1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include "xe_device.h" 7 8 #include <linux/aperture.h> 9 #include <linux/delay.h> 10 #include <linux/fault-inject.h> 11 #include <linux/units.h> 12 13 #include <drm/drm_atomic_helper.h> 14 #include <drm/drm_client.h> 15 #include <drm/drm_gem_ttm_helper.h> 16 #include <drm/drm_ioctl.h> 17 #include <drm/drm_managed.h> 18 #include <drm/drm_print.h> 19 #include <uapi/drm/xe_drm.h> 20 21 #include "display/xe_display.h" 22 #include "instructions/xe_gpu_commands.h" 23 #include "regs/xe_gt_regs.h" 24 #include "regs/xe_regs.h" 25 #include "xe_bo.h" 26 #include "xe_bo_evict.h" 27 #include "xe_debugfs.h" 28 #include "xe_devcoredump.h" 29 #include "xe_device_sysfs.h" 30 #include "xe_dma_buf.h" 31 #include "xe_drm_client.h" 32 #include "xe_drv.h" 33 #include "xe_exec.h" 34 #include "xe_exec_queue.h" 35 #include "xe_force_wake.h" 36 #include "xe_ggtt.h" 37 #include "xe_gsc_proxy.h" 38 #include "xe_gt.h" 39 #include "xe_gt_mcr.h" 40 #include "xe_gt_printk.h" 41 #include "xe_gt_sriov_vf.h" 42 #include "xe_guc.h" 43 #include "xe_hw_engine_group.h" 44 #include "xe_hwmon.h" 45 #include "xe_irq.h" 46 #include "xe_memirq.h" 47 #include "xe_mmio.h" 48 #include "xe_module.h" 49 #include "xe_oa.h" 50 #include "xe_observation.h" 51 #include "xe_pat.h" 52 #include "xe_pcode.h" 53 #include "xe_pm.h" 54 #include "xe_pmu.h" 55 #include "xe_pxp.h" 56 #include "xe_query.h" 57 #include "xe_shrinker.h" 58 #include "xe_survivability_mode.h" 59 #include "xe_sriov.h" 60 #include "xe_tile.h" 61 #include "xe_ttm_stolen_mgr.h" 62 #include "xe_ttm_sys_mgr.h" 63 #include "xe_vm.h" 64 #include "xe_vram.h" 65 #include "xe_vsec.h" 66 #include "xe_wait_user_fence.h" 67 #include "xe_wa.h" 68 69 #include <generated/xe_wa_oob.h> 70 71 static int xe_file_open(struct drm_device *dev, struct drm_file *file) 72 { 73 struct xe_device *xe = to_xe_device(dev); 74 struct xe_drm_client *client; 75 struct xe_file *xef; 76 int ret = -ENOMEM; 77 struct task_struct *task = NULL; 78 79 xef = kzalloc(sizeof(*xef), GFP_KERNEL); 80 if (!xef) 81 return ret; 82 83 client = xe_drm_client_alloc(); 84 if (!client) { 85 kfree(xef); 86 return ret; 87 } 88 89 xef->drm = file; 90 xef->client = client; 91 xef->xe = xe; 92 93 mutex_init(&xef->vm.lock); 94 xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1); 95 96 mutex_init(&xef->exec_queue.lock); 97 xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1); 98 99 file->driver_priv = xef; 100 kref_init(&xef->refcount); 101 102 task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID); 103 if (task) { 104 xef->process_name = kstrdup(task->comm, GFP_KERNEL); 105 xef->pid = task->pid; 106 put_task_struct(task); 107 } 108 109 return 0; 110 } 111 112 static void xe_file_destroy(struct kref *ref) 113 { 114 struct xe_file *xef = container_of(ref, struct xe_file, refcount); 115 116 xa_destroy(&xef->exec_queue.xa); 117 mutex_destroy(&xef->exec_queue.lock); 118 xa_destroy(&xef->vm.xa); 119 mutex_destroy(&xef->vm.lock); 120 121 xe_drm_client_put(xef->client); 122 kfree(xef->process_name); 123 kfree(xef); 124 } 125 126 /** 127 * xe_file_get() - Take a reference to the xe file object 128 * @xef: Pointer to the xe file 129 * 130 * Anyone with a pointer to xef must take a reference to the xe file 131 * object using this call. 132 * 133 * Return: xe file pointer 134 */ 135 struct xe_file *xe_file_get(struct xe_file *xef) 136 { 137 kref_get(&xef->refcount); 138 return xef; 139 } 140 141 /** 142 * xe_file_put() - Drop a reference to the xe file object 143 * @xef: Pointer to the xe file 144 * 145 * Used to drop reference to the xef object 146 */ 147 void xe_file_put(struct xe_file *xef) 148 { 149 kref_put(&xef->refcount, xe_file_destroy); 150 } 151 152 static void xe_file_close(struct drm_device *dev, struct drm_file *file) 153 { 154 struct xe_device *xe = to_xe_device(dev); 155 struct xe_file *xef = file->driver_priv; 156 struct xe_vm *vm; 157 struct xe_exec_queue *q; 158 unsigned long idx; 159 160 xe_pm_runtime_get(xe); 161 162 /* 163 * No need for exec_queue.lock here as there is no contention for it 164 * when FD is closing as IOCTLs presumably can't be modifying the 165 * xarray. Taking exec_queue.lock here causes undue dependency on 166 * vm->lock taken during xe_exec_queue_kill(). 167 */ 168 xa_for_each(&xef->exec_queue.xa, idx, q) { 169 if (q->vm && q->hwe->hw_engine_group) 170 xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q); 171 xe_exec_queue_kill(q); 172 xe_exec_queue_put(q); 173 } 174 xa_for_each(&xef->vm.xa, idx, vm) 175 xe_vm_close_and_put(vm); 176 177 xe_file_put(xef); 178 179 xe_pm_runtime_put(xe); 180 } 181 182 static const struct drm_ioctl_desc xe_ioctls[] = { 183 DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW), 184 DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW), 185 DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl, 186 DRM_RENDER_ALLOW), 187 DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW), 188 DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW), 189 DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW), 190 DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW), 191 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl, 192 DRM_RENDER_ALLOW), 193 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl, 194 DRM_RENDER_ALLOW), 195 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl, 196 DRM_RENDER_ALLOW), 197 DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl, 198 DRM_RENDER_ALLOW), 199 DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW), 200 }; 201 202 static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 203 { 204 struct drm_file *file_priv = file->private_data; 205 struct xe_device *xe = to_xe_device(file_priv->minor->dev); 206 long ret; 207 208 if (xe_device_wedged(xe)) 209 return -ECANCELED; 210 211 ret = xe_pm_runtime_get_ioctl(xe); 212 if (ret >= 0) 213 ret = drm_ioctl(file, cmd, arg); 214 xe_pm_runtime_put(xe); 215 216 return ret; 217 } 218 219 #ifdef CONFIG_COMPAT 220 static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 221 { 222 struct drm_file *file_priv = file->private_data; 223 struct xe_device *xe = to_xe_device(file_priv->minor->dev); 224 long ret; 225 226 if (xe_device_wedged(xe)) 227 return -ECANCELED; 228 229 ret = xe_pm_runtime_get_ioctl(xe); 230 if (ret >= 0) 231 ret = drm_compat_ioctl(file, cmd, arg); 232 xe_pm_runtime_put(xe); 233 234 return ret; 235 } 236 #else 237 /* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */ 238 #define xe_drm_compat_ioctl NULL 239 #endif 240 241 static void barrier_open(struct vm_area_struct *vma) 242 { 243 drm_dev_get(vma->vm_private_data); 244 } 245 246 static void barrier_close(struct vm_area_struct *vma) 247 { 248 drm_dev_put(vma->vm_private_data); 249 } 250 251 static void barrier_release_dummy_page(struct drm_device *dev, void *res) 252 { 253 struct page *dummy_page = (struct page *)res; 254 255 __free_page(dummy_page); 256 } 257 258 static vm_fault_t barrier_fault(struct vm_fault *vmf) 259 { 260 struct drm_device *dev = vmf->vma->vm_private_data; 261 struct vm_area_struct *vma = vmf->vma; 262 vm_fault_t ret = VM_FAULT_NOPAGE; 263 pgprot_t prot; 264 int idx; 265 266 prot = vm_get_page_prot(vma->vm_flags); 267 268 if (drm_dev_enter(dev, &idx)) { 269 unsigned long pfn; 270 271 #define LAST_DB_PAGE_OFFSET 0x7ff001 272 pfn = PHYS_PFN(pci_resource_start(to_pci_dev(dev->dev), 0) + 273 LAST_DB_PAGE_OFFSET); 274 ret = vmf_insert_pfn_prot(vma, vma->vm_start, pfn, 275 pgprot_noncached(prot)); 276 drm_dev_exit(idx); 277 } else { 278 struct page *page; 279 280 /* Allocate new dummy page to map all the VA range in this VMA to it*/ 281 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 282 if (!page) 283 return VM_FAULT_OOM; 284 285 /* Set the page to be freed using drmm release action */ 286 if (drmm_add_action_or_reset(dev, barrier_release_dummy_page, page)) 287 return VM_FAULT_OOM; 288 289 ret = vmf_insert_pfn_prot(vma, vma->vm_start, page_to_pfn(page), 290 prot); 291 } 292 293 return ret; 294 } 295 296 static const struct vm_operations_struct vm_ops_barrier = { 297 .open = barrier_open, 298 .close = barrier_close, 299 .fault = barrier_fault, 300 }; 301 302 static int xe_pci_barrier_mmap(struct file *filp, 303 struct vm_area_struct *vma) 304 { 305 struct drm_file *priv = filp->private_data; 306 struct drm_device *dev = priv->minor->dev; 307 struct xe_device *xe = to_xe_device(dev); 308 309 if (!IS_DGFX(xe)) 310 return -EINVAL; 311 312 if (vma->vm_end - vma->vm_start > SZ_4K) 313 return -EINVAL; 314 315 if (is_cow_mapping(vma->vm_flags)) 316 return -EINVAL; 317 318 if (vma->vm_flags & (VM_READ | VM_EXEC)) 319 return -EINVAL; 320 321 vm_flags_clear(vma, VM_MAYREAD | VM_MAYEXEC); 322 vm_flags_set(vma, VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP | VM_IO); 323 vma->vm_ops = &vm_ops_barrier; 324 vma->vm_private_data = dev; 325 drm_dev_get(vma->vm_private_data); 326 327 return 0; 328 } 329 330 static int xe_mmap(struct file *filp, struct vm_area_struct *vma) 331 { 332 struct drm_file *priv = filp->private_data; 333 struct drm_device *dev = priv->minor->dev; 334 335 if (drm_dev_is_unplugged(dev)) 336 return -ENODEV; 337 338 switch (vma->vm_pgoff) { 339 case XE_PCI_BARRIER_MMAP_OFFSET >> XE_PTE_SHIFT: 340 return xe_pci_barrier_mmap(filp, vma); 341 } 342 343 return drm_gem_mmap(filp, vma); 344 } 345 346 static const struct file_operations xe_driver_fops = { 347 .owner = THIS_MODULE, 348 .open = drm_open, 349 .release = drm_release_noglobal, 350 .unlocked_ioctl = xe_drm_ioctl, 351 .mmap = xe_mmap, 352 .poll = drm_poll, 353 .read = drm_read, 354 .compat_ioctl = xe_drm_compat_ioctl, 355 .llseek = noop_llseek, 356 #ifdef CONFIG_PROC_FS 357 .show_fdinfo = drm_show_fdinfo, 358 #endif 359 .fop_flags = FOP_UNSIGNED_OFFSET, 360 }; 361 362 static struct drm_driver driver = { 363 /* Don't use MTRRs here; the Xserver or userspace app should 364 * deal with them for Intel hardware. 365 */ 366 .driver_features = 367 DRIVER_GEM | 368 DRIVER_RENDER | DRIVER_SYNCOBJ | 369 DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA, 370 .open = xe_file_open, 371 .postclose = xe_file_close, 372 373 .gem_prime_import = xe_gem_prime_import, 374 375 .dumb_create = xe_bo_dumb_create, 376 .dumb_map_offset = drm_gem_ttm_dumb_map_offset, 377 #ifdef CONFIG_PROC_FS 378 .show_fdinfo = xe_drm_client_fdinfo, 379 #endif 380 .ioctls = xe_ioctls, 381 .num_ioctls = ARRAY_SIZE(xe_ioctls), 382 .fops = &xe_driver_fops, 383 .name = DRIVER_NAME, 384 .desc = DRIVER_DESC, 385 .major = DRIVER_MAJOR, 386 .minor = DRIVER_MINOR, 387 .patchlevel = DRIVER_PATCHLEVEL, 388 }; 389 390 static void xe_device_destroy(struct drm_device *dev, void *dummy) 391 { 392 struct xe_device *xe = to_xe_device(dev); 393 394 xe_bo_dev_fini(&xe->bo_device); 395 396 if (xe->preempt_fence_wq) 397 destroy_workqueue(xe->preempt_fence_wq); 398 399 if (xe->ordered_wq) 400 destroy_workqueue(xe->ordered_wq); 401 402 if (xe->unordered_wq) 403 destroy_workqueue(xe->unordered_wq); 404 405 if (!IS_ERR_OR_NULL(xe->mem.shrinker)) 406 xe_shrinker_destroy(xe->mem.shrinker); 407 408 if (xe->destroy_wq) 409 destroy_workqueue(xe->destroy_wq); 410 411 ttm_device_fini(&xe->ttm); 412 } 413 414 struct xe_device *xe_device_create(struct pci_dev *pdev, 415 const struct pci_device_id *ent) 416 { 417 struct xe_device *xe; 418 int err; 419 420 xe_display_driver_set_hooks(&driver); 421 422 err = aperture_remove_conflicting_pci_devices(pdev, driver.name); 423 if (err) 424 return ERR_PTR(err); 425 426 xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm); 427 if (IS_ERR(xe)) 428 return xe; 429 430 err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev, 431 xe->drm.anon_inode->i_mapping, 432 xe->drm.vma_offset_manager, false, false); 433 if (WARN_ON(err)) 434 goto err; 435 436 xe_bo_dev_init(&xe->bo_device); 437 err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL); 438 if (err) 439 goto err; 440 441 xe->mem.shrinker = xe_shrinker_create(xe); 442 if (IS_ERR(xe->mem.shrinker)) 443 return ERR_CAST(xe->mem.shrinker); 444 445 xe->info.devid = pdev->device; 446 xe->info.revid = pdev->revision; 447 xe->info.force_execlist = xe_modparam.force_execlist; 448 449 err = xe_irq_init(xe); 450 if (err) 451 goto err; 452 453 init_waitqueue_head(&xe->ufence_wq); 454 455 init_rwsem(&xe->usm.lock); 456 457 xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC); 458 459 if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) { 460 /* Trigger a large asid and an early asid wrap. */ 461 u32 asid; 462 463 BUILD_BUG_ON(XE_MAX_ASID < 2); 464 err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL, 465 XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1), 466 &xe->usm.next_asid, GFP_KERNEL); 467 drm_WARN_ON(&xe->drm, err); 468 if (err >= 0) 469 xa_erase(&xe->usm.asid_to_vm, asid); 470 } 471 472 err = xe_bo_pinned_init(xe); 473 if (err) 474 goto err; 475 476 xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq", 477 WQ_MEM_RECLAIM); 478 xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0); 479 xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0); 480 xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0); 481 if (!xe->ordered_wq || !xe->unordered_wq || 482 !xe->preempt_fence_wq || !xe->destroy_wq) { 483 /* 484 * Cleanup done in xe_device_destroy via 485 * drmm_add_action_or_reset register above 486 */ 487 drm_err(&xe->drm, "Failed to allocate xe workqueues\n"); 488 err = -ENOMEM; 489 goto err; 490 } 491 492 err = drmm_mutex_init(&xe->drm, &xe->pmt.lock); 493 if (err) 494 goto err; 495 496 err = xe_display_create(xe); 497 if (WARN_ON(err)) 498 goto err; 499 500 return xe; 501 502 err: 503 return ERR_PTR(err); 504 } 505 ALLOW_ERROR_INJECTION(xe_device_create, ERRNO); /* See xe_pci_probe() */ 506 507 static bool xe_driver_flr_disabled(struct xe_device *xe) 508 { 509 if (IS_SRIOV_VF(xe)) 510 return true; 511 512 if (xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS) { 513 drm_info(&xe->drm, "Driver-FLR disabled by BIOS\n"); 514 return true; 515 } 516 517 return false; 518 } 519 520 /* 521 * The driver-initiated FLR is the highest level of reset that we can trigger 522 * from within the driver. It is different from the PCI FLR in that it doesn't 523 * fully reset the SGUnit and doesn't modify the PCI config space and therefore 524 * it doesn't require a re-enumeration of the PCI BARs. However, the 525 * driver-initiated FLR does still cause a reset of both GT and display and a 526 * memory wipe of local and stolen memory, so recovery would require a full HW 527 * re-init and saving/restoring (or re-populating) the wiped memory. Since we 528 * perform the FLR as the very last action before releasing access to the HW 529 * during the driver release flow, we don't attempt recovery at all, because 530 * if/when a new instance of i915 is bound to the device it will do a full 531 * re-init anyway. 532 */ 533 static void __xe_driver_flr(struct xe_device *xe) 534 { 535 const unsigned int flr_timeout = 3 * USEC_PER_SEC; /* specs recommend a 3s wait */ 536 struct xe_mmio *mmio = xe_root_tile_mmio(xe); 537 int ret; 538 539 drm_dbg(&xe->drm, "Triggering Driver-FLR\n"); 540 541 /* 542 * Make sure any pending FLR requests have cleared by waiting for the 543 * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS 544 * to make sure it's not still set from a prior attempt (it's a write to 545 * clear bit). 546 * Note that we should never be in a situation where a previous attempt 547 * is still pending (unless the HW is totally dead), but better to be 548 * safe in case something unexpected happens 549 */ 550 ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); 551 if (ret) { 552 drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret); 553 return; 554 } 555 xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS); 556 557 /* Trigger the actual Driver-FLR */ 558 xe_mmio_rmw32(mmio, GU_CNTL, 0, DRIVERFLR); 559 560 /* Wait for hardware teardown to complete */ 561 ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); 562 if (ret) { 563 drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret); 564 return; 565 } 566 567 /* Wait for hardware/firmware re-init to complete */ 568 ret = xe_mmio_wait32(mmio, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS, 569 flr_timeout, NULL, false); 570 if (ret) { 571 drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret); 572 return; 573 } 574 575 /* Clear sticky completion status */ 576 xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS); 577 } 578 579 static void xe_driver_flr(struct xe_device *xe) 580 { 581 if (xe_driver_flr_disabled(xe)) 582 return; 583 584 __xe_driver_flr(xe); 585 } 586 587 static void xe_driver_flr_fini(void *arg) 588 { 589 struct xe_device *xe = arg; 590 591 if (xe->needs_flr_on_fini) 592 xe_driver_flr(xe); 593 } 594 595 static void xe_device_sanitize(void *arg) 596 { 597 struct xe_device *xe = arg; 598 struct xe_gt *gt; 599 u8 id; 600 601 for_each_gt(gt, xe, id) 602 xe_gt_sanitize(gt); 603 } 604 605 static int xe_set_dma_info(struct xe_device *xe) 606 { 607 unsigned int mask_size = xe->info.dma_mask_size; 608 int err; 609 610 dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev)); 611 612 err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); 613 if (err) 614 goto mask_err; 615 616 err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); 617 if (err) 618 goto mask_err; 619 620 return 0; 621 622 mask_err: 623 drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err); 624 return err; 625 } 626 627 static bool verify_lmem_ready(struct xe_device *xe) 628 { 629 u32 val = xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL) & LMEM_INIT; 630 631 return !!val; 632 } 633 634 static int wait_for_lmem_ready(struct xe_device *xe) 635 { 636 unsigned long timeout, start; 637 638 if (!IS_DGFX(xe)) 639 return 0; 640 641 if (IS_SRIOV_VF(xe)) 642 return 0; 643 644 if (verify_lmem_ready(xe)) 645 return 0; 646 647 drm_dbg(&xe->drm, "Waiting for lmem initialization\n"); 648 649 start = jiffies; 650 timeout = start + secs_to_jiffies(60); /* 60 sec! */ 651 652 do { 653 if (signal_pending(current)) 654 return -EINTR; 655 656 /* 657 * The boot firmware initializes local memory and 658 * assesses its health. If memory training fails, 659 * the punit will have been instructed to keep the GT powered 660 * down.we won't be able to communicate with it 661 * 662 * If the status check is done before punit updates the register, 663 * it can lead to the system being unusable. 664 * use a timeout and defer the probe to prevent this. 665 */ 666 if (time_after(jiffies, timeout)) { 667 drm_dbg(&xe->drm, "lmem not initialized by firmware\n"); 668 return -EPROBE_DEFER; 669 } 670 671 msleep(20); 672 673 } while (!verify_lmem_ready(xe)); 674 675 drm_dbg(&xe->drm, "lmem ready after %ums", 676 jiffies_to_msecs(jiffies - start)); 677 678 return 0; 679 } 680 ALLOW_ERROR_INJECTION(wait_for_lmem_ready, ERRNO); /* See xe_pci_probe() */ 681 682 static void sriov_update_device_info(struct xe_device *xe) 683 { 684 /* disable features that are not available/applicable to VFs */ 685 if (IS_SRIOV_VF(xe)) { 686 xe->info.probe_display = 0; 687 xe->info.has_heci_gscfi = 0; 688 xe->info.skip_guc_pc = 1; 689 xe->info.skip_pcode = 1; 690 } 691 } 692 693 /** 694 * xe_device_probe_early: Device early probe 695 * @xe: xe device instance 696 * 697 * Initialize MMIO resources that don't require any 698 * knowledge about tile count. Also initialize pcode and 699 * check vram initialization on root tile. 700 * 701 * Return: 0 on success, error code on failure 702 */ 703 int xe_device_probe_early(struct xe_device *xe) 704 { 705 int err; 706 707 err = xe_mmio_probe_early(xe); 708 if (err) 709 return err; 710 711 xe_sriov_probe_early(xe); 712 713 sriov_update_device_info(xe); 714 715 err = xe_pcode_probe_early(xe); 716 if (err || xe_survivability_mode_is_requested(xe)) { 717 int save_err = err; 718 719 /* 720 * Try to leave device in survivability mode if device is 721 * possible, but still return the previous error for error 722 * propagation 723 */ 724 err = xe_survivability_mode_enable(xe); 725 if (err) 726 return err; 727 728 return save_err; 729 } 730 731 err = wait_for_lmem_ready(xe); 732 if (err) 733 return err; 734 735 xe->wedged.mode = xe_modparam.wedged_mode; 736 737 return 0; 738 } 739 ALLOW_ERROR_INJECTION(xe_device_probe_early, ERRNO); /* See xe_pci_probe() */ 740 741 static int probe_has_flat_ccs(struct xe_device *xe) 742 { 743 struct xe_gt *gt; 744 unsigned int fw_ref; 745 u32 reg; 746 747 /* Always enabled/disabled, no runtime check to do */ 748 if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs || IS_SRIOV_VF(xe)) 749 return 0; 750 751 gt = xe_root_mmio_gt(xe); 752 753 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); 754 if (!fw_ref) 755 return -ETIMEDOUT; 756 757 reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER); 758 xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE); 759 760 if (!xe->info.has_flat_ccs) 761 drm_dbg(&xe->drm, 762 "Flat CCS has been disabled in bios, May lead to performance impact"); 763 764 xe_force_wake_put(gt_to_fw(gt), fw_ref); 765 766 return 0; 767 } 768 769 int xe_device_probe(struct xe_device *xe) 770 { 771 struct xe_tile *tile; 772 struct xe_gt *gt; 773 int err; 774 u8 id; 775 776 xe_pat_init_early(xe); 777 778 err = xe_sriov_init(xe); 779 if (err) 780 return err; 781 782 xe->info.mem_region_mask = 1; 783 784 err = xe_set_dma_info(xe); 785 if (err) 786 return err; 787 788 err = xe_mmio_probe_tiles(xe); 789 if (err) 790 return err; 791 792 err = xe_ttm_sys_mgr_init(xe); 793 if (err) 794 return err; 795 796 for_each_gt(gt, xe, id) { 797 err = xe_gt_init_early(gt); 798 if (err) 799 return err; 800 801 /* 802 * Only after this point can GT-specific MMIO operations 803 * (including things like communication with the GuC) 804 * be performed. 805 */ 806 xe_gt_mmio_init(gt); 807 } 808 809 for_each_tile(tile, xe, id) { 810 if (IS_SRIOV_VF(xe)) { 811 xe_guc_comm_init_early(&tile->primary_gt->uc.guc); 812 err = xe_gt_sriov_vf_bootstrap(tile->primary_gt); 813 if (err) 814 return err; 815 err = xe_gt_sriov_vf_query_config(tile->primary_gt); 816 if (err) 817 return err; 818 } 819 err = xe_ggtt_init_early(tile->mem.ggtt); 820 if (err) 821 return err; 822 err = xe_memirq_init(&tile->memirq); 823 if (err) 824 return err; 825 } 826 827 for_each_gt(gt, xe, id) { 828 err = xe_gt_init_hwconfig(gt); 829 if (err) 830 return err; 831 } 832 833 err = xe_devcoredump_init(xe); 834 if (err) 835 return err; 836 837 /* 838 * From here on, if a step fails, make sure a Driver-FLR is triggereed 839 */ 840 err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe); 841 if (err) 842 return err; 843 844 err = probe_has_flat_ccs(xe); 845 if (err) 846 return err; 847 848 err = xe_vram_probe(xe); 849 if (err) 850 return err; 851 852 for_each_tile(tile, xe, id) { 853 err = xe_tile_init_noalloc(tile); 854 if (err) 855 return err; 856 } 857 858 /* Allocate and map stolen after potential VRAM resize */ 859 err = xe_ttm_stolen_mgr_init(xe); 860 if (err) 861 return err; 862 863 /* 864 * Now that GT is initialized (TTM in particular), 865 * we can try to init display, and inherit the initial fb. 866 * This is the reason the first allocation needs to be done 867 * inside display. 868 */ 869 err = xe_display_init_early(xe); 870 if (err) 871 return err; 872 873 for_each_tile(tile, xe, id) { 874 err = xe_tile_init(tile); 875 if (err) 876 return err; 877 } 878 879 err = xe_irq_install(xe); 880 if (err) 881 return err; 882 883 for_each_gt(gt, xe, id) { 884 err = xe_gt_init(gt); 885 if (err) 886 return err; 887 } 888 889 err = xe_heci_gsc_init(xe); 890 if (err) 891 return err; 892 893 err = xe_oa_init(xe); 894 if (err) 895 return err; 896 897 err = xe_display_init(xe); 898 if (err) 899 return err; 900 901 err = xe_pxp_init(xe); 902 if (err) 903 return err; 904 905 err = drm_dev_register(&xe->drm, 0); 906 if (err) 907 return err; 908 909 xe_display_register(xe); 910 911 err = xe_oa_register(xe); 912 if (err) 913 goto err_unregister_display; 914 915 err = xe_pmu_register(&xe->pmu); 916 if (err) 917 goto err_unregister_display; 918 919 err = xe_device_sysfs_init(xe); 920 if (err) 921 goto err_unregister_display; 922 923 xe_debugfs_register(xe); 924 925 err = xe_hwmon_register(xe); 926 if (err) 927 goto err_unregister_display; 928 929 for_each_gt(gt, xe, id) 930 xe_gt_sanitize_freq(gt); 931 932 xe_vsec_init(xe); 933 934 return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe); 935 936 err_unregister_display: 937 xe_display_unregister(xe); 938 939 return err; 940 } 941 942 void xe_device_remove(struct xe_device *xe) 943 { 944 xe_display_unregister(xe); 945 946 drm_dev_unplug(&xe->drm); 947 948 xe_bo_pci_dev_remove_all(xe); 949 } 950 951 void xe_device_shutdown(struct xe_device *xe) 952 { 953 struct xe_gt *gt; 954 u8 id; 955 956 drm_dbg(&xe->drm, "Shutting down device\n"); 957 958 if (xe_driver_flr_disabled(xe)) { 959 xe_display_pm_shutdown(xe); 960 961 xe_irq_suspend(xe); 962 963 for_each_gt(gt, xe, id) 964 xe_gt_shutdown(gt); 965 966 xe_display_pm_shutdown_late(xe); 967 } else { 968 /* BOOM! */ 969 __xe_driver_flr(xe); 970 } 971 } 972 973 /** 974 * xe_device_wmb() - Device specific write memory barrier 975 * @xe: the &xe_device 976 * 977 * While wmb() is sufficient for a barrier if we use system memory, on discrete 978 * platforms with device memory we additionally need to issue a register write. 979 * Since it doesn't matter which register we write to, use the read-only VF_CAP 980 * register that is also marked as accessible by the VFs. 981 */ 982 void xe_device_wmb(struct xe_device *xe) 983 { 984 wmb(); 985 if (IS_DGFX(xe)) 986 xe_mmio_write32(xe_root_tile_mmio(xe), VF_CAP_REG, 0); 987 } 988 989 /** 990 * xe_device_td_flush() - Flush transient L3 cache entries 991 * @xe: The device 992 * 993 * Display engine has direct access to memory and is never coherent with L3/L4 994 * caches (or CPU caches), however KMD is responsible for specifically flushing 995 * transient L3 GPU cache entries prior to the flip sequence to ensure scanout 996 * can happen from such a surface without seeing corruption. 997 * 998 * Display surfaces can be tagged as transient by mapping it using one of the 999 * various L3:XD PAT index modes on Xe2. 1000 * 1001 * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed 1002 * at the end of each submission via PIPE_CONTROL for compute/render, since SA 1003 * Media is not coherent with L3 and we want to support render-vs-media 1004 * usescases. For other engines like copy/blt the HW internally forces uncached 1005 * behaviour, hence why we can skip the TDF on such platforms. 1006 */ 1007 void xe_device_td_flush(struct xe_device *xe) 1008 { 1009 struct xe_gt *gt; 1010 unsigned int fw_ref; 1011 u8 id; 1012 1013 if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20) 1014 return; 1015 1016 if (XE_WA(xe_root_mmio_gt(xe), 16023588340)) { 1017 xe_device_l2_flush(xe); 1018 return; 1019 } 1020 1021 for_each_gt(gt, xe, id) { 1022 if (xe_gt_is_media_type(gt)) 1023 continue; 1024 1025 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); 1026 if (!fw_ref) 1027 return; 1028 1029 xe_mmio_write32(>->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST); 1030 /* 1031 * FIXME: We can likely do better here with our choice of 1032 * timeout. Currently we just assume the worst case, i.e. 150us, 1033 * which is believed to be sufficient to cover the worst case 1034 * scenario on current platforms if all cache entries are 1035 * transient and need to be flushed.. 1036 */ 1037 if (xe_mmio_wait32(>->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0, 1038 150, NULL, false)) 1039 xe_gt_err_once(gt, "TD flush timeout\n"); 1040 1041 xe_force_wake_put(gt_to_fw(gt), fw_ref); 1042 } 1043 } 1044 1045 void xe_device_l2_flush(struct xe_device *xe) 1046 { 1047 struct xe_gt *gt; 1048 unsigned int fw_ref; 1049 1050 gt = xe_root_mmio_gt(xe); 1051 1052 if (!XE_WA(gt, 16023588340)) 1053 return; 1054 1055 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); 1056 if (!fw_ref) 1057 return; 1058 1059 spin_lock(>->global_invl_lock); 1060 xe_mmio_write32(>->mmio, XE2_GLOBAL_INVAL, 0x1); 1061 1062 if (xe_mmio_wait32(>->mmio, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true)) 1063 xe_gt_err_once(gt, "Global invalidation timeout\n"); 1064 spin_unlock(>->global_invl_lock); 1065 1066 xe_force_wake_put(gt_to_fw(gt), fw_ref); 1067 } 1068 1069 u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size) 1070 { 1071 return xe_device_has_flat_ccs(xe) ? 1072 DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0; 1073 } 1074 1075 /** 1076 * xe_device_assert_mem_access - Inspect the current runtime_pm state. 1077 * @xe: xe device instance 1078 * 1079 * To be used before any kind of memory access. It will splat a debug warning 1080 * if the device is currently sleeping. But it doesn't guarantee in any way 1081 * that the device is going to remain awake. Xe PM runtime get and put 1082 * functions might be added to the outer bound of the memory access, while 1083 * this check is intended for inner usage to splat some warning if the worst 1084 * case has just happened. 1085 */ 1086 void xe_device_assert_mem_access(struct xe_device *xe) 1087 { 1088 xe_assert(xe, !xe_pm_runtime_suspended(xe)); 1089 } 1090 1091 void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p) 1092 { 1093 struct xe_gt *gt; 1094 u8 id; 1095 1096 drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid); 1097 drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid); 1098 1099 for_each_gt(gt, xe, id) { 1100 drm_printf(p, "GT id: %u\n", id); 1101 drm_printf(p, "\tTile: %u\n", gt->tile->id); 1102 drm_printf(p, "\tType: %s\n", 1103 gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media"); 1104 drm_printf(p, "\tIP ver: %u.%u.%u\n", 1105 REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid), 1106 REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid), 1107 REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid)); 1108 drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock); 1109 } 1110 } 1111 1112 u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address) 1113 { 1114 return sign_extend64(address, xe->info.va_bits - 1); 1115 } 1116 1117 u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address) 1118 { 1119 return address & GENMASK_ULL(xe->info.va_bits - 1, 0); 1120 } 1121 1122 static void xe_device_wedged_fini(struct drm_device *drm, void *arg) 1123 { 1124 struct xe_device *xe = arg; 1125 1126 xe_pm_runtime_put(xe); 1127 } 1128 1129 /** 1130 * xe_device_declare_wedged - Declare device wedged 1131 * @xe: xe device instance 1132 * 1133 * This is a final state that can only be cleared with a module 1134 * re-probe (unbind + bind). 1135 * In this state every IOCTL will be blocked so the GT cannot be used. 1136 * In general it will be called upon any critical error such as gt reset 1137 * failure or guc loading failure. Userspace will be notified of this state 1138 * through device wedged uevent. 1139 * If xe.wedged module parameter is set to 2, this function will be called 1140 * on every single execution timeout (a.k.a. GPU hang) right after devcoredump 1141 * snapshot capture. In this mode, GT reset won't be attempted so the state of 1142 * the issue is preserved for further debugging. 1143 */ 1144 void xe_device_declare_wedged(struct xe_device *xe) 1145 { 1146 struct xe_gt *gt; 1147 u8 id; 1148 1149 if (xe->wedged.mode == 0) { 1150 drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n"); 1151 return; 1152 } 1153 1154 xe_pm_runtime_get_noresume(xe); 1155 1156 if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) { 1157 drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n"); 1158 return; 1159 } 1160 1161 if (!atomic_xchg(&xe->wedged.flag, 1)) { 1162 xe->needs_flr_on_fini = true; 1163 drm_err(&xe->drm, 1164 "CRITICAL: Xe has declared device %s as wedged.\n" 1165 "IOCTLs and executions are blocked. Only a rebind may clear the failure\n" 1166 "Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n", 1167 dev_name(xe->drm.dev)); 1168 1169 /* Notify userspace of wedged device */ 1170 drm_dev_wedged_event(&xe->drm, 1171 DRM_WEDGE_RECOVERY_REBIND | DRM_WEDGE_RECOVERY_BUS_RESET); 1172 } 1173 1174 for_each_gt(gt, xe, id) 1175 xe_gt_declare_wedged(gt); 1176 } 1177