1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2023 Intel Corporation 4 */ 5 6 #include "xe_devcoredump.h" 7 #include "xe_devcoredump_types.h" 8 9 #include <linux/ascii85.h> 10 #include <linux/devcoredump.h> 11 #include <generated/utsrelease.h> 12 13 #include <drm/drm_managed.h> 14 15 #include "xe_device.h" 16 #include "xe_exec_queue.h" 17 #include "xe_force_wake.h" 18 #include "xe_gt.h" 19 #include "xe_gt_printk.h" 20 #include "xe_guc_capture.h" 21 #include "xe_guc_ct.h" 22 #include "xe_guc_log.h" 23 #include "xe_guc_submit.h" 24 #include "xe_hw_engine.h" 25 #include "xe_module.h" 26 #include "xe_pm.h" 27 #include "xe_sched_job.h" 28 #include "xe_vm.h" 29 30 /** 31 * DOC: Xe device coredump 32 * 33 * Xe uses dev_coredump infrastructure for exposing the crash errors in a 34 * standardized way. Once a crash occurs, devcoredump exposes a temporary 35 * node under ``/sys/class/devcoredump/devcd<m>/``. The same node is also 36 * accessible in ``/sys/class/drm/card<n>/device/devcoredump/``. The 37 * ``failing_device`` symlink points to the device that crashed and created the 38 * coredump. 39 * 40 * The following characteristics are observed by xe when creating a device 41 * coredump: 42 * 43 * **Snapshot at hang**: 44 * The 'data' file contains a snapshot of the HW and driver states at the time 45 * the hang happened. Due to the driver recovering from resets/crashes, it may 46 * not correspond to the state of the system when the file is read by 47 * userspace. 48 * 49 * **Coredump release**: 50 * After a coredump is generated, it stays in kernel memory until released by 51 * userspace by writing anything to it, or after an internal timer expires. The 52 * exact timeout may vary and should not be relied upon. Example to release 53 * a coredump: 54 * 55 * .. code-block:: shell 56 * 57 * $ > /sys/class/drm/card0/device/devcoredump/data 58 * 59 * **First failure only**: 60 * In general, the first hang is the most critical one since the following 61 * hangs can be a consequence of the initial hang. For this reason a snapshot 62 * is taken only for the first failure. Until the devcoredump is released by 63 * userspace or kernel, all subsequent hangs do not override the snapshot nor 64 * create new ones. Devcoredump has a delayed work queue that will eventually 65 * delete the file node and free all the dump information. 66 */ 67 68 #ifdef CONFIG_DEV_COREDUMP 69 70 /* 1 hour timeout */ 71 #define XE_COREDUMP_TIMEOUT_JIFFIES (60 * 60 * HZ) 72 73 static struct xe_device *coredump_to_xe(const struct xe_devcoredump *coredump) 74 { 75 return container_of(coredump, struct xe_device, devcoredump); 76 } 77 78 static struct xe_guc *exec_queue_to_guc(struct xe_exec_queue *q) 79 { 80 return &q->gt->uc.guc; 81 } 82 83 static ssize_t __xe_devcoredump_read(char *buffer, ssize_t count, 84 ssize_t start, 85 struct xe_devcoredump *coredump) 86 { 87 struct xe_device *xe; 88 struct xe_devcoredump_snapshot *ss; 89 struct drm_printer p; 90 struct drm_print_iterator iter; 91 struct timespec64 ts; 92 int i; 93 94 xe = coredump_to_xe(coredump); 95 ss = &coredump->snapshot; 96 97 iter.data = buffer; 98 iter.start = start; 99 iter.remain = count; 100 101 p = drm_coredump_printer(&iter); 102 103 drm_puts(&p, "**** Xe Device Coredump ****\n"); 104 drm_printf(&p, "Reason: %s\n", ss->reason); 105 drm_puts(&p, "kernel: " UTS_RELEASE "\n"); 106 drm_puts(&p, "module: " KBUILD_MODNAME "\n"); 107 108 ts = ktime_to_timespec64(ss->snapshot_time); 109 drm_printf(&p, "Snapshot time: %lld.%09ld\n", ts.tv_sec, ts.tv_nsec); 110 ts = ktime_to_timespec64(ss->boot_time); 111 drm_printf(&p, "Uptime: %lld.%09ld\n", ts.tv_sec, ts.tv_nsec); 112 drm_printf(&p, "Process: %s [%d]\n", ss->process_name, ss->pid); 113 xe_device_snapshot_print(xe, &p); 114 115 drm_printf(&p, "\n**** GT #%d ****\n", ss->gt->info.id); 116 drm_printf(&p, "\tTile: %d\n", ss->gt->tile->id); 117 118 drm_puts(&p, "\n**** GuC Log ****\n"); 119 xe_guc_log_snapshot_print(ss->guc.log, &p); 120 drm_puts(&p, "\n**** GuC CT ****\n"); 121 xe_guc_ct_snapshot_print(ss->guc.ct, &p); 122 123 drm_puts(&p, "\n**** Contexts ****\n"); 124 xe_guc_exec_queue_snapshot_print(ss->ge, &p); 125 126 drm_puts(&p, "\n**** Job ****\n"); 127 xe_sched_job_snapshot_print(ss->job, &p); 128 129 drm_puts(&p, "\n**** HW Engines ****\n"); 130 for (i = 0; i < XE_NUM_HW_ENGINES; i++) 131 if (ss->hwe[i]) 132 xe_engine_snapshot_print(ss->hwe[i], &p); 133 134 drm_puts(&p, "\n**** VM state ****\n"); 135 xe_vm_snapshot_print(ss->vm, &p); 136 137 return count - iter.remain; 138 } 139 140 static void xe_devcoredump_snapshot_free(struct xe_devcoredump_snapshot *ss) 141 { 142 int i; 143 144 kfree(ss->reason); 145 ss->reason = NULL; 146 147 xe_guc_log_snapshot_free(ss->guc.log); 148 ss->guc.log = NULL; 149 150 xe_guc_ct_snapshot_free(ss->guc.ct); 151 ss->guc.ct = NULL; 152 153 xe_guc_capture_put_matched_nodes(&ss->gt->uc.guc); 154 ss->matched_node = NULL; 155 156 xe_guc_exec_queue_snapshot_free(ss->ge); 157 ss->ge = NULL; 158 159 xe_sched_job_snapshot_free(ss->job); 160 ss->job = NULL; 161 162 for (i = 0; i < XE_NUM_HW_ENGINES; i++) 163 if (ss->hwe[i]) { 164 xe_hw_engine_snapshot_free(ss->hwe[i]); 165 ss->hwe[i] = NULL; 166 } 167 168 xe_vm_snapshot_free(ss->vm); 169 ss->vm = NULL; 170 } 171 172 #define XE_DEVCOREDUMP_CHUNK_MAX (SZ_512M + SZ_1G) 173 174 static ssize_t xe_devcoredump_read(char *buffer, loff_t offset, 175 size_t count, void *data, size_t datalen) 176 { 177 struct xe_devcoredump *coredump = data; 178 struct xe_devcoredump_snapshot *ss; 179 ssize_t byte_copied; 180 u32 chunk_offset; 181 ssize_t new_chunk_position; 182 183 if (!coredump) 184 return -ENODEV; 185 186 ss = &coredump->snapshot; 187 188 /* Ensure delayed work is captured before continuing */ 189 flush_work(&ss->work); 190 191 if (ss->read.size > XE_DEVCOREDUMP_CHUNK_MAX) 192 xe_pm_runtime_get(gt_to_xe(ss->gt)); 193 194 mutex_lock(&coredump->lock); 195 196 if (!ss->read.buffer) { 197 mutex_unlock(&coredump->lock); 198 return -ENODEV; 199 } 200 201 if (offset >= ss->read.size) { 202 mutex_unlock(&coredump->lock); 203 return 0; 204 } 205 206 new_chunk_position = div_u64_rem(offset, 207 XE_DEVCOREDUMP_CHUNK_MAX, 208 &chunk_offset); 209 210 if (offset >= ss->read.chunk_position + XE_DEVCOREDUMP_CHUNK_MAX || 211 offset < ss->read.chunk_position) { 212 ss->read.chunk_position = new_chunk_position * 213 XE_DEVCOREDUMP_CHUNK_MAX; 214 215 __xe_devcoredump_read(ss->read.buffer, 216 XE_DEVCOREDUMP_CHUNK_MAX, 217 ss->read.chunk_position, coredump); 218 } 219 220 byte_copied = count < ss->read.size - offset ? count : 221 ss->read.size - offset; 222 memcpy(buffer, ss->read.buffer + chunk_offset, byte_copied); 223 224 mutex_unlock(&coredump->lock); 225 226 if (ss->read.size > XE_DEVCOREDUMP_CHUNK_MAX) 227 xe_pm_runtime_put(gt_to_xe(ss->gt)); 228 229 return byte_copied; 230 } 231 232 static void xe_devcoredump_free(void *data) 233 { 234 struct xe_devcoredump *coredump = data; 235 236 /* Our device is gone. Nothing to do... */ 237 if (!data || !coredump_to_xe(coredump)) 238 return; 239 240 cancel_work_sync(&coredump->snapshot.work); 241 242 mutex_lock(&coredump->lock); 243 244 xe_devcoredump_snapshot_free(&coredump->snapshot); 245 kvfree(coredump->snapshot.read.buffer); 246 247 /* To prevent stale data on next snapshot, clear everything */ 248 memset(&coredump->snapshot, 0, sizeof(coredump->snapshot)); 249 coredump->captured = false; 250 drm_info(&coredump_to_xe(coredump)->drm, 251 "Xe device coredump has been deleted.\n"); 252 253 mutex_unlock(&coredump->lock); 254 } 255 256 static void xe_devcoredump_deferred_snap_work(struct work_struct *work) 257 { 258 struct xe_devcoredump_snapshot *ss = container_of(work, typeof(*ss), work); 259 struct xe_devcoredump *coredump = container_of(ss, typeof(*coredump), snapshot); 260 struct xe_device *xe = coredump_to_xe(coredump); 261 unsigned int fw_ref; 262 263 /* 264 * NB: Despite passing a GFP_ flags parameter here, more allocations are done 265 * internally using GFP_KERNEL explicitly. Hence this call must be in the worker 266 * thread and not in the initial capture call. 267 */ 268 dev_coredumpm_timeout(gt_to_xe(ss->gt)->drm.dev, THIS_MODULE, coredump, 0, GFP_KERNEL, 269 xe_devcoredump_read, xe_devcoredump_free, 270 XE_COREDUMP_TIMEOUT_JIFFIES); 271 272 xe_pm_runtime_get(xe); 273 274 /* keep going if fw fails as we still want to save the memory and SW data */ 275 fw_ref = xe_force_wake_get(gt_to_fw(ss->gt), XE_FORCEWAKE_ALL); 276 if (!xe_force_wake_ref_has_domain(fw_ref, XE_FORCEWAKE_ALL)) 277 xe_gt_info(ss->gt, "failed to get forcewake for coredump capture\n"); 278 xe_vm_snapshot_capture_delayed(ss->vm); 279 xe_guc_exec_queue_snapshot_capture_delayed(ss->ge); 280 xe_force_wake_put(gt_to_fw(ss->gt), fw_ref); 281 282 ss->read.chunk_position = 0; 283 284 /* Calculate devcoredump size */ 285 ss->read.size = __xe_devcoredump_read(NULL, LONG_MAX, 0, coredump); 286 287 if (ss->read.size > XE_DEVCOREDUMP_CHUNK_MAX) { 288 ss->read.buffer = kvmalloc(XE_DEVCOREDUMP_CHUNK_MAX, 289 GFP_USER); 290 if (!ss->read.buffer) 291 goto put_pm; 292 293 __xe_devcoredump_read(ss->read.buffer, 294 XE_DEVCOREDUMP_CHUNK_MAX, 295 0, coredump); 296 } else { 297 ss->read.buffer = kvmalloc(ss->read.size, GFP_USER); 298 if (!ss->read.buffer) 299 goto put_pm; 300 301 __xe_devcoredump_read(ss->read.buffer, ss->read.size, 0, 302 coredump); 303 xe_devcoredump_snapshot_free(ss); 304 } 305 306 put_pm: 307 xe_pm_runtime_put(xe); 308 } 309 310 static void devcoredump_snapshot(struct xe_devcoredump *coredump, 311 struct xe_exec_queue *q, 312 struct xe_sched_job *job) 313 { 314 struct xe_devcoredump_snapshot *ss = &coredump->snapshot; 315 struct xe_guc *guc = exec_queue_to_guc(q); 316 u32 adj_logical_mask = q->logical_mask; 317 u32 width_mask = (0x1 << q->width) - 1; 318 const char *process_name = "no process"; 319 320 unsigned int fw_ref; 321 bool cookie; 322 int i; 323 324 ss->snapshot_time = ktime_get_real(); 325 ss->boot_time = ktime_get_boottime(); 326 327 if (q->vm && q->vm->xef) { 328 process_name = q->vm->xef->process_name; 329 ss->pid = q->vm->xef->pid; 330 } 331 332 strscpy(ss->process_name, process_name); 333 334 ss->gt = q->gt; 335 INIT_WORK(&ss->work, xe_devcoredump_deferred_snap_work); 336 337 cookie = dma_fence_begin_signalling(); 338 for (i = 0; q->width > 1 && i < XE_HW_ENGINE_MAX_INSTANCE;) { 339 if (adj_logical_mask & BIT(i)) { 340 adj_logical_mask |= width_mask << i; 341 i += q->width; 342 } else { 343 ++i; 344 } 345 } 346 347 /* keep going if fw fails as we still want to save the memory and SW data */ 348 fw_ref = xe_force_wake_get(gt_to_fw(q->gt), XE_FORCEWAKE_ALL); 349 350 ss->guc.log = xe_guc_log_snapshot_capture(&guc->log, true); 351 ss->guc.ct = xe_guc_ct_snapshot_capture(&guc->ct); 352 ss->ge = xe_guc_exec_queue_snapshot_capture(q); 353 if (job) 354 ss->job = xe_sched_job_snapshot_capture(job); 355 ss->vm = xe_vm_snapshot_capture(q->vm); 356 357 xe_engine_snapshot_capture_for_queue(q); 358 359 queue_work(system_unbound_wq, &ss->work); 360 361 xe_force_wake_put(gt_to_fw(q->gt), fw_ref); 362 dma_fence_end_signalling(cookie); 363 } 364 365 /** 366 * xe_devcoredump - Take the required snapshots and initialize coredump device. 367 * @q: The faulty xe_exec_queue, where the issue was detected. 368 * @job: The faulty xe_sched_job, where the issue was detected. 369 * @fmt: Printf format + args to describe the reason for the core dump 370 * 371 * This function should be called at the crash time within the serialized 372 * gt_reset. It is skipped if we still have the core dump device available 373 * with the information of the 'first' snapshot. 374 */ 375 __printf(3, 4) 376 void xe_devcoredump(struct xe_exec_queue *q, struct xe_sched_job *job, const char *fmt, ...) 377 { 378 struct xe_device *xe = gt_to_xe(q->gt); 379 struct xe_devcoredump *coredump = &xe->devcoredump; 380 va_list varg; 381 382 mutex_lock(&coredump->lock); 383 384 if (coredump->captured) { 385 drm_dbg(&xe->drm, "Multiple hangs are occurring, but only the first snapshot was taken\n"); 386 mutex_unlock(&coredump->lock); 387 return; 388 } 389 390 coredump->captured = true; 391 392 va_start(varg, fmt); 393 coredump->snapshot.reason = kvasprintf(GFP_ATOMIC, fmt, varg); 394 va_end(varg); 395 396 devcoredump_snapshot(coredump, q, job); 397 398 drm_info(&xe->drm, "Xe device coredump has been created\n"); 399 drm_info(&xe->drm, "Check your /sys/class/drm/card%d/device/devcoredump/data\n", 400 xe->drm.primary->index); 401 402 mutex_unlock(&coredump->lock); 403 } 404 405 static void xe_driver_devcoredump_fini(void *arg) 406 { 407 struct drm_device *drm = arg; 408 409 dev_coredump_put(drm->dev); 410 } 411 412 int xe_devcoredump_init(struct xe_device *xe) 413 { 414 int err; 415 416 err = drmm_mutex_init(&xe->drm, &xe->devcoredump.lock); 417 if (err) 418 return err; 419 420 if (IS_ENABLED(CONFIG_LOCKDEP)) { 421 fs_reclaim_acquire(GFP_KERNEL); 422 might_lock(&xe->devcoredump.lock); 423 fs_reclaim_release(GFP_KERNEL); 424 } 425 426 return devm_add_action_or_reset(xe->drm.dev, xe_driver_devcoredump_fini, &xe->drm); 427 } 428 429 #endif 430 431 /** 432 * xe_print_blob_ascii85 - print a BLOB to some useful location in ASCII85 433 * 434 * The output is split into multiple calls to drm_puts() because some print 435 * targets, e.g. dmesg, cannot handle arbitrarily long lines. These targets may 436 * add newlines, as is the case with dmesg: each drm_puts() call creates a 437 * separate line. 438 * 439 * There is also a scheduler yield call to prevent the 'task has been stuck for 440 * 120s' kernel hang check feature from firing when printing to a slow target 441 * such as dmesg over a serial port. 442 * 443 * @p: the printer object to output to 444 * @prefix: optional prefix to add to output string 445 * @suffix: optional suffix to add at the end. 0 disables it and is 446 * not added to the output, which is useful when using multiple calls 447 * to dump data to @p 448 * @blob: the Binary Large OBject to dump out 449 * @offset: offset in bytes to skip from the front of the BLOB, must be a multiple of sizeof(u32) 450 * @size: the size in bytes of the BLOB, must be a multiple of sizeof(u32) 451 */ 452 void xe_print_blob_ascii85(struct drm_printer *p, const char *prefix, char suffix, 453 const void *blob, size_t offset, size_t size) 454 { 455 const u32 *blob32 = (const u32 *)blob; 456 char buff[ASCII85_BUFSZ], *line_buff; 457 size_t line_pos = 0; 458 459 #define DMESG_MAX_LINE_LEN 800 460 /* Always leave space for the suffix char and the \0 */ 461 #define MIN_SPACE (ASCII85_BUFSZ + 2) /* 85 + "<suffix>\0" */ 462 463 if (size & 3) 464 drm_printf(p, "Size not word aligned: %zu", size); 465 if (offset & 3) 466 drm_printf(p, "Offset not word aligned: %zu", offset); 467 468 line_buff = kzalloc(DMESG_MAX_LINE_LEN, GFP_ATOMIC); 469 if (!line_buff) { 470 drm_printf(p, "Failed to allocate line buffer\n"); 471 return; 472 } 473 474 blob32 += offset / sizeof(*blob32); 475 size /= sizeof(*blob32); 476 477 if (prefix) { 478 strscpy(line_buff, prefix, DMESG_MAX_LINE_LEN - MIN_SPACE - 2); 479 line_pos = strlen(line_buff); 480 481 line_buff[line_pos++] = ':'; 482 line_buff[line_pos++] = ' '; 483 } 484 485 while (size--) { 486 u32 val = *(blob32++); 487 488 strscpy(line_buff + line_pos, ascii85_encode(val, buff), 489 DMESG_MAX_LINE_LEN - line_pos); 490 line_pos += strlen(line_buff + line_pos); 491 492 if ((line_pos + MIN_SPACE) >= DMESG_MAX_LINE_LEN) { 493 line_buff[line_pos++] = 0; 494 495 drm_puts(p, line_buff); 496 497 line_pos = 0; 498 499 /* Prevent 'stuck thread' time out errors */ 500 cond_resched(); 501 } 502 } 503 504 if (suffix) 505 line_buff[line_pos++] = suffix; 506 507 if (line_pos) { 508 line_buff[line_pos++] = 0; 509 drm_puts(p, line_buff); 510 } 511 512 kfree(line_buff); 513 514 #undef MIN_SPACE 515 #undef DMESG_MAX_LINE_LEN 516 } 517