struct cadence_nand_irq_status *irq_status) 724 { 725 writel_relaxed(irq_status->status, cdns_ctrl->reg + INTR_STATUS); 726 writel_relaxed(irq_status->trd_status, 727 cdns_ctrl->reg + TRD_COMP_INT_STATUS); 728 writel_relaxed(irq_status->trd_error, 729 cdns_ctrl->reg + TRD_ERR_INT_STATUS); 730 } 731 732 static void 733 cadence_nand_read_int_status(struct cdns_nand_ctrl *cdns_ctrl, 734 struct cadence_nand_irq_status *irq_status) 735 { 736 irq_status->status = readl_relaxed(cdns_ctrl->reg + INTR_STATUS); 737 irq_status->trd_status = readl_relaxed(cdns_ctrl->reg 738 + TRD_COMP_INT_STATUS); 739 irq_status->trd_error = readl_relaxed(cdns_ctrl->reg 740 + TRD_ERR_INT_STATUS); 741 } 742 743 static u32 irq_detected(struct cdns_nand_ctrl *cdns_ctrl, 744 struct cadence_nand_irq_status *irq_status) 745 { 746 cadence_nand_read_int_status(cdns_ctrl, irq_status); 747 748 return irq_status->status || irq_status->trd_status || 749 irq_status->trd_error; 750 } 751 752 static void cadence_nand_reset_irq(struct cdns_nand_ctrl *cdns_ctrl) 753 { 754 unsigned long flags; 755 756 spin_lock_irqsave(&cdns_ctrl->irq_lock, flags); 757 memset(&cdns_ctrl->irq_status, 0, sizeof(cdns_ctrl->irq_status)); 758 memset(&cdns_ctrl->irq_mask, 0, sizeof(cdns_ctrl->irq_mask)); 759 spin_unlock_irqrestore(&cdns_ctrl->irq_lock, flags); 760 } 761 762 /* 763 * This is the interrupt service routine. It handles all interrupts 764 * sent to this device. 765 */ 766 static irqreturn_t cadence_nand_isr(int irq, void *dev_id) 767 { 768 struct cdns_nand_ctrl *cdns_ctrl = dev_id; 769 struct cadence_nand_irq_status irq_status; 770 irqreturn_t result = IRQ_NONE; 771 772 spin_lock(&cdns_ctrl->irq_lock); 773 774 if (irq_detected(cdns_ctrl, &irq_status)) { 775 /* Handle interrupt. */ 776 /* First acknowledge it. */ 777 cadence_nand_clear_interrupt(cdns_ctrl, &irq_status); 778 /* Status in the device context for someone to read. */ 779 cdns_ctrl->irq_status.status |= irq_status.status; 780 cdns_ctrl->irq_status.trd_status |= irq_status.trd_status; 781 cdns_ctrl->irq_status.trd_error |= irq_status.trd_error; 782 /* Notify anyone who cares that it happened. */ 783 complete(&cdns_ctrl->complete); 784 /* Tell the OS that we've handled this. */ 785 result = IRQ_HANDLED; 786 } 787 spin_unlock(&cdns_ctrl->irq_lock); 788 789 return result; 790 } 791 792 static void cadence_nand_set_irq_mask(struct cdns_nand_ctrl *cdns_ctrl, 793 struct cadence_nand_irq_status *irq_mask) 794 { 795 writel_relaxed(INTR_ENABLE_INTR_EN | irq_mask->status, 796 cdns_ctrl->reg + INTR_ENABLE); 797 798 writel_relaxed(irq_mask->trd_error, 799 cdns_ctrl->reg + TRD_ERR_INT_STATUS_EN); 800 } 801 802 static void 803 cadence_nand_wait_for_irq(struct cdns_nand_ctrl *cdns_ctrl, 804 struct cadence_nand_irq_status *irq_mask, 805 struct cadence_nand_irq_status *irq_status) 806 { 807 unsigned long timeout = msecs_to_jiffies(10000); 808 unsigned long time_left; 809 810 time_left = wait_for_completion_timeout(&cdns_ctrl->complete, 811 timeout); 812 813 *irq_status = cdns_ctrl->irq_status; 814 if (time_left == 0) { 815 /* Timeout error. */ 816 dev_err(cdns_ctrl->dev, "timeout occurred:\n"); 817 dev_err(cdns_ctrl->dev, "\tstatus = 0x%x, mask = 0x%x\n", 818 irq_status->status, irq_mask->status); 819 dev_err(cdns_ctrl->dev, 820 "\ttrd_status = 0x%x, trd_status mask = 0x%x\n", 821 irq_status->trd_status, irq_mask->trd_status); 822 dev_err(cdns_ctrl->dev, 823 "\t trd_error = 0x%x, trd_error mask = 0x%x\n", 824 irq_status->trd_error, irq_mask->trd_error); 825 } 826 } 827 828 /* Execute generic command on NAND controller. */ 829 static int cadence_nand_generic_cmd_send(struct cdns_nand_ctrl *cdns_ctrl, 830 u8 chip_nr, 831 u64 mini_ctrl_cmd) 832 { 833 u32 mini_ctrl_cmd_l, mini_ctrl_cmd_h, reg; 834 835 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_CS, chip_nr); 836 mini_ctrl_cmd_l = mini_ctrl_cmd & 0xFFFFFFFF; 837 mini_ctrl_cmd_h = mini_ctrl_cmd >> 32; 838 839 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 840 1000000, 841 CTRL_STATUS_CTRL_BUSY, true)) 842 return -ETIMEDOUT; 843 844 cadence_nand_reset_irq(cdns_ctrl); 845 846 writel_relaxed(mini_ctrl_cmd_l, cdns_ctrl->reg + CMD_REG2); 847 writel_relaxed(mini_ctrl_cmd_h, cdns_ctrl->reg + CMD_REG3); 848 849 /* Select generic command. */ 850 reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_GEN); 851 /* Thread number. */ 852 reg |= FIELD_PREP(CMD_REG0_TN, 0); 853 854 /* Issue command. */ 855 writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0); 856 857 return 0; 858 } 859 860 /* Wait for data on slave DMA interface. */ 861 static int cadence_nand_wait_on_sdma(struct cdns_nand_ctrl *cdns_ctrl, 862 u8 *out_sdma_trd, 863 u32 *out_sdma_size) 864 { 865 struct cadence_nand_irq_status irq_mask, irq_status; 866 867 irq_mask.trd_status = 0; 868 irq_mask.trd_error = 0; 869 irq_mask.status = INTR_STATUS_SDMA_TRIGG 870 | INTR_STATUS_SDMA_ERR 871 | INTR_STATUS_UNSUPP_CMD; 872 873 cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask); 874 cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status); 875 if (irq_status.status == 0) { 876 dev_err(cdns_ctrl->dev, "Timeout while waiting for SDMA\n"); 877 return -ETIMEDOUT; 878 } 879 880 if (irq_status.status & INTR_STATUS_SDMA_TRIGG) { 881 *out_sdma_size = readl_relaxed(cdns_ctrl->reg + SDMA_SIZE); 882 *out_sdma_trd = readl_relaxed(cdns_ctrl->reg + SDMA_TRD_NUM); 883 *out_sdma_trd = 884 FIELD_GET(SDMA_TRD_NUM_SDMA_TRD, *out_sdma_trd); 885 } else { 886 dev_err(cdns_ctrl->dev, "SDMA error - irq_status %x\n", 887 irq_status.status); 888 return -EIO; 889 } 890 891 return 0; 892 } 893 894 static void cadence_nand_get_caps(struct cdns_nand_ctrl *cdns_ctrl) 895 { 896 u32 reg; 897 898 reg = readl_relaxed(cdns_ctrl->reg + CTRL_FEATURES); 899 900 cdns_ctrl->caps2.max_banks = 1 << FIELD_GET(CTRL_FEATURES_N_BANKS, reg); 901 902 if (FIELD_GET(CTRL_FEATURES_DMA_DWITH64, reg)) 903 cdns_ctrl->caps2.data_dma_width = 8; 904 else 905 cdns_ctrl->caps2.data_dma_width = 4; 906 907 if (reg & CTRL_FEATURES_CONTROL_DATA) 908 cdns_ctrl->caps2.data_control_supp = true; 909 910 if (reg & (CTRL_FEATURES_NVDDR_2_3 911 | CTRL_FEATURES_NVDDR)) 912 cdns_ctrl->caps2.is_phy_type_dll = true; 913 } 914 915 /* Prepare CDMA descriptor. */ 916 static void 917 cadence_nand_cdma_desc_prepare(struct cdns_nand_ctrl *cdns_ctrl, 918 char nf_mem, u32 flash_ptr, dma_addr_t mem_ptr, 919 dma_addr_t ctrl_data_ptr, u16 ctype) 920 { 921 struct cadence_nand_cdma_desc *cdma_desc = cdns_ctrl->cdma_desc; 922 923 memset(cdma_desc, 0, sizeof(struct cadence_nand_cdma_desc)); 924 925 /* Set fields for one descriptor. */ 926 cdma_desc->flash_pointer = flash_ptr; 927 if (cdns_ctrl->ctrl_rev >= 13) 928 cdma_desc->bank = nf_mem; 929 else 930 cdma_desc->flash_pointer |= (nf_mem << CDMA_CFPTR_MEM_SHIFT); 931 932 cdma_desc->command_flags |= CDMA_CF_DMA_MASTER; 933 cdma_desc->command_flags |= CDMA_CF_INT; 934 935 cdma_desc->memory_pointer = mem_ptr; 936 cdma_desc->status = 0; 937 cdma_desc->sync_flag_pointer = 0; 938 cdma_desc->sync_arguments = 0; 939 940 cdma_desc->command_type = ctype; 941 cdma_desc->ctrl_data_ptr = ctrl_data_ptr; 942 } 943 944 static u8 cadence_nand_check_desc_error(struct cdns_nand_ctrl *cdns_ctrl, 945 u32 desc_status) 946 { 947 if (desc_status & CDMA_CS_ERP) 948 return STAT_ERASED; 949 950 if (desc_status & CDMA_CS_UNCE) 951 return STAT_ECC_UNCORR; 952 953 if (desc_status & CDMA_CS_ERR) { 954 dev_err(cdns_ctrl->dev, ":CDMA desc error flag detected.\n"); 955 return STAT_FAIL; 956 } 957 958 if (FIELD_GET(CDMA_CS_MAXERR, desc_status)) 959 return STAT_ECC_CORR; 960 961 return STAT_FAIL; 962 } 963 964 static int cadence_nand_cdma_finish(struct cdns_nand_ctrl *cdns_ctrl) 965 { 966 struct cadence_nand_cdma_desc *desc_ptr = cdns_ctrl->cdma_desc; 967 u8 status = STAT_BUSY; 968 969 if (desc_ptr->status & CDMA_CS_FAIL) { 970 status = cadence_nand_check_desc_error(cdns_ctrl, 971 desc_ptr->status); 972 dev_err(cdns_ctrl->dev, ":CDMA error %x\n", desc_ptr->status); 973 } else if (desc_ptr->status & CDMA_CS_COMP) { 974 /* Descriptor finished with no errors. */ 975 if (desc_ptr->command_flags & CDMA_CF_CONT) { 976 dev_info(cdns_ctrl->dev, "DMA unsupported flag is set"); 977 status = STAT_UNKNOWN; 978 } else { 979 /* Last descriptor. */ 980 status = STAT_OK; 981 } 982 } 983 984 return status; 985 } 986 987 static int cadence_nand_cdma_send(struct cdns_nand_ctrl *cdns_ctrl, 988 u8 thread) 989 { 990 u32 reg; 991 int status; 992 993 /* Wait for thread ready. */ 994 status = cadence_nand_wait_for_value(cdns_ctrl, TRD_STATUS, 995 1000000, 996 BIT(thread), true); 997 if (status) 998 return status; 999 1000 cadence_nand_reset_irq(cdns_ctrl); 1001 reinit_completion(&cdns_ctrl->complete); 1002 1003 writel_relaxed((u32)cdns_ctrl->dma_cdma_desc, 1004 cdns_ctrl->reg + CMD_REG2); 1005 writel_relaxed(0, cdns_ctrl->reg + CMD_REG3); 1006 1007 /* Select CDMA mode. */ 1008 reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_CDMA); 1009 /* Thread number. */ 1010 reg |= FIELD_PREP(CMD_REG0_TN, thread); 1011 /* Issue command. */ 1012 writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0); 1013 1014 return 0; 1015 } 1016 1017 /* Send SDMA command and wait for finish. */ 1018 static u32 1019 cadence_nand_cdma_send_and_wait(struct cdns_nand_ctrl *cdns_ctrl, 1020 u8 thread) 1021 { 1022 struct cadence_nand_irq_status irq_mask, irq_status = {0}; 1023 int status; 1024 1025 irq_mask.trd_status = BIT(thread); 1026 irq_mask.trd_error = BIT(thread); 1027 irq_mask.status = INTR_STATUS_CDMA_TERR; 1028 1029 cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask); 1030 1031 status = cadence_nand_cdma_send(cdns_ctrl, thread); 1032 if (status) 1033 return status; 1034 1035 cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status); 1036 1037 if (irq_status.status == 0 && irq_status.trd_status == 0 && 1038 irq_status.trd_error == 0) { 1039 dev_err(cdns_ctrl->dev, "CDMA command timeout\n"); 1040 return -ETIMEDOUT; 1041 } 1042 if (irq_status.status & irq_mask.status) { 1043 dev_err(cdns_ctrl->dev, "CDMA command failed\n"); 1044 return -EIO; 1045 } 1046 1047 return 0; 1048 } 1049 1050 /* 1051 * ECC size depends on configured ECC strength and on maximum supported 1052 * ECC step size. 1053 */ 1054 static int cadence_nand_calc_ecc_bytes(int max_step_size, int strength) 1055 { 1056 int nbytes = DIV_ROUND_UP(fls(8 * max_step_size) * strength, 8); 1057 1058 return ALIGN(nbytes, 2); 1059 } 1060 1061 #define CADENCE_NAND_CALC_ECC_BYTES(max_step_size) \ 1062 static int \ 1063 cadence_nand_calc_ecc_bytes_##max_step_size(int step_size, \ 1064 int strength)\ 1065 {\ 1066 return cadence_nand_calc_ecc_bytes(max_step_size, strength);\ 1067 } 1068 1069 CADENCE_NAND_CALC_ECC_BYTES(256) 1070 CADENCE_NAND_CALC_ECC_BYTES(512) 1071 CADENCE_NAND_CALC_ECC_BYTES(1024) 1072 CADENCE_NAND_CALC_ECC_BYTES(2048) 1073 CADENCE_NAND_CALC_ECC_BYTES(4096) 1074 1075 /* Function reads BCH capabilities. */ 1076 static int cadence_nand_read_bch_caps(struct cdns_nand_ctrl *cdns_ctrl) 1077 { 1078 struct nand_ecc_caps *ecc_caps = &cdns_ctrl->ecc_caps; 1079 int max_step_size = 0, nstrengths, i; 1080 u32 reg; 1081 1082 reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_3); 1083 cdns_ctrl->bch_metadata_size = FIELD_GET(BCH_CFG_3_METADATA_SIZE, reg); 1084 if (cdns_ctrl->bch_metadata_size < 4) { 1085 dev_err(cdns_ctrl->dev, 1086 "Driver needs at least 4 bytes of BCH meta data\n"); 1087 return -EIO; 1088 } 1089 1090 reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_0); 1091 cdns_ctrl->ecc_strengths[0] = FIELD_GET(BCH_CFG_0_CORR_CAP_0, reg); 1092 cdns_ctrl->ecc_strengths[1] = FIELD_GET(BCH_CFG_0_CORR_CAP_1, reg); 1093 cdns_ctrl->ecc_strengths[2] = FIELD_GET(BCH_CFG_0_CORR_CAP_2, reg); 1094 cdns_ctrl->ecc_strengths[3] = FIELD_GET(BCH_CFG_0_CORR_CAP_3, reg); 1095 1096 reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_1); 1097 cdns_ctrl->ecc_strengths[4] = FIELD_GET(BCH_CFG_1_CORR_CAP_4, reg); 1098 cdns_ctrl->ecc_strengths[5] = FIELD_GET(BCH_CFG_1_CORR_CAP_5, reg); 1099 cdns_ctrl->ecc_strengths[6] = FIELD_GET(BCH_CFG_1_CORR_CAP_6, reg); 1100 cdns_ctrl->ecc_strengths[7] = FIELD_GET(BCH_CFG_1_CORR_CAP_7, reg); 1101 1102 reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_2); 1103 cdns_ctrl->ecc_stepinfos[0].stepsize = 1104 FIELD_GET(BCH_CFG_2_SECT_0, reg); 1105 1106 cdns_ctrl->ecc_stepinfos[1].stepsize = 1107 FIELD_GET(BCH_CFG_2_SECT_1, reg); 1108 1109 nstrengths = 0; 1110 for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) { 1111 if (cdns_ctrl->ecc_strengths[i] != 0) 1112 nstrengths++; 1113 } 1114 1115 ecc_caps->nstepinfos = 0; 1116 for (i = 0; i < BCH_MAX_NUM_SECTOR_SIZES; i++) { 1117 /* ECC strengths are common for all step infos. */ 1118 cdns_ctrl->ecc_stepinfos[i].nstrengths = nstrengths; 1119 cdns_ctrl->ecc_stepinfos[i].strengths = 1120 cdns_ctrl->ecc_strengths; 1121 1122 if (cdns_ctrl->ecc_stepinfos[i].stepsize != 0) 1123 ecc_caps->nstepinfos++; 1124 1125 if (cdns_ctrl->ecc_stepinfos[i].stepsize > max_step_size) 1126 max_step_size = cdns_ctrl->ecc_stepinfos[i].stepsize; 1127 } 1128 ecc_caps->stepinfos = &cdns_ctrl->ecc_stepinfos[0]; 1129 1130 switch (max_step_size) { 1131 case 256: 1132 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_256; 1133 break; 1134 case 512: 1135 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_512; 1136 break; 1137 case 1024: 1138 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_1024; 1139 break; 1140 case 2048: 1141 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_2048; 1142 break; 1143 case 4096: 1144 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_4096; 1145 break; 1146 default: 1147 dev_err(cdns_ctrl->dev, 1148 "Unsupported sector size(ecc step size) %d\n", 1149 max_step_size); 1150 return -EIO; 1151 } 1152 1153 return 0; 1154 } 1155 1156 /* Hardware initialization. */ 1157 static int cadence_nand_hw_init(struct cdns_nand_ctrl *cdns_ctrl) 1158 { 1159 int status; 1160 u32 reg; 1161 1162 status = cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 1163 1000000, 1164 CTRL_STATUS_INIT_COMP, false); 1165 if (status) 1166 return status; 1167 1168 reg = readl_relaxed(cdns_ctrl->reg + CTRL_VERSION); 1169 cdns_ctrl->ctrl_rev = FIELD_GET(CTRL_VERSION_REV, reg); 1170 1171 dev_info(cdns_ctrl->dev, 1172 "%s: cadence nand controller version reg %x\n", 1173 __func__, reg); 1174 1175 /* Disable cache and multiplane. */ 1176 writel_relaxed(0, cdns_ctrl->reg + MULTIPLANE_CFG); 1177 writel_relaxed(0, cdns_ctrl->reg + CACHE_CFG); 1178 1179 /* Clear all interrupts. */ 1180 writel_relaxed(0xFFFFFFFF, cdns_ctrl->reg + INTR_STATUS); 1181 1182 cadence_nand_get_caps(cdns_ctrl); 1183 if (cadence_nand_read_bch_caps(cdns_ctrl)) 1184 return -EIO; 1185 1186 #ifndef CONFIG_64BIT 1187 if (cdns_ctrl->caps2.data_dma_width == 8) { 1188 dev_err(cdns_ctrl->dev, 1189 "cannot access 64-bit dma on !64-bit architectures"); 1190 return -EIO; 1191 } 1192 #endif 1193 1194 /* 1195 * Set IO width access to 8. 1196 * It is because during SW device discovering width access 1197 * is expected to be 8. 1198 */ 1199 status = cadence_nand_set_access_width16(cdns_ctrl, false); 1200 1201 return status; 1202 } 1203 1204 #define TT_MAIN_OOB_AREAS 2 1205 #define TT_RAW_PAGE 3 1206 #define TT_BBM 4 1207 #define TT_MAIN_OOB_AREA_EXT 5 1208 1209 /* Prepare size of data to transfer. */ 1210 static void 1211 cadence_nand_prepare_data_size(struct nand_chip *chip, 1212 int transfer_type) 1213 { 1214 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1215 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1216 struct mtd_info *mtd = nand_to_mtd(chip); 1217 u32 sec_size = 0, offset = 0, sec_cnt = 1; 1218 u32 last_sec_size = cdns_chip->sector_size; 1219 u32 data_ctrl_size = 0; 1220 u32 reg = 0; 1221 1222 if (cdns_ctrl->curr_trans_type == transfer_type) 1223 return; 1224 1225 switch (transfer_type) { 1226 case TT_MAIN_OOB_AREA_EXT: 1227 sec_cnt = cdns_chip->sector_count; 1228 sec_size = cdns_chip->sector_size; 1229 data_ctrl_size = cdns_chip->avail_oob_size; 1230 break; 1231 case TT_MAIN_OOB_AREAS: 1232 sec_cnt = cdns_chip->sector_count; 1233 last_sec_size = cdns_chip->sector_size 1234 + cdns_chip->avail_oob_size; 1235 sec_size = cdns_chip->sector_size; 1236 break; 1237 case TT_RAW_PAGE: 1238 last_sec_size = mtd->writesize + mtd->oobsize; 1239 break; 1240 case TT_BBM: 1241 offset = mtd->writesize + cdns_chip->bbm_offs; 1242 last_sec_size = 8; 1243 break; 1244 } 1245 1246 reg = 0; 1247 reg |= FIELD_PREP(TRAN_CFG_0_OFFSET, offset); 1248 reg |= FIELD_PREP(TRAN_CFG_0_SEC_CNT, sec_cnt); 1249 writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_0); 1250 1251 reg = 0; 1252 reg |= FIELD_PREP(TRAN_CFG_1_LAST_SEC_SIZE, last_sec_size); 1253 reg |= FIELD_PREP(TRAN_CFG_1_SECTOR_SIZE, sec_size); 1254 writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_1); 1255 1256 if (cdns_ctrl->caps2.data_control_supp) { 1257 reg = readl_relaxed(cdns_ctrl->reg + CONTROL_DATA_CTRL); 1258 reg &= ~CONTROL_DATA_CTRL_SIZE; 1259 reg |= FIELD_PREP(CONTROL_DATA_CTRL_SIZE, data_ctrl_size); 1260 writel_relaxed(reg, cdns_ctrl->reg + CONTROL_DATA_CTRL); 1261 } 1262 1263 cdns_ctrl->curr_trans_type = transfer_type; 1264 } 1265 1266 static int 1267 cadence_nand_cdma_transfer(struct cdns_nand_ctrl *cdns_ctrl, u8 chip_nr, 1268 int page, void *buf, void *ctrl_dat, u32 buf_size, 1269 u32 ctrl_dat_size, enum dma_data_direction dir, 1270 bool with_ecc) 1271 { 1272 dma_addr_t dma_buf, dma_ctrl_dat = 0; 1273 u8 thread_nr = chip_nr; 1274 int status; 1275 u16 ctype; 1276 1277 if (dir == DMA_FROM_DEVICE) 1278 ctype = CDMA_CT_RD; 1279 else 1280 ctype = CDMA_CT_WR; 1281 1282 cadence_nand_set_ecc_enable(cdns_ctrl, with_ecc); 1283 1284 dma_buf = dma_map_single(cdns_ctrl->dev, buf, buf_size, dir); 1285 if (dma_mapping_error(cdns_ctrl->dev, dma_buf)) { 1286 dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n"); 1287 return -EIO; 1288 } 1289 1290 if (ctrl_dat && ctrl_dat_size) { 1291 dma_ctrl_dat = dma_map_single(cdns_ctrl->dev, ctrl_dat, 1292 ctrl_dat_size, dir); 1293 if (dma_mapping_error(cdns_ctrl->dev, dma_ctrl_dat)) { 1294 dma_unmap_single(cdns_ctrl->dev, dma_buf, 1295 buf_size, dir); 1296 dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n"); 1297 return -EIO; 1298 } 1299 } 1300 1301 cadence_nand_cdma_desc_prepare(cdns_ctrl, chip_nr, page, 1302 dma_buf, dma_ctrl_dat, ctype); 1303 1304 status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr); 1305 1306 dma_unmap_single(cdns_ctrl->dev, dma_buf, 1307 buf_size, dir); 1308 1309 if (ctrl_dat && ctrl_dat_size) 1310 dma_unmap_single(cdns_ctrl->dev, dma_ctrl_dat, 1311 ctrl_dat_size, dir); 1312 if (status) 1313 return status; 1314 1315 return cadence_nand_cdma_finish(cdns_ctrl); 1316 } 1317 1318 static void cadence_nand_set_timings(struct cdns_nand_ctrl *cdns_ctrl, 1319 struct cadence_nand_timings *t) 1320 { 1321 writel_relaxed(t->async_toggle_timings, 1322 cdns_ctrl->reg + ASYNC_TOGGLE_TIMINGS); 1323 writel_relaxed(t->timings0, cdns_ctrl->reg + TIMINGS0); 1324 writel_relaxed(t->timings1, cdns_ctrl->reg + TIMINGS1); 1325 writel_relaxed(t->timings2, cdns_ctrl->reg + TIMINGS2); 1326 1327 if (cdns_ctrl->caps2.is_phy_type_dll) 1328 writel_relaxed(t->dll_phy_ctrl, cdns_ctrl->reg + DLL_PHY_CTRL); 1329 1330 writel_relaxed(t->phy_ctrl, cdns_ctrl->reg + PHY_CTRL); 1331 1332 if (cdns_ctrl->caps2.is_phy_type_dll) { 1333 writel_relaxed(0, cdns_ctrl->reg + PHY_TSEL); 1334 writel_relaxed(2, cdns_ctrl->reg + PHY_DQ_TIMING); 1335 writel_relaxed(t->phy_dqs_timing, 1336 cdns_ctrl->reg + PHY_DQS_TIMING); 1337 writel_relaxed(t->phy_gate_lpbk_ctrl, 1338 cdns_ctrl->reg + PHY_GATE_LPBK_CTRL); 1339 writel_relaxed(PHY_DLL_MASTER_CTRL_BYPASS_MODE, 1340 cdns_ctrl->reg + PHY_DLL_MASTER_CTRL); 1341 writel_relaxed(0, cdns_ctrl->reg + PHY_DLL_SLAVE_CTRL); 1342 } 1343 } 1344 1345 static int cadence_nand_select_target(struct nand_chip *chip) 1346 { 1347 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1348 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1349 1350 if (chip == cdns_ctrl->selected_chip) 1351 return 0; 1352 1353 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 1354 1000000, 1355 CTRL_STATUS_CTRL_BUSY, true)) 1356 return -ETIMEDOUT; 1357 1358 cadence_nand_set_timings(cdns_ctrl, &cdns_chip->timings); 1359 1360 cadence_nand_set_ecc_strength(cdns_ctrl, 1361 cdns_chip->corr_str_idx); 1362 1363 cadence_nand_set_erase_detection(cdns_ctrl, true, 1364 chip->ecc.strength); 1365 1366 cdns_ctrl->curr_trans_type = -1; 1367 cdns_ctrl->selected_chip = chip; 1368 1369 return 0; 1370 } 1371 1372 static int cadence_nand_erase(struct nand_chip *chip, u32 page) 1373 { 1374 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1375 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1376 int status; 1377 u8 thread_nr = cdns_chip->cs[chip->cur_cs]; 1378 1379 cadence_nand_cdma_desc_prepare(cdns_ctrl, 1380 cdns_chip->cs[chip->cur_cs], 1381 page, 0, 0, 1382 CDMA_CT_ERASE); 1383 status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr); 1384 if (status) { 1385 dev_err(cdns_ctrl->dev, "erase operation failed\n"); 1386 return -EIO; 1387 } 1388 1389 status = cadence_nand_cdma_finish(cdns_ctrl); 1390 if (status) 1391 return status; 1392 1393 return 0; 1394 } 1395 1396 static int cadence_nand_read_bbm(struct nand_chip *chip, int page, u8 *buf) 1397 { 1398 int status; 1399 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1400 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1401 struct mtd_info *mtd = nand_to_mtd(chip); 1402 1403 cadence_nand_prepare_data_size(chip, TT_BBM); 1404 1405 cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0); 1406 1407 /* 1408 * Read only bad block marker from offset 1409 * defined by a memory manufacturer. 1410 */ 1411 status = cadence_nand_cdma_transfer(cdns_ctrl, 1412 cdns_chip->cs[chip->cur_cs], 1413 page, cdns_ctrl->buf, NULL, 1414 mtd->oobsize, 1415 0, DMA_FROM_DEVICE, false); 1416 if (status) { 1417 dev_err(cdns_ctrl->dev, "read BBM failed\n"); 1418 return -EIO; 1419 } 1420 1421 memcpy(buf + cdns_chip->bbm_offs, cdns_ctrl->buf, cdns_chip->bbm_len); 1422 1423 return 0; 1424 } 1425 1426 static int cadence_nand_write_page(struct nand_chip *chip, 1427 const u8 *buf, int oob_required, 1428 int page) 1429 { 1430 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1431 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1432 struct mtd_info *mtd = nand_to_mtd(chip); 1433 int status; 1434 u16 marker_val = 0xFFFF; 1435 1436 status = cadence_nand_select_target(chip); 1437 if (status) 1438 return status; 1439 1440 cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len, 1441 mtd->writesize 1442 + cdns_chip->bbm_offs, 1443 1); 1444 1445 if (oob_required) { 1446 marker_val = *(u16 *)(chip->oob_poi 1447 + cdns_chip->bbm_offs); 1448 } else { 1449 /* Set oob data to 0xFF. */ 1450 memset(cdns_ctrl->buf + mtd->writesize, 0xFF, 1451 cdns_chip->avail_oob_size); 1452 } 1453 1454 cadence_nand_set_skip_marker_val(cdns_ctrl, marker_val); 1455 1456 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT); 1457 1458 if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) && 1459 cdns_ctrl->caps2.data_control_supp) { 1460 u8 *oob; 1461 1462 if (oob_required) 1463 oob = chip->oob_poi; 1464 else 1465 oob = cdns_ctrl->buf + mtd->writesize; 1466 1467 status = cadence_nand_cdma_transfer(cdns_ctrl, 1468 cdns_chip->cs[chip->cur_cs], 1469 page, (void *)buf, oob, 1470 mtd->writesize, 1471 cdns_chip->avail_oob_size, 1472 DMA_TO_DEVICE, true); 1473 if (status) { 1474 dev_err(cdns_ctrl->dev, "write page failed\n"); 1475 return -EIO; 1476 } 1477 1478 return 0; 1479 } 1480 1481 if (oob_required) { 1482 /* Transfer the data to the oob area. */ 1483 memcpy(cdns_ctrl->buf + mtd->writesize, chip->oob_poi, 1484 cdns_chip->avail_oob_size); 1485 } 1486 1487 memcpy(cdns_ctrl->buf, buf, mtd->writesize); 1488 1489 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS); 1490 1491 return cadence_nand_cdma_transfer(cdns_ctrl, 1492 cdns_chip->cs[chip->cur_cs], 1493 page, cdns_ctrl->buf, NULL, 1494 mtd->writesize 1495 + cdns_chip->avail_oob_size, 1496 0, DMA_TO_DEVICE, true); 1497 } 1498 1499 static int cadence_nand_write_oob(struct nand_chip *chip, int page) 1500 { 1501 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1502 struct mtd_info *mtd = nand_to_mtd(chip); 1503 1504 memset(cdns_ctrl->buf, 0xFF, mtd->writesize); 1505 1506 return cadence_nand_write_page(chip, cdns_ctrl->buf, 1, page); 1507 } 1508 1509 static int cadence_nand_write_page_raw(struct nand_chip *chip, 1510 const u8 *buf, int oob_required, 1511 int page) 1512 { 1513 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1514 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1515 struct mtd_info *mtd = nand_to_mtd(chip); 1516 int writesize = mtd->writesize; 1517 int oobsize = mtd->oobsize; 1518 int ecc_steps = chip->ecc.steps; 1519 int ecc_size = chip->ecc.size; 1520 int ecc_bytes = chip->ecc.bytes; 1521 void *tmp_buf = cdns_ctrl->buf; 1522 int oob_skip = cdns_chip->bbm_len; 1523 size_t size = writesize + oobsize; 1524 int i, pos, len; 1525 int status = 0; 1526 1527 status = cadence_nand_select_target(chip); 1528 if (status) 1529 return status; 1530 1531 /* 1532 * Fill the buffer with 0xff first except the full page transfer. 1533 * This simplifies the logic. 1534 */ 1535 if (!buf || !oob_required) 1536 memset(tmp_buf, 0xff, size); 1537 1538 cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0); 1539 1540 /* Arrange the buffer for syndrome payload/ecc layout. */ 1541 if (buf) { 1542 for (i = 0; i < ecc_steps; i++) { 1543 pos = i * (ecc_size + ecc_bytes); 1544 len = ecc_size; 1545 1546 if (pos >= writesize) 1547 pos += oob_skip; 1548 else if (pos + len > writesize) 1549 len = writesize - pos; 1550 1551 memcpy(tmp_buf + pos, buf, len); 1552 buf += len; 1553 if (len < ecc_size) { 1554 len = ecc_size - len; 1555 memcpy(tmp_buf + writesize + oob_skip, buf, 1556 len); 1557 buf += len; 1558 } 1559 } 1560 } 1561 1562 if (oob_required) { 1563 const u8 *oob = chip->oob_poi; 1564 u32 oob_data_offset = (cdns_chip->sector_count - 1) * 1565 (cdns_chip->sector_size + chip->ecc.bytes) 1566 + cdns_chip->sector_size + oob_skip; 1567 1568 /* BBM at the beginning of the OOB area. */ 1569 memcpy(tmp_buf + writesize, oob, oob_skip); 1570 1571 /* OOB free. */ 1572 memcpy(tmp_buf + oob_data_offset, oob, 1573 cdns_chip->avail_oob_size); 1574 oob += cdns_chip->avail_oob_size; 1575 1576 /* OOB ECC. */ 1577 for (i = 0; i < ecc_steps; i++) { 1578 pos = ecc_size + i * (ecc_size + ecc_bytes); 1579 if (i == (ecc_steps - 1)) 1580 pos += cdns_chip->avail_oob_size; 1581 1582 len = ecc_bytes; 1583 1584 if (pos >= writesize) 1585 pos += oob_skip; 1586 else if (pos + len > writesize) 1587 len = writesize - pos; 1588 1589 memcpy(tmp_buf + pos, oob, len); 1590 oob += len; 1591 if (len < ecc_bytes) { 1592 len = ecc_bytes - len; 1593 memcpy(tmp_buf + writesize + oob_skip, oob, 1594 len); 1595 oob += len; 1596 } 1597 } 1598 } 1599 1600 cadence_nand_prepare_data_size(chip, TT_RAW_PAGE); 1601 1602 return cadence_nand_cdma_transfer(cdns_ctrl, 1603 cdns_chip->cs[chip->cur_cs], 1604 page, cdns_ctrl->buf, NULL, 1605 mtd->writesize + 1606 mtd->oobsize, 1607 0, DMA_TO_DEVICE, false); 1608 } 1609 1610 static int cadence_nand_write_oob_raw(struct nand_chip *chip, 1611 int page) 1612 { 1613 return cadence_nand_write_page_raw(chip, NULL, true, page); 1614 } 1615 1616 static int cadence_nand_read_page(struct nand_chip *chip, 1617 u8 *buf, int oob_required, int page) 1618 { 1619 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1620 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1621 struct mtd_info *mtd = nand_to_mtd(chip); 1622 int status = 0; 1623 int ecc_err_count = 0; 1624 1625 status = cadence_nand_select_target(chip); 1626 if (status) 1627 return status; 1628 1629 cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len, 1630 mtd->writesize 1631 + cdns_chip->bbm_offs, 1); 1632 1633 /* 1634 * If data buffer can be accessed by DMA and data_control feature 1635 * is supported then transfer data and oob directly. 1636 */ 1637 if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) && 1638 cdns_ctrl->caps2.data_control_supp) { 1639 u8 *oob; 1640 1641 if (oob_required) 1642 oob = chip->oob_poi; 1643 else 1644 oob = cdns_ctrl->buf + mtd->writesize; 1645 1646 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT); 1647 status = cadence_nand_cdma_transfer(cdns_ctrl, 1648 cdns_chip->cs[chip->cur_cs], 1649 page, buf, oob, 1650 mtd->writesize, 1651 cdns_chip->avail_oob_size, 1652 DMA_FROM_DEVICE, true); 1653 /* Otherwise use bounce buffer. */ 1654 } else { 1655 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS); 1656 status = cadence_nand_cdma_transfer(cdns_ctrl, 1657 cdns_chip->cs[chip->cur_cs], 1658 page, cdns_ctrl->buf, 1659 NULL, mtd->writesize 1660 + cdns_chip->avail_oob_size, 1661 0, DMA_FROM_DEVICE, true); 1662 1663 memcpy(buf, cdns_ctrl->buf, mtd->writesize); 1664 if (oob_required) 1665 memcpy(chip->oob_poi, 1666 cdns_ctrl->buf + mtd->writesize, 1667 mtd->oobsize); 1668 } 1669 1670 switch (status) { 1671 case STAT_ECC_UNCORR: 1672 mtd->ecc_stats.failed++; 1673 ecc_err_count++; 1674 break; 1675 case STAT_ECC_CORR: 1676 ecc_err_count = FIELD_GET(CDMA_CS_MAXERR, 1677 cdns_ctrl->cdma_desc->status); 1678 mtd->ecc_stats.corrected += ecc_err_count; 1679 break; 1680 case STAT_ERASED: 1681 case STAT_OK: 1682 break; 1683 default: 1684 dev_err(cdns_ctrl->dev, "read page failed\n"); 1685 return -EIO; 1686 } 1687 1688 if (oob_required) 1689 if (cadence_nand_read_bbm(chip, page, chip->oob_poi)) 1690 return -EIO; 1691 1692 return ecc_err_count; 1693 } 1694 1695 /* Reads OOB data from the device. */ 1696 static int cadence_nand_read_oob(struct nand_chip *chip, int page) 1697 { 1698 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1699 1700 return cadence_nand_read_page(chip, cdns_ctrl->buf, 1, page); 1701 } 1702 1703 static int cadence_nand_read_page_raw(struct nand_chip *chip, 1704 u8 *buf, int oob_required, int page) 1705 { 1706 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1707 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1708 struct mtd_info *mtd = nand_to_mtd(chip); 1709 int oob_skip = cdns_chip->bbm_len; 1710 int writesize = mtd->writesize; 1711 int ecc_steps = chip->ecc.steps; 1712 int ecc_size = chip->ecc.size; 1713 int ecc_bytes = chip->ecc.bytes; 1714 void *tmp_buf = cdns_ctrl->buf; 1715 int i, pos, len; 1716 int status = 0; 1717 1718 status = cadence_nand_select_target(chip); 1719 if (status) 1720 return status; 1721 1722 cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0); 1723 1724 cadence_nand_prepare_data_size(chip, TT_RAW_PAGE); 1725 status = cadence_nand_cdma_transfer(cdns_ctrl, 1726 cdns_chip->cs[chip->cur_cs], 1727 page, cdns_ctrl->buf, NULL, 1728 mtd->writesize 1729 + mtd->oobsize, 1730 0, DMA_FROM_DEVICE, false); 1731 1732 switch (status) { 1733 case STAT_ERASED: 1734 case STAT_OK: 1735 break; 1736 default: 1737 dev_err(cdns_ctrl->dev, "read raw page failed\n"); 1738 return -EIO; 1739 } 1740 1741 /* Arrange the buffer for syndrome payload/ecc layout. */ 1742 if (buf) { 1743 for (i = 0; i < ecc_steps; i++) { 1744 pos = i * (ecc_size + ecc_bytes); 1745 len = ecc_size; 1746 1747 if (pos >= writesize) 1748 pos += oob_skip; 1749 else if (pos + len > writesize) 1750 len = writesize - pos; 1751 1752 memcpy(buf, tmp_buf + pos, len); 1753 buf += len; 1754 if (len < ecc_size) { 1755 len = ecc_size - len; 1756 memcpy(buf, tmp_buf + writesize + oob_skip, 1757 len); 1758 buf += len; 1759 } 1760 } 1761 } 1762 1763 if (oob_required) { 1764 u8 *oob = chip->oob_poi; 1765 u32 oob_data_offset = (cdns_chip->sector_count - 1) * 1766 (cdns_chip->sector_size + chip->ecc.bytes) 1767 + cdns_chip->sector_size + oob_skip; 1768 1769 /* OOB free. */ 1770 memcpy(oob, tmp_buf + oob_data_offset, 1771 cdns_chip->avail_oob_size); 1772 1773 /* BBM at the beginning of the OOB area. */ 1774 memcpy(oob, tmp_buf + writesize, oob_skip); 1775 1776 oob += cdns_chip->avail_oob_size; 1777 1778 /* OOB ECC */ 1779 for (i = 0; i < ecc_steps; i++) { 1780 pos = ecc_size + i * (ecc_size + ecc_bytes); 1781 len = ecc_bytes; 1782 1783 if (i == (ecc_steps - 1)) 1784 pos += cdns_chip->avail_oob_size; 1785 1786 if (pos >= writesize) 1787 pos += oob_skip; 1788 else if (pos + len > writesize) 1789 len = writesize - pos; 1790 1791 memcpy(oob, tmp_buf + pos, len); 1792 oob += len; 1793 if (len < ecc_bytes) { 1794 len = ecc_bytes - len; 1795 memcpy(oob, tmp_buf + writesize + oob_skip, 1796 len); 1797 oob += len; 1798 } 1799 } 1800 } 1801 1802 return 0; 1803 } 1804 1805 static int cadence_nand_read_oob_raw(struct nand_chip *chip, 1806 int page) 1807 { 1808 return cadence_nand_read_page_raw(chip, NULL, true, page); 1809 } 1810 1811 static void cadence_nand_slave_dma_transfer_finished(void *data) 1812 { 1813 struct completion *finished = data; 1814 1815 complete(finished); 1816 } 1817 1818 static int cadence_nand_slave_dma_transfer(struct cdns_nand_ctrl *cdns_ctrl, 1819 void *buf, 1820 dma_addr_t dev_dma, size_t len, 1821 enum dma_data_direction dir) 1822 { 1823 DECLARE_COMPLETION_ONSTACK(finished); 1824 struct dma_chan *chan; 1825 struct dma_device *dma_dev; 1826 dma_addr_t src_dma, dst_dma, buf_dma; 1827 struct dma_async_tx_descriptor *tx; 1828 dma_cookie_t cookie; 1829 1830 chan = cdns_ctrl->dmac; 1831 dma_dev = chan->device; 1832 1833 buf_dma = dma_map_single(dma_dev->dev, buf, len, dir); 1834 if (dma_mapping_error(dma_dev->dev, buf_dma)) { 1835 dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n"); 1836 goto err; 1837 } 1838 1839 if (dir == DMA_FROM_DEVICE) { 1840 src_dma = cdns_ctrl->io.iova_dma; 1841 dst_dma = buf_dma; 1842 } else { 1843 src_dma = buf_dma; 1844 dst_dma = cdns_ctrl->io.iova_dma; 1845 } 1846 1847 tx = dmaengine_prep_dma_memcpy(cdns_ctrl->dmac, dst_dma, src_dma, len, 1848 DMA_CTRL_ACK | DMA_PREP_INTERRUPT); 1849 if (!tx) { 1850 dev_err(cdns_ctrl->dev, "Failed to prepare DMA memcpy\n"); 1851 goto err_unmap; 1852 } 1853 1854 tx->callback = cadence_nand_slave_dma_transfer_finished; 1855 tx->callback_param = &finished; 1856 1857 cookie = dmaengine_submit(tx); 1858 if (dma_submit_error(cookie)) { 1859 dev_err(cdns_ctrl->dev, "Failed to do DMA tx_submit\n"); 1860 goto err_unmap; 1861 } 1862 1863 dma_async_issue_pending(cdns_ctrl->dmac); 1864 wait_for_completion(&finished); 1865 1866 dma_unmap_single(dma_dev->dev, buf_dma, len, dir); 1867 1868 return 0; 1869 1870 err_unmap: 1871 dma_unmap_single(dma_dev->dev, buf_dma, len, dir); 1872 1873 err: 1874 dev_dbg(cdns_ctrl->dev, "Fall back to CPU I/O\n"); 1875 1876 return -EIO; 1877 } 1878 1879 static int cadence_nand_read_buf(struct cdns_nand_ctrl *cdns_ctrl, 1880 u8 *buf, int len) 1881 { 1882 u8 thread_nr = 0; 1883 u32 sdma_size; 1884 int status; 1885 1886 /* Wait until slave DMA interface is ready to data transfer. */ 1887 status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size); 1888 if (status) 1889 return status; 1890 1891 if (!cdns_ctrl->caps1->has_dma) { 1892 u8 data_dma_width = cdns_ctrl->caps2.data_dma_width; 1893 1894 int len_in_words = (data_dma_width == 4) ? len >> 2 : len >> 3; 1895 1896 /* read alignment data */ 1897 if (data_dma_width == 4) 1898 ioread32_rep(cdns_ctrl->io.virt, buf, len_in_words); 1899 #ifdef CONFIG_64BIT 1900 else 1901 readsq(cdns_ctrl->io.virt, buf, len_in_words); 1902 #endif 1903 1904 if (sdma_size > len) { 1905 int read_bytes = (data_dma_width == 4) ? 1906 len_in_words << 2 : len_in_words << 3; 1907 1908 /* read rest data from slave DMA interface if any */ 1909 if (data_dma_width == 4) 1910 ioread32_rep(cdns_ctrl->io.virt, 1911 cdns_ctrl->buf, 1912 sdma_size / 4 - len_in_words); 1913 #ifdef CONFIG_64BIT 1914 else 1915 readsq(cdns_ctrl->io.virt, cdns_ctrl->buf, 1916 sdma_size / 8 - len_in_words); 1917 #endif 1918 1919 /* copy rest of data */ 1920 memcpy(buf + read_bytes, cdns_ctrl->buf, 1921 len - read_bytes); 1922 } 1923 return 0; 1924 } 1925 1926 if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) { 1927 status = cadence_nand_slave_dma_transfer(cdns_ctrl, buf, 1928 cdns_ctrl->io.dma, 1929 len, DMA_FROM_DEVICE); 1930 if (status == 0) 1931 return 0; 1932 1933 dev_warn(cdns_ctrl->dev, 1934 "Slave DMA transfer failed. Try again using bounce buffer."); 1935 } 1936 1937 /* If DMA transfer is not possible or failed then use bounce buffer. */ 1938 status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf, 1939 cdns_ctrl->io.dma, 1940 sdma_size, DMA_FROM_DEVICE); 1941 1942 if (status) { 1943 dev_err(cdns_ctrl->dev, "Slave DMA transfer failed"); 1944 return status; 1945 } 1946 1947 memcpy(buf, cdns_ctrl->buf, len); 1948 1949 return 0; 1950 } 1951 1952 static int cadence_nand_write_buf(struct cdns_nand_ctrl *cdns_ctrl, 1953 const u8 *buf, int len) 1954 { 1955 u8 thread_nr = 0; 1956 u32 sdma_size; 1957 int status; 1958 1959 /* Wait until slave DMA interface is ready to data transfer. */ 1960 status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size); 1961 if (status) 1962 return status; 1963 1964 if (!cdns_ctrl->caps1->has_dma) { 1965 u8 data_dma_width = cdns_ctrl->caps2.data_dma_width; 1966 1967 int len_in_words = (data_dma_width == 4) ? len >> 2 : len >> 3; 1968 1969 if (data_dma_width == 4) 1970 iowrite32_rep(cdns_ctrl->io.virt, buf, len_in_words); 1971 #ifdef CONFIG_64BIT 1972 else 1973 writesq(cdns_ctrl->io.virt, buf, len_in_words); 1974 #endif 1975 1976 if (sdma_size > len) { 1977 int written_bytes = (data_dma_width == 4) ? 1978 len_in_words << 2 : len_in_words << 3; 1979 1980 /* copy rest of data */ 1981 memcpy(cdns_ctrl->buf, buf + written_bytes, 1982 len - written_bytes); 1983 1984 /* write all expected by nand controller data */ 1985 if (data_dma_width == 4) 1986 iowrite32_rep(cdns_ctrl->io.virt, 1987 cdns_ctrl->buf, 1988 sdma_size / 4 - len_in_words); 1989 #ifdef CONFIG_64BIT 1990 else 1991 writesq(cdns_ctrl->io.virt, cdns_ctrl->buf, 1992 sdma_size / 8 - len_in_words); 1993 #endif 1994 } 1995 1996 return 0; 1997 } 1998 1999 if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) { 2000 status = cadence_nand_slave_dma_transfer(cdns_ctrl, (void *)buf, 2001 cdns_ctrl->io.dma, 2002 len, DMA_TO_DEVICE); 2003 if (status == 0) 2004 return 0; 2005 2006 dev_warn(cdns_ctrl->dev, 2007 "Slave DMA transfer failed. Try again using bounce buffer."); 2008 } 2009 2010 /* If DMA transfer is not possible or failed then use bounce buffer. */ 2011 memcpy(cdns_ctrl->buf, buf, len); 2012 2013 status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf, 2014 cdns_ctrl->io.dma, 2015 sdma_size, DMA_TO_DEVICE); 2016 2017 if (status) 2018 dev_err(cdns_ctrl->dev, "Slave DMA transfer failed"); 2019 2020 return status; 2021 } 2022 2023 static int cadence_nand_force_byte_access(struct nand_chip *chip, 2024 bool force_8bit) 2025 { 2026 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 2027 2028 /* 2029 * Callers of this function do not verify if the NAND is using a 16-bit 2030 * an 8-bit bus for normal operations, so we need to take care of that 2031 * here by leaving the configuration unchanged if the NAND does not have 2032 * the NAND_BUSWIDTH_16 flag set. 2033 */ 2034 if (!(chip->options & NAND_BUSWIDTH_16)) 2035 return 0; 2036 2037 return cadence_nand_set_access_width16(cdns_ctrl, !force_8bit); 2038 } 2039 2040 static int cadence_nand_cmd_opcode(struct nand_chip *chip, 2041 const struct nand_subop *subop) 2042 { 2043 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 2044 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2045 const struct nand_op_instr *instr; 2046 unsigned int op_id = 0; 2047 u64 mini_ctrl_cmd = 0; 2048 int ret; 2049 2050 instr = &subop->instrs[op_id]; 2051 2052 if (instr->delay_ns > 0) 2053 mini_ctrl_cmd |= GCMD_LAY_TWB; 2054 2055 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, 2056 GCMD_LAY_INSTR_CMD); 2057 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_CMD, 2058 instr->ctx.cmd.opcode); 2059 2060 ret = cadence_nand_generic_cmd_send(cdns_ctrl, 2061 cdns_chip->cs[chip->cur_cs], 2062 mini_ctrl_cmd); 2063 if (ret) 2064 dev_err(cdns_ctrl->dev, "send cmd %x failed\n", 2065 instr->ctx.cmd.opcode); 2066 2067 return ret; 2068 } 2069 2070 static int cadence_nand_cmd_address(struct nand_chip *chip, 2071 const struct nand_subop *subop) 2072 { 2073 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 2074 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2075 const struct nand_op_instr *instr; 2076 unsigned int op_id = 0; 2077 u64 mini_ctrl_cmd = 0; 2078 unsigned int offset, naddrs; 2079 u64 address = 0; 2080 const u8 *addrs; 2081 int ret; 2082 int i; 2083 2084 instr = &subop->instrs[op_id]; 2085 2086 if (instr->delay_ns > 0) 2087 mini_ctrl_cmd |= GCMD_LAY_TWB; 2088 2089 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, 2090 GCMD_LAY_INSTR_ADDR); 2091 2092 offset = nand_subop_get_addr_start_off(subop, op_id); 2093 naddrs = nand_subop_get_num_addr_cyc(subop, op_id); 2094 addrs = &instr->ctx.addr.addrs[offset]; 2095 2096 for (i = 0; i < naddrs; i++) 2097 address |= (u64)addrs[i] << (8 * i); 2098 2099 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR, 2100 address); 2101 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR_SIZE, 2102 naddrs - 1); 2103 2104 ret = cadence_nand_generic_cmd_send(cdns_ctrl, 2105 cdns_chip->cs[chip->cur_cs], 2106 mini_ctrl_cmd); 2107 if (ret) 2108 dev_err(cdns_ctrl->dev, "send address %llx failed\n", address); 2109 2110 return ret; 2111 } 2112 2113 static int cadence_nand_cmd_erase(struct nand_chip *chip, 2114 const struct nand_subop *subop) 2115 { 2116 unsigned int op_id; 2117 2118 if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_ERASE1) { 2119 int i; 2120 const struct nand_op_instr *instr = NULL; 2121 unsigned int offset, naddrs; 2122 const u8 *addrs; 2123 u32 page = 0; 2124 2125 instr = &subop->instrs[1]; 2126 offset = nand_subop_get_addr_start_off(subop, 1); 2127 naddrs = nand_subop_get_num_addr_cyc(subop, 1); 2128 addrs = &instr->ctx.addr.addrs[offset]; 2129 2130 for (i = 0; i < naddrs; i++) 2131 page |= (u32)addrs[i] << (8 * i); 2132 2133 return cadence_nand_erase(chip, page); 2134 } 2135 2136 /* 2137 * If it is not an erase operation then handle operation 2138 * by calling exec_op function. 2139 */ 2140 for (op_id = 0; op_id < subop->ninstrs; op_id++) { 2141 int ret; 2142 const struct nand_operation nand_op = { 2143 .cs = chip->cur_cs, 2144 .instrs = &subop->instrs[op_id], 2145 .ninstrs = 1}; 2146 ret = chip->controller->ops->exec_op(chip, &nand_op, false); 2147 if (ret) 2148 return ret; 2149 } 2150 2151 return 0; 2152 } 2153 2154 static int cadence_nand_cmd_data(struct nand_chip *chip, 2155 const struct nand_subop *subop) 2156 { 2157 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 2158 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2159 const struct nand_op_instr *instr; 2160 unsigned int offset, op_id = 0; 2161 u64 mini_ctrl_cmd = 0; 2162 int len = 0; 2163 int ret; 2164 2165 instr = &subop->instrs[op_id]; 2166 2167 if (instr->delay_ns > 0) 2168 mini_ctrl_cmd |= GCMD_LAY_TWB; 2169 2170 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, 2171 GCMD_LAY_INSTR_DATA); 2172 2173 if (instr->type == NAND_OP_DATA_OUT_INSTR) 2174 mini_ctrl_cmd |= FIELD_PREP(GCMD_DIR, 2175 GCMD_DIR_WRITE); 2176 2177 len = nand_subop_get_data_len(subop, op_id); 2178 offset = nand_subop_get_data_start_off(subop, op_id); 2179 mini_ctrl_cmd |= FIELD_PREP(GCMD_SECT_CNT, 1); 2180 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAST_SIZE, len); 2181 if (instr->ctx.data.force_8bit) { 2182 ret = cadence_nand_force_byte_access(chip, true); 2183 if (ret) { 2184 dev_err(cdns_ctrl->dev, 2185 "cannot change byte access generic data cmd failed\n"); 2186 return ret; 2187 } 2188 } 2189 2190 ret = cadence_nand_generic_cmd_send(cdns_ctrl, 2191 cdns_chip->cs[chip->cur_cs], 2192 mini_ctrl_cmd); 2193 if (ret) { 2194 dev_err(cdns_ctrl->dev, "send generic data cmd failed\n"); 2195 return ret; 2196 } 2197 2198 if (instr->type == NAND_OP_DATA_IN_INSTR) { 2199 void *buf = instr->ctx.data.buf.in + offset; 2200 2201 ret = cadence_nand_read_buf(cdns_ctrl, buf, len); 2202 } else { 2203 const void *buf = instr->ctx.data.buf.out + offset; 2204 2205 ret = cadence_nand_write_buf(cdns_ctrl, buf, len); 2206 } 2207 2208 if (ret) { 2209 dev_err(cdns_ctrl->dev, "data transfer failed for generic command\n"); 2210 return ret; 2211 } 2212 2213 if (instr->ctx.data.force_8bit) { 2214 ret = cadence_nand_force_byte_access(chip, false); 2215 if (ret) { 2216 dev_err(cdns_ctrl->dev, 2217 "cannot change byte access generic data cmd failed\n"); 2218 } 2219 } 2220 2221 return ret; 2222 } 2223 2224 static int cadence_nand_cmd_waitrdy(struct nand_chip *chip, 2225 const struct nand_subop *subop) 2226 { 2227 int status; 2228 unsigned int op_id = 0; 2229 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 2230 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2231 const struct nand_op_instr *instr = &subop->instrs[op_id]; 2232 u32 timeout_us = instr->ctx.waitrdy.timeout_ms * 1000; 2233 2234 status = cadence_nand_wait_for_value(cdns_ctrl, RBN_SETINGS, 2235 timeout_us, 2236 BIT(cdns_chip->cs[chip->cur_cs]), 2237 false); 2238 return status; 2239 } 2240 2241 static const struct nand_op_parser cadence_nand_op_parser = NAND_OP_PARSER( 2242 NAND_OP_PARSER_PATTERN( 2243 cadence_nand_cmd_erase, 2244 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2245 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ERASE_ADDRESS_CYC), 2246 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2247 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2248 NAND_OP_PARSER_PATTERN( 2249 cadence_nand_cmd_opcode, 2250 NAND_OP_PARSER_PAT_CMD_ELEM(false)), 2251 NAND_OP_PARSER_PATTERN( 2252 cadence_nand_cmd_address, 2253 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC)), 2254 NAND_OP_PARSER_PATTERN( 2255 cadence_nand_cmd_data, 2256 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_DATA_SIZE)), 2257 NAND_OP_PARSER_PATTERN( 2258 cadence_nand_cmd_data, 2259 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_DATA_SIZE)), 2260 NAND_OP_PARSER_PATTERN( 2261 cadence_nand_cmd_waitrdy, 2262 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)) 2263 ); 2264 2265 static int cadence_nand_exec_op(struct nand_chip *chip, 2266 const struct nand_operation *op, 2267 bool check_only) 2268 { 2269 if (!check_only) { 2270 int status = cadence_nand_select_target(chip); 2271 2272 if (status) 2273 return status; 2274 } 2275 2276 return nand_op_parser_exec_op(chip, &cadence_nand_op_parser, op, 2277 check_only); 2278 } 2279 2280 static int cadence_nand_ooblayout_free(struct mtd_info *mtd, int section, 2281 struct mtd_oob_region *oobregion) 2282 { 2283 struct nand_chip *chip = mtd_to_nand(mtd); 2284 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2285 2286 if (section) 2287 return -ERANGE; 2288 2289 oobregion->offset = cdns_chip->bbm_len; 2290 oobregion->length = cdns_chip->avail_oob_size 2291 - cdns_chip->bbm_len; 2292 2293 return 0; 2294 } 2295 2296 static int cadence_nand_ooblayout_ecc(struct mtd_info *mtd, int section, 2297 struct mtd_oob_region *oobregion) 2298 { 2299 struct nand_chip *chip = mtd_to_nand(mtd); 2300 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2301 2302 if (section) 2303 return -ERANGE; 2304 2305 oobregion->offset = cdns_chip->avail_oob_size; 2306 oobregion->length = chip->ecc.total; 2307 2308 return 0; 2309 } 2310 2311 static const struct mtd_ooblayout_ops cadence_nand_ooblayout_ops = { 2312 .free = cadence_nand_ooblayout_free, 2313 .ecc = cadence_nand_ooblayout_ecc, 2314 }; 2315 2316 static int calc_cycl(u32 timing, u32 clock) 2317 { 2318 if (timing == 0 || clock == 0) 2319 return 0; 2320 2321 if ((timing % clock) > 0) 2322 return timing / clock; 2323 else 2324 return timing / clock - 1; 2325 } 2326 2327 /* Calculate max data valid window. */ 2328 static inline u32 calc_tdvw_max(u32 trp_cnt, u32 clk_period, u32 trhoh_min, 2329 u32 board_delay_skew_min, u32 ext_mode) 2330 { 2331 if (ext_mode == 0) 2332 clk_period /= 2; 2333 2334 return (trp_cnt + 1) * clk_period + trhoh_min + 2335 board_delay_skew_min; 2336 } 2337 2338 /* Calculate data valid window. */ 2339 static inline u32 calc_tdvw(u32 trp_cnt, u32 clk_period, u32 trhoh_min, 2340 u32 trea_max, u32 ext_mode) 2341 { 2342 if (ext_mode == 0) 2343 clk_period /= 2; 2344 2345 return (trp_cnt + 1) * clk_period + trhoh_min - trea_max; 2346 } 2347 2348 static int 2349 cadence_nand_setup_interface(struct nand_chip *chip, int chipnr, 2350 const struct nand_interface_config *conf) 2351 { 2352 const struct nand_sdr_timings *sdr; 2353 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 2354 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2355 struct cadence_nand_timings *t = &cdns_chip->timings; 2356 u32 reg; 2357 u32 board_delay = cdns_ctrl->board_delay; 2358 u32 clk_period = DIV_ROUND_DOWN_ULL(1000000000000ULL, 2359 cdns_ctrl->nf_clk_rate); 2360 u32 tceh_cnt, tcs_cnt, tadl_cnt, tccs_cnt; 2361 u32 tfeat_cnt, trhz_cnt, tvdly_cnt; 2362 u32 trhw_cnt, twb_cnt, twh_cnt = 0, twhr_cnt; 2363 u32 twp_cnt = 0, trp_cnt = 0, trh_cnt = 0; 2364 u32 if_skew = cdns_ctrl->caps1->if_skew; 2365 u32 board_delay_skew_min = board_delay - if_skew; 2366 u32 board_delay_skew_max = board_delay + if_skew; 2367 u32 dqs_sampl_res, phony_dqs_mod; 2368 u32 tdvw, tdvw_min, tdvw_max; 2369 u32 ext_rd_mode, ext_wr_mode; 2370 u32 dll_phy_dqs_timing = 0, phony_dqs_timing = 0, rd_del_sel = 0; 2371 u32 sampling_point; 2372 2373 sdr = nand_get_sdr_timings(conf); 2374 if (IS_ERR(sdr)) 2375 return PTR_ERR(sdr); 2376 2377 memset(t, 0, sizeof(*t)); 2378 /* Sampling point calculation. */ 2379 2380 if (cdns_ctrl->caps2.is_phy_type_dll) 2381 phony_dqs_mod = 2; 2382 else 2383 phony_dqs_mod = 1; 2384 2385 dqs_sampl_res = clk_period / phony_dqs_mod; 2386 2387 tdvw_min = sdr->tREA_max + board_delay_skew_max; 2388 /* 2389 * The idea of those calculation is to get the optimum value 2390 * for tRP and tRH timings. If it is NOT possible to sample data 2391 * with optimal tRP/tRH settings, the parameters will be extended. 2392 * If clk_period is 50ns (the lowest value) this condition is met 2393 * for SDR timing modes 1, 2, 3, 4 and 5. 2394 * If clk_period is 20ns the condition is met only for SDR timing 2395 * mode 5. 2396 */ 2397 if (sdr->tRC_min <= clk_period && 2398 sdr->tRP_min <= (clk_period / 2) && 2399 sdr->tREH_min <= (clk_period / 2)) { 2400 /* Performance mode. */ 2401 ext_rd_mode = 0; 2402 tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min, 2403 sdr->tREA_max, ext_rd_mode); 2404 tdvw_max = calc_tdvw_max(trp_cnt, clk_period, sdr->tRHOH_min, 2405 board_delay_skew_min, 2406 ext_rd_mode); 2407 /* 2408 * Check if data valid window and sampling point can be found 2409 * and is not on the edge (ie. we have hold margin). 2410 * If not extend the tRP timings. 2411 */ 2412 if (tdvw > 0) { 2413 if (tdvw_max <= tdvw_min || 2414 (tdvw_max % dqs_sampl_res) == 0) { 2415 /* 2416 * No valid sampling point so the RE pulse need 2417 * to be widen widening by half clock cycle. 2418 */ 2419 ext_rd_mode = 1; 2420 } 2421 } else { 2422 /* 2423 * There is no valid window 2424 * to be able to sample data the tRP need to be widen. 2425 * Very safe calculations are performed here. 2426 */ 2427 trp_cnt = (sdr->tREA_max + board_delay_skew_max 2428 + dqs_sampl_res) / clk_period; 2429 ext_rd_mode = 1; 2430 } 2431 2432 } else { 2433 /* Extended read mode. */ 2434 u32 trh; 2435 2436 ext_rd_mode = 1; 2437 trp_cnt = calc_cycl(sdr->tRP_min, clk_period); 2438 trh = sdr->tRC_min - ((trp_cnt + 1) * clk_period); 2439 if (sdr->tREH_min >= trh) 2440 trh_cnt = calc_cycl(sdr->tREH_min, clk_period); 2441 else 2442 trh_cnt = calc_cycl(trh, clk_period); 2443 2444 tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min, 2445 sdr->tREA_max, ext_rd_mode); 2446 /* 2447 * Check if data valid window and sampling point can be found 2448 * or if it is at the edge check if previous is valid 2449 * - if not extend the tRP timings. 2450 */ 2451 if (tdvw > 0) { 2452 tdvw_max = calc_tdvw_max(trp_cnt, clk_period, 2453 sdr->tRHOH_min, 2454 board_delay_skew_min, 2455 ext_rd_mode); 2456 2457 if ((((tdvw_max / dqs_sampl_res) 2458 * dqs_sampl_res) <= tdvw_min) || 2459 (((tdvw_max % dqs_sampl_res) == 0) && 2460 (((tdvw_max / dqs_sampl_res - 1) 2461 * dqs_sampl_res) <= tdvw_min))) { 2462 /* 2463 * Data valid window width is lower than 2464 * sampling resolution and do not hit any 2465 * sampling point to be sure the sampling point 2466 * will be found the RE low pulse width will be 2467 * extended by one clock cycle. 2468 */ 2469 trp_cnt = trp_cnt + 1; 2470 } 2471 } else { 2472 /* 2473 * There is no valid window to be able to sample data. 2474 * The tRP need to be widen. 2475 * Very safe calculations are performed here. 2476 */ 2477 trp_cnt = (sdr->tREA_max + board_delay_skew_max 2478 + dqs_sampl_res) / clk_period; 2479 } 2480 } 2481 2482 tdvw_max = calc_tdvw_max(trp_cnt, clk_period, 2483 sdr->tRHOH_min, 2484 board_delay_skew_min, ext_rd_mode); 2485 2486 if (sdr->tWC_min <= clk_period && 2487 (sdr->tWP_min + if_skew) <= (clk_period / 2) && 2488 (sdr->tWH_min + if_skew) <= (clk_period / 2)) { 2489 ext_wr_mode = 0; 2490 } else { 2491 u32 twh; 2492 2493 ext_wr_mode = 1; 2494 twp_cnt = calc_cycl(sdr->tWP_min + if_skew, clk_period); 2495 if ((twp_cnt + 1) * clk_period < (sdr->tALS_min + if_skew)) 2496 twp_cnt = calc_cycl(sdr->tALS_min + if_skew, 2497 clk_period); 2498 2499 twh = (sdr->tWC_min - (twp_cnt + 1) * clk_period); 2500 if (sdr->tWH_min >= twh) 2501 twh = sdr->tWH_min; 2502 2503 twh_cnt = calc_cycl(twh + if_skew, clk_period); 2504 } 2505 2506 reg = FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRH, trh_cnt); 2507 reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRP, trp_cnt); 2508 reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWH, twh_cnt); 2509 reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWP, twp_cnt); 2510 t->async_toggle_timings = reg; 2511 dev_dbg(cdns_ctrl->dev, "ASYNC_TOGGLE_TIMINGS_SDR\t%x\n", reg); 2512 2513 tadl_cnt = calc_cycl((sdr->tADL_min + if_skew), clk_period); 2514 tccs_cnt = calc_cycl((sdr->tCCS_min + if_skew), clk_period); 2515 twhr_cnt = calc_cycl((sdr->tWHR_min + if_skew), clk_period); 2516 trhw_cnt = calc_cycl((sdr->tRHW_min + if_skew), clk_period); 2517 reg = FIELD_PREP(TIMINGS0_TADL, tadl_cnt); 2518 2519 /* 2520 * If timing exceeds delay field in timing register 2521 * then use maximum value. 2522 */ 2523 if (FIELD_FIT(TIMINGS0_TCCS, tccs_cnt)) 2524 reg |= FIELD_PREP(TIMINGS0_TCCS, tccs_cnt); 2525 else 2526 reg |= TIMINGS0_TCCS; 2527 2528 reg |= FIELD_PREP(TIMINGS0_TWHR, twhr_cnt); 2529 reg |= FIELD_PREP(TIMINGS0_TRHW, trhw_cnt); 2530 t->timings0 = reg; 2531 dev_dbg(cdns_ctrl->dev, "TIMINGS0_SDR\t%x\n", reg); 2532 2533 /* The following is related to single signal so skew is not needed. */ 2534 trhz_cnt = calc_cycl(sdr->tRHZ_max, clk_period); 2535 trhz_cnt = trhz_cnt + 1; 2536 twb_cnt = calc_cycl((sdr->tWB_max + board_delay), clk_period); 2537 /* 2538 * Because of the two stage syncflop the value must be increased by 3 2539 * first value is related with sync, second value is related 2540 * with output if delay. 2541 */ 2542 twb_cnt = twb_cnt + 3 + 5; 2543 /* 2544 * The following is related to the we edge of the random data input 2545 * sequence so skew is not needed. 2546 */ 2547 tvdly_cnt = calc_cycl(500000 + if_skew, clk_period); 2548 reg = FIELD_PREP(TIMINGS1_TRHZ, trhz_cnt); 2549 reg |= FIELD_PREP(TIMINGS1_TWB, twb_cnt); 2550 reg |= FIELD_PREP(TIMINGS1_TVDLY, tvdly_cnt); 2551 t->timings1 = reg; 2552 dev_dbg(cdns_ctrl->dev, "TIMINGS1_SDR\t%x\n", reg); 2553 2554 tfeat_cnt = calc_cycl(sdr->tFEAT_max, clk_period); 2555 if (tfeat_cnt < twb_cnt) 2556 tfeat_cnt = twb_cnt; 2557 2558 tceh_cnt = calc_cycl(sdr->tCEH_min, clk_period); 2559 tcs_cnt = calc_cycl((sdr->tCS_min + if_skew), clk_period); 2560 2561 reg = FIELD_PREP(TIMINGS2_TFEAT, tfeat_cnt); 2562 reg |= FIELD_PREP(TIMINGS2_CS_HOLD_TIME, tceh_cnt); 2563 reg |= FIELD_PREP(TIMINGS2_CS_SETUP_TIME, tcs_cnt); 2564 t->timings2 = reg; 2565 dev_dbg(cdns_ctrl->dev, "TIMINGS2_SDR\t%x\n", reg); 2566 2567 if (cdns_ctrl->caps2.is_phy_type_dll) { 2568 reg = DLL_PHY_CTRL_DLL_RST_N; 2569 if (ext_wr_mode) 2570 reg |= DLL_PHY_CTRL_EXTENDED_WR_MODE; 2571 if (ext_rd_mode) 2572 reg |= DLL_PHY_CTRL_EXTENDED_RD_MODE; 2573 2574 reg |= FIELD_PREP(DLL_PHY_CTRL_RS_HIGH_WAIT_CNT, 7); 2575 reg |= FIELD_PREP(DLL_PHY_CTRL_RS_IDLE_CNT, 7); 2576 t->dll_phy_ctrl = reg; 2577 dev_dbg(cdns_ctrl->dev, "DLL_PHY_CTRL_SDR\t%x\n", reg); 2578 } 2579 2580 /* Sampling point calculation. */ 2581 if ((tdvw_max % dqs_sampl_res) > 0) 2582 sampling_point = tdvw_max / dqs_sampl_res; 2583 else 2584 sampling_point = (tdvw_max / dqs_sampl_res - 1); 2585 2586 if (sampling_point * dqs_sampl_res > tdvw_min) { 2587 dll_phy_dqs_timing = 2588 FIELD_PREP(PHY_DQS_TIMING_DQS_SEL_OE_END, 4); 2589 dll_phy_dqs_timing |= PHY_DQS_TIMING_USE_PHONY_DQS; 2590 phony_dqs_timing = sampling_point / phony_dqs_mod; 2591 2592 if ((sampling_point % 2) > 0) { 2593 dll_phy_dqs_timing |= PHY_DQS_TIMING_PHONY_DQS_SEL; 2594 if ((tdvw_max % dqs_sampl_res) == 0) 2595 /* 2596 * Calculation for sampling point at the edge 2597 * of data and being odd number. 2598 */ 2599 phony_dqs_timing = (tdvw_max / dqs_sampl_res) 2600 / phony_dqs_mod - 1; 2601 2602 if (!cdns_ctrl->caps2.is_phy_type_dll) 2603 phony_dqs_timing--; 2604 2605 } else { 2606 phony_dqs_timing--; 2607 } 2608 rd_del_sel = phony_dqs_timing + 3; 2609 } else { 2610 dev_warn(cdns_ctrl->dev, 2611 "ERROR : cannot find valid sampling point\n"); 2612 } 2613 2614 reg = FIELD_PREP(PHY_CTRL_PHONY_DQS, phony_dqs_timing); 2615 if (cdns_ctrl->caps2.is_phy_type_dll) 2616 reg |= PHY_CTRL_SDR_DQS; 2617 t->phy_ctrl = reg; 2618 dev_dbg(cdns_ctrl->dev, "PHY_CTRL_REG_SDR\t%x\n", reg); 2619 2620 if (cdns_ctrl->caps2.is_phy_type_dll) { 2621 dev_dbg(cdns_ctrl->dev, "PHY_TSEL_REG_SDR\t%x\n", 0); 2622 dev_dbg(cdns_ctrl->dev, "PHY_DQ_TIMING_REG_SDR\t%x\n", 2); 2623 dev_dbg(cdns_ctrl->dev, "PHY_DQS_TIMING_REG_SDR\t%x\n", 2624 dll_phy_dqs_timing); 2625 t->phy_dqs_timing = dll_phy_dqs_timing; 2626 2627 reg = FIELD_PREP(PHY_GATE_LPBK_CTRL_RDS, rd_del_sel); 2628 dev_dbg(cdns_ctrl->dev, "PHY_GATE_LPBK_CTRL_REG_SDR\t%x\n", 2629 reg); 2630 t->phy_gate_lpbk_ctrl = reg; 2631 2632 dev_dbg(cdns_ctrl->dev, "PHY_DLL_MASTER_CTRL_REG_SDR\t%lx\n", 2633 PHY_DLL_MASTER_CTRL_BYPASS_MODE); 2634 dev_dbg(cdns_ctrl->dev, "PHY_DLL_SLAVE_CTRL_REG_SDR\t%x\n", 0); 2635 } 2636 2637 return 0; 2638 } 2639 2640 static int cadence_nand_attach_chip(struct nand_chip *chip) 2641 { 2642 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 2643 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2644 u32 ecc_size; 2645 struct mtd_info *mtd = nand_to_mtd(chip); 2646 int ret; 2647 2648 if (chip->options & NAND_BUSWIDTH_16) { 2649 ret = cadence_nand_set_access_width16(cdns_ctrl, true); 2650 if (ret) 2651 return ret; 2652 } 2653 2654 chip->bbt_options |= NAND_BBT_USE_FLASH; 2655 chip->bbt_options |= NAND_BBT_NO_OOB; 2656 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 2657 2658 chip->options |= NAND_NO_SUBPAGE_WRITE; 2659 2660 cdns_chip->bbm_offs = chip->badblockpos; 2661 cdns_chip->bbm_offs &= ~0x01; 2662 /* this value should be even number */ 2663 cdns_chip->bbm_len = 2; 2664 2665 ret = nand_ecc_choose_conf(chip, 2666 &cdns_ctrl->ecc_caps, 2667 mtd->oobsize - cdns_chip->bbm_len); 2668 if (ret) { 2669 dev_err(cdns_ctrl->dev, "ECC configuration failed\n"); 2670 return ret; 2671 } 2672 2673 dev_dbg(cdns_ctrl->dev, 2674 "chosen ECC settings: step=%d, strength=%d, bytes=%d\n", 2675 chip->ecc.size, chip->ecc.strength, chip->ecc.bytes); 2676 2677 /* Error correction configuration. */ 2678 cdns_chip->sector_size = chip->ecc.size; 2679 cdns_chip->sector_count = mtd->writesize / cdns_chip->sector_size; 2680 ecc_size = cdns_chip->sector_count * chip->ecc.bytes; 2681 2682 cdns_chip->avail_oob_size = mtd->oobsize - ecc_size; 2683 2684 if (cdns_chip->avail_oob_size > cdns_ctrl->bch_metadata_size) 2685 cdns_chip->avail_oob_size = cdns_ctrl->bch_metadata_size; 2686 2687 if ((cdns_chip->avail_oob_size + cdns_chip->bbm_len + ecc_size) 2688 > mtd->oobsize) 2689 cdns_chip->avail_oob_size -= 4; 2690 2691 ret = cadence_nand_get_ecc_strength_idx(cdns_ctrl, chip->ecc.strength); 2692 if (ret < 0) 2693 return -EINVAL; 2694 2695 cdns_chip->corr_str_idx = (u8)ret; 2696 2697 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 2698 1000000, 2699 CTRL_STATUS_CTRL_BUSY, true)) 2700 return -ETIMEDOUT; 2701 2702 cadence_nand_set_ecc_strength(cdns_ctrl, 2703 cdns_chip->corr_str_idx); 2704 2705 cadence_nand_set_erase_detection(cdns_ctrl, true, 2706 chip->ecc.strength); 2707 2708 /* Override the default read operations. */ 2709 chip->ecc.read_page = cadence_nand_read_page; 2710 chip->ecc.read_page_raw = cadence_nand_read_page_raw; 2711 chip->ecc.write_page = cadence_nand_write_page; 2712 chip->ecc.write_page_raw = cadence_nand_write_page_raw; 2713 chip->ecc.read_oob = cadence_nand_read_oob; 2714 chip->ecc.write_oob = cadence_nand_write_oob; 2715 chip->ecc.read_oob_raw = cadence_nand_read_oob_raw; 2716 chip->ecc.write_oob_raw = cadence_nand_write_oob_raw; 2717 2718 if ((mtd->writesize + mtd->oobsize) > cdns_ctrl->buf_size) 2719 cdns_ctrl->buf_size = mtd->writesize + mtd->oobsize; 2720 2721 /* Is 32-bit DMA supported? */ 2722 ret = dma_set_mask(cdns_ctrl->dev, DMA_BIT_MASK(32)); 2723 if (ret) { 2724 dev_err(cdns_ctrl->dev, "no usable DMA configuration\n"); 2725 return ret; 2726 } 2727 2728 mtd_set_ooblayout(mtd, &cadence_nand_ooblayout_ops); 2729 2730 return 0; 2731 } 2732 2733 static const struct nand_controller_ops cadence_nand_controller_ops = { 2734 .attach_chip = cadence_nand_attach_chip, 2735 .exec_op = cadence_nand_exec_op, 2736 .setup_interface = cadence_nand_setup_interface, 2737 }; 2738 2739 static int cadence_nand_chip_init(struct cdns_nand_ctrl *cdns_ctrl, 2740 struct device_node *np) 2741 { 2742 struct cdns_nand_chip *cdns_chip; 2743 struct mtd_info *mtd; 2744 struct nand_chip *chip; 2745 int nsels, ret, i; 2746 u32 cs; 2747 2748 nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); 2749 if (nsels <= 0) { 2750 dev_err(cdns_ctrl->dev, "missing/invalid reg property\n"); 2751 return -EINVAL; 2752 } 2753 2754 /* Allocate the nand chip structure. */ 2755 cdns_chip = devm_kzalloc(cdns_ctrl->dev, sizeof(*cdns_chip) + 2756 (nsels * sizeof(u8)), 2757 GFP_KERNEL); 2758 if (!cdns_chip) { 2759 dev_err(cdns_ctrl->dev, "could not allocate chip structure\n"); 2760 return -ENOMEM; 2761 } 2762 2763 cdns_chip->nsels = nsels; 2764 2765 for (i = 0; i < nsels; i++) { 2766 /* Retrieve CS id. */ 2767 ret = of_property_read_u32_index(np, "reg", i, &cs); 2768 if (ret) { 2769 dev_err(cdns_ctrl->dev, 2770 "could not retrieve reg property: %d\n", 2771 ret); 2772 return ret; 2773 } 2774 2775 if (cs >= cdns_ctrl->caps2.max_banks) { 2776 dev_err(cdns_ctrl->dev, 2777 "invalid reg value: %u (max CS = %d)\n", 2778 cs, cdns_ctrl->caps2.max_banks); 2779 return -EINVAL; 2780 } 2781 2782 if (test_and_set_bit(cs, &cdns_ctrl->assigned_cs)) { 2783 dev_err(cdns_ctrl->dev, 2784 "CS %d already assigned\n", cs); 2785 return -EINVAL; 2786 } 2787 2788 cdns_chip->cs[i] = cs; 2789 } 2790 2791 chip = &cdns_chip->chip; 2792 chip->controller = &cdns_ctrl->controller; 2793 nand_set_flash_node(chip, np); 2794 2795 mtd = nand_to_mtd(chip); 2796 mtd->dev.parent = cdns_ctrl->dev; 2797 2798 /* 2799 * Default to HW ECC engine mode. If the nand-ecc-mode property is given 2800 * in the DT node, this entry will be overwritten in nand_scan_ident(). 2801 */ 2802 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 2803 2804 ret = nand_scan(chip, cdns_chip->nsels); 2805 if (ret) { 2806 dev_err(cdns_ctrl->dev, "could not scan the nand chip\n"); 2807 return ret; 2808 } 2809 2810 ret = mtd_device_register(mtd, NULL, 0); 2811 if (ret) { 2812 dev_err(cdns_ctrl->dev, 2813 "failed to register mtd device: %d\n", ret); 2814 nand_cleanup(chip); 2815 return ret; 2816 } 2817 2818 list_add_tail(&cdns_chip->node, &cdns_ctrl->chips); 2819 2820 return 0; 2821 } 2822 2823 static void cadence_nand_chips_cleanup(struct cdns_nand_ctrl *cdns_ctrl) 2824 { 2825 struct cdns_nand_chip *entry, *temp; 2826 struct nand_chip *chip; 2827 int ret; 2828 2829 list_for_each_entry_safe(entry, temp, &cdns_ctrl->chips, node) { 2830 chip = &entry->chip; 2831 ret = mtd_device_unregister(nand_to_mtd(chip)); 2832 WARN_ON(ret); 2833 nand_cleanup(chip); 2834 list_del(&entry->node); 2835 } 2836 } 2837 2838 static int cadence_nand_chips_init(struct cdns_nand_ctrl *cdns_ctrl) 2839 { 2840 struct device_node *np = cdns_ctrl->dev->of_node; 2841 int max_cs = cdns_ctrl->caps2.max_banks; 2842 int nchips, ret; 2843 2844 nchips = of_get_child_count(np); 2845 2846 if (nchips > max_cs) { 2847 dev_err(cdns_ctrl->dev, 2848 "too many NAND chips: %d (max = %d CS)\n", 2849 nchips, max_cs); 2850 return -EINVAL; 2851 } 2852 2853 for_each_child_of_node_scoped(np, nand_np) { 2854 ret = cadence_nand_chip_init(cdns_ctrl, nand_np); 2855 if (ret) { 2856 cadence_nand_chips_cleanup(cdns_ctrl); 2857 return ret; 2858 } 2859 } 2860 2861 return 0; 2862 } 2863 2864 static void 2865 cadence_nand_irq_cleanup(int irqnum, struct cdns_nand_ctrl *cdns_ctrl) 2866 { 2867 /* Disable interrupts. */ 2868 writel_relaxed(INTR_ENABLE_INTR_EN, cdns_ctrl->reg + INTR_ENABLE); 2869 } 2870 2871 static int cadence_nand_init(struct cdns_nand_ctrl *cdns_ctrl) 2872 { 2873 dma_cap_mask_t mask; 2874 struct dma_device *dma_dev = cdns_ctrl->dmac->device; 2875 int ret; 2876 2877 cdns_ctrl->cdma_desc = dma_alloc_coherent(cdns_ctrl->dev, 2878 sizeof(*cdns_ctrl->cdma_desc), 2879 &cdns_ctrl->dma_cdma_desc, 2880 GFP_KERNEL); 2881 if (!cdns_ctrl->dma_cdma_desc) 2882 return -ENOMEM; 2883 2884 cdns_ctrl->buf_size = SZ_16K; 2885 cdns_ctrl->buf = kmalloc(cdns_ctrl->buf_size, GFP_KERNEL); 2886 if (!cdns_ctrl->buf) { 2887 ret = -ENOMEM; 2888 goto free_buf_desc; 2889 } 2890 2891 if (devm_request_irq(cdns_ctrl->dev, cdns_ctrl->irq, cadence_nand_isr, 2892 IRQF_SHARED, "cadence-nand-controller", 2893 cdns_ctrl)) { 2894 dev_err(cdns_ctrl->dev, "Unable to allocate IRQ\n"); 2895 ret = -ENODEV; 2896 goto free_buf; 2897 } 2898 2899 spin_lock_init(&cdns_ctrl->irq_lock); 2900 init_completion(&cdns_ctrl->complete); 2901 2902 ret = cadence_nand_hw_init(cdns_ctrl); 2903 if (ret) 2904 goto disable_irq; 2905 2906 dma_cap_zero(mask); 2907 dma_cap_set(DMA_MEMCPY, mask); 2908 2909 if (cdns_ctrl->caps1->has_dma) { 2910 cdns_ctrl->dmac = dma_request_chan_by_mask(&mask); 2911 if (IS_ERR(cdns_ctrl->dmac)) { 2912 ret = dev_err_probe(cdns_ctrl->dev, PTR_ERR(cdns_ctrl->dmac), 2913 "%d: Failed to get a DMA channel\n", ret); 2914 goto disable_irq; 2915 } 2916 } 2917 2918 cdns_ctrl->io.iova_dma = dma_map_resource(dma_dev->dev, cdns_ctrl->io.dma, 2919 cdns_ctrl->io.size, 2920 DMA_BIDIRECTIONAL, 0); 2921 2922 ret = dma_mapping_error(dma_dev->dev, cdns_ctrl->io.iova_dma); 2923 if (ret) { 2924 dev_err(cdns_ctrl->dev, "Failed to map I/O resource to DMA\n"); 2925 goto dma_release_chnl; 2926 } 2927 2928 nand_controller_init(&cdns_ctrl->controller); 2929 INIT_LIST_HEAD(&cdns_ctrl->chips); 2930 2931 cdns_ctrl->controller.ops = &cadence_nand_controller_ops; 2932 cdns_ctrl->curr_corr_str_idx = 0xFF; 2933 2934 ret = cadence_nand_chips_init(cdns_ctrl); 2935 if (ret) { 2936 dev_err(cdns_ctrl->dev, "Failed to register MTD: %d\n", 2937 ret); 2938 goto unmap_dma_resource; 2939 } 2940 2941 kfree(cdns_ctrl->buf); 2942 cdns_ctrl->buf = kzalloc(cdns_ctrl->buf_size, GFP_KERNEL); 2943 if (!cdns_ctrl->buf) { 2944 ret = -ENOMEM; 2945 goto unmap_dma_resource; 2946 } 2947 2948 return 0; 2949 2950 unmap_dma_resource: 2951 dma_unmap_resource(dma_dev->dev, cdns_ctrl->io.iova_dma, 2952 cdns_ctrl->io.size, DMA_BIDIRECTIONAL, 0); 2953 2954 dma_release_chnl: 2955 if (cdns_ctrl->dmac) 2956 dma_release_channel(cdns_ctrl->dmac); 2957 2958 disable_irq: 2959 cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl); 2960 2961 free_buf: 2962 kfree(cdns_ctrl->buf); 2963 2964 free_buf_desc: 2965 dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc), 2966 cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc); 2967 2968 return ret; 2969 } 2970 2971 /* Driver exit point. */ 2972 static void cadence_nand_remove(struct cdns_nand_ctrl *cdns_ctrl) 2973 { 2974 cadence_nand_chips_cleanup(cdns_ctrl); 2975 if (cdns_ctrl->dmac) 2976 dma_unmap_resource(cdns_ctrl->dmac->device->dev, 2977 cdns_ctrl->io.iova_dma, cdns_ctrl->io.size, 2978 DMA_BIDIRECTIONAL, 0); 2979 cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl); 2980 kfree(cdns_ctrl->buf); 2981 dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc), 2982 cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc); 2983 2984 if (cdns_ctrl->dmac) 2985 dma_release_channel(cdns_ctrl->dmac); 2986 } 2987 2988 struct cadence_nand_dt { 2989 struct cdns_nand_ctrl cdns_ctrl; 2990 struct clk *clk; 2991 }; 2992 2993 static const struct cadence_nand_dt_devdata cadence_nand_default = { 2994 .if_skew = 0, 2995 .has_dma = 1, 2996 }; 2997 2998 static const struct of_device_id cadence_nand_dt_ids[] = { 2999 { 3000 .compatible = "cdns,hp-nfc", 3001 .data = &cadence_nand_default 3002 }, {} 3003 }; 3004 3005 MODULE_DEVICE_TABLE(of, cadence_nand_dt_ids); 3006 3007 static int cadence_nand_dt_probe(struct platform_device *ofdev) 3008 { 3009 struct resource *res; 3010 struct cadence_nand_dt *dt; 3011 struct cdns_nand_ctrl *cdns_ctrl; 3012 int ret; 3013 const struct cadence_nand_dt_devdata *devdata; 3014 u32 val; 3015 3016 devdata = device_get_match_data(&ofdev->dev); 3017 if (!devdata) { 3018 pr_err("Failed to find the right device id.\n"); 3019 return -ENOMEM; 3020 } 3021 3022 dt = devm_kzalloc(&ofdev->dev, sizeof(*dt), GFP_KERNEL); 3023 if (!dt) 3024 return -ENOMEM; 3025 3026 cdns_ctrl = &dt->cdns_ctrl; 3027 cdns_ctrl->caps1 = devdata; 3028 3029 cdns_ctrl->dev = &ofdev->dev; 3030 cdns_ctrl->irq = platform_get_irq(ofdev, 0); 3031 if (cdns_ctrl->irq < 0) 3032 return cdns_ctrl->irq; 3033 3034 dev_info(cdns_ctrl->dev, "IRQ: nr %d\n", cdns_ctrl->irq); 3035 3036 cdns_ctrl->reg = devm_platform_ioremap_resource(ofdev, 0); 3037 if (IS_ERR(cdns_ctrl->reg)) 3038 return PTR_ERR(cdns_ctrl->reg); 3039 3040 cdns_ctrl->io.virt = devm_platform_get_and_ioremap_resource(ofdev, 1, &res); 3041 if (IS_ERR(cdns_ctrl->io.virt)) 3042 return PTR_ERR(cdns_ctrl->io.virt); 3043 3044 cdns_ctrl->io.dma = res->start; 3045 cdns_ctrl->io.size = resource_size(res); 3046 3047 dt->clk = devm_clk_get(cdns_ctrl->dev, "nf_clk"); 3048 if (IS_ERR(dt->clk)) 3049 return PTR_ERR(dt->clk); 3050 3051 cdns_ctrl->nf_clk_rate = clk_get_rate(dt->clk); 3052 3053 ret = of_property_read_u32(ofdev->dev.of_node, 3054 "cdns,board-delay-ps", &val); 3055 if (ret) { 3056 val = 4830; 3057 dev_info(cdns_ctrl->dev, 3058 "missing cdns,board-delay-ps property, %d was set\n", 3059 val); 3060 } 3061 cdns_ctrl->board_delay = val; 3062 3063 ret = cadence_nand_init(cdns_ctrl); 3064 if (ret) 3065 return ret; 3066 3067 platform_set_drvdata(ofdev, dt); 3068 return 0; 3069 } 3070 3071 static void cadence_nand_dt_remove(struct platform_device *ofdev) 3072 { 3073 struct cadence_nand_dt *dt = platform_get_drvdata(ofdev); 3074 3075 cadence_nand_remove(&dt->cdns_ctrl); 3076 } 3077 3078 static struct platform_driver cadence_nand_dt_driver = { 3079 .probe = cadence_nand_dt_probe, 3080 .remove = cadence_nand_dt_remove, 3081 .driver = { 3082 .name = "cadence-nand-controller", 3083 .of_match_table = cadence_nand_dt_ids, 3084 }, 3085 }; 3086 3087 module_platform_driver(cadence_nand_dt_driver); 3088 3089 MODULE_AUTHOR("Piotr Sroka <piotrs@cadence.com>"); 3090 MODULE_LICENSE("GPL v2"); 3091 MODULE_DESCRIPTION("Driver for Cadence NAND flash controller"); 3092 3093