xref: /linux/drivers/md/dm.c (revision e78f70bad29c5ae1e1076698b690b15794e9b81e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
4  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-core.h"
10 #include "dm-rq.h"
11 #include "dm-uevent.h"
12 #include "dm-ima.h"
13 
14 #include <linux/bio-integrity.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/signal.h>
20 #include <linux/blkpg.h>
21 #include <linux/bio.h>
22 #include <linux/mempool.h>
23 #include <linux/dax.h>
24 #include <linux/slab.h>
25 #include <linux/idr.h>
26 #include <linux/uio.h>
27 #include <linux/hdreg.h>
28 #include <linux/delay.h>
29 #include <linux/wait.h>
30 #include <linux/pr.h>
31 #include <linux/refcount.h>
32 #include <linux/part_stat.h>
33 #include <linux/blk-crypto.h>
34 #include <linux/blk-crypto-profile.h>
35 
36 #define DM_MSG_PREFIX "core"
37 
38 /*
39  * Cookies are numeric values sent with CHANGE and REMOVE
40  * uevents while resuming, removing or renaming the device.
41  */
42 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
43 #define DM_COOKIE_LENGTH 24
44 
45 /*
46  * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
47  * dm_io into one list, and reuse bio->bi_private as the list head. Before
48  * ending this fs bio, we will recover its ->bi_private.
49  */
50 #define REQ_DM_POLL_LIST	REQ_DRV
51 
52 static const char *_name = DM_NAME;
53 
54 static unsigned int major;
55 static unsigned int _major;
56 
57 static DEFINE_IDR(_minor_idr);
58 
59 static DEFINE_SPINLOCK(_minor_lock);
60 
61 static void do_deferred_remove(struct work_struct *w);
62 
63 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
64 
65 static struct workqueue_struct *deferred_remove_workqueue;
66 
67 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
68 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
69 
70 void dm_issue_global_event(void)
71 {
72 	atomic_inc(&dm_global_event_nr);
73 	wake_up(&dm_global_eventq);
74 }
75 
76 DEFINE_STATIC_KEY_FALSE(stats_enabled);
77 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
78 DEFINE_STATIC_KEY_FALSE(zoned_enabled);
79 
80 /*
81  * One of these is allocated (on-stack) per original bio.
82  */
83 struct clone_info {
84 	struct dm_table *map;
85 	struct bio *bio;
86 	struct dm_io *io;
87 	sector_t sector;
88 	unsigned int sector_count;
89 	bool is_abnormal_io:1;
90 	bool submit_as_polled:1;
91 };
92 
93 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
94 {
95 	return container_of(clone, struct dm_target_io, clone);
96 }
97 
98 void *dm_per_bio_data(struct bio *bio, size_t data_size)
99 {
100 	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
101 		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
102 	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
103 }
104 EXPORT_SYMBOL_GPL(dm_per_bio_data);
105 
106 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
107 {
108 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
109 
110 	if (io->magic == DM_IO_MAGIC)
111 		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
112 	BUG_ON(io->magic != DM_TIO_MAGIC);
113 	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
114 }
115 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
116 
117 unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
118 {
119 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
120 }
121 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
122 
123 #define MINOR_ALLOCED ((void *)-1)
124 
125 #define DM_NUMA_NODE NUMA_NO_NODE
126 static int dm_numa_node = DM_NUMA_NODE;
127 
128 #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
129 static int swap_bios = DEFAULT_SWAP_BIOS;
130 static int get_swap_bios(void)
131 {
132 	int latch = READ_ONCE(swap_bios);
133 
134 	if (unlikely(latch <= 0))
135 		latch = DEFAULT_SWAP_BIOS;
136 	return latch;
137 }
138 
139 struct table_device {
140 	struct list_head list;
141 	refcount_t count;
142 	struct dm_dev dm_dev;
143 };
144 
145 /*
146  * Bio-based DM's mempools' reserved IOs set by the user.
147  */
148 #define RESERVED_BIO_BASED_IOS		16
149 static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
150 
151 static int __dm_get_module_param_int(int *module_param, int min, int max)
152 {
153 	int param = READ_ONCE(*module_param);
154 	int modified_param = 0;
155 	bool modified = true;
156 
157 	if (param < min)
158 		modified_param = min;
159 	else if (param > max)
160 		modified_param = max;
161 	else
162 		modified = false;
163 
164 	if (modified) {
165 		(void)cmpxchg(module_param, param, modified_param);
166 		param = modified_param;
167 	}
168 
169 	return param;
170 }
171 
172 unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
173 {
174 	unsigned int param = READ_ONCE(*module_param);
175 	unsigned int modified_param = 0;
176 
177 	if (!param)
178 		modified_param = def;
179 	else if (param > max)
180 		modified_param = max;
181 
182 	if (modified_param) {
183 		(void)cmpxchg(module_param, param, modified_param);
184 		param = modified_param;
185 	}
186 
187 	return param;
188 }
189 
190 unsigned int dm_get_reserved_bio_based_ios(void)
191 {
192 	return __dm_get_module_param(&reserved_bio_based_ios,
193 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
194 }
195 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
196 
197 static unsigned int dm_get_numa_node(void)
198 {
199 	return __dm_get_module_param_int(&dm_numa_node,
200 					 DM_NUMA_NODE, num_online_nodes() - 1);
201 }
202 
203 static int __init local_init(void)
204 {
205 	int r;
206 
207 	r = dm_uevent_init();
208 	if (r)
209 		return r;
210 
211 	deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0);
212 	if (!deferred_remove_workqueue) {
213 		r = -ENOMEM;
214 		goto out_uevent_exit;
215 	}
216 
217 	_major = major;
218 	r = register_blkdev(_major, _name);
219 	if (r < 0)
220 		goto out_free_workqueue;
221 
222 	if (!_major)
223 		_major = r;
224 
225 	return 0;
226 
227 out_free_workqueue:
228 	destroy_workqueue(deferred_remove_workqueue);
229 out_uevent_exit:
230 	dm_uevent_exit();
231 
232 	return r;
233 }
234 
235 static void local_exit(void)
236 {
237 	destroy_workqueue(deferred_remove_workqueue);
238 
239 	unregister_blkdev(_major, _name);
240 	dm_uevent_exit();
241 
242 	_major = 0;
243 
244 	DMINFO("cleaned up");
245 }
246 
247 static int (*_inits[])(void) __initdata = {
248 	local_init,
249 	dm_target_init,
250 	dm_linear_init,
251 	dm_stripe_init,
252 	dm_io_init,
253 	dm_kcopyd_init,
254 	dm_interface_init,
255 	dm_statistics_init,
256 };
257 
258 static void (*_exits[])(void) = {
259 	local_exit,
260 	dm_target_exit,
261 	dm_linear_exit,
262 	dm_stripe_exit,
263 	dm_io_exit,
264 	dm_kcopyd_exit,
265 	dm_interface_exit,
266 	dm_statistics_exit,
267 };
268 
269 static int __init dm_init(void)
270 {
271 	const int count = ARRAY_SIZE(_inits);
272 	int r, i;
273 
274 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
275 	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
276 	       " Duplicate IMA measurements will not be recorded in the IMA log.");
277 #endif
278 
279 	for (i = 0; i < count; i++) {
280 		r = _inits[i]();
281 		if (r)
282 			goto bad;
283 	}
284 
285 	return 0;
286 bad:
287 	while (i--)
288 		_exits[i]();
289 
290 	return r;
291 }
292 
293 static void __exit dm_exit(void)
294 {
295 	int i = ARRAY_SIZE(_exits);
296 
297 	while (i--)
298 		_exits[i]();
299 
300 	/*
301 	 * Should be empty by this point.
302 	 */
303 	idr_destroy(&_minor_idr);
304 }
305 
306 /*
307  * Block device functions
308  */
309 int dm_deleting_md(struct mapped_device *md)
310 {
311 	return test_bit(DMF_DELETING, &md->flags);
312 }
313 
314 static int dm_blk_open(struct gendisk *disk, blk_mode_t mode)
315 {
316 	struct mapped_device *md;
317 
318 	spin_lock(&_minor_lock);
319 
320 	md = disk->private_data;
321 	if (!md)
322 		goto out;
323 
324 	if (test_bit(DMF_FREEING, &md->flags) ||
325 	    dm_deleting_md(md)) {
326 		md = NULL;
327 		goto out;
328 	}
329 
330 	dm_get(md);
331 	atomic_inc(&md->open_count);
332 out:
333 	spin_unlock(&_minor_lock);
334 
335 	return md ? 0 : -ENXIO;
336 }
337 
338 static void dm_blk_close(struct gendisk *disk)
339 {
340 	struct mapped_device *md;
341 
342 	spin_lock(&_minor_lock);
343 
344 	md = disk->private_data;
345 	if (WARN_ON(!md))
346 		goto out;
347 
348 	if (atomic_dec_and_test(&md->open_count) &&
349 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
350 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
351 
352 	dm_put(md);
353 out:
354 	spin_unlock(&_minor_lock);
355 }
356 
357 int dm_open_count(struct mapped_device *md)
358 {
359 	return atomic_read(&md->open_count);
360 }
361 
362 /*
363  * Guarantees nothing is using the device before it's deleted.
364  */
365 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
366 {
367 	int r = 0;
368 
369 	spin_lock(&_minor_lock);
370 
371 	if (dm_open_count(md)) {
372 		r = -EBUSY;
373 		if (mark_deferred)
374 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
375 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
376 		r = -EEXIST;
377 	else
378 		set_bit(DMF_DELETING, &md->flags);
379 
380 	spin_unlock(&_minor_lock);
381 
382 	return r;
383 }
384 
385 int dm_cancel_deferred_remove(struct mapped_device *md)
386 {
387 	int r = 0;
388 
389 	spin_lock(&_minor_lock);
390 
391 	if (test_bit(DMF_DELETING, &md->flags))
392 		r = -EBUSY;
393 	else
394 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
395 
396 	spin_unlock(&_minor_lock);
397 
398 	return r;
399 }
400 
401 static void do_deferred_remove(struct work_struct *w)
402 {
403 	dm_deferred_remove();
404 }
405 
406 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
407 {
408 	struct mapped_device *md = bdev->bd_disk->private_data;
409 
410 	return dm_get_geometry(md, geo);
411 }
412 
413 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
414 			    struct block_device **bdev, unsigned int cmd,
415 			    unsigned long arg, bool *forward)
416 {
417 	struct dm_target *ti;
418 	struct dm_table *map;
419 	int r;
420 
421 retry:
422 	r = -ENOTTY;
423 	map = dm_get_live_table(md, srcu_idx);
424 	if (!map || !dm_table_get_size(map))
425 		return r;
426 
427 	/* We only support devices that have a single target */
428 	if (map->num_targets != 1)
429 		return r;
430 
431 	ti = dm_table_get_target(map, 0);
432 	if (!ti->type->prepare_ioctl)
433 		return r;
434 
435 	if (dm_suspended_md(md))
436 		return -EAGAIN;
437 
438 	r = ti->type->prepare_ioctl(ti, bdev, cmd, arg, forward);
439 	if (r == -ENOTCONN && *forward && !fatal_signal_pending(current)) {
440 		dm_put_live_table(md, *srcu_idx);
441 		fsleep(10000);
442 		goto retry;
443 	}
444 
445 	return r;
446 }
447 
448 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
449 {
450 	dm_put_live_table(md, srcu_idx);
451 }
452 
453 static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
454 			unsigned int cmd, unsigned long arg)
455 {
456 	struct mapped_device *md = bdev->bd_disk->private_data;
457 	int r, srcu_idx;
458 	bool forward = true;
459 
460 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev, cmd, arg, &forward);
461 	if (!forward || r < 0)
462 		goto out;
463 
464 	if (r > 0) {
465 		/*
466 		 * Target determined this ioctl is being issued against a
467 		 * subset of the parent bdev; require extra privileges.
468 		 */
469 		if (!capable(CAP_SYS_RAWIO)) {
470 			DMDEBUG_LIMIT(
471 	"%s: sending ioctl %x to DM device without required privilege.",
472 				current->comm, cmd);
473 			r = -ENOIOCTLCMD;
474 			goto out;
475 		}
476 	}
477 
478 	if (!bdev->bd_disk->fops->ioctl)
479 		r = -ENOTTY;
480 	else
481 		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
482 out:
483 	dm_unprepare_ioctl(md, srcu_idx);
484 	return r;
485 }
486 
487 u64 dm_start_time_ns_from_clone(struct bio *bio)
488 {
489 	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
490 }
491 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
492 
493 static inline bool bio_is_flush_with_data(struct bio *bio)
494 {
495 	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
496 }
497 
498 static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio)
499 {
500 	/*
501 	 * If REQ_PREFLUSH set, don't account payload, it will be
502 	 * submitted (and accounted) after this flush completes.
503 	 */
504 	if (bio_is_flush_with_data(bio))
505 		return 0;
506 	if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
507 		return io->sectors;
508 	return bio_sectors(bio);
509 }
510 
511 static void dm_io_acct(struct dm_io *io, bool end)
512 {
513 	struct bio *bio = io->orig_bio;
514 
515 	if (dm_io_flagged(io, DM_IO_BLK_STAT)) {
516 		if (!end)
517 			bdev_start_io_acct(bio->bi_bdev, bio_op(bio),
518 					   io->start_time);
519 		else
520 			bdev_end_io_acct(bio->bi_bdev, bio_op(bio),
521 					 dm_io_sectors(io, bio),
522 					 io->start_time);
523 	}
524 
525 	if (static_branch_unlikely(&stats_enabled) &&
526 	    unlikely(dm_stats_used(&io->md->stats))) {
527 		sector_t sector;
528 
529 		if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
530 			sector = bio_end_sector(bio) - io->sector_offset;
531 		else
532 			sector = bio->bi_iter.bi_sector;
533 
534 		dm_stats_account_io(&io->md->stats, bio_data_dir(bio),
535 				    sector, dm_io_sectors(io, bio),
536 				    end, io->start_time, &io->stats_aux);
537 	}
538 }
539 
540 static void __dm_start_io_acct(struct dm_io *io)
541 {
542 	dm_io_acct(io, false);
543 }
544 
545 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
546 {
547 	/*
548 	 * Ensure IO accounting is only ever started once.
549 	 */
550 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
551 		return;
552 
553 	/* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
554 	if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
555 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
556 	} else {
557 		unsigned long flags;
558 		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
559 		spin_lock_irqsave(&io->lock, flags);
560 		if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
561 			spin_unlock_irqrestore(&io->lock, flags);
562 			return;
563 		}
564 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
565 		spin_unlock_irqrestore(&io->lock, flags);
566 	}
567 
568 	__dm_start_io_acct(io);
569 }
570 
571 static void dm_end_io_acct(struct dm_io *io)
572 {
573 	dm_io_acct(io, true);
574 }
575 
576 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio, gfp_t gfp_mask)
577 {
578 	struct dm_io *io;
579 	struct dm_target_io *tio;
580 	struct bio *clone;
581 
582 	clone = bio_alloc_clone(NULL, bio, gfp_mask, &md->mempools->io_bs);
583 	if (unlikely(!clone))
584 		return NULL;
585 	tio = clone_to_tio(clone);
586 	tio->flags = 0;
587 	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
588 	tio->io = NULL;
589 
590 	io = container_of(tio, struct dm_io, tio);
591 	io->magic = DM_IO_MAGIC;
592 	io->status = BLK_STS_OK;
593 
594 	/* one ref is for submission, the other is for completion */
595 	atomic_set(&io->io_count, 2);
596 	this_cpu_inc(*md->pending_io);
597 	io->orig_bio = bio;
598 	io->md = md;
599 	spin_lock_init(&io->lock);
600 	io->start_time = jiffies;
601 	io->flags = 0;
602 	if (blk_queue_io_stat(md->queue))
603 		dm_io_set_flag(io, DM_IO_BLK_STAT);
604 
605 	if (static_branch_unlikely(&stats_enabled) &&
606 	    unlikely(dm_stats_used(&md->stats)))
607 		dm_stats_record_start(&md->stats, &io->stats_aux);
608 
609 	return io;
610 }
611 
612 static void free_io(struct dm_io *io)
613 {
614 	bio_put(&io->tio.clone);
615 }
616 
617 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
618 			     unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
619 {
620 	struct mapped_device *md = ci->io->md;
621 	struct dm_target_io *tio;
622 	struct bio *clone;
623 
624 	if (!ci->io->tio.io) {
625 		/* the dm_target_io embedded in ci->io is available */
626 		tio = &ci->io->tio;
627 		/* alloc_io() already initialized embedded clone */
628 		clone = &tio->clone;
629 	} else {
630 		clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
631 					&md->mempools->bs);
632 		if (!clone)
633 			return NULL;
634 
635 		/* REQ_DM_POLL_LIST shouldn't be inherited */
636 		clone->bi_opf &= ~REQ_DM_POLL_LIST;
637 
638 		tio = clone_to_tio(clone);
639 		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
640 	}
641 
642 	tio->magic = DM_TIO_MAGIC;
643 	tio->io = ci->io;
644 	tio->ti = ti;
645 	tio->target_bio_nr = target_bio_nr;
646 	tio->len_ptr = len;
647 	tio->old_sector = 0;
648 
649 	/* Set default bdev, but target must bio_set_dev() before issuing IO */
650 	clone->bi_bdev = md->disk->part0;
651 	if (likely(ti != NULL) && unlikely(ti->needs_bio_set_dev))
652 		bio_set_dev(clone, md->disk->part0);
653 
654 	if (len) {
655 		clone->bi_iter.bi_size = to_bytes(*len);
656 		if (bio_integrity(clone))
657 			bio_integrity_trim(clone);
658 	}
659 
660 	return clone;
661 }
662 
663 static void free_tio(struct bio *clone)
664 {
665 	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
666 		return;
667 	bio_put(clone);
668 }
669 
670 /*
671  * Add the bio to the list of deferred io.
672  */
673 static void queue_io(struct mapped_device *md, struct bio *bio)
674 {
675 	unsigned long flags;
676 
677 	spin_lock_irqsave(&md->deferred_lock, flags);
678 	bio_list_add(&md->deferred, bio);
679 	spin_unlock_irqrestore(&md->deferred_lock, flags);
680 	queue_work(md->wq, &md->work);
681 }
682 
683 /*
684  * Everyone (including functions in this file), should use this
685  * function to access the md->map field, and make sure they call
686  * dm_put_live_table() when finished.
687  */
688 struct dm_table *dm_get_live_table(struct mapped_device *md,
689 				   int *srcu_idx) __acquires(md->io_barrier)
690 {
691 	*srcu_idx = srcu_read_lock(&md->io_barrier);
692 
693 	return srcu_dereference(md->map, &md->io_barrier);
694 }
695 
696 void dm_put_live_table(struct mapped_device *md,
697 		       int srcu_idx) __releases(md->io_barrier)
698 {
699 	srcu_read_unlock(&md->io_barrier, srcu_idx);
700 }
701 
702 void dm_sync_table(struct mapped_device *md)
703 {
704 	synchronize_srcu(&md->io_barrier);
705 	synchronize_rcu_expedited();
706 }
707 
708 /*
709  * A fast alternative to dm_get_live_table/dm_put_live_table.
710  * The caller must not block between these two functions.
711  */
712 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
713 {
714 	rcu_read_lock();
715 	return rcu_dereference(md->map);
716 }
717 
718 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
719 {
720 	rcu_read_unlock();
721 }
722 
723 static char *_dm_claim_ptr = "I belong to device-mapper";
724 
725 /*
726  * Open a table device so we can use it as a map destination.
727  */
728 static struct table_device *open_table_device(struct mapped_device *md,
729 		dev_t dev, blk_mode_t mode)
730 {
731 	struct table_device *td;
732 	struct file *bdev_file;
733 	struct block_device *bdev;
734 	u64 part_off;
735 	int r;
736 
737 	td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
738 	if (!td)
739 		return ERR_PTR(-ENOMEM);
740 	refcount_set(&td->count, 1);
741 
742 	bdev_file = bdev_file_open_by_dev(dev, mode, _dm_claim_ptr, NULL);
743 	if (IS_ERR(bdev_file)) {
744 		r = PTR_ERR(bdev_file);
745 		goto out_free_td;
746 	}
747 
748 	bdev = file_bdev(bdev_file);
749 
750 	/*
751 	 * We can be called before the dm disk is added.  In that case we can't
752 	 * register the holder relation here.  It will be done once add_disk was
753 	 * called.
754 	 */
755 	if (md->disk->slave_dir) {
756 		r = bd_link_disk_holder(bdev, md->disk);
757 		if (r)
758 			goto out_blkdev_put;
759 	}
760 
761 	td->dm_dev.mode = mode;
762 	td->dm_dev.bdev = bdev;
763 	td->dm_dev.bdev_file = bdev_file;
764 	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off,
765 						NULL, NULL);
766 	format_dev_t(td->dm_dev.name, dev);
767 	list_add(&td->list, &md->table_devices);
768 	return td;
769 
770 out_blkdev_put:
771 	__fput_sync(bdev_file);
772 out_free_td:
773 	kfree(td);
774 	return ERR_PTR(r);
775 }
776 
777 /*
778  * Close a table device that we've been using.
779  */
780 static void close_table_device(struct table_device *td, struct mapped_device *md)
781 {
782 	if (md->disk->slave_dir)
783 		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
784 
785 	/* Leverage async fput() if DMF_DEFERRED_REMOVE set */
786 	if (unlikely(test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
787 		fput(td->dm_dev.bdev_file);
788 	else
789 		__fput_sync(td->dm_dev.bdev_file);
790 
791 	put_dax(td->dm_dev.dax_dev);
792 	list_del(&td->list);
793 	kfree(td);
794 }
795 
796 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
797 					      blk_mode_t mode)
798 {
799 	struct table_device *td;
800 
801 	list_for_each_entry(td, l, list)
802 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
803 			return td;
804 
805 	return NULL;
806 }
807 
808 int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode,
809 			struct dm_dev **result)
810 {
811 	struct table_device *td;
812 
813 	mutex_lock(&md->table_devices_lock);
814 	td = find_table_device(&md->table_devices, dev, mode);
815 	if (!td) {
816 		td = open_table_device(md, dev, mode);
817 		if (IS_ERR(td)) {
818 			mutex_unlock(&md->table_devices_lock);
819 			return PTR_ERR(td);
820 		}
821 	} else {
822 		refcount_inc(&td->count);
823 	}
824 	mutex_unlock(&md->table_devices_lock);
825 
826 	*result = &td->dm_dev;
827 	return 0;
828 }
829 
830 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
831 {
832 	struct table_device *td = container_of(d, struct table_device, dm_dev);
833 
834 	mutex_lock(&md->table_devices_lock);
835 	if (refcount_dec_and_test(&td->count))
836 		close_table_device(td, md);
837 	mutex_unlock(&md->table_devices_lock);
838 }
839 
840 /*
841  * Get the geometry associated with a dm device
842  */
843 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
844 {
845 	*geo = md->geometry;
846 
847 	return 0;
848 }
849 
850 /*
851  * Set the geometry of a device.
852  */
853 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
854 {
855 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
856 
857 	if (geo->start > sz) {
858 		DMERR("Start sector is beyond the geometry limits.");
859 		return -EINVAL;
860 	}
861 
862 	md->geometry = *geo;
863 
864 	return 0;
865 }
866 
867 static int __noflush_suspending(struct mapped_device *md)
868 {
869 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
870 }
871 
872 static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
873 {
874 	struct mapped_device *md = io->md;
875 
876 	if (first_stage) {
877 		struct dm_io *next = md->requeue_list;
878 
879 		md->requeue_list = io;
880 		io->next = next;
881 	} else {
882 		bio_list_add_head(&md->deferred, io->orig_bio);
883 	}
884 }
885 
886 static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
887 {
888 	if (first_stage)
889 		queue_work(md->wq, &md->requeue_work);
890 	else
891 		queue_work(md->wq, &md->work);
892 }
893 
894 /*
895  * Return true if the dm_io's original bio is requeued.
896  * io->status is updated with error if requeue disallowed.
897  */
898 static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
899 {
900 	struct bio *bio = io->orig_bio;
901 	bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
902 	bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
903 				     (bio->bi_opf & REQ_POLLED));
904 	struct mapped_device *md = io->md;
905 	bool requeued = false;
906 
907 	if (handle_requeue || handle_polled_eagain) {
908 		unsigned long flags;
909 
910 		if (bio->bi_opf & REQ_POLLED) {
911 			/*
912 			 * Upper layer won't help us poll split bio
913 			 * (io->orig_bio may only reflect a subset of the
914 			 * pre-split original) so clear REQ_POLLED.
915 			 */
916 			bio_clear_polled(bio);
917 		}
918 
919 		/*
920 		 * Target requested pushing back the I/O or
921 		 * polled IO hit BLK_STS_AGAIN.
922 		 */
923 		spin_lock_irqsave(&md->deferred_lock, flags);
924 		if ((__noflush_suspending(md) &&
925 		     !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
926 		    handle_polled_eagain || first_stage) {
927 			dm_requeue_add_io(io, first_stage);
928 			requeued = true;
929 		} else {
930 			/*
931 			 * noflush suspend was interrupted or this is
932 			 * a write to a zoned target.
933 			 */
934 			io->status = BLK_STS_IOERR;
935 		}
936 		spin_unlock_irqrestore(&md->deferred_lock, flags);
937 	}
938 
939 	if (requeued)
940 		dm_kick_requeue(md, first_stage);
941 
942 	return requeued;
943 }
944 
945 static void __dm_io_complete(struct dm_io *io, bool first_stage)
946 {
947 	struct bio *bio = io->orig_bio;
948 	struct mapped_device *md = io->md;
949 	blk_status_t io_error;
950 	bool requeued;
951 
952 	requeued = dm_handle_requeue(io, first_stage);
953 	if (requeued && first_stage)
954 		return;
955 
956 	io_error = io->status;
957 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
958 		dm_end_io_acct(io);
959 	else if (!io_error) {
960 		/*
961 		 * Must handle target that DM_MAPIO_SUBMITTED only to
962 		 * then bio_endio() rather than dm_submit_bio_remap()
963 		 */
964 		__dm_start_io_acct(io);
965 		dm_end_io_acct(io);
966 	}
967 	free_io(io);
968 	smp_wmb();
969 	this_cpu_dec(*md->pending_io);
970 
971 	/* nudge anyone waiting on suspend queue */
972 	if (unlikely(wq_has_sleeper(&md->wait)))
973 		wake_up(&md->wait);
974 
975 	/* Return early if the original bio was requeued */
976 	if (requeued)
977 		return;
978 
979 	if (bio_is_flush_with_data(bio)) {
980 		/*
981 		 * Preflush done for flush with data, reissue
982 		 * without REQ_PREFLUSH.
983 		 */
984 		bio->bi_opf &= ~REQ_PREFLUSH;
985 		queue_io(md, bio);
986 	} else {
987 		/* done with normal IO or empty flush */
988 		if (io_error)
989 			bio->bi_status = io_error;
990 		bio_endio(bio);
991 	}
992 }
993 
994 static void dm_wq_requeue_work(struct work_struct *work)
995 {
996 	struct mapped_device *md = container_of(work, struct mapped_device,
997 						requeue_work);
998 	unsigned long flags;
999 	struct dm_io *io;
1000 
1001 	/* reuse deferred lock to simplify dm_handle_requeue */
1002 	spin_lock_irqsave(&md->deferred_lock, flags);
1003 	io = md->requeue_list;
1004 	md->requeue_list = NULL;
1005 	spin_unlock_irqrestore(&md->deferred_lock, flags);
1006 
1007 	while (io) {
1008 		struct dm_io *next = io->next;
1009 
1010 		dm_io_rewind(io, &md->disk->bio_split);
1011 
1012 		io->next = NULL;
1013 		__dm_io_complete(io, false);
1014 		io = next;
1015 		cond_resched();
1016 	}
1017 }
1018 
1019 /*
1020  * Two staged requeue:
1021  *
1022  * 1) io->orig_bio points to the real original bio, and the part mapped to
1023  *    this io must be requeued, instead of other parts of the original bio.
1024  *
1025  * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1026  */
1027 static void dm_io_complete(struct dm_io *io)
1028 {
1029 	bool first_requeue;
1030 
1031 	/*
1032 	 * Only dm_io that has been split needs two stage requeue, otherwise
1033 	 * we may run into long bio clone chain during suspend and OOM could
1034 	 * be triggered.
1035 	 *
1036 	 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1037 	 * also aren't handled via the first stage requeue.
1038 	 */
1039 	if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1040 		first_requeue = true;
1041 	else
1042 		first_requeue = false;
1043 
1044 	__dm_io_complete(io, first_requeue);
1045 }
1046 
1047 /*
1048  * Decrements the number of outstanding ios that a bio has been
1049  * cloned into, completing the original io if necc.
1050  */
1051 static inline void __dm_io_dec_pending(struct dm_io *io)
1052 {
1053 	if (atomic_dec_and_test(&io->io_count))
1054 		dm_io_complete(io);
1055 }
1056 
1057 static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1058 {
1059 	unsigned long flags;
1060 
1061 	/* Push-back supersedes any I/O errors */
1062 	spin_lock_irqsave(&io->lock, flags);
1063 	if (!(io->status == BLK_STS_DM_REQUEUE &&
1064 	      __noflush_suspending(io->md))) {
1065 		io->status = error;
1066 	}
1067 	spin_unlock_irqrestore(&io->lock, flags);
1068 }
1069 
1070 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1071 {
1072 	if (unlikely(error))
1073 		dm_io_set_error(io, error);
1074 
1075 	__dm_io_dec_pending(io);
1076 }
1077 
1078 /*
1079  * The queue_limits are only valid as long as you have a reference
1080  * count on 'md'. But _not_ imposing verification to avoid atomic_read(),
1081  */
1082 static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1083 {
1084 	return &md->queue->limits;
1085 }
1086 
1087 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1088 {
1089 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1090 }
1091 
1092 static void clone_endio(struct bio *bio)
1093 {
1094 	blk_status_t error = bio->bi_status;
1095 	struct dm_target_io *tio = clone_to_tio(bio);
1096 	struct dm_target *ti = tio->ti;
1097 	dm_endio_fn endio = likely(ti != NULL) ? ti->type->end_io : NULL;
1098 	struct dm_io *io = tio->io;
1099 	struct mapped_device *md = io->md;
1100 
1101 	if (unlikely(error == BLK_STS_TARGET)) {
1102 		if (bio_op(bio) == REQ_OP_DISCARD &&
1103 		    !bdev_max_discard_sectors(bio->bi_bdev))
1104 			blk_queue_disable_discard(md->queue);
1105 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1106 			 !bdev_write_zeroes_sectors(bio->bi_bdev))
1107 			blk_queue_disable_write_zeroes(md->queue);
1108 	}
1109 
1110 	if (static_branch_unlikely(&zoned_enabled) &&
1111 	    unlikely(bdev_is_zoned(bio->bi_bdev)))
1112 		dm_zone_endio(io, bio);
1113 
1114 	if (endio) {
1115 		int r = endio(ti, bio, &error);
1116 
1117 		switch (r) {
1118 		case DM_ENDIO_REQUEUE:
1119 			if (static_branch_unlikely(&zoned_enabled)) {
1120 				/*
1121 				 * Requeuing writes to a sequential zone of a zoned
1122 				 * target will break the sequential write pattern:
1123 				 * fail such IO.
1124 				 */
1125 				if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1126 					error = BLK_STS_IOERR;
1127 				else
1128 					error = BLK_STS_DM_REQUEUE;
1129 			} else
1130 				error = BLK_STS_DM_REQUEUE;
1131 			fallthrough;
1132 		case DM_ENDIO_DONE:
1133 			break;
1134 		case DM_ENDIO_INCOMPLETE:
1135 			/* The target will handle the io */
1136 			return;
1137 		default:
1138 			DMCRIT("unimplemented target endio return value: %d", r);
1139 			BUG();
1140 		}
1141 	}
1142 
1143 	if (static_branch_unlikely(&swap_bios_enabled) &&
1144 	    likely(ti != NULL) && unlikely(swap_bios_limit(ti, bio)))
1145 		up(&md->swap_bios_semaphore);
1146 
1147 	free_tio(bio);
1148 	dm_io_dec_pending(io, error);
1149 }
1150 
1151 /*
1152  * Return maximum size of I/O possible at the supplied sector up to the current
1153  * target boundary.
1154  */
1155 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1156 						  sector_t target_offset)
1157 {
1158 	return ti->len - target_offset;
1159 }
1160 
1161 static sector_t __max_io_len(struct dm_target *ti, sector_t sector,
1162 			     unsigned int max_granularity,
1163 			     unsigned int max_sectors)
1164 {
1165 	sector_t target_offset = dm_target_offset(ti, sector);
1166 	sector_t len = max_io_len_target_boundary(ti, target_offset);
1167 
1168 	/*
1169 	 * Does the target need to split IO even further?
1170 	 * - varied (per target) IO splitting is a tenet of DM; this
1171 	 *   explains why stacked chunk_sectors based splitting via
1172 	 *   bio_split_to_limits() isn't possible here.
1173 	 */
1174 	if (!max_granularity)
1175 		return len;
1176 	return min_t(sector_t, len,
1177 		min(max_sectors ? : queue_max_sectors(ti->table->md->queue),
1178 		    blk_boundary_sectors_left(target_offset, max_granularity)));
1179 }
1180 
1181 static inline sector_t max_io_len(struct dm_target *ti, sector_t sector)
1182 {
1183 	return __max_io_len(ti, sector, ti->max_io_len, 0);
1184 }
1185 
1186 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1187 {
1188 	if (len > UINT_MAX) {
1189 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1190 		      (unsigned long long)len, UINT_MAX);
1191 		ti->error = "Maximum size of target IO is too large";
1192 		return -EINVAL;
1193 	}
1194 
1195 	ti->max_io_len = (uint32_t) len;
1196 
1197 	return 0;
1198 }
1199 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1200 
1201 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1202 						sector_t sector, int *srcu_idx)
1203 	__acquires(md->io_barrier)
1204 {
1205 	struct dm_table *map;
1206 	struct dm_target *ti;
1207 
1208 	map = dm_get_live_table(md, srcu_idx);
1209 	if (!map)
1210 		return NULL;
1211 
1212 	ti = dm_table_find_target(map, sector);
1213 	if (!ti)
1214 		return NULL;
1215 
1216 	return ti;
1217 }
1218 
1219 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1220 		long nr_pages, enum dax_access_mode mode, void **kaddr,
1221 		pfn_t *pfn)
1222 {
1223 	struct mapped_device *md = dax_get_private(dax_dev);
1224 	sector_t sector = pgoff * PAGE_SECTORS;
1225 	struct dm_target *ti;
1226 	long len, ret = -EIO;
1227 	int srcu_idx;
1228 
1229 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1230 
1231 	if (!ti)
1232 		goto out;
1233 	if (!ti->type->direct_access)
1234 		goto out;
1235 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1236 	if (len < 1)
1237 		goto out;
1238 	nr_pages = min(len, nr_pages);
1239 	ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1240 
1241  out:
1242 	dm_put_live_table(md, srcu_idx);
1243 
1244 	return ret;
1245 }
1246 
1247 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1248 				  size_t nr_pages)
1249 {
1250 	struct mapped_device *md = dax_get_private(dax_dev);
1251 	sector_t sector = pgoff * PAGE_SECTORS;
1252 	struct dm_target *ti;
1253 	int ret = -EIO;
1254 	int srcu_idx;
1255 
1256 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1257 
1258 	if (!ti)
1259 		goto out;
1260 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1261 		/*
1262 		 * ->zero_page_range() is mandatory dax operation. If we are
1263 		 *  here, something is wrong.
1264 		 */
1265 		goto out;
1266 	}
1267 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1268  out:
1269 	dm_put_live_table(md, srcu_idx);
1270 
1271 	return ret;
1272 }
1273 
1274 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1275 		void *addr, size_t bytes, struct iov_iter *i)
1276 {
1277 	struct mapped_device *md = dax_get_private(dax_dev);
1278 	sector_t sector = pgoff * PAGE_SECTORS;
1279 	struct dm_target *ti;
1280 	int srcu_idx;
1281 	long ret = 0;
1282 
1283 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1284 	if (!ti || !ti->type->dax_recovery_write)
1285 		goto out;
1286 
1287 	ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1288 out:
1289 	dm_put_live_table(md, srcu_idx);
1290 	return ret;
1291 }
1292 
1293 /*
1294  * A target may call dm_accept_partial_bio only from the map routine.  It is
1295  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1296  * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1297  * __send_duplicate_bios().
1298  *
1299  * dm_accept_partial_bio informs the dm that the target only wants to process
1300  * additional n_sectors sectors of the bio and the rest of the data should be
1301  * sent in a next bio.
1302  *
1303  * A diagram that explains the arithmetics:
1304  * +--------------------+---------------+-------+
1305  * |         1          |       2       |   3   |
1306  * +--------------------+---------------+-------+
1307  *
1308  * <-------------- *tio->len_ptr --------------->
1309  *                      <----- bio_sectors ----->
1310  *                      <-- n_sectors -->
1311  *
1312  * Region 1 was already iterated over with bio_advance or similar function.
1313  *	(it may be empty if the target doesn't use bio_advance)
1314  * Region 2 is the remaining bio size that the target wants to process.
1315  *	(it may be empty if region 1 is non-empty, although there is no reason
1316  *	 to make it empty)
1317  * The target requires that region 3 is to be sent in the next bio.
1318  *
1319  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1320  * the partially processed part (the sum of regions 1+2) must be the same for all
1321  * copies of the bio.
1322  */
1323 void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
1324 {
1325 	struct dm_target_io *tio = clone_to_tio(bio);
1326 	struct dm_io *io = tio->io;
1327 	unsigned int bio_sectors = bio_sectors(bio);
1328 
1329 	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1330 	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1331 	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1332 	BUG_ON(bio_sectors > *tio->len_ptr);
1333 	BUG_ON(n_sectors > bio_sectors);
1334 
1335 	*tio->len_ptr -= bio_sectors - n_sectors;
1336 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1337 
1338 	/*
1339 	 * __split_and_process_bio() may have already saved mapped part
1340 	 * for accounting but it is being reduced so update accordingly.
1341 	 */
1342 	dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1343 	io->sectors = n_sectors;
1344 	io->sector_offset = bio_sectors(io->orig_bio);
1345 }
1346 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1347 
1348 /*
1349  * @clone: clone bio that DM core passed to target's .map function
1350  * @tgt_clone: clone of @clone bio that target needs submitted
1351  *
1352  * Targets should use this interface to submit bios they take
1353  * ownership of when returning DM_MAPIO_SUBMITTED.
1354  *
1355  * Target should also enable ti->accounts_remapped_io
1356  */
1357 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1358 {
1359 	struct dm_target_io *tio = clone_to_tio(clone);
1360 	struct dm_io *io = tio->io;
1361 
1362 	/* establish bio that will get submitted */
1363 	if (!tgt_clone)
1364 		tgt_clone = clone;
1365 
1366 	/*
1367 	 * Account io->origin_bio to DM dev on behalf of target
1368 	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1369 	 */
1370 	dm_start_io_acct(io, clone);
1371 
1372 	trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1373 			      tio->old_sector);
1374 	submit_bio_noacct(tgt_clone);
1375 }
1376 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1377 
1378 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1379 {
1380 	mutex_lock(&md->swap_bios_lock);
1381 	while (latch < md->swap_bios) {
1382 		cond_resched();
1383 		down(&md->swap_bios_semaphore);
1384 		md->swap_bios--;
1385 	}
1386 	while (latch > md->swap_bios) {
1387 		cond_resched();
1388 		up(&md->swap_bios_semaphore);
1389 		md->swap_bios++;
1390 	}
1391 	mutex_unlock(&md->swap_bios_lock);
1392 }
1393 
1394 static void __map_bio(struct bio *clone)
1395 {
1396 	struct dm_target_io *tio = clone_to_tio(clone);
1397 	struct dm_target *ti = tio->ti;
1398 	struct dm_io *io = tio->io;
1399 	struct mapped_device *md = io->md;
1400 	int r;
1401 
1402 	clone->bi_end_io = clone_endio;
1403 
1404 	/*
1405 	 * Map the clone.
1406 	 */
1407 	tio->old_sector = clone->bi_iter.bi_sector;
1408 
1409 	if (static_branch_unlikely(&swap_bios_enabled) &&
1410 	    unlikely(swap_bios_limit(ti, clone))) {
1411 		int latch = get_swap_bios();
1412 
1413 		if (unlikely(latch != md->swap_bios))
1414 			__set_swap_bios_limit(md, latch);
1415 		down(&md->swap_bios_semaphore);
1416 	}
1417 
1418 	if (likely(ti->type->map == linear_map))
1419 		r = linear_map(ti, clone);
1420 	else if (ti->type->map == stripe_map)
1421 		r = stripe_map(ti, clone);
1422 	else
1423 		r = ti->type->map(ti, clone);
1424 
1425 	switch (r) {
1426 	case DM_MAPIO_SUBMITTED:
1427 		/* target has assumed ownership of this io */
1428 		if (!ti->accounts_remapped_io)
1429 			dm_start_io_acct(io, clone);
1430 		break;
1431 	case DM_MAPIO_REMAPPED:
1432 		dm_submit_bio_remap(clone, NULL);
1433 		break;
1434 	case DM_MAPIO_KILL:
1435 	case DM_MAPIO_REQUEUE:
1436 		if (static_branch_unlikely(&swap_bios_enabled) &&
1437 		    unlikely(swap_bios_limit(ti, clone)))
1438 			up(&md->swap_bios_semaphore);
1439 		free_tio(clone);
1440 		if (r == DM_MAPIO_KILL)
1441 			dm_io_dec_pending(io, BLK_STS_IOERR);
1442 		else
1443 			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1444 		break;
1445 	default:
1446 		DMCRIT("unimplemented target map return value: %d", r);
1447 		BUG();
1448 	}
1449 }
1450 
1451 static void setup_split_accounting(struct clone_info *ci, unsigned int len)
1452 {
1453 	struct dm_io *io = ci->io;
1454 
1455 	if (ci->sector_count > len) {
1456 		/*
1457 		 * Split needed, save the mapped part for accounting.
1458 		 * NOTE: dm_accept_partial_bio() will update accordingly.
1459 		 */
1460 		dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1461 		io->sectors = len;
1462 		io->sector_offset = bio_sectors(ci->bio);
1463 	}
1464 }
1465 
1466 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1467 				struct dm_target *ti, unsigned int num_bios,
1468 				unsigned *len)
1469 {
1470 	struct bio *bio;
1471 	int try;
1472 
1473 	for (try = 0; try < 2; try++) {
1474 		int bio_nr;
1475 
1476 		if (try && num_bios > 1)
1477 			mutex_lock(&ci->io->md->table_devices_lock);
1478 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1479 			bio = alloc_tio(ci, ti, bio_nr, len,
1480 					try ? GFP_NOIO : GFP_NOWAIT);
1481 			if (!bio)
1482 				break;
1483 
1484 			bio_list_add(blist, bio);
1485 		}
1486 		if (try && num_bios > 1)
1487 			mutex_unlock(&ci->io->md->table_devices_lock);
1488 		if (bio_nr == num_bios)
1489 			return;
1490 
1491 		while ((bio = bio_list_pop(blist)))
1492 			free_tio(bio);
1493 	}
1494 }
1495 
1496 static unsigned int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1497 					  unsigned int num_bios, unsigned int *len)
1498 {
1499 	struct bio_list blist = BIO_EMPTY_LIST;
1500 	struct bio *clone;
1501 	unsigned int ret = 0;
1502 
1503 	if (WARN_ON_ONCE(num_bios == 0)) /* num_bios = 0 is a bug in caller */
1504 		return 0;
1505 
1506 	/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1507 	if (len)
1508 		setup_split_accounting(ci, *len);
1509 
1510 	/*
1511 	 * Using alloc_multiple_bios(), even if num_bios is 1, to consistently
1512 	 * support allocating using GFP_NOWAIT with GFP_NOIO fallback.
1513 	 */
1514 	alloc_multiple_bios(&blist, ci, ti, num_bios, len);
1515 	while ((clone = bio_list_pop(&blist))) {
1516 		if (num_bios > 1)
1517 			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1518 		__map_bio(clone);
1519 		ret += 1;
1520 	}
1521 
1522 	return ret;
1523 }
1524 
1525 static void __send_empty_flush(struct clone_info *ci)
1526 {
1527 	struct dm_table *t = ci->map;
1528 	struct bio flush_bio;
1529 	blk_opf_t opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1530 
1531 	if ((ci->io->orig_bio->bi_opf & (REQ_IDLE | REQ_SYNC)) ==
1532 	    (REQ_IDLE | REQ_SYNC))
1533 		opf |= REQ_IDLE;
1534 
1535 	/*
1536 	 * Use an on-stack bio for this, it's safe since we don't
1537 	 * need to reference it after submit. It's just used as
1538 	 * the basis for the clone(s).
1539 	 */
1540 	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, opf);
1541 
1542 	ci->bio = &flush_bio;
1543 	ci->sector_count = 0;
1544 	ci->io->tio.clone.bi_iter.bi_size = 0;
1545 
1546 	if (!t->flush_bypasses_map) {
1547 		for (unsigned int i = 0; i < t->num_targets; i++) {
1548 			unsigned int bios;
1549 			struct dm_target *ti = dm_table_get_target(t, i);
1550 
1551 			if (unlikely(ti->num_flush_bios == 0))
1552 				continue;
1553 
1554 			atomic_add(ti->num_flush_bios, &ci->io->io_count);
1555 			bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios,
1556 						     NULL);
1557 			atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1558 		}
1559 	} else {
1560 		/*
1561 		 * Note that there's no need to grab t->devices_lock here
1562 		 * because the targets that support flush optimization don't
1563 		 * modify the list of devices.
1564 		 */
1565 		struct list_head *devices = dm_table_get_devices(t);
1566 		unsigned int len = 0;
1567 		struct dm_dev_internal *dd;
1568 		list_for_each_entry(dd, devices, list) {
1569 			struct bio *clone;
1570 			/*
1571 			 * Note that the structure dm_target_io is not
1572 			 * associated with any target (because the device may be
1573 			 * used by multiple targets), so we set tio->ti = NULL.
1574 			 * We must check for NULL in the I/O processing path, to
1575 			 * avoid NULL pointer dereference.
1576 			 */
1577 			clone = alloc_tio(ci, NULL, 0, &len, GFP_NOIO);
1578 			atomic_add(1, &ci->io->io_count);
1579 			bio_set_dev(clone, dd->dm_dev->bdev);
1580 			clone->bi_end_io = clone_endio;
1581 			dm_submit_bio_remap(clone, NULL);
1582 		}
1583 	}
1584 
1585 	/*
1586 	 * alloc_io() takes one extra reference for submission, so the
1587 	 * reference won't reach 0 without the following subtraction
1588 	 */
1589 	atomic_sub(1, &ci->io->io_count);
1590 
1591 	bio_uninit(ci->bio);
1592 }
1593 
1594 static void __send_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1595 			       unsigned int num_bios, unsigned int max_granularity,
1596 			       unsigned int max_sectors)
1597 {
1598 	unsigned int len, bios;
1599 
1600 	len = min_t(sector_t, ci->sector_count,
1601 		    __max_io_len(ti, ci->sector, max_granularity, max_sectors));
1602 
1603 	atomic_add(num_bios, &ci->io->io_count);
1604 	bios = __send_duplicate_bios(ci, ti, num_bios, &len);
1605 	/*
1606 	 * alloc_io() takes one extra reference for submission, so the
1607 	 * reference won't reach 0 without the following (+1) subtraction
1608 	 */
1609 	atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1610 
1611 	ci->sector += len;
1612 	ci->sector_count -= len;
1613 }
1614 
1615 static bool is_abnormal_io(struct bio *bio)
1616 {
1617 	switch (bio_op(bio)) {
1618 	case REQ_OP_READ:
1619 	case REQ_OP_WRITE:
1620 	case REQ_OP_FLUSH:
1621 		return false;
1622 	case REQ_OP_DISCARD:
1623 	case REQ_OP_SECURE_ERASE:
1624 	case REQ_OP_WRITE_ZEROES:
1625 	case REQ_OP_ZONE_RESET_ALL:
1626 		return true;
1627 	default:
1628 		return false;
1629 	}
1630 }
1631 
1632 static blk_status_t __process_abnormal_io(struct clone_info *ci,
1633 					  struct dm_target *ti)
1634 {
1635 	unsigned int num_bios = 0;
1636 	unsigned int max_granularity = 0;
1637 	unsigned int max_sectors = 0;
1638 	struct queue_limits *limits = dm_get_queue_limits(ti->table->md);
1639 
1640 	switch (bio_op(ci->bio)) {
1641 	case REQ_OP_DISCARD:
1642 		num_bios = ti->num_discard_bios;
1643 		max_sectors = limits->max_discard_sectors;
1644 		if (ti->max_discard_granularity)
1645 			max_granularity = max_sectors;
1646 		break;
1647 	case REQ_OP_SECURE_ERASE:
1648 		num_bios = ti->num_secure_erase_bios;
1649 		max_sectors = limits->max_secure_erase_sectors;
1650 		break;
1651 	case REQ_OP_WRITE_ZEROES:
1652 		num_bios = ti->num_write_zeroes_bios;
1653 		max_sectors = limits->max_write_zeroes_sectors;
1654 		break;
1655 	default:
1656 		break;
1657 	}
1658 
1659 	/*
1660 	 * Even though the device advertised support for this type of
1661 	 * request, that does not mean every target supports it, and
1662 	 * reconfiguration might also have changed that since the
1663 	 * check was performed.
1664 	 */
1665 	if (unlikely(!num_bios))
1666 		return BLK_STS_NOTSUPP;
1667 
1668 	__send_abnormal_io(ci, ti, num_bios, max_granularity, max_sectors);
1669 
1670 	return BLK_STS_OK;
1671 }
1672 
1673 /*
1674  * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1675  * associated with this bio, and this bio's bi_private needs to be
1676  * stored in dm_io->data before the reuse.
1677  *
1678  * bio->bi_private is owned by fs or upper layer, so block layer won't
1679  * touch it after splitting. Meantime it won't be changed by anyone after
1680  * bio is submitted. So this reuse is safe.
1681  */
1682 static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1683 {
1684 	return (struct dm_io **)&bio->bi_private;
1685 }
1686 
1687 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1688 {
1689 	struct dm_io **head = dm_poll_list_head(bio);
1690 
1691 	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1692 		bio->bi_opf |= REQ_DM_POLL_LIST;
1693 		/*
1694 		 * Save .bi_private into dm_io, so that we can reuse
1695 		 * .bi_private as dm_io list head for storing dm_io list
1696 		 */
1697 		io->data = bio->bi_private;
1698 
1699 		/* tell block layer to poll for completion */
1700 		bio->bi_cookie = ~BLK_QC_T_NONE;
1701 
1702 		io->next = NULL;
1703 	} else {
1704 		/*
1705 		 * bio recursed due to split, reuse original poll list,
1706 		 * and save bio->bi_private too.
1707 		 */
1708 		io->data = (*head)->data;
1709 		io->next = *head;
1710 	}
1711 
1712 	*head = io;
1713 }
1714 
1715 /*
1716  * Select the correct strategy for processing a non-flush bio.
1717  */
1718 static blk_status_t __split_and_process_bio(struct clone_info *ci)
1719 {
1720 	struct bio *clone;
1721 	struct dm_target *ti;
1722 	unsigned int len;
1723 
1724 	ti = dm_table_find_target(ci->map, ci->sector);
1725 	if (unlikely(!ti))
1726 		return BLK_STS_IOERR;
1727 
1728 	if (unlikely(ci->is_abnormal_io))
1729 		return __process_abnormal_io(ci, ti);
1730 
1731 	/*
1732 	 * Only support bio polling for normal IO, and the target io is
1733 	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1734 	 */
1735 	ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1736 
1737 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1738 	if (ci->bio->bi_opf & REQ_ATOMIC && len != ci->sector_count)
1739 		return BLK_STS_IOERR;
1740 
1741 	setup_split_accounting(ci, len);
1742 
1743 	if (unlikely(ci->bio->bi_opf & REQ_NOWAIT)) {
1744 		if (unlikely(!dm_target_supports_nowait(ti->type)))
1745 			return BLK_STS_NOTSUPP;
1746 
1747 		clone = alloc_tio(ci, ti, 0, &len, GFP_NOWAIT);
1748 		if (unlikely(!clone))
1749 			return BLK_STS_AGAIN;
1750 	} else {
1751 		clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1752 	}
1753 	__map_bio(clone);
1754 
1755 	ci->sector += len;
1756 	ci->sector_count -= len;
1757 
1758 	return BLK_STS_OK;
1759 }
1760 
1761 static void init_clone_info(struct clone_info *ci, struct dm_io *io,
1762 			    struct dm_table *map, struct bio *bio, bool is_abnormal)
1763 {
1764 	ci->map = map;
1765 	ci->io = io;
1766 	ci->bio = bio;
1767 	ci->is_abnormal_io = is_abnormal;
1768 	ci->submit_as_polled = false;
1769 	ci->sector = bio->bi_iter.bi_sector;
1770 	ci->sector_count = bio_sectors(bio);
1771 
1772 	/* Shouldn't happen but sector_count was being set to 0 so... */
1773 	if (static_branch_unlikely(&zoned_enabled) &&
1774 	    WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1775 		ci->sector_count = 0;
1776 }
1777 
1778 #ifdef CONFIG_BLK_DEV_ZONED
1779 static inline bool dm_zone_bio_needs_split(struct mapped_device *md,
1780 					   struct bio *bio)
1781 {
1782 	/*
1783 	 * For mapped device that need zone append emulation, we must
1784 	 * split any large BIO that straddles zone boundaries.
1785 	 */
1786 	return dm_emulate_zone_append(md) && bio_straddles_zones(bio) &&
1787 		!bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING);
1788 }
1789 static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio)
1790 {
1791 	return dm_emulate_zone_append(md) && blk_zone_plug_bio(bio, 0);
1792 }
1793 
1794 static blk_status_t __send_zone_reset_all_emulated(struct clone_info *ci,
1795 						   struct dm_target *ti)
1796 {
1797 	struct bio_list blist = BIO_EMPTY_LIST;
1798 	struct mapped_device *md = ci->io->md;
1799 	unsigned int zone_sectors = md->disk->queue->limits.chunk_sectors;
1800 	unsigned long *need_reset;
1801 	unsigned int i, nr_zones, nr_reset;
1802 	unsigned int num_bios = 0;
1803 	blk_status_t sts = BLK_STS_OK;
1804 	sector_t sector = ti->begin;
1805 	struct bio *clone;
1806 	int ret;
1807 
1808 	nr_zones = ti->len >> ilog2(zone_sectors);
1809 	need_reset = bitmap_zalloc(nr_zones, GFP_NOIO);
1810 	if (!need_reset)
1811 		return BLK_STS_RESOURCE;
1812 
1813 	ret = dm_zone_get_reset_bitmap(md, ci->map, ti->begin,
1814 				       nr_zones, need_reset);
1815 	if (ret) {
1816 		sts = BLK_STS_IOERR;
1817 		goto free_bitmap;
1818 	}
1819 
1820 	/* If we have no zone to reset, we are done. */
1821 	nr_reset = bitmap_weight(need_reset, nr_zones);
1822 	if (!nr_reset)
1823 		goto free_bitmap;
1824 
1825 	atomic_add(nr_zones, &ci->io->io_count);
1826 
1827 	for (i = 0; i < nr_zones; i++) {
1828 
1829 		if (!test_bit(i, need_reset)) {
1830 			sector += zone_sectors;
1831 			continue;
1832 		}
1833 
1834 		if (bio_list_empty(&blist)) {
1835 			/* This may take a while, so be nice to others */
1836 			if (num_bios)
1837 				cond_resched();
1838 
1839 			/*
1840 			 * We may need to reset thousands of zones, so let's
1841 			 * not go crazy with the clone allocation.
1842 			 */
1843 			alloc_multiple_bios(&blist, ci, ti, min(nr_reset, 32),
1844 					    NULL);
1845 		}
1846 
1847 		/* Get a clone and change it to a regular reset operation. */
1848 		clone = bio_list_pop(&blist);
1849 		clone->bi_opf &= ~REQ_OP_MASK;
1850 		clone->bi_opf |= REQ_OP_ZONE_RESET | REQ_SYNC;
1851 		clone->bi_iter.bi_sector = sector;
1852 		clone->bi_iter.bi_size = 0;
1853 		__map_bio(clone);
1854 
1855 		sector += zone_sectors;
1856 		num_bios++;
1857 		nr_reset--;
1858 	}
1859 
1860 	WARN_ON_ONCE(!bio_list_empty(&blist));
1861 	atomic_sub(nr_zones - num_bios, &ci->io->io_count);
1862 	ci->sector_count = 0;
1863 
1864 free_bitmap:
1865 	bitmap_free(need_reset);
1866 
1867 	return sts;
1868 }
1869 
1870 static void __send_zone_reset_all_native(struct clone_info *ci,
1871 					 struct dm_target *ti)
1872 {
1873 	unsigned int bios;
1874 
1875 	atomic_add(1, &ci->io->io_count);
1876 	bios = __send_duplicate_bios(ci, ti, 1, NULL);
1877 	atomic_sub(1 - bios, &ci->io->io_count);
1878 
1879 	ci->sector_count = 0;
1880 }
1881 
1882 static blk_status_t __send_zone_reset_all(struct clone_info *ci)
1883 {
1884 	struct dm_table *t = ci->map;
1885 	blk_status_t sts = BLK_STS_OK;
1886 
1887 	for (unsigned int i = 0; i < t->num_targets; i++) {
1888 		struct dm_target *ti = dm_table_get_target(t, i);
1889 
1890 		if (ti->zone_reset_all_supported) {
1891 			__send_zone_reset_all_native(ci, ti);
1892 			continue;
1893 		}
1894 
1895 		sts = __send_zone_reset_all_emulated(ci, ti);
1896 		if (sts != BLK_STS_OK)
1897 			break;
1898 	}
1899 
1900 	/* Release the reference that alloc_io() took for submission. */
1901 	atomic_sub(1, &ci->io->io_count);
1902 
1903 	return sts;
1904 }
1905 
1906 #else
1907 static inline bool dm_zone_bio_needs_split(struct mapped_device *md,
1908 					   struct bio *bio)
1909 {
1910 	return false;
1911 }
1912 static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio)
1913 {
1914 	return false;
1915 }
1916 static blk_status_t __send_zone_reset_all(struct clone_info *ci)
1917 {
1918 	return BLK_STS_NOTSUPP;
1919 }
1920 #endif
1921 
1922 /*
1923  * Entry point to split a bio into clones and submit them to the targets.
1924  */
1925 static void dm_split_and_process_bio(struct mapped_device *md,
1926 				     struct dm_table *map, struct bio *bio)
1927 {
1928 	struct clone_info ci;
1929 	struct dm_io *io;
1930 	blk_status_t error = BLK_STS_OK;
1931 	bool is_abnormal, need_split;
1932 
1933 	is_abnormal = is_abnormal_io(bio);
1934 	if (static_branch_unlikely(&zoned_enabled)) {
1935 		/* Special case REQ_OP_ZONE_RESET_ALL as it cannot be split. */
1936 		need_split = (bio_op(bio) != REQ_OP_ZONE_RESET_ALL) &&
1937 			(is_abnormal || dm_zone_bio_needs_split(md, bio));
1938 	} else {
1939 		need_split = is_abnormal;
1940 	}
1941 
1942 	if (unlikely(need_split)) {
1943 		/*
1944 		 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1945 		 * otherwise associated queue_limits won't be imposed.
1946 		 * Also split the BIO for mapped devices needing zone append
1947 		 * emulation to ensure that the BIO does not cross zone
1948 		 * boundaries.
1949 		 */
1950 		bio = bio_split_to_limits(bio);
1951 		if (!bio)
1952 			return;
1953 	}
1954 
1955 	/*
1956 	 * Use the block layer zone write plugging for mapped devices that
1957 	 * need zone append emulation (e.g. dm-crypt).
1958 	 */
1959 	if (static_branch_unlikely(&zoned_enabled) && dm_zone_plug_bio(md, bio))
1960 		return;
1961 
1962 	/* Only support nowait for normal IO */
1963 	if (unlikely(bio->bi_opf & REQ_NOWAIT) && !is_abnormal) {
1964 		/*
1965 		 * Don't support NOWAIT for FLUSH because it may allocate
1966 		 * multiple bios and there's no easy way how to undo the
1967 		 * allocations.
1968 		 */
1969 		if (bio->bi_opf & REQ_PREFLUSH) {
1970 			bio_wouldblock_error(bio);
1971 			return;
1972 		}
1973 		io = alloc_io(md, bio, GFP_NOWAIT);
1974 		if (unlikely(!io)) {
1975 			/* Unable to do anything without dm_io. */
1976 			bio_wouldblock_error(bio);
1977 			return;
1978 		}
1979 	} else {
1980 		io = alloc_io(md, bio, GFP_NOIO);
1981 	}
1982 	init_clone_info(&ci, io, map, bio, is_abnormal);
1983 
1984 	if (bio->bi_opf & REQ_PREFLUSH) {
1985 		__send_empty_flush(&ci);
1986 		/* dm_io_complete submits any data associated with flush */
1987 		goto out;
1988 	}
1989 
1990 	if (static_branch_unlikely(&zoned_enabled) &&
1991 	    (bio_op(bio) == REQ_OP_ZONE_RESET_ALL)) {
1992 		error = __send_zone_reset_all(&ci);
1993 		goto out;
1994 	}
1995 
1996 	error = __split_and_process_bio(&ci);
1997 	if (error || !ci.sector_count)
1998 		goto out;
1999 	/*
2000 	 * Remainder must be passed to submit_bio_noacct() so it gets handled
2001 	 * *after* bios already submitted have been completely processed.
2002 	 */
2003 	bio_trim(bio, io->sectors, ci.sector_count);
2004 	trace_block_split(bio, bio->bi_iter.bi_sector);
2005 	bio_inc_remaining(bio);
2006 	submit_bio_noacct(bio);
2007 out:
2008 	/*
2009 	 * Drop the extra reference count for non-POLLED bio, and hold one
2010 	 * reference for POLLED bio, which will be released in dm_poll_bio
2011 	 *
2012 	 * Add every dm_io instance into the dm_io list head which is stored
2013 	 * in bio->bi_private, so that dm_poll_bio can poll them all.
2014 	 */
2015 	if (error || !ci.submit_as_polled) {
2016 		/*
2017 		 * In case of submission failure, the extra reference for
2018 		 * submitting io isn't consumed yet
2019 		 */
2020 		if (error)
2021 			atomic_dec(&io->io_count);
2022 		dm_io_dec_pending(io, error);
2023 	} else
2024 		dm_queue_poll_io(bio, io);
2025 }
2026 
2027 static void dm_submit_bio(struct bio *bio)
2028 {
2029 	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
2030 	int srcu_idx;
2031 	struct dm_table *map;
2032 
2033 	map = dm_get_live_table(md, &srcu_idx);
2034 	if (unlikely(!map)) {
2035 		DMERR_LIMIT("%s: mapping table unavailable, erroring io",
2036 			    dm_device_name(md));
2037 		bio_io_error(bio);
2038 		goto out;
2039 	}
2040 
2041 	/* If suspended, queue this IO for later */
2042 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
2043 		if (bio->bi_opf & REQ_NOWAIT)
2044 			bio_wouldblock_error(bio);
2045 		else if (bio->bi_opf & REQ_RAHEAD)
2046 			bio_io_error(bio);
2047 		else
2048 			queue_io(md, bio);
2049 		goto out;
2050 	}
2051 
2052 	dm_split_and_process_bio(md, map, bio);
2053 out:
2054 	dm_put_live_table(md, srcu_idx);
2055 }
2056 
2057 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
2058 			  unsigned int flags)
2059 {
2060 	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
2061 
2062 	/* don't poll if the mapped io is done */
2063 	if (atomic_read(&io->io_count) > 1)
2064 		bio_poll(&io->tio.clone, iob, flags);
2065 
2066 	/* bio_poll holds the last reference */
2067 	return atomic_read(&io->io_count) == 1;
2068 }
2069 
2070 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
2071 		       unsigned int flags)
2072 {
2073 	struct dm_io **head = dm_poll_list_head(bio);
2074 	struct dm_io *list = *head;
2075 	struct dm_io *tmp = NULL;
2076 	struct dm_io *curr, *next;
2077 
2078 	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
2079 	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
2080 		return 0;
2081 
2082 	WARN_ON_ONCE(!list);
2083 
2084 	/*
2085 	 * Restore .bi_private before possibly completing dm_io.
2086 	 *
2087 	 * bio_poll() is only possible once @bio has been completely
2088 	 * submitted via submit_bio_noacct()'s depth-first submission.
2089 	 * So there is no dm_queue_poll_io() race associated with
2090 	 * clearing REQ_DM_POLL_LIST here.
2091 	 */
2092 	bio->bi_opf &= ~REQ_DM_POLL_LIST;
2093 	bio->bi_private = list->data;
2094 
2095 	for (curr = list, next = curr->next; curr; curr = next, next =
2096 			curr ? curr->next : NULL) {
2097 		if (dm_poll_dm_io(curr, iob, flags)) {
2098 			/*
2099 			 * clone_endio() has already occurred, so no
2100 			 * error handling is needed here.
2101 			 */
2102 			__dm_io_dec_pending(curr);
2103 		} else {
2104 			curr->next = tmp;
2105 			tmp = curr;
2106 		}
2107 	}
2108 
2109 	/* Not done? */
2110 	if (tmp) {
2111 		bio->bi_opf |= REQ_DM_POLL_LIST;
2112 		/* Reset bio->bi_private to dm_io list head */
2113 		*head = tmp;
2114 		return 0;
2115 	}
2116 	return 1;
2117 }
2118 
2119 /*
2120  *---------------------------------------------------------------
2121  * An IDR is used to keep track of allocated minor numbers.
2122  *---------------------------------------------------------------
2123  */
2124 static void free_minor(int minor)
2125 {
2126 	spin_lock(&_minor_lock);
2127 	idr_remove(&_minor_idr, minor);
2128 	spin_unlock(&_minor_lock);
2129 }
2130 
2131 /*
2132  * See if the device with a specific minor # is free.
2133  */
2134 static int specific_minor(int minor)
2135 {
2136 	int r;
2137 
2138 	if (minor >= (1 << MINORBITS))
2139 		return -EINVAL;
2140 
2141 	idr_preload(GFP_KERNEL);
2142 	spin_lock(&_minor_lock);
2143 
2144 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2145 
2146 	spin_unlock(&_minor_lock);
2147 	idr_preload_end();
2148 	if (r < 0)
2149 		return r == -ENOSPC ? -EBUSY : r;
2150 	return 0;
2151 }
2152 
2153 static int next_free_minor(int *minor)
2154 {
2155 	int r;
2156 
2157 	idr_preload(GFP_KERNEL);
2158 	spin_lock(&_minor_lock);
2159 
2160 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2161 
2162 	spin_unlock(&_minor_lock);
2163 	idr_preload_end();
2164 	if (r < 0)
2165 		return r;
2166 	*minor = r;
2167 	return 0;
2168 }
2169 
2170 static const struct block_device_operations dm_blk_dops;
2171 static const struct block_device_operations dm_rq_blk_dops;
2172 static const struct dax_operations dm_dax_ops;
2173 
2174 static void dm_wq_work(struct work_struct *work);
2175 
2176 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
2177 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
2178 {
2179 	dm_destroy_crypto_profile(q->crypto_profile);
2180 }
2181 
2182 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
2183 
2184 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
2185 {
2186 }
2187 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
2188 
2189 static void cleanup_mapped_device(struct mapped_device *md)
2190 {
2191 	if (md->wq)
2192 		destroy_workqueue(md->wq);
2193 	dm_free_md_mempools(md->mempools);
2194 
2195 	if (md->dax_dev) {
2196 		dax_remove_host(md->disk);
2197 		kill_dax(md->dax_dev);
2198 		put_dax(md->dax_dev);
2199 		md->dax_dev = NULL;
2200 	}
2201 
2202 	if (md->disk) {
2203 		spin_lock(&_minor_lock);
2204 		md->disk->private_data = NULL;
2205 		spin_unlock(&_minor_lock);
2206 		if (dm_get_md_type(md) != DM_TYPE_NONE) {
2207 			struct table_device *td;
2208 
2209 			dm_sysfs_exit(md);
2210 			list_for_each_entry(td, &md->table_devices, list) {
2211 				bd_unlink_disk_holder(td->dm_dev.bdev,
2212 						      md->disk);
2213 			}
2214 
2215 			/*
2216 			 * Hold lock to make sure del_gendisk() won't concurrent
2217 			 * with open/close_table_device().
2218 			 */
2219 			mutex_lock(&md->table_devices_lock);
2220 			del_gendisk(md->disk);
2221 			mutex_unlock(&md->table_devices_lock);
2222 		}
2223 		dm_queue_destroy_crypto_profile(md->queue);
2224 		put_disk(md->disk);
2225 	}
2226 
2227 	if (md->pending_io) {
2228 		free_percpu(md->pending_io);
2229 		md->pending_io = NULL;
2230 	}
2231 
2232 	cleanup_srcu_struct(&md->io_barrier);
2233 
2234 	mutex_destroy(&md->suspend_lock);
2235 	mutex_destroy(&md->type_lock);
2236 	mutex_destroy(&md->table_devices_lock);
2237 	mutex_destroy(&md->swap_bios_lock);
2238 
2239 	dm_mq_cleanup_mapped_device(md);
2240 }
2241 
2242 /*
2243  * Allocate and initialise a blank device with a given minor.
2244  */
2245 static struct mapped_device *alloc_dev(int minor)
2246 {
2247 	int r, numa_node_id = dm_get_numa_node();
2248 	struct dax_device *dax_dev;
2249 	struct mapped_device *md;
2250 	void *old_md;
2251 
2252 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2253 	if (!md) {
2254 		DMERR("unable to allocate device, out of memory.");
2255 		return NULL;
2256 	}
2257 
2258 	if (!try_module_get(THIS_MODULE))
2259 		goto bad_module_get;
2260 
2261 	/* get a minor number for the dev */
2262 	if (minor == DM_ANY_MINOR)
2263 		r = next_free_minor(&minor);
2264 	else
2265 		r = specific_minor(minor);
2266 	if (r < 0)
2267 		goto bad_minor;
2268 
2269 	r = init_srcu_struct(&md->io_barrier);
2270 	if (r < 0)
2271 		goto bad_io_barrier;
2272 
2273 	md->numa_node_id = numa_node_id;
2274 	md->init_tio_pdu = false;
2275 	md->type = DM_TYPE_NONE;
2276 	mutex_init(&md->suspend_lock);
2277 	mutex_init(&md->type_lock);
2278 	mutex_init(&md->table_devices_lock);
2279 	spin_lock_init(&md->deferred_lock);
2280 	atomic_set(&md->holders, 1);
2281 	atomic_set(&md->open_count, 0);
2282 	atomic_set(&md->event_nr, 0);
2283 	atomic_set(&md->uevent_seq, 0);
2284 	INIT_LIST_HEAD(&md->uevent_list);
2285 	INIT_LIST_HEAD(&md->table_devices);
2286 	spin_lock_init(&md->uevent_lock);
2287 
2288 	/*
2289 	 * default to bio-based until DM table is loaded and md->type
2290 	 * established. If request-based table is loaded: blk-mq will
2291 	 * override accordingly.
2292 	 */
2293 	md->disk = blk_alloc_disk(NULL, md->numa_node_id);
2294 	if (IS_ERR(md->disk)) {
2295 		md->disk = NULL;
2296 		goto bad;
2297 	}
2298 	md->queue = md->disk->queue;
2299 
2300 	init_waitqueue_head(&md->wait);
2301 	INIT_WORK(&md->work, dm_wq_work);
2302 	INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2303 	init_waitqueue_head(&md->eventq);
2304 	init_completion(&md->kobj_holder.completion);
2305 
2306 	md->requeue_list = NULL;
2307 	md->swap_bios = get_swap_bios();
2308 	sema_init(&md->swap_bios_semaphore, md->swap_bios);
2309 	mutex_init(&md->swap_bios_lock);
2310 
2311 	md->disk->major = _major;
2312 	md->disk->first_minor = minor;
2313 	md->disk->minors = 1;
2314 	md->disk->flags |= GENHD_FL_NO_PART;
2315 	md->disk->fops = &dm_blk_dops;
2316 	md->disk->private_data = md;
2317 	sprintf(md->disk->disk_name, "dm-%d", minor);
2318 
2319 	dax_dev = alloc_dax(md, &dm_dax_ops);
2320 	if (IS_ERR(dax_dev)) {
2321 		if (PTR_ERR(dax_dev) != -EOPNOTSUPP)
2322 			goto bad;
2323 	} else {
2324 		set_dax_nocache(dax_dev);
2325 		set_dax_nomc(dax_dev);
2326 		md->dax_dev = dax_dev;
2327 		if (dax_add_host(dax_dev, md->disk))
2328 			goto bad;
2329 	}
2330 
2331 	format_dev_t(md->name, MKDEV(_major, minor));
2332 
2333 	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2334 	if (!md->wq)
2335 		goto bad;
2336 
2337 	md->pending_io = alloc_percpu(unsigned long);
2338 	if (!md->pending_io)
2339 		goto bad;
2340 
2341 	r = dm_stats_init(&md->stats);
2342 	if (r < 0)
2343 		goto bad;
2344 
2345 	/* Populate the mapping, nobody knows we exist yet */
2346 	spin_lock(&_minor_lock);
2347 	old_md = idr_replace(&_minor_idr, md, minor);
2348 	spin_unlock(&_minor_lock);
2349 
2350 	BUG_ON(old_md != MINOR_ALLOCED);
2351 
2352 	return md;
2353 
2354 bad:
2355 	cleanup_mapped_device(md);
2356 bad_io_barrier:
2357 	free_minor(minor);
2358 bad_minor:
2359 	module_put(THIS_MODULE);
2360 bad_module_get:
2361 	kvfree(md);
2362 	return NULL;
2363 }
2364 
2365 static void unlock_fs(struct mapped_device *md);
2366 
2367 static void free_dev(struct mapped_device *md)
2368 {
2369 	int minor = MINOR(disk_devt(md->disk));
2370 
2371 	unlock_fs(md);
2372 
2373 	cleanup_mapped_device(md);
2374 
2375 	WARN_ON_ONCE(!list_empty(&md->table_devices));
2376 	dm_stats_cleanup(&md->stats);
2377 	free_minor(minor);
2378 
2379 	module_put(THIS_MODULE);
2380 	kvfree(md);
2381 }
2382 
2383 /*
2384  * Bind a table to the device.
2385  */
2386 static void event_callback(void *context)
2387 {
2388 	unsigned long flags;
2389 	LIST_HEAD(uevents);
2390 	struct mapped_device *md = context;
2391 
2392 	spin_lock_irqsave(&md->uevent_lock, flags);
2393 	list_splice_init(&md->uevent_list, &uevents);
2394 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2395 
2396 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2397 
2398 	atomic_inc(&md->event_nr);
2399 	wake_up(&md->eventq);
2400 	dm_issue_global_event();
2401 }
2402 
2403 /*
2404  * Returns old map, which caller must destroy.
2405  */
2406 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2407 			       struct queue_limits *limits)
2408 {
2409 	struct dm_table *old_map;
2410 	sector_t size, old_size;
2411 	int ret;
2412 
2413 	lockdep_assert_held(&md->suspend_lock);
2414 
2415 	size = dm_table_get_size(t);
2416 
2417 	old_size = dm_get_size(md);
2418 
2419 	if (!dm_table_supports_size_change(t, old_size, size)) {
2420 		old_map = ERR_PTR(-EINVAL);
2421 		goto out;
2422 	}
2423 
2424 	set_capacity(md->disk, size);
2425 
2426 	ret = dm_table_set_restrictions(t, md->queue, limits);
2427 	if (ret) {
2428 		set_capacity(md->disk, old_size);
2429 		old_map = ERR_PTR(ret);
2430 		goto out;
2431 	}
2432 
2433 	/*
2434 	 * Wipe any geometry if the size of the table changed.
2435 	 */
2436 	if (size != old_size)
2437 		memset(&md->geometry, 0, sizeof(md->geometry));
2438 
2439 	dm_table_event_callback(t, event_callback, md);
2440 
2441 	if (dm_table_request_based(t)) {
2442 		/*
2443 		 * Leverage the fact that request-based DM targets are
2444 		 * immutable singletons - used to optimize dm_mq_queue_rq.
2445 		 */
2446 		md->immutable_target = dm_table_get_immutable_target(t);
2447 
2448 		/*
2449 		 * There is no need to reload with request-based dm because the
2450 		 * size of front_pad doesn't change.
2451 		 *
2452 		 * Note for future: If you are to reload bioset, prep-ed
2453 		 * requests in the queue may refer to bio from the old bioset,
2454 		 * so you must walk through the queue to unprep.
2455 		 */
2456 		if (!md->mempools)
2457 			md->mempools = t->mempools;
2458 		else
2459 			dm_free_md_mempools(t->mempools);
2460 	} else {
2461 		/*
2462 		 * The md may already have mempools that need changing.
2463 		 * If so, reload bioset because front_pad may have changed
2464 		 * because a different table was loaded.
2465 		 */
2466 		dm_free_md_mempools(md->mempools);
2467 		md->mempools = t->mempools;
2468 	}
2469 	t->mempools = NULL;
2470 
2471 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2472 	rcu_assign_pointer(md->map, (void *)t);
2473 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2474 
2475 	if (old_map)
2476 		dm_sync_table(md);
2477 out:
2478 	return old_map;
2479 }
2480 
2481 /*
2482  * Returns unbound table for the caller to free.
2483  */
2484 static struct dm_table *__unbind(struct mapped_device *md)
2485 {
2486 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2487 
2488 	if (!map)
2489 		return NULL;
2490 
2491 	dm_table_event_callback(map, NULL, NULL);
2492 	RCU_INIT_POINTER(md->map, NULL);
2493 	dm_sync_table(md);
2494 
2495 	return map;
2496 }
2497 
2498 /*
2499  * Constructor for a new device.
2500  */
2501 int dm_create(int minor, struct mapped_device **result)
2502 {
2503 	struct mapped_device *md;
2504 
2505 	md = alloc_dev(minor);
2506 	if (!md)
2507 		return -ENXIO;
2508 
2509 	dm_ima_reset_data(md);
2510 
2511 	*result = md;
2512 	return 0;
2513 }
2514 
2515 /*
2516  * Functions to manage md->type.
2517  * All are required to hold md->type_lock.
2518  */
2519 void dm_lock_md_type(struct mapped_device *md)
2520 {
2521 	mutex_lock(&md->type_lock);
2522 }
2523 
2524 void dm_unlock_md_type(struct mapped_device *md)
2525 {
2526 	mutex_unlock(&md->type_lock);
2527 }
2528 
2529 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2530 {
2531 	return md->type;
2532 }
2533 
2534 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2535 {
2536 	return md->immutable_target_type;
2537 }
2538 
2539 /*
2540  * Setup the DM device's queue based on md's type
2541  */
2542 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2543 {
2544 	enum dm_queue_mode type = dm_table_get_type(t);
2545 	struct queue_limits limits;
2546 	struct table_device *td;
2547 	int r;
2548 
2549 	WARN_ON_ONCE(type == DM_TYPE_NONE);
2550 
2551 	if (type == DM_TYPE_REQUEST_BASED) {
2552 		md->disk->fops = &dm_rq_blk_dops;
2553 		r = dm_mq_init_request_queue(md, t);
2554 		if (r) {
2555 			DMERR("Cannot initialize queue for request-based dm mapped device");
2556 			return r;
2557 		}
2558 	}
2559 
2560 	r = dm_calculate_queue_limits(t, &limits);
2561 	if (r) {
2562 		DMERR("Cannot calculate initial queue limits");
2563 		return r;
2564 	}
2565 	r = dm_table_set_restrictions(t, md->queue, &limits);
2566 	if (r)
2567 		return r;
2568 
2569 	/*
2570 	 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2571 	 * with open_table_device() and close_table_device().
2572 	 */
2573 	mutex_lock(&md->table_devices_lock);
2574 	r = add_disk(md->disk);
2575 	mutex_unlock(&md->table_devices_lock);
2576 	if (r)
2577 		return r;
2578 
2579 	/*
2580 	 * Register the holder relationship for devices added before the disk
2581 	 * was live.
2582 	 */
2583 	list_for_each_entry(td, &md->table_devices, list) {
2584 		r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2585 		if (r)
2586 			goto out_undo_holders;
2587 	}
2588 
2589 	r = dm_sysfs_init(md);
2590 	if (r)
2591 		goto out_undo_holders;
2592 
2593 	md->type = type;
2594 	return 0;
2595 
2596 out_undo_holders:
2597 	list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2598 		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2599 	mutex_lock(&md->table_devices_lock);
2600 	del_gendisk(md->disk);
2601 	mutex_unlock(&md->table_devices_lock);
2602 	return r;
2603 }
2604 
2605 struct mapped_device *dm_get_md(dev_t dev)
2606 {
2607 	struct mapped_device *md;
2608 	unsigned int minor = MINOR(dev);
2609 
2610 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2611 		return NULL;
2612 
2613 	spin_lock(&_minor_lock);
2614 
2615 	md = idr_find(&_minor_idr, minor);
2616 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2617 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2618 		md = NULL;
2619 		goto out;
2620 	}
2621 	dm_get(md);
2622 out:
2623 	spin_unlock(&_minor_lock);
2624 
2625 	return md;
2626 }
2627 EXPORT_SYMBOL_GPL(dm_get_md);
2628 
2629 void *dm_get_mdptr(struct mapped_device *md)
2630 {
2631 	return md->interface_ptr;
2632 }
2633 
2634 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2635 {
2636 	md->interface_ptr = ptr;
2637 }
2638 
2639 void dm_get(struct mapped_device *md)
2640 {
2641 	atomic_inc(&md->holders);
2642 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2643 }
2644 
2645 int dm_hold(struct mapped_device *md)
2646 {
2647 	spin_lock(&_minor_lock);
2648 	if (test_bit(DMF_FREEING, &md->flags)) {
2649 		spin_unlock(&_minor_lock);
2650 		return -EBUSY;
2651 	}
2652 	dm_get(md);
2653 	spin_unlock(&_minor_lock);
2654 	return 0;
2655 }
2656 EXPORT_SYMBOL_GPL(dm_hold);
2657 
2658 const char *dm_device_name(struct mapped_device *md)
2659 {
2660 	return md->name;
2661 }
2662 EXPORT_SYMBOL_GPL(dm_device_name);
2663 
2664 static void __dm_destroy(struct mapped_device *md, bool wait)
2665 {
2666 	struct dm_table *map;
2667 	int srcu_idx;
2668 
2669 	might_sleep();
2670 
2671 	spin_lock(&_minor_lock);
2672 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2673 	set_bit(DMF_FREEING, &md->flags);
2674 	spin_unlock(&_minor_lock);
2675 
2676 	blk_mark_disk_dead(md->disk);
2677 
2678 	/*
2679 	 * Take suspend_lock so that presuspend and postsuspend methods
2680 	 * do not race with internal suspend.
2681 	 */
2682 	mutex_lock(&md->suspend_lock);
2683 	map = dm_get_live_table(md, &srcu_idx);
2684 	if (!dm_suspended_md(md)) {
2685 		dm_table_presuspend_targets(map);
2686 		set_bit(DMF_SUSPENDED, &md->flags);
2687 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2688 		dm_table_postsuspend_targets(map);
2689 	}
2690 	/* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
2691 	dm_put_live_table(md, srcu_idx);
2692 	mutex_unlock(&md->suspend_lock);
2693 
2694 	/*
2695 	 * Rare, but there may be I/O requests still going to complete,
2696 	 * for example.  Wait for all references to disappear.
2697 	 * No one should increment the reference count of the mapped_device,
2698 	 * after the mapped_device state becomes DMF_FREEING.
2699 	 */
2700 	if (wait)
2701 		while (atomic_read(&md->holders))
2702 			fsleep(1000);
2703 	else if (atomic_read(&md->holders))
2704 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2705 		       dm_device_name(md), atomic_read(&md->holders));
2706 
2707 	dm_table_destroy(__unbind(md));
2708 	free_dev(md);
2709 }
2710 
2711 void dm_destroy(struct mapped_device *md)
2712 {
2713 	__dm_destroy(md, true);
2714 }
2715 
2716 void dm_destroy_immediate(struct mapped_device *md)
2717 {
2718 	__dm_destroy(md, false);
2719 }
2720 
2721 void dm_put(struct mapped_device *md)
2722 {
2723 	atomic_dec(&md->holders);
2724 }
2725 EXPORT_SYMBOL_GPL(dm_put);
2726 
2727 static bool dm_in_flight_bios(struct mapped_device *md)
2728 {
2729 	int cpu;
2730 	unsigned long sum = 0;
2731 
2732 	for_each_possible_cpu(cpu)
2733 		sum += *per_cpu_ptr(md->pending_io, cpu);
2734 
2735 	return sum != 0;
2736 }
2737 
2738 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2739 {
2740 	int r = 0;
2741 	DEFINE_WAIT(wait);
2742 
2743 	while (true) {
2744 		prepare_to_wait(&md->wait, &wait, task_state);
2745 
2746 		if (!dm_in_flight_bios(md))
2747 			break;
2748 
2749 		if (signal_pending_state(task_state, current)) {
2750 			r = -ERESTARTSYS;
2751 			break;
2752 		}
2753 
2754 		io_schedule();
2755 	}
2756 	finish_wait(&md->wait, &wait);
2757 
2758 	smp_rmb();
2759 
2760 	return r;
2761 }
2762 
2763 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2764 {
2765 	int r = 0;
2766 
2767 	if (!queue_is_mq(md->queue))
2768 		return dm_wait_for_bios_completion(md, task_state);
2769 
2770 	while (true) {
2771 		if (!blk_mq_queue_inflight(md->queue))
2772 			break;
2773 
2774 		if (signal_pending_state(task_state, current)) {
2775 			r = -ERESTARTSYS;
2776 			break;
2777 		}
2778 
2779 		fsleep(5000);
2780 	}
2781 
2782 	return r;
2783 }
2784 
2785 /*
2786  * Process the deferred bios
2787  */
2788 static void dm_wq_work(struct work_struct *work)
2789 {
2790 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2791 	struct bio *bio;
2792 
2793 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2794 		spin_lock_irq(&md->deferred_lock);
2795 		bio = bio_list_pop(&md->deferred);
2796 		spin_unlock_irq(&md->deferred_lock);
2797 
2798 		if (!bio)
2799 			break;
2800 
2801 		submit_bio_noacct(bio);
2802 		cond_resched();
2803 	}
2804 }
2805 
2806 static void dm_queue_flush(struct mapped_device *md)
2807 {
2808 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2809 	smp_mb__after_atomic();
2810 	queue_work(md->wq, &md->work);
2811 }
2812 
2813 /*
2814  * Swap in a new table, returning the old one for the caller to destroy.
2815  */
2816 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2817 {
2818 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2819 	struct queue_limits limits;
2820 	int r;
2821 
2822 	mutex_lock(&md->suspend_lock);
2823 
2824 	/* device must be suspended */
2825 	if (!dm_suspended_md(md))
2826 		goto out;
2827 
2828 	/*
2829 	 * If the new table has no data devices, retain the existing limits.
2830 	 * This helps multipath with queue_if_no_path if all paths disappear,
2831 	 * then new I/O is queued based on these limits, and then some paths
2832 	 * reappear.
2833 	 */
2834 	if (dm_table_has_no_data_devices(table)) {
2835 		live_map = dm_get_live_table_fast(md);
2836 		if (live_map)
2837 			limits = md->queue->limits;
2838 		dm_put_live_table_fast(md);
2839 	}
2840 
2841 	if (!live_map) {
2842 		r = dm_calculate_queue_limits(table, &limits);
2843 		if (r) {
2844 			map = ERR_PTR(r);
2845 			goto out;
2846 		}
2847 	}
2848 
2849 	map = __bind(md, table, &limits);
2850 	dm_issue_global_event();
2851 
2852 out:
2853 	mutex_unlock(&md->suspend_lock);
2854 	return map;
2855 }
2856 
2857 /*
2858  * Functions to lock and unlock any filesystem running on the
2859  * device.
2860  */
2861 static int lock_fs(struct mapped_device *md)
2862 {
2863 	int r;
2864 
2865 	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2866 
2867 	r = bdev_freeze(md->disk->part0);
2868 	if (!r)
2869 		set_bit(DMF_FROZEN, &md->flags);
2870 	return r;
2871 }
2872 
2873 static void unlock_fs(struct mapped_device *md)
2874 {
2875 	if (!test_bit(DMF_FROZEN, &md->flags))
2876 		return;
2877 	bdev_thaw(md->disk->part0);
2878 	clear_bit(DMF_FROZEN, &md->flags);
2879 }
2880 
2881 /*
2882  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2883  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2884  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2885  *
2886  * If __dm_suspend returns 0, the device is completely quiescent
2887  * now. There is no request-processing activity. All new requests
2888  * are being added to md->deferred list.
2889  */
2890 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2891 			unsigned int suspend_flags, unsigned int task_state,
2892 			int dmf_suspended_flag)
2893 {
2894 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2895 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2896 	int r;
2897 
2898 	lockdep_assert_held(&md->suspend_lock);
2899 
2900 	/*
2901 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2902 	 * This flag is cleared before dm_suspend returns.
2903 	 */
2904 	if (noflush)
2905 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2906 	else
2907 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2908 
2909 	/*
2910 	 * This gets reverted if there's an error later and the targets
2911 	 * provide the .presuspend_undo hook.
2912 	 */
2913 	dm_table_presuspend_targets(map);
2914 
2915 	/*
2916 	 * Flush I/O to the device.
2917 	 * Any I/O submitted after lock_fs() may not be flushed.
2918 	 * noflush takes precedence over do_lockfs.
2919 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2920 	 */
2921 	if (!noflush && do_lockfs) {
2922 		r = lock_fs(md);
2923 		if (r) {
2924 			dm_table_presuspend_undo_targets(map);
2925 			return r;
2926 		}
2927 	}
2928 
2929 	/*
2930 	 * Here we must make sure that no processes are submitting requests
2931 	 * to target drivers i.e. no one may be executing
2932 	 * dm_split_and_process_bio from dm_submit_bio.
2933 	 *
2934 	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2935 	 * we take the write lock. To prevent any process from reentering
2936 	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2937 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2938 	 * flush_workqueue(md->wq).
2939 	 */
2940 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2941 	if (map)
2942 		synchronize_srcu(&md->io_barrier);
2943 
2944 	/*
2945 	 * Stop md->queue before flushing md->wq in case request-based
2946 	 * dm defers requests to md->wq from md->queue.
2947 	 */
2948 	if (dm_request_based(md))
2949 		dm_stop_queue(md->queue);
2950 
2951 	flush_workqueue(md->wq);
2952 
2953 	/*
2954 	 * At this point no more requests are entering target request routines.
2955 	 * We call dm_wait_for_completion to wait for all existing requests
2956 	 * to finish.
2957 	 */
2958 	r = dm_wait_for_completion(md, task_state);
2959 	if (!r)
2960 		set_bit(dmf_suspended_flag, &md->flags);
2961 
2962 	if (noflush)
2963 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2964 	if (map)
2965 		synchronize_srcu(&md->io_barrier);
2966 
2967 	/* were we interrupted ? */
2968 	if (r < 0) {
2969 		dm_queue_flush(md);
2970 
2971 		if (dm_request_based(md))
2972 			dm_start_queue(md->queue);
2973 
2974 		unlock_fs(md);
2975 		dm_table_presuspend_undo_targets(map);
2976 		/* pushback list is already flushed, so skip flush */
2977 	}
2978 
2979 	return r;
2980 }
2981 
2982 /*
2983  * We need to be able to change a mapping table under a mounted
2984  * filesystem.  For example we might want to move some data in
2985  * the background.  Before the table can be swapped with
2986  * dm_bind_table, dm_suspend must be called to flush any in
2987  * flight bios and ensure that any further io gets deferred.
2988  */
2989 /*
2990  * Suspend mechanism in request-based dm.
2991  *
2992  * 1. Flush all I/Os by lock_fs() if needed.
2993  * 2. Stop dispatching any I/O by stopping the request_queue.
2994  * 3. Wait for all in-flight I/Os to be completed or requeued.
2995  *
2996  * To abort suspend, start the request_queue.
2997  */
2998 int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
2999 {
3000 	struct dm_table *map = NULL;
3001 	int r = 0;
3002 
3003 retry:
3004 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3005 
3006 	if (dm_suspended_md(md)) {
3007 		r = -EINVAL;
3008 		goto out_unlock;
3009 	}
3010 
3011 	if (dm_suspended_internally_md(md)) {
3012 		/* already internally suspended, wait for internal resume */
3013 		mutex_unlock(&md->suspend_lock);
3014 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3015 		if (r)
3016 			return r;
3017 		goto retry;
3018 	}
3019 
3020 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3021 	if (!map) {
3022 		/* avoid deadlock with fs/namespace.c:do_mount() */
3023 		suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
3024 	}
3025 
3026 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
3027 	if (r)
3028 		goto out_unlock;
3029 
3030 	set_bit(DMF_POST_SUSPENDING, &md->flags);
3031 	dm_table_postsuspend_targets(map);
3032 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
3033 
3034 out_unlock:
3035 	mutex_unlock(&md->suspend_lock);
3036 	return r;
3037 }
3038 
3039 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3040 {
3041 	if (map) {
3042 		int r = dm_table_resume_targets(map);
3043 
3044 		if (r)
3045 			return r;
3046 	}
3047 
3048 	dm_queue_flush(md);
3049 
3050 	/*
3051 	 * Flushing deferred I/Os must be done after targets are resumed
3052 	 * so that mapping of targets can work correctly.
3053 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
3054 	 */
3055 	if (dm_request_based(md))
3056 		dm_start_queue(md->queue);
3057 
3058 	unlock_fs(md);
3059 
3060 	return 0;
3061 }
3062 
3063 int dm_resume(struct mapped_device *md)
3064 {
3065 	int r;
3066 	struct dm_table *map = NULL;
3067 
3068 retry:
3069 	r = -EINVAL;
3070 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3071 
3072 	if (!dm_suspended_md(md))
3073 		goto out;
3074 
3075 	if (dm_suspended_internally_md(md)) {
3076 		/* already internally suspended, wait for internal resume */
3077 		mutex_unlock(&md->suspend_lock);
3078 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3079 		if (r)
3080 			return r;
3081 		goto retry;
3082 	}
3083 
3084 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3085 	if (!map || !dm_table_get_size(map))
3086 		goto out;
3087 
3088 	r = __dm_resume(md, map);
3089 	if (r)
3090 		goto out;
3091 
3092 	clear_bit(DMF_SUSPENDED, &md->flags);
3093 out:
3094 	mutex_unlock(&md->suspend_lock);
3095 
3096 	return r;
3097 }
3098 
3099 /*
3100  * Internal suspend/resume works like userspace-driven suspend. It waits
3101  * until all bios finish and prevents issuing new bios to the target drivers.
3102  * It may be used only from the kernel.
3103  */
3104 
3105 static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
3106 {
3107 	struct dm_table *map = NULL;
3108 
3109 	lockdep_assert_held(&md->suspend_lock);
3110 
3111 	if (md->internal_suspend_count++)
3112 		return; /* nested internal suspend */
3113 
3114 	if (dm_suspended_md(md)) {
3115 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3116 		return; /* nest suspend */
3117 	}
3118 
3119 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3120 
3121 	/*
3122 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3123 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
3124 	 * would require changing .presuspend to return an error -- avoid this
3125 	 * until there is a need for more elaborate variants of internal suspend.
3126 	 */
3127 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
3128 			    DMF_SUSPENDED_INTERNALLY);
3129 
3130 	set_bit(DMF_POST_SUSPENDING, &md->flags);
3131 	dm_table_postsuspend_targets(map);
3132 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
3133 }
3134 
3135 static void __dm_internal_resume(struct mapped_device *md)
3136 {
3137 	int r;
3138 	struct dm_table *map;
3139 
3140 	BUG_ON(!md->internal_suspend_count);
3141 
3142 	if (--md->internal_suspend_count)
3143 		return; /* resume from nested internal suspend */
3144 
3145 	if (dm_suspended_md(md))
3146 		goto done; /* resume from nested suspend */
3147 
3148 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3149 	r = __dm_resume(md, map);
3150 	if (r) {
3151 		/*
3152 		 * If a preresume method of some target failed, we are in a
3153 		 * tricky situation. We can't return an error to the caller. We
3154 		 * can't fake success because then the "resume" and
3155 		 * "postsuspend" methods would not be paired correctly, and it
3156 		 * would break various targets, for example it would cause list
3157 		 * corruption in the "origin" target.
3158 		 *
3159 		 * So, we fake normal suspend here, to make sure that the
3160 		 * "resume" and "postsuspend" methods will be paired correctly.
3161 		 */
3162 		DMERR("Preresume method failed: %d", r);
3163 		set_bit(DMF_SUSPENDED, &md->flags);
3164 	}
3165 done:
3166 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3167 	smp_mb__after_atomic();
3168 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3169 }
3170 
3171 void dm_internal_suspend_noflush(struct mapped_device *md)
3172 {
3173 	mutex_lock(&md->suspend_lock);
3174 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3175 	mutex_unlock(&md->suspend_lock);
3176 }
3177 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3178 
3179 void dm_internal_resume(struct mapped_device *md)
3180 {
3181 	mutex_lock(&md->suspend_lock);
3182 	__dm_internal_resume(md);
3183 	mutex_unlock(&md->suspend_lock);
3184 }
3185 EXPORT_SYMBOL_GPL(dm_internal_resume);
3186 
3187 /*
3188  * Fast variants of internal suspend/resume hold md->suspend_lock,
3189  * which prevents interaction with userspace-driven suspend.
3190  */
3191 
3192 void dm_internal_suspend_fast(struct mapped_device *md)
3193 {
3194 	mutex_lock(&md->suspend_lock);
3195 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3196 		return;
3197 
3198 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3199 	synchronize_srcu(&md->io_barrier);
3200 	flush_workqueue(md->wq);
3201 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3202 }
3203 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3204 
3205 void dm_internal_resume_fast(struct mapped_device *md)
3206 {
3207 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3208 		goto done;
3209 
3210 	dm_queue_flush(md);
3211 
3212 done:
3213 	mutex_unlock(&md->suspend_lock);
3214 }
3215 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3216 
3217 /*
3218  *---------------------------------------------------------------
3219  * Event notification.
3220  *---------------------------------------------------------------
3221  */
3222 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3223 		      unsigned int cookie, bool need_resize_uevent)
3224 {
3225 	int r;
3226 	unsigned int noio_flag;
3227 	char udev_cookie[DM_COOKIE_LENGTH];
3228 	char *envp[3] = { NULL, NULL, NULL };
3229 	char **envpp = envp;
3230 	if (cookie) {
3231 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3232 			 DM_COOKIE_ENV_VAR_NAME, cookie);
3233 		*envpp++ = udev_cookie;
3234 	}
3235 	if (need_resize_uevent) {
3236 		*envpp++ = "RESIZE=1";
3237 	}
3238 
3239 	noio_flag = memalloc_noio_save();
3240 
3241 	r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
3242 
3243 	memalloc_noio_restore(noio_flag);
3244 
3245 	return r;
3246 }
3247 
3248 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3249 {
3250 	return atomic_add_return(1, &md->uevent_seq);
3251 }
3252 
3253 uint32_t dm_get_event_nr(struct mapped_device *md)
3254 {
3255 	return atomic_read(&md->event_nr);
3256 }
3257 
3258 int dm_wait_event(struct mapped_device *md, int event_nr)
3259 {
3260 	return wait_event_interruptible(md->eventq,
3261 			(event_nr != atomic_read(&md->event_nr)));
3262 }
3263 
3264 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3265 {
3266 	unsigned long flags;
3267 
3268 	spin_lock_irqsave(&md->uevent_lock, flags);
3269 	list_add(elist, &md->uevent_list);
3270 	spin_unlock_irqrestore(&md->uevent_lock, flags);
3271 }
3272 
3273 /*
3274  * The gendisk is only valid as long as you have a reference
3275  * count on 'md'.
3276  */
3277 struct gendisk *dm_disk(struct mapped_device *md)
3278 {
3279 	return md->disk;
3280 }
3281 EXPORT_SYMBOL_GPL(dm_disk);
3282 
3283 struct kobject *dm_kobject(struct mapped_device *md)
3284 {
3285 	return &md->kobj_holder.kobj;
3286 }
3287 
3288 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3289 {
3290 	struct mapped_device *md;
3291 
3292 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3293 
3294 	spin_lock(&_minor_lock);
3295 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3296 		md = NULL;
3297 		goto out;
3298 	}
3299 	dm_get(md);
3300 out:
3301 	spin_unlock(&_minor_lock);
3302 
3303 	return md;
3304 }
3305 
3306 int dm_suspended_md(struct mapped_device *md)
3307 {
3308 	return test_bit(DMF_SUSPENDED, &md->flags);
3309 }
3310 
3311 static int dm_post_suspending_md(struct mapped_device *md)
3312 {
3313 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
3314 }
3315 
3316 int dm_suspended_internally_md(struct mapped_device *md)
3317 {
3318 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3319 }
3320 
3321 int dm_test_deferred_remove_flag(struct mapped_device *md)
3322 {
3323 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3324 }
3325 
3326 int dm_suspended(struct dm_target *ti)
3327 {
3328 	return dm_suspended_md(ti->table->md);
3329 }
3330 EXPORT_SYMBOL_GPL(dm_suspended);
3331 
3332 int dm_post_suspending(struct dm_target *ti)
3333 {
3334 	return dm_post_suspending_md(ti->table->md);
3335 }
3336 EXPORT_SYMBOL_GPL(dm_post_suspending);
3337 
3338 int dm_noflush_suspending(struct dm_target *ti)
3339 {
3340 	return __noflush_suspending(ti->table->md);
3341 }
3342 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3343 
3344 void dm_free_md_mempools(struct dm_md_mempools *pools)
3345 {
3346 	if (!pools)
3347 		return;
3348 
3349 	bioset_exit(&pools->bs);
3350 	bioset_exit(&pools->io_bs);
3351 
3352 	kfree(pools);
3353 }
3354 
3355 struct dm_blkdev_id {
3356 	u8 *id;
3357 	enum blk_unique_id type;
3358 };
3359 
3360 static int __dm_get_unique_id(struct dm_target *ti, struct dm_dev *dev,
3361 				sector_t start, sector_t len, void *data)
3362 {
3363 	struct dm_blkdev_id *dm_id = data;
3364 	const struct block_device_operations *fops = dev->bdev->bd_disk->fops;
3365 
3366 	if (!fops->get_unique_id)
3367 		return 0;
3368 
3369 	return fops->get_unique_id(dev->bdev->bd_disk, dm_id->id, dm_id->type);
3370 }
3371 
3372 /*
3373  * Allow access to get_unique_id() for the first device returning a
3374  * non-zero result.  Reasonable use expects all devices to have the
3375  * same unique id.
3376  */
3377 static int dm_blk_get_unique_id(struct gendisk *disk, u8 *id,
3378 		enum blk_unique_id type)
3379 {
3380 	struct mapped_device *md = disk->private_data;
3381 	struct dm_table *table;
3382 	struct dm_target *ti;
3383 	int ret = 0, srcu_idx;
3384 
3385 	struct dm_blkdev_id dm_id = {
3386 		.id = id,
3387 		.type = type,
3388 	};
3389 
3390 	table = dm_get_live_table(md, &srcu_idx);
3391 	if (!table || !dm_table_get_size(table))
3392 		goto out;
3393 
3394 	/* We only support devices that have a single target */
3395 	if (table->num_targets != 1)
3396 		goto out;
3397 	ti = dm_table_get_target(table, 0);
3398 
3399 	if (!ti->type->iterate_devices)
3400 		goto out;
3401 
3402 	ret = ti->type->iterate_devices(ti, __dm_get_unique_id, &dm_id);
3403 out:
3404 	dm_put_live_table(md, srcu_idx);
3405 	return ret;
3406 }
3407 
3408 struct dm_pr {
3409 	u64	old_key;
3410 	u64	new_key;
3411 	u32	flags;
3412 	bool	abort;
3413 	bool	fail_early;
3414 	int	ret;
3415 	enum pr_type type;
3416 	struct pr_keys *read_keys;
3417 	struct pr_held_reservation *rsv;
3418 };
3419 
3420 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3421 		      struct dm_pr *pr)
3422 {
3423 	struct mapped_device *md = bdev->bd_disk->private_data;
3424 	struct dm_table *table;
3425 	struct dm_target *ti;
3426 	int ret = -ENOTTY, srcu_idx;
3427 
3428 	table = dm_get_live_table(md, &srcu_idx);
3429 	if (!table || !dm_table_get_size(table))
3430 		goto out;
3431 
3432 	/* We only support devices that have a single target */
3433 	if (table->num_targets != 1)
3434 		goto out;
3435 	ti = dm_table_get_target(table, 0);
3436 
3437 	if (dm_suspended_md(md)) {
3438 		ret = -EAGAIN;
3439 		goto out;
3440 	}
3441 
3442 	ret = -EINVAL;
3443 	if (!ti->type->iterate_devices)
3444 		goto out;
3445 
3446 	ti->type->iterate_devices(ti, fn, pr);
3447 	ret = 0;
3448 out:
3449 	dm_put_live_table(md, srcu_idx);
3450 	return ret;
3451 }
3452 
3453 /*
3454  * For register / unregister we need to manually call out to every path.
3455  */
3456 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3457 			    sector_t start, sector_t len, void *data)
3458 {
3459 	struct dm_pr *pr = data;
3460 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3461 	int ret;
3462 
3463 	if (!ops || !ops->pr_register) {
3464 		pr->ret = -EOPNOTSUPP;
3465 		return -1;
3466 	}
3467 
3468 	ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3469 	if (!ret)
3470 		return 0;
3471 
3472 	if (!pr->ret)
3473 		pr->ret = ret;
3474 
3475 	if (pr->fail_early)
3476 		return -1;
3477 
3478 	return 0;
3479 }
3480 
3481 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3482 			  u32 flags)
3483 {
3484 	struct dm_pr pr = {
3485 		.old_key	= old_key,
3486 		.new_key	= new_key,
3487 		.flags		= flags,
3488 		.fail_early	= true,
3489 		.ret		= 0,
3490 	};
3491 	int ret;
3492 
3493 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3494 	if (ret) {
3495 		/* Didn't even get to register a path */
3496 		return ret;
3497 	}
3498 
3499 	if (!pr.ret)
3500 		return 0;
3501 	ret = pr.ret;
3502 
3503 	if (!new_key)
3504 		return ret;
3505 
3506 	/* unregister all paths if we failed to register any path */
3507 	pr.old_key = new_key;
3508 	pr.new_key = 0;
3509 	pr.flags = 0;
3510 	pr.fail_early = false;
3511 	(void) dm_call_pr(bdev, __dm_pr_register, &pr);
3512 	return ret;
3513 }
3514 
3515 
3516 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3517 			   sector_t start, sector_t len, void *data)
3518 {
3519 	struct dm_pr *pr = data;
3520 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3521 
3522 	if (!ops || !ops->pr_reserve) {
3523 		pr->ret = -EOPNOTSUPP;
3524 		return -1;
3525 	}
3526 
3527 	pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3528 	if (!pr->ret)
3529 		return -1;
3530 
3531 	return 0;
3532 }
3533 
3534 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3535 			 u32 flags)
3536 {
3537 	struct dm_pr pr = {
3538 		.old_key	= key,
3539 		.flags		= flags,
3540 		.type		= type,
3541 		.fail_early	= false,
3542 		.ret		= 0,
3543 	};
3544 	int ret;
3545 
3546 	ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3547 	if (ret)
3548 		return ret;
3549 
3550 	return pr.ret;
3551 }
3552 
3553 /*
3554  * If there is a non-All Registrants type of reservation, the release must be
3555  * sent down the holding path. For the cases where there is no reservation or
3556  * the path is not the holder the device will also return success, so we must
3557  * try each path to make sure we got the correct path.
3558  */
3559 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3560 			   sector_t start, sector_t len, void *data)
3561 {
3562 	struct dm_pr *pr = data;
3563 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3564 
3565 	if (!ops || !ops->pr_release) {
3566 		pr->ret = -EOPNOTSUPP;
3567 		return -1;
3568 	}
3569 
3570 	pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3571 	if (pr->ret)
3572 		return -1;
3573 
3574 	return 0;
3575 }
3576 
3577 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3578 {
3579 	struct dm_pr pr = {
3580 		.old_key	= key,
3581 		.type		= type,
3582 		.fail_early	= false,
3583 	};
3584 	int ret;
3585 
3586 	ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3587 	if (ret)
3588 		return ret;
3589 
3590 	return pr.ret;
3591 }
3592 
3593 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3594 			   sector_t start, sector_t len, void *data)
3595 {
3596 	struct dm_pr *pr = data;
3597 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3598 
3599 	if (!ops || !ops->pr_preempt) {
3600 		pr->ret = -EOPNOTSUPP;
3601 		return -1;
3602 	}
3603 
3604 	pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3605 				  pr->abort);
3606 	if (!pr->ret)
3607 		return -1;
3608 
3609 	return 0;
3610 }
3611 
3612 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3613 			 enum pr_type type, bool abort)
3614 {
3615 	struct dm_pr pr = {
3616 		.new_key	= new_key,
3617 		.old_key	= old_key,
3618 		.type		= type,
3619 		.fail_early	= false,
3620 	};
3621 	int ret;
3622 
3623 	ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3624 	if (ret)
3625 		return ret;
3626 
3627 	return pr.ret;
3628 }
3629 
3630 static int dm_pr_clear(struct block_device *bdev, u64 key)
3631 {
3632 	struct mapped_device *md = bdev->bd_disk->private_data;
3633 	const struct pr_ops *ops;
3634 	int r, srcu_idx;
3635 	bool forward = true;
3636 
3637 	/* Not a real ioctl, but targets must not interpret non-DM ioctls */
3638 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev, 0, 0, &forward);
3639 	if (r < 0)
3640 		goto out;
3641 	WARN_ON_ONCE(!forward);
3642 
3643 	ops = bdev->bd_disk->fops->pr_ops;
3644 	if (ops && ops->pr_clear)
3645 		r = ops->pr_clear(bdev, key);
3646 	else
3647 		r = -EOPNOTSUPP;
3648 out:
3649 	dm_unprepare_ioctl(md, srcu_idx);
3650 	return r;
3651 }
3652 
3653 static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev,
3654 			     sector_t start, sector_t len, void *data)
3655 {
3656 	struct dm_pr *pr = data;
3657 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3658 
3659 	if (!ops || !ops->pr_read_keys) {
3660 		pr->ret = -EOPNOTSUPP;
3661 		return -1;
3662 	}
3663 
3664 	pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys);
3665 	if (!pr->ret)
3666 		return -1;
3667 
3668 	return 0;
3669 }
3670 
3671 static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys)
3672 {
3673 	struct dm_pr pr = {
3674 		.read_keys = keys,
3675 	};
3676 	int ret;
3677 
3678 	ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr);
3679 	if (ret)
3680 		return ret;
3681 
3682 	return pr.ret;
3683 }
3684 
3685 static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev,
3686 				    sector_t start, sector_t len, void *data)
3687 {
3688 	struct dm_pr *pr = data;
3689 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3690 
3691 	if (!ops || !ops->pr_read_reservation) {
3692 		pr->ret = -EOPNOTSUPP;
3693 		return -1;
3694 	}
3695 
3696 	pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv);
3697 	if (!pr->ret)
3698 		return -1;
3699 
3700 	return 0;
3701 }
3702 
3703 static int dm_pr_read_reservation(struct block_device *bdev,
3704 				  struct pr_held_reservation *rsv)
3705 {
3706 	struct dm_pr pr = {
3707 		.rsv = rsv,
3708 	};
3709 	int ret;
3710 
3711 	ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr);
3712 	if (ret)
3713 		return ret;
3714 
3715 	return pr.ret;
3716 }
3717 
3718 static const struct pr_ops dm_pr_ops = {
3719 	.pr_register	= dm_pr_register,
3720 	.pr_reserve	= dm_pr_reserve,
3721 	.pr_release	= dm_pr_release,
3722 	.pr_preempt	= dm_pr_preempt,
3723 	.pr_clear	= dm_pr_clear,
3724 	.pr_read_keys	= dm_pr_read_keys,
3725 	.pr_read_reservation = dm_pr_read_reservation,
3726 };
3727 
3728 static const struct block_device_operations dm_blk_dops = {
3729 	.submit_bio = dm_submit_bio,
3730 	.poll_bio = dm_poll_bio,
3731 	.open = dm_blk_open,
3732 	.release = dm_blk_close,
3733 	.ioctl = dm_blk_ioctl,
3734 	.getgeo = dm_blk_getgeo,
3735 	.report_zones = dm_blk_report_zones,
3736 	.get_unique_id = dm_blk_get_unique_id,
3737 	.pr_ops = &dm_pr_ops,
3738 	.owner = THIS_MODULE
3739 };
3740 
3741 static const struct block_device_operations dm_rq_blk_dops = {
3742 	.open = dm_blk_open,
3743 	.release = dm_blk_close,
3744 	.ioctl = dm_blk_ioctl,
3745 	.getgeo = dm_blk_getgeo,
3746 	.get_unique_id = dm_blk_get_unique_id,
3747 	.pr_ops = &dm_pr_ops,
3748 	.owner = THIS_MODULE
3749 };
3750 
3751 static const struct dax_operations dm_dax_ops = {
3752 	.direct_access = dm_dax_direct_access,
3753 	.zero_page_range = dm_dax_zero_page_range,
3754 	.recovery_write = dm_dax_recovery_write,
3755 };
3756 
3757 /*
3758  * module hooks
3759  */
3760 module_init(dm_init);
3761 module_exit(dm_exit);
3762 
3763 module_param(major, uint, 0);
3764 MODULE_PARM_DESC(major, "The major number of the device mapper");
3765 
3766 module_param(reserved_bio_based_ios, uint, 0644);
3767 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3768 
3769 module_param(dm_numa_node, int, 0644);
3770 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3771 
3772 module_param(swap_bios, int, 0644);
3773 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3774 
3775 MODULE_DESCRIPTION(DM_NAME " driver");
3776 MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>");
3777 MODULE_LICENSE("GPL");
3778