1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-core.h" 10 #include "dm-rq.h" 11 #include "dm-uevent.h" 12 #include "dm-ima.h" 13 14 #include <linux/bio-integrity.h> 15 #include <linux/init.h> 16 #include <linux/module.h> 17 #include <linux/mutex.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/signal.h> 20 #include <linux/blkpg.h> 21 #include <linux/bio.h> 22 #include <linux/mempool.h> 23 #include <linux/dax.h> 24 #include <linux/slab.h> 25 #include <linux/idr.h> 26 #include <linux/uio.h> 27 #include <linux/hdreg.h> 28 #include <linux/delay.h> 29 #include <linux/wait.h> 30 #include <linux/pr.h> 31 #include <linux/refcount.h> 32 #include <linux/part_stat.h> 33 #include <linux/blk-crypto.h> 34 #include <linux/blk-crypto-profile.h> 35 36 #define DM_MSG_PREFIX "core" 37 38 /* 39 * Cookies are numeric values sent with CHANGE and REMOVE 40 * uevents while resuming, removing or renaming the device. 41 */ 42 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 43 #define DM_COOKIE_LENGTH 24 44 45 /* 46 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying 47 * dm_io into one list, and reuse bio->bi_private as the list head. Before 48 * ending this fs bio, we will recover its ->bi_private. 49 */ 50 #define REQ_DM_POLL_LIST REQ_DRV 51 52 static const char *_name = DM_NAME; 53 54 static unsigned int major; 55 static unsigned int _major; 56 57 static DEFINE_IDR(_minor_idr); 58 59 static DEFINE_SPINLOCK(_minor_lock); 60 61 static void do_deferred_remove(struct work_struct *w); 62 63 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 64 65 static struct workqueue_struct *deferred_remove_workqueue; 66 67 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 68 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 69 70 void dm_issue_global_event(void) 71 { 72 atomic_inc(&dm_global_event_nr); 73 wake_up(&dm_global_eventq); 74 } 75 76 DEFINE_STATIC_KEY_FALSE(stats_enabled); 77 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled); 78 DEFINE_STATIC_KEY_FALSE(zoned_enabled); 79 80 /* 81 * One of these is allocated (on-stack) per original bio. 82 */ 83 struct clone_info { 84 struct dm_table *map; 85 struct bio *bio; 86 struct dm_io *io; 87 sector_t sector; 88 unsigned int sector_count; 89 bool is_abnormal_io:1; 90 bool submit_as_polled:1; 91 }; 92 93 static inline struct dm_target_io *clone_to_tio(struct bio *clone) 94 { 95 return container_of(clone, struct dm_target_io, clone); 96 } 97 98 void *dm_per_bio_data(struct bio *bio, size_t data_size) 99 { 100 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO)) 101 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size; 102 return (char *)bio - DM_IO_BIO_OFFSET - data_size; 103 } 104 EXPORT_SYMBOL_GPL(dm_per_bio_data); 105 106 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 107 { 108 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 109 110 if (io->magic == DM_IO_MAGIC) 111 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET); 112 BUG_ON(io->magic != DM_TIO_MAGIC); 113 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET); 114 } 115 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 116 117 unsigned int dm_bio_get_target_bio_nr(const struct bio *bio) 118 { 119 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 120 } 121 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 122 123 #define MINOR_ALLOCED ((void *)-1) 124 125 #define DM_NUMA_NODE NUMA_NO_NODE 126 static int dm_numa_node = DM_NUMA_NODE; 127 128 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE) 129 static int swap_bios = DEFAULT_SWAP_BIOS; 130 static int get_swap_bios(void) 131 { 132 int latch = READ_ONCE(swap_bios); 133 134 if (unlikely(latch <= 0)) 135 latch = DEFAULT_SWAP_BIOS; 136 return latch; 137 } 138 139 struct table_device { 140 struct list_head list; 141 refcount_t count; 142 struct dm_dev dm_dev; 143 }; 144 145 /* 146 * Bio-based DM's mempools' reserved IOs set by the user. 147 */ 148 #define RESERVED_BIO_BASED_IOS 16 149 static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 150 151 static int __dm_get_module_param_int(int *module_param, int min, int max) 152 { 153 int param = READ_ONCE(*module_param); 154 int modified_param = 0; 155 bool modified = true; 156 157 if (param < min) 158 modified_param = min; 159 else if (param > max) 160 modified_param = max; 161 else 162 modified = false; 163 164 if (modified) { 165 (void)cmpxchg(module_param, param, modified_param); 166 param = modified_param; 167 } 168 169 return param; 170 } 171 172 unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max) 173 { 174 unsigned int param = READ_ONCE(*module_param); 175 unsigned int modified_param = 0; 176 177 if (!param) 178 modified_param = def; 179 else if (param > max) 180 modified_param = max; 181 182 if (modified_param) { 183 (void)cmpxchg(module_param, param, modified_param); 184 param = modified_param; 185 } 186 187 return param; 188 } 189 190 unsigned int dm_get_reserved_bio_based_ios(void) 191 { 192 return __dm_get_module_param(&reserved_bio_based_ios, 193 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 194 } 195 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 196 197 static unsigned int dm_get_numa_node(void) 198 { 199 return __dm_get_module_param_int(&dm_numa_node, 200 DM_NUMA_NODE, num_online_nodes() - 1); 201 } 202 203 static int __init local_init(void) 204 { 205 int r; 206 207 r = dm_uevent_init(); 208 if (r) 209 return r; 210 211 deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0); 212 if (!deferred_remove_workqueue) { 213 r = -ENOMEM; 214 goto out_uevent_exit; 215 } 216 217 _major = major; 218 r = register_blkdev(_major, _name); 219 if (r < 0) 220 goto out_free_workqueue; 221 222 if (!_major) 223 _major = r; 224 225 return 0; 226 227 out_free_workqueue: 228 destroy_workqueue(deferred_remove_workqueue); 229 out_uevent_exit: 230 dm_uevent_exit(); 231 232 return r; 233 } 234 235 static void local_exit(void) 236 { 237 destroy_workqueue(deferred_remove_workqueue); 238 239 unregister_blkdev(_major, _name); 240 dm_uevent_exit(); 241 242 _major = 0; 243 244 DMINFO("cleaned up"); 245 } 246 247 static int (*_inits[])(void) __initdata = { 248 local_init, 249 dm_target_init, 250 dm_linear_init, 251 dm_stripe_init, 252 dm_io_init, 253 dm_kcopyd_init, 254 dm_interface_init, 255 dm_statistics_init, 256 }; 257 258 static void (*_exits[])(void) = { 259 local_exit, 260 dm_target_exit, 261 dm_linear_exit, 262 dm_stripe_exit, 263 dm_io_exit, 264 dm_kcopyd_exit, 265 dm_interface_exit, 266 dm_statistics_exit, 267 }; 268 269 static int __init dm_init(void) 270 { 271 const int count = ARRAY_SIZE(_inits); 272 int r, i; 273 274 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE)) 275 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled." 276 " Duplicate IMA measurements will not be recorded in the IMA log."); 277 #endif 278 279 for (i = 0; i < count; i++) { 280 r = _inits[i](); 281 if (r) 282 goto bad; 283 } 284 285 return 0; 286 bad: 287 while (i--) 288 _exits[i](); 289 290 return r; 291 } 292 293 static void __exit dm_exit(void) 294 { 295 int i = ARRAY_SIZE(_exits); 296 297 while (i--) 298 _exits[i](); 299 300 /* 301 * Should be empty by this point. 302 */ 303 idr_destroy(&_minor_idr); 304 } 305 306 /* 307 * Block device functions 308 */ 309 int dm_deleting_md(struct mapped_device *md) 310 { 311 return test_bit(DMF_DELETING, &md->flags); 312 } 313 314 static int dm_blk_open(struct gendisk *disk, blk_mode_t mode) 315 { 316 struct mapped_device *md; 317 318 spin_lock(&_minor_lock); 319 320 md = disk->private_data; 321 if (!md) 322 goto out; 323 324 if (test_bit(DMF_FREEING, &md->flags) || 325 dm_deleting_md(md)) { 326 md = NULL; 327 goto out; 328 } 329 330 dm_get(md); 331 atomic_inc(&md->open_count); 332 out: 333 spin_unlock(&_minor_lock); 334 335 return md ? 0 : -ENXIO; 336 } 337 338 static void dm_blk_close(struct gendisk *disk) 339 { 340 struct mapped_device *md; 341 342 spin_lock(&_minor_lock); 343 344 md = disk->private_data; 345 if (WARN_ON(!md)) 346 goto out; 347 348 if (atomic_dec_and_test(&md->open_count) && 349 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 350 queue_work(deferred_remove_workqueue, &deferred_remove_work); 351 352 dm_put(md); 353 out: 354 spin_unlock(&_minor_lock); 355 } 356 357 int dm_open_count(struct mapped_device *md) 358 { 359 return atomic_read(&md->open_count); 360 } 361 362 /* 363 * Guarantees nothing is using the device before it's deleted. 364 */ 365 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 366 { 367 int r = 0; 368 369 spin_lock(&_minor_lock); 370 371 if (dm_open_count(md)) { 372 r = -EBUSY; 373 if (mark_deferred) 374 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 375 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 376 r = -EEXIST; 377 else 378 set_bit(DMF_DELETING, &md->flags); 379 380 spin_unlock(&_minor_lock); 381 382 return r; 383 } 384 385 int dm_cancel_deferred_remove(struct mapped_device *md) 386 { 387 int r = 0; 388 389 spin_lock(&_minor_lock); 390 391 if (test_bit(DMF_DELETING, &md->flags)) 392 r = -EBUSY; 393 else 394 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 395 396 spin_unlock(&_minor_lock); 397 398 return r; 399 } 400 401 static void do_deferred_remove(struct work_struct *w) 402 { 403 dm_deferred_remove(); 404 } 405 406 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 407 { 408 struct mapped_device *md = bdev->bd_disk->private_data; 409 410 return dm_get_geometry(md, geo); 411 } 412 413 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 414 struct block_device **bdev) 415 { 416 struct dm_target *ti; 417 struct dm_table *map; 418 int r; 419 420 retry: 421 r = -ENOTTY; 422 map = dm_get_live_table(md, srcu_idx); 423 if (!map || !dm_table_get_size(map)) 424 return r; 425 426 /* We only support devices that have a single target */ 427 if (map->num_targets != 1) 428 return r; 429 430 ti = dm_table_get_target(map, 0); 431 if (!ti->type->prepare_ioctl) 432 return r; 433 434 if (dm_suspended_md(md)) 435 return -EAGAIN; 436 437 r = ti->type->prepare_ioctl(ti, bdev); 438 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 439 dm_put_live_table(md, *srcu_idx); 440 fsleep(10000); 441 goto retry; 442 } 443 444 return r; 445 } 446 447 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 448 { 449 dm_put_live_table(md, srcu_idx); 450 } 451 452 static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode, 453 unsigned int cmd, unsigned long arg) 454 { 455 struct mapped_device *md = bdev->bd_disk->private_data; 456 int r, srcu_idx; 457 458 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 459 if (r < 0) 460 goto out; 461 462 if (r > 0) { 463 /* 464 * Target determined this ioctl is being issued against a 465 * subset of the parent bdev; require extra privileges. 466 */ 467 if (!capable(CAP_SYS_RAWIO)) { 468 DMDEBUG_LIMIT( 469 "%s: sending ioctl %x to DM device without required privilege.", 470 current->comm, cmd); 471 r = -ENOIOCTLCMD; 472 goto out; 473 } 474 } 475 476 if (!bdev->bd_disk->fops->ioctl) 477 r = -ENOTTY; 478 else 479 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); 480 out: 481 dm_unprepare_ioctl(md, srcu_idx); 482 return r; 483 } 484 485 u64 dm_start_time_ns_from_clone(struct bio *bio) 486 { 487 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time); 488 } 489 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 490 491 static inline bool bio_is_flush_with_data(struct bio *bio) 492 { 493 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size); 494 } 495 496 static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio) 497 { 498 /* 499 * If REQ_PREFLUSH set, don't account payload, it will be 500 * submitted (and accounted) after this flush completes. 501 */ 502 if (bio_is_flush_with_data(bio)) 503 return 0; 504 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT))) 505 return io->sectors; 506 return bio_sectors(bio); 507 } 508 509 static void dm_io_acct(struct dm_io *io, bool end) 510 { 511 struct bio *bio = io->orig_bio; 512 513 if (dm_io_flagged(io, DM_IO_BLK_STAT)) { 514 if (!end) 515 bdev_start_io_acct(bio->bi_bdev, bio_op(bio), 516 io->start_time); 517 else 518 bdev_end_io_acct(bio->bi_bdev, bio_op(bio), 519 dm_io_sectors(io, bio), 520 io->start_time); 521 } 522 523 if (static_branch_unlikely(&stats_enabled) && 524 unlikely(dm_stats_used(&io->md->stats))) { 525 sector_t sector; 526 527 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT))) 528 sector = bio_end_sector(bio) - io->sector_offset; 529 else 530 sector = bio->bi_iter.bi_sector; 531 532 dm_stats_account_io(&io->md->stats, bio_data_dir(bio), 533 sector, dm_io_sectors(io, bio), 534 end, io->start_time, &io->stats_aux); 535 } 536 } 537 538 static void __dm_start_io_acct(struct dm_io *io) 539 { 540 dm_io_acct(io, false); 541 } 542 543 static void dm_start_io_acct(struct dm_io *io, struct bio *clone) 544 { 545 /* 546 * Ensure IO accounting is only ever started once. 547 */ 548 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 549 return; 550 551 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */ 552 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) { 553 dm_io_set_flag(io, DM_IO_ACCOUNTED); 554 } else { 555 unsigned long flags; 556 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */ 557 spin_lock_irqsave(&io->lock, flags); 558 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) { 559 spin_unlock_irqrestore(&io->lock, flags); 560 return; 561 } 562 dm_io_set_flag(io, DM_IO_ACCOUNTED); 563 spin_unlock_irqrestore(&io->lock, flags); 564 } 565 566 __dm_start_io_acct(io); 567 } 568 569 static void dm_end_io_acct(struct dm_io *io) 570 { 571 dm_io_acct(io, true); 572 } 573 574 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio, gfp_t gfp_mask) 575 { 576 struct dm_io *io; 577 struct dm_target_io *tio; 578 struct bio *clone; 579 580 clone = bio_alloc_clone(NULL, bio, gfp_mask, &md->mempools->io_bs); 581 if (unlikely(!clone)) 582 return NULL; 583 tio = clone_to_tio(clone); 584 tio->flags = 0; 585 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO); 586 tio->io = NULL; 587 588 io = container_of(tio, struct dm_io, tio); 589 io->magic = DM_IO_MAGIC; 590 io->status = BLK_STS_OK; 591 592 /* one ref is for submission, the other is for completion */ 593 atomic_set(&io->io_count, 2); 594 this_cpu_inc(*md->pending_io); 595 io->orig_bio = bio; 596 io->md = md; 597 spin_lock_init(&io->lock); 598 io->start_time = jiffies; 599 io->flags = 0; 600 if (blk_queue_io_stat(md->queue)) 601 dm_io_set_flag(io, DM_IO_BLK_STAT); 602 603 if (static_branch_unlikely(&stats_enabled) && 604 unlikely(dm_stats_used(&md->stats))) 605 dm_stats_record_start(&md->stats, &io->stats_aux); 606 607 return io; 608 } 609 610 static void free_io(struct dm_io *io) 611 { 612 bio_put(&io->tio.clone); 613 } 614 615 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti, 616 unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask) 617 { 618 struct mapped_device *md = ci->io->md; 619 struct dm_target_io *tio; 620 struct bio *clone; 621 622 if (!ci->io->tio.io) { 623 /* the dm_target_io embedded in ci->io is available */ 624 tio = &ci->io->tio; 625 /* alloc_io() already initialized embedded clone */ 626 clone = &tio->clone; 627 } else { 628 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask, 629 &md->mempools->bs); 630 if (!clone) 631 return NULL; 632 633 /* REQ_DM_POLL_LIST shouldn't be inherited */ 634 clone->bi_opf &= ~REQ_DM_POLL_LIST; 635 636 tio = clone_to_tio(clone); 637 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */ 638 } 639 640 tio->magic = DM_TIO_MAGIC; 641 tio->io = ci->io; 642 tio->ti = ti; 643 tio->target_bio_nr = target_bio_nr; 644 tio->len_ptr = len; 645 tio->old_sector = 0; 646 647 /* Set default bdev, but target must bio_set_dev() before issuing IO */ 648 clone->bi_bdev = md->disk->part0; 649 if (likely(ti != NULL) && unlikely(ti->needs_bio_set_dev)) 650 bio_set_dev(clone, md->disk->part0); 651 652 if (len) { 653 clone->bi_iter.bi_size = to_bytes(*len); 654 if (bio_integrity(clone)) 655 bio_integrity_trim(clone); 656 } 657 658 return clone; 659 } 660 661 static void free_tio(struct bio *clone) 662 { 663 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO)) 664 return; 665 bio_put(clone); 666 } 667 668 /* 669 * Add the bio to the list of deferred io. 670 */ 671 static void queue_io(struct mapped_device *md, struct bio *bio) 672 { 673 unsigned long flags; 674 675 spin_lock_irqsave(&md->deferred_lock, flags); 676 bio_list_add(&md->deferred, bio); 677 spin_unlock_irqrestore(&md->deferred_lock, flags); 678 queue_work(md->wq, &md->work); 679 } 680 681 /* 682 * Everyone (including functions in this file), should use this 683 * function to access the md->map field, and make sure they call 684 * dm_put_live_table() when finished. 685 */ 686 struct dm_table *dm_get_live_table(struct mapped_device *md, 687 int *srcu_idx) __acquires(md->io_barrier) 688 { 689 *srcu_idx = srcu_read_lock(&md->io_barrier); 690 691 return srcu_dereference(md->map, &md->io_barrier); 692 } 693 694 void dm_put_live_table(struct mapped_device *md, 695 int srcu_idx) __releases(md->io_barrier) 696 { 697 srcu_read_unlock(&md->io_barrier, srcu_idx); 698 } 699 700 void dm_sync_table(struct mapped_device *md) 701 { 702 synchronize_srcu(&md->io_barrier); 703 synchronize_rcu_expedited(); 704 } 705 706 /* 707 * A fast alternative to dm_get_live_table/dm_put_live_table. 708 * The caller must not block between these two functions. 709 */ 710 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 711 { 712 rcu_read_lock(); 713 return rcu_dereference(md->map); 714 } 715 716 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 717 { 718 rcu_read_unlock(); 719 } 720 721 static char *_dm_claim_ptr = "I belong to device-mapper"; 722 723 /* 724 * Open a table device so we can use it as a map destination. 725 */ 726 static struct table_device *open_table_device(struct mapped_device *md, 727 dev_t dev, blk_mode_t mode) 728 { 729 struct table_device *td; 730 struct file *bdev_file; 731 struct block_device *bdev; 732 u64 part_off; 733 int r; 734 735 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 736 if (!td) 737 return ERR_PTR(-ENOMEM); 738 refcount_set(&td->count, 1); 739 740 bdev_file = bdev_file_open_by_dev(dev, mode, _dm_claim_ptr, NULL); 741 if (IS_ERR(bdev_file)) { 742 r = PTR_ERR(bdev_file); 743 goto out_free_td; 744 } 745 746 bdev = file_bdev(bdev_file); 747 748 /* 749 * We can be called before the dm disk is added. In that case we can't 750 * register the holder relation here. It will be done once add_disk was 751 * called. 752 */ 753 if (md->disk->slave_dir) { 754 r = bd_link_disk_holder(bdev, md->disk); 755 if (r) 756 goto out_blkdev_put; 757 } 758 759 td->dm_dev.mode = mode; 760 td->dm_dev.bdev = bdev; 761 td->dm_dev.bdev_file = bdev_file; 762 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off, 763 NULL, NULL); 764 format_dev_t(td->dm_dev.name, dev); 765 list_add(&td->list, &md->table_devices); 766 return td; 767 768 out_blkdev_put: 769 __fput_sync(bdev_file); 770 out_free_td: 771 kfree(td); 772 return ERR_PTR(r); 773 } 774 775 /* 776 * Close a table device that we've been using. 777 */ 778 static void close_table_device(struct table_device *td, struct mapped_device *md) 779 { 780 if (md->disk->slave_dir) 781 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk); 782 783 /* Leverage async fput() if DMF_DEFERRED_REMOVE set */ 784 if (unlikely(test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 785 fput(td->dm_dev.bdev_file); 786 else 787 __fput_sync(td->dm_dev.bdev_file); 788 789 put_dax(td->dm_dev.dax_dev); 790 list_del(&td->list); 791 kfree(td); 792 } 793 794 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 795 blk_mode_t mode) 796 { 797 struct table_device *td; 798 799 list_for_each_entry(td, l, list) 800 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 801 return td; 802 803 return NULL; 804 } 805 806 int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode, 807 struct dm_dev **result) 808 { 809 struct table_device *td; 810 811 mutex_lock(&md->table_devices_lock); 812 td = find_table_device(&md->table_devices, dev, mode); 813 if (!td) { 814 td = open_table_device(md, dev, mode); 815 if (IS_ERR(td)) { 816 mutex_unlock(&md->table_devices_lock); 817 return PTR_ERR(td); 818 } 819 } else { 820 refcount_inc(&td->count); 821 } 822 mutex_unlock(&md->table_devices_lock); 823 824 *result = &td->dm_dev; 825 return 0; 826 } 827 828 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 829 { 830 struct table_device *td = container_of(d, struct table_device, dm_dev); 831 832 mutex_lock(&md->table_devices_lock); 833 if (refcount_dec_and_test(&td->count)) 834 close_table_device(td, md); 835 mutex_unlock(&md->table_devices_lock); 836 } 837 838 /* 839 * Get the geometry associated with a dm device 840 */ 841 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 842 { 843 *geo = md->geometry; 844 845 return 0; 846 } 847 848 /* 849 * Set the geometry of a device. 850 */ 851 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 852 { 853 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 854 855 if (geo->start > sz) { 856 DMERR("Start sector is beyond the geometry limits."); 857 return -EINVAL; 858 } 859 860 md->geometry = *geo; 861 862 return 0; 863 } 864 865 static int __noflush_suspending(struct mapped_device *md) 866 { 867 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 868 } 869 870 static void dm_requeue_add_io(struct dm_io *io, bool first_stage) 871 { 872 struct mapped_device *md = io->md; 873 874 if (first_stage) { 875 struct dm_io *next = md->requeue_list; 876 877 md->requeue_list = io; 878 io->next = next; 879 } else { 880 bio_list_add_head(&md->deferred, io->orig_bio); 881 } 882 } 883 884 static void dm_kick_requeue(struct mapped_device *md, bool first_stage) 885 { 886 if (first_stage) 887 queue_work(md->wq, &md->requeue_work); 888 else 889 queue_work(md->wq, &md->work); 890 } 891 892 /* 893 * Return true if the dm_io's original bio is requeued. 894 * io->status is updated with error if requeue disallowed. 895 */ 896 static bool dm_handle_requeue(struct dm_io *io, bool first_stage) 897 { 898 struct bio *bio = io->orig_bio; 899 bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE); 900 bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) && 901 (bio->bi_opf & REQ_POLLED)); 902 struct mapped_device *md = io->md; 903 bool requeued = false; 904 905 if (handle_requeue || handle_polled_eagain) { 906 unsigned long flags; 907 908 if (bio->bi_opf & REQ_POLLED) { 909 /* 910 * Upper layer won't help us poll split bio 911 * (io->orig_bio may only reflect a subset of the 912 * pre-split original) so clear REQ_POLLED. 913 */ 914 bio_clear_polled(bio); 915 } 916 917 /* 918 * Target requested pushing back the I/O or 919 * polled IO hit BLK_STS_AGAIN. 920 */ 921 spin_lock_irqsave(&md->deferred_lock, flags); 922 if ((__noflush_suspending(md) && 923 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) || 924 handle_polled_eagain || first_stage) { 925 dm_requeue_add_io(io, first_stage); 926 requeued = true; 927 } else { 928 /* 929 * noflush suspend was interrupted or this is 930 * a write to a zoned target. 931 */ 932 io->status = BLK_STS_IOERR; 933 } 934 spin_unlock_irqrestore(&md->deferred_lock, flags); 935 } 936 937 if (requeued) 938 dm_kick_requeue(md, first_stage); 939 940 return requeued; 941 } 942 943 static void __dm_io_complete(struct dm_io *io, bool first_stage) 944 { 945 struct bio *bio = io->orig_bio; 946 struct mapped_device *md = io->md; 947 blk_status_t io_error; 948 bool requeued; 949 950 requeued = dm_handle_requeue(io, first_stage); 951 if (requeued && first_stage) 952 return; 953 954 io_error = io->status; 955 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 956 dm_end_io_acct(io); 957 else if (!io_error) { 958 /* 959 * Must handle target that DM_MAPIO_SUBMITTED only to 960 * then bio_endio() rather than dm_submit_bio_remap() 961 */ 962 __dm_start_io_acct(io); 963 dm_end_io_acct(io); 964 } 965 free_io(io); 966 smp_wmb(); 967 this_cpu_dec(*md->pending_io); 968 969 /* nudge anyone waiting on suspend queue */ 970 if (unlikely(wq_has_sleeper(&md->wait))) 971 wake_up(&md->wait); 972 973 /* Return early if the original bio was requeued */ 974 if (requeued) 975 return; 976 977 if (bio_is_flush_with_data(bio)) { 978 /* 979 * Preflush done for flush with data, reissue 980 * without REQ_PREFLUSH. 981 */ 982 bio->bi_opf &= ~REQ_PREFLUSH; 983 queue_io(md, bio); 984 } else { 985 /* done with normal IO or empty flush */ 986 if (io_error) 987 bio->bi_status = io_error; 988 bio_endio(bio); 989 } 990 } 991 992 static void dm_wq_requeue_work(struct work_struct *work) 993 { 994 struct mapped_device *md = container_of(work, struct mapped_device, 995 requeue_work); 996 unsigned long flags; 997 struct dm_io *io; 998 999 /* reuse deferred lock to simplify dm_handle_requeue */ 1000 spin_lock_irqsave(&md->deferred_lock, flags); 1001 io = md->requeue_list; 1002 md->requeue_list = NULL; 1003 spin_unlock_irqrestore(&md->deferred_lock, flags); 1004 1005 while (io) { 1006 struct dm_io *next = io->next; 1007 1008 dm_io_rewind(io, &md->disk->bio_split); 1009 1010 io->next = NULL; 1011 __dm_io_complete(io, false); 1012 io = next; 1013 cond_resched(); 1014 } 1015 } 1016 1017 /* 1018 * Two staged requeue: 1019 * 1020 * 1) io->orig_bio points to the real original bio, and the part mapped to 1021 * this io must be requeued, instead of other parts of the original bio. 1022 * 1023 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io. 1024 */ 1025 static void dm_io_complete(struct dm_io *io) 1026 { 1027 bool first_requeue; 1028 1029 /* 1030 * Only dm_io that has been split needs two stage requeue, otherwise 1031 * we may run into long bio clone chain during suspend and OOM could 1032 * be triggered. 1033 * 1034 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they 1035 * also aren't handled via the first stage requeue. 1036 */ 1037 if (dm_io_flagged(io, DM_IO_WAS_SPLIT)) 1038 first_requeue = true; 1039 else 1040 first_requeue = false; 1041 1042 __dm_io_complete(io, first_requeue); 1043 } 1044 1045 /* 1046 * Decrements the number of outstanding ios that a bio has been 1047 * cloned into, completing the original io if necc. 1048 */ 1049 static inline void __dm_io_dec_pending(struct dm_io *io) 1050 { 1051 if (atomic_dec_and_test(&io->io_count)) 1052 dm_io_complete(io); 1053 } 1054 1055 static void dm_io_set_error(struct dm_io *io, blk_status_t error) 1056 { 1057 unsigned long flags; 1058 1059 /* Push-back supersedes any I/O errors */ 1060 spin_lock_irqsave(&io->lock, flags); 1061 if (!(io->status == BLK_STS_DM_REQUEUE && 1062 __noflush_suspending(io->md))) { 1063 io->status = error; 1064 } 1065 spin_unlock_irqrestore(&io->lock, flags); 1066 } 1067 1068 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error) 1069 { 1070 if (unlikely(error)) 1071 dm_io_set_error(io, error); 1072 1073 __dm_io_dec_pending(io); 1074 } 1075 1076 /* 1077 * The queue_limits are only valid as long as you have a reference 1078 * count on 'md'. But _not_ imposing verification to avoid atomic_read(), 1079 */ 1080 static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 1081 { 1082 return &md->queue->limits; 1083 } 1084 1085 void disable_discard(struct mapped_device *md) 1086 { 1087 struct queue_limits *limits = dm_get_queue_limits(md); 1088 1089 /* device doesn't really support DISCARD, disable it */ 1090 limits->max_hw_discard_sectors = 0; 1091 } 1092 1093 void disable_write_zeroes(struct mapped_device *md) 1094 { 1095 struct queue_limits *limits = dm_get_queue_limits(md); 1096 1097 /* device doesn't really support WRITE ZEROES, disable it */ 1098 limits->max_write_zeroes_sectors = 0; 1099 } 1100 1101 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio) 1102 { 1103 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios); 1104 } 1105 1106 static void clone_endio(struct bio *bio) 1107 { 1108 blk_status_t error = bio->bi_status; 1109 struct dm_target_io *tio = clone_to_tio(bio); 1110 struct dm_target *ti = tio->ti; 1111 dm_endio_fn endio = likely(ti != NULL) ? ti->type->end_io : NULL; 1112 struct dm_io *io = tio->io; 1113 struct mapped_device *md = io->md; 1114 1115 if (unlikely(error == BLK_STS_TARGET)) { 1116 if (bio_op(bio) == REQ_OP_DISCARD && 1117 !bdev_max_discard_sectors(bio->bi_bdev)) 1118 disable_discard(md); 1119 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 1120 !bdev_write_zeroes_sectors(bio->bi_bdev)) 1121 disable_write_zeroes(md); 1122 } 1123 1124 if (static_branch_unlikely(&zoned_enabled) && 1125 unlikely(bdev_is_zoned(bio->bi_bdev))) 1126 dm_zone_endio(io, bio); 1127 1128 if (endio) { 1129 int r = endio(ti, bio, &error); 1130 1131 switch (r) { 1132 case DM_ENDIO_REQUEUE: 1133 if (static_branch_unlikely(&zoned_enabled)) { 1134 /* 1135 * Requeuing writes to a sequential zone of a zoned 1136 * target will break the sequential write pattern: 1137 * fail such IO. 1138 */ 1139 if (WARN_ON_ONCE(dm_is_zone_write(md, bio))) 1140 error = BLK_STS_IOERR; 1141 else 1142 error = BLK_STS_DM_REQUEUE; 1143 } else 1144 error = BLK_STS_DM_REQUEUE; 1145 fallthrough; 1146 case DM_ENDIO_DONE: 1147 break; 1148 case DM_ENDIO_INCOMPLETE: 1149 /* The target will handle the io */ 1150 return; 1151 default: 1152 DMCRIT("unimplemented target endio return value: %d", r); 1153 BUG(); 1154 } 1155 } 1156 1157 if (static_branch_unlikely(&swap_bios_enabled) && 1158 likely(ti != NULL) && unlikely(swap_bios_limit(ti, bio))) 1159 up(&md->swap_bios_semaphore); 1160 1161 free_tio(bio); 1162 dm_io_dec_pending(io, error); 1163 } 1164 1165 /* 1166 * Return maximum size of I/O possible at the supplied sector up to the current 1167 * target boundary. 1168 */ 1169 static inline sector_t max_io_len_target_boundary(struct dm_target *ti, 1170 sector_t target_offset) 1171 { 1172 return ti->len - target_offset; 1173 } 1174 1175 static sector_t __max_io_len(struct dm_target *ti, sector_t sector, 1176 unsigned int max_granularity, 1177 unsigned int max_sectors) 1178 { 1179 sector_t target_offset = dm_target_offset(ti, sector); 1180 sector_t len = max_io_len_target_boundary(ti, target_offset); 1181 1182 /* 1183 * Does the target need to split IO even further? 1184 * - varied (per target) IO splitting is a tenet of DM; this 1185 * explains why stacked chunk_sectors based splitting via 1186 * bio_split_to_limits() isn't possible here. 1187 */ 1188 if (!max_granularity) 1189 return len; 1190 return min_t(sector_t, len, 1191 min(max_sectors ? : queue_max_sectors(ti->table->md->queue), 1192 blk_boundary_sectors_left(target_offset, max_granularity))); 1193 } 1194 1195 static inline sector_t max_io_len(struct dm_target *ti, sector_t sector) 1196 { 1197 return __max_io_len(ti, sector, ti->max_io_len, 0); 1198 } 1199 1200 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1201 { 1202 if (len > UINT_MAX) { 1203 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1204 (unsigned long long)len, UINT_MAX); 1205 ti->error = "Maximum size of target IO is too large"; 1206 return -EINVAL; 1207 } 1208 1209 ti->max_io_len = (uint32_t) len; 1210 1211 return 0; 1212 } 1213 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1214 1215 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1216 sector_t sector, int *srcu_idx) 1217 __acquires(md->io_barrier) 1218 { 1219 struct dm_table *map; 1220 struct dm_target *ti; 1221 1222 map = dm_get_live_table(md, srcu_idx); 1223 if (!map) 1224 return NULL; 1225 1226 ti = dm_table_find_target(map, sector); 1227 if (!ti) 1228 return NULL; 1229 1230 return ti; 1231 } 1232 1233 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1234 long nr_pages, enum dax_access_mode mode, void **kaddr, 1235 pfn_t *pfn) 1236 { 1237 struct mapped_device *md = dax_get_private(dax_dev); 1238 sector_t sector = pgoff * PAGE_SECTORS; 1239 struct dm_target *ti; 1240 long len, ret = -EIO; 1241 int srcu_idx; 1242 1243 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1244 1245 if (!ti) 1246 goto out; 1247 if (!ti->type->direct_access) 1248 goto out; 1249 len = max_io_len(ti, sector) / PAGE_SECTORS; 1250 if (len < 1) 1251 goto out; 1252 nr_pages = min(len, nr_pages); 1253 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn); 1254 1255 out: 1256 dm_put_live_table(md, srcu_idx); 1257 1258 return ret; 1259 } 1260 1261 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1262 size_t nr_pages) 1263 { 1264 struct mapped_device *md = dax_get_private(dax_dev); 1265 sector_t sector = pgoff * PAGE_SECTORS; 1266 struct dm_target *ti; 1267 int ret = -EIO; 1268 int srcu_idx; 1269 1270 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1271 1272 if (!ti) 1273 goto out; 1274 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1275 /* 1276 * ->zero_page_range() is mandatory dax operation. If we are 1277 * here, something is wrong. 1278 */ 1279 goto out; 1280 } 1281 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1282 out: 1283 dm_put_live_table(md, srcu_idx); 1284 1285 return ret; 1286 } 1287 1288 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff, 1289 void *addr, size_t bytes, struct iov_iter *i) 1290 { 1291 struct mapped_device *md = dax_get_private(dax_dev); 1292 sector_t sector = pgoff * PAGE_SECTORS; 1293 struct dm_target *ti; 1294 int srcu_idx; 1295 long ret = 0; 1296 1297 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1298 if (!ti || !ti->type->dax_recovery_write) 1299 goto out; 1300 1301 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i); 1302 out: 1303 dm_put_live_table(md, srcu_idx); 1304 return ret; 1305 } 1306 1307 /* 1308 * A target may call dm_accept_partial_bio only from the map routine. It is 1309 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management 1310 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by 1311 * __send_duplicate_bios(). 1312 * 1313 * dm_accept_partial_bio informs the dm that the target only wants to process 1314 * additional n_sectors sectors of the bio and the rest of the data should be 1315 * sent in a next bio. 1316 * 1317 * A diagram that explains the arithmetics: 1318 * +--------------------+---------------+-------+ 1319 * | 1 | 2 | 3 | 1320 * +--------------------+---------------+-------+ 1321 * 1322 * <-------------- *tio->len_ptr ---------------> 1323 * <----- bio_sectors -----> 1324 * <-- n_sectors --> 1325 * 1326 * Region 1 was already iterated over with bio_advance or similar function. 1327 * (it may be empty if the target doesn't use bio_advance) 1328 * Region 2 is the remaining bio size that the target wants to process. 1329 * (it may be empty if region 1 is non-empty, although there is no reason 1330 * to make it empty) 1331 * The target requires that region 3 is to be sent in the next bio. 1332 * 1333 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1334 * the partially processed part (the sum of regions 1+2) must be the same for all 1335 * copies of the bio. 1336 */ 1337 void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors) 1338 { 1339 struct dm_target_io *tio = clone_to_tio(bio); 1340 struct dm_io *io = tio->io; 1341 unsigned int bio_sectors = bio_sectors(bio); 1342 1343 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO)); 1344 BUG_ON(op_is_zone_mgmt(bio_op(bio))); 1345 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND); 1346 BUG_ON(bio_sectors > *tio->len_ptr); 1347 BUG_ON(n_sectors > bio_sectors); 1348 1349 *tio->len_ptr -= bio_sectors - n_sectors; 1350 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1351 1352 /* 1353 * __split_and_process_bio() may have already saved mapped part 1354 * for accounting but it is being reduced so update accordingly. 1355 */ 1356 dm_io_set_flag(io, DM_IO_WAS_SPLIT); 1357 io->sectors = n_sectors; 1358 io->sector_offset = bio_sectors(io->orig_bio); 1359 } 1360 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1361 1362 /* 1363 * @clone: clone bio that DM core passed to target's .map function 1364 * @tgt_clone: clone of @clone bio that target needs submitted 1365 * 1366 * Targets should use this interface to submit bios they take 1367 * ownership of when returning DM_MAPIO_SUBMITTED. 1368 * 1369 * Target should also enable ti->accounts_remapped_io 1370 */ 1371 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone) 1372 { 1373 struct dm_target_io *tio = clone_to_tio(clone); 1374 struct dm_io *io = tio->io; 1375 1376 /* establish bio that will get submitted */ 1377 if (!tgt_clone) 1378 tgt_clone = clone; 1379 1380 /* 1381 * Account io->origin_bio to DM dev on behalf of target 1382 * that took ownership of IO with DM_MAPIO_SUBMITTED. 1383 */ 1384 dm_start_io_acct(io, clone); 1385 1386 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk), 1387 tio->old_sector); 1388 submit_bio_noacct(tgt_clone); 1389 } 1390 EXPORT_SYMBOL_GPL(dm_submit_bio_remap); 1391 1392 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch) 1393 { 1394 mutex_lock(&md->swap_bios_lock); 1395 while (latch < md->swap_bios) { 1396 cond_resched(); 1397 down(&md->swap_bios_semaphore); 1398 md->swap_bios--; 1399 } 1400 while (latch > md->swap_bios) { 1401 cond_resched(); 1402 up(&md->swap_bios_semaphore); 1403 md->swap_bios++; 1404 } 1405 mutex_unlock(&md->swap_bios_lock); 1406 } 1407 1408 static void __map_bio(struct bio *clone) 1409 { 1410 struct dm_target_io *tio = clone_to_tio(clone); 1411 struct dm_target *ti = tio->ti; 1412 struct dm_io *io = tio->io; 1413 struct mapped_device *md = io->md; 1414 int r; 1415 1416 clone->bi_end_io = clone_endio; 1417 1418 /* 1419 * Map the clone. 1420 */ 1421 tio->old_sector = clone->bi_iter.bi_sector; 1422 1423 if (static_branch_unlikely(&swap_bios_enabled) && 1424 unlikely(swap_bios_limit(ti, clone))) { 1425 int latch = get_swap_bios(); 1426 1427 if (unlikely(latch != md->swap_bios)) 1428 __set_swap_bios_limit(md, latch); 1429 down(&md->swap_bios_semaphore); 1430 } 1431 1432 if (likely(ti->type->map == linear_map)) 1433 r = linear_map(ti, clone); 1434 else if (ti->type->map == stripe_map) 1435 r = stripe_map(ti, clone); 1436 else 1437 r = ti->type->map(ti, clone); 1438 1439 switch (r) { 1440 case DM_MAPIO_SUBMITTED: 1441 /* target has assumed ownership of this io */ 1442 if (!ti->accounts_remapped_io) 1443 dm_start_io_acct(io, clone); 1444 break; 1445 case DM_MAPIO_REMAPPED: 1446 dm_submit_bio_remap(clone, NULL); 1447 break; 1448 case DM_MAPIO_KILL: 1449 case DM_MAPIO_REQUEUE: 1450 if (static_branch_unlikely(&swap_bios_enabled) && 1451 unlikely(swap_bios_limit(ti, clone))) 1452 up(&md->swap_bios_semaphore); 1453 free_tio(clone); 1454 if (r == DM_MAPIO_KILL) 1455 dm_io_dec_pending(io, BLK_STS_IOERR); 1456 else 1457 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE); 1458 break; 1459 default: 1460 DMCRIT("unimplemented target map return value: %d", r); 1461 BUG(); 1462 } 1463 } 1464 1465 static void setup_split_accounting(struct clone_info *ci, unsigned int len) 1466 { 1467 struct dm_io *io = ci->io; 1468 1469 if (ci->sector_count > len) { 1470 /* 1471 * Split needed, save the mapped part for accounting. 1472 * NOTE: dm_accept_partial_bio() will update accordingly. 1473 */ 1474 dm_io_set_flag(io, DM_IO_WAS_SPLIT); 1475 io->sectors = len; 1476 io->sector_offset = bio_sectors(ci->bio); 1477 } 1478 } 1479 1480 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1481 struct dm_target *ti, unsigned int num_bios, 1482 unsigned *len) 1483 { 1484 struct bio *bio; 1485 int try; 1486 1487 for (try = 0; try < 2; try++) { 1488 int bio_nr; 1489 1490 if (try && num_bios > 1) 1491 mutex_lock(&ci->io->md->table_devices_lock); 1492 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1493 bio = alloc_tio(ci, ti, bio_nr, len, 1494 try ? GFP_NOIO : GFP_NOWAIT); 1495 if (!bio) 1496 break; 1497 1498 bio_list_add(blist, bio); 1499 } 1500 if (try && num_bios > 1) 1501 mutex_unlock(&ci->io->md->table_devices_lock); 1502 if (bio_nr == num_bios) 1503 return; 1504 1505 while ((bio = bio_list_pop(blist))) 1506 free_tio(bio); 1507 } 1508 } 1509 1510 static unsigned int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1511 unsigned int num_bios, unsigned int *len) 1512 { 1513 struct bio_list blist = BIO_EMPTY_LIST; 1514 struct bio *clone; 1515 unsigned int ret = 0; 1516 1517 if (WARN_ON_ONCE(num_bios == 0)) /* num_bios = 0 is a bug in caller */ 1518 return 0; 1519 1520 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */ 1521 if (len) 1522 setup_split_accounting(ci, *len); 1523 1524 /* 1525 * Using alloc_multiple_bios(), even if num_bios is 1, to consistently 1526 * support allocating using GFP_NOWAIT with GFP_NOIO fallback. 1527 */ 1528 alloc_multiple_bios(&blist, ci, ti, num_bios, len); 1529 while ((clone = bio_list_pop(&blist))) { 1530 if (num_bios > 1) 1531 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO); 1532 __map_bio(clone); 1533 ret += 1; 1534 } 1535 1536 return ret; 1537 } 1538 1539 static void __send_empty_flush(struct clone_info *ci) 1540 { 1541 struct dm_table *t = ci->map; 1542 struct bio flush_bio; 1543 blk_opf_t opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1544 1545 if ((ci->io->orig_bio->bi_opf & (REQ_IDLE | REQ_SYNC)) == 1546 (REQ_IDLE | REQ_SYNC)) 1547 opf |= REQ_IDLE; 1548 1549 /* 1550 * Use an on-stack bio for this, it's safe since we don't 1551 * need to reference it after submit. It's just used as 1552 * the basis for the clone(s). 1553 */ 1554 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, opf); 1555 1556 ci->bio = &flush_bio; 1557 ci->sector_count = 0; 1558 ci->io->tio.clone.bi_iter.bi_size = 0; 1559 1560 if (!t->flush_bypasses_map) { 1561 for (unsigned int i = 0; i < t->num_targets; i++) { 1562 unsigned int bios; 1563 struct dm_target *ti = dm_table_get_target(t, i); 1564 1565 if (unlikely(ti->num_flush_bios == 0)) 1566 continue; 1567 1568 atomic_add(ti->num_flush_bios, &ci->io->io_count); 1569 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, 1570 NULL); 1571 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count); 1572 } 1573 } else { 1574 /* 1575 * Note that there's no need to grab t->devices_lock here 1576 * because the targets that support flush optimization don't 1577 * modify the list of devices. 1578 */ 1579 struct list_head *devices = dm_table_get_devices(t); 1580 unsigned int len = 0; 1581 struct dm_dev_internal *dd; 1582 list_for_each_entry(dd, devices, list) { 1583 struct bio *clone; 1584 /* 1585 * Note that the structure dm_target_io is not 1586 * associated with any target (because the device may be 1587 * used by multiple targets), so we set tio->ti = NULL. 1588 * We must check for NULL in the I/O processing path, to 1589 * avoid NULL pointer dereference. 1590 */ 1591 clone = alloc_tio(ci, NULL, 0, &len, GFP_NOIO); 1592 atomic_add(1, &ci->io->io_count); 1593 bio_set_dev(clone, dd->dm_dev->bdev); 1594 clone->bi_end_io = clone_endio; 1595 dm_submit_bio_remap(clone, NULL); 1596 } 1597 } 1598 1599 /* 1600 * alloc_io() takes one extra reference for submission, so the 1601 * reference won't reach 0 without the following subtraction 1602 */ 1603 atomic_sub(1, &ci->io->io_count); 1604 1605 bio_uninit(ci->bio); 1606 } 1607 1608 static void __send_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1609 unsigned int num_bios, unsigned int max_granularity, 1610 unsigned int max_sectors) 1611 { 1612 unsigned int len, bios; 1613 1614 len = min_t(sector_t, ci->sector_count, 1615 __max_io_len(ti, ci->sector, max_granularity, max_sectors)); 1616 1617 atomic_add(num_bios, &ci->io->io_count); 1618 bios = __send_duplicate_bios(ci, ti, num_bios, &len); 1619 /* 1620 * alloc_io() takes one extra reference for submission, so the 1621 * reference won't reach 0 without the following (+1) subtraction 1622 */ 1623 atomic_sub(num_bios - bios + 1, &ci->io->io_count); 1624 1625 ci->sector += len; 1626 ci->sector_count -= len; 1627 } 1628 1629 static bool is_abnormal_io(struct bio *bio) 1630 { 1631 switch (bio_op(bio)) { 1632 case REQ_OP_READ: 1633 case REQ_OP_WRITE: 1634 case REQ_OP_FLUSH: 1635 return false; 1636 case REQ_OP_DISCARD: 1637 case REQ_OP_SECURE_ERASE: 1638 case REQ_OP_WRITE_ZEROES: 1639 case REQ_OP_ZONE_RESET_ALL: 1640 return true; 1641 default: 1642 return false; 1643 } 1644 } 1645 1646 static blk_status_t __process_abnormal_io(struct clone_info *ci, 1647 struct dm_target *ti) 1648 { 1649 unsigned int num_bios = 0; 1650 unsigned int max_granularity = 0; 1651 unsigned int max_sectors = 0; 1652 struct queue_limits *limits = dm_get_queue_limits(ti->table->md); 1653 1654 switch (bio_op(ci->bio)) { 1655 case REQ_OP_DISCARD: 1656 num_bios = ti->num_discard_bios; 1657 max_sectors = limits->max_discard_sectors; 1658 if (ti->max_discard_granularity) 1659 max_granularity = max_sectors; 1660 break; 1661 case REQ_OP_SECURE_ERASE: 1662 num_bios = ti->num_secure_erase_bios; 1663 max_sectors = limits->max_secure_erase_sectors; 1664 break; 1665 case REQ_OP_WRITE_ZEROES: 1666 num_bios = ti->num_write_zeroes_bios; 1667 max_sectors = limits->max_write_zeroes_sectors; 1668 break; 1669 default: 1670 break; 1671 } 1672 1673 /* 1674 * Even though the device advertised support for this type of 1675 * request, that does not mean every target supports it, and 1676 * reconfiguration might also have changed that since the 1677 * check was performed. 1678 */ 1679 if (unlikely(!num_bios)) 1680 return BLK_STS_NOTSUPP; 1681 1682 __send_abnormal_io(ci, ti, num_bios, max_granularity, max_sectors); 1683 1684 return BLK_STS_OK; 1685 } 1686 1687 /* 1688 * Reuse ->bi_private as dm_io list head for storing all dm_io instances 1689 * associated with this bio, and this bio's bi_private needs to be 1690 * stored in dm_io->data before the reuse. 1691 * 1692 * bio->bi_private is owned by fs or upper layer, so block layer won't 1693 * touch it after splitting. Meantime it won't be changed by anyone after 1694 * bio is submitted. So this reuse is safe. 1695 */ 1696 static inline struct dm_io **dm_poll_list_head(struct bio *bio) 1697 { 1698 return (struct dm_io **)&bio->bi_private; 1699 } 1700 1701 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io) 1702 { 1703 struct dm_io **head = dm_poll_list_head(bio); 1704 1705 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) { 1706 bio->bi_opf |= REQ_DM_POLL_LIST; 1707 /* 1708 * Save .bi_private into dm_io, so that we can reuse 1709 * .bi_private as dm_io list head for storing dm_io list 1710 */ 1711 io->data = bio->bi_private; 1712 1713 /* tell block layer to poll for completion */ 1714 bio->bi_cookie = ~BLK_QC_T_NONE; 1715 1716 io->next = NULL; 1717 } else { 1718 /* 1719 * bio recursed due to split, reuse original poll list, 1720 * and save bio->bi_private too. 1721 */ 1722 io->data = (*head)->data; 1723 io->next = *head; 1724 } 1725 1726 *head = io; 1727 } 1728 1729 /* 1730 * Select the correct strategy for processing a non-flush bio. 1731 */ 1732 static blk_status_t __split_and_process_bio(struct clone_info *ci) 1733 { 1734 struct bio *clone; 1735 struct dm_target *ti; 1736 unsigned int len; 1737 1738 ti = dm_table_find_target(ci->map, ci->sector); 1739 if (unlikely(!ti)) 1740 return BLK_STS_IOERR; 1741 1742 if (unlikely(ci->is_abnormal_io)) 1743 return __process_abnormal_io(ci, ti); 1744 1745 /* 1746 * Only support bio polling for normal IO, and the target io is 1747 * exactly inside the dm_io instance (verified in dm_poll_dm_io) 1748 */ 1749 ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED); 1750 1751 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count); 1752 if (ci->bio->bi_opf & REQ_ATOMIC && len != ci->sector_count) 1753 return BLK_STS_IOERR; 1754 1755 setup_split_accounting(ci, len); 1756 1757 if (unlikely(ci->bio->bi_opf & REQ_NOWAIT)) { 1758 if (unlikely(!dm_target_supports_nowait(ti->type))) 1759 return BLK_STS_NOTSUPP; 1760 1761 clone = alloc_tio(ci, ti, 0, &len, GFP_NOWAIT); 1762 if (unlikely(!clone)) 1763 return BLK_STS_AGAIN; 1764 } else { 1765 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO); 1766 } 1767 __map_bio(clone); 1768 1769 ci->sector += len; 1770 ci->sector_count -= len; 1771 1772 return BLK_STS_OK; 1773 } 1774 1775 static void init_clone_info(struct clone_info *ci, struct dm_io *io, 1776 struct dm_table *map, struct bio *bio, bool is_abnormal) 1777 { 1778 ci->map = map; 1779 ci->io = io; 1780 ci->bio = bio; 1781 ci->is_abnormal_io = is_abnormal; 1782 ci->submit_as_polled = false; 1783 ci->sector = bio->bi_iter.bi_sector; 1784 ci->sector_count = bio_sectors(bio); 1785 1786 /* Shouldn't happen but sector_count was being set to 0 so... */ 1787 if (static_branch_unlikely(&zoned_enabled) && 1788 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count)) 1789 ci->sector_count = 0; 1790 } 1791 1792 #ifdef CONFIG_BLK_DEV_ZONED 1793 static inline bool dm_zone_bio_needs_split(struct mapped_device *md, 1794 struct bio *bio) 1795 { 1796 /* 1797 * For mapped device that need zone append emulation, we must 1798 * split any large BIO that straddles zone boundaries. 1799 */ 1800 return dm_emulate_zone_append(md) && bio_straddles_zones(bio) && 1801 !bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING); 1802 } 1803 static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio) 1804 { 1805 return dm_emulate_zone_append(md) && blk_zone_plug_bio(bio, 0); 1806 } 1807 1808 static blk_status_t __send_zone_reset_all_emulated(struct clone_info *ci, 1809 struct dm_target *ti) 1810 { 1811 struct bio_list blist = BIO_EMPTY_LIST; 1812 struct mapped_device *md = ci->io->md; 1813 unsigned int zone_sectors = md->disk->queue->limits.chunk_sectors; 1814 unsigned long *need_reset; 1815 unsigned int i, nr_zones, nr_reset; 1816 unsigned int num_bios = 0; 1817 blk_status_t sts = BLK_STS_OK; 1818 sector_t sector = ti->begin; 1819 struct bio *clone; 1820 int ret; 1821 1822 nr_zones = ti->len >> ilog2(zone_sectors); 1823 need_reset = bitmap_zalloc(nr_zones, GFP_NOIO); 1824 if (!need_reset) 1825 return BLK_STS_RESOURCE; 1826 1827 ret = dm_zone_get_reset_bitmap(md, ci->map, ti->begin, 1828 nr_zones, need_reset); 1829 if (ret) { 1830 sts = BLK_STS_IOERR; 1831 goto free_bitmap; 1832 } 1833 1834 /* If we have no zone to reset, we are done. */ 1835 nr_reset = bitmap_weight(need_reset, nr_zones); 1836 if (!nr_reset) 1837 goto free_bitmap; 1838 1839 atomic_add(nr_zones, &ci->io->io_count); 1840 1841 for (i = 0; i < nr_zones; i++) { 1842 1843 if (!test_bit(i, need_reset)) { 1844 sector += zone_sectors; 1845 continue; 1846 } 1847 1848 if (bio_list_empty(&blist)) { 1849 /* This may take a while, so be nice to others */ 1850 if (num_bios) 1851 cond_resched(); 1852 1853 /* 1854 * We may need to reset thousands of zones, so let's 1855 * not go crazy with the clone allocation. 1856 */ 1857 alloc_multiple_bios(&blist, ci, ti, min(nr_reset, 32), 1858 NULL); 1859 } 1860 1861 /* Get a clone and change it to a regular reset operation. */ 1862 clone = bio_list_pop(&blist); 1863 clone->bi_opf &= ~REQ_OP_MASK; 1864 clone->bi_opf |= REQ_OP_ZONE_RESET | REQ_SYNC; 1865 clone->bi_iter.bi_sector = sector; 1866 clone->bi_iter.bi_size = 0; 1867 __map_bio(clone); 1868 1869 sector += zone_sectors; 1870 num_bios++; 1871 nr_reset--; 1872 } 1873 1874 WARN_ON_ONCE(!bio_list_empty(&blist)); 1875 atomic_sub(nr_zones - num_bios, &ci->io->io_count); 1876 ci->sector_count = 0; 1877 1878 free_bitmap: 1879 bitmap_free(need_reset); 1880 1881 return sts; 1882 } 1883 1884 static void __send_zone_reset_all_native(struct clone_info *ci, 1885 struct dm_target *ti) 1886 { 1887 unsigned int bios; 1888 1889 atomic_add(1, &ci->io->io_count); 1890 bios = __send_duplicate_bios(ci, ti, 1, NULL); 1891 atomic_sub(1 - bios, &ci->io->io_count); 1892 1893 ci->sector_count = 0; 1894 } 1895 1896 static blk_status_t __send_zone_reset_all(struct clone_info *ci) 1897 { 1898 struct dm_table *t = ci->map; 1899 blk_status_t sts = BLK_STS_OK; 1900 1901 for (unsigned int i = 0; i < t->num_targets; i++) { 1902 struct dm_target *ti = dm_table_get_target(t, i); 1903 1904 if (ti->zone_reset_all_supported) { 1905 __send_zone_reset_all_native(ci, ti); 1906 continue; 1907 } 1908 1909 sts = __send_zone_reset_all_emulated(ci, ti); 1910 if (sts != BLK_STS_OK) 1911 break; 1912 } 1913 1914 /* Release the reference that alloc_io() took for submission. */ 1915 atomic_sub(1, &ci->io->io_count); 1916 1917 return sts; 1918 } 1919 1920 #else 1921 static inline bool dm_zone_bio_needs_split(struct mapped_device *md, 1922 struct bio *bio) 1923 { 1924 return false; 1925 } 1926 static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio) 1927 { 1928 return false; 1929 } 1930 static blk_status_t __send_zone_reset_all(struct clone_info *ci) 1931 { 1932 return BLK_STS_NOTSUPP; 1933 } 1934 #endif 1935 1936 /* 1937 * Entry point to split a bio into clones and submit them to the targets. 1938 */ 1939 static void dm_split_and_process_bio(struct mapped_device *md, 1940 struct dm_table *map, struct bio *bio) 1941 { 1942 struct clone_info ci; 1943 struct dm_io *io; 1944 blk_status_t error = BLK_STS_OK; 1945 bool is_abnormal, need_split; 1946 1947 is_abnormal = is_abnormal_io(bio); 1948 if (static_branch_unlikely(&zoned_enabled)) { 1949 /* Special case REQ_OP_ZONE_RESET_ALL as it cannot be split. */ 1950 need_split = (bio_op(bio) != REQ_OP_ZONE_RESET_ALL) && 1951 (is_abnormal || dm_zone_bio_needs_split(md, bio)); 1952 } else { 1953 need_split = is_abnormal; 1954 } 1955 1956 if (unlikely(need_split)) { 1957 /* 1958 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc) 1959 * otherwise associated queue_limits won't be imposed. 1960 * Also split the BIO for mapped devices needing zone append 1961 * emulation to ensure that the BIO does not cross zone 1962 * boundaries. 1963 */ 1964 bio = bio_split_to_limits(bio); 1965 if (!bio) 1966 return; 1967 } 1968 1969 /* 1970 * Use the block layer zone write plugging for mapped devices that 1971 * need zone append emulation (e.g. dm-crypt). 1972 */ 1973 if (static_branch_unlikely(&zoned_enabled) && dm_zone_plug_bio(md, bio)) 1974 return; 1975 1976 /* Only support nowait for normal IO */ 1977 if (unlikely(bio->bi_opf & REQ_NOWAIT) && !is_abnormal) { 1978 /* 1979 * Don't support NOWAIT for FLUSH because it may allocate 1980 * multiple bios and there's no easy way how to undo the 1981 * allocations. 1982 */ 1983 if (bio->bi_opf & REQ_PREFLUSH) { 1984 bio_wouldblock_error(bio); 1985 return; 1986 } 1987 io = alloc_io(md, bio, GFP_NOWAIT); 1988 if (unlikely(!io)) { 1989 /* Unable to do anything without dm_io. */ 1990 bio_wouldblock_error(bio); 1991 return; 1992 } 1993 } else { 1994 io = alloc_io(md, bio, GFP_NOIO); 1995 } 1996 init_clone_info(&ci, io, map, bio, is_abnormal); 1997 1998 if (bio->bi_opf & REQ_PREFLUSH) { 1999 __send_empty_flush(&ci); 2000 /* dm_io_complete submits any data associated with flush */ 2001 goto out; 2002 } 2003 2004 if (static_branch_unlikely(&zoned_enabled) && 2005 (bio_op(bio) == REQ_OP_ZONE_RESET_ALL)) { 2006 error = __send_zone_reset_all(&ci); 2007 goto out; 2008 } 2009 2010 error = __split_and_process_bio(&ci); 2011 if (error || !ci.sector_count) 2012 goto out; 2013 /* 2014 * Remainder must be passed to submit_bio_noacct() so it gets handled 2015 * *after* bios already submitted have been completely processed. 2016 */ 2017 bio_trim(bio, io->sectors, ci.sector_count); 2018 trace_block_split(bio, bio->bi_iter.bi_sector); 2019 bio_inc_remaining(bio); 2020 submit_bio_noacct(bio); 2021 out: 2022 /* 2023 * Drop the extra reference count for non-POLLED bio, and hold one 2024 * reference for POLLED bio, which will be released in dm_poll_bio 2025 * 2026 * Add every dm_io instance into the dm_io list head which is stored 2027 * in bio->bi_private, so that dm_poll_bio can poll them all. 2028 */ 2029 if (error || !ci.submit_as_polled) { 2030 /* 2031 * In case of submission failure, the extra reference for 2032 * submitting io isn't consumed yet 2033 */ 2034 if (error) 2035 atomic_dec(&io->io_count); 2036 dm_io_dec_pending(io, error); 2037 } else 2038 dm_queue_poll_io(bio, io); 2039 } 2040 2041 static void dm_submit_bio(struct bio *bio) 2042 { 2043 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data; 2044 int srcu_idx; 2045 struct dm_table *map; 2046 2047 map = dm_get_live_table(md, &srcu_idx); 2048 if (unlikely(!map)) { 2049 DMERR_LIMIT("%s: mapping table unavailable, erroring io", 2050 dm_device_name(md)); 2051 bio_io_error(bio); 2052 goto out; 2053 } 2054 2055 /* If suspended, queue this IO for later */ 2056 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 2057 if (bio->bi_opf & REQ_NOWAIT) 2058 bio_wouldblock_error(bio); 2059 else if (bio->bi_opf & REQ_RAHEAD) 2060 bio_io_error(bio); 2061 else 2062 queue_io(md, bio); 2063 goto out; 2064 } 2065 2066 dm_split_and_process_bio(md, map, bio); 2067 out: 2068 dm_put_live_table(md, srcu_idx); 2069 } 2070 2071 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob, 2072 unsigned int flags) 2073 { 2074 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio)); 2075 2076 /* don't poll if the mapped io is done */ 2077 if (atomic_read(&io->io_count) > 1) 2078 bio_poll(&io->tio.clone, iob, flags); 2079 2080 /* bio_poll holds the last reference */ 2081 return atomic_read(&io->io_count) == 1; 2082 } 2083 2084 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob, 2085 unsigned int flags) 2086 { 2087 struct dm_io **head = dm_poll_list_head(bio); 2088 struct dm_io *list = *head; 2089 struct dm_io *tmp = NULL; 2090 struct dm_io *curr, *next; 2091 2092 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */ 2093 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) 2094 return 0; 2095 2096 WARN_ON_ONCE(!list); 2097 2098 /* 2099 * Restore .bi_private before possibly completing dm_io. 2100 * 2101 * bio_poll() is only possible once @bio has been completely 2102 * submitted via submit_bio_noacct()'s depth-first submission. 2103 * So there is no dm_queue_poll_io() race associated with 2104 * clearing REQ_DM_POLL_LIST here. 2105 */ 2106 bio->bi_opf &= ~REQ_DM_POLL_LIST; 2107 bio->bi_private = list->data; 2108 2109 for (curr = list, next = curr->next; curr; curr = next, next = 2110 curr ? curr->next : NULL) { 2111 if (dm_poll_dm_io(curr, iob, flags)) { 2112 /* 2113 * clone_endio() has already occurred, so no 2114 * error handling is needed here. 2115 */ 2116 __dm_io_dec_pending(curr); 2117 } else { 2118 curr->next = tmp; 2119 tmp = curr; 2120 } 2121 } 2122 2123 /* Not done? */ 2124 if (tmp) { 2125 bio->bi_opf |= REQ_DM_POLL_LIST; 2126 /* Reset bio->bi_private to dm_io list head */ 2127 *head = tmp; 2128 return 0; 2129 } 2130 return 1; 2131 } 2132 2133 /* 2134 *--------------------------------------------------------------- 2135 * An IDR is used to keep track of allocated minor numbers. 2136 *--------------------------------------------------------------- 2137 */ 2138 static void free_minor(int minor) 2139 { 2140 spin_lock(&_minor_lock); 2141 idr_remove(&_minor_idr, minor); 2142 spin_unlock(&_minor_lock); 2143 } 2144 2145 /* 2146 * See if the device with a specific minor # is free. 2147 */ 2148 static int specific_minor(int minor) 2149 { 2150 int r; 2151 2152 if (minor >= (1 << MINORBITS)) 2153 return -EINVAL; 2154 2155 idr_preload(GFP_KERNEL); 2156 spin_lock(&_minor_lock); 2157 2158 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 2159 2160 spin_unlock(&_minor_lock); 2161 idr_preload_end(); 2162 if (r < 0) 2163 return r == -ENOSPC ? -EBUSY : r; 2164 return 0; 2165 } 2166 2167 static int next_free_minor(int *minor) 2168 { 2169 int r; 2170 2171 idr_preload(GFP_KERNEL); 2172 spin_lock(&_minor_lock); 2173 2174 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 2175 2176 spin_unlock(&_minor_lock); 2177 idr_preload_end(); 2178 if (r < 0) 2179 return r; 2180 *minor = r; 2181 return 0; 2182 } 2183 2184 static const struct block_device_operations dm_blk_dops; 2185 static const struct block_device_operations dm_rq_blk_dops; 2186 static const struct dax_operations dm_dax_ops; 2187 2188 static void dm_wq_work(struct work_struct *work); 2189 2190 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 2191 static void dm_queue_destroy_crypto_profile(struct request_queue *q) 2192 { 2193 dm_destroy_crypto_profile(q->crypto_profile); 2194 } 2195 2196 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 2197 2198 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q) 2199 { 2200 } 2201 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 2202 2203 static void cleanup_mapped_device(struct mapped_device *md) 2204 { 2205 if (md->wq) 2206 destroy_workqueue(md->wq); 2207 dm_free_md_mempools(md->mempools); 2208 2209 if (md->dax_dev) { 2210 dax_remove_host(md->disk); 2211 kill_dax(md->dax_dev); 2212 put_dax(md->dax_dev); 2213 md->dax_dev = NULL; 2214 } 2215 2216 if (md->disk) { 2217 spin_lock(&_minor_lock); 2218 md->disk->private_data = NULL; 2219 spin_unlock(&_minor_lock); 2220 if (dm_get_md_type(md) != DM_TYPE_NONE) { 2221 struct table_device *td; 2222 2223 dm_sysfs_exit(md); 2224 list_for_each_entry(td, &md->table_devices, list) { 2225 bd_unlink_disk_holder(td->dm_dev.bdev, 2226 md->disk); 2227 } 2228 2229 /* 2230 * Hold lock to make sure del_gendisk() won't concurrent 2231 * with open/close_table_device(). 2232 */ 2233 mutex_lock(&md->table_devices_lock); 2234 del_gendisk(md->disk); 2235 mutex_unlock(&md->table_devices_lock); 2236 } 2237 dm_queue_destroy_crypto_profile(md->queue); 2238 put_disk(md->disk); 2239 } 2240 2241 if (md->pending_io) { 2242 free_percpu(md->pending_io); 2243 md->pending_io = NULL; 2244 } 2245 2246 cleanup_srcu_struct(&md->io_barrier); 2247 2248 mutex_destroy(&md->suspend_lock); 2249 mutex_destroy(&md->type_lock); 2250 mutex_destroy(&md->table_devices_lock); 2251 mutex_destroy(&md->swap_bios_lock); 2252 2253 dm_mq_cleanup_mapped_device(md); 2254 } 2255 2256 /* 2257 * Allocate and initialise a blank device with a given minor. 2258 */ 2259 static struct mapped_device *alloc_dev(int minor) 2260 { 2261 int r, numa_node_id = dm_get_numa_node(); 2262 struct dax_device *dax_dev; 2263 struct mapped_device *md; 2264 void *old_md; 2265 2266 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 2267 if (!md) { 2268 DMERR("unable to allocate device, out of memory."); 2269 return NULL; 2270 } 2271 2272 if (!try_module_get(THIS_MODULE)) 2273 goto bad_module_get; 2274 2275 /* get a minor number for the dev */ 2276 if (minor == DM_ANY_MINOR) 2277 r = next_free_minor(&minor); 2278 else 2279 r = specific_minor(minor); 2280 if (r < 0) 2281 goto bad_minor; 2282 2283 r = init_srcu_struct(&md->io_barrier); 2284 if (r < 0) 2285 goto bad_io_barrier; 2286 2287 md->numa_node_id = numa_node_id; 2288 md->init_tio_pdu = false; 2289 md->type = DM_TYPE_NONE; 2290 mutex_init(&md->suspend_lock); 2291 mutex_init(&md->type_lock); 2292 mutex_init(&md->table_devices_lock); 2293 spin_lock_init(&md->deferred_lock); 2294 atomic_set(&md->holders, 1); 2295 atomic_set(&md->open_count, 0); 2296 atomic_set(&md->event_nr, 0); 2297 atomic_set(&md->uevent_seq, 0); 2298 INIT_LIST_HEAD(&md->uevent_list); 2299 INIT_LIST_HEAD(&md->table_devices); 2300 spin_lock_init(&md->uevent_lock); 2301 2302 /* 2303 * default to bio-based until DM table is loaded and md->type 2304 * established. If request-based table is loaded: blk-mq will 2305 * override accordingly. 2306 */ 2307 md->disk = blk_alloc_disk(NULL, md->numa_node_id); 2308 if (IS_ERR(md->disk)) { 2309 md->disk = NULL; 2310 goto bad; 2311 } 2312 md->queue = md->disk->queue; 2313 2314 init_waitqueue_head(&md->wait); 2315 INIT_WORK(&md->work, dm_wq_work); 2316 INIT_WORK(&md->requeue_work, dm_wq_requeue_work); 2317 init_waitqueue_head(&md->eventq); 2318 init_completion(&md->kobj_holder.completion); 2319 2320 md->requeue_list = NULL; 2321 md->swap_bios = get_swap_bios(); 2322 sema_init(&md->swap_bios_semaphore, md->swap_bios); 2323 mutex_init(&md->swap_bios_lock); 2324 2325 md->disk->major = _major; 2326 md->disk->first_minor = minor; 2327 md->disk->minors = 1; 2328 md->disk->flags |= GENHD_FL_NO_PART; 2329 md->disk->fops = &dm_blk_dops; 2330 md->disk->private_data = md; 2331 sprintf(md->disk->disk_name, "dm-%d", minor); 2332 2333 dax_dev = alloc_dax(md, &dm_dax_ops); 2334 if (IS_ERR(dax_dev)) { 2335 if (PTR_ERR(dax_dev) != -EOPNOTSUPP) 2336 goto bad; 2337 } else { 2338 set_dax_nocache(dax_dev); 2339 set_dax_nomc(dax_dev); 2340 md->dax_dev = dax_dev; 2341 if (dax_add_host(dax_dev, md->disk)) 2342 goto bad; 2343 } 2344 2345 format_dev_t(md->name, MKDEV(_major, minor)); 2346 2347 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name); 2348 if (!md->wq) 2349 goto bad; 2350 2351 md->pending_io = alloc_percpu(unsigned long); 2352 if (!md->pending_io) 2353 goto bad; 2354 2355 r = dm_stats_init(&md->stats); 2356 if (r < 0) 2357 goto bad; 2358 2359 /* Populate the mapping, nobody knows we exist yet */ 2360 spin_lock(&_minor_lock); 2361 old_md = idr_replace(&_minor_idr, md, minor); 2362 spin_unlock(&_minor_lock); 2363 2364 BUG_ON(old_md != MINOR_ALLOCED); 2365 2366 return md; 2367 2368 bad: 2369 cleanup_mapped_device(md); 2370 bad_io_barrier: 2371 free_minor(minor); 2372 bad_minor: 2373 module_put(THIS_MODULE); 2374 bad_module_get: 2375 kvfree(md); 2376 return NULL; 2377 } 2378 2379 static void unlock_fs(struct mapped_device *md); 2380 2381 static void free_dev(struct mapped_device *md) 2382 { 2383 int minor = MINOR(disk_devt(md->disk)); 2384 2385 unlock_fs(md); 2386 2387 cleanup_mapped_device(md); 2388 2389 WARN_ON_ONCE(!list_empty(&md->table_devices)); 2390 dm_stats_cleanup(&md->stats); 2391 free_minor(minor); 2392 2393 module_put(THIS_MODULE); 2394 kvfree(md); 2395 } 2396 2397 /* 2398 * Bind a table to the device. 2399 */ 2400 static void event_callback(void *context) 2401 { 2402 unsigned long flags; 2403 LIST_HEAD(uevents); 2404 struct mapped_device *md = context; 2405 2406 spin_lock_irqsave(&md->uevent_lock, flags); 2407 list_splice_init(&md->uevent_list, &uevents); 2408 spin_unlock_irqrestore(&md->uevent_lock, flags); 2409 2410 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2411 2412 atomic_inc(&md->event_nr); 2413 wake_up(&md->eventq); 2414 dm_issue_global_event(); 2415 } 2416 2417 /* 2418 * Returns old map, which caller must destroy. 2419 */ 2420 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2421 struct queue_limits *limits) 2422 { 2423 struct dm_table *old_map; 2424 sector_t size; 2425 int ret; 2426 2427 lockdep_assert_held(&md->suspend_lock); 2428 2429 size = dm_table_get_size(t); 2430 2431 /* 2432 * Wipe any geometry if the size of the table changed. 2433 */ 2434 if (size != dm_get_size(md)) 2435 memset(&md->geometry, 0, sizeof(md->geometry)); 2436 2437 set_capacity(md->disk, size); 2438 2439 dm_table_event_callback(t, event_callback, md); 2440 2441 if (dm_table_request_based(t)) { 2442 /* 2443 * Leverage the fact that request-based DM targets are 2444 * immutable singletons - used to optimize dm_mq_queue_rq. 2445 */ 2446 md->immutable_target = dm_table_get_immutable_target(t); 2447 2448 /* 2449 * There is no need to reload with request-based dm because the 2450 * size of front_pad doesn't change. 2451 * 2452 * Note for future: If you are to reload bioset, prep-ed 2453 * requests in the queue may refer to bio from the old bioset, 2454 * so you must walk through the queue to unprep. 2455 */ 2456 if (!md->mempools) { 2457 md->mempools = t->mempools; 2458 t->mempools = NULL; 2459 } 2460 } else { 2461 /* 2462 * The md may already have mempools that need changing. 2463 * If so, reload bioset because front_pad may have changed 2464 * because a different table was loaded. 2465 */ 2466 dm_free_md_mempools(md->mempools); 2467 md->mempools = t->mempools; 2468 t->mempools = NULL; 2469 } 2470 2471 ret = dm_table_set_restrictions(t, md->queue, limits); 2472 if (ret) { 2473 old_map = ERR_PTR(ret); 2474 goto out; 2475 } 2476 2477 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2478 rcu_assign_pointer(md->map, (void *)t); 2479 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2480 2481 if (old_map) 2482 dm_sync_table(md); 2483 out: 2484 return old_map; 2485 } 2486 2487 /* 2488 * Returns unbound table for the caller to free. 2489 */ 2490 static struct dm_table *__unbind(struct mapped_device *md) 2491 { 2492 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2493 2494 if (!map) 2495 return NULL; 2496 2497 dm_table_event_callback(map, NULL, NULL); 2498 RCU_INIT_POINTER(md->map, NULL); 2499 dm_sync_table(md); 2500 2501 return map; 2502 } 2503 2504 /* 2505 * Constructor for a new device. 2506 */ 2507 int dm_create(int minor, struct mapped_device **result) 2508 { 2509 struct mapped_device *md; 2510 2511 md = alloc_dev(minor); 2512 if (!md) 2513 return -ENXIO; 2514 2515 dm_ima_reset_data(md); 2516 2517 *result = md; 2518 return 0; 2519 } 2520 2521 /* 2522 * Functions to manage md->type. 2523 * All are required to hold md->type_lock. 2524 */ 2525 void dm_lock_md_type(struct mapped_device *md) 2526 { 2527 mutex_lock(&md->type_lock); 2528 } 2529 2530 void dm_unlock_md_type(struct mapped_device *md) 2531 { 2532 mutex_unlock(&md->type_lock); 2533 } 2534 2535 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2536 { 2537 return md->type; 2538 } 2539 2540 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2541 { 2542 return md->immutable_target_type; 2543 } 2544 2545 /* 2546 * Setup the DM device's queue based on md's type 2547 */ 2548 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2549 { 2550 enum dm_queue_mode type = dm_table_get_type(t); 2551 struct queue_limits limits; 2552 struct table_device *td; 2553 int r; 2554 2555 WARN_ON_ONCE(type == DM_TYPE_NONE); 2556 2557 if (type == DM_TYPE_REQUEST_BASED) { 2558 md->disk->fops = &dm_rq_blk_dops; 2559 r = dm_mq_init_request_queue(md, t); 2560 if (r) { 2561 DMERR("Cannot initialize queue for request-based dm mapped device"); 2562 return r; 2563 } 2564 } 2565 2566 r = dm_calculate_queue_limits(t, &limits); 2567 if (r) { 2568 DMERR("Cannot calculate initial queue limits"); 2569 return r; 2570 } 2571 r = dm_table_set_restrictions(t, md->queue, &limits); 2572 if (r) 2573 return r; 2574 2575 /* 2576 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent 2577 * with open_table_device() and close_table_device(). 2578 */ 2579 mutex_lock(&md->table_devices_lock); 2580 r = add_disk(md->disk); 2581 mutex_unlock(&md->table_devices_lock); 2582 if (r) 2583 return r; 2584 2585 /* 2586 * Register the holder relationship for devices added before the disk 2587 * was live. 2588 */ 2589 list_for_each_entry(td, &md->table_devices, list) { 2590 r = bd_link_disk_holder(td->dm_dev.bdev, md->disk); 2591 if (r) 2592 goto out_undo_holders; 2593 } 2594 2595 r = dm_sysfs_init(md); 2596 if (r) 2597 goto out_undo_holders; 2598 2599 md->type = type; 2600 return 0; 2601 2602 out_undo_holders: 2603 list_for_each_entry_continue_reverse(td, &md->table_devices, list) 2604 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk); 2605 mutex_lock(&md->table_devices_lock); 2606 del_gendisk(md->disk); 2607 mutex_unlock(&md->table_devices_lock); 2608 return r; 2609 } 2610 2611 struct mapped_device *dm_get_md(dev_t dev) 2612 { 2613 struct mapped_device *md; 2614 unsigned int minor = MINOR(dev); 2615 2616 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2617 return NULL; 2618 2619 spin_lock(&_minor_lock); 2620 2621 md = idr_find(&_minor_idr, minor); 2622 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2623 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2624 md = NULL; 2625 goto out; 2626 } 2627 dm_get(md); 2628 out: 2629 spin_unlock(&_minor_lock); 2630 2631 return md; 2632 } 2633 EXPORT_SYMBOL_GPL(dm_get_md); 2634 2635 void *dm_get_mdptr(struct mapped_device *md) 2636 { 2637 return md->interface_ptr; 2638 } 2639 2640 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2641 { 2642 md->interface_ptr = ptr; 2643 } 2644 2645 void dm_get(struct mapped_device *md) 2646 { 2647 atomic_inc(&md->holders); 2648 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2649 } 2650 2651 int dm_hold(struct mapped_device *md) 2652 { 2653 spin_lock(&_minor_lock); 2654 if (test_bit(DMF_FREEING, &md->flags)) { 2655 spin_unlock(&_minor_lock); 2656 return -EBUSY; 2657 } 2658 dm_get(md); 2659 spin_unlock(&_minor_lock); 2660 return 0; 2661 } 2662 EXPORT_SYMBOL_GPL(dm_hold); 2663 2664 const char *dm_device_name(struct mapped_device *md) 2665 { 2666 return md->name; 2667 } 2668 EXPORT_SYMBOL_GPL(dm_device_name); 2669 2670 static void __dm_destroy(struct mapped_device *md, bool wait) 2671 { 2672 struct dm_table *map; 2673 int srcu_idx; 2674 2675 might_sleep(); 2676 2677 spin_lock(&_minor_lock); 2678 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2679 set_bit(DMF_FREEING, &md->flags); 2680 spin_unlock(&_minor_lock); 2681 2682 blk_mark_disk_dead(md->disk); 2683 2684 /* 2685 * Take suspend_lock so that presuspend and postsuspend methods 2686 * do not race with internal suspend. 2687 */ 2688 mutex_lock(&md->suspend_lock); 2689 map = dm_get_live_table(md, &srcu_idx); 2690 if (!dm_suspended_md(md)) { 2691 dm_table_presuspend_targets(map); 2692 set_bit(DMF_SUSPENDED, &md->flags); 2693 set_bit(DMF_POST_SUSPENDING, &md->flags); 2694 dm_table_postsuspend_targets(map); 2695 } 2696 /* dm_put_live_table must be before fsleep, otherwise deadlock is possible */ 2697 dm_put_live_table(md, srcu_idx); 2698 mutex_unlock(&md->suspend_lock); 2699 2700 /* 2701 * Rare, but there may be I/O requests still going to complete, 2702 * for example. Wait for all references to disappear. 2703 * No one should increment the reference count of the mapped_device, 2704 * after the mapped_device state becomes DMF_FREEING. 2705 */ 2706 if (wait) 2707 while (atomic_read(&md->holders)) 2708 fsleep(1000); 2709 else if (atomic_read(&md->holders)) 2710 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2711 dm_device_name(md), atomic_read(&md->holders)); 2712 2713 dm_table_destroy(__unbind(md)); 2714 free_dev(md); 2715 } 2716 2717 void dm_destroy(struct mapped_device *md) 2718 { 2719 __dm_destroy(md, true); 2720 } 2721 2722 void dm_destroy_immediate(struct mapped_device *md) 2723 { 2724 __dm_destroy(md, false); 2725 } 2726 2727 void dm_put(struct mapped_device *md) 2728 { 2729 atomic_dec(&md->holders); 2730 } 2731 EXPORT_SYMBOL_GPL(dm_put); 2732 2733 static bool dm_in_flight_bios(struct mapped_device *md) 2734 { 2735 int cpu; 2736 unsigned long sum = 0; 2737 2738 for_each_possible_cpu(cpu) 2739 sum += *per_cpu_ptr(md->pending_io, cpu); 2740 2741 return sum != 0; 2742 } 2743 2744 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state) 2745 { 2746 int r = 0; 2747 DEFINE_WAIT(wait); 2748 2749 while (true) { 2750 prepare_to_wait(&md->wait, &wait, task_state); 2751 2752 if (!dm_in_flight_bios(md)) 2753 break; 2754 2755 if (signal_pending_state(task_state, current)) { 2756 r = -ERESTARTSYS; 2757 break; 2758 } 2759 2760 io_schedule(); 2761 } 2762 finish_wait(&md->wait, &wait); 2763 2764 smp_rmb(); 2765 2766 return r; 2767 } 2768 2769 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state) 2770 { 2771 int r = 0; 2772 2773 if (!queue_is_mq(md->queue)) 2774 return dm_wait_for_bios_completion(md, task_state); 2775 2776 while (true) { 2777 if (!blk_mq_queue_inflight(md->queue)) 2778 break; 2779 2780 if (signal_pending_state(task_state, current)) { 2781 r = -ERESTARTSYS; 2782 break; 2783 } 2784 2785 fsleep(5000); 2786 } 2787 2788 return r; 2789 } 2790 2791 /* 2792 * Process the deferred bios 2793 */ 2794 static void dm_wq_work(struct work_struct *work) 2795 { 2796 struct mapped_device *md = container_of(work, struct mapped_device, work); 2797 struct bio *bio; 2798 2799 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2800 spin_lock_irq(&md->deferred_lock); 2801 bio = bio_list_pop(&md->deferred); 2802 spin_unlock_irq(&md->deferred_lock); 2803 2804 if (!bio) 2805 break; 2806 2807 submit_bio_noacct(bio); 2808 cond_resched(); 2809 } 2810 } 2811 2812 static void dm_queue_flush(struct mapped_device *md) 2813 { 2814 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2815 smp_mb__after_atomic(); 2816 queue_work(md->wq, &md->work); 2817 } 2818 2819 /* 2820 * Swap in a new table, returning the old one for the caller to destroy. 2821 */ 2822 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2823 { 2824 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2825 struct queue_limits limits; 2826 int r; 2827 2828 mutex_lock(&md->suspend_lock); 2829 2830 /* device must be suspended */ 2831 if (!dm_suspended_md(md)) 2832 goto out; 2833 2834 /* 2835 * If the new table has no data devices, retain the existing limits. 2836 * This helps multipath with queue_if_no_path if all paths disappear, 2837 * then new I/O is queued based on these limits, and then some paths 2838 * reappear. 2839 */ 2840 if (dm_table_has_no_data_devices(table)) { 2841 live_map = dm_get_live_table_fast(md); 2842 if (live_map) 2843 limits = md->queue->limits; 2844 dm_put_live_table_fast(md); 2845 } 2846 2847 if (!live_map) { 2848 r = dm_calculate_queue_limits(table, &limits); 2849 if (r) { 2850 map = ERR_PTR(r); 2851 goto out; 2852 } 2853 } 2854 2855 map = __bind(md, table, &limits); 2856 dm_issue_global_event(); 2857 2858 out: 2859 mutex_unlock(&md->suspend_lock); 2860 return map; 2861 } 2862 2863 /* 2864 * Functions to lock and unlock any filesystem running on the 2865 * device. 2866 */ 2867 static int lock_fs(struct mapped_device *md) 2868 { 2869 int r; 2870 2871 WARN_ON(test_bit(DMF_FROZEN, &md->flags)); 2872 2873 r = bdev_freeze(md->disk->part0); 2874 if (!r) 2875 set_bit(DMF_FROZEN, &md->flags); 2876 return r; 2877 } 2878 2879 static void unlock_fs(struct mapped_device *md) 2880 { 2881 if (!test_bit(DMF_FROZEN, &md->flags)) 2882 return; 2883 bdev_thaw(md->disk->part0); 2884 clear_bit(DMF_FROZEN, &md->flags); 2885 } 2886 2887 /* 2888 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2889 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2890 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2891 * 2892 * If __dm_suspend returns 0, the device is completely quiescent 2893 * now. There is no request-processing activity. All new requests 2894 * are being added to md->deferred list. 2895 */ 2896 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2897 unsigned int suspend_flags, unsigned int task_state, 2898 int dmf_suspended_flag) 2899 { 2900 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2901 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2902 int r; 2903 2904 lockdep_assert_held(&md->suspend_lock); 2905 2906 /* 2907 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2908 * This flag is cleared before dm_suspend returns. 2909 */ 2910 if (noflush) 2911 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2912 else 2913 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2914 2915 /* 2916 * This gets reverted if there's an error later and the targets 2917 * provide the .presuspend_undo hook. 2918 */ 2919 dm_table_presuspend_targets(map); 2920 2921 /* 2922 * Flush I/O to the device. 2923 * Any I/O submitted after lock_fs() may not be flushed. 2924 * noflush takes precedence over do_lockfs. 2925 * (lock_fs() flushes I/Os and waits for them to complete.) 2926 */ 2927 if (!noflush && do_lockfs) { 2928 r = lock_fs(md); 2929 if (r) { 2930 dm_table_presuspend_undo_targets(map); 2931 return r; 2932 } 2933 } 2934 2935 /* 2936 * Here we must make sure that no processes are submitting requests 2937 * to target drivers i.e. no one may be executing 2938 * dm_split_and_process_bio from dm_submit_bio. 2939 * 2940 * To get all processes out of dm_split_and_process_bio in dm_submit_bio, 2941 * we take the write lock. To prevent any process from reentering 2942 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread 2943 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call 2944 * flush_workqueue(md->wq). 2945 */ 2946 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2947 if (map) 2948 synchronize_srcu(&md->io_barrier); 2949 2950 /* 2951 * Stop md->queue before flushing md->wq in case request-based 2952 * dm defers requests to md->wq from md->queue. 2953 */ 2954 if (dm_request_based(md)) 2955 dm_stop_queue(md->queue); 2956 2957 flush_workqueue(md->wq); 2958 2959 /* 2960 * At this point no more requests are entering target request routines. 2961 * We call dm_wait_for_completion to wait for all existing requests 2962 * to finish. 2963 */ 2964 r = dm_wait_for_completion(md, task_state); 2965 if (!r) 2966 set_bit(dmf_suspended_flag, &md->flags); 2967 2968 if (noflush) 2969 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2970 if (map) 2971 synchronize_srcu(&md->io_barrier); 2972 2973 /* were we interrupted ? */ 2974 if (r < 0) { 2975 dm_queue_flush(md); 2976 2977 if (dm_request_based(md)) 2978 dm_start_queue(md->queue); 2979 2980 unlock_fs(md); 2981 dm_table_presuspend_undo_targets(map); 2982 /* pushback list is already flushed, so skip flush */ 2983 } 2984 2985 return r; 2986 } 2987 2988 /* 2989 * We need to be able to change a mapping table under a mounted 2990 * filesystem. For example we might want to move some data in 2991 * the background. Before the table can be swapped with 2992 * dm_bind_table, dm_suspend must be called to flush any in 2993 * flight bios and ensure that any further io gets deferred. 2994 */ 2995 /* 2996 * Suspend mechanism in request-based dm. 2997 * 2998 * 1. Flush all I/Os by lock_fs() if needed. 2999 * 2. Stop dispatching any I/O by stopping the request_queue. 3000 * 3. Wait for all in-flight I/Os to be completed or requeued. 3001 * 3002 * To abort suspend, start the request_queue. 3003 */ 3004 int dm_suspend(struct mapped_device *md, unsigned int suspend_flags) 3005 { 3006 struct dm_table *map = NULL; 3007 int r = 0; 3008 3009 retry: 3010 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 3011 3012 if (dm_suspended_md(md)) { 3013 r = -EINVAL; 3014 goto out_unlock; 3015 } 3016 3017 if (dm_suspended_internally_md(md)) { 3018 /* already internally suspended, wait for internal resume */ 3019 mutex_unlock(&md->suspend_lock); 3020 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 3021 if (r) 3022 return r; 3023 goto retry; 3024 } 3025 3026 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3027 if (!map) { 3028 /* avoid deadlock with fs/namespace.c:do_mount() */ 3029 suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG; 3030 } 3031 3032 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 3033 if (r) 3034 goto out_unlock; 3035 3036 set_bit(DMF_POST_SUSPENDING, &md->flags); 3037 dm_table_postsuspend_targets(map); 3038 clear_bit(DMF_POST_SUSPENDING, &md->flags); 3039 3040 out_unlock: 3041 mutex_unlock(&md->suspend_lock); 3042 return r; 3043 } 3044 3045 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 3046 { 3047 if (map) { 3048 int r = dm_table_resume_targets(map); 3049 3050 if (r) 3051 return r; 3052 } 3053 3054 dm_queue_flush(md); 3055 3056 /* 3057 * Flushing deferred I/Os must be done after targets are resumed 3058 * so that mapping of targets can work correctly. 3059 * Request-based dm is queueing the deferred I/Os in its request_queue. 3060 */ 3061 if (dm_request_based(md)) 3062 dm_start_queue(md->queue); 3063 3064 unlock_fs(md); 3065 3066 return 0; 3067 } 3068 3069 int dm_resume(struct mapped_device *md) 3070 { 3071 int r; 3072 struct dm_table *map = NULL; 3073 3074 retry: 3075 r = -EINVAL; 3076 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 3077 3078 if (!dm_suspended_md(md)) 3079 goto out; 3080 3081 if (dm_suspended_internally_md(md)) { 3082 /* already internally suspended, wait for internal resume */ 3083 mutex_unlock(&md->suspend_lock); 3084 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 3085 if (r) 3086 return r; 3087 goto retry; 3088 } 3089 3090 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3091 if (!map || !dm_table_get_size(map)) 3092 goto out; 3093 3094 r = __dm_resume(md, map); 3095 if (r) 3096 goto out; 3097 3098 clear_bit(DMF_SUSPENDED, &md->flags); 3099 out: 3100 mutex_unlock(&md->suspend_lock); 3101 3102 return r; 3103 } 3104 3105 /* 3106 * Internal suspend/resume works like userspace-driven suspend. It waits 3107 * until all bios finish and prevents issuing new bios to the target drivers. 3108 * It may be used only from the kernel. 3109 */ 3110 3111 static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags) 3112 { 3113 struct dm_table *map = NULL; 3114 3115 lockdep_assert_held(&md->suspend_lock); 3116 3117 if (md->internal_suspend_count++) 3118 return; /* nested internal suspend */ 3119 3120 if (dm_suspended_md(md)) { 3121 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3122 return; /* nest suspend */ 3123 } 3124 3125 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3126 3127 /* 3128 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 3129 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 3130 * would require changing .presuspend to return an error -- avoid this 3131 * until there is a need for more elaborate variants of internal suspend. 3132 */ 3133 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 3134 DMF_SUSPENDED_INTERNALLY); 3135 3136 set_bit(DMF_POST_SUSPENDING, &md->flags); 3137 dm_table_postsuspend_targets(map); 3138 clear_bit(DMF_POST_SUSPENDING, &md->flags); 3139 } 3140 3141 static void __dm_internal_resume(struct mapped_device *md) 3142 { 3143 int r; 3144 struct dm_table *map; 3145 3146 BUG_ON(!md->internal_suspend_count); 3147 3148 if (--md->internal_suspend_count) 3149 return; /* resume from nested internal suspend */ 3150 3151 if (dm_suspended_md(md)) 3152 goto done; /* resume from nested suspend */ 3153 3154 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3155 r = __dm_resume(md, map); 3156 if (r) { 3157 /* 3158 * If a preresume method of some target failed, we are in a 3159 * tricky situation. We can't return an error to the caller. We 3160 * can't fake success because then the "resume" and 3161 * "postsuspend" methods would not be paired correctly, and it 3162 * would break various targets, for example it would cause list 3163 * corruption in the "origin" target. 3164 * 3165 * So, we fake normal suspend here, to make sure that the 3166 * "resume" and "postsuspend" methods will be paired correctly. 3167 */ 3168 DMERR("Preresume method failed: %d", r); 3169 set_bit(DMF_SUSPENDED, &md->flags); 3170 } 3171 done: 3172 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3173 smp_mb__after_atomic(); 3174 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 3175 } 3176 3177 void dm_internal_suspend_noflush(struct mapped_device *md) 3178 { 3179 mutex_lock(&md->suspend_lock); 3180 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 3181 mutex_unlock(&md->suspend_lock); 3182 } 3183 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 3184 3185 void dm_internal_resume(struct mapped_device *md) 3186 { 3187 mutex_lock(&md->suspend_lock); 3188 __dm_internal_resume(md); 3189 mutex_unlock(&md->suspend_lock); 3190 } 3191 EXPORT_SYMBOL_GPL(dm_internal_resume); 3192 3193 /* 3194 * Fast variants of internal suspend/resume hold md->suspend_lock, 3195 * which prevents interaction with userspace-driven suspend. 3196 */ 3197 3198 void dm_internal_suspend_fast(struct mapped_device *md) 3199 { 3200 mutex_lock(&md->suspend_lock); 3201 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 3202 return; 3203 3204 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 3205 synchronize_srcu(&md->io_barrier); 3206 flush_workqueue(md->wq); 3207 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 3208 } 3209 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 3210 3211 void dm_internal_resume_fast(struct mapped_device *md) 3212 { 3213 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 3214 goto done; 3215 3216 dm_queue_flush(md); 3217 3218 done: 3219 mutex_unlock(&md->suspend_lock); 3220 } 3221 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 3222 3223 /* 3224 *--------------------------------------------------------------- 3225 * Event notification. 3226 *--------------------------------------------------------------- 3227 */ 3228 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 3229 unsigned int cookie, bool need_resize_uevent) 3230 { 3231 int r; 3232 unsigned int noio_flag; 3233 char udev_cookie[DM_COOKIE_LENGTH]; 3234 char *envp[3] = { NULL, NULL, NULL }; 3235 char **envpp = envp; 3236 if (cookie) { 3237 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 3238 DM_COOKIE_ENV_VAR_NAME, cookie); 3239 *envpp++ = udev_cookie; 3240 } 3241 if (need_resize_uevent) { 3242 *envpp++ = "RESIZE=1"; 3243 } 3244 3245 noio_flag = memalloc_noio_save(); 3246 3247 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp); 3248 3249 memalloc_noio_restore(noio_flag); 3250 3251 return r; 3252 } 3253 3254 uint32_t dm_next_uevent_seq(struct mapped_device *md) 3255 { 3256 return atomic_add_return(1, &md->uevent_seq); 3257 } 3258 3259 uint32_t dm_get_event_nr(struct mapped_device *md) 3260 { 3261 return atomic_read(&md->event_nr); 3262 } 3263 3264 int dm_wait_event(struct mapped_device *md, int event_nr) 3265 { 3266 return wait_event_interruptible(md->eventq, 3267 (event_nr != atomic_read(&md->event_nr))); 3268 } 3269 3270 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 3271 { 3272 unsigned long flags; 3273 3274 spin_lock_irqsave(&md->uevent_lock, flags); 3275 list_add(elist, &md->uevent_list); 3276 spin_unlock_irqrestore(&md->uevent_lock, flags); 3277 } 3278 3279 /* 3280 * The gendisk is only valid as long as you have a reference 3281 * count on 'md'. 3282 */ 3283 struct gendisk *dm_disk(struct mapped_device *md) 3284 { 3285 return md->disk; 3286 } 3287 EXPORT_SYMBOL_GPL(dm_disk); 3288 3289 struct kobject *dm_kobject(struct mapped_device *md) 3290 { 3291 return &md->kobj_holder.kobj; 3292 } 3293 3294 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 3295 { 3296 struct mapped_device *md; 3297 3298 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 3299 3300 spin_lock(&_minor_lock); 3301 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 3302 md = NULL; 3303 goto out; 3304 } 3305 dm_get(md); 3306 out: 3307 spin_unlock(&_minor_lock); 3308 3309 return md; 3310 } 3311 3312 int dm_suspended_md(struct mapped_device *md) 3313 { 3314 return test_bit(DMF_SUSPENDED, &md->flags); 3315 } 3316 3317 static int dm_post_suspending_md(struct mapped_device *md) 3318 { 3319 return test_bit(DMF_POST_SUSPENDING, &md->flags); 3320 } 3321 3322 int dm_suspended_internally_md(struct mapped_device *md) 3323 { 3324 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3325 } 3326 3327 int dm_test_deferred_remove_flag(struct mapped_device *md) 3328 { 3329 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 3330 } 3331 3332 int dm_suspended(struct dm_target *ti) 3333 { 3334 return dm_suspended_md(ti->table->md); 3335 } 3336 EXPORT_SYMBOL_GPL(dm_suspended); 3337 3338 int dm_post_suspending(struct dm_target *ti) 3339 { 3340 return dm_post_suspending_md(ti->table->md); 3341 } 3342 EXPORT_SYMBOL_GPL(dm_post_suspending); 3343 3344 int dm_noflush_suspending(struct dm_target *ti) 3345 { 3346 return __noflush_suspending(ti->table->md); 3347 } 3348 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 3349 3350 void dm_free_md_mempools(struct dm_md_mempools *pools) 3351 { 3352 if (!pools) 3353 return; 3354 3355 bioset_exit(&pools->bs); 3356 bioset_exit(&pools->io_bs); 3357 3358 kfree(pools); 3359 } 3360 3361 struct dm_blkdev_id { 3362 u8 *id; 3363 enum blk_unique_id type; 3364 }; 3365 3366 static int __dm_get_unique_id(struct dm_target *ti, struct dm_dev *dev, 3367 sector_t start, sector_t len, void *data) 3368 { 3369 struct dm_blkdev_id *dm_id = data; 3370 const struct block_device_operations *fops = dev->bdev->bd_disk->fops; 3371 3372 if (!fops->get_unique_id) 3373 return 0; 3374 3375 return fops->get_unique_id(dev->bdev->bd_disk, dm_id->id, dm_id->type); 3376 } 3377 3378 /* 3379 * Allow access to get_unique_id() for the first device returning a 3380 * non-zero result. Reasonable use expects all devices to have the 3381 * same unique id. 3382 */ 3383 static int dm_blk_get_unique_id(struct gendisk *disk, u8 *id, 3384 enum blk_unique_id type) 3385 { 3386 struct mapped_device *md = disk->private_data; 3387 struct dm_table *table; 3388 struct dm_target *ti; 3389 int ret = 0, srcu_idx; 3390 3391 struct dm_blkdev_id dm_id = { 3392 .id = id, 3393 .type = type, 3394 }; 3395 3396 table = dm_get_live_table(md, &srcu_idx); 3397 if (!table || !dm_table_get_size(table)) 3398 goto out; 3399 3400 /* We only support devices that have a single target */ 3401 if (table->num_targets != 1) 3402 goto out; 3403 ti = dm_table_get_target(table, 0); 3404 3405 if (!ti->type->iterate_devices) 3406 goto out; 3407 3408 ret = ti->type->iterate_devices(ti, __dm_get_unique_id, &dm_id); 3409 out: 3410 dm_put_live_table(md, srcu_idx); 3411 return ret; 3412 } 3413 3414 struct dm_pr { 3415 u64 old_key; 3416 u64 new_key; 3417 u32 flags; 3418 bool abort; 3419 bool fail_early; 3420 int ret; 3421 enum pr_type type; 3422 struct pr_keys *read_keys; 3423 struct pr_held_reservation *rsv; 3424 }; 3425 3426 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 3427 struct dm_pr *pr) 3428 { 3429 struct mapped_device *md = bdev->bd_disk->private_data; 3430 struct dm_table *table; 3431 struct dm_target *ti; 3432 int ret = -ENOTTY, srcu_idx; 3433 3434 table = dm_get_live_table(md, &srcu_idx); 3435 if (!table || !dm_table_get_size(table)) 3436 goto out; 3437 3438 /* We only support devices that have a single target */ 3439 if (table->num_targets != 1) 3440 goto out; 3441 ti = dm_table_get_target(table, 0); 3442 3443 if (dm_suspended_md(md)) { 3444 ret = -EAGAIN; 3445 goto out; 3446 } 3447 3448 ret = -EINVAL; 3449 if (!ti->type->iterate_devices) 3450 goto out; 3451 3452 ti->type->iterate_devices(ti, fn, pr); 3453 ret = 0; 3454 out: 3455 dm_put_live_table(md, srcu_idx); 3456 return ret; 3457 } 3458 3459 /* 3460 * For register / unregister we need to manually call out to every path. 3461 */ 3462 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3463 sector_t start, sector_t len, void *data) 3464 { 3465 struct dm_pr *pr = data; 3466 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3467 int ret; 3468 3469 if (!ops || !ops->pr_register) { 3470 pr->ret = -EOPNOTSUPP; 3471 return -1; 3472 } 3473 3474 ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3475 if (!ret) 3476 return 0; 3477 3478 if (!pr->ret) 3479 pr->ret = ret; 3480 3481 if (pr->fail_early) 3482 return -1; 3483 3484 return 0; 3485 } 3486 3487 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3488 u32 flags) 3489 { 3490 struct dm_pr pr = { 3491 .old_key = old_key, 3492 .new_key = new_key, 3493 .flags = flags, 3494 .fail_early = true, 3495 .ret = 0, 3496 }; 3497 int ret; 3498 3499 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3500 if (ret) { 3501 /* Didn't even get to register a path */ 3502 return ret; 3503 } 3504 3505 if (!pr.ret) 3506 return 0; 3507 ret = pr.ret; 3508 3509 if (!new_key) 3510 return ret; 3511 3512 /* unregister all paths if we failed to register any path */ 3513 pr.old_key = new_key; 3514 pr.new_key = 0; 3515 pr.flags = 0; 3516 pr.fail_early = false; 3517 (void) dm_call_pr(bdev, __dm_pr_register, &pr); 3518 return ret; 3519 } 3520 3521 3522 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev, 3523 sector_t start, sector_t len, void *data) 3524 { 3525 struct dm_pr *pr = data; 3526 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3527 3528 if (!ops || !ops->pr_reserve) { 3529 pr->ret = -EOPNOTSUPP; 3530 return -1; 3531 } 3532 3533 pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags); 3534 if (!pr->ret) 3535 return -1; 3536 3537 return 0; 3538 } 3539 3540 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3541 u32 flags) 3542 { 3543 struct dm_pr pr = { 3544 .old_key = key, 3545 .flags = flags, 3546 .type = type, 3547 .fail_early = false, 3548 .ret = 0, 3549 }; 3550 int ret; 3551 3552 ret = dm_call_pr(bdev, __dm_pr_reserve, &pr); 3553 if (ret) 3554 return ret; 3555 3556 return pr.ret; 3557 } 3558 3559 /* 3560 * If there is a non-All Registrants type of reservation, the release must be 3561 * sent down the holding path. For the cases where there is no reservation or 3562 * the path is not the holder the device will also return success, so we must 3563 * try each path to make sure we got the correct path. 3564 */ 3565 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev, 3566 sector_t start, sector_t len, void *data) 3567 { 3568 struct dm_pr *pr = data; 3569 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3570 3571 if (!ops || !ops->pr_release) { 3572 pr->ret = -EOPNOTSUPP; 3573 return -1; 3574 } 3575 3576 pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type); 3577 if (pr->ret) 3578 return -1; 3579 3580 return 0; 3581 } 3582 3583 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3584 { 3585 struct dm_pr pr = { 3586 .old_key = key, 3587 .type = type, 3588 .fail_early = false, 3589 }; 3590 int ret; 3591 3592 ret = dm_call_pr(bdev, __dm_pr_release, &pr); 3593 if (ret) 3594 return ret; 3595 3596 return pr.ret; 3597 } 3598 3599 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev, 3600 sector_t start, sector_t len, void *data) 3601 { 3602 struct dm_pr *pr = data; 3603 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3604 3605 if (!ops || !ops->pr_preempt) { 3606 pr->ret = -EOPNOTSUPP; 3607 return -1; 3608 } 3609 3610 pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type, 3611 pr->abort); 3612 if (!pr->ret) 3613 return -1; 3614 3615 return 0; 3616 } 3617 3618 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3619 enum pr_type type, bool abort) 3620 { 3621 struct dm_pr pr = { 3622 .new_key = new_key, 3623 .old_key = old_key, 3624 .type = type, 3625 .fail_early = false, 3626 }; 3627 int ret; 3628 3629 ret = dm_call_pr(bdev, __dm_pr_preempt, &pr); 3630 if (ret) 3631 return ret; 3632 3633 return pr.ret; 3634 } 3635 3636 static int dm_pr_clear(struct block_device *bdev, u64 key) 3637 { 3638 struct mapped_device *md = bdev->bd_disk->private_data; 3639 const struct pr_ops *ops; 3640 int r, srcu_idx; 3641 3642 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3643 if (r < 0) 3644 goto out; 3645 3646 ops = bdev->bd_disk->fops->pr_ops; 3647 if (ops && ops->pr_clear) 3648 r = ops->pr_clear(bdev, key); 3649 else 3650 r = -EOPNOTSUPP; 3651 out: 3652 dm_unprepare_ioctl(md, srcu_idx); 3653 return r; 3654 } 3655 3656 static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev, 3657 sector_t start, sector_t len, void *data) 3658 { 3659 struct dm_pr *pr = data; 3660 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3661 3662 if (!ops || !ops->pr_read_keys) { 3663 pr->ret = -EOPNOTSUPP; 3664 return -1; 3665 } 3666 3667 pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys); 3668 if (!pr->ret) 3669 return -1; 3670 3671 return 0; 3672 } 3673 3674 static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys) 3675 { 3676 struct dm_pr pr = { 3677 .read_keys = keys, 3678 }; 3679 int ret; 3680 3681 ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr); 3682 if (ret) 3683 return ret; 3684 3685 return pr.ret; 3686 } 3687 3688 static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev, 3689 sector_t start, sector_t len, void *data) 3690 { 3691 struct dm_pr *pr = data; 3692 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3693 3694 if (!ops || !ops->pr_read_reservation) { 3695 pr->ret = -EOPNOTSUPP; 3696 return -1; 3697 } 3698 3699 pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv); 3700 if (!pr->ret) 3701 return -1; 3702 3703 return 0; 3704 } 3705 3706 static int dm_pr_read_reservation(struct block_device *bdev, 3707 struct pr_held_reservation *rsv) 3708 { 3709 struct dm_pr pr = { 3710 .rsv = rsv, 3711 }; 3712 int ret; 3713 3714 ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr); 3715 if (ret) 3716 return ret; 3717 3718 return pr.ret; 3719 } 3720 3721 static const struct pr_ops dm_pr_ops = { 3722 .pr_register = dm_pr_register, 3723 .pr_reserve = dm_pr_reserve, 3724 .pr_release = dm_pr_release, 3725 .pr_preempt = dm_pr_preempt, 3726 .pr_clear = dm_pr_clear, 3727 .pr_read_keys = dm_pr_read_keys, 3728 .pr_read_reservation = dm_pr_read_reservation, 3729 }; 3730 3731 static const struct block_device_operations dm_blk_dops = { 3732 .submit_bio = dm_submit_bio, 3733 .poll_bio = dm_poll_bio, 3734 .open = dm_blk_open, 3735 .release = dm_blk_close, 3736 .ioctl = dm_blk_ioctl, 3737 .getgeo = dm_blk_getgeo, 3738 .report_zones = dm_blk_report_zones, 3739 .get_unique_id = dm_blk_get_unique_id, 3740 .pr_ops = &dm_pr_ops, 3741 .owner = THIS_MODULE 3742 }; 3743 3744 static const struct block_device_operations dm_rq_blk_dops = { 3745 .open = dm_blk_open, 3746 .release = dm_blk_close, 3747 .ioctl = dm_blk_ioctl, 3748 .getgeo = dm_blk_getgeo, 3749 .get_unique_id = dm_blk_get_unique_id, 3750 .pr_ops = &dm_pr_ops, 3751 .owner = THIS_MODULE 3752 }; 3753 3754 static const struct dax_operations dm_dax_ops = { 3755 .direct_access = dm_dax_direct_access, 3756 .zero_page_range = dm_dax_zero_page_range, 3757 .recovery_write = dm_dax_recovery_write, 3758 }; 3759 3760 /* 3761 * module hooks 3762 */ 3763 module_init(dm_init); 3764 module_exit(dm_exit); 3765 3766 module_param(major, uint, 0); 3767 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3768 3769 module_param(reserved_bio_based_ios, uint, 0644); 3770 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3771 3772 module_param(dm_numa_node, int, 0644); 3773 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3774 3775 module_param(swap_bios, int, 0644); 3776 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs"); 3777 3778 MODULE_DESCRIPTION(DM_NAME " driver"); 3779 MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>"); 3780 MODULE_LICENSE("GPL"); 3781