1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * A fairly generic DMA-API to IOMMU-API glue layer. 4 * 5 * Copyright (C) 2014-2015 ARM Ltd. 6 * 7 * based in part on arch/arm/mm/dma-mapping.c: 8 * Copyright (C) 2000-2004 Russell King 9 */ 10 11 #include <linux/acpi_iort.h> 12 #include <linux/atomic.h> 13 #include <linux/crash_dump.h> 14 #include <linux/device.h> 15 #include <linux/dma-direct.h> 16 #include <linux/dma-map-ops.h> 17 #include <linux/gfp.h> 18 #include <linux/huge_mm.h> 19 #include <linux/iommu.h> 20 #include <linux/iommu-dma.h> 21 #include <linux/iova.h> 22 #include <linux/irq.h> 23 #include <linux/list_sort.h> 24 #include <linux/memremap.h> 25 #include <linux/mm.h> 26 #include <linux/mutex.h> 27 #include <linux/msi.h> 28 #include <linux/of_iommu.h> 29 #include <linux/pci.h> 30 #include <linux/scatterlist.h> 31 #include <linux/spinlock.h> 32 #include <linux/swiotlb.h> 33 #include <linux/vmalloc.h> 34 #include <trace/events/swiotlb.h> 35 36 #include "dma-iommu.h" 37 #include "iommu-pages.h" 38 39 struct iommu_dma_msi_page { 40 struct list_head list; 41 dma_addr_t iova; 42 phys_addr_t phys; 43 }; 44 45 enum iommu_dma_queue_type { 46 IOMMU_DMA_OPTS_PER_CPU_QUEUE, 47 IOMMU_DMA_OPTS_SINGLE_QUEUE, 48 }; 49 50 struct iommu_dma_options { 51 enum iommu_dma_queue_type qt; 52 size_t fq_size; 53 unsigned int fq_timeout; 54 }; 55 56 struct iommu_dma_cookie { 57 struct iova_domain iovad; 58 struct list_head msi_page_list; 59 /* Flush queue */ 60 union { 61 struct iova_fq *single_fq; 62 struct iova_fq __percpu *percpu_fq; 63 }; 64 /* Number of TLB flushes that have been started */ 65 atomic64_t fq_flush_start_cnt; 66 /* Number of TLB flushes that have been finished */ 67 atomic64_t fq_flush_finish_cnt; 68 /* Timer to regularily empty the flush queues */ 69 struct timer_list fq_timer; 70 /* 1 when timer is active, 0 when not */ 71 atomic_t fq_timer_on; 72 /* Domain for flush queue callback; NULL if flush queue not in use */ 73 struct iommu_domain *fq_domain; 74 /* Options for dma-iommu use */ 75 struct iommu_dma_options options; 76 }; 77 78 struct iommu_dma_msi_cookie { 79 dma_addr_t msi_iova; 80 struct list_head msi_page_list; 81 }; 82 83 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled); 84 bool iommu_dma_forcedac __read_mostly; 85 86 static int __init iommu_dma_forcedac_setup(char *str) 87 { 88 int ret = kstrtobool(str, &iommu_dma_forcedac); 89 90 if (!ret && iommu_dma_forcedac) 91 pr_info("Forcing DAC for PCI devices\n"); 92 return ret; 93 } 94 early_param("iommu.forcedac", iommu_dma_forcedac_setup); 95 96 /* Number of entries per flush queue */ 97 #define IOVA_DEFAULT_FQ_SIZE 256 98 #define IOVA_SINGLE_FQ_SIZE 32768 99 100 /* Timeout (in ms) after which entries are flushed from the queue */ 101 #define IOVA_DEFAULT_FQ_TIMEOUT 10 102 #define IOVA_SINGLE_FQ_TIMEOUT 1000 103 104 /* Flush queue entry for deferred flushing */ 105 struct iova_fq_entry { 106 unsigned long iova_pfn; 107 unsigned long pages; 108 struct list_head freelist; 109 u64 counter; /* Flush counter when this entry was added */ 110 }; 111 112 /* Per-CPU flush queue structure */ 113 struct iova_fq { 114 spinlock_t lock; 115 unsigned int head, tail; 116 unsigned int mod_mask; 117 struct iova_fq_entry entries[]; 118 }; 119 120 #define fq_ring_for_each(i, fq) \ 121 for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) & (fq)->mod_mask) 122 123 static inline bool fq_full(struct iova_fq *fq) 124 { 125 assert_spin_locked(&fq->lock); 126 return (((fq->tail + 1) & fq->mod_mask) == fq->head); 127 } 128 129 static inline unsigned int fq_ring_add(struct iova_fq *fq) 130 { 131 unsigned int idx = fq->tail; 132 133 assert_spin_locked(&fq->lock); 134 135 fq->tail = (idx + 1) & fq->mod_mask; 136 137 return idx; 138 } 139 140 static void fq_ring_free_locked(struct iommu_dma_cookie *cookie, struct iova_fq *fq) 141 { 142 u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt); 143 unsigned int idx; 144 145 assert_spin_locked(&fq->lock); 146 147 fq_ring_for_each(idx, fq) { 148 149 if (fq->entries[idx].counter >= counter) 150 break; 151 152 iommu_put_pages_list(&fq->entries[idx].freelist); 153 free_iova_fast(&cookie->iovad, 154 fq->entries[idx].iova_pfn, 155 fq->entries[idx].pages); 156 157 fq->head = (fq->head + 1) & fq->mod_mask; 158 } 159 } 160 161 static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq) 162 { 163 unsigned long flags; 164 165 spin_lock_irqsave(&fq->lock, flags); 166 fq_ring_free_locked(cookie, fq); 167 spin_unlock_irqrestore(&fq->lock, flags); 168 } 169 170 static void fq_flush_iotlb(struct iommu_dma_cookie *cookie) 171 { 172 atomic64_inc(&cookie->fq_flush_start_cnt); 173 cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain); 174 atomic64_inc(&cookie->fq_flush_finish_cnt); 175 } 176 177 static void fq_flush_timeout(struct timer_list *t) 178 { 179 struct iommu_dma_cookie *cookie = from_timer(cookie, t, fq_timer); 180 int cpu; 181 182 atomic_set(&cookie->fq_timer_on, 0); 183 fq_flush_iotlb(cookie); 184 185 if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) { 186 fq_ring_free(cookie, cookie->single_fq); 187 } else { 188 for_each_possible_cpu(cpu) 189 fq_ring_free(cookie, per_cpu_ptr(cookie->percpu_fq, cpu)); 190 } 191 } 192 193 static void queue_iova(struct iommu_dma_cookie *cookie, 194 unsigned long pfn, unsigned long pages, 195 struct list_head *freelist) 196 { 197 struct iova_fq *fq; 198 unsigned long flags; 199 unsigned int idx; 200 201 /* 202 * Order against the IOMMU driver's pagetable update from unmapping 203 * @pte, to guarantee that fq_flush_iotlb() observes that if called 204 * from a different CPU before we release the lock below. Full barrier 205 * so it also pairs with iommu_dma_init_fq() to avoid seeing partially 206 * written fq state here. 207 */ 208 smp_mb(); 209 210 if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) 211 fq = cookie->single_fq; 212 else 213 fq = raw_cpu_ptr(cookie->percpu_fq); 214 215 spin_lock_irqsave(&fq->lock, flags); 216 217 /* 218 * First remove all entries from the flush queue that have already been 219 * flushed out on another CPU. This makes the fq_full() check below less 220 * likely to be true. 221 */ 222 fq_ring_free_locked(cookie, fq); 223 224 if (fq_full(fq)) { 225 fq_flush_iotlb(cookie); 226 fq_ring_free_locked(cookie, fq); 227 } 228 229 idx = fq_ring_add(fq); 230 231 fq->entries[idx].iova_pfn = pfn; 232 fq->entries[idx].pages = pages; 233 fq->entries[idx].counter = atomic64_read(&cookie->fq_flush_start_cnt); 234 list_splice(freelist, &fq->entries[idx].freelist); 235 236 spin_unlock_irqrestore(&fq->lock, flags); 237 238 /* Avoid false sharing as much as possible. */ 239 if (!atomic_read(&cookie->fq_timer_on) && 240 !atomic_xchg(&cookie->fq_timer_on, 1)) 241 mod_timer(&cookie->fq_timer, 242 jiffies + msecs_to_jiffies(cookie->options.fq_timeout)); 243 } 244 245 static void iommu_dma_free_fq_single(struct iova_fq *fq) 246 { 247 int idx; 248 249 fq_ring_for_each(idx, fq) 250 iommu_put_pages_list(&fq->entries[idx].freelist); 251 vfree(fq); 252 } 253 254 static void iommu_dma_free_fq_percpu(struct iova_fq __percpu *percpu_fq) 255 { 256 int cpu, idx; 257 258 /* The IOVAs will be torn down separately, so just free our queued pages */ 259 for_each_possible_cpu(cpu) { 260 struct iova_fq *fq = per_cpu_ptr(percpu_fq, cpu); 261 262 fq_ring_for_each(idx, fq) 263 iommu_put_pages_list(&fq->entries[idx].freelist); 264 } 265 266 free_percpu(percpu_fq); 267 } 268 269 static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie) 270 { 271 if (!cookie->fq_domain) 272 return; 273 274 timer_delete_sync(&cookie->fq_timer); 275 if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) 276 iommu_dma_free_fq_single(cookie->single_fq); 277 else 278 iommu_dma_free_fq_percpu(cookie->percpu_fq); 279 } 280 281 static void iommu_dma_init_one_fq(struct iova_fq *fq, size_t fq_size) 282 { 283 int i; 284 285 fq->head = 0; 286 fq->tail = 0; 287 fq->mod_mask = fq_size - 1; 288 289 spin_lock_init(&fq->lock); 290 291 for (i = 0; i < fq_size; i++) 292 INIT_LIST_HEAD(&fq->entries[i].freelist); 293 } 294 295 static int iommu_dma_init_fq_single(struct iommu_dma_cookie *cookie) 296 { 297 size_t fq_size = cookie->options.fq_size; 298 struct iova_fq *queue; 299 300 queue = vmalloc(struct_size(queue, entries, fq_size)); 301 if (!queue) 302 return -ENOMEM; 303 iommu_dma_init_one_fq(queue, fq_size); 304 cookie->single_fq = queue; 305 306 return 0; 307 } 308 309 static int iommu_dma_init_fq_percpu(struct iommu_dma_cookie *cookie) 310 { 311 size_t fq_size = cookie->options.fq_size; 312 struct iova_fq __percpu *queue; 313 int cpu; 314 315 queue = __alloc_percpu(struct_size(queue, entries, fq_size), 316 __alignof__(*queue)); 317 if (!queue) 318 return -ENOMEM; 319 320 for_each_possible_cpu(cpu) 321 iommu_dma_init_one_fq(per_cpu_ptr(queue, cpu), fq_size); 322 cookie->percpu_fq = queue; 323 return 0; 324 } 325 326 /* sysfs updates are serialised by the mutex of the group owning @domain */ 327 int iommu_dma_init_fq(struct iommu_domain *domain) 328 { 329 struct iommu_dma_cookie *cookie = domain->iova_cookie; 330 int rc; 331 332 if (cookie->fq_domain) 333 return 0; 334 335 atomic64_set(&cookie->fq_flush_start_cnt, 0); 336 atomic64_set(&cookie->fq_flush_finish_cnt, 0); 337 338 if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) 339 rc = iommu_dma_init_fq_single(cookie); 340 else 341 rc = iommu_dma_init_fq_percpu(cookie); 342 343 if (rc) { 344 pr_warn("iova flush queue initialization failed\n"); 345 return -ENOMEM; 346 } 347 348 timer_setup(&cookie->fq_timer, fq_flush_timeout, 0); 349 atomic_set(&cookie->fq_timer_on, 0); 350 /* 351 * Prevent incomplete fq state being observable. Pairs with path from 352 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova() 353 */ 354 smp_wmb(); 355 WRITE_ONCE(cookie->fq_domain, domain); 356 return 0; 357 } 358 359 /** 360 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain 361 * @domain: IOMMU domain to prepare for DMA-API usage 362 */ 363 int iommu_get_dma_cookie(struct iommu_domain *domain) 364 { 365 struct iommu_dma_cookie *cookie; 366 367 if (domain->cookie_type != IOMMU_COOKIE_NONE) 368 return -EEXIST; 369 370 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); 371 if (!cookie) 372 return -ENOMEM; 373 374 INIT_LIST_HEAD(&cookie->msi_page_list); 375 domain->cookie_type = IOMMU_COOKIE_DMA_IOVA; 376 domain->iova_cookie = cookie; 377 return 0; 378 } 379 380 /** 381 * iommu_get_msi_cookie - Acquire just MSI remapping resources 382 * @domain: IOMMU domain to prepare 383 * @base: Start address of IOVA region for MSI mappings 384 * 385 * Users who manage their own IOVA allocation and do not want DMA API support, 386 * but would still like to take advantage of automatic MSI remapping, can use 387 * this to initialise their own domain appropriately. Users should reserve a 388 * contiguous IOVA region, starting at @base, large enough to accommodate the 389 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address 390 * used by the devices attached to @domain. 391 */ 392 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base) 393 { 394 struct iommu_dma_msi_cookie *cookie; 395 396 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 397 return -EINVAL; 398 399 if (domain->cookie_type != IOMMU_COOKIE_NONE) 400 return -EEXIST; 401 402 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); 403 if (!cookie) 404 return -ENOMEM; 405 406 cookie->msi_iova = base; 407 INIT_LIST_HEAD(&cookie->msi_page_list); 408 domain->cookie_type = IOMMU_COOKIE_DMA_MSI; 409 domain->msi_cookie = cookie; 410 return 0; 411 } 412 EXPORT_SYMBOL(iommu_get_msi_cookie); 413 414 /** 415 * iommu_put_dma_cookie - Release a domain's DMA mapping resources 416 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() 417 */ 418 void iommu_put_dma_cookie(struct iommu_domain *domain) 419 { 420 struct iommu_dma_cookie *cookie = domain->iova_cookie; 421 struct iommu_dma_msi_page *msi, *tmp; 422 423 if (cookie->iovad.granule) { 424 iommu_dma_free_fq(cookie); 425 put_iova_domain(&cookie->iovad); 426 } 427 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) 428 kfree(msi); 429 kfree(cookie); 430 } 431 432 /** 433 * iommu_put_msi_cookie - Release a domain's MSI mapping resources 434 * @domain: IOMMU domain previously prepared by iommu_get_msi_cookie() 435 */ 436 void iommu_put_msi_cookie(struct iommu_domain *domain) 437 { 438 struct iommu_dma_msi_cookie *cookie = domain->msi_cookie; 439 struct iommu_dma_msi_page *msi, *tmp; 440 441 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) 442 kfree(msi); 443 kfree(cookie); 444 } 445 446 /** 447 * iommu_dma_get_resv_regions - Reserved region driver helper 448 * @dev: Device from iommu_get_resv_regions() 449 * @list: Reserved region list from iommu_get_resv_regions() 450 * 451 * IOMMU drivers can use this to implement their .get_resv_regions callback 452 * for general non-IOMMU-specific reservations. Currently, this covers GICv3 453 * ITS region reservation on ACPI based ARM platforms that may require HW MSI 454 * reservation. 455 */ 456 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list) 457 { 458 459 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode)) 460 iort_iommu_get_resv_regions(dev, list); 461 462 if (dev->of_node) 463 of_iommu_get_resv_regions(dev, list); 464 } 465 EXPORT_SYMBOL(iommu_dma_get_resv_regions); 466 467 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie, 468 phys_addr_t start, phys_addr_t end) 469 { 470 struct iova_domain *iovad = &cookie->iovad; 471 struct iommu_dma_msi_page *msi_page; 472 int i, num_pages; 473 474 start -= iova_offset(iovad, start); 475 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad); 476 477 for (i = 0; i < num_pages; i++) { 478 msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL); 479 if (!msi_page) 480 return -ENOMEM; 481 482 msi_page->phys = start; 483 msi_page->iova = start; 484 INIT_LIST_HEAD(&msi_page->list); 485 list_add(&msi_page->list, &cookie->msi_page_list); 486 start += iovad->granule; 487 } 488 489 return 0; 490 } 491 492 static int iommu_dma_ranges_sort(void *priv, const struct list_head *a, 493 const struct list_head *b) 494 { 495 struct resource_entry *res_a = list_entry(a, typeof(*res_a), node); 496 struct resource_entry *res_b = list_entry(b, typeof(*res_b), node); 497 498 return res_a->res->start > res_b->res->start; 499 } 500 501 static int iova_reserve_pci_windows(struct pci_dev *dev, 502 struct iova_domain *iovad) 503 { 504 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 505 struct resource_entry *window; 506 unsigned long lo, hi; 507 phys_addr_t start = 0, end; 508 509 resource_list_for_each_entry(window, &bridge->windows) { 510 if (resource_type(window->res) != IORESOURCE_MEM) 511 continue; 512 513 lo = iova_pfn(iovad, window->res->start - window->offset); 514 hi = iova_pfn(iovad, window->res->end - window->offset); 515 reserve_iova(iovad, lo, hi); 516 } 517 518 /* Get reserved DMA windows from host bridge */ 519 list_sort(NULL, &bridge->dma_ranges, iommu_dma_ranges_sort); 520 resource_list_for_each_entry(window, &bridge->dma_ranges) { 521 end = window->res->start - window->offset; 522 resv_iova: 523 if (end > start) { 524 lo = iova_pfn(iovad, start); 525 hi = iova_pfn(iovad, end); 526 reserve_iova(iovad, lo, hi); 527 } else if (end < start) { 528 /* DMA ranges should be non-overlapping */ 529 dev_err(&dev->dev, 530 "Failed to reserve IOVA [%pa-%pa]\n", 531 &start, &end); 532 return -EINVAL; 533 } 534 535 start = window->res->end - window->offset + 1; 536 /* If window is last entry */ 537 if (window->node.next == &bridge->dma_ranges && 538 end != ~(phys_addr_t)0) { 539 end = ~(phys_addr_t)0; 540 goto resv_iova; 541 } 542 } 543 544 return 0; 545 } 546 547 static int iova_reserve_iommu_regions(struct device *dev, 548 struct iommu_domain *domain) 549 { 550 struct iommu_dma_cookie *cookie = domain->iova_cookie; 551 struct iova_domain *iovad = &cookie->iovad; 552 struct iommu_resv_region *region; 553 LIST_HEAD(resv_regions); 554 int ret = 0; 555 556 if (dev_is_pci(dev)) { 557 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad); 558 if (ret) 559 return ret; 560 } 561 562 iommu_get_resv_regions(dev, &resv_regions); 563 list_for_each_entry(region, &resv_regions, list) { 564 unsigned long lo, hi; 565 566 /* We ARE the software that manages these! */ 567 if (region->type == IOMMU_RESV_SW_MSI) 568 continue; 569 570 lo = iova_pfn(iovad, region->start); 571 hi = iova_pfn(iovad, region->start + region->length - 1); 572 reserve_iova(iovad, lo, hi); 573 574 if (region->type == IOMMU_RESV_MSI) 575 ret = cookie_init_hw_msi_region(cookie, region->start, 576 region->start + region->length); 577 if (ret) 578 break; 579 } 580 iommu_put_resv_regions(dev, &resv_regions); 581 582 return ret; 583 } 584 585 static bool dev_is_untrusted(struct device *dev) 586 { 587 return dev_is_pci(dev) && to_pci_dev(dev)->untrusted; 588 } 589 590 static bool dev_use_swiotlb(struct device *dev, size_t size, 591 enum dma_data_direction dir) 592 { 593 return IS_ENABLED(CONFIG_SWIOTLB) && 594 (dev_is_untrusted(dev) || 595 dma_kmalloc_needs_bounce(dev, size, dir)); 596 } 597 598 static bool dev_use_sg_swiotlb(struct device *dev, struct scatterlist *sg, 599 int nents, enum dma_data_direction dir) 600 { 601 struct scatterlist *s; 602 int i; 603 604 if (!IS_ENABLED(CONFIG_SWIOTLB)) 605 return false; 606 607 if (dev_is_untrusted(dev)) 608 return true; 609 610 /* 611 * If kmalloc() buffers are not DMA-safe for this device and 612 * direction, check the individual lengths in the sg list. If any 613 * element is deemed unsafe, use the swiotlb for bouncing. 614 */ 615 if (!dma_kmalloc_safe(dev, dir)) { 616 for_each_sg(sg, s, nents, i) 617 if (!dma_kmalloc_size_aligned(s->length)) 618 return true; 619 } 620 621 return false; 622 } 623 624 /** 625 * iommu_dma_init_options - Initialize dma-iommu options 626 * @options: The options to be initialized 627 * @dev: Device the options are set for 628 * 629 * This allows tuning dma-iommu specific to device properties 630 */ 631 static void iommu_dma_init_options(struct iommu_dma_options *options, 632 struct device *dev) 633 { 634 /* Shadowing IOTLB flushes do better with a single large queue */ 635 if (dev->iommu->shadow_on_flush) { 636 options->qt = IOMMU_DMA_OPTS_SINGLE_QUEUE; 637 options->fq_timeout = IOVA_SINGLE_FQ_TIMEOUT; 638 options->fq_size = IOVA_SINGLE_FQ_SIZE; 639 } else { 640 options->qt = IOMMU_DMA_OPTS_PER_CPU_QUEUE; 641 options->fq_size = IOVA_DEFAULT_FQ_SIZE; 642 options->fq_timeout = IOVA_DEFAULT_FQ_TIMEOUT; 643 } 644 } 645 646 /** 647 * iommu_dma_init_domain - Initialise a DMA mapping domain 648 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() 649 * @dev: Device the domain is being initialised for 650 * 651 * If the geometry and dma_range_map include address 0, we reserve that page 652 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but 653 * any change which could make prior IOVAs invalid will fail. 654 */ 655 static int iommu_dma_init_domain(struct iommu_domain *domain, struct device *dev) 656 { 657 struct iommu_dma_cookie *cookie = domain->iova_cookie; 658 const struct bus_dma_region *map = dev->dma_range_map; 659 unsigned long order, base_pfn; 660 struct iova_domain *iovad; 661 int ret; 662 663 if (!cookie || domain->cookie_type != IOMMU_COOKIE_DMA_IOVA) 664 return -EINVAL; 665 666 iovad = &cookie->iovad; 667 668 /* Use the smallest supported page size for IOVA granularity */ 669 order = __ffs(domain->pgsize_bitmap); 670 base_pfn = 1; 671 672 /* Check the domain allows at least some access to the device... */ 673 if (map) { 674 if (dma_range_map_min(map) > domain->geometry.aperture_end || 675 dma_range_map_max(map) < domain->geometry.aperture_start) { 676 pr_warn("specified DMA range outside IOMMU capability\n"); 677 return -EFAULT; 678 } 679 } 680 /* ...then finally give it a kicking to make sure it fits */ 681 base_pfn = max_t(unsigned long, base_pfn, 682 domain->geometry.aperture_start >> order); 683 684 /* start_pfn is always nonzero for an already-initialised domain */ 685 if (iovad->start_pfn) { 686 if (1UL << order != iovad->granule || 687 base_pfn != iovad->start_pfn) { 688 pr_warn("Incompatible range for DMA domain\n"); 689 return -EFAULT; 690 } 691 692 return 0; 693 } 694 695 init_iova_domain(iovad, 1UL << order, base_pfn); 696 ret = iova_domain_init_rcaches(iovad); 697 if (ret) 698 return ret; 699 700 iommu_dma_init_options(&cookie->options, dev); 701 702 /* If the FQ fails we can simply fall back to strict mode */ 703 if (domain->type == IOMMU_DOMAIN_DMA_FQ && 704 (!device_iommu_capable(dev, IOMMU_CAP_DEFERRED_FLUSH) || iommu_dma_init_fq(domain))) 705 domain->type = IOMMU_DOMAIN_DMA; 706 707 return iova_reserve_iommu_regions(dev, domain); 708 } 709 710 /** 711 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API 712 * page flags. 713 * @dir: Direction of DMA transfer 714 * @coherent: Is the DMA master cache-coherent? 715 * @attrs: DMA attributes for the mapping 716 * 717 * Return: corresponding IOMMU API page protection flags 718 */ 719 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent, 720 unsigned long attrs) 721 { 722 int prot = coherent ? IOMMU_CACHE : 0; 723 724 if (attrs & DMA_ATTR_PRIVILEGED) 725 prot |= IOMMU_PRIV; 726 727 switch (dir) { 728 case DMA_BIDIRECTIONAL: 729 return prot | IOMMU_READ | IOMMU_WRITE; 730 case DMA_TO_DEVICE: 731 return prot | IOMMU_READ; 732 case DMA_FROM_DEVICE: 733 return prot | IOMMU_WRITE; 734 default: 735 return 0; 736 } 737 } 738 739 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain, 740 size_t size, u64 dma_limit, struct device *dev) 741 { 742 struct iommu_dma_cookie *cookie = domain->iova_cookie; 743 struct iova_domain *iovad = &cookie->iovad; 744 unsigned long shift, iova_len, iova; 745 746 if (domain->cookie_type == IOMMU_COOKIE_DMA_MSI) { 747 domain->msi_cookie->msi_iova += size; 748 return domain->msi_cookie->msi_iova - size; 749 } 750 751 shift = iova_shift(iovad); 752 iova_len = size >> shift; 753 754 dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit); 755 756 if (domain->geometry.force_aperture) 757 dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end); 758 759 /* 760 * Try to use all the 32-bit PCI addresses first. The original SAC vs. 761 * DAC reasoning loses relevance with PCIe, but enough hardware and 762 * firmware bugs are still lurking out there that it's safest not to 763 * venture into the 64-bit space until necessary. 764 * 765 * If your device goes wrong after seeing the notice then likely either 766 * its driver is not setting DMA masks accurately, the hardware has 767 * some inherent bug in handling >32-bit addresses, or not all the 768 * expected address bits are wired up between the device and the IOMMU. 769 */ 770 if (dma_limit > DMA_BIT_MASK(32) && dev->iommu->pci_32bit_workaround) { 771 iova = alloc_iova_fast(iovad, iova_len, 772 DMA_BIT_MASK(32) >> shift, false); 773 if (iova) 774 goto done; 775 776 dev->iommu->pci_32bit_workaround = false; 777 dev_notice(dev, "Using %d-bit DMA addresses\n", bits_per(dma_limit)); 778 } 779 780 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, true); 781 done: 782 return (dma_addr_t)iova << shift; 783 } 784 785 static void iommu_dma_free_iova(struct iommu_domain *domain, dma_addr_t iova, 786 size_t size, struct iommu_iotlb_gather *gather) 787 { 788 struct iova_domain *iovad = &domain->iova_cookie->iovad; 789 790 /* The MSI case is only ever cleaning up its most recent allocation */ 791 if (domain->cookie_type == IOMMU_COOKIE_DMA_MSI) 792 domain->msi_cookie->msi_iova -= size; 793 else if (gather && gather->queued) 794 queue_iova(domain->iova_cookie, iova_pfn(iovad, iova), 795 size >> iova_shift(iovad), 796 &gather->freelist); 797 else 798 free_iova_fast(iovad, iova_pfn(iovad, iova), 799 size >> iova_shift(iovad)); 800 } 801 802 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr, 803 size_t size) 804 { 805 struct iommu_domain *domain = iommu_get_dma_domain(dev); 806 struct iommu_dma_cookie *cookie = domain->iova_cookie; 807 struct iova_domain *iovad = &cookie->iovad; 808 size_t iova_off = iova_offset(iovad, dma_addr); 809 struct iommu_iotlb_gather iotlb_gather; 810 size_t unmapped; 811 812 dma_addr -= iova_off; 813 size = iova_align(iovad, size + iova_off); 814 iommu_iotlb_gather_init(&iotlb_gather); 815 iotlb_gather.queued = READ_ONCE(cookie->fq_domain); 816 817 unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather); 818 WARN_ON(unmapped != size); 819 820 if (!iotlb_gather.queued) 821 iommu_iotlb_sync(domain, &iotlb_gather); 822 iommu_dma_free_iova(domain, dma_addr, size, &iotlb_gather); 823 } 824 825 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys, 826 size_t size, int prot, u64 dma_mask) 827 { 828 struct iommu_domain *domain = iommu_get_dma_domain(dev); 829 struct iommu_dma_cookie *cookie = domain->iova_cookie; 830 struct iova_domain *iovad = &cookie->iovad; 831 size_t iova_off = iova_offset(iovad, phys); 832 dma_addr_t iova; 833 834 if (static_branch_unlikely(&iommu_deferred_attach_enabled) && 835 iommu_deferred_attach(dev, domain)) 836 return DMA_MAPPING_ERROR; 837 838 /* If anyone ever wants this we'd need support in the IOVA allocator */ 839 if (dev_WARN_ONCE(dev, dma_get_min_align_mask(dev) > iova_mask(iovad), 840 "Unsupported alignment constraint\n")) 841 return DMA_MAPPING_ERROR; 842 843 size = iova_align(iovad, size + iova_off); 844 845 iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev); 846 if (!iova) 847 return DMA_MAPPING_ERROR; 848 849 if (iommu_map(domain, iova, phys - iova_off, size, prot, GFP_ATOMIC)) { 850 iommu_dma_free_iova(domain, iova, size, NULL); 851 return DMA_MAPPING_ERROR; 852 } 853 return iova + iova_off; 854 } 855 856 static void __iommu_dma_free_pages(struct page **pages, int count) 857 { 858 while (count--) 859 __free_page(pages[count]); 860 kvfree(pages); 861 } 862 863 static struct page **__iommu_dma_alloc_pages(struct device *dev, 864 unsigned int count, unsigned long order_mask, gfp_t gfp) 865 { 866 struct page **pages; 867 unsigned int i = 0, nid = dev_to_node(dev); 868 869 order_mask &= GENMASK(MAX_PAGE_ORDER, 0); 870 if (!order_mask) 871 return NULL; 872 873 pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL); 874 if (!pages) 875 return NULL; 876 877 /* IOMMU can map any pages, so himem can also be used here */ 878 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 879 880 while (count) { 881 struct page *page = NULL; 882 unsigned int order_size; 883 884 /* 885 * Higher-order allocations are a convenience rather 886 * than a necessity, hence using __GFP_NORETRY until 887 * falling back to minimum-order allocations. 888 */ 889 for (order_mask &= GENMASK(__fls(count), 0); 890 order_mask; order_mask &= ~order_size) { 891 unsigned int order = __fls(order_mask); 892 gfp_t alloc_flags = gfp; 893 894 order_size = 1U << order; 895 if (order_mask > order_size) 896 alloc_flags |= __GFP_NORETRY; 897 page = alloc_pages_node(nid, alloc_flags, order); 898 if (!page) 899 continue; 900 if (order) 901 split_page(page, order); 902 break; 903 } 904 if (!page) { 905 __iommu_dma_free_pages(pages, i); 906 return NULL; 907 } 908 count -= order_size; 909 while (order_size--) 910 pages[i++] = page++; 911 } 912 return pages; 913 } 914 915 /* 916 * If size is less than PAGE_SIZE, then a full CPU page will be allocated, 917 * but an IOMMU which supports smaller pages might not map the whole thing. 918 */ 919 static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev, 920 size_t size, struct sg_table *sgt, gfp_t gfp, unsigned long attrs) 921 { 922 struct iommu_domain *domain = iommu_get_dma_domain(dev); 923 struct iommu_dma_cookie *cookie = domain->iova_cookie; 924 struct iova_domain *iovad = &cookie->iovad; 925 bool coherent = dev_is_dma_coherent(dev); 926 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 927 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap; 928 struct page **pages; 929 dma_addr_t iova; 930 ssize_t ret; 931 932 if (static_branch_unlikely(&iommu_deferred_attach_enabled) && 933 iommu_deferred_attach(dev, domain)) 934 return NULL; 935 936 min_size = alloc_sizes & -alloc_sizes; 937 if (min_size < PAGE_SIZE) { 938 min_size = PAGE_SIZE; 939 alloc_sizes |= PAGE_SIZE; 940 } else { 941 size = ALIGN(size, min_size); 942 } 943 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) 944 alloc_sizes = min_size; 945 946 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 947 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT, 948 gfp); 949 if (!pages) 950 return NULL; 951 952 size = iova_align(iovad, size); 953 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev); 954 if (!iova) 955 goto out_free_pages; 956 957 /* 958 * Remove the zone/policy flags from the GFP - these are applied to the 959 * __iommu_dma_alloc_pages() but are not used for the supporting 960 * internal allocations that follow. 961 */ 962 gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM | __GFP_COMP); 963 964 if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, gfp)) 965 goto out_free_iova; 966 967 if (!(ioprot & IOMMU_CACHE)) { 968 struct scatterlist *sg; 969 int i; 970 971 for_each_sg(sgt->sgl, sg, sgt->orig_nents, i) 972 arch_dma_prep_coherent(sg_page(sg), sg->length); 973 } 974 975 ret = iommu_map_sg(domain, iova, sgt->sgl, sgt->orig_nents, ioprot, 976 gfp); 977 if (ret < 0 || ret < size) 978 goto out_free_sg; 979 980 sgt->sgl->dma_address = iova; 981 sgt->sgl->dma_length = size; 982 return pages; 983 984 out_free_sg: 985 sg_free_table(sgt); 986 out_free_iova: 987 iommu_dma_free_iova(domain, iova, size, NULL); 988 out_free_pages: 989 __iommu_dma_free_pages(pages, count); 990 return NULL; 991 } 992 993 static void *iommu_dma_alloc_remap(struct device *dev, size_t size, 994 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) 995 { 996 struct page **pages; 997 struct sg_table sgt; 998 void *vaddr; 999 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); 1000 1001 pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, attrs); 1002 if (!pages) 1003 return NULL; 1004 *dma_handle = sgt.sgl->dma_address; 1005 sg_free_table(&sgt); 1006 vaddr = dma_common_pages_remap(pages, size, prot, 1007 __builtin_return_address(0)); 1008 if (!vaddr) 1009 goto out_unmap; 1010 return vaddr; 1011 1012 out_unmap: 1013 __iommu_dma_unmap(dev, *dma_handle, size); 1014 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 1015 return NULL; 1016 } 1017 1018 /* 1019 * This is the actual return value from the iommu_dma_alloc_noncontiguous. 1020 * 1021 * The users of the DMA API should only care about the sg_table, but to make 1022 * the DMA-API internal vmaping and freeing easier we stash away the page 1023 * array as well (except for the fallback case). This can go away any time, 1024 * e.g. when a vmap-variant that takes a scatterlist comes along. 1025 */ 1026 struct dma_sgt_handle { 1027 struct sg_table sgt; 1028 struct page **pages; 1029 }; 1030 #define sgt_handle(sgt) \ 1031 container_of((sgt), struct dma_sgt_handle, sgt) 1032 1033 struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev, size_t size, 1034 enum dma_data_direction dir, gfp_t gfp, unsigned long attrs) 1035 { 1036 struct dma_sgt_handle *sh; 1037 1038 sh = kmalloc(sizeof(*sh), gfp); 1039 if (!sh) 1040 return NULL; 1041 1042 sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp, attrs); 1043 if (!sh->pages) { 1044 kfree(sh); 1045 return NULL; 1046 } 1047 return &sh->sgt; 1048 } 1049 1050 void iommu_dma_free_noncontiguous(struct device *dev, size_t size, 1051 struct sg_table *sgt, enum dma_data_direction dir) 1052 { 1053 struct dma_sgt_handle *sh = sgt_handle(sgt); 1054 1055 __iommu_dma_unmap(dev, sgt->sgl->dma_address, size); 1056 __iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 1057 sg_free_table(&sh->sgt); 1058 kfree(sh); 1059 } 1060 1061 void *iommu_dma_vmap_noncontiguous(struct device *dev, size_t size, 1062 struct sg_table *sgt) 1063 { 1064 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1065 1066 return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL); 1067 } 1068 1069 int iommu_dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma, 1070 size_t size, struct sg_table *sgt) 1071 { 1072 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1073 1074 if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff) 1075 return -ENXIO; 1076 return vm_map_pages(vma, sgt_handle(sgt)->pages, count); 1077 } 1078 1079 void iommu_dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, 1080 size_t size, enum dma_data_direction dir) 1081 { 1082 phys_addr_t phys; 1083 1084 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir)) 1085 return; 1086 1087 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); 1088 if (!dev_is_dma_coherent(dev)) 1089 arch_sync_dma_for_cpu(phys, size, dir); 1090 1091 swiotlb_sync_single_for_cpu(dev, phys, size, dir); 1092 } 1093 1094 void iommu_dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, 1095 size_t size, enum dma_data_direction dir) 1096 { 1097 phys_addr_t phys; 1098 1099 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir)) 1100 return; 1101 1102 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); 1103 swiotlb_sync_single_for_device(dev, phys, size, dir); 1104 1105 if (!dev_is_dma_coherent(dev)) 1106 arch_sync_dma_for_device(phys, size, dir); 1107 } 1108 1109 void iommu_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, 1110 int nelems, enum dma_data_direction dir) 1111 { 1112 struct scatterlist *sg; 1113 int i; 1114 1115 if (sg_dma_is_swiotlb(sgl)) 1116 for_each_sg(sgl, sg, nelems, i) 1117 iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg), 1118 sg->length, dir); 1119 else if (!dev_is_dma_coherent(dev)) 1120 for_each_sg(sgl, sg, nelems, i) 1121 arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir); 1122 } 1123 1124 void iommu_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sgl, 1125 int nelems, enum dma_data_direction dir) 1126 { 1127 struct scatterlist *sg; 1128 int i; 1129 1130 if (sg_dma_is_swiotlb(sgl)) 1131 for_each_sg(sgl, sg, nelems, i) 1132 iommu_dma_sync_single_for_device(dev, 1133 sg_dma_address(sg), 1134 sg->length, dir); 1135 else if (!dev_is_dma_coherent(dev)) 1136 for_each_sg(sgl, sg, nelems, i) 1137 arch_sync_dma_for_device(sg_phys(sg), sg->length, dir); 1138 } 1139 1140 dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page, 1141 unsigned long offset, size_t size, enum dma_data_direction dir, 1142 unsigned long attrs) 1143 { 1144 phys_addr_t phys = page_to_phys(page) + offset; 1145 bool coherent = dev_is_dma_coherent(dev); 1146 int prot = dma_info_to_prot(dir, coherent, attrs); 1147 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1148 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1149 struct iova_domain *iovad = &cookie->iovad; 1150 dma_addr_t iova, dma_mask = dma_get_mask(dev); 1151 1152 /* 1153 * If both the physical buffer start address and size are 1154 * page aligned, we don't need to use a bounce page. 1155 */ 1156 if (dev_use_swiotlb(dev, size, dir) && 1157 iova_offset(iovad, phys | size)) { 1158 if (!is_swiotlb_active(dev)) { 1159 dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n"); 1160 return DMA_MAPPING_ERROR; 1161 } 1162 1163 trace_swiotlb_bounced(dev, phys, size); 1164 1165 phys = swiotlb_tbl_map_single(dev, phys, size, 1166 iova_mask(iovad), dir, attrs); 1167 1168 if (phys == DMA_MAPPING_ERROR) 1169 return DMA_MAPPING_ERROR; 1170 1171 /* 1172 * Untrusted devices should not see padding areas with random 1173 * leftover kernel data, so zero the pre- and post-padding. 1174 * swiotlb_tbl_map_single() has initialized the bounce buffer 1175 * proper to the contents of the original memory buffer. 1176 */ 1177 if (dev_is_untrusted(dev)) { 1178 size_t start, virt = (size_t)phys_to_virt(phys); 1179 1180 /* Pre-padding */ 1181 start = iova_align_down(iovad, virt); 1182 memset((void *)start, 0, virt - start); 1183 1184 /* Post-padding */ 1185 start = virt + size; 1186 memset((void *)start, 0, 1187 iova_align(iovad, start) - start); 1188 } 1189 } 1190 1191 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1192 arch_sync_dma_for_device(phys, size, dir); 1193 1194 iova = __iommu_dma_map(dev, phys, size, prot, dma_mask); 1195 if (iova == DMA_MAPPING_ERROR) 1196 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs); 1197 return iova; 1198 } 1199 1200 void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle, 1201 size_t size, enum dma_data_direction dir, unsigned long attrs) 1202 { 1203 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1204 phys_addr_t phys; 1205 1206 phys = iommu_iova_to_phys(domain, dma_handle); 1207 if (WARN_ON(!phys)) 1208 return; 1209 1210 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev)) 1211 arch_sync_dma_for_cpu(phys, size, dir); 1212 1213 __iommu_dma_unmap(dev, dma_handle, size); 1214 1215 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs); 1216 } 1217 1218 /* 1219 * Prepare a successfully-mapped scatterlist to give back to the caller. 1220 * 1221 * At this point the segments are already laid out by iommu_dma_map_sg() to 1222 * avoid individually crossing any boundaries, so we merely need to check a 1223 * segment's start address to avoid concatenating across one. 1224 */ 1225 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents, 1226 dma_addr_t dma_addr) 1227 { 1228 struct scatterlist *s, *cur = sg; 1229 unsigned long seg_mask = dma_get_seg_boundary(dev); 1230 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev); 1231 int i, count = 0; 1232 1233 for_each_sg(sg, s, nents, i) { 1234 /* Restore this segment's original unaligned fields first */ 1235 dma_addr_t s_dma_addr = sg_dma_address(s); 1236 unsigned int s_iova_off = sg_dma_address(s); 1237 unsigned int s_length = sg_dma_len(s); 1238 unsigned int s_iova_len = s->length; 1239 1240 sg_dma_address(s) = DMA_MAPPING_ERROR; 1241 sg_dma_len(s) = 0; 1242 1243 if (sg_dma_is_bus_address(s)) { 1244 if (i > 0) 1245 cur = sg_next(cur); 1246 1247 sg_dma_unmark_bus_address(s); 1248 sg_dma_address(cur) = s_dma_addr; 1249 sg_dma_len(cur) = s_length; 1250 sg_dma_mark_bus_address(cur); 1251 count++; 1252 cur_len = 0; 1253 continue; 1254 } 1255 1256 s->offset += s_iova_off; 1257 s->length = s_length; 1258 1259 /* 1260 * Now fill in the real DMA data. If... 1261 * - there is a valid output segment to append to 1262 * - and this segment starts on an IOVA page boundary 1263 * - but doesn't fall at a segment boundary 1264 * - and wouldn't make the resulting output segment too long 1265 */ 1266 if (cur_len && !s_iova_off && (dma_addr & seg_mask) && 1267 (max_len - cur_len >= s_length)) { 1268 /* ...then concatenate it with the previous one */ 1269 cur_len += s_length; 1270 } else { 1271 /* Otherwise start the next output segment */ 1272 if (i > 0) 1273 cur = sg_next(cur); 1274 cur_len = s_length; 1275 count++; 1276 1277 sg_dma_address(cur) = dma_addr + s_iova_off; 1278 } 1279 1280 sg_dma_len(cur) = cur_len; 1281 dma_addr += s_iova_len; 1282 1283 if (s_length + s_iova_off < s_iova_len) 1284 cur_len = 0; 1285 } 1286 return count; 1287 } 1288 1289 /* 1290 * If mapping failed, then just restore the original list, 1291 * but making sure the DMA fields are invalidated. 1292 */ 1293 static void __invalidate_sg(struct scatterlist *sg, int nents) 1294 { 1295 struct scatterlist *s; 1296 int i; 1297 1298 for_each_sg(sg, s, nents, i) { 1299 if (sg_dma_is_bus_address(s)) { 1300 sg_dma_unmark_bus_address(s); 1301 } else { 1302 if (sg_dma_address(s) != DMA_MAPPING_ERROR) 1303 s->offset += sg_dma_address(s); 1304 if (sg_dma_len(s)) 1305 s->length = sg_dma_len(s); 1306 } 1307 sg_dma_address(s) = DMA_MAPPING_ERROR; 1308 sg_dma_len(s) = 0; 1309 } 1310 } 1311 1312 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg, 1313 int nents, enum dma_data_direction dir, unsigned long attrs) 1314 { 1315 struct scatterlist *s; 1316 int i; 1317 1318 for_each_sg(sg, s, nents, i) 1319 iommu_dma_unmap_page(dev, sg_dma_address(s), 1320 sg_dma_len(s), dir, attrs); 1321 } 1322 1323 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg, 1324 int nents, enum dma_data_direction dir, unsigned long attrs) 1325 { 1326 struct scatterlist *s; 1327 int i; 1328 1329 sg_dma_mark_swiotlb(sg); 1330 1331 for_each_sg(sg, s, nents, i) { 1332 sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s), 1333 s->offset, s->length, dir, attrs); 1334 if (sg_dma_address(s) == DMA_MAPPING_ERROR) 1335 goto out_unmap; 1336 sg_dma_len(s) = s->length; 1337 } 1338 1339 return nents; 1340 1341 out_unmap: 1342 iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); 1343 return -EIO; 1344 } 1345 1346 /* 1347 * The DMA API client is passing in a scatterlist which could describe 1348 * any old buffer layout, but the IOMMU API requires everything to be 1349 * aligned to IOMMU pages. Hence the need for this complicated bit of 1350 * impedance-matching, to be able to hand off a suitably-aligned list, 1351 * but still preserve the original offsets and sizes for the caller. 1352 */ 1353 int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1354 enum dma_data_direction dir, unsigned long attrs) 1355 { 1356 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1357 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1358 struct iova_domain *iovad = &cookie->iovad; 1359 struct scatterlist *s, *prev = NULL; 1360 int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs); 1361 struct pci_p2pdma_map_state p2pdma_state = {}; 1362 enum pci_p2pdma_map_type map; 1363 dma_addr_t iova; 1364 size_t iova_len = 0; 1365 unsigned long mask = dma_get_seg_boundary(dev); 1366 ssize_t ret; 1367 int i; 1368 1369 if (static_branch_unlikely(&iommu_deferred_attach_enabled)) { 1370 ret = iommu_deferred_attach(dev, domain); 1371 if (ret) 1372 goto out; 1373 } 1374 1375 if (dev_use_sg_swiotlb(dev, sg, nents, dir)) 1376 return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs); 1377 1378 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1379 iommu_dma_sync_sg_for_device(dev, sg, nents, dir); 1380 1381 /* 1382 * Work out how much IOVA space we need, and align the segments to 1383 * IOVA granules for the IOMMU driver to handle. With some clever 1384 * trickery we can modify the list in-place, but reversibly, by 1385 * stashing the unaligned parts in the as-yet-unused DMA fields. 1386 */ 1387 for_each_sg(sg, s, nents, i) { 1388 size_t s_iova_off = iova_offset(iovad, s->offset); 1389 size_t s_length = s->length; 1390 size_t pad_len = (mask - iova_len + 1) & mask; 1391 1392 if (is_pci_p2pdma_page(sg_page(s))) { 1393 map = pci_p2pdma_map_segment(&p2pdma_state, dev, s); 1394 switch (map) { 1395 case PCI_P2PDMA_MAP_BUS_ADDR: 1396 /* 1397 * iommu_map_sg() will skip this segment as 1398 * it is marked as a bus address, 1399 * __finalise_sg() will copy the dma address 1400 * into the output segment. 1401 */ 1402 continue; 1403 case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: 1404 /* 1405 * Mapping through host bridge should be 1406 * mapped with regular IOVAs, thus we 1407 * do nothing here and continue below. 1408 */ 1409 break; 1410 default: 1411 ret = -EREMOTEIO; 1412 goto out_restore_sg; 1413 } 1414 } 1415 1416 sg_dma_address(s) = s_iova_off; 1417 sg_dma_len(s) = s_length; 1418 s->offset -= s_iova_off; 1419 s_length = iova_align(iovad, s_length + s_iova_off); 1420 s->length = s_length; 1421 1422 /* 1423 * Due to the alignment of our single IOVA allocation, we can 1424 * depend on these assumptions about the segment boundary mask: 1425 * - If mask size >= IOVA size, then the IOVA range cannot 1426 * possibly fall across a boundary, so we don't care. 1427 * - If mask size < IOVA size, then the IOVA range must start 1428 * exactly on a boundary, therefore we can lay things out 1429 * based purely on segment lengths without needing to know 1430 * the actual addresses beforehand. 1431 * - The mask must be a power of 2, so pad_len == 0 if 1432 * iova_len == 0, thus we cannot dereference prev the first 1433 * time through here (i.e. before it has a meaningful value). 1434 */ 1435 if (pad_len && pad_len < s_length - 1) { 1436 prev->length += pad_len; 1437 iova_len += pad_len; 1438 } 1439 1440 iova_len += s_length; 1441 prev = s; 1442 } 1443 1444 if (!iova_len) 1445 return __finalise_sg(dev, sg, nents, 0); 1446 1447 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev); 1448 if (!iova) { 1449 ret = -ENOMEM; 1450 goto out_restore_sg; 1451 } 1452 1453 /* 1454 * We'll leave any physical concatenation to the IOMMU driver's 1455 * implementation - it knows better than we do. 1456 */ 1457 ret = iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC); 1458 if (ret < 0 || ret < iova_len) 1459 goto out_free_iova; 1460 1461 return __finalise_sg(dev, sg, nents, iova); 1462 1463 out_free_iova: 1464 iommu_dma_free_iova(domain, iova, iova_len, NULL); 1465 out_restore_sg: 1466 __invalidate_sg(sg, nents); 1467 out: 1468 if (ret != -ENOMEM && ret != -EREMOTEIO) 1469 return -EINVAL; 1470 return ret; 1471 } 1472 1473 void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1474 enum dma_data_direction dir, unsigned long attrs) 1475 { 1476 dma_addr_t end = 0, start; 1477 struct scatterlist *tmp; 1478 int i; 1479 1480 if (sg_dma_is_swiotlb(sg)) { 1481 iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs); 1482 return; 1483 } 1484 1485 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1486 iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir); 1487 1488 /* 1489 * The scatterlist segments are mapped into a single 1490 * contiguous IOVA allocation, the start and end points 1491 * just have to be determined. 1492 */ 1493 for_each_sg(sg, tmp, nents, i) { 1494 if (sg_dma_is_bus_address(tmp)) { 1495 sg_dma_unmark_bus_address(tmp); 1496 continue; 1497 } 1498 1499 if (sg_dma_len(tmp) == 0) 1500 break; 1501 1502 start = sg_dma_address(tmp); 1503 break; 1504 } 1505 1506 nents -= i; 1507 for_each_sg(tmp, tmp, nents, i) { 1508 if (sg_dma_is_bus_address(tmp)) { 1509 sg_dma_unmark_bus_address(tmp); 1510 continue; 1511 } 1512 1513 if (sg_dma_len(tmp) == 0) 1514 break; 1515 1516 end = sg_dma_address(tmp) + sg_dma_len(tmp); 1517 } 1518 1519 if (end) 1520 __iommu_dma_unmap(dev, start, end - start); 1521 } 1522 1523 dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys, 1524 size_t size, enum dma_data_direction dir, unsigned long attrs) 1525 { 1526 return __iommu_dma_map(dev, phys, size, 1527 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO, 1528 dma_get_mask(dev)); 1529 } 1530 1531 void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle, 1532 size_t size, enum dma_data_direction dir, unsigned long attrs) 1533 { 1534 __iommu_dma_unmap(dev, handle, size); 1535 } 1536 1537 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr) 1538 { 1539 size_t alloc_size = PAGE_ALIGN(size); 1540 int count = alloc_size >> PAGE_SHIFT; 1541 struct page *page = NULL, **pages = NULL; 1542 1543 /* Non-coherent atomic allocation? Easy */ 1544 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 1545 dma_free_from_pool(dev, cpu_addr, alloc_size)) 1546 return; 1547 1548 if (is_vmalloc_addr(cpu_addr)) { 1549 /* 1550 * If it the address is remapped, then it's either non-coherent 1551 * or highmem CMA, or an iommu_dma_alloc_remap() construction. 1552 */ 1553 pages = dma_common_find_pages(cpu_addr); 1554 if (!pages) 1555 page = vmalloc_to_page(cpu_addr); 1556 dma_common_free_remap(cpu_addr, alloc_size); 1557 } else { 1558 /* Lowmem means a coherent atomic or CMA allocation */ 1559 page = virt_to_page(cpu_addr); 1560 } 1561 1562 if (pages) 1563 __iommu_dma_free_pages(pages, count); 1564 if (page) 1565 dma_free_contiguous(dev, page, alloc_size); 1566 } 1567 1568 void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr, 1569 dma_addr_t handle, unsigned long attrs) 1570 { 1571 __iommu_dma_unmap(dev, handle, size); 1572 __iommu_dma_free(dev, size, cpu_addr); 1573 } 1574 1575 static void *iommu_dma_alloc_pages(struct device *dev, size_t size, 1576 struct page **pagep, gfp_t gfp, unsigned long attrs) 1577 { 1578 bool coherent = dev_is_dma_coherent(dev); 1579 size_t alloc_size = PAGE_ALIGN(size); 1580 int node = dev_to_node(dev); 1581 struct page *page = NULL; 1582 void *cpu_addr; 1583 1584 page = dma_alloc_contiguous(dev, alloc_size, gfp); 1585 if (!page) 1586 page = alloc_pages_node(node, gfp, get_order(alloc_size)); 1587 if (!page) 1588 return NULL; 1589 1590 if (!coherent || PageHighMem(page)) { 1591 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); 1592 1593 cpu_addr = dma_common_contiguous_remap(page, alloc_size, 1594 prot, __builtin_return_address(0)); 1595 if (!cpu_addr) 1596 goto out_free_pages; 1597 1598 if (!coherent) 1599 arch_dma_prep_coherent(page, size); 1600 } else { 1601 cpu_addr = page_address(page); 1602 } 1603 1604 *pagep = page; 1605 memset(cpu_addr, 0, alloc_size); 1606 return cpu_addr; 1607 out_free_pages: 1608 dma_free_contiguous(dev, page, alloc_size); 1609 return NULL; 1610 } 1611 1612 void *iommu_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 1613 gfp_t gfp, unsigned long attrs) 1614 { 1615 bool coherent = dev_is_dma_coherent(dev); 1616 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 1617 struct page *page = NULL; 1618 void *cpu_addr; 1619 1620 gfp |= __GFP_ZERO; 1621 1622 if (gfpflags_allow_blocking(gfp) && 1623 !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) { 1624 return iommu_dma_alloc_remap(dev, size, handle, gfp, attrs); 1625 } 1626 1627 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 1628 !gfpflags_allow_blocking(gfp) && !coherent) 1629 page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr, 1630 gfp, NULL); 1631 else 1632 cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs); 1633 if (!cpu_addr) 1634 return NULL; 1635 1636 *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot, 1637 dev->coherent_dma_mask); 1638 if (*handle == DMA_MAPPING_ERROR) { 1639 __iommu_dma_free(dev, size, cpu_addr); 1640 return NULL; 1641 } 1642 1643 return cpu_addr; 1644 } 1645 1646 int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma, 1647 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1648 unsigned long attrs) 1649 { 1650 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1651 unsigned long pfn, off = vma->vm_pgoff; 1652 int ret; 1653 1654 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); 1655 1656 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 1657 return ret; 1658 1659 if (off >= nr_pages || vma_pages(vma) > nr_pages - off) 1660 return -ENXIO; 1661 1662 if (is_vmalloc_addr(cpu_addr)) { 1663 struct page **pages = dma_common_find_pages(cpu_addr); 1664 1665 if (pages) 1666 return vm_map_pages(vma, pages, nr_pages); 1667 pfn = vmalloc_to_pfn(cpu_addr); 1668 } else { 1669 pfn = page_to_pfn(virt_to_page(cpu_addr)); 1670 } 1671 1672 return remap_pfn_range(vma, vma->vm_start, pfn + off, 1673 vma->vm_end - vma->vm_start, 1674 vma->vm_page_prot); 1675 } 1676 1677 int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 1678 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1679 unsigned long attrs) 1680 { 1681 struct page *page; 1682 int ret; 1683 1684 if (is_vmalloc_addr(cpu_addr)) { 1685 struct page **pages = dma_common_find_pages(cpu_addr); 1686 1687 if (pages) { 1688 return sg_alloc_table_from_pages(sgt, pages, 1689 PAGE_ALIGN(size) >> PAGE_SHIFT, 1690 0, size, GFP_KERNEL); 1691 } 1692 1693 page = vmalloc_to_page(cpu_addr); 1694 } else { 1695 page = virt_to_page(cpu_addr); 1696 } 1697 1698 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 1699 if (!ret) 1700 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 1701 return ret; 1702 } 1703 1704 unsigned long iommu_dma_get_merge_boundary(struct device *dev) 1705 { 1706 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1707 1708 return (1UL << __ffs(domain->pgsize_bitmap)) - 1; 1709 } 1710 1711 size_t iommu_dma_opt_mapping_size(void) 1712 { 1713 return iova_rcache_range(); 1714 } 1715 1716 size_t iommu_dma_max_mapping_size(struct device *dev) 1717 { 1718 if (dev_is_untrusted(dev)) 1719 return swiotlb_max_mapping_size(dev); 1720 1721 return SIZE_MAX; 1722 } 1723 1724 void iommu_setup_dma_ops(struct device *dev) 1725 { 1726 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1727 1728 if (dev_is_pci(dev)) 1729 dev->iommu->pci_32bit_workaround = !iommu_dma_forcedac; 1730 1731 dev->dma_iommu = iommu_is_dma_domain(domain); 1732 if (dev->dma_iommu && iommu_dma_init_domain(domain, dev)) 1733 goto out_err; 1734 1735 return; 1736 out_err: 1737 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n", 1738 dev_name(dev)); 1739 dev->dma_iommu = false; 1740 } 1741 1742 static bool has_msi_cookie(const struct iommu_domain *domain) 1743 { 1744 return domain && (domain->cookie_type == IOMMU_COOKIE_DMA_IOVA || 1745 domain->cookie_type == IOMMU_COOKIE_DMA_MSI); 1746 } 1747 1748 static size_t cookie_msi_granule(const struct iommu_domain *domain) 1749 { 1750 switch (domain->cookie_type) { 1751 case IOMMU_COOKIE_DMA_IOVA: 1752 return domain->iova_cookie->iovad.granule; 1753 case IOMMU_COOKIE_DMA_MSI: 1754 return PAGE_SIZE; 1755 default: 1756 BUG(); 1757 } 1758 } 1759 1760 static struct list_head *cookie_msi_pages(const struct iommu_domain *domain) 1761 { 1762 switch (domain->cookie_type) { 1763 case IOMMU_COOKIE_DMA_IOVA: 1764 return &domain->iova_cookie->msi_page_list; 1765 case IOMMU_COOKIE_DMA_MSI: 1766 return &domain->msi_cookie->msi_page_list; 1767 default: 1768 BUG(); 1769 } 1770 } 1771 1772 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev, 1773 phys_addr_t msi_addr, struct iommu_domain *domain) 1774 { 1775 struct list_head *msi_page_list = cookie_msi_pages(domain); 1776 struct iommu_dma_msi_page *msi_page; 1777 dma_addr_t iova; 1778 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; 1779 size_t size = cookie_msi_granule(domain); 1780 1781 msi_addr &= ~(phys_addr_t)(size - 1); 1782 list_for_each_entry(msi_page, msi_page_list, list) 1783 if (msi_page->phys == msi_addr) 1784 return msi_page; 1785 1786 msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL); 1787 if (!msi_page) 1788 return NULL; 1789 1790 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev); 1791 if (!iova) 1792 goto out_free_page; 1793 1794 if (iommu_map(domain, iova, msi_addr, size, prot, GFP_KERNEL)) 1795 goto out_free_iova; 1796 1797 INIT_LIST_HEAD(&msi_page->list); 1798 msi_page->phys = msi_addr; 1799 msi_page->iova = iova; 1800 list_add(&msi_page->list, msi_page_list); 1801 return msi_page; 1802 1803 out_free_iova: 1804 iommu_dma_free_iova(domain, iova, size, NULL); 1805 out_free_page: 1806 kfree(msi_page); 1807 return NULL; 1808 } 1809 1810 int iommu_dma_sw_msi(struct iommu_domain *domain, struct msi_desc *desc, 1811 phys_addr_t msi_addr) 1812 { 1813 struct device *dev = msi_desc_to_dev(desc); 1814 const struct iommu_dma_msi_page *msi_page; 1815 1816 if (!has_msi_cookie(domain)) { 1817 msi_desc_set_iommu_msi_iova(desc, 0, 0); 1818 return 0; 1819 } 1820 1821 iommu_group_mutex_assert(dev); 1822 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain); 1823 if (!msi_page) 1824 return -ENOMEM; 1825 1826 msi_desc_set_iommu_msi_iova(desc, msi_page->iova, 1827 ilog2(cookie_msi_granule(domain))); 1828 return 0; 1829 } 1830 1831 static int iommu_dma_init(void) 1832 { 1833 if (is_kdump_kernel()) 1834 static_branch_enable(&iommu_deferred_attach_enabled); 1835 1836 return iova_cache_get(); 1837 } 1838 arch_initcall(iommu_dma_init); 1839