1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2009-2011 Red Hat, Inc. 4 * 5 * Author: Mikulas Patocka <mpatocka@redhat.com> 6 * 7 * This file is released under the GPL. 8 */ 9 10 #include <linux/dm-bufio.h> 11 12 #include <linux/device-mapper.h> 13 #include <linux/dm-io.h> 14 #include <linux/slab.h> 15 #include <linux/sched/mm.h> 16 #include <linux/jiffies.h> 17 #include <linux/vmalloc.h> 18 #include <linux/shrinker.h> 19 #include <linux/module.h> 20 #include <linux/rbtree.h> 21 #include <linux/stacktrace.h> 22 #include <linux/jump_label.h> 23 24 #include "dm.h" 25 26 #define DM_MSG_PREFIX "bufio" 27 28 /* 29 * Memory management policy: 30 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory 31 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower). 32 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers. 33 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT 34 * dirty buffers. 35 */ 36 #define DM_BUFIO_MIN_BUFFERS 8 37 38 #define DM_BUFIO_MEMORY_PERCENT 2 39 #define DM_BUFIO_VMALLOC_PERCENT 25 40 #define DM_BUFIO_WRITEBACK_RATIO 3 41 #define DM_BUFIO_LOW_WATERMARK_RATIO 16 42 43 /* 44 * The nr of bytes of cached data to keep around. 45 */ 46 #define DM_BUFIO_DEFAULT_RETAIN_BYTES (256 * 1024) 47 48 /* 49 * Align buffer writes to this boundary. 50 * Tests show that SSDs have the highest IOPS when using 4k writes. 51 */ 52 #define DM_BUFIO_WRITE_ALIGN 4096 53 54 /* 55 * dm_buffer->list_mode 56 */ 57 #define LIST_CLEAN 0 58 #define LIST_DIRTY 1 59 #define LIST_SIZE 2 60 61 #define SCAN_RESCHED_CYCLE 16 62 63 /*--------------------------------------------------------------*/ 64 65 /* 66 * Rather than use an LRU list, we use a clock algorithm where entries 67 * are held in a circular list. When an entry is 'hit' a reference bit 68 * is set. The least recently used entry is approximated by running a 69 * cursor around the list selecting unreferenced entries. Referenced 70 * entries have their reference bit cleared as the cursor passes them. 71 */ 72 struct lru_entry { 73 struct list_head list; 74 atomic_t referenced; 75 }; 76 77 struct lru_iter { 78 struct lru *lru; 79 struct list_head list; 80 struct lru_entry *stop; 81 struct lru_entry *e; 82 }; 83 84 struct lru { 85 struct list_head *cursor; 86 unsigned long count; 87 88 struct list_head iterators; 89 }; 90 91 /*--------------*/ 92 93 static void lru_init(struct lru *lru) 94 { 95 lru->cursor = NULL; 96 lru->count = 0; 97 INIT_LIST_HEAD(&lru->iterators); 98 } 99 100 static void lru_destroy(struct lru *lru) 101 { 102 WARN_ON_ONCE(lru->cursor); 103 WARN_ON_ONCE(!list_empty(&lru->iterators)); 104 } 105 106 /* 107 * Insert a new entry into the lru. 108 */ 109 static void lru_insert(struct lru *lru, struct lru_entry *le) 110 { 111 /* 112 * Don't be tempted to set to 1, makes the lru aspect 113 * perform poorly. 114 */ 115 atomic_set(&le->referenced, 0); 116 117 if (lru->cursor) { 118 list_add_tail(&le->list, lru->cursor); 119 } else { 120 INIT_LIST_HEAD(&le->list); 121 lru->cursor = &le->list; 122 } 123 lru->count++; 124 } 125 126 /*--------------*/ 127 128 /* 129 * Convert a list_head pointer to an lru_entry pointer. 130 */ 131 static inline struct lru_entry *to_le(struct list_head *l) 132 { 133 return container_of(l, struct lru_entry, list); 134 } 135 136 /* 137 * Initialize an lru_iter and add it to the list of cursors in the lru. 138 */ 139 static void lru_iter_begin(struct lru *lru, struct lru_iter *it) 140 { 141 it->lru = lru; 142 it->stop = lru->cursor ? to_le(lru->cursor->prev) : NULL; 143 it->e = lru->cursor ? to_le(lru->cursor) : NULL; 144 list_add(&it->list, &lru->iterators); 145 } 146 147 /* 148 * Remove an lru_iter from the list of cursors in the lru. 149 */ 150 static inline void lru_iter_end(struct lru_iter *it) 151 { 152 list_del(&it->list); 153 } 154 155 /* Predicate function type to be used with lru_iter_next */ 156 typedef bool (*iter_predicate)(struct lru_entry *le, void *context); 157 158 /* 159 * Advance the cursor to the next entry that passes the 160 * predicate, and return that entry. Returns NULL if the 161 * iteration is complete. 162 */ 163 static struct lru_entry *lru_iter_next(struct lru_iter *it, 164 iter_predicate pred, void *context) 165 { 166 struct lru_entry *e; 167 168 while (it->e) { 169 e = it->e; 170 171 /* advance the cursor */ 172 if (it->e == it->stop) 173 it->e = NULL; 174 else 175 it->e = to_le(it->e->list.next); 176 177 if (pred(e, context)) 178 return e; 179 } 180 181 return NULL; 182 } 183 184 /* 185 * Invalidate a specific lru_entry and update all cursors in 186 * the lru accordingly. 187 */ 188 static void lru_iter_invalidate(struct lru *lru, struct lru_entry *e) 189 { 190 struct lru_iter *it; 191 192 list_for_each_entry(it, &lru->iterators, list) { 193 /* Move c->e forwards if necc. */ 194 if (it->e == e) { 195 it->e = to_le(it->e->list.next); 196 if (it->e == e) 197 it->e = NULL; 198 } 199 200 /* Move it->stop backwards if necc. */ 201 if (it->stop == e) { 202 it->stop = to_le(it->stop->list.prev); 203 if (it->stop == e) 204 it->stop = NULL; 205 } 206 } 207 } 208 209 /*--------------*/ 210 211 /* 212 * Remove a specific entry from the lru. 213 */ 214 static void lru_remove(struct lru *lru, struct lru_entry *le) 215 { 216 lru_iter_invalidate(lru, le); 217 if (lru->count == 1) { 218 lru->cursor = NULL; 219 } else { 220 if (lru->cursor == &le->list) 221 lru->cursor = lru->cursor->next; 222 list_del(&le->list); 223 } 224 lru->count--; 225 } 226 227 /* 228 * Mark as referenced. 229 */ 230 static inline void lru_reference(struct lru_entry *le) 231 { 232 atomic_set(&le->referenced, 1); 233 } 234 235 /*--------------*/ 236 237 /* 238 * Remove the least recently used entry (approx), that passes the predicate. 239 * Returns NULL on failure. 240 */ 241 enum evict_result { 242 ER_EVICT, 243 ER_DONT_EVICT, 244 ER_STOP, /* stop looking for something to evict */ 245 }; 246 247 typedef enum evict_result (*le_predicate)(struct lru_entry *le, void *context); 248 249 static struct lru_entry *lru_evict(struct lru *lru, le_predicate pred, void *context, bool no_sleep) 250 { 251 unsigned long tested = 0; 252 struct list_head *h = lru->cursor; 253 struct lru_entry *le; 254 255 if (!h) 256 return NULL; 257 /* 258 * In the worst case we have to loop around twice. Once to clear 259 * the reference flags, and then again to discover the predicate 260 * fails for all entries. 261 */ 262 while (tested < lru->count) { 263 le = container_of(h, struct lru_entry, list); 264 265 if (atomic_read(&le->referenced)) { 266 atomic_set(&le->referenced, 0); 267 } else { 268 tested++; 269 switch (pred(le, context)) { 270 case ER_EVICT: 271 /* 272 * Adjust the cursor, so we start the next 273 * search from here. 274 */ 275 lru->cursor = le->list.next; 276 lru_remove(lru, le); 277 return le; 278 279 case ER_DONT_EVICT: 280 break; 281 282 case ER_STOP: 283 lru->cursor = le->list.next; 284 return NULL; 285 } 286 } 287 288 h = h->next; 289 290 if (!no_sleep) 291 cond_resched(); 292 } 293 294 return NULL; 295 } 296 297 /*--------------------------------------------------------------*/ 298 299 /* 300 * Buffer state bits. 301 */ 302 #define B_READING 0 303 #define B_WRITING 1 304 #define B_DIRTY 2 305 306 /* 307 * Describes how the block was allocated: 308 * kmem_cache_alloc(), __get_free_pages() or vmalloc(). 309 * See the comment at alloc_buffer_data. 310 */ 311 enum data_mode { 312 DATA_MODE_SLAB = 0, 313 DATA_MODE_KMALLOC = 1, 314 DATA_MODE_GET_FREE_PAGES = 2, 315 DATA_MODE_VMALLOC = 3, 316 DATA_MODE_LIMIT = 4 317 }; 318 319 struct dm_buffer { 320 /* protected by the locks in dm_buffer_cache */ 321 struct rb_node node; 322 323 /* immutable, so don't need protecting */ 324 sector_t block; 325 void *data; 326 unsigned char data_mode; /* DATA_MODE_* */ 327 328 /* 329 * These two fields are used in isolation, so do not need 330 * a surrounding lock. 331 */ 332 atomic_t hold_count; 333 unsigned long last_accessed; 334 335 /* 336 * Everything else is protected by the mutex in 337 * dm_bufio_client 338 */ 339 unsigned long state; 340 struct lru_entry lru; 341 unsigned char list_mode; /* LIST_* */ 342 blk_status_t read_error; 343 blk_status_t write_error; 344 unsigned int dirty_start; 345 unsigned int dirty_end; 346 unsigned int write_start; 347 unsigned int write_end; 348 struct list_head write_list; 349 struct dm_bufio_client *c; 350 void (*end_io)(struct dm_buffer *b, blk_status_t bs); 351 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 352 #define MAX_STACK 10 353 unsigned int stack_len; 354 unsigned long stack_entries[MAX_STACK]; 355 #endif 356 }; 357 358 /*--------------------------------------------------------------*/ 359 360 /* 361 * The buffer cache manages buffers, particularly: 362 * - inc/dec of holder count 363 * - setting the last_accessed field 364 * - maintains clean/dirty state along with lru 365 * - selecting buffers that match predicates 366 * 367 * It does *not* handle: 368 * - allocation/freeing of buffers. 369 * - IO 370 * - Eviction or cache sizing. 371 * 372 * cache_get() and cache_put() are threadsafe, you do not need to 373 * protect these calls with a surrounding mutex. All the other 374 * methods are not threadsafe; they do use locking primitives, but 375 * only enough to ensure get/put are threadsafe. 376 */ 377 378 struct buffer_tree { 379 union { 380 struct rw_semaphore lock; 381 rwlock_t spinlock; 382 } u; 383 struct rb_root root; 384 } ____cacheline_aligned_in_smp; 385 386 struct dm_buffer_cache { 387 struct lru lru[LIST_SIZE]; 388 /* 389 * We spread entries across multiple trees to reduce contention 390 * on the locks. 391 */ 392 unsigned int num_locks; 393 bool no_sleep; 394 struct buffer_tree trees[]; 395 }; 396 397 static DEFINE_STATIC_KEY_FALSE(no_sleep_enabled); 398 399 static inline unsigned int cache_index(sector_t block, unsigned int num_locks) 400 { 401 return dm_hash_locks_index(block, num_locks); 402 } 403 404 static inline void cache_read_lock(struct dm_buffer_cache *bc, sector_t block) 405 { 406 if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep) 407 read_lock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock); 408 else 409 down_read(&bc->trees[cache_index(block, bc->num_locks)].u.lock); 410 } 411 412 static inline void cache_read_unlock(struct dm_buffer_cache *bc, sector_t block) 413 { 414 if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep) 415 read_unlock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock); 416 else 417 up_read(&bc->trees[cache_index(block, bc->num_locks)].u.lock); 418 } 419 420 static inline void cache_write_lock(struct dm_buffer_cache *bc, sector_t block) 421 { 422 if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep) 423 write_lock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock); 424 else 425 down_write(&bc->trees[cache_index(block, bc->num_locks)].u.lock); 426 } 427 428 static inline void cache_write_unlock(struct dm_buffer_cache *bc, sector_t block) 429 { 430 if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep) 431 write_unlock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock); 432 else 433 up_write(&bc->trees[cache_index(block, bc->num_locks)].u.lock); 434 } 435 436 /* 437 * Sometimes we want to repeatedly get and drop locks as part of an iteration. 438 * This struct helps avoid redundant drop and gets of the same lock. 439 */ 440 struct lock_history { 441 struct dm_buffer_cache *cache; 442 bool write; 443 unsigned int previous; 444 unsigned int no_previous; 445 }; 446 447 static void lh_init(struct lock_history *lh, struct dm_buffer_cache *cache, bool write) 448 { 449 lh->cache = cache; 450 lh->write = write; 451 lh->no_previous = cache->num_locks; 452 lh->previous = lh->no_previous; 453 } 454 455 static void __lh_lock(struct lock_history *lh, unsigned int index) 456 { 457 if (lh->write) { 458 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep) 459 write_lock_bh(&lh->cache->trees[index].u.spinlock); 460 else 461 down_write(&lh->cache->trees[index].u.lock); 462 } else { 463 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep) 464 read_lock_bh(&lh->cache->trees[index].u.spinlock); 465 else 466 down_read(&lh->cache->trees[index].u.lock); 467 } 468 } 469 470 static void __lh_unlock(struct lock_history *lh, unsigned int index) 471 { 472 if (lh->write) { 473 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep) 474 write_unlock_bh(&lh->cache->trees[index].u.spinlock); 475 else 476 up_write(&lh->cache->trees[index].u.lock); 477 } else { 478 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep) 479 read_unlock_bh(&lh->cache->trees[index].u.spinlock); 480 else 481 up_read(&lh->cache->trees[index].u.lock); 482 } 483 } 484 485 /* 486 * Make sure you call this since it will unlock the final lock. 487 */ 488 static void lh_exit(struct lock_history *lh) 489 { 490 if (lh->previous != lh->no_previous) { 491 __lh_unlock(lh, lh->previous); 492 lh->previous = lh->no_previous; 493 } 494 } 495 496 /* 497 * Named 'next' because there is no corresponding 498 * 'up/unlock' call since it's done automatically. 499 */ 500 static void lh_next(struct lock_history *lh, sector_t b) 501 { 502 unsigned int index = cache_index(b, lh->no_previous); /* no_previous is num_locks */ 503 504 if (lh->previous != lh->no_previous) { 505 if (lh->previous != index) { 506 __lh_unlock(lh, lh->previous); 507 __lh_lock(lh, index); 508 lh->previous = index; 509 } 510 } else { 511 __lh_lock(lh, index); 512 lh->previous = index; 513 } 514 } 515 516 static inline struct dm_buffer *le_to_buffer(struct lru_entry *le) 517 { 518 return container_of(le, struct dm_buffer, lru); 519 } 520 521 static struct dm_buffer *list_to_buffer(struct list_head *l) 522 { 523 struct lru_entry *le = list_entry(l, struct lru_entry, list); 524 525 return le_to_buffer(le); 526 } 527 528 static void cache_init(struct dm_buffer_cache *bc, unsigned int num_locks, bool no_sleep) 529 { 530 unsigned int i; 531 532 bc->num_locks = num_locks; 533 bc->no_sleep = no_sleep; 534 535 for (i = 0; i < bc->num_locks; i++) { 536 if (no_sleep) 537 rwlock_init(&bc->trees[i].u.spinlock); 538 else 539 init_rwsem(&bc->trees[i].u.lock); 540 bc->trees[i].root = RB_ROOT; 541 } 542 543 lru_init(&bc->lru[LIST_CLEAN]); 544 lru_init(&bc->lru[LIST_DIRTY]); 545 } 546 547 static void cache_destroy(struct dm_buffer_cache *bc) 548 { 549 unsigned int i; 550 551 for (i = 0; i < bc->num_locks; i++) 552 WARN_ON_ONCE(!RB_EMPTY_ROOT(&bc->trees[i].root)); 553 554 lru_destroy(&bc->lru[LIST_CLEAN]); 555 lru_destroy(&bc->lru[LIST_DIRTY]); 556 } 557 558 /*--------------*/ 559 560 /* 561 * not threadsafe, or racey depending how you look at it 562 */ 563 static inline unsigned long cache_count(struct dm_buffer_cache *bc, int list_mode) 564 { 565 return bc->lru[list_mode].count; 566 } 567 568 static inline unsigned long cache_total(struct dm_buffer_cache *bc) 569 { 570 return cache_count(bc, LIST_CLEAN) + cache_count(bc, LIST_DIRTY); 571 } 572 573 /*--------------*/ 574 575 /* 576 * Gets a specific buffer, indexed by block. 577 * If the buffer is found then its holder count will be incremented and 578 * lru_reference will be called. 579 * 580 * threadsafe 581 */ 582 static struct dm_buffer *__cache_get(const struct rb_root *root, sector_t block) 583 { 584 struct rb_node *n = root->rb_node; 585 struct dm_buffer *b; 586 587 while (n) { 588 b = container_of(n, struct dm_buffer, node); 589 590 if (b->block == block) 591 return b; 592 593 n = block < b->block ? n->rb_left : n->rb_right; 594 } 595 596 return NULL; 597 } 598 599 static void __cache_inc_buffer(struct dm_buffer *b) 600 { 601 atomic_inc(&b->hold_count); 602 WRITE_ONCE(b->last_accessed, jiffies); 603 } 604 605 static struct dm_buffer *cache_get(struct dm_buffer_cache *bc, sector_t block) 606 { 607 struct dm_buffer *b; 608 609 cache_read_lock(bc, block); 610 b = __cache_get(&bc->trees[cache_index(block, bc->num_locks)].root, block); 611 if (b) { 612 lru_reference(&b->lru); 613 __cache_inc_buffer(b); 614 } 615 cache_read_unlock(bc, block); 616 617 return b; 618 } 619 620 /*--------------*/ 621 622 /* 623 * Returns true if the hold count hits zero. 624 * threadsafe 625 */ 626 static bool cache_put(struct dm_buffer_cache *bc, struct dm_buffer *b) 627 { 628 bool r; 629 630 cache_read_lock(bc, b->block); 631 BUG_ON(!atomic_read(&b->hold_count)); 632 r = atomic_dec_and_test(&b->hold_count); 633 cache_read_unlock(bc, b->block); 634 635 return r; 636 } 637 638 /*--------------*/ 639 640 typedef enum evict_result (*b_predicate)(struct dm_buffer *, void *); 641 642 /* 643 * Evicts a buffer based on a predicate. The oldest buffer that 644 * matches the predicate will be selected. In addition to the 645 * predicate the hold_count of the selected buffer will be zero. 646 */ 647 struct evict_wrapper { 648 struct lock_history *lh; 649 b_predicate pred; 650 void *context; 651 }; 652 653 /* 654 * Wraps the buffer predicate turning it into an lru predicate. Adds 655 * extra test for hold_count. 656 */ 657 static enum evict_result __evict_pred(struct lru_entry *le, void *context) 658 { 659 struct evict_wrapper *w = context; 660 struct dm_buffer *b = le_to_buffer(le); 661 662 lh_next(w->lh, b->block); 663 664 if (atomic_read(&b->hold_count)) 665 return ER_DONT_EVICT; 666 667 return w->pred(b, w->context); 668 } 669 670 static struct dm_buffer *__cache_evict(struct dm_buffer_cache *bc, int list_mode, 671 b_predicate pred, void *context, 672 struct lock_history *lh) 673 { 674 struct evict_wrapper w = {.lh = lh, .pred = pred, .context = context}; 675 struct lru_entry *le; 676 struct dm_buffer *b; 677 678 le = lru_evict(&bc->lru[list_mode], __evict_pred, &w, bc->no_sleep); 679 if (!le) 680 return NULL; 681 682 b = le_to_buffer(le); 683 /* __evict_pred will have locked the appropriate tree. */ 684 rb_erase(&b->node, &bc->trees[cache_index(b->block, bc->num_locks)].root); 685 686 return b; 687 } 688 689 static struct dm_buffer *cache_evict(struct dm_buffer_cache *bc, int list_mode, 690 b_predicate pred, void *context) 691 { 692 struct dm_buffer *b; 693 struct lock_history lh; 694 695 lh_init(&lh, bc, true); 696 b = __cache_evict(bc, list_mode, pred, context, &lh); 697 lh_exit(&lh); 698 699 return b; 700 } 701 702 /*--------------*/ 703 704 /* 705 * Mark a buffer as clean or dirty. Not threadsafe. 706 */ 707 static void cache_mark(struct dm_buffer_cache *bc, struct dm_buffer *b, int list_mode) 708 { 709 cache_write_lock(bc, b->block); 710 if (list_mode != b->list_mode) { 711 lru_remove(&bc->lru[b->list_mode], &b->lru); 712 b->list_mode = list_mode; 713 lru_insert(&bc->lru[b->list_mode], &b->lru); 714 } 715 cache_write_unlock(bc, b->block); 716 } 717 718 /*--------------*/ 719 720 /* 721 * Runs through the lru associated with 'old_mode', if the predicate matches then 722 * it moves them to 'new_mode'. Not threadsafe. 723 */ 724 static void __cache_mark_many(struct dm_buffer_cache *bc, int old_mode, int new_mode, 725 b_predicate pred, void *context, struct lock_history *lh) 726 { 727 struct lru_entry *le; 728 struct dm_buffer *b; 729 struct evict_wrapper w = {.lh = lh, .pred = pred, .context = context}; 730 731 while (true) { 732 le = lru_evict(&bc->lru[old_mode], __evict_pred, &w, bc->no_sleep); 733 if (!le) 734 break; 735 736 b = le_to_buffer(le); 737 b->list_mode = new_mode; 738 lru_insert(&bc->lru[b->list_mode], &b->lru); 739 } 740 } 741 742 static void cache_mark_many(struct dm_buffer_cache *bc, int old_mode, int new_mode, 743 b_predicate pred, void *context) 744 { 745 struct lock_history lh; 746 747 lh_init(&lh, bc, true); 748 __cache_mark_many(bc, old_mode, new_mode, pred, context, &lh); 749 lh_exit(&lh); 750 } 751 752 /*--------------*/ 753 754 /* 755 * Iterates through all clean or dirty entries calling a function for each 756 * entry. The callback may terminate the iteration early. Not threadsafe. 757 */ 758 759 /* 760 * Iterator functions should return one of these actions to indicate 761 * how the iteration should proceed. 762 */ 763 enum it_action { 764 IT_NEXT, 765 IT_COMPLETE, 766 }; 767 768 typedef enum it_action (*iter_fn)(struct dm_buffer *b, void *context); 769 770 static void __cache_iterate(struct dm_buffer_cache *bc, int list_mode, 771 iter_fn fn, void *context, struct lock_history *lh) 772 { 773 struct lru *lru = &bc->lru[list_mode]; 774 struct lru_entry *le, *first; 775 776 if (!lru->cursor) 777 return; 778 779 first = le = to_le(lru->cursor); 780 do { 781 struct dm_buffer *b = le_to_buffer(le); 782 783 lh_next(lh, b->block); 784 785 switch (fn(b, context)) { 786 case IT_NEXT: 787 break; 788 789 case IT_COMPLETE: 790 return; 791 } 792 cond_resched(); 793 794 le = to_le(le->list.next); 795 } while (le != first); 796 } 797 798 static void cache_iterate(struct dm_buffer_cache *bc, int list_mode, 799 iter_fn fn, void *context) 800 { 801 struct lock_history lh; 802 803 lh_init(&lh, bc, false); 804 __cache_iterate(bc, list_mode, fn, context, &lh); 805 lh_exit(&lh); 806 } 807 808 /*--------------*/ 809 810 /* 811 * Passes ownership of the buffer to the cache. Returns false if the 812 * buffer was already present (in which case ownership does not pass). 813 * eg, a race with another thread. 814 * 815 * Holder count should be 1 on insertion. 816 * 817 * Not threadsafe. 818 */ 819 static bool __cache_insert(struct rb_root *root, struct dm_buffer *b) 820 { 821 struct rb_node **new = &root->rb_node, *parent = NULL; 822 struct dm_buffer *found; 823 824 while (*new) { 825 found = container_of(*new, struct dm_buffer, node); 826 827 if (found->block == b->block) 828 return false; 829 830 parent = *new; 831 new = b->block < found->block ? 832 &found->node.rb_left : &found->node.rb_right; 833 } 834 835 rb_link_node(&b->node, parent, new); 836 rb_insert_color(&b->node, root); 837 838 return true; 839 } 840 841 static bool cache_insert(struct dm_buffer_cache *bc, struct dm_buffer *b) 842 { 843 bool r; 844 845 if (WARN_ON_ONCE(b->list_mode >= LIST_SIZE)) 846 return false; 847 848 cache_write_lock(bc, b->block); 849 BUG_ON(atomic_read(&b->hold_count) != 1); 850 r = __cache_insert(&bc->trees[cache_index(b->block, bc->num_locks)].root, b); 851 if (r) 852 lru_insert(&bc->lru[b->list_mode], &b->lru); 853 cache_write_unlock(bc, b->block); 854 855 return r; 856 } 857 858 /*--------------*/ 859 860 /* 861 * Removes buffer from cache, ownership of the buffer passes back to the caller. 862 * Fails if the hold_count is not one (ie. the caller holds the only reference). 863 * 864 * Not threadsafe. 865 */ 866 static bool cache_remove(struct dm_buffer_cache *bc, struct dm_buffer *b) 867 { 868 bool r; 869 870 cache_write_lock(bc, b->block); 871 872 if (atomic_read(&b->hold_count) != 1) { 873 r = false; 874 } else { 875 r = true; 876 rb_erase(&b->node, &bc->trees[cache_index(b->block, bc->num_locks)].root); 877 lru_remove(&bc->lru[b->list_mode], &b->lru); 878 } 879 880 cache_write_unlock(bc, b->block); 881 882 return r; 883 } 884 885 /*--------------*/ 886 887 typedef void (*b_release)(struct dm_buffer *); 888 889 static struct dm_buffer *__find_next(struct rb_root *root, sector_t block) 890 { 891 struct rb_node *n = root->rb_node; 892 struct dm_buffer *b; 893 struct dm_buffer *best = NULL; 894 895 while (n) { 896 b = container_of(n, struct dm_buffer, node); 897 898 if (b->block == block) 899 return b; 900 901 if (block <= b->block) { 902 n = n->rb_left; 903 best = b; 904 } else { 905 n = n->rb_right; 906 } 907 } 908 909 return best; 910 } 911 912 static void __remove_range(struct dm_buffer_cache *bc, 913 struct rb_root *root, 914 sector_t begin, sector_t end, 915 b_predicate pred, b_release release) 916 { 917 struct dm_buffer *b; 918 919 while (true) { 920 cond_resched(); 921 922 b = __find_next(root, begin); 923 if (!b || (b->block >= end)) 924 break; 925 926 begin = b->block + 1; 927 928 if (atomic_read(&b->hold_count)) 929 continue; 930 931 if (pred(b, NULL) == ER_EVICT) { 932 rb_erase(&b->node, root); 933 lru_remove(&bc->lru[b->list_mode], &b->lru); 934 release(b); 935 } 936 } 937 } 938 939 static void cache_remove_range(struct dm_buffer_cache *bc, 940 sector_t begin, sector_t end, 941 b_predicate pred, b_release release) 942 { 943 unsigned int i; 944 945 BUG_ON(bc->no_sleep); 946 for (i = 0; i < bc->num_locks; i++) { 947 down_write(&bc->trees[i].u.lock); 948 __remove_range(bc, &bc->trees[i].root, begin, end, pred, release); 949 up_write(&bc->trees[i].u.lock); 950 } 951 } 952 953 /*----------------------------------------------------------------*/ 954 955 /* 956 * Linking of buffers: 957 * All buffers are linked to buffer_cache with their node field. 958 * 959 * Clean buffers that are not being written (B_WRITING not set) 960 * are linked to lru[LIST_CLEAN] with their lru_list field. 961 * 962 * Dirty and clean buffers that are being written are linked to 963 * lru[LIST_DIRTY] with their lru_list field. When the write 964 * finishes, the buffer cannot be relinked immediately (because we 965 * are in an interrupt context and relinking requires process 966 * context), so some clean-not-writing buffers can be held on 967 * dirty_lru too. They are later added to lru in the process 968 * context. 969 */ 970 struct dm_bufio_client { 971 struct block_device *bdev; 972 unsigned int block_size; 973 s8 sectors_per_block_bits; 974 975 bool no_sleep; 976 struct mutex lock; 977 spinlock_t spinlock; 978 979 int async_write_error; 980 981 void (*alloc_callback)(struct dm_buffer *buf); 982 void (*write_callback)(struct dm_buffer *buf); 983 struct kmem_cache *slab_buffer; 984 struct kmem_cache *slab_cache; 985 struct dm_io_client *dm_io; 986 987 struct list_head reserved_buffers; 988 unsigned int need_reserved_buffers; 989 990 unsigned int minimum_buffers; 991 992 sector_t start; 993 994 struct shrinker *shrinker; 995 struct work_struct shrink_work; 996 atomic_long_t need_shrink; 997 998 wait_queue_head_t free_buffer_wait; 999 1000 struct list_head client_list; 1001 1002 /* 1003 * Used by global_cleanup to sort the clients list. 1004 */ 1005 unsigned long oldest_buffer; 1006 1007 struct dm_buffer_cache cache; /* must be last member */ 1008 }; 1009 1010 /*----------------------------------------------------------------*/ 1011 1012 #define dm_bufio_in_request() (!!current->bio_list) 1013 1014 static void dm_bufio_lock(struct dm_bufio_client *c) 1015 { 1016 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep) 1017 spin_lock_bh(&c->spinlock); 1018 else 1019 mutex_lock_nested(&c->lock, dm_bufio_in_request()); 1020 } 1021 1022 static void dm_bufio_unlock(struct dm_bufio_client *c) 1023 { 1024 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep) 1025 spin_unlock_bh(&c->spinlock); 1026 else 1027 mutex_unlock(&c->lock); 1028 } 1029 1030 /*----------------------------------------------------------------*/ 1031 1032 /* 1033 * Default cache size: available memory divided by the ratio. 1034 */ 1035 static unsigned long dm_bufio_default_cache_size; 1036 1037 /* 1038 * Total cache size set by the user. 1039 */ 1040 static unsigned long dm_bufio_cache_size; 1041 1042 /* 1043 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change 1044 * at any time. If it disagrees, the user has changed cache size. 1045 */ 1046 static unsigned long dm_bufio_cache_size_latch; 1047 1048 static DEFINE_SPINLOCK(global_spinlock); 1049 1050 static unsigned int dm_bufio_max_age; /* No longer does anything */ 1051 1052 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES; 1053 1054 static unsigned long dm_bufio_peak_allocated; 1055 static unsigned long dm_bufio_allocated_kmem_cache; 1056 static unsigned long dm_bufio_allocated_kmalloc; 1057 static unsigned long dm_bufio_allocated_get_free_pages; 1058 static unsigned long dm_bufio_allocated_vmalloc; 1059 static unsigned long dm_bufio_current_allocated; 1060 1061 /*----------------------------------------------------------------*/ 1062 1063 /* 1064 * The current number of clients. 1065 */ 1066 static int dm_bufio_client_count; 1067 1068 /* 1069 * The list of all clients. 1070 */ 1071 static LIST_HEAD(dm_bufio_all_clients); 1072 1073 /* 1074 * This mutex protects dm_bufio_cache_size_latch and dm_bufio_client_count 1075 */ 1076 static DEFINE_MUTEX(dm_bufio_clients_lock); 1077 1078 static struct workqueue_struct *dm_bufio_wq; 1079 static struct work_struct dm_bufio_replacement_work; 1080 1081 1082 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1083 static void buffer_record_stack(struct dm_buffer *b) 1084 { 1085 b->stack_len = stack_trace_save(b->stack_entries, MAX_STACK, 2); 1086 } 1087 #endif 1088 1089 /*----------------------------------------------------------------*/ 1090 1091 static void adjust_total_allocated(struct dm_buffer *b, bool unlink) 1092 { 1093 unsigned char data_mode; 1094 long diff; 1095 1096 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = { 1097 &dm_bufio_allocated_kmem_cache, 1098 &dm_bufio_allocated_kmalloc, 1099 &dm_bufio_allocated_get_free_pages, 1100 &dm_bufio_allocated_vmalloc, 1101 }; 1102 1103 data_mode = b->data_mode; 1104 diff = (long)b->c->block_size; 1105 if (unlink) 1106 diff = -diff; 1107 1108 spin_lock(&global_spinlock); 1109 1110 *class_ptr[data_mode] += diff; 1111 1112 dm_bufio_current_allocated += diff; 1113 1114 if (dm_bufio_current_allocated > dm_bufio_peak_allocated) 1115 dm_bufio_peak_allocated = dm_bufio_current_allocated; 1116 1117 if (!unlink) { 1118 if (dm_bufio_current_allocated > dm_bufio_cache_size) 1119 queue_work(dm_bufio_wq, &dm_bufio_replacement_work); 1120 } 1121 1122 spin_unlock(&global_spinlock); 1123 } 1124 1125 /* 1126 * Change the number of clients and recalculate per-client limit. 1127 */ 1128 static void __cache_size_refresh(void) 1129 { 1130 if (WARN_ON(!mutex_is_locked(&dm_bufio_clients_lock))) 1131 return; 1132 if (WARN_ON(dm_bufio_client_count < 0)) 1133 return; 1134 1135 dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size); 1136 1137 /* 1138 * Use default if set to 0 and report the actual cache size used. 1139 */ 1140 if (!dm_bufio_cache_size_latch) { 1141 (void)cmpxchg(&dm_bufio_cache_size, 0, 1142 dm_bufio_default_cache_size); 1143 dm_bufio_cache_size_latch = dm_bufio_default_cache_size; 1144 } 1145 } 1146 1147 /* 1148 * Allocating buffer data. 1149 * 1150 * Small buffers are allocated with kmem_cache, to use space optimally. 1151 * 1152 * For large buffers, we choose between get_free_pages and vmalloc. 1153 * Each has advantages and disadvantages. 1154 * 1155 * __get_free_pages can randomly fail if the memory is fragmented. 1156 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be 1157 * as low as 128M) so using it for caching is not appropriate. 1158 * 1159 * If the allocation may fail we use __get_free_pages. Memory fragmentation 1160 * won't have a fatal effect here, but it just causes flushes of some other 1161 * buffers and more I/O will be performed. Don't use __get_free_pages if it 1162 * always fails (i.e. order > MAX_PAGE_ORDER). 1163 * 1164 * If the allocation shouldn't fail we use __vmalloc. This is only for the 1165 * initial reserve allocation, so there's no risk of wasting all vmalloc 1166 * space. 1167 */ 1168 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask, 1169 unsigned char *data_mode) 1170 { 1171 if (unlikely(c->slab_cache != NULL)) { 1172 *data_mode = DATA_MODE_SLAB; 1173 return kmem_cache_alloc(c->slab_cache, gfp_mask); 1174 } 1175 1176 if (unlikely(c->block_size < PAGE_SIZE)) { 1177 *data_mode = DATA_MODE_KMALLOC; 1178 return kmalloc(c->block_size, gfp_mask | __GFP_RECLAIMABLE); 1179 } 1180 1181 if (c->block_size <= KMALLOC_MAX_SIZE && 1182 gfp_mask & __GFP_NORETRY) { 1183 *data_mode = DATA_MODE_GET_FREE_PAGES; 1184 return (void *)__get_free_pages(gfp_mask, 1185 c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT)); 1186 } 1187 1188 *data_mode = DATA_MODE_VMALLOC; 1189 1190 return __vmalloc(c->block_size, gfp_mask); 1191 } 1192 1193 /* 1194 * Free buffer's data. 1195 */ 1196 static void free_buffer_data(struct dm_bufio_client *c, 1197 void *data, unsigned char data_mode) 1198 { 1199 switch (data_mode) { 1200 case DATA_MODE_SLAB: 1201 kmem_cache_free(c->slab_cache, data); 1202 break; 1203 1204 case DATA_MODE_KMALLOC: 1205 kfree(data); 1206 break; 1207 1208 case DATA_MODE_GET_FREE_PAGES: 1209 free_pages((unsigned long)data, 1210 c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT)); 1211 break; 1212 1213 case DATA_MODE_VMALLOC: 1214 vfree(data); 1215 break; 1216 1217 default: 1218 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d", 1219 data_mode); 1220 BUG(); 1221 } 1222 } 1223 1224 /* 1225 * Allocate buffer and its data. 1226 */ 1227 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask) 1228 { 1229 struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask); 1230 1231 if (!b) 1232 return NULL; 1233 1234 b->c = c; 1235 1236 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode); 1237 if (!b->data) { 1238 kmem_cache_free(c->slab_buffer, b); 1239 return NULL; 1240 } 1241 adjust_total_allocated(b, false); 1242 1243 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1244 b->stack_len = 0; 1245 #endif 1246 return b; 1247 } 1248 1249 /* 1250 * Free buffer and its data. 1251 */ 1252 static void free_buffer(struct dm_buffer *b) 1253 { 1254 struct dm_bufio_client *c = b->c; 1255 1256 adjust_total_allocated(b, true); 1257 free_buffer_data(c, b->data, b->data_mode); 1258 kmem_cache_free(c->slab_buffer, b); 1259 } 1260 1261 /* 1262 *-------------------------------------------------------------------------- 1263 * Submit I/O on the buffer. 1264 * 1265 * Bio interface is faster but it has some problems: 1266 * the vector list is limited (increasing this limit increases 1267 * memory-consumption per buffer, so it is not viable); 1268 * 1269 * the memory must be direct-mapped, not vmalloced; 1270 * 1271 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and 1272 * it is not vmalloced, try using the bio interface. 1273 * 1274 * If the buffer is big, if it is vmalloced or if the underlying device 1275 * rejects the bio because it is too large, use dm-io layer to do the I/O. 1276 * The dm-io layer splits the I/O into multiple requests, avoiding the above 1277 * shortcomings. 1278 *-------------------------------------------------------------------------- 1279 */ 1280 1281 /* 1282 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending 1283 * that the request was handled directly with bio interface. 1284 */ 1285 static void dmio_complete(unsigned long error, void *context) 1286 { 1287 struct dm_buffer *b = context; 1288 1289 b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0); 1290 } 1291 1292 static void use_dmio(struct dm_buffer *b, enum req_op op, sector_t sector, 1293 unsigned int n_sectors, unsigned int offset, 1294 unsigned short ioprio) 1295 { 1296 int r; 1297 struct dm_io_request io_req = { 1298 .bi_opf = op, 1299 .notify.fn = dmio_complete, 1300 .notify.context = b, 1301 .client = b->c->dm_io, 1302 }; 1303 struct dm_io_region region = { 1304 .bdev = b->c->bdev, 1305 .sector = sector, 1306 .count = n_sectors, 1307 }; 1308 1309 if (b->data_mode != DATA_MODE_VMALLOC) { 1310 io_req.mem.type = DM_IO_KMEM; 1311 io_req.mem.ptr.addr = (char *)b->data + offset; 1312 } else { 1313 io_req.mem.type = DM_IO_VMA; 1314 io_req.mem.ptr.vma = (char *)b->data + offset; 1315 } 1316 1317 r = dm_io(&io_req, 1, ®ion, NULL, ioprio); 1318 if (unlikely(r)) 1319 b->end_io(b, errno_to_blk_status(r)); 1320 } 1321 1322 static void bio_complete(struct bio *bio) 1323 { 1324 struct dm_buffer *b = bio->bi_private; 1325 blk_status_t status = bio->bi_status; 1326 1327 bio_uninit(bio); 1328 kfree(bio); 1329 b->end_io(b, status); 1330 } 1331 1332 static void use_bio(struct dm_buffer *b, enum req_op op, sector_t sector, 1333 unsigned int n_sectors, unsigned int offset, 1334 unsigned short ioprio) 1335 { 1336 struct bio *bio; 1337 char *ptr; 1338 unsigned int len; 1339 1340 bio = bio_kmalloc(1, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN); 1341 if (!bio) { 1342 use_dmio(b, op, sector, n_sectors, offset, ioprio); 1343 return; 1344 } 1345 bio_init(bio, b->c->bdev, bio->bi_inline_vecs, 1, op); 1346 bio->bi_iter.bi_sector = sector; 1347 bio->bi_end_io = bio_complete; 1348 bio->bi_private = b; 1349 bio->bi_ioprio = ioprio; 1350 1351 ptr = (char *)b->data + offset; 1352 len = n_sectors << SECTOR_SHIFT; 1353 1354 bio_add_virt_nofail(bio, ptr, len); 1355 1356 submit_bio(bio); 1357 } 1358 1359 static inline sector_t block_to_sector(struct dm_bufio_client *c, sector_t block) 1360 { 1361 sector_t sector; 1362 1363 if (likely(c->sectors_per_block_bits >= 0)) 1364 sector = block << c->sectors_per_block_bits; 1365 else 1366 sector = block * (c->block_size >> SECTOR_SHIFT); 1367 sector += c->start; 1368 1369 return sector; 1370 } 1371 1372 static void submit_io(struct dm_buffer *b, enum req_op op, unsigned short ioprio, 1373 void (*end_io)(struct dm_buffer *, blk_status_t)) 1374 { 1375 unsigned int n_sectors; 1376 sector_t sector; 1377 unsigned int offset, end; 1378 1379 b->end_io = end_io; 1380 1381 sector = block_to_sector(b->c, b->block); 1382 1383 if (op != REQ_OP_WRITE) { 1384 n_sectors = b->c->block_size >> SECTOR_SHIFT; 1385 offset = 0; 1386 } else { 1387 if (b->c->write_callback) 1388 b->c->write_callback(b); 1389 offset = b->write_start; 1390 end = b->write_end; 1391 offset &= -DM_BUFIO_WRITE_ALIGN; 1392 end += DM_BUFIO_WRITE_ALIGN - 1; 1393 end &= -DM_BUFIO_WRITE_ALIGN; 1394 if (unlikely(end > b->c->block_size)) 1395 end = b->c->block_size; 1396 1397 sector += offset >> SECTOR_SHIFT; 1398 n_sectors = (end - offset) >> SECTOR_SHIFT; 1399 } 1400 1401 if (b->data_mode != DATA_MODE_VMALLOC) 1402 use_bio(b, op, sector, n_sectors, offset, ioprio); 1403 else 1404 use_dmio(b, op, sector, n_sectors, offset, ioprio); 1405 } 1406 1407 /* 1408 *-------------------------------------------------------------- 1409 * Writing dirty buffers 1410 *-------------------------------------------------------------- 1411 */ 1412 1413 /* 1414 * The endio routine for write. 1415 * 1416 * Set the error, clear B_WRITING bit and wake anyone who was waiting on 1417 * it. 1418 */ 1419 static void write_endio(struct dm_buffer *b, blk_status_t status) 1420 { 1421 b->write_error = status; 1422 if (unlikely(status)) { 1423 struct dm_bufio_client *c = b->c; 1424 1425 (void)cmpxchg(&c->async_write_error, 0, 1426 blk_status_to_errno(status)); 1427 } 1428 1429 BUG_ON(!test_bit(B_WRITING, &b->state)); 1430 1431 smp_mb__before_atomic(); 1432 clear_bit(B_WRITING, &b->state); 1433 smp_mb__after_atomic(); 1434 1435 wake_up_bit(&b->state, B_WRITING); 1436 } 1437 1438 /* 1439 * Initiate a write on a dirty buffer, but don't wait for it. 1440 * 1441 * - If the buffer is not dirty, exit. 1442 * - If there some previous write going on, wait for it to finish (we can't 1443 * have two writes on the same buffer simultaneously). 1444 * - Submit our write and don't wait on it. We set B_WRITING indicating 1445 * that there is a write in progress. 1446 */ 1447 static void __write_dirty_buffer(struct dm_buffer *b, 1448 struct list_head *write_list) 1449 { 1450 if (!test_bit(B_DIRTY, &b->state)) 1451 return; 1452 1453 clear_bit(B_DIRTY, &b->state); 1454 wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 1455 1456 b->write_start = b->dirty_start; 1457 b->write_end = b->dirty_end; 1458 1459 if (!write_list) 1460 submit_io(b, REQ_OP_WRITE, IOPRIO_DEFAULT, write_endio); 1461 else 1462 list_add_tail(&b->write_list, write_list); 1463 } 1464 1465 static void __flush_write_list(struct list_head *write_list) 1466 { 1467 struct blk_plug plug; 1468 1469 blk_start_plug(&plug); 1470 while (!list_empty(write_list)) { 1471 struct dm_buffer *b = 1472 list_entry(write_list->next, struct dm_buffer, write_list); 1473 list_del(&b->write_list); 1474 submit_io(b, REQ_OP_WRITE, IOPRIO_DEFAULT, write_endio); 1475 cond_resched(); 1476 } 1477 blk_finish_plug(&plug); 1478 } 1479 1480 /* 1481 * Wait until any activity on the buffer finishes. Possibly write the 1482 * buffer if it is dirty. When this function finishes, there is no I/O 1483 * running on the buffer and the buffer is not dirty. 1484 */ 1485 static void __make_buffer_clean(struct dm_buffer *b) 1486 { 1487 BUG_ON(atomic_read(&b->hold_count)); 1488 1489 /* smp_load_acquire() pairs with read_endio()'s smp_mb__before_atomic() */ 1490 if (!smp_load_acquire(&b->state)) /* fast case */ 1491 return; 1492 1493 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE); 1494 __write_dirty_buffer(b, NULL); 1495 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 1496 } 1497 1498 static enum evict_result is_clean(struct dm_buffer *b, void *context) 1499 { 1500 struct dm_bufio_client *c = context; 1501 1502 /* These should never happen */ 1503 if (WARN_ON_ONCE(test_bit(B_WRITING, &b->state))) 1504 return ER_DONT_EVICT; 1505 if (WARN_ON_ONCE(test_bit(B_DIRTY, &b->state))) 1506 return ER_DONT_EVICT; 1507 if (WARN_ON_ONCE(b->list_mode != LIST_CLEAN)) 1508 return ER_DONT_EVICT; 1509 1510 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep && 1511 unlikely(test_bit(B_READING, &b->state))) 1512 return ER_DONT_EVICT; 1513 1514 return ER_EVICT; 1515 } 1516 1517 static enum evict_result is_dirty(struct dm_buffer *b, void *context) 1518 { 1519 /* These should never happen */ 1520 if (WARN_ON_ONCE(test_bit(B_READING, &b->state))) 1521 return ER_DONT_EVICT; 1522 if (WARN_ON_ONCE(b->list_mode != LIST_DIRTY)) 1523 return ER_DONT_EVICT; 1524 1525 return ER_EVICT; 1526 } 1527 1528 /* 1529 * Find some buffer that is not held by anybody, clean it, unlink it and 1530 * return it. 1531 */ 1532 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c) 1533 { 1534 struct dm_buffer *b; 1535 1536 b = cache_evict(&c->cache, LIST_CLEAN, is_clean, c); 1537 if (b) { 1538 /* this also waits for pending reads */ 1539 __make_buffer_clean(b); 1540 return b; 1541 } 1542 1543 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep) 1544 return NULL; 1545 1546 b = cache_evict(&c->cache, LIST_DIRTY, is_dirty, NULL); 1547 if (b) { 1548 __make_buffer_clean(b); 1549 return b; 1550 } 1551 1552 return NULL; 1553 } 1554 1555 /* 1556 * Wait until some other threads free some buffer or release hold count on 1557 * some buffer. 1558 * 1559 * This function is entered with c->lock held, drops it and regains it 1560 * before exiting. 1561 */ 1562 static void __wait_for_free_buffer(struct dm_bufio_client *c) 1563 { 1564 DECLARE_WAITQUEUE(wait, current); 1565 1566 add_wait_queue(&c->free_buffer_wait, &wait); 1567 set_current_state(TASK_UNINTERRUPTIBLE); 1568 dm_bufio_unlock(c); 1569 1570 /* 1571 * It's possible to miss a wake up event since we don't always 1572 * hold c->lock when wake_up is called. So we have a timeout here, 1573 * just in case. 1574 */ 1575 io_schedule_timeout(5 * HZ); 1576 1577 remove_wait_queue(&c->free_buffer_wait, &wait); 1578 1579 dm_bufio_lock(c); 1580 } 1581 1582 enum new_flag { 1583 NF_FRESH = 0, 1584 NF_READ = 1, 1585 NF_GET = 2, 1586 NF_PREFETCH = 3 1587 }; 1588 1589 /* 1590 * Allocate a new buffer. If the allocation is not possible, wait until 1591 * some other thread frees a buffer. 1592 * 1593 * May drop the lock and regain it. 1594 */ 1595 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf) 1596 { 1597 struct dm_buffer *b; 1598 bool tried_noio_alloc = false; 1599 1600 /* 1601 * dm-bufio is resistant to allocation failures (it just keeps 1602 * one buffer reserved in cases all the allocations fail). 1603 * So set flags to not try too hard: 1604 * GFP_NOWAIT: don't wait; if we need to sleep we'll release our 1605 * mutex and wait ourselves. 1606 * __GFP_NORETRY: don't retry and rather return failure 1607 * __GFP_NOMEMALLOC: don't use emergency reserves 1608 * __GFP_NOWARN: don't print a warning in case of failure 1609 * 1610 * For debugging, if we set the cache size to 1, no new buffers will 1611 * be allocated. 1612 */ 1613 while (1) { 1614 if (dm_bufio_cache_size_latch != 1) { 1615 b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 1616 if (b) 1617 return b; 1618 } 1619 1620 if (nf == NF_PREFETCH) 1621 return NULL; 1622 1623 if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) { 1624 dm_bufio_unlock(c); 1625 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 1626 dm_bufio_lock(c); 1627 if (b) 1628 return b; 1629 tried_noio_alloc = true; 1630 } 1631 1632 if (!list_empty(&c->reserved_buffers)) { 1633 b = list_to_buffer(c->reserved_buffers.next); 1634 list_del(&b->lru.list); 1635 c->need_reserved_buffers++; 1636 1637 return b; 1638 } 1639 1640 b = __get_unclaimed_buffer(c); 1641 if (b) 1642 return b; 1643 1644 __wait_for_free_buffer(c); 1645 } 1646 } 1647 1648 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf) 1649 { 1650 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf); 1651 1652 if (!b) 1653 return NULL; 1654 1655 if (c->alloc_callback) 1656 c->alloc_callback(b); 1657 1658 return b; 1659 } 1660 1661 /* 1662 * Free a buffer and wake other threads waiting for free buffers. 1663 */ 1664 static void __free_buffer_wake(struct dm_buffer *b) 1665 { 1666 struct dm_bufio_client *c = b->c; 1667 1668 b->block = -1; 1669 if (!c->need_reserved_buffers) 1670 free_buffer(b); 1671 else { 1672 list_add(&b->lru.list, &c->reserved_buffers); 1673 c->need_reserved_buffers--; 1674 } 1675 1676 /* 1677 * We hold the bufio lock here, so no one can add entries to the 1678 * wait queue anyway. 1679 */ 1680 if (unlikely(waitqueue_active(&c->free_buffer_wait))) 1681 wake_up(&c->free_buffer_wait); 1682 } 1683 1684 static enum evict_result cleaned(struct dm_buffer *b, void *context) 1685 { 1686 if (WARN_ON_ONCE(test_bit(B_READING, &b->state))) 1687 return ER_DONT_EVICT; /* should never happen */ 1688 1689 if (test_bit(B_DIRTY, &b->state) || test_bit(B_WRITING, &b->state)) 1690 return ER_DONT_EVICT; 1691 else 1692 return ER_EVICT; 1693 } 1694 1695 static void __move_clean_buffers(struct dm_bufio_client *c) 1696 { 1697 cache_mark_many(&c->cache, LIST_DIRTY, LIST_CLEAN, cleaned, NULL); 1698 } 1699 1700 struct write_context { 1701 int no_wait; 1702 struct list_head *write_list; 1703 }; 1704 1705 static enum it_action write_one(struct dm_buffer *b, void *context) 1706 { 1707 struct write_context *wc = context; 1708 1709 if (wc->no_wait && test_bit(B_WRITING, &b->state)) 1710 return IT_COMPLETE; 1711 1712 __write_dirty_buffer(b, wc->write_list); 1713 return IT_NEXT; 1714 } 1715 1716 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait, 1717 struct list_head *write_list) 1718 { 1719 struct write_context wc = {.no_wait = no_wait, .write_list = write_list}; 1720 1721 __move_clean_buffers(c); 1722 cache_iterate(&c->cache, LIST_DIRTY, write_one, &wc); 1723 } 1724 1725 /* 1726 * Check if we're over watermark. 1727 * If we are over threshold_buffers, start freeing buffers. 1728 * If we're over "limit_buffers", block until we get under the limit. 1729 */ 1730 static void __check_watermark(struct dm_bufio_client *c, 1731 struct list_head *write_list) 1732 { 1733 if (cache_count(&c->cache, LIST_DIRTY) > 1734 cache_count(&c->cache, LIST_CLEAN) * DM_BUFIO_WRITEBACK_RATIO) 1735 __write_dirty_buffers_async(c, 1, write_list); 1736 } 1737 1738 /* 1739 *-------------------------------------------------------------- 1740 * Getting a buffer 1741 *-------------------------------------------------------------- 1742 */ 1743 1744 static void cache_put_and_wake(struct dm_bufio_client *c, struct dm_buffer *b) 1745 { 1746 /* 1747 * Relying on waitqueue_active() is racey, but we sleep 1748 * with schedule_timeout anyway. 1749 */ 1750 if (cache_put(&c->cache, b) && 1751 unlikely(waitqueue_active(&c->free_buffer_wait))) 1752 wake_up(&c->free_buffer_wait); 1753 } 1754 1755 /* 1756 * This assumes you have already checked the cache to see if the buffer 1757 * is already present (it will recheck after dropping the lock for allocation). 1758 */ 1759 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block, 1760 enum new_flag nf, int *need_submit, 1761 struct list_head *write_list) 1762 { 1763 struct dm_buffer *b, *new_b = NULL; 1764 1765 *need_submit = 0; 1766 1767 /* This can't be called with NF_GET */ 1768 if (WARN_ON_ONCE(nf == NF_GET)) 1769 return NULL; 1770 1771 new_b = __alloc_buffer_wait(c, nf); 1772 if (!new_b) 1773 return NULL; 1774 1775 /* 1776 * We've had a period where the mutex was unlocked, so need to 1777 * recheck the buffer tree. 1778 */ 1779 b = cache_get(&c->cache, block); 1780 if (b) { 1781 __free_buffer_wake(new_b); 1782 goto found_buffer; 1783 } 1784 1785 __check_watermark(c, write_list); 1786 1787 b = new_b; 1788 atomic_set(&b->hold_count, 1); 1789 WRITE_ONCE(b->last_accessed, jiffies); 1790 b->block = block; 1791 b->read_error = 0; 1792 b->write_error = 0; 1793 b->list_mode = LIST_CLEAN; 1794 1795 if (nf == NF_FRESH) 1796 b->state = 0; 1797 else { 1798 b->state = 1 << B_READING; 1799 *need_submit = 1; 1800 } 1801 1802 /* 1803 * We mustn't insert into the cache until the B_READING state 1804 * is set. Otherwise another thread could get it and use 1805 * it before it had been read. 1806 */ 1807 cache_insert(&c->cache, b); 1808 1809 return b; 1810 1811 found_buffer: 1812 if (nf == NF_PREFETCH) { 1813 cache_put_and_wake(c, b); 1814 return NULL; 1815 } 1816 1817 /* 1818 * Note: it is essential that we don't wait for the buffer to be 1819 * read if dm_bufio_get function is used. Both dm_bufio_get and 1820 * dm_bufio_prefetch can be used in the driver request routine. 1821 * If the user called both dm_bufio_prefetch and dm_bufio_get on 1822 * the same buffer, it would deadlock if we waited. 1823 */ 1824 if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state))) { 1825 cache_put_and_wake(c, b); 1826 return NULL; 1827 } 1828 1829 return b; 1830 } 1831 1832 /* 1833 * The endio routine for reading: set the error, clear the bit and wake up 1834 * anyone waiting on the buffer. 1835 */ 1836 static void read_endio(struct dm_buffer *b, blk_status_t status) 1837 { 1838 b->read_error = status; 1839 1840 BUG_ON(!test_bit(B_READING, &b->state)); 1841 1842 smp_mb__before_atomic(); 1843 clear_bit(B_READING, &b->state); 1844 smp_mb__after_atomic(); 1845 1846 wake_up_bit(&b->state, B_READING); 1847 } 1848 1849 /* 1850 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these 1851 * functions is similar except that dm_bufio_new doesn't read the 1852 * buffer from the disk (assuming that the caller overwrites all the data 1853 * and uses dm_bufio_mark_buffer_dirty to write new data back). 1854 */ 1855 static void *new_read(struct dm_bufio_client *c, sector_t block, 1856 enum new_flag nf, struct dm_buffer **bp, 1857 unsigned short ioprio) 1858 { 1859 int need_submit = 0; 1860 struct dm_buffer *b; 1861 1862 LIST_HEAD(write_list); 1863 1864 *bp = NULL; 1865 1866 /* 1867 * Fast path, hopefully the block is already in the cache. No need 1868 * to get the client lock for this. 1869 */ 1870 b = cache_get(&c->cache, block); 1871 if (b) { 1872 if (nf == NF_PREFETCH) { 1873 cache_put_and_wake(c, b); 1874 return NULL; 1875 } 1876 1877 /* 1878 * Note: it is essential that we don't wait for the buffer to be 1879 * read if dm_bufio_get function is used. Both dm_bufio_get and 1880 * dm_bufio_prefetch can be used in the driver request routine. 1881 * If the user called both dm_bufio_prefetch and dm_bufio_get on 1882 * the same buffer, it would deadlock if we waited. 1883 */ 1884 if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state))) { 1885 cache_put_and_wake(c, b); 1886 return NULL; 1887 } 1888 } 1889 1890 if (!b) { 1891 if (nf == NF_GET) 1892 return NULL; 1893 1894 dm_bufio_lock(c); 1895 b = __bufio_new(c, block, nf, &need_submit, &write_list); 1896 dm_bufio_unlock(c); 1897 } 1898 1899 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1900 if (b && (atomic_read(&b->hold_count) == 1)) 1901 buffer_record_stack(b); 1902 #endif 1903 1904 __flush_write_list(&write_list); 1905 1906 if (!b) 1907 return NULL; 1908 1909 if (need_submit) 1910 submit_io(b, REQ_OP_READ, ioprio, read_endio); 1911 1912 if (nf != NF_GET) /* we already tested this condition above */ 1913 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE); 1914 1915 if (b->read_error) { 1916 int error = blk_status_to_errno(b->read_error); 1917 1918 dm_bufio_release(b); 1919 1920 return ERR_PTR(error); 1921 } 1922 1923 *bp = b; 1924 1925 return b->data; 1926 } 1927 1928 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block, 1929 struct dm_buffer **bp) 1930 { 1931 return new_read(c, block, NF_GET, bp, IOPRIO_DEFAULT); 1932 } 1933 EXPORT_SYMBOL_GPL(dm_bufio_get); 1934 1935 static void *__dm_bufio_read(struct dm_bufio_client *c, sector_t block, 1936 struct dm_buffer **bp, unsigned short ioprio) 1937 { 1938 if (WARN_ON_ONCE(dm_bufio_in_request())) 1939 return ERR_PTR(-EINVAL); 1940 1941 return new_read(c, block, NF_READ, bp, ioprio); 1942 } 1943 1944 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block, 1945 struct dm_buffer **bp) 1946 { 1947 return __dm_bufio_read(c, block, bp, IOPRIO_DEFAULT); 1948 } 1949 EXPORT_SYMBOL_GPL(dm_bufio_read); 1950 1951 void *dm_bufio_read_with_ioprio(struct dm_bufio_client *c, sector_t block, 1952 struct dm_buffer **bp, unsigned short ioprio) 1953 { 1954 return __dm_bufio_read(c, block, bp, ioprio); 1955 } 1956 EXPORT_SYMBOL_GPL(dm_bufio_read_with_ioprio); 1957 1958 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block, 1959 struct dm_buffer **bp) 1960 { 1961 if (WARN_ON_ONCE(dm_bufio_in_request())) 1962 return ERR_PTR(-EINVAL); 1963 1964 return new_read(c, block, NF_FRESH, bp, IOPRIO_DEFAULT); 1965 } 1966 EXPORT_SYMBOL_GPL(dm_bufio_new); 1967 1968 static void __dm_bufio_prefetch(struct dm_bufio_client *c, 1969 sector_t block, unsigned int n_blocks, 1970 unsigned short ioprio) 1971 { 1972 struct blk_plug plug; 1973 1974 LIST_HEAD(write_list); 1975 1976 if (WARN_ON_ONCE(dm_bufio_in_request())) 1977 return; /* should never happen */ 1978 1979 blk_start_plug(&plug); 1980 1981 for (; n_blocks--; block++) { 1982 int need_submit; 1983 struct dm_buffer *b; 1984 1985 b = cache_get(&c->cache, block); 1986 if (b) { 1987 /* already in cache */ 1988 cache_put_and_wake(c, b); 1989 continue; 1990 } 1991 1992 dm_bufio_lock(c); 1993 b = __bufio_new(c, block, NF_PREFETCH, &need_submit, 1994 &write_list); 1995 if (unlikely(!list_empty(&write_list))) { 1996 dm_bufio_unlock(c); 1997 blk_finish_plug(&plug); 1998 __flush_write_list(&write_list); 1999 blk_start_plug(&plug); 2000 dm_bufio_lock(c); 2001 } 2002 if (unlikely(b != NULL)) { 2003 dm_bufio_unlock(c); 2004 2005 if (need_submit) 2006 submit_io(b, REQ_OP_READ, ioprio, read_endio); 2007 dm_bufio_release(b); 2008 2009 cond_resched(); 2010 2011 if (!n_blocks) 2012 goto flush_plug; 2013 dm_bufio_lock(c); 2014 } 2015 dm_bufio_unlock(c); 2016 } 2017 2018 flush_plug: 2019 blk_finish_plug(&plug); 2020 } 2021 2022 void dm_bufio_prefetch(struct dm_bufio_client *c, sector_t block, unsigned int n_blocks) 2023 { 2024 return __dm_bufio_prefetch(c, block, n_blocks, IOPRIO_DEFAULT); 2025 } 2026 EXPORT_SYMBOL_GPL(dm_bufio_prefetch); 2027 2028 void dm_bufio_prefetch_with_ioprio(struct dm_bufio_client *c, sector_t block, 2029 unsigned int n_blocks, unsigned short ioprio) 2030 { 2031 return __dm_bufio_prefetch(c, block, n_blocks, ioprio); 2032 } 2033 EXPORT_SYMBOL_GPL(dm_bufio_prefetch_with_ioprio); 2034 2035 void dm_bufio_release(struct dm_buffer *b) 2036 { 2037 struct dm_bufio_client *c = b->c; 2038 2039 /* 2040 * If there were errors on the buffer, and the buffer is not 2041 * to be written, free the buffer. There is no point in caching 2042 * invalid buffer. 2043 */ 2044 if ((b->read_error || b->write_error) && 2045 !test_bit_acquire(B_READING, &b->state) && 2046 !test_bit(B_WRITING, &b->state) && 2047 !test_bit(B_DIRTY, &b->state)) { 2048 dm_bufio_lock(c); 2049 2050 /* cache remove can fail if there are other holders */ 2051 if (cache_remove(&c->cache, b)) { 2052 __free_buffer_wake(b); 2053 dm_bufio_unlock(c); 2054 return; 2055 } 2056 2057 dm_bufio_unlock(c); 2058 } 2059 2060 cache_put_and_wake(c, b); 2061 } 2062 EXPORT_SYMBOL_GPL(dm_bufio_release); 2063 2064 void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b, 2065 unsigned int start, unsigned int end) 2066 { 2067 struct dm_bufio_client *c = b->c; 2068 2069 BUG_ON(start >= end); 2070 BUG_ON(end > b->c->block_size); 2071 2072 dm_bufio_lock(c); 2073 2074 BUG_ON(test_bit(B_READING, &b->state)); 2075 2076 if (!test_and_set_bit(B_DIRTY, &b->state)) { 2077 b->dirty_start = start; 2078 b->dirty_end = end; 2079 cache_mark(&c->cache, b, LIST_DIRTY); 2080 } else { 2081 if (start < b->dirty_start) 2082 b->dirty_start = start; 2083 if (end > b->dirty_end) 2084 b->dirty_end = end; 2085 } 2086 2087 dm_bufio_unlock(c); 2088 } 2089 EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty); 2090 2091 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b) 2092 { 2093 dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size); 2094 } 2095 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty); 2096 2097 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c) 2098 { 2099 LIST_HEAD(write_list); 2100 2101 if (WARN_ON_ONCE(dm_bufio_in_request())) 2102 return; /* should never happen */ 2103 2104 dm_bufio_lock(c); 2105 __write_dirty_buffers_async(c, 0, &write_list); 2106 dm_bufio_unlock(c); 2107 __flush_write_list(&write_list); 2108 } 2109 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async); 2110 2111 /* 2112 * For performance, it is essential that the buffers are written asynchronously 2113 * and simultaneously (so that the block layer can merge the writes) and then 2114 * waited upon. 2115 * 2116 * Finally, we flush hardware disk cache. 2117 */ 2118 static bool is_writing(struct lru_entry *e, void *context) 2119 { 2120 struct dm_buffer *b = le_to_buffer(e); 2121 2122 return test_bit(B_WRITING, &b->state); 2123 } 2124 2125 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c) 2126 { 2127 int a, f; 2128 unsigned long nr_buffers; 2129 struct lru_entry *e; 2130 struct lru_iter it; 2131 2132 LIST_HEAD(write_list); 2133 2134 dm_bufio_lock(c); 2135 __write_dirty_buffers_async(c, 0, &write_list); 2136 dm_bufio_unlock(c); 2137 __flush_write_list(&write_list); 2138 dm_bufio_lock(c); 2139 2140 nr_buffers = cache_count(&c->cache, LIST_DIRTY); 2141 lru_iter_begin(&c->cache.lru[LIST_DIRTY], &it); 2142 while ((e = lru_iter_next(&it, is_writing, c))) { 2143 struct dm_buffer *b = le_to_buffer(e); 2144 __cache_inc_buffer(b); 2145 2146 BUG_ON(test_bit(B_READING, &b->state)); 2147 2148 if (nr_buffers) { 2149 nr_buffers--; 2150 dm_bufio_unlock(c); 2151 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 2152 dm_bufio_lock(c); 2153 } else { 2154 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 2155 } 2156 2157 if (!test_bit(B_DIRTY, &b->state) && !test_bit(B_WRITING, &b->state)) 2158 cache_mark(&c->cache, b, LIST_CLEAN); 2159 2160 cache_put_and_wake(c, b); 2161 2162 cond_resched(); 2163 } 2164 lru_iter_end(&it); 2165 2166 wake_up(&c->free_buffer_wait); 2167 dm_bufio_unlock(c); 2168 2169 a = xchg(&c->async_write_error, 0); 2170 f = dm_bufio_issue_flush(c); 2171 if (a) 2172 return a; 2173 2174 return f; 2175 } 2176 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers); 2177 2178 /* 2179 * Use dm-io to send an empty barrier to flush the device. 2180 */ 2181 int dm_bufio_issue_flush(struct dm_bufio_client *c) 2182 { 2183 struct dm_io_request io_req = { 2184 .bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC, 2185 .mem.type = DM_IO_KMEM, 2186 .mem.ptr.addr = NULL, 2187 .client = c->dm_io, 2188 }; 2189 struct dm_io_region io_reg = { 2190 .bdev = c->bdev, 2191 .sector = 0, 2192 .count = 0, 2193 }; 2194 2195 if (WARN_ON_ONCE(dm_bufio_in_request())) 2196 return -EINVAL; 2197 2198 return dm_io(&io_req, 1, &io_reg, NULL, IOPRIO_DEFAULT); 2199 } 2200 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush); 2201 2202 /* 2203 * Use dm-io to send a discard request to flush the device. 2204 */ 2205 int dm_bufio_issue_discard(struct dm_bufio_client *c, sector_t block, sector_t count) 2206 { 2207 struct dm_io_request io_req = { 2208 .bi_opf = REQ_OP_DISCARD | REQ_SYNC, 2209 .mem.type = DM_IO_KMEM, 2210 .mem.ptr.addr = NULL, 2211 .client = c->dm_io, 2212 }; 2213 struct dm_io_region io_reg = { 2214 .bdev = c->bdev, 2215 .sector = block_to_sector(c, block), 2216 .count = block_to_sector(c, count), 2217 }; 2218 2219 if (WARN_ON_ONCE(dm_bufio_in_request())) 2220 return -EINVAL; /* discards are optional */ 2221 2222 return dm_io(&io_req, 1, &io_reg, NULL, IOPRIO_DEFAULT); 2223 } 2224 EXPORT_SYMBOL_GPL(dm_bufio_issue_discard); 2225 2226 static void forget_buffer(struct dm_bufio_client *c, sector_t block) 2227 { 2228 struct dm_buffer *b; 2229 2230 b = cache_get(&c->cache, block); 2231 if (b) { 2232 if (likely(!smp_load_acquire(&b->state))) { 2233 if (cache_remove(&c->cache, b)) 2234 __free_buffer_wake(b); 2235 else 2236 cache_put_and_wake(c, b); 2237 } else { 2238 cache_put_and_wake(c, b); 2239 } 2240 } 2241 } 2242 2243 /* 2244 * Free the given buffer. 2245 * 2246 * This is just a hint, if the buffer is in use or dirty, this function 2247 * does nothing. 2248 */ 2249 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block) 2250 { 2251 dm_bufio_lock(c); 2252 forget_buffer(c, block); 2253 dm_bufio_unlock(c); 2254 } 2255 EXPORT_SYMBOL_GPL(dm_bufio_forget); 2256 2257 static enum evict_result idle(struct dm_buffer *b, void *context) 2258 { 2259 return b->state ? ER_DONT_EVICT : ER_EVICT; 2260 } 2261 2262 void dm_bufio_forget_buffers(struct dm_bufio_client *c, sector_t block, sector_t n_blocks) 2263 { 2264 dm_bufio_lock(c); 2265 cache_remove_range(&c->cache, block, block + n_blocks, idle, __free_buffer_wake); 2266 dm_bufio_unlock(c); 2267 } 2268 EXPORT_SYMBOL_GPL(dm_bufio_forget_buffers); 2269 2270 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned int n) 2271 { 2272 c->minimum_buffers = n; 2273 } 2274 EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers); 2275 2276 unsigned int dm_bufio_get_block_size(struct dm_bufio_client *c) 2277 { 2278 return c->block_size; 2279 } 2280 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size); 2281 2282 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c) 2283 { 2284 sector_t s = bdev_nr_sectors(c->bdev); 2285 2286 if (s >= c->start) 2287 s -= c->start; 2288 else 2289 s = 0; 2290 if (likely(c->sectors_per_block_bits >= 0)) 2291 s >>= c->sectors_per_block_bits; 2292 else 2293 sector_div(s, c->block_size >> SECTOR_SHIFT); 2294 return s; 2295 } 2296 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size); 2297 2298 struct dm_io_client *dm_bufio_get_dm_io_client(struct dm_bufio_client *c) 2299 { 2300 return c->dm_io; 2301 } 2302 EXPORT_SYMBOL_GPL(dm_bufio_get_dm_io_client); 2303 2304 sector_t dm_bufio_get_block_number(struct dm_buffer *b) 2305 { 2306 return b->block; 2307 } 2308 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number); 2309 2310 void *dm_bufio_get_block_data(struct dm_buffer *b) 2311 { 2312 return b->data; 2313 } 2314 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data); 2315 2316 void *dm_bufio_get_aux_data(struct dm_buffer *b) 2317 { 2318 return b + 1; 2319 } 2320 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data); 2321 2322 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b) 2323 { 2324 return b->c; 2325 } 2326 EXPORT_SYMBOL_GPL(dm_bufio_get_client); 2327 2328 static enum it_action warn_leak(struct dm_buffer *b, void *context) 2329 { 2330 bool *warned = context; 2331 2332 WARN_ON(!(*warned)); 2333 *warned = true; 2334 DMERR("leaked buffer %llx, hold count %u, list %d", 2335 (unsigned long long)b->block, atomic_read(&b->hold_count), b->list_mode); 2336 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 2337 stack_trace_print(b->stack_entries, b->stack_len, 1); 2338 /* mark unclaimed to avoid WARN_ON at end of drop_buffers() */ 2339 atomic_set(&b->hold_count, 0); 2340 #endif 2341 return IT_NEXT; 2342 } 2343 2344 static void drop_buffers(struct dm_bufio_client *c) 2345 { 2346 int i; 2347 struct dm_buffer *b; 2348 2349 if (WARN_ON(dm_bufio_in_request())) 2350 return; /* should never happen */ 2351 2352 /* 2353 * An optimization so that the buffers are not written one-by-one. 2354 */ 2355 dm_bufio_write_dirty_buffers_async(c); 2356 2357 dm_bufio_lock(c); 2358 2359 while ((b = __get_unclaimed_buffer(c))) 2360 __free_buffer_wake(b); 2361 2362 for (i = 0; i < LIST_SIZE; i++) { 2363 bool warned = false; 2364 2365 cache_iterate(&c->cache, i, warn_leak, &warned); 2366 } 2367 2368 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 2369 while ((b = __get_unclaimed_buffer(c))) 2370 __free_buffer_wake(b); 2371 #endif 2372 2373 for (i = 0; i < LIST_SIZE; i++) 2374 WARN_ON(cache_count(&c->cache, i)); 2375 2376 dm_bufio_unlock(c); 2377 } 2378 2379 static unsigned long get_retain_buffers(struct dm_bufio_client *c) 2380 { 2381 unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes); 2382 2383 if (likely(c->sectors_per_block_bits >= 0)) 2384 retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT; 2385 else 2386 retain_bytes /= c->block_size; 2387 2388 return retain_bytes; 2389 } 2390 2391 static void __scan(struct dm_bufio_client *c) 2392 { 2393 int l; 2394 struct dm_buffer *b; 2395 unsigned long freed = 0; 2396 unsigned long retain_target = get_retain_buffers(c); 2397 unsigned long count = cache_total(&c->cache); 2398 2399 for (l = 0; l < LIST_SIZE; l++) { 2400 while (true) { 2401 if (count - freed <= retain_target) 2402 atomic_long_set(&c->need_shrink, 0); 2403 if (!atomic_long_read(&c->need_shrink)) 2404 break; 2405 2406 b = cache_evict(&c->cache, l, 2407 l == LIST_CLEAN ? is_clean : is_dirty, c); 2408 if (!b) 2409 break; 2410 2411 __make_buffer_clean(b); 2412 __free_buffer_wake(b); 2413 2414 atomic_long_dec(&c->need_shrink); 2415 freed++; 2416 2417 if (unlikely(freed % SCAN_RESCHED_CYCLE == 0)) { 2418 dm_bufio_unlock(c); 2419 cond_resched(); 2420 dm_bufio_lock(c); 2421 } 2422 } 2423 } 2424 } 2425 2426 static void shrink_work(struct work_struct *w) 2427 { 2428 struct dm_bufio_client *c = container_of(w, struct dm_bufio_client, shrink_work); 2429 2430 dm_bufio_lock(c); 2431 __scan(c); 2432 dm_bufio_unlock(c); 2433 } 2434 2435 static unsigned long dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 2436 { 2437 struct dm_bufio_client *c; 2438 2439 c = shrink->private_data; 2440 atomic_long_add(sc->nr_to_scan, &c->need_shrink); 2441 queue_work(dm_bufio_wq, &c->shrink_work); 2442 2443 return sc->nr_to_scan; 2444 } 2445 2446 static unsigned long dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 2447 { 2448 struct dm_bufio_client *c = shrink->private_data; 2449 unsigned long count = cache_total(&c->cache); 2450 unsigned long retain_target = get_retain_buffers(c); 2451 unsigned long queued_for_cleanup = atomic_long_read(&c->need_shrink); 2452 2453 if (unlikely(count < retain_target)) 2454 count = 0; 2455 else 2456 count -= retain_target; 2457 2458 if (unlikely(count < queued_for_cleanup)) 2459 count = 0; 2460 else 2461 count -= queued_for_cleanup; 2462 2463 return count; 2464 } 2465 2466 /* 2467 * Create the buffering interface 2468 */ 2469 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned int block_size, 2470 unsigned int reserved_buffers, unsigned int aux_size, 2471 void (*alloc_callback)(struct dm_buffer *), 2472 void (*write_callback)(struct dm_buffer *), 2473 unsigned int flags) 2474 { 2475 int r; 2476 unsigned int num_locks; 2477 struct dm_bufio_client *c; 2478 char slab_name[64]; 2479 static atomic_t seqno = ATOMIC_INIT(0); 2480 2481 if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) { 2482 DMERR("%s: block size not specified or is not multiple of 512b", __func__); 2483 r = -EINVAL; 2484 goto bad_client; 2485 } 2486 2487 num_locks = dm_num_hash_locks(); 2488 c = kzalloc(sizeof(*c) + (num_locks * sizeof(struct buffer_tree)), GFP_KERNEL); 2489 if (!c) { 2490 r = -ENOMEM; 2491 goto bad_client; 2492 } 2493 cache_init(&c->cache, num_locks, (flags & DM_BUFIO_CLIENT_NO_SLEEP) != 0); 2494 2495 c->bdev = bdev; 2496 c->block_size = block_size; 2497 if (is_power_of_2(block_size)) 2498 c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT; 2499 else 2500 c->sectors_per_block_bits = -1; 2501 2502 c->alloc_callback = alloc_callback; 2503 c->write_callback = write_callback; 2504 2505 if (flags & DM_BUFIO_CLIENT_NO_SLEEP) { 2506 c->no_sleep = true; 2507 static_branch_inc(&no_sleep_enabled); 2508 } 2509 2510 mutex_init(&c->lock); 2511 spin_lock_init(&c->spinlock); 2512 INIT_LIST_HEAD(&c->reserved_buffers); 2513 c->need_reserved_buffers = reserved_buffers; 2514 2515 dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS); 2516 2517 init_waitqueue_head(&c->free_buffer_wait); 2518 c->async_write_error = 0; 2519 2520 c->dm_io = dm_io_client_create(); 2521 if (IS_ERR(c->dm_io)) { 2522 r = PTR_ERR(c->dm_io); 2523 goto bad_dm_io; 2524 } 2525 2526 if (block_size <= KMALLOC_MAX_SIZE && !is_power_of_2(block_size)) { 2527 unsigned int align = min(1U << __ffs(block_size), (unsigned int)PAGE_SIZE); 2528 2529 snprintf(slab_name, sizeof(slab_name), "dm_bufio_cache-%u-%u", 2530 block_size, atomic_inc_return(&seqno)); 2531 c->slab_cache = kmem_cache_create(slab_name, block_size, align, 2532 SLAB_RECLAIM_ACCOUNT, NULL); 2533 if (!c->slab_cache) { 2534 r = -ENOMEM; 2535 goto bad; 2536 } 2537 } 2538 if (aux_size) 2539 snprintf(slab_name, sizeof(slab_name), "dm_bufio_buffer-%u-%u", 2540 aux_size, atomic_inc_return(&seqno)); 2541 else 2542 snprintf(slab_name, sizeof(slab_name), "dm_bufio_buffer-%u", 2543 atomic_inc_return(&seqno)); 2544 c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size, 2545 0, SLAB_RECLAIM_ACCOUNT, NULL); 2546 if (!c->slab_buffer) { 2547 r = -ENOMEM; 2548 goto bad; 2549 } 2550 2551 while (c->need_reserved_buffers) { 2552 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL); 2553 2554 if (!b) { 2555 r = -ENOMEM; 2556 goto bad; 2557 } 2558 __free_buffer_wake(b); 2559 } 2560 2561 INIT_WORK(&c->shrink_work, shrink_work); 2562 atomic_long_set(&c->need_shrink, 0); 2563 2564 c->shrinker = shrinker_alloc(0, "dm-bufio:(%u:%u)", 2565 MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev)); 2566 if (!c->shrinker) { 2567 r = -ENOMEM; 2568 goto bad; 2569 } 2570 2571 c->shrinker->count_objects = dm_bufio_shrink_count; 2572 c->shrinker->scan_objects = dm_bufio_shrink_scan; 2573 c->shrinker->seeks = 1; 2574 c->shrinker->batch = 0; 2575 c->shrinker->private_data = c; 2576 2577 shrinker_register(c->shrinker); 2578 2579 mutex_lock(&dm_bufio_clients_lock); 2580 dm_bufio_client_count++; 2581 list_add(&c->client_list, &dm_bufio_all_clients); 2582 __cache_size_refresh(); 2583 mutex_unlock(&dm_bufio_clients_lock); 2584 2585 return c; 2586 2587 bad: 2588 while (!list_empty(&c->reserved_buffers)) { 2589 struct dm_buffer *b = list_to_buffer(c->reserved_buffers.next); 2590 2591 list_del(&b->lru.list); 2592 free_buffer(b); 2593 } 2594 kmem_cache_destroy(c->slab_cache); 2595 kmem_cache_destroy(c->slab_buffer); 2596 dm_io_client_destroy(c->dm_io); 2597 bad_dm_io: 2598 mutex_destroy(&c->lock); 2599 if (c->no_sleep) 2600 static_branch_dec(&no_sleep_enabled); 2601 kfree(c); 2602 bad_client: 2603 return ERR_PTR(r); 2604 } 2605 EXPORT_SYMBOL_GPL(dm_bufio_client_create); 2606 2607 /* 2608 * Free the buffering interface. 2609 * It is required that there are no references on any buffers. 2610 */ 2611 void dm_bufio_client_destroy(struct dm_bufio_client *c) 2612 { 2613 unsigned int i; 2614 2615 drop_buffers(c); 2616 2617 shrinker_free(c->shrinker); 2618 flush_work(&c->shrink_work); 2619 2620 mutex_lock(&dm_bufio_clients_lock); 2621 2622 list_del(&c->client_list); 2623 dm_bufio_client_count--; 2624 __cache_size_refresh(); 2625 2626 mutex_unlock(&dm_bufio_clients_lock); 2627 2628 WARN_ON(c->need_reserved_buffers); 2629 2630 while (!list_empty(&c->reserved_buffers)) { 2631 struct dm_buffer *b = list_to_buffer(c->reserved_buffers.next); 2632 2633 list_del(&b->lru.list); 2634 free_buffer(b); 2635 } 2636 2637 for (i = 0; i < LIST_SIZE; i++) 2638 if (cache_count(&c->cache, i)) 2639 DMERR("leaked buffer count %d: %lu", i, cache_count(&c->cache, i)); 2640 2641 for (i = 0; i < LIST_SIZE; i++) 2642 WARN_ON(cache_count(&c->cache, i)); 2643 2644 cache_destroy(&c->cache); 2645 kmem_cache_destroy(c->slab_cache); 2646 kmem_cache_destroy(c->slab_buffer); 2647 dm_io_client_destroy(c->dm_io); 2648 mutex_destroy(&c->lock); 2649 if (c->no_sleep) 2650 static_branch_dec(&no_sleep_enabled); 2651 kfree(c); 2652 } 2653 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy); 2654 2655 void dm_bufio_client_reset(struct dm_bufio_client *c) 2656 { 2657 drop_buffers(c); 2658 flush_work(&c->shrink_work); 2659 } 2660 EXPORT_SYMBOL_GPL(dm_bufio_client_reset); 2661 2662 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start) 2663 { 2664 c->start = start; 2665 } 2666 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset); 2667 2668 /*--------------------------------------------------------------*/ 2669 2670 /* 2671 * Global cleanup tries to evict the oldest buffers from across _all_ 2672 * the clients. It does this by repeatedly evicting a few buffers from 2673 * the client that holds the oldest buffer. It's approximate, but hopefully 2674 * good enough. 2675 */ 2676 static struct dm_bufio_client *__pop_client(void) 2677 { 2678 struct list_head *h; 2679 2680 if (list_empty(&dm_bufio_all_clients)) 2681 return NULL; 2682 2683 h = dm_bufio_all_clients.next; 2684 list_del(h); 2685 return container_of(h, struct dm_bufio_client, client_list); 2686 } 2687 2688 /* 2689 * Inserts the client in the global client list based on its 2690 * 'oldest_buffer' field. 2691 */ 2692 static void __insert_client(struct dm_bufio_client *new_client) 2693 { 2694 struct dm_bufio_client *c; 2695 struct list_head *h = dm_bufio_all_clients.next; 2696 2697 while (h != &dm_bufio_all_clients) { 2698 c = container_of(h, struct dm_bufio_client, client_list); 2699 if (time_after_eq(c->oldest_buffer, new_client->oldest_buffer)) 2700 break; 2701 h = h->next; 2702 } 2703 2704 list_add_tail(&new_client->client_list, h); 2705 } 2706 2707 static enum evict_result select_for_evict(struct dm_buffer *b, void *context) 2708 { 2709 /* In no-sleep mode, we cannot wait on IO. */ 2710 if (static_branch_unlikely(&no_sleep_enabled) && b->c->no_sleep) { 2711 if (test_bit_acquire(B_READING, &b->state) || 2712 test_bit(B_WRITING, &b->state) || 2713 test_bit(B_DIRTY, &b->state)) 2714 return ER_DONT_EVICT; 2715 } 2716 return ER_EVICT; 2717 } 2718 2719 static unsigned long __evict_a_few(unsigned long nr_buffers) 2720 { 2721 struct dm_bufio_client *c; 2722 unsigned long oldest_buffer = jiffies; 2723 unsigned long last_accessed; 2724 unsigned long count; 2725 struct dm_buffer *b; 2726 2727 c = __pop_client(); 2728 if (!c) 2729 return 0; 2730 2731 dm_bufio_lock(c); 2732 2733 for (count = 0; count < nr_buffers; count++) { 2734 b = cache_evict(&c->cache, LIST_CLEAN, select_for_evict, NULL); 2735 if (!b) 2736 break; 2737 2738 last_accessed = READ_ONCE(b->last_accessed); 2739 if (time_after_eq(oldest_buffer, last_accessed)) 2740 oldest_buffer = last_accessed; 2741 2742 __make_buffer_clean(b); 2743 __free_buffer_wake(b); 2744 2745 cond_resched(); 2746 } 2747 2748 dm_bufio_unlock(c); 2749 2750 if (count) 2751 c->oldest_buffer = oldest_buffer; 2752 __insert_client(c); 2753 2754 return count; 2755 } 2756 2757 static void check_watermarks(void) 2758 { 2759 LIST_HEAD(write_list); 2760 struct dm_bufio_client *c; 2761 2762 mutex_lock(&dm_bufio_clients_lock); 2763 list_for_each_entry(c, &dm_bufio_all_clients, client_list) { 2764 dm_bufio_lock(c); 2765 __check_watermark(c, &write_list); 2766 dm_bufio_unlock(c); 2767 } 2768 mutex_unlock(&dm_bufio_clients_lock); 2769 2770 __flush_write_list(&write_list); 2771 } 2772 2773 static void evict_old(void) 2774 { 2775 unsigned long threshold = dm_bufio_cache_size - 2776 dm_bufio_cache_size / DM_BUFIO_LOW_WATERMARK_RATIO; 2777 2778 mutex_lock(&dm_bufio_clients_lock); 2779 while (dm_bufio_current_allocated > threshold) { 2780 if (!__evict_a_few(64)) 2781 break; 2782 cond_resched(); 2783 } 2784 mutex_unlock(&dm_bufio_clients_lock); 2785 } 2786 2787 static void do_global_cleanup(struct work_struct *w) 2788 { 2789 check_watermarks(); 2790 evict_old(); 2791 } 2792 2793 /* 2794 *-------------------------------------------------------------- 2795 * Module setup 2796 *-------------------------------------------------------------- 2797 */ 2798 2799 /* 2800 * This is called only once for the whole dm_bufio module. 2801 * It initializes memory limit. 2802 */ 2803 static int __init dm_bufio_init(void) 2804 { 2805 __u64 mem; 2806 2807 dm_bufio_allocated_kmem_cache = 0; 2808 dm_bufio_allocated_kmalloc = 0; 2809 dm_bufio_allocated_get_free_pages = 0; 2810 dm_bufio_allocated_vmalloc = 0; 2811 dm_bufio_current_allocated = 0; 2812 2813 mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(), 2814 DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT; 2815 2816 if (mem > ULONG_MAX) 2817 mem = ULONG_MAX; 2818 2819 #ifdef CONFIG_MMU 2820 if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100)) 2821 mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100); 2822 #endif 2823 2824 dm_bufio_default_cache_size = mem; 2825 2826 mutex_lock(&dm_bufio_clients_lock); 2827 __cache_size_refresh(); 2828 mutex_unlock(&dm_bufio_clients_lock); 2829 2830 dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0); 2831 if (!dm_bufio_wq) 2832 return -ENOMEM; 2833 2834 INIT_WORK(&dm_bufio_replacement_work, do_global_cleanup); 2835 2836 return 0; 2837 } 2838 2839 /* 2840 * This is called once when unloading the dm_bufio module. 2841 */ 2842 static void __exit dm_bufio_exit(void) 2843 { 2844 int bug = 0; 2845 2846 destroy_workqueue(dm_bufio_wq); 2847 2848 if (dm_bufio_client_count) { 2849 DMCRIT("%s: dm_bufio_client_count leaked: %d", 2850 __func__, dm_bufio_client_count); 2851 bug = 1; 2852 } 2853 2854 if (dm_bufio_current_allocated) { 2855 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu", 2856 __func__, dm_bufio_current_allocated); 2857 bug = 1; 2858 } 2859 2860 if (dm_bufio_allocated_get_free_pages) { 2861 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu", 2862 __func__, dm_bufio_allocated_get_free_pages); 2863 bug = 1; 2864 } 2865 2866 if (dm_bufio_allocated_vmalloc) { 2867 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu", 2868 __func__, dm_bufio_allocated_vmalloc); 2869 bug = 1; 2870 } 2871 2872 WARN_ON(bug); /* leaks are not worth crashing the system */ 2873 } 2874 2875 module_init(dm_bufio_init) 2876 module_exit(dm_bufio_exit) 2877 2878 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, 0644); 2879 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache"); 2880 2881 module_param_named(max_age_seconds, dm_bufio_max_age, uint, 0644); 2882 MODULE_PARM_DESC(max_age_seconds, "No longer does anything"); 2883 2884 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, 0644); 2885 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory"); 2886 2887 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, 0644); 2888 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory"); 2889 2890 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, 0444); 2891 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc"); 2892 2893 module_param_named(allocated_kmalloc_bytes, dm_bufio_allocated_kmalloc, ulong, 0444); 2894 MODULE_PARM_DESC(allocated_kmalloc_bytes, "Memory allocated with kmalloc_alloc"); 2895 2896 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, 0444); 2897 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages"); 2898 2899 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, 0444); 2900 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc"); 2901 2902 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, 0444); 2903 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache"); 2904 2905 MODULE_AUTHOR("Mikulas Patocka <dm-devel@lists.linux.dev>"); 2906 MODULE_DESCRIPTION(DM_NAME " buffered I/O library"); 2907 MODULE_LICENSE("GPL"); 2908