xref: /linux/drivers/gpu/drm/xe/xe_devcoredump.c (revision e78f70bad29c5ae1e1076698b690b15794e9b81e)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2023 Intel Corporation
4  */
5 
6 #include "xe_devcoredump.h"
7 #include "xe_devcoredump_types.h"
8 
9 #include <linux/ascii85.h>
10 #include <linux/devcoredump.h>
11 #include <generated/utsrelease.h>
12 
13 #include <drm/drm_managed.h>
14 
15 #include "xe_device.h"
16 #include "xe_exec_queue.h"
17 #include "xe_force_wake.h"
18 #include "xe_gt.h"
19 #include "xe_gt_printk.h"
20 #include "xe_guc_capture.h"
21 #include "xe_guc_ct.h"
22 #include "xe_guc_log.h"
23 #include "xe_guc_submit.h"
24 #include "xe_hw_engine.h"
25 #include "xe_module.h"
26 #include "xe_pm.h"
27 #include "xe_sched_job.h"
28 #include "xe_vm.h"
29 
30 /**
31  * DOC: Xe device coredump
32  *
33  * Xe uses dev_coredump infrastructure for exposing the crash errors in a
34  * standardized way. Once a crash occurs, devcoredump exposes a temporary
35  * node under ``/sys/class/devcoredump/devcd<m>/``. The same node is also
36  * accessible in ``/sys/class/drm/card<n>/device/devcoredump/``. The
37  * ``failing_device`` symlink points to the device that crashed and created the
38  * coredump.
39  *
40  * The following characteristics are observed by xe when creating a device
41  * coredump:
42  *
43  * **Snapshot at hang**:
44  *   The 'data' file contains a snapshot of the HW and driver states at the time
45  *   the hang happened. Due to the driver recovering from resets/crashes, it may
46  *   not correspond to the state of the system when the file is read by
47  *   userspace.
48  *
49  * **Coredump release**:
50  *   After a coredump is generated, it stays in kernel memory until released by
51  *   userspace by writing anything to it, or after an internal timer expires. The
52  *   exact timeout may vary and should not be relied upon. Example to release
53  *   a coredump:
54  *
55  *   .. code-block:: shell
56  *
57  *	$ > /sys/class/drm/card0/device/devcoredump/data
58  *
59  * **First failure only**:
60  *   In general, the first hang is the most critical one since the following
61  *   hangs can be a consequence of the initial hang. For this reason a snapshot
62  *   is taken only for the first failure. Until the devcoredump is released by
63  *   userspace or kernel, all subsequent hangs do not override the snapshot nor
64  *   create new ones. Devcoredump has a delayed work queue that will eventually
65  *   delete the file node and free all the dump information.
66  */
67 
68 #ifdef CONFIG_DEV_COREDUMP
69 
70 /* 1 hour timeout */
71 #define XE_COREDUMP_TIMEOUT_JIFFIES (60 * 60 * HZ)
72 
73 static struct xe_device *coredump_to_xe(const struct xe_devcoredump *coredump)
74 {
75 	return container_of(coredump, struct xe_device, devcoredump);
76 }
77 
78 static struct xe_guc *exec_queue_to_guc(struct xe_exec_queue *q)
79 {
80 	return &q->gt->uc.guc;
81 }
82 
83 static ssize_t __xe_devcoredump_read(char *buffer, ssize_t count,
84 				     ssize_t start,
85 				     struct xe_devcoredump *coredump)
86 {
87 	struct xe_device *xe;
88 	struct xe_devcoredump_snapshot *ss;
89 	struct drm_printer p;
90 	struct drm_print_iterator iter;
91 	struct timespec64 ts;
92 	int i;
93 
94 	xe = coredump_to_xe(coredump);
95 	ss = &coredump->snapshot;
96 
97 	iter.data = buffer;
98 	iter.start = start;
99 	iter.remain = count;
100 
101 	p = drm_coredump_printer(&iter);
102 
103 	drm_puts(&p, "**** Xe Device Coredump ****\n");
104 	drm_printf(&p, "Reason: %s\n", ss->reason);
105 	drm_puts(&p, "kernel: " UTS_RELEASE "\n");
106 	drm_puts(&p, "module: " KBUILD_MODNAME "\n");
107 
108 	ts = ktime_to_timespec64(ss->snapshot_time);
109 	drm_printf(&p, "Snapshot time: %lld.%09ld\n", ts.tv_sec, ts.tv_nsec);
110 	ts = ktime_to_timespec64(ss->boot_time);
111 	drm_printf(&p, "Uptime: %lld.%09ld\n", ts.tv_sec, ts.tv_nsec);
112 	drm_printf(&p, "Process: %s [%d]\n", ss->process_name, ss->pid);
113 	xe_device_snapshot_print(xe, &p);
114 
115 	drm_printf(&p, "\n**** GT #%d ****\n", ss->gt->info.id);
116 	drm_printf(&p, "\tTile: %d\n", ss->gt->tile->id);
117 
118 	drm_puts(&p, "\n**** GuC Log ****\n");
119 	xe_guc_log_snapshot_print(ss->guc.log, &p);
120 	drm_puts(&p, "\n**** GuC CT ****\n");
121 	xe_guc_ct_snapshot_print(ss->guc.ct, &p);
122 
123 	drm_puts(&p, "\n**** Contexts ****\n");
124 	xe_guc_exec_queue_snapshot_print(ss->ge, &p);
125 
126 	drm_puts(&p, "\n**** Job ****\n");
127 	xe_sched_job_snapshot_print(ss->job, &p);
128 
129 	drm_puts(&p, "\n**** HW Engines ****\n");
130 	for (i = 0; i < XE_NUM_HW_ENGINES; i++)
131 		if (ss->hwe[i])
132 			xe_engine_snapshot_print(ss->hwe[i], &p);
133 
134 	drm_puts(&p, "\n**** VM state ****\n");
135 	xe_vm_snapshot_print(ss->vm, &p);
136 
137 	return count - iter.remain;
138 }
139 
140 static void xe_devcoredump_snapshot_free(struct xe_devcoredump_snapshot *ss)
141 {
142 	int i;
143 
144 	kfree(ss->reason);
145 	ss->reason = NULL;
146 
147 	xe_guc_log_snapshot_free(ss->guc.log);
148 	ss->guc.log = NULL;
149 
150 	xe_guc_ct_snapshot_free(ss->guc.ct);
151 	ss->guc.ct = NULL;
152 
153 	xe_guc_capture_put_matched_nodes(&ss->gt->uc.guc);
154 	ss->matched_node = NULL;
155 
156 	xe_guc_exec_queue_snapshot_free(ss->ge);
157 	ss->ge = NULL;
158 
159 	xe_sched_job_snapshot_free(ss->job);
160 	ss->job = NULL;
161 
162 	for (i = 0; i < XE_NUM_HW_ENGINES; i++)
163 		if (ss->hwe[i]) {
164 			xe_hw_engine_snapshot_free(ss->hwe[i]);
165 			ss->hwe[i] = NULL;
166 		}
167 
168 	xe_vm_snapshot_free(ss->vm);
169 	ss->vm = NULL;
170 }
171 
172 #define XE_DEVCOREDUMP_CHUNK_MAX	(SZ_512M + SZ_1G)
173 
174 static ssize_t xe_devcoredump_read(char *buffer, loff_t offset,
175 				   size_t count, void *data, size_t datalen)
176 {
177 	struct xe_devcoredump *coredump = data;
178 	struct xe_devcoredump_snapshot *ss;
179 	ssize_t byte_copied;
180 	u32 chunk_offset;
181 	ssize_t new_chunk_position;
182 
183 	if (!coredump)
184 		return -ENODEV;
185 
186 	ss = &coredump->snapshot;
187 
188 	/* Ensure delayed work is captured before continuing */
189 	flush_work(&ss->work);
190 
191 	if (ss->read.size > XE_DEVCOREDUMP_CHUNK_MAX)
192 		xe_pm_runtime_get(gt_to_xe(ss->gt));
193 
194 	mutex_lock(&coredump->lock);
195 
196 	if (!ss->read.buffer) {
197 		mutex_unlock(&coredump->lock);
198 		return -ENODEV;
199 	}
200 
201 	if (offset >= ss->read.size) {
202 		mutex_unlock(&coredump->lock);
203 		return 0;
204 	}
205 
206 	new_chunk_position = div_u64_rem(offset,
207 					 XE_DEVCOREDUMP_CHUNK_MAX,
208 					 &chunk_offset);
209 
210 	if (offset >= ss->read.chunk_position + XE_DEVCOREDUMP_CHUNK_MAX ||
211 	    offset < ss->read.chunk_position) {
212 		ss->read.chunk_position = new_chunk_position *
213 			XE_DEVCOREDUMP_CHUNK_MAX;
214 
215 		__xe_devcoredump_read(ss->read.buffer,
216 				      XE_DEVCOREDUMP_CHUNK_MAX,
217 				      ss->read.chunk_position, coredump);
218 	}
219 
220 	byte_copied = count < ss->read.size - offset ? count :
221 		ss->read.size - offset;
222 	memcpy(buffer, ss->read.buffer + chunk_offset, byte_copied);
223 
224 	mutex_unlock(&coredump->lock);
225 
226 	if (ss->read.size > XE_DEVCOREDUMP_CHUNK_MAX)
227 		xe_pm_runtime_put(gt_to_xe(ss->gt));
228 
229 	return byte_copied;
230 }
231 
232 static void xe_devcoredump_free(void *data)
233 {
234 	struct xe_devcoredump *coredump = data;
235 
236 	/* Our device is gone. Nothing to do... */
237 	if (!data || !coredump_to_xe(coredump))
238 		return;
239 
240 	cancel_work_sync(&coredump->snapshot.work);
241 
242 	mutex_lock(&coredump->lock);
243 
244 	xe_devcoredump_snapshot_free(&coredump->snapshot);
245 	kvfree(coredump->snapshot.read.buffer);
246 
247 	/* To prevent stale data on next snapshot, clear everything */
248 	memset(&coredump->snapshot, 0, sizeof(coredump->snapshot));
249 	coredump->captured = false;
250 	drm_info(&coredump_to_xe(coredump)->drm,
251 		 "Xe device coredump has been deleted.\n");
252 
253 	mutex_unlock(&coredump->lock);
254 }
255 
256 static void xe_devcoredump_deferred_snap_work(struct work_struct *work)
257 {
258 	struct xe_devcoredump_snapshot *ss = container_of(work, typeof(*ss), work);
259 	struct xe_devcoredump *coredump = container_of(ss, typeof(*coredump), snapshot);
260 	struct xe_device *xe = coredump_to_xe(coredump);
261 	unsigned int fw_ref;
262 
263 	/*
264 	 * NB: Despite passing a GFP_ flags parameter here, more allocations are done
265 	 * internally using GFP_KERNEL explicitly. Hence this call must be in the worker
266 	 * thread and not in the initial capture call.
267 	 */
268 	dev_coredumpm_timeout(gt_to_xe(ss->gt)->drm.dev, THIS_MODULE, coredump, 0, GFP_KERNEL,
269 			      xe_devcoredump_read, xe_devcoredump_free,
270 			      XE_COREDUMP_TIMEOUT_JIFFIES);
271 
272 	xe_pm_runtime_get(xe);
273 
274 	/* keep going if fw fails as we still want to save the memory and SW data */
275 	fw_ref = xe_force_wake_get(gt_to_fw(ss->gt), XE_FORCEWAKE_ALL);
276 	if (!xe_force_wake_ref_has_domain(fw_ref, XE_FORCEWAKE_ALL))
277 		xe_gt_info(ss->gt, "failed to get forcewake for coredump capture\n");
278 	xe_vm_snapshot_capture_delayed(ss->vm);
279 	xe_guc_exec_queue_snapshot_capture_delayed(ss->ge);
280 	xe_force_wake_put(gt_to_fw(ss->gt), fw_ref);
281 
282 	ss->read.chunk_position = 0;
283 
284 	/* Calculate devcoredump size */
285 	ss->read.size = __xe_devcoredump_read(NULL, LONG_MAX, 0, coredump);
286 
287 	if (ss->read.size > XE_DEVCOREDUMP_CHUNK_MAX) {
288 		ss->read.buffer = kvmalloc(XE_DEVCOREDUMP_CHUNK_MAX,
289 					   GFP_USER);
290 		if (!ss->read.buffer)
291 			goto put_pm;
292 
293 		__xe_devcoredump_read(ss->read.buffer,
294 				      XE_DEVCOREDUMP_CHUNK_MAX,
295 				      0, coredump);
296 	} else {
297 		ss->read.buffer = kvmalloc(ss->read.size, GFP_USER);
298 		if (!ss->read.buffer)
299 			goto put_pm;
300 
301 		__xe_devcoredump_read(ss->read.buffer, ss->read.size, 0,
302 				      coredump);
303 		xe_devcoredump_snapshot_free(ss);
304 	}
305 
306 put_pm:
307 	xe_pm_runtime_put(xe);
308 }
309 
310 static void devcoredump_snapshot(struct xe_devcoredump *coredump,
311 				 struct xe_exec_queue *q,
312 				 struct xe_sched_job *job)
313 {
314 	struct xe_devcoredump_snapshot *ss = &coredump->snapshot;
315 	struct xe_guc *guc = exec_queue_to_guc(q);
316 	u32 adj_logical_mask = q->logical_mask;
317 	u32 width_mask = (0x1 << q->width) - 1;
318 	const char *process_name = "no process";
319 
320 	unsigned int fw_ref;
321 	bool cookie;
322 	int i;
323 
324 	ss->snapshot_time = ktime_get_real();
325 	ss->boot_time = ktime_get_boottime();
326 
327 	if (q->vm && q->vm->xef) {
328 		process_name = q->vm->xef->process_name;
329 		ss->pid = q->vm->xef->pid;
330 	}
331 
332 	strscpy(ss->process_name, process_name);
333 
334 	ss->gt = q->gt;
335 	INIT_WORK(&ss->work, xe_devcoredump_deferred_snap_work);
336 
337 	cookie = dma_fence_begin_signalling();
338 	for (i = 0; q->width > 1 && i < XE_HW_ENGINE_MAX_INSTANCE;) {
339 		if (adj_logical_mask & BIT(i)) {
340 			adj_logical_mask |= width_mask << i;
341 			i += q->width;
342 		} else {
343 			++i;
344 		}
345 	}
346 
347 	/* keep going if fw fails as we still want to save the memory and SW data */
348 	fw_ref = xe_force_wake_get(gt_to_fw(q->gt), XE_FORCEWAKE_ALL);
349 
350 	ss->guc.log = xe_guc_log_snapshot_capture(&guc->log, true);
351 	ss->guc.ct = xe_guc_ct_snapshot_capture(&guc->ct);
352 	ss->ge = xe_guc_exec_queue_snapshot_capture(q);
353 	if (job)
354 		ss->job = xe_sched_job_snapshot_capture(job);
355 	ss->vm = xe_vm_snapshot_capture(q->vm);
356 
357 	xe_engine_snapshot_capture_for_queue(q);
358 
359 	queue_work(system_unbound_wq, &ss->work);
360 
361 	xe_force_wake_put(gt_to_fw(q->gt), fw_ref);
362 	dma_fence_end_signalling(cookie);
363 }
364 
365 /**
366  * xe_devcoredump - Take the required snapshots and initialize coredump device.
367  * @q: The faulty xe_exec_queue, where the issue was detected.
368  * @job: The faulty xe_sched_job, where the issue was detected.
369  * @fmt: Printf format + args to describe the reason for the core dump
370  *
371  * This function should be called at the crash time within the serialized
372  * gt_reset. It is skipped if we still have the core dump device available
373  * with the information of the 'first' snapshot.
374  */
375 __printf(3, 4)
376 void xe_devcoredump(struct xe_exec_queue *q, struct xe_sched_job *job, const char *fmt, ...)
377 {
378 	struct xe_device *xe = gt_to_xe(q->gt);
379 	struct xe_devcoredump *coredump = &xe->devcoredump;
380 	va_list varg;
381 
382 	mutex_lock(&coredump->lock);
383 
384 	if (coredump->captured) {
385 		drm_dbg(&xe->drm, "Multiple hangs are occurring, but only the first snapshot was taken\n");
386 		mutex_unlock(&coredump->lock);
387 		return;
388 	}
389 
390 	coredump->captured = true;
391 
392 	va_start(varg, fmt);
393 	coredump->snapshot.reason = kvasprintf(GFP_ATOMIC, fmt, varg);
394 	va_end(varg);
395 
396 	devcoredump_snapshot(coredump, q, job);
397 
398 	drm_info(&xe->drm, "Xe device coredump has been created\n");
399 	drm_info(&xe->drm, "Check your /sys/class/drm/card%d/device/devcoredump/data\n",
400 		 xe->drm.primary->index);
401 
402 	mutex_unlock(&coredump->lock);
403 }
404 
405 static void xe_driver_devcoredump_fini(void *arg)
406 {
407 	struct drm_device *drm = arg;
408 
409 	dev_coredump_put(drm->dev);
410 }
411 
412 int xe_devcoredump_init(struct xe_device *xe)
413 {
414 	int err;
415 
416 	err = drmm_mutex_init(&xe->drm, &xe->devcoredump.lock);
417 	if (err)
418 		return err;
419 
420 	if (IS_ENABLED(CONFIG_LOCKDEP)) {
421 		fs_reclaim_acquire(GFP_KERNEL);
422 		might_lock(&xe->devcoredump.lock);
423 		fs_reclaim_release(GFP_KERNEL);
424 	}
425 
426 	return devm_add_action_or_reset(xe->drm.dev, xe_driver_devcoredump_fini, &xe->drm);
427 }
428 
429 #endif
430 
431 /**
432  * xe_print_blob_ascii85 - print a BLOB to some useful location in ASCII85
433  *
434  * The output is split into multiple calls to drm_puts() because some print
435  * targets, e.g. dmesg, cannot handle arbitrarily long lines. These targets may
436  * add newlines, as is the case with dmesg: each drm_puts() call creates a
437  * separate line.
438  *
439  * There is also a scheduler yield call to prevent the 'task has been stuck for
440  * 120s' kernel hang check feature from firing when printing to a slow target
441  * such as dmesg over a serial port.
442  *
443  * @p: the printer object to output to
444  * @prefix: optional prefix to add to output string
445  * @suffix: optional suffix to add at the end. 0 disables it and is
446  *          not added to the output, which is useful when using multiple calls
447  *          to dump data to @p
448  * @blob: the Binary Large OBject to dump out
449  * @offset: offset in bytes to skip from the front of the BLOB, must be a multiple of sizeof(u32)
450  * @size: the size in bytes of the BLOB, must be a multiple of sizeof(u32)
451  */
452 void xe_print_blob_ascii85(struct drm_printer *p, const char *prefix, char suffix,
453 			   const void *blob, size_t offset, size_t size)
454 {
455 	const u32 *blob32 = (const u32 *)blob;
456 	char buff[ASCII85_BUFSZ], *line_buff;
457 	size_t line_pos = 0;
458 
459 #define DMESG_MAX_LINE_LEN	800
460 	/* Always leave space for the suffix char and the \0 */
461 #define MIN_SPACE		(ASCII85_BUFSZ + 2)	/* 85 + "<suffix>\0" */
462 
463 	if (size & 3)
464 		drm_printf(p, "Size not word aligned: %zu", size);
465 	if (offset & 3)
466 		drm_printf(p, "Offset not word aligned: %zu", offset);
467 
468 	line_buff = kzalloc(DMESG_MAX_LINE_LEN, GFP_ATOMIC);
469 	if (!line_buff) {
470 		drm_printf(p, "Failed to allocate line buffer\n");
471 		return;
472 	}
473 
474 	blob32 += offset / sizeof(*blob32);
475 	size /= sizeof(*blob32);
476 
477 	if (prefix) {
478 		strscpy(line_buff, prefix, DMESG_MAX_LINE_LEN - MIN_SPACE - 2);
479 		line_pos = strlen(line_buff);
480 
481 		line_buff[line_pos++] = ':';
482 		line_buff[line_pos++] = ' ';
483 	}
484 
485 	while (size--) {
486 		u32 val = *(blob32++);
487 
488 		strscpy(line_buff + line_pos, ascii85_encode(val, buff),
489 			DMESG_MAX_LINE_LEN - line_pos);
490 		line_pos += strlen(line_buff + line_pos);
491 
492 		if ((line_pos + MIN_SPACE) >= DMESG_MAX_LINE_LEN) {
493 			line_buff[line_pos++] = 0;
494 
495 			drm_puts(p, line_buff);
496 
497 			line_pos = 0;
498 
499 			/* Prevent 'stuck thread' time out errors */
500 			cond_resched();
501 		}
502 	}
503 
504 	if (suffix)
505 		line_buff[line_pos++] = suffix;
506 
507 	if (line_pos) {
508 		line_buff[line_pos++] = 0;
509 		drm_puts(p, line_buff);
510 	}
511 
512 	kfree(line_buff);
513 
514 #undef MIN_SPACE
515 #undef DMESG_MAX_LINE_LEN
516 }
517