1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * (C) Copyright 2020 Hewlett Packard Enterprise Development LP 7 * Copyright (c) 2004-2009 Silicon Graphics, Inc. All Rights Reserved. 8 */ 9 10 /* 11 * Cross Partition Communication (XPC) support - standard version. 12 * 13 * XPC provides a message passing capability that crosses partition 14 * boundaries. This module is made up of two parts: 15 * 16 * partition This part detects the presence/absence of other 17 * partitions. It provides a heartbeat and monitors 18 * the heartbeats of other partitions. 19 * 20 * channel This part manages the channels and sends/receives 21 * messages across them to/from other partitions. 22 * 23 * There are a couple of additional functions residing in XP, which 24 * provide an interface to XPC for its users. 25 * 26 * 27 * Caveats: 28 * 29 * . Currently on sn2, we have no way to determine which nasid an IRQ 30 * came from. Thus, xpc_send_IRQ_sn2() does a remote amo write 31 * followed by an IPI. The amo indicates where data is to be pulled 32 * from, so after the IPI arrives, the remote partition checks the amo 33 * word. The IPI can actually arrive before the amo however, so other 34 * code must periodically check for this case. Also, remote amo 35 * operations do not reliably time out. Thus we do a remote PIO read 36 * solely to know whether the remote partition is down and whether we 37 * should stop sending IPIs to it. This remote PIO read operation is 38 * set up in a special nofault region so SAL knows to ignore (and 39 * cleanup) any errors due to the remote amo write, PIO read, and/or 40 * PIO write operations. 41 * 42 * If/when new hardware solves this IPI problem, we should abandon 43 * the current approach. 44 * 45 */ 46 47 #include <linux/module.h> 48 #include <linux/slab.h> 49 #include <linux/sysctl.h> 50 #include <linux/device.h> 51 #include <linux/delay.h> 52 #include <linux/reboot.h> 53 #include <linux/kdebug.h> 54 #include <linux/kthread.h> 55 #include "xpc.h" 56 57 #ifdef CONFIG_X86_64 58 #include <asm/traps.h> 59 #endif 60 61 /* define two XPC debug device structures to be used with dev_dbg() et al */ 62 63 static struct device_driver xpc_dbg_name = { 64 .name = "xpc" 65 }; 66 67 static struct device xpc_part_dbg_subname = { 68 .init_name = "", /* set to "part" at xpc_init() time */ 69 .driver = &xpc_dbg_name 70 }; 71 72 static struct device xpc_chan_dbg_subname = { 73 .init_name = "", /* set to "chan" at xpc_init() time */ 74 .driver = &xpc_dbg_name 75 }; 76 77 struct device *xpc_part = &xpc_part_dbg_subname; 78 struct device *xpc_chan = &xpc_chan_dbg_subname; 79 80 static int xpc_kdebug_ignore; 81 82 /* systune related variables for /proc/sys directories */ 83 84 static int xpc_hb_interval = XPC_HB_DEFAULT_INTERVAL; 85 static int xpc_hb_min_interval = 1; 86 static int xpc_hb_max_interval = 10; 87 88 static int xpc_hb_check_interval = XPC_HB_CHECK_DEFAULT_INTERVAL; 89 static int xpc_hb_check_min_interval = 10; 90 static int xpc_hb_check_max_interval = 120; 91 92 int xpc_disengage_timelimit = XPC_DISENGAGE_DEFAULT_TIMELIMIT; 93 static int xpc_disengage_min_timelimit; /* = 0 */ 94 static int xpc_disengage_max_timelimit = 120; 95 96 static const struct ctl_table xpc_sys_xpc_hb[] = { 97 { 98 .procname = "hb_interval", 99 .data = &xpc_hb_interval, 100 .maxlen = sizeof(int), 101 .mode = 0644, 102 .proc_handler = proc_dointvec_minmax, 103 .extra1 = &xpc_hb_min_interval, 104 .extra2 = &xpc_hb_max_interval}, 105 { 106 .procname = "hb_check_interval", 107 .data = &xpc_hb_check_interval, 108 .maxlen = sizeof(int), 109 .mode = 0644, 110 .proc_handler = proc_dointvec_minmax, 111 .extra1 = &xpc_hb_check_min_interval, 112 .extra2 = &xpc_hb_check_max_interval}, 113 }; 114 static const struct ctl_table xpc_sys_xpc[] = { 115 { 116 .procname = "disengage_timelimit", 117 .data = &xpc_disengage_timelimit, 118 .maxlen = sizeof(int), 119 .mode = 0644, 120 .proc_handler = proc_dointvec_minmax, 121 .extra1 = &xpc_disengage_min_timelimit, 122 .extra2 = &xpc_disengage_max_timelimit}, 123 }; 124 125 static struct ctl_table_header *xpc_sysctl; 126 static struct ctl_table_header *xpc_sysctl_hb; 127 128 /* non-zero if any remote partition disengage was timed out */ 129 int xpc_disengage_timedout; 130 131 /* #of activate IRQs received and not yet processed */ 132 int xpc_activate_IRQ_rcvd; 133 DEFINE_SPINLOCK(xpc_activate_IRQ_rcvd_lock); 134 135 /* IRQ handler notifies this wait queue on receipt of an IRQ */ 136 DECLARE_WAIT_QUEUE_HEAD(xpc_activate_IRQ_wq); 137 138 static unsigned long xpc_hb_check_timeout; 139 static struct timer_list xpc_hb_timer; 140 141 /* notification that the xpc_hb_checker thread has exited */ 142 static DECLARE_COMPLETION(xpc_hb_checker_exited); 143 144 /* notification that the xpc_discovery thread has exited */ 145 static DECLARE_COMPLETION(xpc_discovery_exited); 146 147 static void xpc_kthread_waitmsgs(struct xpc_partition *, struct xpc_channel *); 148 149 static int xpc_system_reboot(struct notifier_block *, unsigned long, void *); 150 static struct notifier_block xpc_reboot_notifier = { 151 .notifier_call = xpc_system_reboot, 152 }; 153 154 static int xpc_system_die(struct notifier_block *, unsigned long, void *); 155 static struct notifier_block xpc_die_notifier = { 156 .notifier_call = xpc_system_die, 157 }; 158 159 struct xpc_arch_operations xpc_arch_ops; 160 161 /* 162 * Timer function to enforce the timelimit on the partition disengage. 163 */ 164 static void 165 xpc_timeout_partition_disengage(struct timer_list *t) 166 { 167 struct xpc_partition *part = timer_container_of(part, t, 168 disengage_timer); 169 170 DBUG_ON(time_is_after_jiffies(part->disengage_timeout)); 171 172 xpc_partition_disengaged_from_timer(part); 173 174 DBUG_ON(part->disengage_timeout != 0); 175 DBUG_ON(xpc_arch_ops.partition_engaged(XPC_PARTID(part))); 176 } 177 178 /* 179 * Timer to produce the heartbeat. The timer structures function is 180 * already set when this is initially called. A tunable is used to 181 * specify when the next timeout should occur. 182 */ 183 static void 184 xpc_hb_beater(struct timer_list *unused) 185 { 186 xpc_arch_ops.increment_heartbeat(); 187 188 if (time_is_before_eq_jiffies(xpc_hb_check_timeout)) 189 wake_up_interruptible(&xpc_activate_IRQ_wq); 190 191 xpc_hb_timer.expires = jiffies + (xpc_hb_interval * HZ); 192 add_timer(&xpc_hb_timer); 193 } 194 195 static void 196 xpc_start_hb_beater(void) 197 { 198 xpc_arch_ops.heartbeat_init(); 199 timer_setup(&xpc_hb_timer, xpc_hb_beater, 0); 200 xpc_hb_beater(NULL); 201 } 202 203 static void 204 xpc_stop_hb_beater(void) 205 { 206 timer_delete_sync(&xpc_hb_timer); 207 xpc_arch_ops.heartbeat_exit(); 208 } 209 210 /* 211 * At periodic intervals, scan through all active partitions and ensure 212 * their heartbeat is still active. If not, the partition is deactivated. 213 */ 214 static void 215 xpc_check_remote_hb(void) 216 { 217 struct xpc_partition *part; 218 short partid; 219 enum xp_retval ret; 220 221 for (partid = 0; partid < xp_max_npartitions; partid++) { 222 223 if (xpc_exiting) 224 break; 225 226 if (partid == xp_partition_id) 227 continue; 228 229 part = &xpc_partitions[partid]; 230 231 if (part->act_state == XPC_P_AS_INACTIVE || 232 part->act_state == XPC_P_AS_DEACTIVATING) { 233 continue; 234 } 235 236 ret = xpc_arch_ops.get_remote_heartbeat(part); 237 if (ret != xpSuccess) 238 XPC_DEACTIVATE_PARTITION(part, ret); 239 } 240 } 241 242 /* 243 * This thread is responsible for nearly all of the partition 244 * activation/deactivation. 245 */ 246 static int 247 xpc_hb_checker(void *ignore) 248 { 249 int force_IRQ = 0; 250 251 /* this thread was marked active by xpc_hb_init() */ 252 253 set_cpus_allowed_ptr(current, cpumask_of(XPC_HB_CHECK_CPU)); 254 255 /* set our heartbeating to other partitions into motion */ 256 xpc_hb_check_timeout = jiffies + (xpc_hb_check_interval * HZ); 257 xpc_start_hb_beater(); 258 259 while (!xpc_exiting) { 260 261 dev_dbg(xpc_part, "woke up with %d ticks rem; %d IRQs have " 262 "been received\n", 263 (int)(xpc_hb_check_timeout - jiffies), 264 xpc_activate_IRQ_rcvd); 265 266 /* checking of remote heartbeats is skewed by IRQ handling */ 267 if (time_is_before_eq_jiffies(xpc_hb_check_timeout)) { 268 xpc_hb_check_timeout = jiffies + 269 (xpc_hb_check_interval * HZ); 270 271 dev_dbg(xpc_part, "checking remote heartbeats\n"); 272 xpc_check_remote_hb(); 273 } 274 275 /* check for outstanding IRQs */ 276 if (xpc_activate_IRQ_rcvd > 0 || force_IRQ != 0) { 277 force_IRQ = 0; 278 dev_dbg(xpc_part, "processing activate IRQs " 279 "received\n"); 280 xpc_arch_ops.process_activate_IRQ_rcvd(); 281 } 282 283 /* wait for IRQ or timeout */ 284 (void)wait_event_interruptible(xpc_activate_IRQ_wq, 285 (time_is_before_eq_jiffies( 286 xpc_hb_check_timeout) || 287 xpc_activate_IRQ_rcvd > 0 || 288 xpc_exiting)); 289 } 290 291 xpc_stop_hb_beater(); 292 293 dev_dbg(xpc_part, "heartbeat checker is exiting\n"); 294 295 /* mark this thread as having exited */ 296 complete(&xpc_hb_checker_exited); 297 return 0; 298 } 299 300 /* 301 * This thread will attempt to discover other partitions to activate 302 * based on info provided by SAL. This new thread is short lived and 303 * will exit once discovery is complete. 304 */ 305 static int 306 xpc_initiate_discovery(void *ignore) 307 { 308 xpc_discovery(); 309 310 dev_dbg(xpc_part, "discovery thread is exiting\n"); 311 312 /* mark this thread as having exited */ 313 complete(&xpc_discovery_exited); 314 return 0; 315 } 316 317 /* 318 * The first kthread assigned to a newly activated partition is the one 319 * created by XPC HB with which it calls xpc_activating(). XPC hangs on to 320 * that kthread until the partition is brought down, at which time that kthread 321 * returns back to XPC HB. (The return of that kthread will signify to XPC HB 322 * that XPC has dismantled all communication infrastructure for the associated 323 * partition.) This kthread becomes the channel manager for that partition. 324 * 325 * Each active partition has a channel manager, who, besides connecting and 326 * disconnecting channels, will ensure that each of the partition's connected 327 * channels has the required number of assigned kthreads to get the work done. 328 */ 329 static void 330 xpc_channel_mgr(struct xpc_partition *part) 331 { 332 while (part->act_state != XPC_P_AS_DEACTIVATING || 333 atomic_read(&part->nchannels_active) > 0 || 334 !xpc_partition_disengaged(part)) { 335 336 xpc_process_sent_chctl_flags(part); 337 338 /* 339 * Wait until we've been requested to activate kthreads or 340 * all of the channel's message queues have been torn down or 341 * a signal is pending. 342 * 343 * The channel_mgr_requests is set to 1 after being awakened, 344 * This is done to prevent the channel mgr from making one pass 345 * through the loop for each request, since he will 346 * be servicing all the requests in one pass. The reason it's 347 * set to 1 instead of 0 is so that other kthreads will know 348 * that the channel mgr is running and won't bother trying to 349 * wake him up. 350 */ 351 atomic_dec(&part->channel_mgr_requests); 352 (void)wait_event_interruptible(part->channel_mgr_wq, 353 (atomic_read(&part->channel_mgr_requests) > 0 || 354 part->chctl.all_flags != 0 || 355 (part->act_state == XPC_P_AS_DEACTIVATING && 356 atomic_read(&part->nchannels_active) == 0 && 357 xpc_partition_disengaged(part)))); 358 atomic_set(&part->channel_mgr_requests, 1); 359 } 360 } 361 362 /* 363 * Guarantee that the kzalloc'd memory is cacheline aligned. 364 */ 365 void * 366 xpc_kzalloc_cacheline_aligned(size_t size, gfp_t flags, void **base) 367 { 368 /* see if kzalloc will give us cachline aligned memory by default */ 369 *base = kzalloc(size, flags); 370 if (*base == NULL) 371 return NULL; 372 373 if ((u64)*base == L1_CACHE_ALIGN((u64)*base)) 374 return *base; 375 376 kfree(*base); 377 378 /* nope, we'll have to do it ourselves */ 379 *base = kzalloc(size + L1_CACHE_BYTES, flags); 380 if (*base == NULL) 381 return NULL; 382 383 return (void *)L1_CACHE_ALIGN((u64)*base); 384 } 385 386 /* 387 * Setup the channel structures necessary to support XPartition Communication 388 * between the specified remote partition and the local one. 389 */ 390 static enum xp_retval 391 xpc_setup_ch_structures(struct xpc_partition *part) 392 { 393 enum xp_retval ret; 394 int ch_number; 395 struct xpc_channel *ch; 396 short partid = XPC_PARTID(part); 397 398 /* 399 * Allocate all of the channel structures as a contiguous chunk of 400 * memory. 401 */ 402 DBUG_ON(part->channels != NULL); 403 part->channels = kcalloc(XPC_MAX_NCHANNELS, 404 sizeof(struct xpc_channel), 405 GFP_KERNEL); 406 if (part->channels == NULL) { 407 dev_err(xpc_chan, "can't get memory for channels\n"); 408 return xpNoMemory; 409 } 410 411 /* allocate the remote open and close args */ 412 413 part->remote_openclose_args = 414 xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE, 415 GFP_KERNEL, &part-> 416 remote_openclose_args_base); 417 if (part->remote_openclose_args == NULL) { 418 dev_err(xpc_chan, "can't get memory for remote connect args\n"); 419 ret = xpNoMemory; 420 goto out_1; 421 } 422 423 part->chctl.all_flags = 0; 424 spin_lock_init(&part->chctl_lock); 425 426 atomic_set(&part->channel_mgr_requests, 1); 427 init_waitqueue_head(&part->channel_mgr_wq); 428 429 part->nchannels = XPC_MAX_NCHANNELS; 430 431 atomic_set(&part->nchannels_active, 0); 432 atomic_set(&part->nchannels_engaged, 0); 433 434 for (ch_number = 0; ch_number < part->nchannels; ch_number++) { 435 ch = &part->channels[ch_number]; 436 437 ch->partid = partid; 438 ch->number = ch_number; 439 ch->flags = XPC_C_DISCONNECTED; 440 441 atomic_set(&ch->kthreads_assigned, 0); 442 atomic_set(&ch->kthreads_idle, 0); 443 atomic_set(&ch->kthreads_active, 0); 444 445 atomic_set(&ch->references, 0); 446 atomic_set(&ch->n_to_notify, 0); 447 448 spin_lock_init(&ch->lock); 449 init_completion(&ch->wdisconnect_wait); 450 451 atomic_set(&ch->n_on_msg_allocate_wq, 0); 452 init_waitqueue_head(&ch->msg_allocate_wq); 453 init_waitqueue_head(&ch->idle_wq); 454 } 455 456 ret = xpc_arch_ops.setup_ch_structures(part); 457 if (ret != xpSuccess) 458 goto out_2; 459 460 /* 461 * With the setting of the partition setup_state to XPC_P_SS_SETUP, 462 * we're declaring that this partition is ready to go. 463 */ 464 part->setup_state = XPC_P_SS_SETUP; 465 466 return xpSuccess; 467 468 /* setup of ch structures failed */ 469 out_2: 470 kfree(part->remote_openclose_args_base); 471 part->remote_openclose_args = NULL; 472 out_1: 473 kfree(part->channels); 474 part->channels = NULL; 475 return ret; 476 } 477 478 /* 479 * Teardown the channel structures necessary to support XPartition Communication 480 * between the specified remote partition and the local one. 481 */ 482 static void 483 xpc_teardown_ch_structures(struct xpc_partition *part) 484 { 485 DBUG_ON(atomic_read(&part->nchannels_engaged) != 0); 486 DBUG_ON(atomic_read(&part->nchannels_active) != 0); 487 488 /* 489 * Make this partition inaccessible to local processes by marking it 490 * as no longer setup. Then wait before proceeding with the teardown 491 * until all existing references cease. 492 */ 493 DBUG_ON(part->setup_state != XPC_P_SS_SETUP); 494 part->setup_state = XPC_P_SS_WTEARDOWN; 495 496 wait_event(part->teardown_wq, (atomic_read(&part->references) == 0)); 497 498 /* now we can begin tearing down the infrastructure */ 499 500 xpc_arch_ops.teardown_ch_structures(part); 501 502 kfree(part->remote_openclose_args_base); 503 part->remote_openclose_args = NULL; 504 kfree(part->channels); 505 part->channels = NULL; 506 507 part->setup_state = XPC_P_SS_TORNDOWN; 508 } 509 510 /* 511 * When XPC HB determines that a partition has come up, it will create a new 512 * kthread and that kthread will call this function to attempt to set up the 513 * basic infrastructure used for Cross Partition Communication with the newly 514 * upped partition. 515 * 516 * The kthread that was created by XPC HB and which setup the XPC 517 * infrastructure will remain assigned to the partition becoming the channel 518 * manager for that partition until the partition is deactivating, at which 519 * time the kthread will teardown the XPC infrastructure and then exit. 520 */ 521 static int 522 xpc_activating(void *__partid) 523 { 524 short partid = (u64)__partid; 525 struct xpc_partition *part = &xpc_partitions[partid]; 526 unsigned long irq_flags; 527 528 DBUG_ON(partid < 0 || partid >= xp_max_npartitions); 529 530 spin_lock_irqsave(&part->act_lock, irq_flags); 531 532 if (part->act_state == XPC_P_AS_DEACTIVATING) { 533 part->act_state = XPC_P_AS_INACTIVE; 534 spin_unlock_irqrestore(&part->act_lock, irq_flags); 535 part->remote_rp_pa = 0; 536 return 0; 537 } 538 539 /* indicate the thread is activating */ 540 DBUG_ON(part->act_state != XPC_P_AS_ACTIVATION_REQ); 541 part->act_state = XPC_P_AS_ACTIVATING; 542 543 XPC_SET_REASON(part, 0, 0); 544 spin_unlock_irqrestore(&part->act_lock, irq_flags); 545 546 dev_dbg(xpc_part, "activating partition %d\n", partid); 547 548 xpc_arch_ops.allow_hb(partid); 549 550 if (xpc_setup_ch_structures(part) == xpSuccess) { 551 (void)xpc_part_ref(part); /* this will always succeed */ 552 553 if (xpc_arch_ops.make_first_contact(part) == xpSuccess) { 554 xpc_mark_partition_active(part); 555 xpc_channel_mgr(part); 556 /* won't return until partition is deactivating */ 557 } 558 559 xpc_part_deref(part); 560 xpc_teardown_ch_structures(part); 561 } 562 563 xpc_arch_ops.disallow_hb(partid); 564 xpc_mark_partition_inactive(part); 565 566 if (part->reason == xpReactivating) { 567 /* interrupting ourselves results in activating partition */ 568 xpc_arch_ops.request_partition_reactivation(part); 569 } 570 571 return 0; 572 } 573 574 void 575 xpc_activate_partition(struct xpc_partition *part) 576 { 577 short partid = XPC_PARTID(part); 578 unsigned long irq_flags; 579 struct task_struct *kthread; 580 581 spin_lock_irqsave(&part->act_lock, irq_flags); 582 583 DBUG_ON(part->act_state != XPC_P_AS_INACTIVE); 584 585 part->act_state = XPC_P_AS_ACTIVATION_REQ; 586 XPC_SET_REASON(part, xpCloneKThread, __LINE__); 587 588 spin_unlock_irqrestore(&part->act_lock, irq_flags); 589 590 kthread = kthread_run(xpc_activating, (void *)((u64)partid), "xpc%02d", 591 partid); 592 if (IS_ERR(kthread)) { 593 spin_lock_irqsave(&part->act_lock, irq_flags); 594 part->act_state = XPC_P_AS_INACTIVE; 595 XPC_SET_REASON(part, xpCloneKThreadFailed, __LINE__); 596 spin_unlock_irqrestore(&part->act_lock, irq_flags); 597 } 598 } 599 600 void 601 xpc_activate_kthreads(struct xpc_channel *ch, int needed) 602 { 603 int idle = atomic_read(&ch->kthreads_idle); 604 int assigned = atomic_read(&ch->kthreads_assigned); 605 int wakeup; 606 607 DBUG_ON(needed <= 0); 608 609 if (idle > 0) { 610 wakeup = (needed > idle) ? idle : needed; 611 needed -= wakeup; 612 613 dev_dbg(xpc_chan, "wakeup %d idle kthreads, partid=%d, " 614 "channel=%d\n", wakeup, ch->partid, ch->number); 615 616 /* only wakeup the requested number of kthreads */ 617 wake_up_nr(&ch->idle_wq, wakeup); 618 } 619 620 if (needed <= 0) 621 return; 622 623 if (needed + assigned > ch->kthreads_assigned_limit) { 624 needed = ch->kthreads_assigned_limit - assigned; 625 if (needed <= 0) 626 return; 627 } 628 629 dev_dbg(xpc_chan, "create %d new kthreads, partid=%d, channel=%d\n", 630 needed, ch->partid, ch->number); 631 632 xpc_create_kthreads(ch, needed, 0); 633 } 634 635 /* 636 * This function is where XPC's kthreads wait for messages to deliver. 637 */ 638 static void 639 xpc_kthread_waitmsgs(struct xpc_partition *part, struct xpc_channel *ch) 640 { 641 int (*n_of_deliverable_payloads) (struct xpc_channel *) = 642 xpc_arch_ops.n_of_deliverable_payloads; 643 644 do { 645 /* deliver messages to their intended recipients */ 646 647 while (n_of_deliverable_payloads(ch) > 0 && 648 !(ch->flags & XPC_C_DISCONNECTING)) { 649 xpc_deliver_payload(ch); 650 } 651 652 if (atomic_inc_return(&ch->kthreads_idle) > 653 ch->kthreads_idle_limit) { 654 /* too many idle kthreads on this channel */ 655 atomic_dec(&ch->kthreads_idle); 656 break; 657 } 658 659 dev_dbg(xpc_chan, "idle kthread calling " 660 "wait_event_interruptible_exclusive()\n"); 661 662 (void)wait_event_interruptible_exclusive(ch->idle_wq, 663 (n_of_deliverable_payloads(ch) > 0 || 664 (ch->flags & XPC_C_DISCONNECTING))); 665 666 atomic_dec(&ch->kthreads_idle); 667 668 } while (!(ch->flags & XPC_C_DISCONNECTING)); 669 } 670 671 static int 672 xpc_kthread_start(void *args) 673 { 674 short partid = XPC_UNPACK_ARG1(args); 675 u16 ch_number = XPC_UNPACK_ARG2(args); 676 struct xpc_partition *part = &xpc_partitions[partid]; 677 struct xpc_channel *ch; 678 int n_needed; 679 unsigned long irq_flags; 680 int (*n_of_deliverable_payloads) (struct xpc_channel *) = 681 xpc_arch_ops.n_of_deliverable_payloads; 682 683 dev_dbg(xpc_chan, "kthread starting, partid=%d, channel=%d\n", 684 partid, ch_number); 685 686 ch = &part->channels[ch_number]; 687 688 if (!(ch->flags & XPC_C_DISCONNECTING)) { 689 690 /* let registerer know that connection has been established */ 691 692 spin_lock_irqsave(&ch->lock, irq_flags); 693 if (!(ch->flags & XPC_C_CONNECTEDCALLOUT)) { 694 ch->flags |= XPC_C_CONNECTEDCALLOUT; 695 spin_unlock_irqrestore(&ch->lock, irq_flags); 696 697 xpc_connected_callout(ch); 698 699 spin_lock_irqsave(&ch->lock, irq_flags); 700 ch->flags |= XPC_C_CONNECTEDCALLOUT_MADE; 701 spin_unlock_irqrestore(&ch->lock, irq_flags); 702 703 /* 704 * It is possible that while the callout was being 705 * made that the remote partition sent some messages. 706 * If that is the case, we may need to activate 707 * additional kthreads to help deliver them. We only 708 * need one less than total #of messages to deliver. 709 */ 710 n_needed = n_of_deliverable_payloads(ch) - 1; 711 if (n_needed > 0 && !(ch->flags & XPC_C_DISCONNECTING)) 712 xpc_activate_kthreads(ch, n_needed); 713 714 } else { 715 spin_unlock_irqrestore(&ch->lock, irq_flags); 716 } 717 718 xpc_kthread_waitmsgs(part, ch); 719 } 720 721 /* let registerer know that connection is disconnecting */ 722 723 spin_lock_irqsave(&ch->lock, irq_flags); 724 if ((ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) && 725 !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) { 726 ch->flags |= XPC_C_DISCONNECTINGCALLOUT; 727 spin_unlock_irqrestore(&ch->lock, irq_flags); 728 729 xpc_disconnect_callout(ch, xpDisconnecting); 730 731 spin_lock_irqsave(&ch->lock, irq_flags); 732 ch->flags |= XPC_C_DISCONNECTINGCALLOUT_MADE; 733 } 734 spin_unlock_irqrestore(&ch->lock, irq_flags); 735 736 if (atomic_dec_return(&ch->kthreads_assigned) == 0 && 737 atomic_dec_return(&part->nchannels_engaged) == 0) { 738 xpc_arch_ops.indicate_partition_disengaged(part); 739 } 740 741 xpc_msgqueue_deref(ch); 742 743 dev_dbg(xpc_chan, "kthread exiting, partid=%d, channel=%d\n", 744 partid, ch_number); 745 746 xpc_part_deref(part); 747 return 0; 748 } 749 750 /* 751 * For each partition that XPC has established communications with, there is 752 * a minimum of one kernel thread assigned to perform any operation that 753 * may potentially sleep or block (basically the callouts to the asynchronous 754 * functions registered via xpc_connect()). 755 * 756 * Additional kthreads are created and destroyed by XPC as the workload 757 * demands. 758 * 759 * A kthread is assigned to one of the active channels that exists for a given 760 * partition. 761 */ 762 void 763 xpc_create_kthreads(struct xpc_channel *ch, int needed, 764 int ignore_disconnecting) 765 { 766 unsigned long irq_flags; 767 u64 args = XPC_PACK_ARGS(ch->partid, ch->number); 768 struct xpc_partition *part = &xpc_partitions[ch->partid]; 769 struct task_struct *kthread; 770 void (*indicate_partition_disengaged) (struct xpc_partition *) = 771 xpc_arch_ops.indicate_partition_disengaged; 772 773 while (needed-- > 0) { 774 775 /* 776 * The following is done on behalf of the newly created 777 * kthread. That kthread is responsible for doing the 778 * counterpart to the following before it exits. 779 */ 780 if (ignore_disconnecting) { 781 if (!atomic_inc_not_zero(&ch->kthreads_assigned)) { 782 /* kthreads assigned had gone to zero */ 783 BUG_ON(!(ch->flags & 784 XPC_C_DISCONNECTINGCALLOUT_MADE)); 785 break; 786 } 787 788 } else if (ch->flags & XPC_C_DISCONNECTING) { 789 break; 790 791 } else if (atomic_inc_return(&ch->kthreads_assigned) == 1 && 792 atomic_inc_return(&part->nchannels_engaged) == 1) { 793 xpc_arch_ops.indicate_partition_engaged(part); 794 } 795 (void)xpc_part_ref(part); 796 xpc_msgqueue_ref(ch); 797 798 kthread = kthread_run(xpc_kthread_start, (void *)args, 799 "xpc%02dc%d", ch->partid, ch->number); 800 if (IS_ERR(kthread)) { 801 /* the fork failed */ 802 803 /* 804 * NOTE: if (ignore_disconnecting && 805 * !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) is true, 806 * then we'll deadlock if all other kthreads assigned 807 * to this channel are blocked in the channel's 808 * registerer, because the only thing that will unblock 809 * them is the xpDisconnecting callout that this 810 * failed kthread_run() would have made. 811 */ 812 813 if (atomic_dec_return(&ch->kthreads_assigned) == 0 && 814 atomic_dec_return(&part->nchannels_engaged) == 0) { 815 indicate_partition_disengaged(part); 816 } 817 xpc_msgqueue_deref(ch); 818 xpc_part_deref(part); 819 820 if (atomic_read(&ch->kthreads_assigned) < 821 ch->kthreads_idle_limit) { 822 /* 823 * Flag this as an error only if we have an 824 * insufficient #of kthreads for the channel 825 * to function. 826 */ 827 spin_lock_irqsave(&ch->lock, irq_flags); 828 XPC_DISCONNECT_CHANNEL(ch, xpLackOfResources, 829 &irq_flags); 830 spin_unlock_irqrestore(&ch->lock, irq_flags); 831 } 832 break; 833 } 834 } 835 } 836 837 void 838 xpc_disconnect_wait(int ch_number) 839 { 840 unsigned long irq_flags; 841 short partid; 842 struct xpc_partition *part; 843 struct xpc_channel *ch; 844 int wakeup_channel_mgr; 845 846 /* now wait for all callouts to the caller's function to cease */ 847 for (partid = 0; partid < xp_max_npartitions; partid++) { 848 part = &xpc_partitions[partid]; 849 850 if (!xpc_part_ref(part)) 851 continue; 852 853 ch = &part->channels[ch_number]; 854 855 if (!(ch->flags & XPC_C_WDISCONNECT)) { 856 xpc_part_deref(part); 857 continue; 858 } 859 860 wait_for_completion(&ch->wdisconnect_wait); 861 862 spin_lock_irqsave(&ch->lock, irq_flags); 863 DBUG_ON(!(ch->flags & XPC_C_DISCONNECTED)); 864 wakeup_channel_mgr = 0; 865 866 if (ch->delayed_chctl_flags) { 867 if (part->act_state != XPC_P_AS_DEACTIVATING) { 868 spin_lock(&part->chctl_lock); 869 part->chctl.flags[ch->number] |= 870 ch->delayed_chctl_flags; 871 spin_unlock(&part->chctl_lock); 872 wakeup_channel_mgr = 1; 873 } 874 ch->delayed_chctl_flags = 0; 875 } 876 877 ch->flags &= ~XPC_C_WDISCONNECT; 878 spin_unlock_irqrestore(&ch->lock, irq_flags); 879 880 if (wakeup_channel_mgr) 881 xpc_wakeup_channel_mgr(part); 882 883 xpc_part_deref(part); 884 } 885 } 886 887 static int 888 xpc_setup_partitions(void) 889 { 890 short partid; 891 struct xpc_partition *part; 892 893 xpc_partitions = kcalloc(xp_max_npartitions, 894 sizeof(struct xpc_partition), 895 GFP_KERNEL); 896 if (xpc_partitions == NULL) { 897 dev_err(xpc_part, "can't get memory for partition structure\n"); 898 return -ENOMEM; 899 } 900 901 /* 902 * The first few fields of each entry of xpc_partitions[] need to 903 * be initialized now so that calls to xpc_connect() and 904 * xpc_disconnect() can be made prior to the activation of any remote 905 * partition. NOTE THAT NONE OF THE OTHER FIELDS BELONGING TO THESE 906 * ENTRIES ARE MEANINGFUL UNTIL AFTER AN ENTRY'S CORRESPONDING 907 * PARTITION HAS BEEN ACTIVATED. 908 */ 909 for (partid = 0; partid < xp_max_npartitions; partid++) { 910 part = &xpc_partitions[partid]; 911 912 DBUG_ON((u64)part != L1_CACHE_ALIGN((u64)part)); 913 914 part->activate_IRQ_rcvd = 0; 915 spin_lock_init(&part->act_lock); 916 part->act_state = XPC_P_AS_INACTIVE; 917 XPC_SET_REASON(part, 0, 0); 918 919 timer_setup(&part->disengage_timer, 920 xpc_timeout_partition_disengage, 0); 921 922 part->setup_state = XPC_P_SS_UNSET; 923 init_waitqueue_head(&part->teardown_wq); 924 atomic_set(&part->references, 0); 925 } 926 927 return xpc_arch_ops.setup_partitions(); 928 } 929 930 static void 931 xpc_teardown_partitions(void) 932 { 933 xpc_arch_ops.teardown_partitions(); 934 kfree(xpc_partitions); 935 } 936 937 static void 938 xpc_do_exit(enum xp_retval reason) 939 { 940 short partid; 941 int active_part_count, printed_waiting_msg = 0; 942 struct xpc_partition *part; 943 unsigned long printmsg_time, disengage_timeout = 0; 944 945 /* a 'rmmod XPC' and a 'reboot' cannot both end up here together */ 946 DBUG_ON(xpc_exiting == 1); 947 948 /* 949 * Let the heartbeat checker thread and the discovery thread 950 * (if one is running) know that they should exit. Also wake up 951 * the heartbeat checker thread in case it's sleeping. 952 */ 953 xpc_exiting = 1; 954 wake_up_interruptible(&xpc_activate_IRQ_wq); 955 956 /* wait for the discovery thread to exit */ 957 wait_for_completion(&xpc_discovery_exited); 958 959 /* wait for the heartbeat checker thread to exit */ 960 wait_for_completion(&xpc_hb_checker_exited); 961 962 /* sleep for a 1/3 of a second or so */ 963 (void)msleep_interruptible(300); 964 965 /* wait for all partitions to become inactive */ 966 967 printmsg_time = jiffies + (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ); 968 xpc_disengage_timedout = 0; 969 970 do { 971 active_part_count = 0; 972 973 for (partid = 0; partid < xp_max_npartitions; partid++) { 974 part = &xpc_partitions[partid]; 975 976 if (xpc_partition_disengaged(part) && 977 part->act_state == XPC_P_AS_INACTIVE) { 978 continue; 979 } 980 981 active_part_count++; 982 983 XPC_DEACTIVATE_PARTITION(part, reason); 984 985 if (part->disengage_timeout > disengage_timeout) 986 disengage_timeout = part->disengage_timeout; 987 } 988 989 if (xpc_arch_ops.any_partition_engaged()) { 990 if (time_is_before_jiffies(printmsg_time)) { 991 dev_info(xpc_part, "waiting for remote " 992 "partitions to deactivate, timeout in " 993 "%ld seconds\n", (disengage_timeout - 994 jiffies) / HZ); 995 printmsg_time = jiffies + 996 (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ); 997 printed_waiting_msg = 1; 998 } 999 1000 } else if (active_part_count > 0) { 1001 if (printed_waiting_msg) { 1002 dev_info(xpc_part, "waiting for local partition" 1003 " to deactivate\n"); 1004 printed_waiting_msg = 0; 1005 } 1006 1007 } else { 1008 if (!xpc_disengage_timedout) { 1009 dev_info(xpc_part, "all partitions have " 1010 "deactivated\n"); 1011 } 1012 break; 1013 } 1014 1015 /* sleep for a 1/3 of a second or so */ 1016 (void)msleep_interruptible(300); 1017 1018 } while (1); 1019 1020 DBUG_ON(xpc_arch_ops.any_partition_engaged()); 1021 1022 xpc_teardown_rsvd_page(); 1023 1024 if (reason == xpUnloading) { 1025 (void)unregister_die_notifier(&xpc_die_notifier); 1026 (void)unregister_reboot_notifier(&xpc_reboot_notifier); 1027 } 1028 1029 /* clear the interface to XPC's functions */ 1030 xpc_clear_interface(); 1031 1032 if (xpc_sysctl) 1033 unregister_sysctl_table(xpc_sysctl); 1034 if (xpc_sysctl_hb) 1035 unregister_sysctl_table(xpc_sysctl_hb); 1036 1037 xpc_teardown_partitions(); 1038 1039 if (is_uv_system()) 1040 xpc_exit_uv(); 1041 } 1042 1043 /* 1044 * This function is called when the system is being rebooted. 1045 */ 1046 static int 1047 xpc_system_reboot(struct notifier_block *nb, unsigned long event, void *unused) 1048 { 1049 enum xp_retval reason; 1050 1051 switch (event) { 1052 case SYS_RESTART: 1053 reason = xpSystemReboot; 1054 break; 1055 case SYS_HALT: 1056 reason = xpSystemHalt; 1057 break; 1058 case SYS_POWER_OFF: 1059 reason = xpSystemPoweroff; 1060 break; 1061 default: 1062 reason = xpSystemGoingDown; 1063 } 1064 1065 xpc_do_exit(reason); 1066 return NOTIFY_DONE; 1067 } 1068 1069 /* Used to only allow one cpu to complete disconnect */ 1070 static unsigned int xpc_die_disconnecting; 1071 1072 /* 1073 * Notify other partitions to deactivate from us by first disengaging from all 1074 * references to our memory. 1075 */ 1076 static void 1077 xpc_die_deactivate(void) 1078 { 1079 struct xpc_partition *part; 1080 short partid; 1081 int any_engaged; 1082 long keep_waiting; 1083 long wait_to_print; 1084 1085 if (cmpxchg(&xpc_die_disconnecting, 0, 1)) 1086 return; 1087 1088 /* keep xpc_hb_checker thread from doing anything (just in case) */ 1089 xpc_exiting = 1; 1090 1091 xpc_arch_ops.disallow_all_hbs(); /*indicate we're deactivated */ 1092 1093 for (partid = 0; partid < xp_max_npartitions; partid++) { 1094 part = &xpc_partitions[partid]; 1095 1096 if (xpc_arch_ops.partition_engaged(partid) || 1097 part->act_state != XPC_P_AS_INACTIVE) { 1098 xpc_arch_ops.request_partition_deactivation(part); 1099 xpc_arch_ops.indicate_partition_disengaged(part); 1100 } 1101 } 1102 1103 /* 1104 * Though we requested that all other partitions deactivate from us, 1105 * we only wait until they've all disengaged or we've reached the 1106 * defined timelimit. 1107 * 1108 * Given that one iteration through the following while-loop takes 1109 * approximately 200 microseconds, calculate the #of loops to take 1110 * before bailing and the #of loops before printing a waiting message. 1111 */ 1112 keep_waiting = xpc_disengage_timelimit * 1000 * 5; 1113 wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL * 1000 * 5; 1114 1115 while (1) { 1116 any_engaged = xpc_arch_ops.any_partition_engaged(); 1117 if (!any_engaged) { 1118 dev_info(xpc_part, "all partitions have deactivated\n"); 1119 break; 1120 } 1121 1122 if (!keep_waiting--) { 1123 for (partid = 0; partid < xp_max_npartitions; 1124 partid++) { 1125 if (xpc_arch_ops.partition_engaged(partid)) { 1126 dev_info(xpc_part, "deactivate from " 1127 "remote partition %d timed " 1128 "out\n", partid); 1129 } 1130 } 1131 break; 1132 } 1133 1134 if (!wait_to_print--) { 1135 dev_info(xpc_part, "waiting for remote partitions to " 1136 "deactivate, timeout in %ld seconds\n", 1137 keep_waiting / (1000 * 5)); 1138 wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL * 1139 1000 * 5; 1140 } 1141 1142 udelay(200); 1143 } 1144 } 1145 1146 /* 1147 * This function is called when the system is being restarted or halted due 1148 * to some sort of system failure. If this is the case we need to notify the 1149 * other partitions to disengage from all references to our memory. 1150 * This function can also be called when our heartbeater could be offlined 1151 * for a time. In this case we need to notify other partitions to not worry 1152 * about the lack of a heartbeat. 1153 */ 1154 static int 1155 xpc_system_die(struct notifier_block *nb, unsigned long event, void *_die_args) 1156 { 1157 struct die_args *die_args = _die_args; 1158 1159 switch (event) { 1160 case DIE_TRAP: 1161 if (die_args->trapnr == X86_TRAP_DF) 1162 xpc_die_deactivate(); 1163 1164 if (((die_args->trapnr == X86_TRAP_MF) || 1165 (die_args->trapnr == X86_TRAP_XF)) && 1166 !user_mode(die_args->regs)) 1167 xpc_die_deactivate(); 1168 1169 break; 1170 case DIE_INT3: 1171 case DIE_DEBUG: 1172 break; 1173 case DIE_OOPS: 1174 case DIE_GPF: 1175 default: 1176 xpc_die_deactivate(); 1177 } 1178 1179 return NOTIFY_DONE; 1180 } 1181 1182 static int __init 1183 xpc_init(void) 1184 { 1185 int ret; 1186 struct task_struct *kthread; 1187 1188 dev_set_name(xpc_part, "part"); 1189 dev_set_name(xpc_chan, "chan"); 1190 1191 if (is_uv_system()) { 1192 ret = xpc_init_uv(); 1193 1194 } else { 1195 ret = -ENODEV; 1196 } 1197 1198 if (ret != 0) 1199 return ret; 1200 1201 ret = xpc_setup_partitions(); 1202 if (ret != 0) { 1203 dev_err(xpc_part, "can't get memory for partition structure\n"); 1204 goto out_1; 1205 } 1206 1207 xpc_sysctl = register_sysctl("xpc", xpc_sys_xpc); 1208 xpc_sysctl_hb = register_sysctl("xpc/hb", xpc_sys_xpc_hb); 1209 1210 /* 1211 * Fill the partition reserved page with the information needed by 1212 * other partitions to discover we are alive and establish initial 1213 * communications. 1214 */ 1215 ret = xpc_setup_rsvd_page(); 1216 if (ret != 0) { 1217 dev_err(xpc_part, "can't setup our reserved page\n"); 1218 goto out_2; 1219 } 1220 1221 /* add ourselves to the reboot_notifier_list */ 1222 ret = register_reboot_notifier(&xpc_reboot_notifier); 1223 if (ret != 0) 1224 dev_warn(xpc_part, "can't register reboot notifier\n"); 1225 1226 /* add ourselves to the die_notifier list */ 1227 ret = register_die_notifier(&xpc_die_notifier); 1228 if (ret != 0) 1229 dev_warn(xpc_part, "can't register die notifier\n"); 1230 1231 /* 1232 * The real work-horse behind xpc. This processes incoming 1233 * interrupts and monitors remote heartbeats. 1234 */ 1235 kthread = kthread_run(xpc_hb_checker, NULL, XPC_HB_CHECK_THREAD_NAME); 1236 if (IS_ERR(kthread)) { 1237 dev_err(xpc_part, "failed while forking hb check thread\n"); 1238 ret = -EBUSY; 1239 goto out_3; 1240 } 1241 1242 /* 1243 * Startup a thread that will attempt to discover other partitions to 1244 * activate based on info provided by SAL. This new thread is short 1245 * lived and will exit once discovery is complete. 1246 */ 1247 kthread = kthread_run(xpc_initiate_discovery, NULL, 1248 XPC_DISCOVERY_THREAD_NAME); 1249 if (IS_ERR(kthread)) { 1250 dev_err(xpc_part, "failed while forking discovery thread\n"); 1251 1252 /* mark this new thread as a non-starter */ 1253 complete(&xpc_discovery_exited); 1254 1255 xpc_do_exit(xpUnloading); 1256 return -EBUSY; 1257 } 1258 1259 /* set the interface to point at XPC's functions */ 1260 xpc_set_interface(xpc_initiate_connect, xpc_initiate_disconnect, 1261 xpc_initiate_send, xpc_initiate_send_notify, 1262 xpc_initiate_received, xpc_initiate_partid_to_nasids); 1263 1264 return 0; 1265 1266 /* initialization was not successful */ 1267 out_3: 1268 xpc_teardown_rsvd_page(); 1269 1270 (void)unregister_die_notifier(&xpc_die_notifier); 1271 (void)unregister_reboot_notifier(&xpc_reboot_notifier); 1272 out_2: 1273 if (xpc_sysctl_hb) 1274 unregister_sysctl_table(xpc_sysctl_hb); 1275 if (xpc_sysctl) 1276 unregister_sysctl_table(xpc_sysctl); 1277 1278 xpc_teardown_partitions(); 1279 out_1: 1280 if (is_uv_system()) 1281 xpc_exit_uv(); 1282 return ret; 1283 } 1284 1285 module_init(xpc_init); 1286 1287 static void __exit 1288 xpc_exit(void) 1289 { 1290 xpc_do_exit(xpUnloading); 1291 } 1292 1293 module_exit(xpc_exit); 1294 1295 MODULE_AUTHOR("Silicon Graphics, Inc."); 1296 MODULE_DESCRIPTION("Cross Partition Communication (XPC) support"); 1297 MODULE_LICENSE("GPL"); 1298 1299 module_param(xpc_hb_interval, int, 0); 1300 MODULE_PARM_DESC(xpc_hb_interval, "Number of seconds between " 1301 "heartbeat increments."); 1302 1303 module_param(xpc_hb_check_interval, int, 0); 1304 MODULE_PARM_DESC(xpc_hb_check_interval, "Number of seconds between " 1305 "heartbeat checks."); 1306 1307 module_param(xpc_disengage_timelimit, int, 0); 1308 MODULE_PARM_DESC(xpc_disengage_timelimit, "Number of seconds to wait " 1309 "for disengage to complete."); 1310 1311 module_param(xpc_kdebug_ignore, int, 0); 1312 MODULE_PARM_DESC(xpc_kdebug_ignore, "Should lack of heartbeat be ignored by " 1313 "other partitions when dropping into kdebug."); 1314