1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2023 Intel Corporation 4 */ 5 6 #include "xe_devcoredump.h" 7 #include "xe_devcoredump_types.h" 8 9 #include <linux/ascii85.h> 10 #include <linux/devcoredump.h> 11 #include <generated/utsrelease.h> 12 13 #include <drm/drm_managed.h> 14 15 #include "xe_device.h" 16 #include "xe_exec_queue.h" 17 #include "xe_force_wake.h" 18 #include "xe_gt.h" 19 #include "xe_gt_printk.h" 20 #include "xe_guc_capture.h" 21 #include "xe_guc_ct.h" 22 #include "xe_guc_log.h" 23 #include "xe_guc_submit.h" 24 #include "xe_hw_engine.h" 25 #include "xe_module.h" 26 #include "xe_pm.h" 27 #include "xe_sched_job.h" 28 #include "xe_vm.h" 29 30 /** 31 * DOC: Xe device coredump 32 * 33 * Xe uses dev_coredump infrastructure for exposing the crash errors in a 34 * standardized way. Once a crash occurs, devcoredump exposes a temporary 35 * node under ``/sys/class/devcoredump/devcd<m>/``. The same node is also 36 * accessible in ``/sys/class/drm/card<n>/device/devcoredump/``. The 37 * ``failing_device`` symlink points to the device that crashed and created the 38 * coredump. 39 * 40 * The following characteristics are observed by xe when creating a device 41 * coredump: 42 * 43 * **Snapshot at hang**: 44 * The 'data' file contains a snapshot of the HW and driver states at the time 45 * the hang happened. Due to the driver recovering from resets/crashes, it may 46 * not correspond to the state of the system when the file is read by 47 * userspace. 48 * 49 * **Coredump release**: 50 * After a coredump is generated, it stays in kernel memory until released by 51 * userspace by writing anything to it, or after an internal timer expires. The 52 * exact timeout may vary and should not be relied upon. Example to release 53 * a coredump: 54 * 55 * .. code-block:: shell 56 * 57 * $ > /sys/class/drm/card0/device/devcoredump/data 58 * 59 * **First failure only**: 60 * In general, the first hang is the most critical one since the following 61 * hangs can be a consequence of the initial hang. For this reason a snapshot 62 * is taken only for the first failure. Until the devcoredump is released by 63 * userspace or kernel, all subsequent hangs do not override the snapshot nor 64 * create new ones. Devcoredump has a delayed work queue that will eventually 65 * delete the file node and free all the dump information. 66 */ 67 68 #ifdef CONFIG_DEV_COREDUMP 69 70 /* 1 hour timeout */ 71 #define XE_COREDUMP_TIMEOUT_JIFFIES (60 * 60 * HZ) 72 73 static struct xe_device *coredump_to_xe(const struct xe_devcoredump *coredump) 74 { 75 return container_of(coredump, struct xe_device, devcoredump); 76 } 77 78 static struct xe_guc *exec_queue_to_guc(struct xe_exec_queue *q) 79 { 80 return &q->gt->uc.guc; 81 } 82 83 static ssize_t __xe_devcoredump_read(char *buffer, size_t count, 84 struct xe_devcoredump *coredump) 85 { 86 struct xe_device *xe; 87 struct xe_devcoredump_snapshot *ss; 88 struct drm_printer p; 89 struct drm_print_iterator iter; 90 struct timespec64 ts; 91 int i; 92 93 xe = coredump_to_xe(coredump); 94 ss = &coredump->snapshot; 95 96 iter.data = buffer; 97 iter.start = 0; 98 iter.remain = count; 99 100 p = drm_coredump_printer(&iter); 101 102 drm_puts(&p, "**** Xe Device Coredump ****\n"); 103 drm_printf(&p, "Reason: %s\n", ss->reason); 104 drm_puts(&p, "kernel: " UTS_RELEASE "\n"); 105 drm_puts(&p, "module: " KBUILD_MODNAME "\n"); 106 107 ts = ktime_to_timespec64(ss->snapshot_time); 108 drm_printf(&p, "Snapshot time: %lld.%09ld\n", ts.tv_sec, ts.tv_nsec); 109 ts = ktime_to_timespec64(ss->boot_time); 110 drm_printf(&p, "Uptime: %lld.%09ld\n", ts.tv_sec, ts.tv_nsec); 111 drm_printf(&p, "Process: %s [%d]\n", ss->process_name, ss->pid); 112 xe_device_snapshot_print(xe, &p); 113 114 drm_printf(&p, "\n**** GT #%d ****\n", ss->gt->info.id); 115 drm_printf(&p, "\tTile: %d\n", ss->gt->tile->id); 116 117 drm_puts(&p, "\n**** GuC Log ****\n"); 118 xe_guc_log_snapshot_print(ss->guc.log, &p); 119 drm_puts(&p, "\n**** GuC CT ****\n"); 120 xe_guc_ct_snapshot_print(ss->guc.ct, &p); 121 122 drm_puts(&p, "\n**** Contexts ****\n"); 123 xe_guc_exec_queue_snapshot_print(ss->ge, &p); 124 125 drm_puts(&p, "\n**** Job ****\n"); 126 xe_sched_job_snapshot_print(ss->job, &p); 127 128 drm_puts(&p, "\n**** HW Engines ****\n"); 129 for (i = 0; i < XE_NUM_HW_ENGINES; i++) 130 if (ss->hwe[i]) 131 xe_engine_snapshot_print(ss->hwe[i], &p); 132 133 drm_puts(&p, "\n**** VM state ****\n"); 134 xe_vm_snapshot_print(ss->vm, &p); 135 136 return count - iter.remain; 137 } 138 139 static void xe_devcoredump_snapshot_free(struct xe_devcoredump_snapshot *ss) 140 { 141 int i; 142 143 kfree(ss->reason); 144 ss->reason = NULL; 145 146 xe_guc_log_snapshot_free(ss->guc.log); 147 ss->guc.log = NULL; 148 149 xe_guc_ct_snapshot_free(ss->guc.ct); 150 ss->guc.ct = NULL; 151 152 xe_guc_capture_put_matched_nodes(&ss->gt->uc.guc); 153 ss->matched_node = NULL; 154 155 xe_guc_exec_queue_snapshot_free(ss->ge); 156 ss->ge = NULL; 157 158 xe_sched_job_snapshot_free(ss->job); 159 ss->job = NULL; 160 161 for (i = 0; i < XE_NUM_HW_ENGINES; i++) 162 if (ss->hwe[i]) { 163 xe_hw_engine_snapshot_free(ss->hwe[i]); 164 ss->hwe[i] = NULL; 165 } 166 167 xe_vm_snapshot_free(ss->vm); 168 ss->vm = NULL; 169 } 170 171 static ssize_t xe_devcoredump_read(char *buffer, loff_t offset, 172 size_t count, void *data, size_t datalen) 173 { 174 struct xe_devcoredump *coredump = data; 175 struct xe_devcoredump_snapshot *ss; 176 ssize_t byte_copied; 177 178 if (!coredump) 179 return -ENODEV; 180 181 ss = &coredump->snapshot; 182 183 /* Ensure delayed work is captured before continuing */ 184 flush_work(&ss->work); 185 186 mutex_lock(&coredump->lock); 187 188 if (!ss->read.buffer) { 189 mutex_unlock(&coredump->lock); 190 return -ENODEV; 191 } 192 193 if (offset >= ss->read.size) { 194 mutex_unlock(&coredump->lock); 195 return 0; 196 } 197 198 byte_copied = count < ss->read.size - offset ? count : 199 ss->read.size - offset; 200 memcpy(buffer, ss->read.buffer + offset, byte_copied); 201 202 mutex_unlock(&coredump->lock); 203 204 return byte_copied; 205 } 206 207 static void xe_devcoredump_free(void *data) 208 { 209 struct xe_devcoredump *coredump = data; 210 211 /* Our device is gone. Nothing to do... */ 212 if (!data || !coredump_to_xe(coredump)) 213 return; 214 215 cancel_work_sync(&coredump->snapshot.work); 216 217 mutex_lock(&coredump->lock); 218 219 xe_devcoredump_snapshot_free(&coredump->snapshot); 220 kvfree(coredump->snapshot.read.buffer); 221 222 /* To prevent stale data on next snapshot, clear everything */ 223 memset(&coredump->snapshot, 0, sizeof(coredump->snapshot)); 224 coredump->captured = false; 225 drm_info(&coredump_to_xe(coredump)->drm, 226 "Xe device coredump has been deleted.\n"); 227 228 mutex_unlock(&coredump->lock); 229 } 230 231 static void xe_devcoredump_deferred_snap_work(struct work_struct *work) 232 { 233 struct xe_devcoredump_snapshot *ss = container_of(work, typeof(*ss), work); 234 struct xe_devcoredump *coredump = container_of(ss, typeof(*coredump), snapshot); 235 struct xe_device *xe = coredump_to_xe(coredump); 236 unsigned int fw_ref; 237 238 /* 239 * NB: Despite passing a GFP_ flags parameter here, more allocations are done 240 * internally using GFP_KERNEL expliictly. Hence this call must be in the worker 241 * thread and not in the initial capture call. 242 */ 243 dev_coredumpm_timeout(gt_to_xe(ss->gt)->drm.dev, THIS_MODULE, coredump, 0, GFP_KERNEL, 244 xe_devcoredump_read, xe_devcoredump_free, 245 XE_COREDUMP_TIMEOUT_JIFFIES); 246 247 xe_pm_runtime_get(xe); 248 249 /* keep going if fw fails as we still want to save the memory and SW data */ 250 fw_ref = xe_force_wake_get(gt_to_fw(ss->gt), XE_FORCEWAKE_ALL); 251 if (!xe_force_wake_ref_has_domain(fw_ref, XE_FORCEWAKE_ALL)) 252 xe_gt_info(ss->gt, "failed to get forcewake for coredump capture\n"); 253 xe_vm_snapshot_capture_delayed(ss->vm); 254 xe_guc_exec_queue_snapshot_capture_delayed(ss->ge); 255 xe_force_wake_put(gt_to_fw(ss->gt), fw_ref); 256 257 xe_pm_runtime_put(xe); 258 259 /* Calculate devcoredump size */ 260 ss->read.size = __xe_devcoredump_read(NULL, INT_MAX, coredump); 261 262 ss->read.buffer = kvmalloc(ss->read.size, GFP_USER); 263 if (!ss->read.buffer) 264 return; 265 266 __xe_devcoredump_read(ss->read.buffer, ss->read.size, coredump); 267 xe_devcoredump_snapshot_free(ss); 268 } 269 270 static void devcoredump_snapshot(struct xe_devcoredump *coredump, 271 struct xe_exec_queue *q, 272 struct xe_sched_job *job) 273 { 274 struct xe_devcoredump_snapshot *ss = &coredump->snapshot; 275 struct xe_guc *guc = exec_queue_to_guc(q); 276 u32 adj_logical_mask = q->logical_mask; 277 u32 width_mask = (0x1 << q->width) - 1; 278 const char *process_name = "no process"; 279 280 unsigned int fw_ref; 281 bool cookie; 282 int i; 283 284 ss->snapshot_time = ktime_get_real(); 285 ss->boot_time = ktime_get_boottime(); 286 287 if (q->vm && q->vm->xef) { 288 process_name = q->vm->xef->process_name; 289 ss->pid = q->vm->xef->pid; 290 } 291 292 strscpy(ss->process_name, process_name); 293 294 ss->gt = q->gt; 295 INIT_WORK(&ss->work, xe_devcoredump_deferred_snap_work); 296 297 cookie = dma_fence_begin_signalling(); 298 for (i = 0; q->width > 1 && i < XE_HW_ENGINE_MAX_INSTANCE;) { 299 if (adj_logical_mask & BIT(i)) { 300 adj_logical_mask |= width_mask << i; 301 i += q->width; 302 } else { 303 ++i; 304 } 305 } 306 307 /* keep going if fw fails as we still want to save the memory and SW data */ 308 fw_ref = xe_force_wake_get(gt_to_fw(q->gt), XE_FORCEWAKE_ALL); 309 310 ss->guc.log = xe_guc_log_snapshot_capture(&guc->log, true); 311 ss->guc.ct = xe_guc_ct_snapshot_capture(&guc->ct); 312 ss->ge = xe_guc_exec_queue_snapshot_capture(q); 313 if (job) 314 ss->job = xe_sched_job_snapshot_capture(job); 315 ss->vm = xe_vm_snapshot_capture(q->vm); 316 317 xe_engine_snapshot_capture_for_queue(q); 318 319 queue_work(system_unbound_wq, &ss->work); 320 321 xe_force_wake_put(gt_to_fw(q->gt), fw_ref); 322 dma_fence_end_signalling(cookie); 323 } 324 325 /** 326 * xe_devcoredump - Take the required snapshots and initialize coredump device. 327 * @q: The faulty xe_exec_queue, where the issue was detected. 328 * @job: The faulty xe_sched_job, where the issue was detected. 329 * @fmt: Printf format + args to describe the reason for the core dump 330 * 331 * This function should be called at the crash time within the serialized 332 * gt_reset. It is skipped if we still have the core dump device available 333 * with the information of the 'first' snapshot. 334 */ 335 __printf(3, 4) 336 void xe_devcoredump(struct xe_exec_queue *q, struct xe_sched_job *job, const char *fmt, ...) 337 { 338 struct xe_device *xe = gt_to_xe(q->gt); 339 struct xe_devcoredump *coredump = &xe->devcoredump; 340 va_list varg; 341 342 mutex_lock(&coredump->lock); 343 344 if (coredump->captured) { 345 drm_dbg(&xe->drm, "Multiple hangs are occurring, but only the first snapshot was taken\n"); 346 mutex_unlock(&coredump->lock); 347 return; 348 } 349 350 coredump->captured = true; 351 352 va_start(varg, fmt); 353 coredump->snapshot.reason = kvasprintf(GFP_ATOMIC, fmt, varg); 354 va_end(varg); 355 356 devcoredump_snapshot(coredump, q, job); 357 358 drm_info(&xe->drm, "Xe device coredump has been created\n"); 359 drm_info(&xe->drm, "Check your /sys/class/drm/card%d/device/devcoredump/data\n", 360 xe->drm.primary->index); 361 362 mutex_unlock(&coredump->lock); 363 } 364 365 static void xe_driver_devcoredump_fini(void *arg) 366 { 367 struct drm_device *drm = arg; 368 369 dev_coredump_put(drm->dev); 370 } 371 372 int xe_devcoredump_init(struct xe_device *xe) 373 { 374 int err; 375 376 err = drmm_mutex_init(&xe->drm, &xe->devcoredump.lock); 377 if (err) 378 return err; 379 380 if (IS_ENABLED(CONFIG_LOCKDEP)) { 381 fs_reclaim_acquire(GFP_KERNEL); 382 might_lock(&xe->devcoredump.lock); 383 fs_reclaim_release(GFP_KERNEL); 384 } 385 386 return devm_add_action_or_reset(xe->drm.dev, xe_driver_devcoredump_fini, &xe->drm); 387 } 388 389 #endif 390 391 /** 392 * xe_print_blob_ascii85 - print a BLOB to some useful location in ASCII85 393 * 394 * The output is split into multiple calls to drm_puts() because some print 395 * targets, e.g. dmesg, cannot handle arbitrarily long lines. These targets may 396 * add newlines, as is the case with dmesg: each drm_puts() call creates a 397 * separate line. 398 * 399 * There is also a scheduler yield call to prevent the 'task has been stuck for 400 * 120s' kernel hang check feature from firing when printing to a slow target 401 * such as dmesg over a serial port. 402 * 403 * @p: the printer object to output to 404 * @prefix: optional prefix to add to output string 405 * @suffix: optional suffix to add at the end. 0 disables it and is 406 * not added to the output, which is useful when using multiple calls 407 * to dump data to @p 408 * @blob: the Binary Large OBject to dump out 409 * @offset: offset in bytes to skip from the front of the BLOB, must be a multiple of sizeof(u32) 410 * @size: the size in bytes of the BLOB, must be a multiple of sizeof(u32) 411 */ 412 void xe_print_blob_ascii85(struct drm_printer *p, const char *prefix, char suffix, 413 const void *blob, size_t offset, size_t size) 414 { 415 const u32 *blob32 = (const u32 *)blob; 416 char buff[ASCII85_BUFSZ], *line_buff; 417 size_t line_pos = 0; 418 419 #define DMESG_MAX_LINE_LEN 800 420 /* Always leave space for the suffix char and the \0 */ 421 #define MIN_SPACE (ASCII85_BUFSZ + 2) /* 85 + "<suffix>\0" */ 422 423 if (size & 3) 424 drm_printf(p, "Size not word aligned: %zu", size); 425 if (offset & 3) 426 drm_printf(p, "Offset not word aligned: %zu", size); 427 428 line_buff = kzalloc(DMESG_MAX_LINE_LEN, GFP_KERNEL); 429 if (IS_ERR_OR_NULL(line_buff)) { 430 drm_printf(p, "Failed to allocate line buffer: %pe", line_buff); 431 return; 432 } 433 434 blob32 += offset / sizeof(*blob32); 435 size /= sizeof(*blob32); 436 437 if (prefix) { 438 strscpy(line_buff, prefix, DMESG_MAX_LINE_LEN - MIN_SPACE - 2); 439 line_pos = strlen(line_buff); 440 441 line_buff[line_pos++] = ':'; 442 line_buff[line_pos++] = ' '; 443 } 444 445 while (size--) { 446 u32 val = *(blob32++); 447 448 strscpy(line_buff + line_pos, ascii85_encode(val, buff), 449 DMESG_MAX_LINE_LEN - line_pos); 450 line_pos += strlen(line_buff + line_pos); 451 452 if ((line_pos + MIN_SPACE) >= DMESG_MAX_LINE_LEN) { 453 line_buff[line_pos++] = 0; 454 455 drm_puts(p, line_buff); 456 457 line_pos = 0; 458 459 /* Prevent 'stuck thread' time out errors */ 460 cond_resched(); 461 } 462 } 463 464 if (suffix) 465 line_buff[line_pos++] = suffix; 466 467 if (line_pos) { 468 line_buff[line_pos++] = 0; 469 drm_puts(p, line_buff); 470 } 471 472 kfree(line_buff); 473 474 #undef MIN_SPACE 475 #undef DMESG_MAX_LINE_LEN 476 } 477