1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-core.h" 10 #include "dm-rq.h" 11 #include "dm-uevent.h" 12 #include "dm-ima.h" 13 14 #include <linux/bio-integrity.h> 15 #include <linux/init.h> 16 #include <linux/module.h> 17 #include <linux/mutex.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/signal.h> 20 #include <linux/blkpg.h> 21 #include <linux/bio.h> 22 #include <linux/mempool.h> 23 #include <linux/dax.h> 24 #include <linux/slab.h> 25 #include <linux/idr.h> 26 #include <linux/uio.h> 27 #include <linux/hdreg.h> 28 #include <linux/delay.h> 29 #include <linux/wait.h> 30 #include <linux/pr.h> 31 #include <linux/refcount.h> 32 #include <linux/part_stat.h> 33 #include <linux/blk-crypto.h> 34 #include <linux/blk-crypto-profile.h> 35 36 #define DM_MSG_PREFIX "core" 37 38 /* 39 * Cookies are numeric values sent with CHANGE and REMOVE 40 * uevents while resuming, removing or renaming the device. 41 */ 42 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 43 #define DM_COOKIE_LENGTH 24 44 45 /* 46 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying 47 * dm_io into one list, and reuse bio->bi_private as the list head. Before 48 * ending this fs bio, we will recover its ->bi_private. 49 */ 50 #define REQ_DM_POLL_LIST REQ_DRV 51 52 static const char *_name = DM_NAME; 53 54 static unsigned int major; 55 static unsigned int _major; 56 57 static DEFINE_IDR(_minor_idr); 58 59 static DEFINE_SPINLOCK(_minor_lock); 60 61 static void do_deferred_remove(struct work_struct *w); 62 63 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 64 65 static struct workqueue_struct *deferred_remove_workqueue; 66 67 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 68 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 69 70 void dm_issue_global_event(void) 71 { 72 atomic_inc(&dm_global_event_nr); 73 wake_up(&dm_global_eventq); 74 } 75 76 DEFINE_STATIC_KEY_FALSE(stats_enabled); 77 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled); 78 DEFINE_STATIC_KEY_FALSE(zoned_enabled); 79 80 /* 81 * One of these is allocated (on-stack) per original bio. 82 */ 83 struct clone_info { 84 struct dm_table *map; 85 struct bio *bio; 86 struct dm_io *io; 87 sector_t sector; 88 unsigned int sector_count; 89 bool is_abnormal_io:1; 90 bool submit_as_polled:1; 91 }; 92 93 static inline struct dm_target_io *clone_to_tio(struct bio *clone) 94 { 95 return container_of(clone, struct dm_target_io, clone); 96 } 97 98 void *dm_per_bio_data(struct bio *bio, size_t data_size) 99 { 100 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO)) 101 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size; 102 return (char *)bio - DM_IO_BIO_OFFSET - data_size; 103 } 104 EXPORT_SYMBOL_GPL(dm_per_bio_data); 105 106 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 107 { 108 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 109 110 if (io->magic == DM_IO_MAGIC) 111 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET); 112 BUG_ON(io->magic != DM_TIO_MAGIC); 113 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET); 114 } 115 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 116 117 unsigned int dm_bio_get_target_bio_nr(const struct bio *bio) 118 { 119 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 120 } 121 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 122 123 #define MINOR_ALLOCED ((void *)-1) 124 125 #define DM_NUMA_NODE NUMA_NO_NODE 126 static int dm_numa_node = DM_NUMA_NODE; 127 128 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE) 129 static int swap_bios = DEFAULT_SWAP_BIOS; 130 static int get_swap_bios(void) 131 { 132 int latch = READ_ONCE(swap_bios); 133 134 if (unlikely(latch <= 0)) 135 latch = DEFAULT_SWAP_BIOS; 136 return latch; 137 } 138 139 struct table_device { 140 struct list_head list; 141 refcount_t count; 142 struct dm_dev dm_dev; 143 }; 144 145 /* 146 * Bio-based DM's mempools' reserved IOs set by the user. 147 */ 148 #define RESERVED_BIO_BASED_IOS 16 149 static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 150 151 static int __dm_get_module_param_int(int *module_param, int min, int max) 152 { 153 int param = READ_ONCE(*module_param); 154 int modified_param = 0; 155 bool modified = true; 156 157 if (param < min) 158 modified_param = min; 159 else if (param > max) 160 modified_param = max; 161 else 162 modified = false; 163 164 if (modified) { 165 (void)cmpxchg(module_param, param, modified_param); 166 param = modified_param; 167 } 168 169 return param; 170 } 171 172 unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max) 173 { 174 unsigned int param = READ_ONCE(*module_param); 175 unsigned int modified_param = 0; 176 177 if (!param) 178 modified_param = def; 179 else if (param > max) 180 modified_param = max; 181 182 if (modified_param) { 183 (void)cmpxchg(module_param, param, modified_param); 184 param = modified_param; 185 } 186 187 return param; 188 } 189 190 unsigned int dm_get_reserved_bio_based_ios(void) 191 { 192 return __dm_get_module_param(&reserved_bio_based_ios, 193 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 194 } 195 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 196 197 static unsigned int dm_get_numa_node(void) 198 { 199 return __dm_get_module_param_int(&dm_numa_node, 200 DM_NUMA_NODE, num_online_nodes() - 1); 201 } 202 203 static int __init local_init(void) 204 { 205 int r; 206 207 r = dm_uevent_init(); 208 if (r) 209 return r; 210 211 deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0); 212 if (!deferred_remove_workqueue) { 213 r = -ENOMEM; 214 goto out_uevent_exit; 215 } 216 217 _major = major; 218 r = register_blkdev(_major, _name); 219 if (r < 0) 220 goto out_free_workqueue; 221 222 if (!_major) 223 _major = r; 224 225 return 0; 226 227 out_free_workqueue: 228 destroy_workqueue(deferred_remove_workqueue); 229 out_uevent_exit: 230 dm_uevent_exit(); 231 232 return r; 233 } 234 235 static void local_exit(void) 236 { 237 destroy_workqueue(deferred_remove_workqueue); 238 239 unregister_blkdev(_major, _name); 240 dm_uevent_exit(); 241 242 _major = 0; 243 244 DMINFO("cleaned up"); 245 } 246 247 static int (*_inits[])(void) __initdata = { 248 local_init, 249 dm_target_init, 250 dm_linear_init, 251 dm_stripe_init, 252 dm_io_init, 253 dm_kcopyd_init, 254 dm_interface_init, 255 dm_statistics_init, 256 }; 257 258 static void (*_exits[])(void) = { 259 local_exit, 260 dm_target_exit, 261 dm_linear_exit, 262 dm_stripe_exit, 263 dm_io_exit, 264 dm_kcopyd_exit, 265 dm_interface_exit, 266 dm_statistics_exit, 267 }; 268 269 static int __init dm_init(void) 270 { 271 const int count = ARRAY_SIZE(_inits); 272 int r, i; 273 274 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE)) 275 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled." 276 " Duplicate IMA measurements will not be recorded in the IMA log."); 277 #endif 278 279 for (i = 0; i < count; i++) { 280 r = _inits[i](); 281 if (r) 282 goto bad; 283 } 284 285 return 0; 286 bad: 287 while (i--) 288 _exits[i](); 289 290 return r; 291 } 292 293 static void __exit dm_exit(void) 294 { 295 int i = ARRAY_SIZE(_exits); 296 297 while (i--) 298 _exits[i](); 299 300 /* 301 * Should be empty by this point. 302 */ 303 idr_destroy(&_minor_idr); 304 } 305 306 /* 307 * Block device functions 308 */ 309 int dm_deleting_md(struct mapped_device *md) 310 { 311 return test_bit(DMF_DELETING, &md->flags); 312 } 313 314 static int dm_blk_open(struct gendisk *disk, blk_mode_t mode) 315 { 316 struct mapped_device *md; 317 318 spin_lock(&_minor_lock); 319 320 md = disk->private_data; 321 if (!md) 322 goto out; 323 324 if (test_bit(DMF_FREEING, &md->flags) || 325 dm_deleting_md(md)) { 326 md = NULL; 327 goto out; 328 } 329 330 dm_get(md); 331 atomic_inc(&md->open_count); 332 out: 333 spin_unlock(&_minor_lock); 334 335 return md ? 0 : -ENXIO; 336 } 337 338 static void dm_blk_close(struct gendisk *disk) 339 { 340 struct mapped_device *md; 341 342 spin_lock(&_minor_lock); 343 344 md = disk->private_data; 345 if (WARN_ON(!md)) 346 goto out; 347 348 if (atomic_dec_and_test(&md->open_count) && 349 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 350 queue_work(deferred_remove_workqueue, &deferred_remove_work); 351 352 dm_put(md); 353 out: 354 spin_unlock(&_minor_lock); 355 } 356 357 int dm_open_count(struct mapped_device *md) 358 { 359 return atomic_read(&md->open_count); 360 } 361 362 /* 363 * Guarantees nothing is using the device before it's deleted. 364 */ 365 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 366 { 367 int r = 0; 368 369 spin_lock(&_minor_lock); 370 371 if (dm_open_count(md)) { 372 r = -EBUSY; 373 if (mark_deferred) 374 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 375 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 376 r = -EEXIST; 377 else 378 set_bit(DMF_DELETING, &md->flags); 379 380 spin_unlock(&_minor_lock); 381 382 return r; 383 } 384 385 int dm_cancel_deferred_remove(struct mapped_device *md) 386 { 387 int r = 0; 388 389 spin_lock(&_minor_lock); 390 391 if (test_bit(DMF_DELETING, &md->flags)) 392 r = -EBUSY; 393 else 394 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 395 396 spin_unlock(&_minor_lock); 397 398 return r; 399 } 400 401 static void do_deferred_remove(struct work_struct *w) 402 { 403 dm_deferred_remove(); 404 } 405 406 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 407 { 408 struct mapped_device *md = bdev->bd_disk->private_data; 409 410 return dm_get_geometry(md, geo); 411 } 412 413 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 414 struct block_device **bdev, unsigned int cmd, 415 unsigned long arg, bool *forward) 416 { 417 struct dm_target *ti; 418 struct dm_table *map; 419 int r; 420 421 retry: 422 r = -ENOTTY; 423 map = dm_get_live_table(md, srcu_idx); 424 if (!map || !dm_table_get_size(map)) 425 return r; 426 427 /* We only support devices that have a single target */ 428 if (map->num_targets != 1) 429 return r; 430 431 ti = dm_table_get_target(map, 0); 432 if (!ti->type->prepare_ioctl) 433 return r; 434 435 if (dm_suspended_md(md)) 436 return -EAGAIN; 437 438 r = ti->type->prepare_ioctl(ti, bdev, cmd, arg, forward); 439 if (r == -ENOTCONN && *forward && !fatal_signal_pending(current)) { 440 dm_put_live_table(md, *srcu_idx); 441 fsleep(10000); 442 goto retry; 443 } 444 445 return r; 446 } 447 448 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 449 { 450 dm_put_live_table(md, srcu_idx); 451 } 452 453 static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode, 454 unsigned int cmd, unsigned long arg) 455 { 456 struct mapped_device *md = bdev->bd_disk->private_data; 457 int r, srcu_idx; 458 bool forward = true; 459 460 r = dm_prepare_ioctl(md, &srcu_idx, &bdev, cmd, arg, &forward); 461 if (!forward || r < 0) 462 goto out; 463 464 if (r > 0) { 465 /* 466 * Target determined this ioctl is being issued against a 467 * subset of the parent bdev; require extra privileges. 468 */ 469 if (!capable(CAP_SYS_RAWIO)) { 470 DMDEBUG_LIMIT( 471 "%s: sending ioctl %x to DM device without required privilege.", 472 current->comm, cmd); 473 r = -ENOIOCTLCMD; 474 goto out; 475 } 476 } 477 478 if (!bdev->bd_disk->fops->ioctl) 479 r = -ENOTTY; 480 else 481 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); 482 out: 483 dm_unprepare_ioctl(md, srcu_idx); 484 return r; 485 } 486 487 u64 dm_start_time_ns_from_clone(struct bio *bio) 488 { 489 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time); 490 } 491 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 492 493 static inline bool bio_is_flush_with_data(struct bio *bio) 494 { 495 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size); 496 } 497 498 static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio) 499 { 500 /* 501 * If REQ_PREFLUSH set, don't account payload, it will be 502 * submitted (and accounted) after this flush completes. 503 */ 504 if (bio_is_flush_with_data(bio)) 505 return 0; 506 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT))) 507 return io->sectors; 508 return bio_sectors(bio); 509 } 510 511 static void dm_io_acct(struct dm_io *io, bool end) 512 { 513 struct bio *bio = io->orig_bio; 514 515 if (dm_io_flagged(io, DM_IO_BLK_STAT)) { 516 if (!end) 517 bdev_start_io_acct(bio->bi_bdev, bio_op(bio), 518 io->start_time); 519 else 520 bdev_end_io_acct(bio->bi_bdev, bio_op(bio), 521 dm_io_sectors(io, bio), 522 io->start_time); 523 } 524 525 if (static_branch_unlikely(&stats_enabled) && 526 unlikely(dm_stats_used(&io->md->stats))) { 527 sector_t sector; 528 529 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT))) 530 sector = bio_end_sector(bio) - io->sector_offset; 531 else 532 sector = bio->bi_iter.bi_sector; 533 534 dm_stats_account_io(&io->md->stats, bio_data_dir(bio), 535 sector, dm_io_sectors(io, bio), 536 end, io->start_time, &io->stats_aux); 537 } 538 } 539 540 static void __dm_start_io_acct(struct dm_io *io) 541 { 542 dm_io_acct(io, false); 543 } 544 545 static void dm_start_io_acct(struct dm_io *io, struct bio *clone) 546 { 547 /* 548 * Ensure IO accounting is only ever started once. 549 */ 550 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 551 return; 552 553 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */ 554 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) { 555 dm_io_set_flag(io, DM_IO_ACCOUNTED); 556 } else { 557 unsigned long flags; 558 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */ 559 spin_lock_irqsave(&io->lock, flags); 560 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) { 561 spin_unlock_irqrestore(&io->lock, flags); 562 return; 563 } 564 dm_io_set_flag(io, DM_IO_ACCOUNTED); 565 spin_unlock_irqrestore(&io->lock, flags); 566 } 567 568 __dm_start_io_acct(io); 569 } 570 571 static void dm_end_io_acct(struct dm_io *io) 572 { 573 dm_io_acct(io, true); 574 } 575 576 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio, gfp_t gfp_mask) 577 { 578 struct dm_io *io; 579 struct dm_target_io *tio; 580 struct bio *clone; 581 582 clone = bio_alloc_clone(NULL, bio, gfp_mask, &md->mempools->io_bs); 583 if (unlikely(!clone)) 584 return NULL; 585 tio = clone_to_tio(clone); 586 tio->flags = 0; 587 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO); 588 tio->io = NULL; 589 590 io = container_of(tio, struct dm_io, tio); 591 io->magic = DM_IO_MAGIC; 592 io->status = BLK_STS_OK; 593 594 /* one ref is for submission, the other is for completion */ 595 atomic_set(&io->io_count, 2); 596 this_cpu_inc(*md->pending_io); 597 io->orig_bio = bio; 598 io->md = md; 599 spin_lock_init(&io->lock); 600 io->start_time = jiffies; 601 io->flags = 0; 602 if (blk_queue_io_stat(md->queue)) 603 dm_io_set_flag(io, DM_IO_BLK_STAT); 604 605 if (static_branch_unlikely(&stats_enabled) && 606 unlikely(dm_stats_used(&md->stats))) 607 dm_stats_record_start(&md->stats, &io->stats_aux); 608 609 return io; 610 } 611 612 static void free_io(struct dm_io *io) 613 { 614 bio_put(&io->tio.clone); 615 } 616 617 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti, 618 unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask) 619 { 620 struct mapped_device *md = ci->io->md; 621 struct dm_target_io *tio; 622 struct bio *clone; 623 624 if (!ci->io->tio.io) { 625 /* the dm_target_io embedded in ci->io is available */ 626 tio = &ci->io->tio; 627 /* alloc_io() already initialized embedded clone */ 628 clone = &tio->clone; 629 } else { 630 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask, 631 &md->mempools->bs); 632 if (!clone) 633 return NULL; 634 635 /* REQ_DM_POLL_LIST shouldn't be inherited */ 636 clone->bi_opf &= ~REQ_DM_POLL_LIST; 637 638 tio = clone_to_tio(clone); 639 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */ 640 } 641 642 tio->magic = DM_TIO_MAGIC; 643 tio->io = ci->io; 644 tio->ti = ti; 645 tio->target_bio_nr = target_bio_nr; 646 tio->len_ptr = len; 647 tio->old_sector = 0; 648 649 /* Set default bdev, but target must bio_set_dev() before issuing IO */ 650 clone->bi_bdev = md->disk->part0; 651 if (likely(ti != NULL) && unlikely(ti->needs_bio_set_dev)) 652 bio_set_dev(clone, md->disk->part0); 653 654 if (len) { 655 clone->bi_iter.bi_size = to_bytes(*len); 656 if (bio_integrity(clone)) 657 bio_integrity_trim(clone); 658 } 659 660 return clone; 661 } 662 663 static void free_tio(struct bio *clone) 664 { 665 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO)) 666 return; 667 bio_put(clone); 668 } 669 670 /* 671 * Add the bio to the list of deferred io. 672 */ 673 static void queue_io(struct mapped_device *md, struct bio *bio) 674 { 675 unsigned long flags; 676 677 spin_lock_irqsave(&md->deferred_lock, flags); 678 bio_list_add(&md->deferred, bio); 679 spin_unlock_irqrestore(&md->deferred_lock, flags); 680 queue_work(md->wq, &md->work); 681 } 682 683 /* 684 * Everyone (including functions in this file), should use this 685 * function to access the md->map field, and make sure they call 686 * dm_put_live_table() when finished. 687 */ 688 struct dm_table *dm_get_live_table(struct mapped_device *md, 689 int *srcu_idx) __acquires(md->io_barrier) 690 { 691 *srcu_idx = srcu_read_lock(&md->io_barrier); 692 693 return srcu_dereference(md->map, &md->io_barrier); 694 } 695 696 void dm_put_live_table(struct mapped_device *md, 697 int srcu_idx) __releases(md->io_barrier) 698 { 699 srcu_read_unlock(&md->io_barrier, srcu_idx); 700 } 701 702 void dm_sync_table(struct mapped_device *md) 703 { 704 synchronize_srcu(&md->io_barrier); 705 synchronize_rcu_expedited(); 706 } 707 708 /* 709 * A fast alternative to dm_get_live_table/dm_put_live_table. 710 * The caller must not block between these two functions. 711 */ 712 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 713 { 714 rcu_read_lock(); 715 return rcu_dereference(md->map); 716 } 717 718 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 719 { 720 rcu_read_unlock(); 721 } 722 723 static char *_dm_claim_ptr = "I belong to device-mapper"; 724 725 /* 726 * Open a table device so we can use it as a map destination. 727 */ 728 static struct table_device *open_table_device(struct mapped_device *md, 729 dev_t dev, blk_mode_t mode) 730 { 731 struct table_device *td; 732 struct file *bdev_file; 733 struct block_device *bdev; 734 u64 part_off; 735 int r; 736 737 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 738 if (!td) 739 return ERR_PTR(-ENOMEM); 740 refcount_set(&td->count, 1); 741 742 bdev_file = bdev_file_open_by_dev(dev, mode, _dm_claim_ptr, NULL); 743 if (IS_ERR(bdev_file)) { 744 r = PTR_ERR(bdev_file); 745 goto out_free_td; 746 } 747 748 bdev = file_bdev(bdev_file); 749 750 /* 751 * We can be called before the dm disk is added. In that case we can't 752 * register the holder relation here. It will be done once add_disk was 753 * called. 754 */ 755 if (md->disk->slave_dir) { 756 r = bd_link_disk_holder(bdev, md->disk); 757 if (r) 758 goto out_blkdev_put; 759 } 760 761 td->dm_dev.mode = mode; 762 td->dm_dev.bdev = bdev; 763 td->dm_dev.bdev_file = bdev_file; 764 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off, 765 NULL, NULL); 766 format_dev_t(td->dm_dev.name, dev); 767 list_add(&td->list, &md->table_devices); 768 return td; 769 770 out_blkdev_put: 771 __fput_sync(bdev_file); 772 out_free_td: 773 kfree(td); 774 return ERR_PTR(r); 775 } 776 777 /* 778 * Close a table device that we've been using. 779 */ 780 static void close_table_device(struct table_device *td, struct mapped_device *md) 781 { 782 if (md->disk->slave_dir) 783 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk); 784 785 /* Leverage async fput() if DMF_DEFERRED_REMOVE set */ 786 if (unlikely(test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 787 fput(td->dm_dev.bdev_file); 788 else 789 __fput_sync(td->dm_dev.bdev_file); 790 791 put_dax(td->dm_dev.dax_dev); 792 list_del(&td->list); 793 kfree(td); 794 } 795 796 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 797 blk_mode_t mode) 798 { 799 struct table_device *td; 800 801 list_for_each_entry(td, l, list) 802 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 803 return td; 804 805 return NULL; 806 } 807 808 int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode, 809 struct dm_dev **result) 810 { 811 struct table_device *td; 812 813 mutex_lock(&md->table_devices_lock); 814 td = find_table_device(&md->table_devices, dev, mode); 815 if (!td) { 816 td = open_table_device(md, dev, mode); 817 if (IS_ERR(td)) { 818 mutex_unlock(&md->table_devices_lock); 819 return PTR_ERR(td); 820 } 821 } else { 822 refcount_inc(&td->count); 823 } 824 mutex_unlock(&md->table_devices_lock); 825 826 *result = &td->dm_dev; 827 return 0; 828 } 829 830 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 831 { 832 struct table_device *td = container_of(d, struct table_device, dm_dev); 833 834 mutex_lock(&md->table_devices_lock); 835 if (refcount_dec_and_test(&td->count)) 836 close_table_device(td, md); 837 mutex_unlock(&md->table_devices_lock); 838 } 839 840 /* 841 * Get the geometry associated with a dm device 842 */ 843 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 844 { 845 *geo = md->geometry; 846 847 return 0; 848 } 849 850 /* 851 * Set the geometry of a device. 852 */ 853 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 854 { 855 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 856 857 if (geo->start > sz) { 858 DMERR("Start sector is beyond the geometry limits."); 859 return -EINVAL; 860 } 861 862 md->geometry = *geo; 863 864 return 0; 865 } 866 867 static int __noflush_suspending(struct mapped_device *md) 868 { 869 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 870 } 871 872 static void dm_requeue_add_io(struct dm_io *io, bool first_stage) 873 { 874 struct mapped_device *md = io->md; 875 876 if (first_stage) { 877 struct dm_io *next = md->requeue_list; 878 879 md->requeue_list = io; 880 io->next = next; 881 } else { 882 bio_list_add_head(&md->deferred, io->orig_bio); 883 } 884 } 885 886 static void dm_kick_requeue(struct mapped_device *md, bool first_stage) 887 { 888 if (first_stage) 889 queue_work(md->wq, &md->requeue_work); 890 else 891 queue_work(md->wq, &md->work); 892 } 893 894 /* 895 * Return true if the dm_io's original bio is requeued. 896 * io->status is updated with error if requeue disallowed. 897 */ 898 static bool dm_handle_requeue(struct dm_io *io, bool first_stage) 899 { 900 struct bio *bio = io->orig_bio; 901 bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE); 902 bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) && 903 (bio->bi_opf & REQ_POLLED)); 904 struct mapped_device *md = io->md; 905 bool requeued = false; 906 907 if (handle_requeue || handle_polled_eagain) { 908 unsigned long flags; 909 910 if (bio->bi_opf & REQ_POLLED) { 911 /* 912 * Upper layer won't help us poll split bio 913 * (io->orig_bio may only reflect a subset of the 914 * pre-split original) so clear REQ_POLLED. 915 */ 916 bio_clear_polled(bio); 917 } 918 919 /* 920 * Target requested pushing back the I/O or 921 * polled IO hit BLK_STS_AGAIN. 922 */ 923 spin_lock_irqsave(&md->deferred_lock, flags); 924 if ((__noflush_suspending(md) && 925 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) || 926 handle_polled_eagain || first_stage) { 927 dm_requeue_add_io(io, first_stage); 928 requeued = true; 929 } else { 930 /* 931 * noflush suspend was interrupted or this is 932 * a write to a zoned target. 933 */ 934 io->status = BLK_STS_IOERR; 935 } 936 spin_unlock_irqrestore(&md->deferred_lock, flags); 937 } 938 939 if (requeued) 940 dm_kick_requeue(md, first_stage); 941 942 return requeued; 943 } 944 945 static void __dm_io_complete(struct dm_io *io, bool first_stage) 946 { 947 struct bio *bio = io->orig_bio; 948 struct mapped_device *md = io->md; 949 blk_status_t io_error; 950 bool requeued; 951 952 requeued = dm_handle_requeue(io, first_stage); 953 if (requeued && first_stage) 954 return; 955 956 io_error = io->status; 957 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 958 dm_end_io_acct(io); 959 else if (!io_error) { 960 /* 961 * Must handle target that DM_MAPIO_SUBMITTED only to 962 * then bio_endio() rather than dm_submit_bio_remap() 963 */ 964 __dm_start_io_acct(io); 965 dm_end_io_acct(io); 966 } 967 free_io(io); 968 smp_wmb(); 969 this_cpu_dec(*md->pending_io); 970 971 /* nudge anyone waiting on suspend queue */ 972 if (unlikely(wq_has_sleeper(&md->wait))) 973 wake_up(&md->wait); 974 975 /* Return early if the original bio was requeued */ 976 if (requeued) 977 return; 978 979 if (bio_is_flush_with_data(bio)) { 980 /* 981 * Preflush done for flush with data, reissue 982 * without REQ_PREFLUSH. 983 */ 984 bio->bi_opf &= ~REQ_PREFLUSH; 985 queue_io(md, bio); 986 } else { 987 /* done with normal IO or empty flush */ 988 if (io_error) 989 bio->bi_status = io_error; 990 bio_endio(bio); 991 } 992 } 993 994 static void dm_wq_requeue_work(struct work_struct *work) 995 { 996 struct mapped_device *md = container_of(work, struct mapped_device, 997 requeue_work); 998 unsigned long flags; 999 struct dm_io *io; 1000 1001 /* reuse deferred lock to simplify dm_handle_requeue */ 1002 spin_lock_irqsave(&md->deferred_lock, flags); 1003 io = md->requeue_list; 1004 md->requeue_list = NULL; 1005 spin_unlock_irqrestore(&md->deferred_lock, flags); 1006 1007 while (io) { 1008 struct dm_io *next = io->next; 1009 1010 dm_io_rewind(io, &md->disk->bio_split); 1011 1012 io->next = NULL; 1013 __dm_io_complete(io, false); 1014 io = next; 1015 cond_resched(); 1016 } 1017 } 1018 1019 /* 1020 * Two staged requeue: 1021 * 1022 * 1) io->orig_bio points to the real original bio, and the part mapped to 1023 * this io must be requeued, instead of other parts of the original bio. 1024 * 1025 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io. 1026 */ 1027 static void dm_io_complete(struct dm_io *io) 1028 { 1029 bool first_requeue; 1030 1031 /* 1032 * Only dm_io that has been split needs two stage requeue, otherwise 1033 * we may run into long bio clone chain during suspend and OOM could 1034 * be triggered. 1035 * 1036 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they 1037 * also aren't handled via the first stage requeue. 1038 */ 1039 if (dm_io_flagged(io, DM_IO_WAS_SPLIT)) 1040 first_requeue = true; 1041 else 1042 first_requeue = false; 1043 1044 __dm_io_complete(io, first_requeue); 1045 } 1046 1047 /* 1048 * Decrements the number of outstanding ios that a bio has been 1049 * cloned into, completing the original io if necc. 1050 */ 1051 static inline void __dm_io_dec_pending(struct dm_io *io) 1052 { 1053 if (atomic_dec_and_test(&io->io_count)) 1054 dm_io_complete(io); 1055 } 1056 1057 static void dm_io_set_error(struct dm_io *io, blk_status_t error) 1058 { 1059 unsigned long flags; 1060 1061 /* Push-back supersedes any I/O errors */ 1062 spin_lock_irqsave(&io->lock, flags); 1063 if (!(io->status == BLK_STS_DM_REQUEUE && 1064 __noflush_suspending(io->md))) { 1065 io->status = error; 1066 } 1067 spin_unlock_irqrestore(&io->lock, flags); 1068 } 1069 1070 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error) 1071 { 1072 if (unlikely(error)) 1073 dm_io_set_error(io, error); 1074 1075 __dm_io_dec_pending(io); 1076 } 1077 1078 /* 1079 * The queue_limits are only valid as long as you have a reference 1080 * count on 'md'. But _not_ imposing verification to avoid atomic_read(), 1081 */ 1082 static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 1083 { 1084 return &md->queue->limits; 1085 } 1086 1087 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio) 1088 { 1089 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios); 1090 } 1091 1092 static void clone_endio(struct bio *bio) 1093 { 1094 blk_status_t error = bio->bi_status; 1095 struct dm_target_io *tio = clone_to_tio(bio); 1096 struct dm_target *ti = tio->ti; 1097 dm_endio_fn endio = likely(ti != NULL) ? ti->type->end_io : NULL; 1098 struct dm_io *io = tio->io; 1099 struct mapped_device *md = io->md; 1100 1101 if (unlikely(error == BLK_STS_TARGET)) { 1102 if (bio_op(bio) == REQ_OP_DISCARD && 1103 !bdev_max_discard_sectors(bio->bi_bdev)) 1104 blk_queue_disable_discard(md->queue); 1105 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 1106 !bdev_write_zeroes_sectors(bio->bi_bdev)) 1107 blk_queue_disable_write_zeroes(md->queue); 1108 } 1109 1110 if (static_branch_unlikely(&zoned_enabled) && 1111 unlikely(bdev_is_zoned(bio->bi_bdev))) 1112 dm_zone_endio(io, bio); 1113 1114 if (endio) { 1115 int r = endio(ti, bio, &error); 1116 1117 switch (r) { 1118 case DM_ENDIO_REQUEUE: 1119 if (static_branch_unlikely(&zoned_enabled)) { 1120 /* 1121 * Requeuing writes to a sequential zone of a zoned 1122 * target will break the sequential write pattern: 1123 * fail such IO. 1124 */ 1125 if (WARN_ON_ONCE(dm_is_zone_write(md, bio))) 1126 error = BLK_STS_IOERR; 1127 else 1128 error = BLK_STS_DM_REQUEUE; 1129 } else 1130 error = BLK_STS_DM_REQUEUE; 1131 fallthrough; 1132 case DM_ENDIO_DONE: 1133 break; 1134 case DM_ENDIO_INCOMPLETE: 1135 /* The target will handle the io */ 1136 return; 1137 default: 1138 DMCRIT("unimplemented target endio return value: %d", r); 1139 BUG(); 1140 } 1141 } 1142 1143 if (static_branch_unlikely(&swap_bios_enabled) && 1144 likely(ti != NULL) && unlikely(swap_bios_limit(ti, bio))) 1145 up(&md->swap_bios_semaphore); 1146 1147 free_tio(bio); 1148 dm_io_dec_pending(io, error); 1149 } 1150 1151 /* 1152 * Return maximum size of I/O possible at the supplied sector up to the current 1153 * target boundary. 1154 */ 1155 static inline sector_t max_io_len_target_boundary(struct dm_target *ti, 1156 sector_t target_offset) 1157 { 1158 return ti->len - target_offset; 1159 } 1160 1161 static sector_t __max_io_len(struct dm_target *ti, sector_t sector, 1162 unsigned int max_granularity, 1163 unsigned int max_sectors) 1164 { 1165 sector_t target_offset = dm_target_offset(ti, sector); 1166 sector_t len = max_io_len_target_boundary(ti, target_offset); 1167 1168 /* 1169 * Does the target need to split IO even further? 1170 * - varied (per target) IO splitting is a tenet of DM; this 1171 * explains why stacked chunk_sectors based splitting via 1172 * bio_split_to_limits() isn't possible here. 1173 */ 1174 if (!max_granularity) 1175 return len; 1176 return min_t(sector_t, len, 1177 min(max_sectors ? : queue_max_sectors(ti->table->md->queue), 1178 blk_boundary_sectors_left(target_offset, max_granularity))); 1179 } 1180 1181 static inline sector_t max_io_len(struct dm_target *ti, sector_t sector) 1182 { 1183 return __max_io_len(ti, sector, ti->max_io_len, 0); 1184 } 1185 1186 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1187 { 1188 if (len > UINT_MAX) { 1189 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1190 (unsigned long long)len, UINT_MAX); 1191 ti->error = "Maximum size of target IO is too large"; 1192 return -EINVAL; 1193 } 1194 1195 ti->max_io_len = (uint32_t) len; 1196 1197 return 0; 1198 } 1199 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1200 1201 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1202 sector_t sector, int *srcu_idx) 1203 __acquires(md->io_barrier) 1204 { 1205 struct dm_table *map; 1206 struct dm_target *ti; 1207 1208 map = dm_get_live_table(md, srcu_idx); 1209 if (!map) 1210 return NULL; 1211 1212 ti = dm_table_find_target(map, sector); 1213 if (!ti) 1214 return NULL; 1215 1216 return ti; 1217 } 1218 1219 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1220 long nr_pages, enum dax_access_mode mode, void **kaddr, 1221 pfn_t *pfn) 1222 { 1223 struct mapped_device *md = dax_get_private(dax_dev); 1224 sector_t sector = pgoff * PAGE_SECTORS; 1225 struct dm_target *ti; 1226 long len, ret = -EIO; 1227 int srcu_idx; 1228 1229 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1230 1231 if (!ti) 1232 goto out; 1233 if (!ti->type->direct_access) 1234 goto out; 1235 len = max_io_len(ti, sector) / PAGE_SECTORS; 1236 if (len < 1) 1237 goto out; 1238 nr_pages = min(len, nr_pages); 1239 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn); 1240 1241 out: 1242 dm_put_live_table(md, srcu_idx); 1243 1244 return ret; 1245 } 1246 1247 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1248 size_t nr_pages) 1249 { 1250 struct mapped_device *md = dax_get_private(dax_dev); 1251 sector_t sector = pgoff * PAGE_SECTORS; 1252 struct dm_target *ti; 1253 int ret = -EIO; 1254 int srcu_idx; 1255 1256 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1257 1258 if (!ti) 1259 goto out; 1260 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1261 /* 1262 * ->zero_page_range() is mandatory dax operation. If we are 1263 * here, something is wrong. 1264 */ 1265 goto out; 1266 } 1267 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1268 out: 1269 dm_put_live_table(md, srcu_idx); 1270 1271 return ret; 1272 } 1273 1274 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff, 1275 void *addr, size_t bytes, struct iov_iter *i) 1276 { 1277 struct mapped_device *md = dax_get_private(dax_dev); 1278 sector_t sector = pgoff * PAGE_SECTORS; 1279 struct dm_target *ti; 1280 int srcu_idx; 1281 long ret = 0; 1282 1283 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1284 if (!ti || !ti->type->dax_recovery_write) 1285 goto out; 1286 1287 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i); 1288 out: 1289 dm_put_live_table(md, srcu_idx); 1290 return ret; 1291 } 1292 1293 /* 1294 * A target may call dm_accept_partial_bio only from the map routine. It is 1295 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management 1296 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by 1297 * __send_duplicate_bios(). 1298 * 1299 * dm_accept_partial_bio informs the dm that the target only wants to process 1300 * additional n_sectors sectors of the bio and the rest of the data should be 1301 * sent in a next bio. 1302 * 1303 * A diagram that explains the arithmetics: 1304 * +--------------------+---------------+-------+ 1305 * | 1 | 2 | 3 | 1306 * +--------------------+---------------+-------+ 1307 * 1308 * <-------------- *tio->len_ptr ---------------> 1309 * <----- bio_sectors -----> 1310 * <-- n_sectors --> 1311 * 1312 * Region 1 was already iterated over with bio_advance or similar function. 1313 * (it may be empty if the target doesn't use bio_advance) 1314 * Region 2 is the remaining bio size that the target wants to process. 1315 * (it may be empty if region 1 is non-empty, although there is no reason 1316 * to make it empty) 1317 * The target requires that region 3 is to be sent in the next bio. 1318 * 1319 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1320 * the partially processed part (the sum of regions 1+2) must be the same for all 1321 * copies of the bio. 1322 */ 1323 void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors) 1324 { 1325 struct dm_target_io *tio = clone_to_tio(bio); 1326 struct dm_io *io = tio->io; 1327 unsigned int bio_sectors = bio_sectors(bio); 1328 1329 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO)); 1330 BUG_ON(op_is_zone_mgmt(bio_op(bio))); 1331 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND); 1332 BUG_ON(bio_sectors > *tio->len_ptr); 1333 BUG_ON(n_sectors > bio_sectors); 1334 1335 *tio->len_ptr -= bio_sectors - n_sectors; 1336 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1337 1338 /* 1339 * __split_and_process_bio() may have already saved mapped part 1340 * for accounting but it is being reduced so update accordingly. 1341 */ 1342 dm_io_set_flag(io, DM_IO_WAS_SPLIT); 1343 io->sectors = n_sectors; 1344 io->sector_offset = bio_sectors(io->orig_bio); 1345 } 1346 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1347 1348 /* 1349 * @clone: clone bio that DM core passed to target's .map function 1350 * @tgt_clone: clone of @clone bio that target needs submitted 1351 * 1352 * Targets should use this interface to submit bios they take 1353 * ownership of when returning DM_MAPIO_SUBMITTED. 1354 * 1355 * Target should also enable ti->accounts_remapped_io 1356 */ 1357 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone) 1358 { 1359 struct dm_target_io *tio = clone_to_tio(clone); 1360 struct dm_io *io = tio->io; 1361 1362 /* establish bio that will get submitted */ 1363 if (!tgt_clone) 1364 tgt_clone = clone; 1365 1366 /* 1367 * Account io->origin_bio to DM dev on behalf of target 1368 * that took ownership of IO with DM_MAPIO_SUBMITTED. 1369 */ 1370 dm_start_io_acct(io, clone); 1371 1372 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk), 1373 tio->old_sector); 1374 submit_bio_noacct(tgt_clone); 1375 } 1376 EXPORT_SYMBOL_GPL(dm_submit_bio_remap); 1377 1378 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch) 1379 { 1380 mutex_lock(&md->swap_bios_lock); 1381 while (latch < md->swap_bios) { 1382 cond_resched(); 1383 down(&md->swap_bios_semaphore); 1384 md->swap_bios--; 1385 } 1386 while (latch > md->swap_bios) { 1387 cond_resched(); 1388 up(&md->swap_bios_semaphore); 1389 md->swap_bios++; 1390 } 1391 mutex_unlock(&md->swap_bios_lock); 1392 } 1393 1394 static void __map_bio(struct bio *clone) 1395 { 1396 struct dm_target_io *tio = clone_to_tio(clone); 1397 struct dm_target *ti = tio->ti; 1398 struct dm_io *io = tio->io; 1399 struct mapped_device *md = io->md; 1400 int r; 1401 1402 clone->bi_end_io = clone_endio; 1403 1404 /* 1405 * Map the clone. 1406 */ 1407 tio->old_sector = clone->bi_iter.bi_sector; 1408 1409 if (static_branch_unlikely(&swap_bios_enabled) && 1410 unlikely(swap_bios_limit(ti, clone))) { 1411 int latch = get_swap_bios(); 1412 1413 if (unlikely(latch != md->swap_bios)) 1414 __set_swap_bios_limit(md, latch); 1415 down(&md->swap_bios_semaphore); 1416 } 1417 1418 if (likely(ti->type->map == linear_map)) 1419 r = linear_map(ti, clone); 1420 else if (ti->type->map == stripe_map) 1421 r = stripe_map(ti, clone); 1422 else 1423 r = ti->type->map(ti, clone); 1424 1425 switch (r) { 1426 case DM_MAPIO_SUBMITTED: 1427 /* target has assumed ownership of this io */ 1428 if (!ti->accounts_remapped_io) 1429 dm_start_io_acct(io, clone); 1430 break; 1431 case DM_MAPIO_REMAPPED: 1432 dm_submit_bio_remap(clone, NULL); 1433 break; 1434 case DM_MAPIO_KILL: 1435 case DM_MAPIO_REQUEUE: 1436 if (static_branch_unlikely(&swap_bios_enabled) && 1437 unlikely(swap_bios_limit(ti, clone))) 1438 up(&md->swap_bios_semaphore); 1439 free_tio(clone); 1440 if (r == DM_MAPIO_KILL) 1441 dm_io_dec_pending(io, BLK_STS_IOERR); 1442 else 1443 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE); 1444 break; 1445 default: 1446 DMCRIT("unimplemented target map return value: %d", r); 1447 BUG(); 1448 } 1449 } 1450 1451 static void setup_split_accounting(struct clone_info *ci, unsigned int len) 1452 { 1453 struct dm_io *io = ci->io; 1454 1455 if (ci->sector_count > len) { 1456 /* 1457 * Split needed, save the mapped part for accounting. 1458 * NOTE: dm_accept_partial_bio() will update accordingly. 1459 */ 1460 dm_io_set_flag(io, DM_IO_WAS_SPLIT); 1461 io->sectors = len; 1462 io->sector_offset = bio_sectors(ci->bio); 1463 } 1464 } 1465 1466 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1467 struct dm_target *ti, unsigned int num_bios, 1468 unsigned *len) 1469 { 1470 struct bio *bio; 1471 int try; 1472 1473 for (try = 0; try < 2; try++) { 1474 int bio_nr; 1475 1476 if (try && num_bios > 1) 1477 mutex_lock(&ci->io->md->table_devices_lock); 1478 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1479 bio = alloc_tio(ci, ti, bio_nr, len, 1480 try ? GFP_NOIO : GFP_NOWAIT); 1481 if (!bio) 1482 break; 1483 1484 bio_list_add(blist, bio); 1485 } 1486 if (try && num_bios > 1) 1487 mutex_unlock(&ci->io->md->table_devices_lock); 1488 if (bio_nr == num_bios) 1489 return; 1490 1491 while ((bio = bio_list_pop(blist))) 1492 free_tio(bio); 1493 } 1494 } 1495 1496 static unsigned int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1497 unsigned int num_bios, unsigned int *len) 1498 { 1499 struct bio_list blist = BIO_EMPTY_LIST; 1500 struct bio *clone; 1501 unsigned int ret = 0; 1502 1503 if (WARN_ON_ONCE(num_bios == 0)) /* num_bios = 0 is a bug in caller */ 1504 return 0; 1505 1506 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */ 1507 if (len) 1508 setup_split_accounting(ci, *len); 1509 1510 /* 1511 * Using alloc_multiple_bios(), even if num_bios is 1, to consistently 1512 * support allocating using GFP_NOWAIT with GFP_NOIO fallback. 1513 */ 1514 alloc_multiple_bios(&blist, ci, ti, num_bios, len); 1515 while ((clone = bio_list_pop(&blist))) { 1516 if (num_bios > 1) 1517 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO); 1518 __map_bio(clone); 1519 ret += 1; 1520 } 1521 1522 return ret; 1523 } 1524 1525 static void __send_empty_flush(struct clone_info *ci) 1526 { 1527 struct dm_table *t = ci->map; 1528 struct bio flush_bio; 1529 blk_opf_t opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1530 1531 if ((ci->io->orig_bio->bi_opf & (REQ_IDLE | REQ_SYNC)) == 1532 (REQ_IDLE | REQ_SYNC)) 1533 opf |= REQ_IDLE; 1534 1535 /* 1536 * Use an on-stack bio for this, it's safe since we don't 1537 * need to reference it after submit. It's just used as 1538 * the basis for the clone(s). 1539 */ 1540 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, opf); 1541 1542 ci->bio = &flush_bio; 1543 ci->sector_count = 0; 1544 ci->io->tio.clone.bi_iter.bi_size = 0; 1545 1546 if (!t->flush_bypasses_map) { 1547 for (unsigned int i = 0; i < t->num_targets; i++) { 1548 unsigned int bios; 1549 struct dm_target *ti = dm_table_get_target(t, i); 1550 1551 if (unlikely(ti->num_flush_bios == 0)) 1552 continue; 1553 1554 atomic_add(ti->num_flush_bios, &ci->io->io_count); 1555 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, 1556 NULL); 1557 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count); 1558 } 1559 } else { 1560 /* 1561 * Note that there's no need to grab t->devices_lock here 1562 * because the targets that support flush optimization don't 1563 * modify the list of devices. 1564 */ 1565 struct list_head *devices = dm_table_get_devices(t); 1566 unsigned int len = 0; 1567 struct dm_dev_internal *dd; 1568 list_for_each_entry(dd, devices, list) { 1569 struct bio *clone; 1570 /* 1571 * Note that the structure dm_target_io is not 1572 * associated with any target (because the device may be 1573 * used by multiple targets), so we set tio->ti = NULL. 1574 * We must check for NULL in the I/O processing path, to 1575 * avoid NULL pointer dereference. 1576 */ 1577 clone = alloc_tio(ci, NULL, 0, &len, GFP_NOIO); 1578 atomic_add(1, &ci->io->io_count); 1579 bio_set_dev(clone, dd->dm_dev->bdev); 1580 clone->bi_end_io = clone_endio; 1581 dm_submit_bio_remap(clone, NULL); 1582 } 1583 } 1584 1585 /* 1586 * alloc_io() takes one extra reference for submission, so the 1587 * reference won't reach 0 without the following subtraction 1588 */ 1589 atomic_sub(1, &ci->io->io_count); 1590 1591 bio_uninit(ci->bio); 1592 } 1593 1594 static void __send_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1595 unsigned int num_bios, unsigned int max_granularity, 1596 unsigned int max_sectors) 1597 { 1598 unsigned int len, bios; 1599 1600 len = min_t(sector_t, ci->sector_count, 1601 __max_io_len(ti, ci->sector, max_granularity, max_sectors)); 1602 1603 atomic_add(num_bios, &ci->io->io_count); 1604 bios = __send_duplicate_bios(ci, ti, num_bios, &len); 1605 /* 1606 * alloc_io() takes one extra reference for submission, so the 1607 * reference won't reach 0 without the following (+1) subtraction 1608 */ 1609 atomic_sub(num_bios - bios + 1, &ci->io->io_count); 1610 1611 ci->sector += len; 1612 ci->sector_count -= len; 1613 } 1614 1615 static bool is_abnormal_io(struct bio *bio) 1616 { 1617 switch (bio_op(bio)) { 1618 case REQ_OP_READ: 1619 case REQ_OP_WRITE: 1620 case REQ_OP_FLUSH: 1621 return false; 1622 case REQ_OP_DISCARD: 1623 case REQ_OP_SECURE_ERASE: 1624 case REQ_OP_WRITE_ZEROES: 1625 case REQ_OP_ZONE_RESET_ALL: 1626 return true; 1627 default: 1628 return false; 1629 } 1630 } 1631 1632 static blk_status_t __process_abnormal_io(struct clone_info *ci, 1633 struct dm_target *ti) 1634 { 1635 unsigned int num_bios = 0; 1636 unsigned int max_granularity = 0; 1637 unsigned int max_sectors = 0; 1638 struct queue_limits *limits = dm_get_queue_limits(ti->table->md); 1639 1640 switch (bio_op(ci->bio)) { 1641 case REQ_OP_DISCARD: 1642 num_bios = ti->num_discard_bios; 1643 max_sectors = limits->max_discard_sectors; 1644 if (ti->max_discard_granularity) 1645 max_granularity = max_sectors; 1646 break; 1647 case REQ_OP_SECURE_ERASE: 1648 num_bios = ti->num_secure_erase_bios; 1649 max_sectors = limits->max_secure_erase_sectors; 1650 break; 1651 case REQ_OP_WRITE_ZEROES: 1652 num_bios = ti->num_write_zeroes_bios; 1653 max_sectors = limits->max_write_zeroes_sectors; 1654 break; 1655 default: 1656 break; 1657 } 1658 1659 /* 1660 * Even though the device advertised support for this type of 1661 * request, that does not mean every target supports it, and 1662 * reconfiguration might also have changed that since the 1663 * check was performed. 1664 */ 1665 if (unlikely(!num_bios)) 1666 return BLK_STS_NOTSUPP; 1667 1668 __send_abnormal_io(ci, ti, num_bios, max_granularity, max_sectors); 1669 1670 return BLK_STS_OK; 1671 } 1672 1673 /* 1674 * Reuse ->bi_private as dm_io list head for storing all dm_io instances 1675 * associated with this bio, and this bio's bi_private needs to be 1676 * stored in dm_io->data before the reuse. 1677 * 1678 * bio->bi_private is owned by fs or upper layer, so block layer won't 1679 * touch it after splitting. Meantime it won't be changed by anyone after 1680 * bio is submitted. So this reuse is safe. 1681 */ 1682 static inline struct dm_io **dm_poll_list_head(struct bio *bio) 1683 { 1684 return (struct dm_io **)&bio->bi_private; 1685 } 1686 1687 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io) 1688 { 1689 struct dm_io **head = dm_poll_list_head(bio); 1690 1691 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) { 1692 bio->bi_opf |= REQ_DM_POLL_LIST; 1693 /* 1694 * Save .bi_private into dm_io, so that we can reuse 1695 * .bi_private as dm_io list head for storing dm_io list 1696 */ 1697 io->data = bio->bi_private; 1698 1699 /* tell block layer to poll for completion */ 1700 bio->bi_cookie = ~BLK_QC_T_NONE; 1701 1702 io->next = NULL; 1703 } else { 1704 /* 1705 * bio recursed due to split, reuse original poll list, 1706 * and save bio->bi_private too. 1707 */ 1708 io->data = (*head)->data; 1709 io->next = *head; 1710 } 1711 1712 *head = io; 1713 } 1714 1715 /* 1716 * Select the correct strategy for processing a non-flush bio. 1717 */ 1718 static blk_status_t __split_and_process_bio(struct clone_info *ci) 1719 { 1720 struct bio *clone; 1721 struct dm_target *ti; 1722 unsigned int len; 1723 1724 ti = dm_table_find_target(ci->map, ci->sector); 1725 if (unlikely(!ti)) 1726 return BLK_STS_IOERR; 1727 1728 if (unlikely(ci->is_abnormal_io)) 1729 return __process_abnormal_io(ci, ti); 1730 1731 /* 1732 * Only support bio polling for normal IO, and the target io is 1733 * exactly inside the dm_io instance (verified in dm_poll_dm_io) 1734 */ 1735 ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED); 1736 1737 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count); 1738 if (ci->bio->bi_opf & REQ_ATOMIC && len != ci->sector_count) 1739 return BLK_STS_IOERR; 1740 1741 setup_split_accounting(ci, len); 1742 1743 if (unlikely(ci->bio->bi_opf & REQ_NOWAIT)) { 1744 if (unlikely(!dm_target_supports_nowait(ti->type))) 1745 return BLK_STS_NOTSUPP; 1746 1747 clone = alloc_tio(ci, ti, 0, &len, GFP_NOWAIT); 1748 if (unlikely(!clone)) 1749 return BLK_STS_AGAIN; 1750 } else { 1751 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO); 1752 } 1753 __map_bio(clone); 1754 1755 ci->sector += len; 1756 ci->sector_count -= len; 1757 1758 return BLK_STS_OK; 1759 } 1760 1761 static void init_clone_info(struct clone_info *ci, struct dm_io *io, 1762 struct dm_table *map, struct bio *bio, bool is_abnormal) 1763 { 1764 ci->map = map; 1765 ci->io = io; 1766 ci->bio = bio; 1767 ci->is_abnormal_io = is_abnormal; 1768 ci->submit_as_polled = false; 1769 ci->sector = bio->bi_iter.bi_sector; 1770 ci->sector_count = bio_sectors(bio); 1771 1772 /* Shouldn't happen but sector_count was being set to 0 so... */ 1773 if (static_branch_unlikely(&zoned_enabled) && 1774 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count)) 1775 ci->sector_count = 0; 1776 } 1777 1778 #ifdef CONFIG_BLK_DEV_ZONED 1779 static inline bool dm_zone_bio_needs_split(struct mapped_device *md, 1780 struct bio *bio) 1781 { 1782 /* 1783 * For mapped device that need zone append emulation, we must 1784 * split any large BIO that straddles zone boundaries. 1785 */ 1786 return dm_emulate_zone_append(md) && bio_straddles_zones(bio) && 1787 !bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING); 1788 } 1789 static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio) 1790 { 1791 return dm_emulate_zone_append(md) && blk_zone_plug_bio(bio, 0); 1792 } 1793 1794 static blk_status_t __send_zone_reset_all_emulated(struct clone_info *ci, 1795 struct dm_target *ti) 1796 { 1797 struct bio_list blist = BIO_EMPTY_LIST; 1798 struct mapped_device *md = ci->io->md; 1799 unsigned int zone_sectors = md->disk->queue->limits.chunk_sectors; 1800 unsigned long *need_reset; 1801 unsigned int i, nr_zones, nr_reset; 1802 unsigned int num_bios = 0; 1803 blk_status_t sts = BLK_STS_OK; 1804 sector_t sector = ti->begin; 1805 struct bio *clone; 1806 int ret; 1807 1808 nr_zones = ti->len >> ilog2(zone_sectors); 1809 need_reset = bitmap_zalloc(nr_zones, GFP_NOIO); 1810 if (!need_reset) 1811 return BLK_STS_RESOURCE; 1812 1813 ret = dm_zone_get_reset_bitmap(md, ci->map, ti->begin, 1814 nr_zones, need_reset); 1815 if (ret) { 1816 sts = BLK_STS_IOERR; 1817 goto free_bitmap; 1818 } 1819 1820 /* If we have no zone to reset, we are done. */ 1821 nr_reset = bitmap_weight(need_reset, nr_zones); 1822 if (!nr_reset) 1823 goto free_bitmap; 1824 1825 atomic_add(nr_zones, &ci->io->io_count); 1826 1827 for (i = 0; i < nr_zones; i++) { 1828 1829 if (!test_bit(i, need_reset)) { 1830 sector += zone_sectors; 1831 continue; 1832 } 1833 1834 if (bio_list_empty(&blist)) { 1835 /* This may take a while, so be nice to others */ 1836 if (num_bios) 1837 cond_resched(); 1838 1839 /* 1840 * We may need to reset thousands of zones, so let's 1841 * not go crazy with the clone allocation. 1842 */ 1843 alloc_multiple_bios(&blist, ci, ti, min(nr_reset, 32), 1844 NULL); 1845 } 1846 1847 /* Get a clone and change it to a regular reset operation. */ 1848 clone = bio_list_pop(&blist); 1849 clone->bi_opf &= ~REQ_OP_MASK; 1850 clone->bi_opf |= REQ_OP_ZONE_RESET | REQ_SYNC; 1851 clone->bi_iter.bi_sector = sector; 1852 clone->bi_iter.bi_size = 0; 1853 __map_bio(clone); 1854 1855 sector += zone_sectors; 1856 num_bios++; 1857 nr_reset--; 1858 } 1859 1860 WARN_ON_ONCE(!bio_list_empty(&blist)); 1861 atomic_sub(nr_zones - num_bios, &ci->io->io_count); 1862 ci->sector_count = 0; 1863 1864 free_bitmap: 1865 bitmap_free(need_reset); 1866 1867 return sts; 1868 } 1869 1870 static void __send_zone_reset_all_native(struct clone_info *ci, 1871 struct dm_target *ti) 1872 { 1873 unsigned int bios; 1874 1875 atomic_add(1, &ci->io->io_count); 1876 bios = __send_duplicate_bios(ci, ti, 1, NULL); 1877 atomic_sub(1 - bios, &ci->io->io_count); 1878 1879 ci->sector_count = 0; 1880 } 1881 1882 static blk_status_t __send_zone_reset_all(struct clone_info *ci) 1883 { 1884 struct dm_table *t = ci->map; 1885 blk_status_t sts = BLK_STS_OK; 1886 1887 for (unsigned int i = 0; i < t->num_targets; i++) { 1888 struct dm_target *ti = dm_table_get_target(t, i); 1889 1890 if (ti->zone_reset_all_supported) { 1891 __send_zone_reset_all_native(ci, ti); 1892 continue; 1893 } 1894 1895 sts = __send_zone_reset_all_emulated(ci, ti); 1896 if (sts != BLK_STS_OK) 1897 break; 1898 } 1899 1900 /* Release the reference that alloc_io() took for submission. */ 1901 atomic_sub(1, &ci->io->io_count); 1902 1903 return sts; 1904 } 1905 1906 #else 1907 static inline bool dm_zone_bio_needs_split(struct mapped_device *md, 1908 struct bio *bio) 1909 { 1910 return false; 1911 } 1912 static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio) 1913 { 1914 return false; 1915 } 1916 static blk_status_t __send_zone_reset_all(struct clone_info *ci) 1917 { 1918 return BLK_STS_NOTSUPP; 1919 } 1920 #endif 1921 1922 /* 1923 * Entry point to split a bio into clones and submit them to the targets. 1924 */ 1925 static void dm_split_and_process_bio(struct mapped_device *md, 1926 struct dm_table *map, struct bio *bio) 1927 { 1928 struct clone_info ci; 1929 struct dm_io *io; 1930 blk_status_t error = BLK_STS_OK; 1931 bool is_abnormal, need_split; 1932 1933 is_abnormal = is_abnormal_io(bio); 1934 if (static_branch_unlikely(&zoned_enabled)) { 1935 /* Special case REQ_OP_ZONE_RESET_ALL as it cannot be split. */ 1936 need_split = (bio_op(bio) != REQ_OP_ZONE_RESET_ALL) && 1937 (is_abnormal || dm_zone_bio_needs_split(md, bio)); 1938 } else { 1939 need_split = is_abnormal; 1940 } 1941 1942 if (unlikely(need_split)) { 1943 /* 1944 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc) 1945 * otherwise associated queue_limits won't be imposed. 1946 * Also split the BIO for mapped devices needing zone append 1947 * emulation to ensure that the BIO does not cross zone 1948 * boundaries. 1949 */ 1950 bio = bio_split_to_limits(bio); 1951 if (!bio) 1952 return; 1953 } 1954 1955 /* 1956 * Use the block layer zone write plugging for mapped devices that 1957 * need zone append emulation (e.g. dm-crypt). 1958 */ 1959 if (static_branch_unlikely(&zoned_enabled) && dm_zone_plug_bio(md, bio)) 1960 return; 1961 1962 /* Only support nowait for normal IO */ 1963 if (unlikely(bio->bi_opf & REQ_NOWAIT) && !is_abnormal) { 1964 /* 1965 * Don't support NOWAIT for FLUSH because it may allocate 1966 * multiple bios and there's no easy way how to undo the 1967 * allocations. 1968 */ 1969 if (bio->bi_opf & REQ_PREFLUSH) { 1970 bio_wouldblock_error(bio); 1971 return; 1972 } 1973 io = alloc_io(md, bio, GFP_NOWAIT); 1974 if (unlikely(!io)) { 1975 /* Unable to do anything without dm_io. */ 1976 bio_wouldblock_error(bio); 1977 return; 1978 } 1979 } else { 1980 io = alloc_io(md, bio, GFP_NOIO); 1981 } 1982 init_clone_info(&ci, io, map, bio, is_abnormal); 1983 1984 if (bio->bi_opf & REQ_PREFLUSH) { 1985 __send_empty_flush(&ci); 1986 /* dm_io_complete submits any data associated with flush */ 1987 goto out; 1988 } 1989 1990 if (static_branch_unlikely(&zoned_enabled) && 1991 (bio_op(bio) == REQ_OP_ZONE_RESET_ALL)) { 1992 error = __send_zone_reset_all(&ci); 1993 goto out; 1994 } 1995 1996 error = __split_and_process_bio(&ci); 1997 if (error || !ci.sector_count) 1998 goto out; 1999 /* 2000 * Remainder must be passed to submit_bio_noacct() so it gets handled 2001 * *after* bios already submitted have been completely processed. 2002 */ 2003 bio_trim(bio, io->sectors, ci.sector_count); 2004 trace_block_split(bio, bio->bi_iter.bi_sector); 2005 bio_inc_remaining(bio); 2006 submit_bio_noacct(bio); 2007 out: 2008 /* 2009 * Drop the extra reference count for non-POLLED bio, and hold one 2010 * reference for POLLED bio, which will be released in dm_poll_bio 2011 * 2012 * Add every dm_io instance into the dm_io list head which is stored 2013 * in bio->bi_private, so that dm_poll_bio can poll them all. 2014 */ 2015 if (error || !ci.submit_as_polled) { 2016 /* 2017 * In case of submission failure, the extra reference for 2018 * submitting io isn't consumed yet 2019 */ 2020 if (error) 2021 atomic_dec(&io->io_count); 2022 dm_io_dec_pending(io, error); 2023 } else 2024 dm_queue_poll_io(bio, io); 2025 } 2026 2027 static void dm_submit_bio(struct bio *bio) 2028 { 2029 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data; 2030 int srcu_idx; 2031 struct dm_table *map; 2032 2033 map = dm_get_live_table(md, &srcu_idx); 2034 if (unlikely(!map)) { 2035 DMERR_LIMIT("%s: mapping table unavailable, erroring io", 2036 dm_device_name(md)); 2037 bio_io_error(bio); 2038 goto out; 2039 } 2040 2041 /* If suspended, queue this IO for later */ 2042 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 2043 if (bio->bi_opf & REQ_NOWAIT) 2044 bio_wouldblock_error(bio); 2045 else if (bio->bi_opf & REQ_RAHEAD) 2046 bio_io_error(bio); 2047 else 2048 queue_io(md, bio); 2049 goto out; 2050 } 2051 2052 dm_split_and_process_bio(md, map, bio); 2053 out: 2054 dm_put_live_table(md, srcu_idx); 2055 } 2056 2057 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob, 2058 unsigned int flags) 2059 { 2060 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio)); 2061 2062 /* don't poll if the mapped io is done */ 2063 if (atomic_read(&io->io_count) > 1) 2064 bio_poll(&io->tio.clone, iob, flags); 2065 2066 /* bio_poll holds the last reference */ 2067 return atomic_read(&io->io_count) == 1; 2068 } 2069 2070 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob, 2071 unsigned int flags) 2072 { 2073 struct dm_io **head = dm_poll_list_head(bio); 2074 struct dm_io *list = *head; 2075 struct dm_io *tmp = NULL; 2076 struct dm_io *curr, *next; 2077 2078 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */ 2079 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) 2080 return 0; 2081 2082 WARN_ON_ONCE(!list); 2083 2084 /* 2085 * Restore .bi_private before possibly completing dm_io. 2086 * 2087 * bio_poll() is only possible once @bio has been completely 2088 * submitted via submit_bio_noacct()'s depth-first submission. 2089 * So there is no dm_queue_poll_io() race associated with 2090 * clearing REQ_DM_POLL_LIST here. 2091 */ 2092 bio->bi_opf &= ~REQ_DM_POLL_LIST; 2093 bio->bi_private = list->data; 2094 2095 for (curr = list, next = curr->next; curr; curr = next, next = 2096 curr ? curr->next : NULL) { 2097 if (dm_poll_dm_io(curr, iob, flags)) { 2098 /* 2099 * clone_endio() has already occurred, so no 2100 * error handling is needed here. 2101 */ 2102 __dm_io_dec_pending(curr); 2103 } else { 2104 curr->next = tmp; 2105 tmp = curr; 2106 } 2107 } 2108 2109 /* Not done? */ 2110 if (tmp) { 2111 bio->bi_opf |= REQ_DM_POLL_LIST; 2112 /* Reset bio->bi_private to dm_io list head */ 2113 *head = tmp; 2114 return 0; 2115 } 2116 return 1; 2117 } 2118 2119 /* 2120 *--------------------------------------------------------------- 2121 * An IDR is used to keep track of allocated minor numbers. 2122 *--------------------------------------------------------------- 2123 */ 2124 static void free_minor(int minor) 2125 { 2126 spin_lock(&_minor_lock); 2127 idr_remove(&_minor_idr, minor); 2128 spin_unlock(&_minor_lock); 2129 } 2130 2131 /* 2132 * See if the device with a specific minor # is free. 2133 */ 2134 static int specific_minor(int minor) 2135 { 2136 int r; 2137 2138 if (minor >= (1 << MINORBITS)) 2139 return -EINVAL; 2140 2141 idr_preload(GFP_KERNEL); 2142 spin_lock(&_minor_lock); 2143 2144 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 2145 2146 spin_unlock(&_minor_lock); 2147 idr_preload_end(); 2148 if (r < 0) 2149 return r == -ENOSPC ? -EBUSY : r; 2150 return 0; 2151 } 2152 2153 static int next_free_minor(int *minor) 2154 { 2155 int r; 2156 2157 idr_preload(GFP_KERNEL); 2158 spin_lock(&_minor_lock); 2159 2160 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 2161 2162 spin_unlock(&_minor_lock); 2163 idr_preload_end(); 2164 if (r < 0) 2165 return r; 2166 *minor = r; 2167 return 0; 2168 } 2169 2170 static const struct block_device_operations dm_blk_dops; 2171 static const struct block_device_operations dm_rq_blk_dops; 2172 static const struct dax_operations dm_dax_ops; 2173 2174 static void dm_wq_work(struct work_struct *work); 2175 2176 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 2177 static void dm_queue_destroy_crypto_profile(struct request_queue *q) 2178 { 2179 dm_destroy_crypto_profile(q->crypto_profile); 2180 } 2181 2182 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 2183 2184 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q) 2185 { 2186 } 2187 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 2188 2189 static void cleanup_mapped_device(struct mapped_device *md) 2190 { 2191 if (md->wq) 2192 destroy_workqueue(md->wq); 2193 dm_free_md_mempools(md->mempools); 2194 2195 if (md->dax_dev) { 2196 dax_remove_host(md->disk); 2197 kill_dax(md->dax_dev); 2198 put_dax(md->dax_dev); 2199 md->dax_dev = NULL; 2200 } 2201 2202 if (md->disk) { 2203 spin_lock(&_minor_lock); 2204 md->disk->private_data = NULL; 2205 spin_unlock(&_minor_lock); 2206 if (dm_get_md_type(md) != DM_TYPE_NONE) { 2207 struct table_device *td; 2208 2209 dm_sysfs_exit(md); 2210 list_for_each_entry(td, &md->table_devices, list) { 2211 bd_unlink_disk_holder(td->dm_dev.bdev, 2212 md->disk); 2213 } 2214 2215 /* 2216 * Hold lock to make sure del_gendisk() won't concurrent 2217 * with open/close_table_device(). 2218 */ 2219 mutex_lock(&md->table_devices_lock); 2220 del_gendisk(md->disk); 2221 mutex_unlock(&md->table_devices_lock); 2222 } 2223 dm_queue_destroy_crypto_profile(md->queue); 2224 put_disk(md->disk); 2225 } 2226 2227 if (md->pending_io) { 2228 free_percpu(md->pending_io); 2229 md->pending_io = NULL; 2230 } 2231 2232 cleanup_srcu_struct(&md->io_barrier); 2233 2234 mutex_destroy(&md->suspend_lock); 2235 mutex_destroy(&md->type_lock); 2236 mutex_destroy(&md->table_devices_lock); 2237 mutex_destroy(&md->swap_bios_lock); 2238 2239 dm_mq_cleanup_mapped_device(md); 2240 } 2241 2242 /* 2243 * Allocate and initialise a blank device with a given minor. 2244 */ 2245 static struct mapped_device *alloc_dev(int minor) 2246 { 2247 int r, numa_node_id = dm_get_numa_node(); 2248 struct dax_device *dax_dev; 2249 struct mapped_device *md; 2250 void *old_md; 2251 2252 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 2253 if (!md) { 2254 DMERR("unable to allocate device, out of memory."); 2255 return NULL; 2256 } 2257 2258 if (!try_module_get(THIS_MODULE)) 2259 goto bad_module_get; 2260 2261 /* get a minor number for the dev */ 2262 if (minor == DM_ANY_MINOR) 2263 r = next_free_minor(&minor); 2264 else 2265 r = specific_minor(minor); 2266 if (r < 0) 2267 goto bad_minor; 2268 2269 r = init_srcu_struct(&md->io_barrier); 2270 if (r < 0) 2271 goto bad_io_barrier; 2272 2273 md->numa_node_id = numa_node_id; 2274 md->init_tio_pdu = false; 2275 md->type = DM_TYPE_NONE; 2276 mutex_init(&md->suspend_lock); 2277 mutex_init(&md->type_lock); 2278 mutex_init(&md->table_devices_lock); 2279 spin_lock_init(&md->deferred_lock); 2280 atomic_set(&md->holders, 1); 2281 atomic_set(&md->open_count, 0); 2282 atomic_set(&md->event_nr, 0); 2283 atomic_set(&md->uevent_seq, 0); 2284 INIT_LIST_HEAD(&md->uevent_list); 2285 INIT_LIST_HEAD(&md->table_devices); 2286 spin_lock_init(&md->uevent_lock); 2287 2288 /* 2289 * default to bio-based until DM table is loaded and md->type 2290 * established. If request-based table is loaded: blk-mq will 2291 * override accordingly. 2292 */ 2293 md->disk = blk_alloc_disk(NULL, md->numa_node_id); 2294 if (IS_ERR(md->disk)) { 2295 md->disk = NULL; 2296 goto bad; 2297 } 2298 md->queue = md->disk->queue; 2299 2300 init_waitqueue_head(&md->wait); 2301 INIT_WORK(&md->work, dm_wq_work); 2302 INIT_WORK(&md->requeue_work, dm_wq_requeue_work); 2303 init_waitqueue_head(&md->eventq); 2304 init_completion(&md->kobj_holder.completion); 2305 2306 md->requeue_list = NULL; 2307 md->swap_bios = get_swap_bios(); 2308 sema_init(&md->swap_bios_semaphore, md->swap_bios); 2309 mutex_init(&md->swap_bios_lock); 2310 2311 md->disk->major = _major; 2312 md->disk->first_minor = minor; 2313 md->disk->minors = 1; 2314 md->disk->flags |= GENHD_FL_NO_PART; 2315 md->disk->fops = &dm_blk_dops; 2316 md->disk->private_data = md; 2317 sprintf(md->disk->disk_name, "dm-%d", minor); 2318 2319 dax_dev = alloc_dax(md, &dm_dax_ops); 2320 if (IS_ERR(dax_dev)) { 2321 if (PTR_ERR(dax_dev) != -EOPNOTSUPP) 2322 goto bad; 2323 } else { 2324 set_dax_nocache(dax_dev); 2325 set_dax_nomc(dax_dev); 2326 md->dax_dev = dax_dev; 2327 if (dax_add_host(dax_dev, md->disk)) 2328 goto bad; 2329 } 2330 2331 format_dev_t(md->name, MKDEV(_major, minor)); 2332 2333 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name); 2334 if (!md->wq) 2335 goto bad; 2336 2337 md->pending_io = alloc_percpu(unsigned long); 2338 if (!md->pending_io) 2339 goto bad; 2340 2341 r = dm_stats_init(&md->stats); 2342 if (r < 0) 2343 goto bad; 2344 2345 /* Populate the mapping, nobody knows we exist yet */ 2346 spin_lock(&_minor_lock); 2347 old_md = idr_replace(&_minor_idr, md, minor); 2348 spin_unlock(&_minor_lock); 2349 2350 BUG_ON(old_md != MINOR_ALLOCED); 2351 2352 return md; 2353 2354 bad: 2355 cleanup_mapped_device(md); 2356 bad_io_barrier: 2357 free_minor(minor); 2358 bad_minor: 2359 module_put(THIS_MODULE); 2360 bad_module_get: 2361 kvfree(md); 2362 return NULL; 2363 } 2364 2365 static void unlock_fs(struct mapped_device *md); 2366 2367 static void free_dev(struct mapped_device *md) 2368 { 2369 int minor = MINOR(disk_devt(md->disk)); 2370 2371 unlock_fs(md); 2372 2373 cleanup_mapped_device(md); 2374 2375 WARN_ON_ONCE(!list_empty(&md->table_devices)); 2376 dm_stats_cleanup(&md->stats); 2377 free_minor(minor); 2378 2379 module_put(THIS_MODULE); 2380 kvfree(md); 2381 } 2382 2383 /* 2384 * Bind a table to the device. 2385 */ 2386 static void event_callback(void *context) 2387 { 2388 unsigned long flags; 2389 LIST_HEAD(uevents); 2390 struct mapped_device *md = context; 2391 2392 spin_lock_irqsave(&md->uevent_lock, flags); 2393 list_splice_init(&md->uevent_list, &uevents); 2394 spin_unlock_irqrestore(&md->uevent_lock, flags); 2395 2396 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2397 2398 atomic_inc(&md->event_nr); 2399 wake_up(&md->eventq); 2400 dm_issue_global_event(); 2401 } 2402 2403 /* 2404 * Returns old map, which caller must destroy. 2405 */ 2406 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2407 struct queue_limits *limits) 2408 { 2409 struct dm_table *old_map; 2410 sector_t size, old_size; 2411 int ret; 2412 2413 lockdep_assert_held(&md->suspend_lock); 2414 2415 size = dm_table_get_size(t); 2416 2417 old_size = dm_get_size(md); 2418 2419 if (!dm_table_supports_size_change(t, old_size, size)) { 2420 old_map = ERR_PTR(-EINVAL); 2421 goto out; 2422 } 2423 2424 set_capacity(md->disk, size); 2425 2426 ret = dm_table_set_restrictions(t, md->queue, limits); 2427 if (ret) { 2428 set_capacity(md->disk, old_size); 2429 old_map = ERR_PTR(ret); 2430 goto out; 2431 } 2432 2433 /* 2434 * Wipe any geometry if the size of the table changed. 2435 */ 2436 if (size != old_size) 2437 memset(&md->geometry, 0, sizeof(md->geometry)); 2438 2439 dm_table_event_callback(t, event_callback, md); 2440 2441 if (dm_table_request_based(t)) { 2442 /* 2443 * Leverage the fact that request-based DM targets are 2444 * immutable singletons - used to optimize dm_mq_queue_rq. 2445 */ 2446 md->immutable_target = dm_table_get_immutable_target(t); 2447 2448 /* 2449 * There is no need to reload with request-based dm because the 2450 * size of front_pad doesn't change. 2451 * 2452 * Note for future: If you are to reload bioset, prep-ed 2453 * requests in the queue may refer to bio from the old bioset, 2454 * so you must walk through the queue to unprep. 2455 */ 2456 if (!md->mempools) 2457 md->mempools = t->mempools; 2458 else 2459 dm_free_md_mempools(t->mempools); 2460 } else { 2461 /* 2462 * The md may already have mempools that need changing. 2463 * If so, reload bioset because front_pad may have changed 2464 * because a different table was loaded. 2465 */ 2466 dm_free_md_mempools(md->mempools); 2467 md->mempools = t->mempools; 2468 } 2469 t->mempools = NULL; 2470 2471 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2472 rcu_assign_pointer(md->map, (void *)t); 2473 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2474 2475 if (old_map) 2476 dm_sync_table(md); 2477 out: 2478 return old_map; 2479 } 2480 2481 /* 2482 * Returns unbound table for the caller to free. 2483 */ 2484 static struct dm_table *__unbind(struct mapped_device *md) 2485 { 2486 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2487 2488 if (!map) 2489 return NULL; 2490 2491 dm_table_event_callback(map, NULL, NULL); 2492 RCU_INIT_POINTER(md->map, NULL); 2493 dm_sync_table(md); 2494 2495 return map; 2496 } 2497 2498 /* 2499 * Constructor for a new device. 2500 */ 2501 int dm_create(int minor, struct mapped_device **result) 2502 { 2503 struct mapped_device *md; 2504 2505 md = alloc_dev(minor); 2506 if (!md) 2507 return -ENXIO; 2508 2509 dm_ima_reset_data(md); 2510 2511 *result = md; 2512 return 0; 2513 } 2514 2515 /* 2516 * Functions to manage md->type. 2517 * All are required to hold md->type_lock. 2518 */ 2519 void dm_lock_md_type(struct mapped_device *md) 2520 { 2521 mutex_lock(&md->type_lock); 2522 } 2523 2524 void dm_unlock_md_type(struct mapped_device *md) 2525 { 2526 mutex_unlock(&md->type_lock); 2527 } 2528 2529 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2530 { 2531 return md->type; 2532 } 2533 2534 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2535 { 2536 return md->immutable_target_type; 2537 } 2538 2539 /* 2540 * Setup the DM device's queue based on md's type 2541 */ 2542 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2543 { 2544 enum dm_queue_mode type = dm_table_get_type(t); 2545 struct queue_limits limits; 2546 struct table_device *td; 2547 int r; 2548 2549 WARN_ON_ONCE(type == DM_TYPE_NONE); 2550 2551 if (type == DM_TYPE_REQUEST_BASED) { 2552 md->disk->fops = &dm_rq_blk_dops; 2553 r = dm_mq_init_request_queue(md, t); 2554 if (r) { 2555 DMERR("Cannot initialize queue for request-based dm mapped device"); 2556 return r; 2557 } 2558 } 2559 2560 r = dm_calculate_queue_limits(t, &limits); 2561 if (r) { 2562 DMERR("Cannot calculate initial queue limits"); 2563 return r; 2564 } 2565 r = dm_table_set_restrictions(t, md->queue, &limits); 2566 if (r) 2567 return r; 2568 2569 /* 2570 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent 2571 * with open_table_device() and close_table_device(). 2572 */ 2573 mutex_lock(&md->table_devices_lock); 2574 r = add_disk(md->disk); 2575 mutex_unlock(&md->table_devices_lock); 2576 if (r) 2577 return r; 2578 2579 /* 2580 * Register the holder relationship for devices added before the disk 2581 * was live. 2582 */ 2583 list_for_each_entry(td, &md->table_devices, list) { 2584 r = bd_link_disk_holder(td->dm_dev.bdev, md->disk); 2585 if (r) 2586 goto out_undo_holders; 2587 } 2588 2589 r = dm_sysfs_init(md); 2590 if (r) 2591 goto out_undo_holders; 2592 2593 md->type = type; 2594 return 0; 2595 2596 out_undo_holders: 2597 list_for_each_entry_continue_reverse(td, &md->table_devices, list) 2598 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk); 2599 mutex_lock(&md->table_devices_lock); 2600 del_gendisk(md->disk); 2601 mutex_unlock(&md->table_devices_lock); 2602 return r; 2603 } 2604 2605 struct mapped_device *dm_get_md(dev_t dev) 2606 { 2607 struct mapped_device *md; 2608 unsigned int minor = MINOR(dev); 2609 2610 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2611 return NULL; 2612 2613 spin_lock(&_minor_lock); 2614 2615 md = idr_find(&_minor_idr, minor); 2616 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2617 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2618 md = NULL; 2619 goto out; 2620 } 2621 dm_get(md); 2622 out: 2623 spin_unlock(&_minor_lock); 2624 2625 return md; 2626 } 2627 EXPORT_SYMBOL_GPL(dm_get_md); 2628 2629 void *dm_get_mdptr(struct mapped_device *md) 2630 { 2631 return md->interface_ptr; 2632 } 2633 2634 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2635 { 2636 md->interface_ptr = ptr; 2637 } 2638 2639 void dm_get(struct mapped_device *md) 2640 { 2641 atomic_inc(&md->holders); 2642 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2643 } 2644 2645 int dm_hold(struct mapped_device *md) 2646 { 2647 spin_lock(&_minor_lock); 2648 if (test_bit(DMF_FREEING, &md->flags)) { 2649 spin_unlock(&_minor_lock); 2650 return -EBUSY; 2651 } 2652 dm_get(md); 2653 spin_unlock(&_minor_lock); 2654 return 0; 2655 } 2656 EXPORT_SYMBOL_GPL(dm_hold); 2657 2658 const char *dm_device_name(struct mapped_device *md) 2659 { 2660 return md->name; 2661 } 2662 EXPORT_SYMBOL_GPL(dm_device_name); 2663 2664 static void __dm_destroy(struct mapped_device *md, bool wait) 2665 { 2666 struct dm_table *map; 2667 int srcu_idx; 2668 2669 might_sleep(); 2670 2671 spin_lock(&_minor_lock); 2672 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2673 set_bit(DMF_FREEING, &md->flags); 2674 spin_unlock(&_minor_lock); 2675 2676 blk_mark_disk_dead(md->disk); 2677 2678 /* 2679 * Take suspend_lock so that presuspend and postsuspend methods 2680 * do not race with internal suspend. 2681 */ 2682 mutex_lock(&md->suspend_lock); 2683 map = dm_get_live_table(md, &srcu_idx); 2684 if (!dm_suspended_md(md)) { 2685 dm_table_presuspend_targets(map); 2686 set_bit(DMF_SUSPENDED, &md->flags); 2687 set_bit(DMF_POST_SUSPENDING, &md->flags); 2688 dm_table_postsuspend_targets(map); 2689 } 2690 /* dm_put_live_table must be before fsleep, otherwise deadlock is possible */ 2691 dm_put_live_table(md, srcu_idx); 2692 mutex_unlock(&md->suspend_lock); 2693 2694 /* 2695 * Rare, but there may be I/O requests still going to complete, 2696 * for example. Wait for all references to disappear. 2697 * No one should increment the reference count of the mapped_device, 2698 * after the mapped_device state becomes DMF_FREEING. 2699 */ 2700 if (wait) 2701 while (atomic_read(&md->holders)) 2702 fsleep(1000); 2703 else if (atomic_read(&md->holders)) 2704 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2705 dm_device_name(md), atomic_read(&md->holders)); 2706 2707 dm_table_destroy(__unbind(md)); 2708 free_dev(md); 2709 } 2710 2711 void dm_destroy(struct mapped_device *md) 2712 { 2713 __dm_destroy(md, true); 2714 } 2715 2716 void dm_destroy_immediate(struct mapped_device *md) 2717 { 2718 __dm_destroy(md, false); 2719 } 2720 2721 void dm_put(struct mapped_device *md) 2722 { 2723 atomic_dec(&md->holders); 2724 } 2725 EXPORT_SYMBOL_GPL(dm_put); 2726 2727 static bool dm_in_flight_bios(struct mapped_device *md) 2728 { 2729 int cpu; 2730 unsigned long sum = 0; 2731 2732 for_each_possible_cpu(cpu) 2733 sum += *per_cpu_ptr(md->pending_io, cpu); 2734 2735 return sum != 0; 2736 } 2737 2738 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state) 2739 { 2740 int r = 0; 2741 DEFINE_WAIT(wait); 2742 2743 while (true) { 2744 prepare_to_wait(&md->wait, &wait, task_state); 2745 2746 if (!dm_in_flight_bios(md)) 2747 break; 2748 2749 if (signal_pending_state(task_state, current)) { 2750 r = -ERESTARTSYS; 2751 break; 2752 } 2753 2754 io_schedule(); 2755 } 2756 finish_wait(&md->wait, &wait); 2757 2758 smp_rmb(); 2759 2760 return r; 2761 } 2762 2763 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state) 2764 { 2765 int r = 0; 2766 2767 if (!queue_is_mq(md->queue)) 2768 return dm_wait_for_bios_completion(md, task_state); 2769 2770 while (true) { 2771 if (!blk_mq_queue_inflight(md->queue)) 2772 break; 2773 2774 if (signal_pending_state(task_state, current)) { 2775 r = -ERESTARTSYS; 2776 break; 2777 } 2778 2779 fsleep(5000); 2780 } 2781 2782 return r; 2783 } 2784 2785 /* 2786 * Process the deferred bios 2787 */ 2788 static void dm_wq_work(struct work_struct *work) 2789 { 2790 struct mapped_device *md = container_of(work, struct mapped_device, work); 2791 struct bio *bio; 2792 2793 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2794 spin_lock_irq(&md->deferred_lock); 2795 bio = bio_list_pop(&md->deferred); 2796 spin_unlock_irq(&md->deferred_lock); 2797 2798 if (!bio) 2799 break; 2800 2801 submit_bio_noacct(bio); 2802 cond_resched(); 2803 } 2804 } 2805 2806 static void dm_queue_flush(struct mapped_device *md) 2807 { 2808 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2809 smp_mb__after_atomic(); 2810 queue_work(md->wq, &md->work); 2811 } 2812 2813 /* 2814 * Swap in a new table, returning the old one for the caller to destroy. 2815 */ 2816 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2817 { 2818 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2819 struct queue_limits limits; 2820 int r; 2821 2822 mutex_lock(&md->suspend_lock); 2823 2824 /* device must be suspended */ 2825 if (!dm_suspended_md(md)) 2826 goto out; 2827 2828 /* 2829 * If the new table has no data devices, retain the existing limits. 2830 * This helps multipath with queue_if_no_path if all paths disappear, 2831 * then new I/O is queued based on these limits, and then some paths 2832 * reappear. 2833 */ 2834 if (dm_table_has_no_data_devices(table)) { 2835 live_map = dm_get_live_table_fast(md); 2836 if (live_map) 2837 limits = md->queue->limits; 2838 dm_put_live_table_fast(md); 2839 } 2840 2841 if (!live_map) { 2842 r = dm_calculate_queue_limits(table, &limits); 2843 if (r) { 2844 map = ERR_PTR(r); 2845 goto out; 2846 } 2847 } 2848 2849 map = __bind(md, table, &limits); 2850 dm_issue_global_event(); 2851 2852 out: 2853 mutex_unlock(&md->suspend_lock); 2854 return map; 2855 } 2856 2857 /* 2858 * Functions to lock and unlock any filesystem running on the 2859 * device. 2860 */ 2861 static int lock_fs(struct mapped_device *md) 2862 { 2863 int r; 2864 2865 WARN_ON(test_bit(DMF_FROZEN, &md->flags)); 2866 2867 r = bdev_freeze(md->disk->part0); 2868 if (!r) 2869 set_bit(DMF_FROZEN, &md->flags); 2870 return r; 2871 } 2872 2873 static void unlock_fs(struct mapped_device *md) 2874 { 2875 if (!test_bit(DMF_FROZEN, &md->flags)) 2876 return; 2877 bdev_thaw(md->disk->part0); 2878 clear_bit(DMF_FROZEN, &md->flags); 2879 } 2880 2881 /* 2882 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2883 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2884 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2885 * 2886 * If __dm_suspend returns 0, the device is completely quiescent 2887 * now. There is no request-processing activity. All new requests 2888 * are being added to md->deferred list. 2889 */ 2890 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2891 unsigned int suspend_flags, unsigned int task_state, 2892 int dmf_suspended_flag) 2893 { 2894 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2895 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2896 int r; 2897 2898 lockdep_assert_held(&md->suspend_lock); 2899 2900 /* 2901 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2902 * This flag is cleared before dm_suspend returns. 2903 */ 2904 if (noflush) 2905 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2906 else 2907 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2908 2909 /* 2910 * This gets reverted if there's an error later and the targets 2911 * provide the .presuspend_undo hook. 2912 */ 2913 dm_table_presuspend_targets(map); 2914 2915 /* 2916 * Flush I/O to the device. 2917 * Any I/O submitted after lock_fs() may not be flushed. 2918 * noflush takes precedence over do_lockfs. 2919 * (lock_fs() flushes I/Os and waits for them to complete.) 2920 */ 2921 if (!noflush && do_lockfs) { 2922 r = lock_fs(md); 2923 if (r) { 2924 dm_table_presuspend_undo_targets(map); 2925 return r; 2926 } 2927 } 2928 2929 /* 2930 * Here we must make sure that no processes are submitting requests 2931 * to target drivers i.e. no one may be executing 2932 * dm_split_and_process_bio from dm_submit_bio. 2933 * 2934 * To get all processes out of dm_split_and_process_bio in dm_submit_bio, 2935 * we take the write lock. To prevent any process from reentering 2936 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread 2937 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call 2938 * flush_workqueue(md->wq). 2939 */ 2940 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2941 if (map) 2942 synchronize_srcu(&md->io_barrier); 2943 2944 /* 2945 * Stop md->queue before flushing md->wq in case request-based 2946 * dm defers requests to md->wq from md->queue. 2947 */ 2948 if (dm_request_based(md)) 2949 dm_stop_queue(md->queue); 2950 2951 flush_workqueue(md->wq); 2952 2953 /* 2954 * At this point no more requests are entering target request routines. 2955 * We call dm_wait_for_completion to wait for all existing requests 2956 * to finish. 2957 */ 2958 r = dm_wait_for_completion(md, task_state); 2959 if (!r) 2960 set_bit(dmf_suspended_flag, &md->flags); 2961 2962 if (noflush) 2963 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2964 if (map) 2965 synchronize_srcu(&md->io_barrier); 2966 2967 /* were we interrupted ? */ 2968 if (r < 0) { 2969 dm_queue_flush(md); 2970 2971 if (dm_request_based(md)) 2972 dm_start_queue(md->queue); 2973 2974 unlock_fs(md); 2975 dm_table_presuspend_undo_targets(map); 2976 /* pushback list is already flushed, so skip flush */ 2977 } 2978 2979 return r; 2980 } 2981 2982 /* 2983 * We need to be able to change a mapping table under a mounted 2984 * filesystem. For example we might want to move some data in 2985 * the background. Before the table can be swapped with 2986 * dm_bind_table, dm_suspend must be called to flush any in 2987 * flight bios and ensure that any further io gets deferred. 2988 */ 2989 /* 2990 * Suspend mechanism in request-based dm. 2991 * 2992 * 1. Flush all I/Os by lock_fs() if needed. 2993 * 2. Stop dispatching any I/O by stopping the request_queue. 2994 * 3. Wait for all in-flight I/Os to be completed or requeued. 2995 * 2996 * To abort suspend, start the request_queue. 2997 */ 2998 int dm_suspend(struct mapped_device *md, unsigned int suspend_flags) 2999 { 3000 struct dm_table *map = NULL; 3001 int r = 0; 3002 3003 retry: 3004 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 3005 3006 if (dm_suspended_md(md)) { 3007 r = -EINVAL; 3008 goto out_unlock; 3009 } 3010 3011 if (dm_suspended_internally_md(md)) { 3012 /* already internally suspended, wait for internal resume */ 3013 mutex_unlock(&md->suspend_lock); 3014 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 3015 if (r) 3016 return r; 3017 goto retry; 3018 } 3019 3020 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3021 if (!map) { 3022 /* avoid deadlock with fs/namespace.c:do_mount() */ 3023 suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG; 3024 } 3025 3026 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 3027 if (r) 3028 goto out_unlock; 3029 3030 set_bit(DMF_POST_SUSPENDING, &md->flags); 3031 dm_table_postsuspend_targets(map); 3032 clear_bit(DMF_POST_SUSPENDING, &md->flags); 3033 3034 out_unlock: 3035 mutex_unlock(&md->suspend_lock); 3036 return r; 3037 } 3038 3039 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 3040 { 3041 if (map) { 3042 int r = dm_table_resume_targets(map); 3043 3044 if (r) 3045 return r; 3046 } 3047 3048 dm_queue_flush(md); 3049 3050 /* 3051 * Flushing deferred I/Os must be done after targets are resumed 3052 * so that mapping of targets can work correctly. 3053 * Request-based dm is queueing the deferred I/Os in its request_queue. 3054 */ 3055 if (dm_request_based(md)) 3056 dm_start_queue(md->queue); 3057 3058 unlock_fs(md); 3059 3060 return 0; 3061 } 3062 3063 int dm_resume(struct mapped_device *md) 3064 { 3065 int r; 3066 struct dm_table *map = NULL; 3067 3068 retry: 3069 r = -EINVAL; 3070 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 3071 3072 if (!dm_suspended_md(md)) 3073 goto out; 3074 3075 if (dm_suspended_internally_md(md)) { 3076 /* already internally suspended, wait for internal resume */ 3077 mutex_unlock(&md->suspend_lock); 3078 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 3079 if (r) 3080 return r; 3081 goto retry; 3082 } 3083 3084 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3085 if (!map || !dm_table_get_size(map)) 3086 goto out; 3087 3088 r = __dm_resume(md, map); 3089 if (r) 3090 goto out; 3091 3092 clear_bit(DMF_SUSPENDED, &md->flags); 3093 out: 3094 mutex_unlock(&md->suspend_lock); 3095 3096 return r; 3097 } 3098 3099 /* 3100 * Internal suspend/resume works like userspace-driven suspend. It waits 3101 * until all bios finish and prevents issuing new bios to the target drivers. 3102 * It may be used only from the kernel. 3103 */ 3104 3105 static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags) 3106 { 3107 struct dm_table *map = NULL; 3108 3109 lockdep_assert_held(&md->suspend_lock); 3110 3111 if (md->internal_suspend_count++) 3112 return; /* nested internal suspend */ 3113 3114 if (dm_suspended_md(md)) { 3115 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3116 return; /* nest suspend */ 3117 } 3118 3119 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3120 3121 /* 3122 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 3123 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 3124 * would require changing .presuspend to return an error -- avoid this 3125 * until there is a need for more elaborate variants of internal suspend. 3126 */ 3127 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 3128 DMF_SUSPENDED_INTERNALLY); 3129 3130 set_bit(DMF_POST_SUSPENDING, &md->flags); 3131 dm_table_postsuspend_targets(map); 3132 clear_bit(DMF_POST_SUSPENDING, &md->flags); 3133 } 3134 3135 static void __dm_internal_resume(struct mapped_device *md) 3136 { 3137 int r; 3138 struct dm_table *map; 3139 3140 BUG_ON(!md->internal_suspend_count); 3141 3142 if (--md->internal_suspend_count) 3143 return; /* resume from nested internal suspend */ 3144 3145 if (dm_suspended_md(md)) 3146 goto done; /* resume from nested suspend */ 3147 3148 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3149 r = __dm_resume(md, map); 3150 if (r) { 3151 /* 3152 * If a preresume method of some target failed, we are in a 3153 * tricky situation. We can't return an error to the caller. We 3154 * can't fake success because then the "resume" and 3155 * "postsuspend" methods would not be paired correctly, and it 3156 * would break various targets, for example it would cause list 3157 * corruption in the "origin" target. 3158 * 3159 * So, we fake normal suspend here, to make sure that the 3160 * "resume" and "postsuspend" methods will be paired correctly. 3161 */ 3162 DMERR("Preresume method failed: %d", r); 3163 set_bit(DMF_SUSPENDED, &md->flags); 3164 } 3165 done: 3166 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3167 smp_mb__after_atomic(); 3168 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 3169 } 3170 3171 void dm_internal_suspend_noflush(struct mapped_device *md) 3172 { 3173 mutex_lock(&md->suspend_lock); 3174 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 3175 mutex_unlock(&md->suspend_lock); 3176 } 3177 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 3178 3179 void dm_internal_resume(struct mapped_device *md) 3180 { 3181 mutex_lock(&md->suspend_lock); 3182 __dm_internal_resume(md); 3183 mutex_unlock(&md->suspend_lock); 3184 } 3185 EXPORT_SYMBOL_GPL(dm_internal_resume); 3186 3187 /* 3188 * Fast variants of internal suspend/resume hold md->suspend_lock, 3189 * which prevents interaction with userspace-driven suspend. 3190 */ 3191 3192 void dm_internal_suspend_fast(struct mapped_device *md) 3193 { 3194 mutex_lock(&md->suspend_lock); 3195 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 3196 return; 3197 3198 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 3199 synchronize_srcu(&md->io_barrier); 3200 flush_workqueue(md->wq); 3201 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 3202 } 3203 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 3204 3205 void dm_internal_resume_fast(struct mapped_device *md) 3206 { 3207 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 3208 goto done; 3209 3210 dm_queue_flush(md); 3211 3212 done: 3213 mutex_unlock(&md->suspend_lock); 3214 } 3215 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 3216 3217 /* 3218 *--------------------------------------------------------------- 3219 * Event notification. 3220 *--------------------------------------------------------------- 3221 */ 3222 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 3223 unsigned int cookie, bool need_resize_uevent) 3224 { 3225 int r; 3226 unsigned int noio_flag; 3227 char udev_cookie[DM_COOKIE_LENGTH]; 3228 char *envp[3] = { NULL, NULL, NULL }; 3229 char **envpp = envp; 3230 if (cookie) { 3231 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 3232 DM_COOKIE_ENV_VAR_NAME, cookie); 3233 *envpp++ = udev_cookie; 3234 } 3235 if (need_resize_uevent) { 3236 *envpp++ = "RESIZE=1"; 3237 } 3238 3239 noio_flag = memalloc_noio_save(); 3240 3241 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp); 3242 3243 memalloc_noio_restore(noio_flag); 3244 3245 return r; 3246 } 3247 3248 uint32_t dm_next_uevent_seq(struct mapped_device *md) 3249 { 3250 return atomic_add_return(1, &md->uevent_seq); 3251 } 3252 3253 uint32_t dm_get_event_nr(struct mapped_device *md) 3254 { 3255 return atomic_read(&md->event_nr); 3256 } 3257 3258 int dm_wait_event(struct mapped_device *md, int event_nr) 3259 { 3260 return wait_event_interruptible(md->eventq, 3261 (event_nr != atomic_read(&md->event_nr))); 3262 } 3263 3264 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 3265 { 3266 unsigned long flags; 3267 3268 spin_lock_irqsave(&md->uevent_lock, flags); 3269 list_add(elist, &md->uevent_list); 3270 spin_unlock_irqrestore(&md->uevent_lock, flags); 3271 } 3272 3273 /* 3274 * The gendisk is only valid as long as you have a reference 3275 * count on 'md'. 3276 */ 3277 struct gendisk *dm_disk(struct mapped_device *md) 3278 { 3279 return md->disk; 3280 } 3281 EXPORT_SYMBOL_GPL(dm_disk); 3282 3283 struct kobject *dm_kobject(struct mapped_device *md) 3284 { 3285 return &md->kobj_holder.kobj; 3286 } 3287 3288 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 3289 { 3290 struct mapped_device *md; 3291 3292 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 3293 3294 spin_lock(&_minor_lock); 3295 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 3296 md = NULL; 3297 goto out; 3298 } 3299 dm_get(md); 3300 out: 3301 spin_unlock(&_minor_lock); 3302 3303 return md; 3304 } 3305 3306 int dm_suspended_md(struct mapped_device *md) 3307 { 3308 return test_bit(DMF_SUSPENDED, &md->flags); 3309 } 3310 3311 static int dm_post_suspending_md(struct mapped_device *md) 3312 { 3313 return test_bit(DMF_POST_SUSPENDING, &md->flags); 3314 } 3315 3316 int dm_suspended_internally_md(struct mapped_device *md) 3317 { 3318 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3319 } 3320 3321 int dm_test_deferred_remove_flag(struct mapped_device *md) 3322 { 3323 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 3324 } 3325 3326 int dm_suspended(struct dm_target *ti) 3327 { 3328 return dm_suspended_md(ti->table->md); 3329 } 3330 EXPORT_SYMBOL_GPL(dm_suspended); 3331 3332 int dm_post_suspending(struct dm_target *ti) 3333 { 3334 return dm_post_suspending_md(ti->table->md); 3335 } 3336 EXPORT_SYMBOL_GPL(dm_post_suspending); 3337 3338 int dm_noflush_suspending(struct dm_target *ti) 3339 { 3340 return __noflush_suspending(ti->table->md); 3341 } 3342 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 3343 3344 void dm_free_md_mempools(struct dm_md_mempools *pools) 3345 { 3346 if (!pools) 3347 return; 3348 3349 bioset_exit(&pools->bs); 3350 bioset_exit(&pools->io_bs); 3351 3352 kfree(pools); 3353 } 3354 3355 struct dm_blkdev_id { 3356 u8 *id; 3357 enum blk_unique_id type; 3358 }; 3359 3360 static int __dm_get_unique_id(struct dm_target *ti, struct dm_dev *dev, 3361 sector_t start, sector_t len, void *data) 3362 { 3363 struct dm_blkdev_id *dm_id = data; 3364 const struct block_device_operations *fops = dev->bdev->bd_disk->fops; 3365 3366 if (!fops->get_unique_id) 3367 return 0; 3368 3369 return fops->get_unique_id(dev->bdev->bd_disk, dm_id->id, dm_id->type); 3370 } 3371 3372 /* 3373 * Allow access to get_unique_id() for the first device returning a 3374 * non-zero result. Reasonable use expects all devices to have the 3375 * same unique id. 3376 */ 3377 static int dm_blk_get_unique_id(struct gendisk *disk, u8 *id, 3378 enum blk_unique_id type) 3379 { 3380 struct mapped_device *md = disk->private_data; 3381 struct dm_table *table; 3382 struct dm_target *ti; 3383 int ret = 0, srcu_idx; 3384 3385 struct dm_blkdev_id dm_id = { 3386 .id = id, 3387 .type = type, 3388 }; 3389 3390 table = dm_get_live_table(md, &srcu_idx); 3391 if (!table || !dm_table_get_size(table)) 3392 goto out; 3393 3394 /* We only support devices that have a single target */ 3395 if (table->num_targets != 1) 3396 goto out; 3397 ti = dm_table_get_target(table, 0); 3398 3399 if (!ti->type->iterate_devices) 3400 goto out; 3401 3402 ret = ti->type->iterate_devices(ti, __dm_get_unique_id, &dm_id); 3403 out: 3404 dm_put_live_table(md, srcu_idx); 3405 return ret; 3406 } 3407 3408 struct dm_pr { 3409 u64 old_key; 3410 u64 new_key; 3411 u32 flags; 3412 bool abort; 3413 bool fail_early; 3414 int ret; 3415 enum pr_type type; 3416 struct pr_keys *read_keys; 3417 struct pr_held_reservation *rsv; 3418 }; 3419 3420 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 3421 struct dm_pr *pr) 3422 { 3423 struct mapped_device *md = bdev->bd_disk->private_data; 3424 struct dm_table *table; 3425 struct dm_target *ti; 3426 int ret = -ENOTTY, srcu_idx; 3427 3428 table = dm_get_live_table(md, &srcu_idx); 3429 if (!table || !dm_table_get_size(table)) 3430 goto out; 3431 3432 /* We only support devices that have a single target */ 3433 if (table->num_targets != 1) 3434 goto out; 3435 ti = dm_table_get_target(table, 0); 3436 3437 if (dm_suspended_md(md)) { 3438 ret = -EAGAIN; 3439 goto out; 3440 } 3441 3442 ret = -EINVAL; 3443 if (!ti->type->iterate_devices) 3444 goto out; 3445 3446 ti->type->iterate_devices(ti, fn, pr); 3447 ret = 0; 3448 out: 3449 dm_put_live_table(md, srcu_idx); 3450 return ret; 3451 } 3452 3453 /* 3454 * For register / unregister we need to manually call out to every path. 3455 */ 3456 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3457 sector_t start, sector_t len, void *data) 3458 { 3459 struct dm_pr *pr = data; 3460 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3461 int ret; 3462 3463 if (!ops || !ops->pr_register) { 3464 pr->ret = -EOPNOTSUPP; 3465 return -1; 3466 } 3467 3468 ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3469 if (!ret) 3470 return 0; 3471 3472 if (!pr->ret) 3473 pr->ret = ret; 3474 3475 if (pr->fail_early) 3476 return -1; 3477 3478 return 0; 3479 } 3480 3481 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3482 u32 flags) 3483 { 3484 struct dm_pr pr = { 3485 .old_key = old_key, 3486 .new_key = new_key, 3487 .flags = flags, 3488 .fail_early = true, 3489 .ret = 0, 3490 }; 3491 int ret; 3492 3493 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3494 if (ret) { 3495 /* Didn't even get to register a path */ 3496 return ret; 3497 } 3498 3499 if (!pr.ret) 3500 return 0; 3501 ret = pr.ret; 3502 3503 if (!new_key) 3504 return ret; 3505 3506 /* unregister all paths if we failed to register any path */ 3507 pr.old_key = new_key; 3508 pr.new_key = 0; 3509 pr.flags = 0; 3510 pr.fail_early = false; 3511 (void) dm_call_pr(bdev, __dm_pr_register, &pr); 3512 return ret; 3513 } 3514 3515 3516 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev, 3517 sector_t start, sector_t len, void *data) 3518 { 3519 struct dm_pr *pr = data; 3520 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3521 3522 if (!ops || !ops->pr_reserve) { 3523 pr->ret = -EOPNOTSUPP; 3524 return -1; 3525 } 3526 3527 pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags); 3528 if (!pr->ret) 3529 return -1; 3530 3531 return 0; 3532 } 3533 3534 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3535 u32 flags) 3536 { 3537 struct dm_pr pr = { 3538 .old_key = key, 3539 .flags = flags, 3540 .type = type, 3541 .fail_early = false, 3542 .ret = 0, 3543 }; 3544 int ret; 3545 3546 ret = dm_call_pr(bdev, __dm_pr_reserve, &pr); 3547 if (ret) 3548 return ret; 3549 3550 return pr.ret; 3551 } 3552 3553 /* 3554 * If there is a non-All Registrants type of reservation, the release must be 3555 * sent down the holding path. For the cases where there is no reservation or 3556 * the path is not the holder the device will also return success, so we must 3557 * try each path to make sure we got the correct path. 3558 */ 3559 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev, 3560 sector_t start, sector_t len, void *data) 3561 { 3562 struct dm_pr *pr = data; 3563 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3564 3565 if (!ops || !ops->pr_release) { 3566 pr->ret = -EOPNOTSUPP; 3567 return -1; 3568 } 3569 3570 pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type); 3571 if (pr->ret) 3572 return -1; 3573 3574 return 0; 3575 } 3576 3577 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3578 { 3579 struct dm_pr pr = { 3580 .old_key = key, 3581 .type = type, 3582 .fail_early = false, 3583 }; 3584 int ret; 3585 3586 ret = dm_call_pr(bdev, __dm_pr_release, &pr); 3587 if (ret) 3588 return ret; 3589 3590 return pr.ret; 3591 } 3592 3593 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev, 3594 sector_t start, sector_t len, void *data) 3595 { 3596 struct dm_pr *pr = data; 3597 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3598 3599 if (!ops || !ops->pr_preempt) { 3600 pr->ret = -EOPNOTSUPP; 3601 return -1; 3602 } 3603 3604 pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type, 3605 pr->abort); 3606 if (!pr->ret) 3607 return -1; 3608 3609 return 0; 3610 } 3611 3612 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3613 enum pr_type type, bool abort) 3614 { 3615 struct dm_pr pr = { 3616 .new_key = new_key, 3617 .old_key = old_key, 3618 .type = type, 3619 .fail_early = false, 3620 }; 3621 int ret; 3622 3623 ret = dm_call_pr(bdev, __dm_pr_preempt, &pr); 3624 if (ret) 3625 return ret; 3626 3627 return pr.ret; 3628 } 3629 3630 static int dm_pr_clear(struct block_device *bdev, u64 key) 3631 { 3632 struct mapped_device *md = bdev->bd_disk->private_data; 3633 const struct pr_ops *ops; 3634 int r, srcu_idx; 3635 bool forward = true; 3636 3637 /* Not a real ioctl, but targets must not interpret non-DM ioctls */ 3638 r = dm_prepare_ioctl(md, &srcu_idx, &bdev, 0, 0, &forward); 3639 if (r < 0) 3640 goto out; 3641 WARN_ON_ONCE(!forward); 3642 3643 ops = bdev->bd_disk->fops->pr_ops; 3644 if (ops && ops->pr_clear) 3645 r = ops->pr_clear(bdev, key); 3646 else 3647 r = -EOPNOTSUPP; 3648 out: 3649 dm_unprepare_ioctl(md, srcu_idx); 3650 return r; 3651 } 3652 3653 static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev, 3654 sector_t start, sector_t len, void *data) 3655 { 3656 struct dm_pr *pr = data; 3657 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3658 3659 if (!ops || !ops->pr_read_keys) { 3660 pr->ret = -EOPNOTSUPP; 3661 return -1; 3662 } 3663 3664 pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys); 3665 if (!pr->ret) 3666 return -1; 3667 3668 return 0; 3669 } 3670 3671 static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys) 3672 { 3673 struct dm_pr pr = { 3674 .read_keys = keys, 3675 }; 3676 int ret; 3677 3678 ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr); 3679 if (ret) 3680 return ret; 3681 3682 return pr.ret; 3683 } 3684 3685 static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev, 3686 sector_t start, sector_t len, void *data) 3687 { 3688 struct dm_pr *pr = data; 3689 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3690 3691 if (!ops || !ops->pr_read_reservation) { 3692 pr->ret = -EOPNOTSUPP; 3693 return -1; 3694 } 3695 3696 pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv); 3697 if (!pr->ret) 3698 return -1; 3699 3700 return 0; 3701 } 3702 3703 static int dm_pr_read_reservation(struct block_device *bdev, 3704 struct pr_held_reservation *rsv) 3705 { 3706 struct dm_pr pr = { 3707 .rsv = rsv, 3708 }; 3709 int ret; 3710 3711 ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr); 3712 if (ret) 3713 return ret; 3714 3715 return pr.ret; 3716 } 3717 3718 static const struct pr_ops dm_pr_ops = { 3719 .pr_register = dm_pr_register, 3720 .pr_reserve = dm_pr_reserve, 3721 .pr_release = dm_pr_release, 3722 .pr_preempt = dm_pr_preempt, 3723 .pr_clear = dm_pr_clear, 3724 .pr_read_keys = dm_pr_read_keys, 3725 .pr_read_reservation = dm_pr_read_reservation, 3726 }; 3727 3728 static const struct block_device_operations dm_blk_dops = { 3729 .submit_bio = dm_submit_bio, 3730 .poll_bio = dm_poll_bio, 3731 .open = dm_blk_open, 3732 .release = dm_blk_close, 3733 .ioctl = dm_blk_ioctl, 3734 .getgeo = dm_blk_getgeo, 3735 .report_zones = dm_blk_report_zones, 3736 .get_unique_id = dm_blk_get_unique_id, 3737 .pr_ops = &dm_pr_ops, 3738 .owner = THIS_MODULE 3739 }; 3740 3741 static const struct block_device_operations dm_rq_blk_dops = { 3742 .open = dm_blk_open, 3743 .release = dm_blk_close, 3744 .ioctl = dm_blk_ioctl, 3745 .getgeo = dm_blk_getgeo, 3746 .get_unique_id = dm_blk_get_unique_id, 3747 .pr_ops = &dm_pr_ops, 3748 .owner = THIS_MODULE 3749 }; 3750 3751 static const struct dax_operations dm_dax_ops = { 3752 .direct_access = dm_dax_direct_access, 3753 .zero_page_range = dm_dax_zero_page_range, 3754 .recovery_write = dm_dax_recovery_write, 3755 }; 3756 3757 /* 3758 * module hooks 3759 */ 3760 module_init(dm_init); 3761 module_exit(dm_exit); 3762 3763 module_param(major, uint, 0); 3764 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3765 3766 module_param(reserved_bio_based_ios, uint, 0644); 3767 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3768 3769 module_param(dm_numa_node, int, 0644); 3770 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3771 3772 module_param(swap_bios, int, 0644); 3773 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs"); 3774 3775 MODULE_DESCRIPTION(DM_NAME " driver"); 3776 MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>"); 3777 MODULE_LICENSE("GPL"); 3778