xref: /linux/drivers/gpu/drm/i915/gvt/handlers.c (revision e78f70bad29c5ae1e1076698b690b15794e9b81e)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Kevin Tian <kevin.tian@intel.com>
25  *    Eddie Dong <eddie.dong@intel.com>
26  *    Zhiyuan Lv <zhiyuan.lv@intel.com>
27  *
28  * Contributors:
29  *    Min He <min.he@intel.com>
30  *    Tina Zhang <tina.zhang@intel.com>
31  *    Pei Zhang <pei.zhang@intel.com>
32  *    Niu Bing <bing.niu@intel.com>
33  *    Ping Gao <ping.a.gao@intel.com>
34  *    Zhi Wang <zhi.a.wang@intel.com>
35  *
36 
37  */
38 
39 #include <drm/display/drm_dp.h>
40 
41 #include "i915_drv.h"
42 #include "i915_reg.h"
43 #include "gvt.h"
44 #include "i915_pvinfo.h"
45 #include "intel_mchbar_regs.h"
46 #include "display/bxt_dpio_phy_regs.h"
47 #include "display/i9xx_plane_regs.h"
48 #include "display/intel_crt_regs.h"
49 #include "display/intel_cursor_regs.h"
50 #include "display/intel_display_types.h"
51 #include "display/intel_dmc_regs.h"
52 #include "display/intel_dp_aux_regs.h"
53 #include "display/intel_dpio_phy.h"
54 #include "display/intel_fbc.h"
55 #include "display/intel_fdi_regs.h"
56 #include "display/intel_pps_regs.h"
57 #include "display/intel_psr_regs.h"
58 #include "display/intel_sprite_regs.h"
59 #include "display/intel_vga_regs.h"
60 #include "display/skl_universal_plane_regs.h"
61 #include "display/skl_watermark_regs.h"
62 #include "display/vlv_dsi_pll_regs.h"
63 #include "gt/intel_gt_regs.h"
64 #include <linux/vmalloc.h>
65 
66 /* XXX FIXME i915 has changed PP_XXX definition */
67 #define PCH_PP_STATUS  _MMIO(0xc7200)
68 #define PCH_PP_CONTROL _MMIO(0xc7204)
69 #define PCH_PP_ON_DELAYS _MMIO(0xc7208)
70 #define PCH_PP_OFF_DELAYS _MMIO(0xc720c)
71 #define PCH_PP_DIVISOR _MMIO(0xc7210)
72 
73 unsigned long intel_gvt_get_device_type(struct intel_gvt *gvt)
74 {
75 	struct drm_i915_private *i915 = gvt->gt->i915;
76 
77 	if (IS_BROADWELL(i915))
78 		return D_BDW;
79 	else if (IS_SKYLAKE(i915))
80 		return D_SKL;
81 	else if (IS_KABYLAKE(i915))
82 		return D_KBL;
83 	else if (IS_BROXTON(i915))
84 		return D_BXT;
85 	else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
86 		return D_CFL;
87 
88 	return 0;
89 }
90 
91 static bool intel_gvt_match_device(struct intel_gvt *gvt,
92 		unsigned long device)
93 {
94 	return intel_gvt_get_device_type(gvt) & device;
95 }
96 
97 static void read_vreg(struct intel_vgpu *vgpu, unsigned int offset,
98 	void *p_data, unsigned int bytes)
99 {
100 	memcpy(p_data, &vgpu_vreg(vgpu, offset), bytes);
101 }
102 
103 static void write_vreg(struct intel_vgpu *vgpu, unsigned int offset,
104 	void *p_data, unsigned int bytes)
105 {
106 	memcpy(&vgpu_vreg(vgpu, offset), p_data, bytes);
107 }
108 
109 struct intel_gvt_mmio_info *intel_gvt_find_mmio_info(struct intel_gvt *gvt,
110 						  unsigned int offset)
111 {
112 	struct intel_gvt_mmio_info *e;
113 
114 	hash_for_each_possible(gvt->mmio.mmio_info_table, e, node, offset) {
115 		if (e->offset == offset)
116 			return e;
117 	}
118 	return NULL;
119 }
120 
121 static int setup_mmio_info(struct intel_gvt *gvt, u32 offset, u32 size,
122 			   u16 flags, u32 addr_mask, u32 ro_mask, u32 device,
123 			   gvt_mmio_func read, gvt_mmio_func write)
124 {
125 	struct intel_gvt_mmio_info *p;
126 	u32 start, end, i;
127 
128 	if (!intel_gvt_match_device(gvt, device))
129 		return 0;
130 
131 	if (WARN_ON(!IS_ALIGNED(offset, 4)))
132 		return -EINVAL;
133 
134 	start = offset;
135 	end = offset + size;
136 
137 	for (i = start; i < end; i += 4) {
138 		p = intel_gvt_find_mmio_info(gvt, i);
139 		if (!p) {
140 			WARN(1, "assign a handler to a non-tracked mmio %x\n",
141 				i);
142 			return -ENODEV;
143 		}
144 		p->ro_mask = ro_mask;
145 		gvt->mmio.mmio_attribute[i / 4] = flags;
146 		if (read)
147 			p->read = read;
148 		if (write)
149 			p->write = write;
150 	}
151 	return 0;
152 }
153 
154 /**
155  * intel_gvt_render_mmio_to_engine - convert a mmio offset into the engine
156  * @gvt: a GVT device
157  * @offset: register offset
158  *
159  * Returns:
160  * The engine containing the offset within its mmio page.
161  */
162 const struct intel_engine_cs *
163 intel_gvt_render_mmio_to_engine(struct intel_gvt *gvt, unsigned int offset)
164 {
165 	struct intel_engine_cs *engine;
166 	enum intel_engine_id id;
167 
168 	offset &= ~GENMASK(11, 0);
169 	for_each_engine(engine, gvt->gt, id)
170 		if (engine->mmio_base == offset)
171 			return engine;
172 
173 	return NULL;
174 }
175 
176 #define offset_to_fence_num(offset) \
177 	((offset - i915_mmio_reg_offset(FENCE_REG_GEN6_LO(0))) >> 3)
178 
179 #define fence_num_to_offset(num) \
180 	(num * 8 + i915_mmio_reg_offset(FENCE_REG_GEN6_LO(0)))
181 
182 
183 void enter_failsafe_mode(struct intel_vgpu *vgpu, int reason)
184 {
185 	switch (reason) {
186 	case GVT_FAILSAFE_UNSUPPORTED_GUEST:
187 		pr_err("Detected your guest driver doesn't support GVT-g.\n");
188 		break;
189 	case GVT_FAILSAFE_INSUFFICIENT_RESOURCE:
190 		pr_err("Graphics resource is not enough for the guest\n");
191 		break;
192 	case GVT_FAILSAFE_GUEST_ERR:
193 		pr_err("GVT Internal error  for the guest\n");
194 		break;
195 	default:
196 		break;
197 	}
198 	pr_err("Now vgpu %d will enter failsafe mode.\n", vgpu->id);
199 	vgpu->failsafe = true;
200 }
201 
202 static int sanitize_fence_mmio_access(struct intel_vgpu *vgpu,
203 		unsigned int fence_num, void *p_data, unsigned int bytes)
204 {
205 	unsigned int max_fence = vgpu_fence_sz(vgpu);
206 
207 	if (fence_num >= max_fence) {
208 		gvt_vgpu_err("access oob fence reg %d/%d\n",
209 			     fence_num, max_fence);
210 
211 		/* When guest access oob fence regs without access
212 		 * pv_info first, we treat guest not supporting GVT,
213 		 * and we will let vgpu enter failsafe mode.
214 		 */
215 		if (!vgpu->pv_notified)
216 			enter_failsafe_mode(vgpu,
217 					GVT_FAILSAFE_UNSUPPORTED_GUEST);
218 
219 		memset(p_data, 0, bytes);
220 		return -EINVAL;
221 	}
222 	return 0;
223 }
224 
225 static int gamw_echo_dev_rw_ia_write(struct intel_vgpu *vgpu,
226 		unsigned int offset, void *p_data, unsigned int bytes)
227 {
228 	u32 ips = (*(u32 *)p_data) & GAMW_ECO_ENABLE_64K_IPS_FIELD;
229 
230 	if (GRAPHICS_VER(vgpu->gvt->gt->i915) <= 10) {
231 		if (ips == GAMW_ECO_ENABLE_64K_IPS_FIELD)
232 			gvt_dbg_core("vgpu%d: ips enabled\n", vgpu->id);
233 		else if (!ips)
234 			gvt_dbg_core("vgpu%d: ips disabled\n", vgpu->id);
235 		else {
236 			/* All engines must be enabled together for vGPU,
237 			 * since we don't know which engine the ppgtt will
238 			 * bind to when shadowing.
239 			 */
240 			gvt_vgpu_err("Unsupported IPS setting %x, cannot enable 64K gtt.\n",
241 				     ips);
242 			return -EINVAL;
243 		}
244 	}
245 
246 	write_vreg(vgpu, offset, p_data, bytes);
247 	return 0;
248 }
249 
250 static int fence_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
251 		void *p_data, unsigned int bytes)
252 {
253 	int ret;
254 
255 	ret = sanitize_fence_mmio_access(vgpu, offset_to_fence_num(off),
256 			p_data, bytes);
257 	if (ret)
258 		return ret;
259 	read_vreg(vgpu, off, p_data, bytes);
260 	return 0;
261 }
262 
263 static int fence_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
264 		void *p_data, unsigned int bytes)
265 {
266 	struct intel_gvt *gvt = vgpu->gvt;
267 	unsigned int fence_num = offset_to_fence_num(off);
268 	intel_wakeref_t wakeref;
269 	int ret;
270 
271 	ret = sanitize_fence_mmio_access(vgpu, fence_num, p_data, bytes);
272 	if (ret)
273 		return ret;
274 	write_vreg(vgpu, off, p_data, bytes);
275 
276 	wakeref = mmio_hw_access_pre(gvt->gt);
277 	intel_vgpu_write_fence(vgpu, fence_num,
278 			vgpu_vreg64(vgpu, fence_num_to_offset(fence_num)));
279 	mmio_hw_access_post(gvt->gt, wakeref);
280 	return 0;
281 }
282 
283 #define CALC_MODE_MASK_REG(old, new) \
284 	(((new) & GENMASK(31, 16)) \
285 	 | ((((old) & GENMASK(15, 0)) & ~((new) >> 16)) \
286 	 | ((new) & ((new) >> 16))))
287 
288 static int mul_force_wake_write(struct intel_vgpu *vgpu,
289 		unsigned int offset, void *p_data, unsigned int bytes)
290 {
291 	u32 old, new;
292 	u32 ack_reg_offset;
293 
294 	old = vgpu_vreg(vgpu, offset);
295 	new = CALC_MODE_MASK_REG(old, *(u32 *)p_data);
296 
297 	if (GRAPHICS_VER(vgpu->gvt->gt->i915)  >=  9) {
298 		switch (offset) {
299 		case FORCEWAKE_RENDER_GEN9_REG:
300 			ack_reg_offset = FORCEWAKE_ACK_RENDER_GEN9_REG;
301 			break;
302 		case FORCEWAKE_GT_GEN9_REG:
303 			ack_reg_offset = FORCEWAKE_ACK_GT_GEN9_REG;
304 			break;
305 		case FORCEWAKE_MEDIA_GEN9_REG:
306 			ack_reg_offset = FORCEWAKE_ACK_MEDIA_GEN9_REG;
307 			break;
308 		default:
309 			/*should not hit here*/
310 			gvt_vgpu_err("invalid forcewake offset 0x%x\n", offset);
311 			return -EINVAL;
312 		}
313 	} else {
314 		ack_reg_offset = FORCEWAKE_ACK_HSW_REG;
315 	}
316 
317 	vgpu_vreg(vgpu, offset) = new;
318 	vgpu_vreg(vgpu, ack_reg_offset) = (new & GENMASK(15, 0));
319 	return 0;
320 }
321 
322 static int gdrst_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
323 			    void *p_data, unsigned int bytes)
324 {
325 	intel_engine_mask_t engine_mask = 0;
326 	u32 data;
327 
328 	write_vreg(vgpu, offset, p_data, bytes);
329 	data = vgpu_vreg(vgpu, offset);
330 
331 	if (data & GEN6_GRDOM_FULL) {
332 		gvt_dbg_mmio("vgpu%d: request full GPU reset\n", vgpu->id);
333 		engine_mask = ALL_ENGINES;
334 	} else {
335 		if (data & GEN6_GRDOM_RENDER) {
336 			gvt_dbg_mmio("vgpu%d: request RCS reset\n", vgpu->id);
337 			engine_mask |= BIT(RCS0);
338 		}
339 		if (data & GEN6_GRDOM_MEDIA) {
340 			gvt_dbg_mmio("vgpu%d: request VCS reset\n", vgpu->id);
341 			engine_mask |= BIT(VCS0);
342 		}
343 		if (data & GEN6_GRDOM_BLT) {
344 			gvt_dbg_mmio("vgpu%d: request BCS Reset\n", vgpu->id);
345 			engine_mask |= BIT(BCS0);
346 		}
347 		if (data & GEN6_GRDOM_VECS) {
348 			gvt_dbg_mmio("vgpu%d: request VECS Reset\n", vgpu->id);
349 			engine_mask |= BIT(VECS0);
350 		}
351 		if (data & GEN8_GRDOM_MEDIA2) {
352 			gvt_dbg_mmio("vgpu%d: request VCS2 Reset\n", vgpu->id);
353 			engine_mask |= BIT(VCS1);
354 		}
355 		if (data & GEN9_GRDOM_GUC) {
356 			gvt_dbg_mmio("vgpu%d: request GUC Reset\n", vgpu->id);
357 			vgpu_vreg_t(vgpu, GUC_STATUS) |= GS_MIA_IN_RESET;
358 		}
359 		engine_mask &= vgpu->gvt->gt->info.engine_mask;
360 	}
361 
362 	/* vgpu_lock already hold by emulate mmio r/w */
363 	intel_gvt_reset_vgpu_locked(vgpu, false, engine_mask);
364 
365 	/* sw will wait for the device to ack the reset request */
366 	vgpu_vreg(vgpu, offset) = 0;
367 
368 	return 0;
369 }
370 
371 static int gmbus_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
372 		void *p_data, unsigned int bytes)
373 {
374 	return intel_gvt_i2c_handle_gmbus_read(vgpu, offset, p_data, bytes);
375 }
376 
377 static int gmbus_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
378 		void *p_data, unsigned int bytes)
379 {
380 	return intel_gvt_i2c_handle_gmbus_write(vgpu, offset, p_data, bytes);
381 }
382 
383 static int pch_pp_control_mmio_write(struct intel_vgpu *vgpu,
384 		unsigned int offset, void *p_data, unsigned int bytes)
385 {
386 	write_vreg(vgpu, offset, p_data, bytes);
387 
388 	if (vgpu_vreg(vgpu, offset) & PANEL_POWER_ON) {
389 		vgpu_vreg_t(vgpu, PCH_PP_STATUS) |= PP_ON;
390 		vgpu_vreg_t(vgpu, PCH_PP_STATUS) |= PP_SEQUENCE_STATE_ON_IDLE;
391 		vgpu_vreg_t(vgpu, PCH_PP_STATUS) &= ~PP_SEQUENCE_POWER_DOWN;
392 		vgpu_vreg_t(vgpu, PCH_PP_STATUS) &= ~PP_CYCLE_DELAY_ACTIVE;
393 
394 	} else
395 		vgpu_vreg_t(vgpu, PCH_PP_STATUS) &=
396 			~(PP_ON | PP_SEQUENCE_POWER_DOWN
397 					| PP_CYCLE_DELAY_ACTIVE);
398 	return 0;
399 }
400 
401 static int transconf_mmio_write(struct intel_vgpu *vgpu,
402 		unsigned int offset, void *p_data, unsigned int bytes)
403 {
404 	write_vreg(vgpu, offset, p_data, bytes);
405 
406 	if (vgpu_vreg(vgpu, offset) & TRANS_ENABLE)
407 		vgpu_vreg(vgpu, offset) |= TRANS_STATE_ENABLE;
408 	else
409 		vgpu_vreg(vgpu, offset) &= ~TRANS_STATE_ENABLE;
410 	return 0;
411 }
412 
413 static int lcpll_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
414 		void *p_data, unsigned int bytes)
415 {
416 	write_vreg(vgpu, offset, p_data, bytes);
417 
418 	if (vgpu_vreg(vgpu, offset) & LCPLL_PLL_DISABLE)
419 		vgpu_vreg(vgpu, offset) &= ~LCPLL_PLL_LOCK;
420 	else
421 		vgpu_vreg(vgpu, offset) |= LCPLL_PLL_LOCK;
422 
423 	if (vgpu_vreg(vgpu, offset) & LCPLL_CD_SOURCE_FCLK)
424 		vgpu_vreg(vgpu, offset) |= LCPLL_CD_SOURCE_FCLK_DONE;
425 	else
426 		vgpu_vreg(vgpu, offset) &= ~LCPLL_CD_SOURCE_FCLK_DONE;
427 
428 	return 0;
429 }
430 
431 static int dpy_reg_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
432 		void *p_data, unsigned int bytes)
433 {
434 	switch (offset) {
435 	case 0xe651c:
436 	case 0xe661c:
437 	case 0xe671c:
438 	case 0xe681c:
439 		vgpu_vreg(vgpu, offset) = 1 << 17;
440 		break;
441 	case 0xe6c04:
442 		vgpu_vreg(vgpu, offset) = 0x3;
443 		break;
444 	case 0xe6e1c:
445 		vgpu_vreg(vgpu, offset) = 0x2f << 16;
446 		break;
447 	default:
448 		return -EINVAL;
449 	}
450 
451 	read_vreg(vgpu, offset, p_data, bytes);
452 	return 0;
453 }
454 
455 /*
456  * Only PIPE_A is enabled in current vGPU display and PIPE_A is tied to
457  *   TRANSCODER_A in HW. DDI/PORT could be PORT_x depends on
458  *   setup_virtual_dp_monitor().
459  * emulate_monitor_status_change() set up PLL for PORT_x as the initial enabled
460  *   DPLL. Later guest driver may setup a different DPLLx when setting mode.
461  * So the correct sequence to find DP stream clock is:
462  *   Check TRANS_DDI_FUNC_CTL on TRANSCODER_A to get PORT_x.
463  *   Check correct PLLx for PORT_x to get PLL frequency and DP bitrate.
464  * Then Refresh rate then can be calculated based on follow equations:
465  *   Pixel clock = h_total * v_total * refresh_rate
466  *   stream clock = Pixel clock
467  *   ls_clk = DP bitrate
468  *   Link M/N = strm_clk / ls_clk
469  */
470 
471 static u32 bdw_vgpu_get_dp_bitrate(struct intel_vgpu *vgpu, enum port port)
472 {
473 	u32 dp_br = 0;
474 	u32 ddi_pll_sel = vgpu_vreg_t(vgpu, PORT_CLK_SEL(port));
475 
476 	switch (ddi_pll_sel) {
477 	case PORT_CLK_SEL_LCPLL_2700:
478 		dp_br = 270000 * 2;
479 		break;
480 	case PORT_CLK_SEL_LCPLL_1350:
481 		dp_br = 135000 * 2;
482 		break;
483 	case PORT_CLK_SEL_LCPLL_810:
484 		dp_br = 81000 * 2;
485 		break;
486 	case PORT_CLK_SEL_SPLL:
487 	{
488 		switch (vgpu_vreg_t(vgpu, SPLL_CTL) & SPLL_FREQ_MASK) {
489 		case SPLL_FREQ_810MHz:
490 			dp_br = 81000 * 2;
491 			break;
492 		case SPLL_FREQ_1350MHz:
493 			dp_br = 135000 * 2;
494 			break;
495 		case SPLL_FREQ_2700MHz:
496 			dp_br = 270000 * 2;
497 			break;
498 		default:
499 			gvt_dbg_dpy("vgpu-%d PORT_%c can't get freq from SPLL 0x%08x\n",
500 				    vgpu->id, port_name(port), vgpu_vreg_t(vgpu, SPLL_CTL));
501 			break;
502 		}
503 		break;
504 	}
505 	case PORT_CLK_SEL_WRPLL1:
506 	case PORT_CLK_SEL_WRPLL2:
507 	{
508 		u32 wrpll_ctl;
509 		int refclk, n, p, r;
510 
511 		if (ddi_pll_sel == PORT_CLK_SEL_WRPLL1)
512 			wrpll_ctl = vgpu_vreg_t(vgpu, WRPLL_CTL(DPLL_ID_WRPLL1));
513 		else
514 			wrpll_ctl = vgpu_vreg_t(vgpu, WRPLL_CTL(DPLL_ID_WRPLL2));
515 
516 		switch (wrpll_ctl & WRPLL_REF_MASK) {
517 		case WRPLL_REF_PCH_SSC:
518 			refclk = 135000;
519 			break;
520 		case WRPLL_REF_LCPLL:
521 			refclk = 2700000;
522 			break;
523 		default:
524 			gvt_dbg_dpy("vgpu-%d PORT_%c WRPLL can't get refclk 0x%08x\n",
525 				    vgpu->id, port_name(port), wrpll_ctl);
526 			goto out;
527 		}
528 
529 		r = wrpll_ctl & WRPLL_DIVIDER_REF_MASK;
530 		p = (wrpll_ctl & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
531 		n = (wrpll_ctl & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
532 
533 		dp_br = (refclk * n / 10) / (p * r) * 2;
534 		break;
535 	}
536 	default:
537 		gvt_dbg_dpy("vgpu-%d PORT_%c has invalid clock select 0x%08x\n",
538 			    vgpu->id, port_name(port), vgpu_vreg_t(vgpu, PORT_CLK_SEL(port)));
539 		break;
540 	}
541 
542 out:
543 	return dp_br;
544 }
545 
546 static u32 bxt_vgpu_get_dp_bitrate(struct intel_vgpu *vgpu, enum port port)
547 {
548 	u32 dp_br = 0;
549 	int refclk = 100000;
550 	enum dpio_phy phy = DPIO_PHY0;
551 	enum dpio_channel ch = DPIO_CH0;
552 	struct dpll clock = {};
553 	u32 temp;
554 
555 	/* Port to PHY mapping is fixed, see bxt_ddi_phy_info{} */
556 	switch (port) {
557 	case PORT_A:
558 		phy = DPIO_PHY1;
559 		ch = DPIO_CH0;
560 		break;
561 	case PORT_B:
562 		phy = DPIO_PHY0;
563 		ch = DPIO_CH0;
564 		break;
565 	case PORT_C:
566 		phy = DPIO_PHY0;
567 		ch = DPIO_CH1;
568 		break;
569 	default:
570 		gvt_dbg_dpy("vgpu-%d no PHY for PORT_%c\n", vgpu->id, port_name(port));
571 		goto out;
572 	}
573 
574 	temp = vgpu_vreg_t(vgpu, BXT_PORT_PLL_ENABLE(port));
575 	if (!(temp & PORT_PLL_ENABLE) || !(temp & PORT_PLL_LOCK)) {
576 		gvt_dbg_dpy("vgpu-%d PORT_%c PLL_ENABLE 0x%08x isn't enabled or locked\n",
577 			    vgpu->id, port_name(port), temp);
578 		goto out;
579 	}
580 
581 	clock.m1 = 2;
582 	clock.m2 = REG_FIELD_GET(PORT_PLL_M2_INT_MASK,
583 				 vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 0))) << 22;
584 	if (vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 3)) & PORT_PLL_M2_FRAC_ENABLE)
585 		clock.m2 |= REG_FIELD_GET(PORT_PLL_M2_FRAC_MASK,
586 					  vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 2)));
587 	clock.n = REG_FIELD_GET(PORT_PLL_N_MASK,
588 				vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 1)));
589 	clock.p1 = REG_FIELD_GET(PORT_PLL_P1_MASK,
590 				 vgpu_vreg_t(vgpu, BXT_PORT_PLL_EBB_0(phy, ch)));
591 	clock.p2 = REG_FIELD_GET(PORT_PLL_P2_MASK,
592 				 vgpu_vreg_t(vgpu, BXT_PORT_PLL_EBB_0(phy, ch)));
593 	clock.m = clock.m1 * clock.m2;
594 	clock.p = clock.p1 * clock.p2 * 5;
595 
596 	if (clock.n == 0 || clock.p == 0) {
597 		gvt_dbg_dpy("vgpu-%d PORT_%c PLL has invalid divider\n", vgpu->id, port_name(port));
598 		goto out;
599 	}
600 
601 	clock.vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock.m), clock.n << 22);
602 	clock.dot = DIV_ROUND_CLOSEST(clock.vco, clock.p);
603 
604 	dp_br = clock.dot;
605 
606 out:
607 	return dp_br;
608 }
609 
610 static u32 skl_vgpu_get_dp_bitrate(struct intel_vgpu *vgpu, enum port port)
611 {
612 	u32 dp_br = 0;
613 	enum intel_dpll_id dpll_id = DPLL_ID_SKL_DPLL0;
614 
615 	/* Find the enabled DPLL for the DDI/PORT */
616 	if (!(vgpu_vreg_t(vgpu, DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_OFF(port)) &&
617 	    (vgpu_vreg_t(vgpu, DPLL_CTRL2) & DPLL_CTRL2_DDI_SEL_OVERRIDE(port))) {
618 		dpll_id += (vgpu_vreg_t(vgpu, DPLL_CTRL2) &
619 			DPLL_CTRL2_DDI_CLK_SEL_MASK(port)) >>
620 			DPLL_CTRL2_DDI_CLK_SEL_SHIFT(port);
621 	} else {
622 		gvt_dbg_dpy("vgpu-%d DPLL for PORT_%c isn't turned on\n",
623 			    vgpu->id, port_name(port));
624 		return dp_br;
625 	}
626 
627 	/* Find PLL output frequency from correct DPLL, and get bir rate */
628 	switch ((vgpu_vreg_t(vgpu, DPLL_CTRL1) &
629 		DPLL_CTRL1_LINK_RATE_MASK(dpll_id)) >>
630 		DPLL_CTRL1_LINK_RATE_SHIFT(dpll_id)) {
631 		case DPLL_CTRL1_LINK_RATE_810:
632 			dp_br = 81000 * 2;
633 			break;
634 		case DPLL_CTRL1_LINK_RATE_1080:
635 			dp_br = 108000 * 2;
636 			break;
637 		case DPLL_CTRL1_LINK_RATE_1350:
638 			dp_br = 135000 * 2;
639 			break;
640 		case DPLL_CTRL1_LINK_RATE_1620:
641 			dp_br = 162000 * 2;
642 			break;
643 		case DPLL_CTRL1_LINK_RATE_2160:
644 			dp_br = 216000 * 2;
645 			break;
646 		case DPLL_CTRL1_LINK_RATE_2700:
647 			dp_br = 270000 * 2;
648 			break;
649 		default:
650 			dp_br = 0;
651 			gvt_dbg_dpy("vgpu-%d PORT_%c fail to get DPLL-%d freq\n",
652 				    vgpu->id, port_name(port), dpll_id);
653 	}
654 
655 	return dp_br;
656 }
657 
658 static void vgpu_update_refresh_rate(struct intel_vgpu *vgpu)
659 {
660 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
661 	struct intel_display *display = &dev_priv->display;
662 	enum port port;
663 	u32 dp_br, link_m, link_n, htotal, vtotal;
664 
665 	/* Find DDI/PORT assigned to TRANSCODER_A, expect B or D */
666 	port = (vgpu_vreg_t(vgpu, TRANS_DDI_FUNC_CTL(display, TRANSCODER_A)) &
667 		TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
668 	if (port != PORT_B && port != PORT_D) {
669 		gvt_dbg_dpy("vgpu-%d unsupported PORT_%c\n", vgpu->id, port_name(port));
670 		return;
671 	}
672 
673 	/* Calculate DP bitrate from PLL */
674 	if (IS_BROADWELL(dev_priv))
675 		dp_br = bdw_vgpu_get_dp_bitrate(vgpu, port);
676 	else if (IS_BROXTON(dev_priv))
677 		dp_br = bxt_vgpu_get_dp_bitrate(vgpu, port);
678 	else
679 		dp_br = skl_vgpu_get_dp_bitrate(vgpu, port);
680 
681 	/* Get DP link symbol clock M/N */
682 	link_m = vgpu_vreg_t(vgpu, PIPE_LINK_M1(display, TRANSCODER_A));
683 	link_n = vgpu_vreg_t(vgpu, PIPE_LINK_N1(display, TRANSCODER_A));
684 
685 	/* Get H/V total from transcoder timing */
686 	htotal = (vgpu_vreg_t(vgpu, TRANS_HTOTAL(display, TRANSCODER_A)) >> TRANS_HTOTAL_SHIFT);
687 	vtotal = (vgpu_vreg_t(vgpu, TRANS_VTOTAL(display, TRANSCODER_A)) >> TRANS_VTOTAL_SHIFT);
688 
689 	if (dp_br && link_n && htotal && vtotal) {
690 		u64 pixel_clk = 0;
691 		u32 new_rate = 0;
692 		u32 *old_rate = &(intel_vgpu_port(vgpu, vgpu->display.port_num)->vrefresh_k);
693 
694 		/* Calculate pixel clock by (ls_clk * M / N) */
695 		pixel_clk = div_u64(mul_u32_u32(link_m, dp_br), link_n);
696 		pixel_clk *= MSEC_PER_SEC;
697 
698 		/* Calculate refresh rate by (pixel_clk / (h_total * v_total)) */
699 		new_rate = DIV64_U64_ROUND_CLOSEST(mul_u64_u32_shr(pixel_clk, MSEC_PER_SEC, 0), mul_u32_u32(htotal + 1, vtotal + 1));
700 
701 		if (*old_rate != new_rate)
702 			*old_rate = new_rate;
703 
704 		gvt_dbg_dpy("vgpu-%d PIPE_%c refresh rate updated to %d\n",
705 			    vgpu->id, pipe_name(PIPE_A), new_rate);
706 	}
707 }
708 
709 static int pipeconf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
710 		void *p_data, unsigned int bytes)
711 {
712 	u32 data;
713 
714 	write_vreg(vgpu, offset, p_data, bytes);
715 	data = vgpu_vreg(vgpu, offset);
716 
717 	if (data & TRANSCONF_ENABLE) {
718 		vgpu_vreg(vgpu, offset) |= TRANSCONF_STATE_ENABLE;
719 		vgpu_update_refresh_rate(vgpu);
720 		vgpu_update_vblank_emulation(vgpu, true);
721 	} else {
722 		vgpu_vreg(vgpu, offset) &= ~TRANSCONF_STATE_ENABLE;
723 		vgpu_update_vblank_emulation(vgpu, false);
724 	}
725 	return 0;
726 }
727 
728 /* sorted in ascending order */
729 static i915_reg_t force_nonpriv_white_list[] = {
730 	_MMIO(0xd80),
731 	GEN9_CS_DEBUG_MODE1, //_MMIO(0x20ec)
732 	GEN9_CTX_PREEMPT_REG,//_MMIO(0x2248)
733 	CL_PRIMITIVES_COUNT, //_MMIO(0x2340)
734 	PS_INVOCATION_COUNT, //_MMIO(0x2348)
735 	PS_DEPTH_COUNT, //_MMIO(0x2350)
736 	GEN8_CS_CHICKEN1,//_MMIO(0x2580)
737 	_MMIO(0x2690),
738 	_MMIO(0x2694),
739 	_MMIO(0x2698),
740 	_MMIO(0x2754),
741 	_MMIO(0x28a0),
742 	_MMIO(0x4de0),
743 	_MMIO(0x4de4),
744 	_MMIO(0x4dfc),
745 	GEN7_COMMON_SLICE_CHICKEN1,//_MMIO(0x7010)
746 	_MMIO(0x7014),
747 	HDC_CHICKEN0,//_MMIO(0x7300)
748 	GEN8_HDC_CHICKEN1,//_MMIO(0x7304)
749 	_MMIO(0x7700),
750 	_MMIO(0x7704),
751 	_MMIO(0x7708),
752 	_MMIO(0x770c),
753 	_MMIO(0x83a8),
754 	_MMIO(0xb110),
755 	_MMIO(0xb118),
756 	_MMIO(0xe100),
757 	_MMIO(0xe18c),
758 	_MMIO(0xe48c),
759 	_MMIO(0xe5f4),
760 	_MMIO(0x64844),
761 };
762 
763 /* a simple bsearch */
764 static inline bool in_whitelist(u32 reg)
765 {
766 	int left = 0, right = ARRAY_SIZE(force_nonpriv_white_list);
767 	i915_reg_t *array = force_nonpriv_white_list;
768 
769 	while (left < right) {
770 		int mid = (left + right)/2;
771 
772 		if (reg > array[mid].reg)
773 			left = mid + 1;
774 		else if (reg < array[mid].reg)
775 			right = mid;
776 		else
777 			return true;
778 	}
779 	return false;
780 }
781 
782 static int force_nonpriv_write(struct intel_vgpu *vgpu,
783 	unsigned int offset, void *p_data, unsigned int bytes)
784 {
785 	u32 reg_nonpriv = (*(u32 *)p_data) & REG_GENMASK(25, 2);
786 	const struct intel_engine_cs *engine =
787 		intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
788 
789 	if (bytes != 4 || !IS_ALIGNED(offset, bytes) || !engine) {
790 		gvt_err("vgpu(%d) Invalid FORCE_NONPRIV offset %x(%dB)\n",
791 			vgpu->id, offset, bytes);
792 		return -EINVAL;
793 	}
794 
795 	if (!in_whitelist(reg_nonpriv) &&
796 	    reg_nonpriv != i915_mmio_reg_offset(RING_NOPID(engine->mmio_base))) {
797 		gvt_err("vgpu(%d) Invalid FORCE_NONPRIV write %x at offset %x\n",
798 			vgpu->id, reg_nonpriv, offset);
799 	} else
800 		intel_vgpu_default_mmio_write(vgpu, offset, p_data, bytes);
801 
802 	return 0;
803 }
804 
805 static int ddi_buf_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
806 		void *p_data, unsigned int bytes)
807 {
808 	write_vreg(vgpu, offset, p_data, bytes);
809 
810 	if (vgpu_vreg(vgpu, offset) & DDI_BUF_CTL_ENABLE) {
811 		vgpu_vreg(vgpu, offset) &= ~DDI_BUF_IS_IDLE;
812 	} else {
813 		vgpu_vreg(vgpu, offset) |= DDI_BUF_IS_IDLE;
814 		if (offset == i915_mmio_reg_offset(DDI_BUF_CTL(PORT_E)))
815 			vgpu_vreg_t(vgpu, DP_TP_STATUS(PORT_E))
816 				&= ~DP_TP_STATUS_AUTOTRAIN_DONE;
817 	}
818 	return 0;
819 }
820 
821 static int fdi_rx_iir_mmio_write(struct intel_vgpu *vgpu,
822 		unsigned int offset, void *p_data, unsigned int bytes)
823 {
824 	vgpu_vreg(vgpu, offset) &= ~*(u32 *)p_data;
825 	return 0;
826 }
827 
828 #define FDI_LINK_TRAIN_PATTERN1         0
829 #define FDI_LINK_TRAIN_PATTERN2         1
830 
831 static int fdi_auto_training_started(struct intel_vgpu *vgpu)
832 {
833 	u32 ddi_buf_ctl = vgpu_vreg_t(vgpu, DDI_BUF_CTL(PORT_E));
834 	u32 rx_ctl = vgpu_vreg(vgpu, _FDI_RXA_CTL);
835 	u32 tx_ctl = vgpu_vreg_t(vgpu, DP_TP_CTL(PORT_E));
836 
837 	if ((ddi_buf_ctl & DDI_BUF_CTL_ENABLE) &&
838 			(rx_ctl & FDI_RX_ENABLE) &&
839 			(rx_ctl & FDI_AUTO_TRAINING) &&
840 			(tx_ctl & DP_TP_CTL_ENABLE) &&
841 			(tx_ctl & DP_TP_CTL_FDI_AUTOTRAIN))
842 		return 1;
843 	else
844 		return 0;
845 }
846 
847 static int check_fdi_rx_train_status(struct intel_vgpu *vgpu,
848 		enum pipe pipe, unsigned int train_pattern)
849 {
850 	i915_reg_t fdi_rx_imr, fdi_tx_ctl, fdi_rx_ctl;
851 	unsigned int fdi_rx_check_bits, fdi_tx_check_bits;
852 	unsigned int fdi_rx_train_bits, fdi_tx_train_bits;
853 	unsigned int fdi_iir_check_bits;
854 
855 	fdi_rx_imr = FDI_RX_IMR(pipe);
856 	fdi_tx_ctl = FDI_TX_CTL(pipe);
857 	fdi_rx_ctl = FDI_RX_CTL(pipe);
858 
859 	if (train_pattern == FDI_LINK_TRAIN_PATTERN1) {
860 		fdi_rx_train_bits = FDI_LINK_TRAIN_PATTERN_1_CPT;
861 		fdi_tx_train_bits = FDI_LINK_TRAIN_PATTERN_1;
862 		fdi_iir_check_bits = FDI_RX_BIT_LOCK;
863 	} else if (train_pattern == FDI_LINK_TRAIN_PATTERN2) {
864 		fdi_rx_train_bits = FDI_LINK_TRAIN_PATTERN_2_CPT;
865 		fdi_tx_train_bits = FDI_LINK_TRAIN_PATTERN_2;
866 		fdi_iir_check_bits = FDI_RX_SYMBOL_LOCK;
867 	} else {
868 		gvt_vgpu_err("Invalid train pattern %d\n", train_pattern);
869 		return -EINVAL;
870 	}
871 
872 	fdi_rx_check_bits = FDI_RX_ENABLE | fdi_rx_train_bits;
873 	fdi_tx_check_bits = FDI_TX_ENABLE | fdi_tx_train_bits;
874 
875 	/* If imr bit has been masked */
876 	if (vgpu_vreg_t(vgpu, fdi_rx_imr) & fdi_iir_check_bits)
877 		return 0;
878 
879 	if (((vgpu_vreg_t(vgpu, fdi_tx_ctl) & fdi_tx_check_bits)
880 			== fdi_tx_check_bits)
881 		&& ((vgpu_vreg_t(vgpu, fdi_rx_ctl) & fdi_rx_check_bits)
882 			== fdi_rx_check_bits))
883 		return 1;
884 	else
885 		return 0;
886 }
887 
888 #define INVALID_INDEX (~0U)
889 
890 static unsigned int calc_index(unsigned int offset, i915_reg_t _start,
891 			       i915_reg_t _next, i915_reg_t _end)
892 {
893 	u32 start = i915_mmio_reg_offset(_start);
894 	u32 next = i915_mmio_reg_offset(_next);
895 	u32 end = i915_mmio_reg_offset(_end);
896 	u32 stride = next - start;
897 
898 	if (offset < start || offset > end)
899 		return INVALID_INDEX;
900 	offset -= start;
901 	return offset / stride;
902 }
903 
904 #define FDI_RX_CTL_TO_PIPE(offset) \
905 	calc_index(offset, FDI_RX_CTL(PIPE_A), FDI_RX_CTL(PIPE_B), FDI_RX_CTL(PIPE_C))
906 
907 #define FDI_TX_CTL_TO_PIPE(offset) \
908 	calc_index(offset, FDI_TX_CTL(PIPE_A), FDI_TX_CTL(PIPE_B), FDI_TX_CTL(PIPE_C))
909 
910 #define FDI_RX_IMR_TO_PIPE(offset) \
911 	calc_index(offset, FDI_RX_IMR(PIPE_A), FDI_RX_IMR(PIPE_B), FDI_RX_IMR(PIPE_C))
912 
913 static int update_fdi_rx_iir_status(struct intel_vgpu *vgpu,
914 		unsigned int offset, void *p_data, unsigned int bytes)
915 {
916 	i915_reg_t fdi_rx_iir;
917 	unsigned int index;
918 	int ret;
919 
920 	if (FDI_RX_CTL_TO_PIPE(offset) != INVALID_INDEX)
921 		index = FDI_RX_CTL_TO_PIPE(offset);
922 	else if (FDI_TX_CTL_TO_PIPE(offset) != INVALID_INDEX)
923 		index = FDI_TX_CTL_TO_PIPE(offset);
924 	else if (FDI_RX_IMR_TO_PIPE(offset) != INVALID_INDEX)
925 		index = FDI_RX_IMR_TO_PIPE(offset);
926 	else {
927 		gvt_vgpu_err("Unsupported registers %x\n", offset);
928 		return -EINVAL;
929 	}
930 
931 	write_vreg(vgpu, offset, p_data, bytes);
932 
933 	fdi_rx_iir = FDI_RX_IIR(index);
934 
935 	ret = check_fdi_rx_train_status(vgpu, index, FDI_LINK_TRAIN_PATTERN1);
936 	if (ret < 0)
937 		return ret;
938 	if (ret)
939 		vgpu_vreg_t(vgpu, fdi_rx_iir) |= FDI_RX_BIT_LOCK;
940 
941 	ret = check_fdi_rx_train_status(vgpu, index, FDI_LINK_TRAIN_PATTERN2);
942 	if (ret < 0)
943 		return ret;
944 	if (ret)
945 		vgpu_vreg_t(vgpu, fdi_rx_iir) |= FDI_RX_SYMBOL_LOCK;
946 
947 	if (offset == _FDI_RXA_CTL)
948 		if (fdi_auto_training_started(vgpu))
949 			vgpu_vreg_t(vgpu, DP_TP_STATUS(PORT_E)) |=
950 				DP_TP_STATUS_AUTOTRAIN_DONE;
951 	return 0;
952 }
953 
954 #define DP_TP_CTL_TO_PORT(offset) \
955 	calc_index(offset, DP_TP_CTL(PORT_A), DP_TP_CTL(PORT_B), DP_TP_CTL(PORT_E))
956 
957 static int dp_tp_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
958 		void *p_data, unsigned int bytes)
959 {
960 	i915_reg_t status_reg;
961 	unsigned int index;
962 	u32 data;
963 
964 	write_vreg(vgpu, offset, p_data, bytes);
965 
966 	index = DP_TP_CTL_TO_PORT(offset);
967 	data = (vgpu_vreg(vgpu, offset) & GENMASK(10, 8)) >> 8;
968 	if (data == 0x2) {
969 		status_reg = DP_TP_STATUS(index);
970 		vgpu_vreg_t(vgpu, status_reg) |= (1 << 25);
971 	}
972 	return 0;
973 }
974 
975 static int dp_tp_status_mmio_write(struct intel_vgpu *vgpu,
976 		unsigned int offset, void *p_data, unsigned int bytes)
977 {
978 	u32 reg_val;
979 	u32 sticky_mask;
980 
981 	reg_val = *((u32 *)p_data);
982 	sticky_mask = GENMASK(27, 26) | (1 << 24);
983 
984 	vgpu_vreg(vgpu, offset) = (reg_val & ~sticky_mask) |
985 		(vgpu_vreg(vgpu, offset) & sticky_mask);
986 	vgpu_vreg(vgpu, offset) &= ~(reg_val & sticky_mask);
987 	return 0;
988 }
989 
990 static int pch_adpa_mmio_write(struct intel_vgpu *vgpu,
991 		unsigned int offset, void *p_data, unsigned int bytes)
992 {
993 	u32 data;
994 
995 	write_vreg(vgpu, offset, p_data, bytes);
996 	data = vgpu_vreg(vgpu, offset);
997 
998 	if (data & ADPA_CRT_HOTPLUG_FORCE_TRIGGER)
999 		vgpu_vreg(vgpu, offset) &= ~ADPA_CRT_HOTPLUG_FORCE_TRIGGER;
1000 	return 0;
1001 }
1002 
1003 static int south_chicken2_mmio_write(struct intel_vgpu *vgpu,
1004 		unsigned int offset, void *p_data, unsigned int bytes)
1005 {
1006 	u32 data;
1007 
1008 	write_vreg(vgpu, offset, p_data, bytes);
1009 	data = vgpu_vreg(vgpu, offset);
1010 
1011 	if (data & FDI_MPHY_IOSFSB_RESET_CTL)
1012 		vgpu_vreg(vgpu, offset) |= FDI_MPHY_IOSFSB_RESET_STATUS;
1013 	else
1014 		vgpu_vreg(vgpu, offset) &= ~FDI_MPHY_IOSFSB_RESET_STATUS;
1015 	return 0;
1016 }
1017 
1018 #define DSPSURF_TO_PIPE(display, offset) \
1019 	calc_index(offset, DSPSURF(display, PIPE_A), DSPSURF(display, PIPE_B), DSPSURF(display, PIPE_C))
1020 
1021 static int pri_surf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1022 		void *p_data, unsigned int bytes)
1023 {
1024 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1025 	struct intel_display *display = &dev_priv->display;
1026 	u32 pipe = DSPSURF_TO_PIPE(display, offset);
1027 	int event = SKL_FLIP_EVENT(pipe, PLANE_PRIMARY);
1028 
1029 	write_vreg(vgpu, offset, p_data, bytes);
1030 	vgpu_vreg_t(vgpu, DSPSURFLIVE(display, pipe)) = vgpu_vreg(vgpu, offset);
1031 
1032 	vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(display, pipe))++;
1033 
1034 	if (vgpu_vreg_t(vgpu, DSPCNTR(display, pipe)) & PLANE_CTL_ASYNC_FLIP)
1035 		intel_vgpu_trigger_virtual_event(vgpu, event);
1036 	else
1037 		set_bit(event, vgpu->irq.flip_done_event[pipe]);
1038 
1039 	return 0;
1040 }
1041 
1042 #define SPRSURF_TO_PIPE(offset) \
1043 	calc_index(offset, SPRSURF(PIPE_A), SPRSURF(PIPE_B), SPRSURF(PIPE_C))
1044 
1045 static int spr_surf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1046 		void *p_data, unsigned int bytes)
1047 {
1048 	u32 pipe = SPRSURF_TO_PIPE(offset);
1049 	int event = SKL_FLIP_EVENT(pipe, PLANE_SPRITE0);
1050 
1051 	write_vreg(vgpu, offset, p_data, bytes);
1052 	vgpu_vreg_t(vgpu, SPRSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset);
1053 
1054 	if (vgpu_vreg_t(vgpu, SPRCTL(pipe)) & PLANE_CTL_ASYNC_FLIP)
1055 		intel_vgpu_trigger_virtual_event(vgpu, event);
1056 	else
1057 		set_bit(event, vgpu->irq.flip_done_event[pipe]);
1058 
1059 	return 0;
1060 }
1061 
1062 static int reg50080_mmio_write(struct intel_vgpu *vgpu,
1063 			       unsigned int offset, void *p_data,
1064 			       unsigned int bytes)
1065 {
1066 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1067 	struct intel_display *display = &dev_priv->display;
1068 	enum pipe pipe = REG_50080_TO_PIPE(offset);
1069 	enum plane_id plane = REG_50080_TO_PLANE(offset);
1070 	int event = SKL_FLIP_EVENT(pipe, plane);
1071 
1072 	write_vreg(vgpu, offset, p_data, bytes);
1073 	if (plane == PLANE_PRIMARY) {
1074 		vgpu_vreg_t(vgpu, DSPSURFLIVE(display, pipe)) = vgpu_vreg(vgpu, offset);
1075 		vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(display, pipe))++;
1076 	} else {
1077 		vgpu_vreg_t(vgpu, SPRSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset);
1078 	}
1079 
1080 	if ((vgpu_vreg(vgpu, offset) & REG50080_FLIP_TYPE_MASK) == REG50080_FLIP_TYPE_ASYNC)
1081 		intel_vgpu_trigger_virtual_event(vgpu, event);
1082 	else
1083 		set_bit(event, vgpu->irq.flip_done_event[pipe]);
1084 
1085 	return 0;
1086 }
1087 
1088 static int trigger_aux_channel_interrupt(struct intel_vgpu *vgpu,
1089 		unsigned int reg)
1090 {
1091 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1092 	enum intel_gvt_event_type event;
1093 
1094 	if (reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_A)))
1095 		event = AUX_CHANNEL_A;
1096 	else if (reg == i915_mmio_reg_offset(PCH_DP_AUX_CH_CTL(AUX_CH_B)) ||
1097 		 reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_B)))
1098 		event = AUX_CHANNEL_B;
1099 	else if (reg == i915_mmio_reg_offset(PCH_DP_AUX_CH_CTL(AUX_CH_C)) ||
1100 		 reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_C)))
1101 		event = AUX_CHANNEL_C;
1102 	else if (reg == i915_mmio_reg_offset(PCH_DP_AUX_CH_CTL(AUX_CH_D)) ||
1103 		 reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_D)))
1104 		event = AUX_CHANNEL_D;
1105 	else {
1106 		drm_WARN_ON(&dev_priv->drm, true);
1107 		return -EINVAL;
1108 	}
1109 
1110 	intel_vgpu_trigger_virtual_event(vgpu, event);
1111 	return 0;
1112 }
1113 
1114 static int dp_aux_ch_ctl_trans_done(struct intel_vgpu *vgpu, u32 value,
1115 		unsigned int reg, int len, bool data_valid)
1116 {
1117 	/* mark transaction done */
1118 	value |= DP_AUX_CH_CTL_DONE;
1119 	value &= ~DP_AUX_CH_CTL_SEND_BUSY;
1120 	value &= ~DP_AUX_CH_CTL_RECEIVE_ERROR;
1121 
1122 	if (data_valid)
1123 		value &= ~DP_AUX_CH_CTL_TIME_OUT_ERROR;
1124 	else
1125 		value |= DP_AUX_CH_CTL_TIME_OUT_ERROR;
1126 
1127 	/* message size */
1128 	value &= ~(0xf << 20);
1129 	value |= (len << 20);
1130 	vgpu_vreg(vgpu, reg) = value;
1131 
1132 	if (value & DP_AUX_CH_CTL_INTERRUPT)
1133 		return trigger_aux_channel_interrupt(vgpu, reg);
1134 	return 0;
1135 }
1136 
1137 static void dp_aux_ch_ctl_link_training(struct intel_vgpu_dpcd_data *dpcd,
1138 		u8 t)
1139 {
1140 	if ((t & DP_TRAINING_PATTERN_MASK) == DP_TRAINING_PATTERN_1) {
1141 		/* training pattern 1 for CR */
1142 		/* set LANE0_CR_DONE, LANE1_CR_DONE */
1143 		dpcd->data[DP_LANE0_1_STATUS] |= DP_LANE_CR_DONE |
1144 			DP_LANE_CR_DONE << 4;
1145 		/* set LANE2_CR_DONE, LANE3_CR_DONE */
1146 		dpcd->data[DP_LANE2_3_STATUS] |= DP_LANE_CR_DONE |
1147 			DP_LANE_CR_DONE << 4;
1148 	} else if ((t & DP_TRAINING_PATTERN_MASK) ==
1149 			DP_TRAINING_PATTERN_2) {
1150 		/* training pattern 2 for EQ */
1151 		/* Set CHANNEL_EQ_DONE and  SYMBOL_LOCKED for Lane0_1 */
1152 		dpcd->data[DP_LANE0_1_STATUS] |= DP_LANE_CHANNEL_EQ_DONE |
1153 			DP_LANE_CHANNEL_EQ_DONE << 4;
1154 		dpcd->data[DP_LANE0_1_STATUS] |= DP_LANE_SYMBOL_LOCKED |
1155 			DP_LANE_SYMBOL_LOCKED << 4;
1156 		/* Set CHANNEL_EQ_DONE and  SYMBOL_LOCKED for Lane2_3 */
1157 		dpcd->data[DP_LANE2_3_STATUS] |= DP_LANE_CHANNEL_EQ_DONE |
1158 			DP_LANE_CHANNEL_EQ_DONE << 4;
1159 		dpcd->data[DP_LANE2_3_STATUS] |= DP_LANE_SYMBOL_LOCKED |
1160 			DP_LANE_SYMBOL_LOCKED << 4;
1161 		/* set INTERLANE_ALIGN_DONE */
1162 		dpcd->data[DP_LANE_ALIGN_STATUS_UPDATED] |=
1163 			DP_INTERLANE_ALIGN_DONE;
1164 	} else if ((t & DP_TRAINING_PATTERN_MASK) ==
1165 			DP_TRAINING_PATTERN_DISABLE) {
1166 		/* finish link training */
1167 		/* set sink status as synchronized */
1168 		dpcd->data[DP_SINK_STATUS] = DP_RECEIVE_PORT_0_STATUS |
1169 			DP_RECEIVE_PORT_1_STATUS;
1170 	}
1171 }
1172 
1173 #define OFFSET_TO_DP_AUX_PORT(offset) (((offset) & 0xF00) >> 8)
1174 
1175 #define dpy_is_valid_port(port)	\
1176 		(((port) >= PORT_A) && ((port) < I915_MAX_PORTS))
1177 
1178 static int dp_aux_ch_ctl_mmio_write(struct intel_vgpu *vgpu,
1179 		unsigned int offset, void *p_data, unsigned int bytes)
1180 {
1181 	struct intel_vgpu_display *display = &vgpu->display;
1182 	int msg, addr, ctrl, op, len;
1183 	int port_index = OFFSET_TO_DP_AUX_PORT(offset);
1184 	struct intel_vgpu_dpcd_data *dpcd = NULL;
1185 	struct intel_vgpu_port *port = NULL;
1186 	u32 data;
1187 
1188 	if (!dpy_is_valid_port(port_index)) {
1189 		gvt_vgpu_err("Unsupported DP port access!\n");
1190 		return 0;
1191 	}
1192 
1193 	write_vreg(vgpu, offset, p_data, bytes);
1194 	data = vgpu_vreg(vgpu, offset);
1195 
1196 	if (GRAPHICS_VER(vgpu->gvt->gt->i915) >= 9 &&
1197 	    offset != i915_mmio_reg_offset(DP_AUX_CH_CTL(port_index))) {
1198 		/* SKL DPB/C/D aux ctl register changed */
1199 		return 0;
1200 	} else if (IS_BROADWELL(vgpu->gvt->gt->i915) &&
1201 		   offset != i915_mmio_reg_offset(port_index ?
1202 						  PCH_DP_AUX_CH_CTL(port_index) :
1203 						  DP_AUX_CH_CTL(port_index))) {
1204 		/* write to the data registers */
1205 		return 0;
1206 	}
1207 
1208 	if (!(data & DP_AUX_CH_CTL_SEND_BUSY)) {
1209 		/* just want to clear the sticky bits */
1210 		vgpu_vreg(vgpu, offset) = 0;
1211 		return 0;
1212 	}
1213 
1214 	port = &display->ports[port_index];
1215 	dpcd = port->dpcd;
1216 
1217 	/* read out message from DATA1 register */
1218 	msg = vgpu_vreg(vgpu, offset + 4);
1219 	addr = (msg >> 8) & 0xffff;
1220 	ctrl = (msg >> 24) & 0xff;
1221 	len = msg & 0xff;
1222 	op = ctrl >> 4;
1223 
1224 	if (op == DP_AUX_NATIVE_WRITE) {
1225 		int t;
1226 		u8 buf[16];
1227 
1228 		if ((addr + len + 1) >= DPCD_SIZE) {
1229 			/*
1230 			 * Write request exceeds what we supported,
1231 			 * DCPD spec: When a Source Device is writing a DPCD
1232 			 * address not supported by the Sink Device, the Sink
1233 			 * Device shall reply with AUX NACK and “M” equal to
1234 			 * zero.
1235 			 */
1236 
1237 			/* NAK the write */
1238 			vgpu_vreg(vgpu, offset + 4) = AUX_NATIVE_REPLY_NAK;
1239 			dp_aux_ch_ctl_trans_done(vgpu, data, offset, 2, true);
1240 			return 0;
1241 		}
1242 
1243 		/*
1244 		 * Write request format: Headr (command + address + size) occupies
1245 		 * 4 bytes, followed by (len + 1) bytes of data. See details at
1246 		 * intel_dp_aux_transfer().
1247 		 */
1248 		if ((len + 1 + 4) > AUX_BURST_SIZE) {
1249 			gvt_vgpu_err("dp_aux_header: len %d is too large\n", len);
1250 			return -EINVAL;
1251 		}
1252 
1253 		/* unpack data from vreg to buf */
1254 		for (t = 0; t < 4; t++) {
1255 			u32 r = vgpu_vreg(vgpu, offset + 8 + t * 4);
1256 
1257 			buf[t * 4] = (r >> 24) & 0xff;
1258 			buf[t * 4 + 1] = (r >> 16) & 0xff;
1259 			buf[t * 4 + 2] = (r >> 8) & 0xff;
1260 			buf[t * 4 + 3] = r & 0xff;
1261 		}
1262 
1263 		/* write to virtual DPCD */
1264 		if (dpcd && dpcd->data_valid) {
1265 			for (t = 0; t <= len; t++) {
1266 				int p = addr + t;
1267 
1268 				dpcd->data[p] = buf[t];
1269 				/* check for link training */
1270 				if (p == DP_TRAINING_PATTERN_SET)
1271 					dp_aux_ch_ctl_link_training(dpcd,
1272 							buf[t]);
1273 			}
1274 		}
1275 
1276 		/* ACK the write */
1277 		vgpu_vreg(vgpu, offset + 4) = 0;
1278 		dp_aux_ch_ctl_trans_done(vgpu, data, offset, 1,
1279 				dpcd && dpcd->data_valid);
1280 		return 0;
1281 	}
1282 
1283 	if (op == DP_AUX_NATIVE_READ) {
1284 		int idx, i, ret = 0;
1285 
1286 		if ((addr + len + 1) >= DPCD_SIZE) {
1287 			/*
1288 			 * read request exceeds what we supported
1289 			 * DPCD spec: A Sink Device receiving a Native AUX CH
1290 			 * read request for an unsupported DPCD address must
1291 			 * reply with an AUX ACK and read data set equal to
1292 			 * zero instead of replying with AUX NACK.
1293 			 */
1294 
1295 			/* ACK the READ*/
1296 			vgpu_vreg(vgpu, offset + 4) = 0;
1297 			vgpu_vreg(vgpu, offset + 8) = 0;
1298 			vgpu_vreg(vgpu, offset + 12) = 0;
1299 			vgpu_vreg(vgpu, offset + 16) = 0;
1300 			vgpu_vreg(vgpu, offset + 20) = 0;
1301 
1302 			dp_aux_ch_ctl_trans_done(vgpu, data, offset, len + 2,
1303 					true);
1304 			return 0;
1305 		}
1306 
1307 		for (idx = 1; idx <= 5; idx++) {
1308 			/* clear the data registers */
1309 			vgpu_vreg(vgpu, offset + 4 * idx) = 0;
1310 		}
1311 
1312 		/*
1313 		 * Read reply format: ACK (1 byte) plus (len + 1) bytes of data.
1314 		 */
1315 		if ((len + 2) > AUX_BURST_SIZE) {
1316 			gvt_vgpu_err("dp_aux_header: len %d is too large\n", len);
1317 			return -EINVAL;
1318 		}
1319 
1320 		/* read from virtual DPCD to vreg */
1321 		/* first 4 bytes: [ACK][addr][addr+1][addr+2] */
1322 		if (dpcd && dpcd->data_valid) {
1323 			for (i = 1; i <= (len + 1); i++) {
1324 				int t;
1325 
1326 				t = dpcd->data[addr + i - 1];
1327 				t <<= (24 - 8 * (i % 4));
1328 				ret |= t;
1329 
1330 				if ((i % 4 == 3) || (i == (len + 1))) {
1331 					vgpu_vreg(vgpu, offset +
1332 							(i / 4 + 1) * 4) = ret;
1333 					ret = 0;
1334 				}
1335 			}
1336 		}
1337 		dp_aux_ch_ctl_trans_done(vgpu, data, offset, len + 2,
1338 				dpcd && dpcd->data_valid);
1339 		return 0;
1340 	}
1341 
1342 	/* i2c transaction starts */
1343 	intel_gvt_i2c_handle_aux_ch_write(vgpu, port_index, offset, p_data);
1344 
1345 	if (data & DP_AUX_CH_CTL_INTERRUPT)
1346 		trigger_aux_channel_interrupt(vgpu, offset);
1347 	return 0;
1348 }
1349 
1350 static int mbctl_write(struct intel_vgpu *vgpu, unsigned int offset,
1351 		void *p_data, unsigned int bytes)
1352 {
1353 	*(u32 *)p_data &= (~GEN6_MBCTL_ENABLE_BOOT_FETCH);
1354 	write_vreg(vgpu, offset, p_data, bytes);
1355 	return 0;
1356 }
1357 
1358 static int vga_control_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1359 		void *p_data, unsigned int bytes)
1360 {
1361 	bool vga_disable;
1362 
1363 	write_vreg(vgpu, offset, p_data, bytes);
1364 	vga_disable = vgpu_vreg(vgpu, offset) & VGA_DISP_DISABLE;
1365 
1366 	gvt_dbg_core("vgpu%d: %s VGA mode\n", vgpu->id,
1367 			vga_disable ? "Disable" : "Enable");
1368 	return 0;
1369 }
1370 
1371 static u32 read_virtual_sbi_register(struct intel_vgpu *vgpu,
1372 		unsigned int sbi_offset)
1373 {
1374 	struct intel_vgpu_display *display = &vgpu->display;
1375 	int num = display->sbi.number;
1376 	int i;
1377 
1378 	for (i = 0; i < num; ++i)
1379 		if (display->sbi.registers[i].offset == sbi_offset)
1380 			break;
1381 
1382 	if (i == num)
1383 		return 0;
1384 
1385 	return display->sbi.registers[i].value;
1386 }
1387 
1388 static void write_virtual_sbi_register(struct intel_vgpu *vgpu,
1389 		unsigned int offset, u32 value)
1390 {
1391 	struct intel_vgpu_display *display = &vgpu->display;
1392 	int num = display->sbi.number;
1393 	int i;
1394 
1395 	for (i = 0; i < num; ++i) {
1396 		if (display->sbi.registers[i].offset == offset)
1397 			break;
1398 	}
1399 
1400 	if (i == num) {
1401 		if (num == SBI_REG_MAX) {
1402 			gvt_vgpu_err("SBI caching meets maximum limits\n");
1403 			return;
1404 		}
1405 		display->sbi.number++;
1406 	}
1407 
1408 	display->sbi.registers[i].offset = offset;
1409 	display->sbi.registers[i].value = value;
1410 }
1411 
1412 static int sbi_data_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
1413 		void *p_data, unsigned int bytes)
1414 {
1415 	if (((vgpu_vreg_t(vgpu, SBI_CTL_STAT) & SBI_OPCODE_MASK) >>
1416 				SBI_OPCODE_SHIFT) == SBI_CMD_CRRD) {
1417 		unsigned int sbi_offset = (vgpu_vreg_t(vgpu, SBI_ADDR) &
1418 				SBI_ADDR_OFFSET_MASK) >> SBI_ADDR_OFFSET_SHIFT;
1419 		vgpu_vreg(vgpu, offset) = read_virtual_sbi_register(vgpu,
1420 				sbi_offset);
1421 	}
1422 	read_vreg(vgpu, offset, p_data, bytes);
1423 	return 0;
1424 }
1425 
1426 static int sbi_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1427 		void *p_data, unsigned int bytes)
1428 {
1429 	u32 data;
1430 
1431 	write_vreg(vgpu, offset, p_data, bytes);
1432 	data = vgpu_vreg(vgpu, offset);
1433 
1434 	data &= ~(SBI_STAT_MASK << SBI_STAT_SHIFT);
1435 	data |= SBI_READY;
1436 
1437 	data &= ~(SBI_RESPONSE_MASK << SBI_RESPONSE_SHIFT);
1438 	data |= SBI_RESPONSE_SUCCESS;
1439 
1440 	vgpu_vreg(vgpu, offset) = data;
1441 
1442 	if (((vgpu_vreg_t(vgpu, SBI_CTL_STAT) & SBI_OPCODE_MASK) >>
1443 				SBI_OPCODE_SHIFT) == SBI_CMD_CRWR) {
1444 		unsigned int sbi_offset = (vgpu_vreg_t(vgpu, SBI_ADDR) &
1445 				SBI_ADDR_OFFSET_MASK) >> SBI_ADDR_OFFSET_SHIFT;
1446 
1447 		write_virtual_sbi_register(vgpu, sbi_offset,
1448 					   vgpu_vreg_t(vgpu, SBI_DATA));
1449 	}
1450 	return 0;
1451 }
1452 
1453 #define _vgtif_reg(x) \
1454 	(VGT_PVINFO_PAGE + offsetof(struct vgt_if, x))
1455 
1456 static int pvinfo_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
1457 		void *p_data, unsigned int bytes)
1458 {
1459 	bool invalid_read = false;
1460 
1461 	read_vreg(vgpu, offset, p_data, bytes);
1462 
1463 	switch (offset) {
1464 	case _vgtif_reg(magic) ... _vgtif_reg(vgt_id):
1465 		if (offset + bytes > _vgtif_reg(vgt_id) + 4)
1466 			invalid_read = true;
1467 		break;
1468 	case _vgtif_reg(avail_rs.mappable_gmadr.base) ...
1469 		_vgtif_reg(avail_rs.fence_num):
1470 		if (offset + bytes >
1471 			_vgtif_reg(avail_rs.fence_num) + 4)
1472 			invalid_read = true;
1473 		break;
1474 	case 0x78010:	/* vgt_caps */
1475 	case 0x7881c:
1476 		break;
1477 	default:
1478 		invalid_read = true;
1479 		break;
1480 	}
1481 	if (invalid_read)
1482 		gvt_vgpu_err("invalid pvinfo read: [%x:%x] = %x\n",
1483 				offset, bytes, *(u32 *)p_data);
1484 	vgpu->pv_notified = true;
1485 	return 0;
1486 }
1487 
1488 static int handle_g2v_notification(struct intel_vgpu *vgpu, int notification)
1489 {
1490 	enum intel_gvt_gtt_type root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1491 	struct intel_vgpu_mm *mm;
1492 	u64 *pdps;
1493 
1494 	pdps = (u64 *)&vgpu_vreg64_t(vgpu, vgtif_reg(pdp[0]));
1495 
1496 	switch (notification) {
1497 	case VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE:
1498 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1499 		fallthrough;
1500 	case VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE:
1501 		mm = intel_vgpu_get_ppgtt_mm(vgpu, root_entry_type, pdps);
1502 		return PTR_ERR_OR_ZERO(mm);
1503 	case VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY:
1504 	case VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY:
1505 		return intel_vgpu_put_ppgtt_mm(vgpu, pdps);
1506 	case VGT_G2V_EXECLIST_CONTEXT_CREATE:
1507 	case VGT_G2V_EXECLIST_CONTEXT_DESTROY:
1508 	case 1:	/* Remove this in guest driver. */
1509 		break;
1510 	default:
1511 		gvt_vgpu_err("Invalid PV notification %d\n", notification);
1512 	}
1513 	return 0;
1514 }
1515 
1516 static int send_display_ready_uevent(struct intel_vgpu *vgpu, int ready)
1517 {
1518 	struct kobject *kobj = &vgpu->gvt->gt->i915->drm.primary->kdev->kobj;
1519 	char *env[3] = {NULL, NULL, NULL};
1520 	char vmid_str[20];
1521 	char display_ready_str[20];
1522 
1523 	snprintf(display_ready_str, 20, "GVT_DISPLAY_READY=%d", ready);
1524 	env[0] = display_ready_str;
1525 
1526 	snprintf(vmid_str, 20, "VMID=%d", vgpu->id);
1527 	env[1] = vmid_str;
1528 
1529 	return kobject_uevent_env(kobj, KOBJ_ADD, env);
1530 }
1531 
1532 static int pvinfo_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1533 		void *p_data, unsigned int bytes)
1534 {
1535 	u32 data = *(u32 *)p_data;
1536 	bool invalid_write = false;
1537 
1538 	switch (offset) {
1539 	case _vgtif_reg(display_ready):
1540 		send_display_ready_uevent(vgpu, data ? 1 : 0);
1541 		break;
1542 	case _vgtif_reg(g2v_notify):
1543 		handle_g2v_notification(vgpu, data);
1544 		break;
1545 	/* add xhot and yhot to handled list to avoid error log */
1546 	case _vgtif_reg(cursor_x_hot):
1547 	case _vgtif_reg(cursor_y_hot):
1548 	case _vgtif_reg(pdp[0].lo):
1549 	case _vgtif_reg(pdp[0].hi):
1550 	case _vgtif_reg(pdp[1].lo):
1551 	case _vgtif_reg(pdp[1].hi):
1552 	case _vgtif_reg(pdp[2].lo):
1553 	case _vgtif_reg(pdp[2].hi):
1554 	case _vgtif_reg(pdp[3].lo):
1555 	case _vgtif_reg(pdp[3].hi):
1556 	case _vgtif_reg(execlist_context_descriptor_lo):
1557 	case _vgtif_reg(execlist_context_descriptor_hi):
1558 		break;
1559 	case _vgtif_reg(rsv5[0])..._vgtif_reg(rsv5[3]):
1560 		invalid_write = true;
1561 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_INSUFFICIENT_RESOURCE);
1562 		break;
1563 	default:
1564 		invalid_write = true;
1565 		gvt_vgpu_err("invalid pvinfo write offset %x bytes %x data %x\n",
1566 				offset, bytes, data);
1567 		break;
1568 	}
1569 
1570 	if (!invalid_write)
1571 		write_vreg(vgpu, offset, p_data, bytes);
1572 
1573 	return 0;
1574 }
1575 
1576 static int pf_write(struct intel_vgpu *vgpu,
1577 		unsigned int offset, void *p_data, unsigned int bytes)
1578 {
1579 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1580 	u32 val = *(u32 *)p_data;
1581 
1582 	if ((offset == _PS_1A_CTRL || offset == _PS_2A_CTRL ||
1583 	   offset == _PS_1B_CTRL || offset == _PS_2B_CTRL ||
1584 	   offset == _PS_1C_CTRL) && (val & PS_BINDING_MASK) != PS_BINDING_PIPE) {
1585 		drm_WARN_ONCE(&i915->drm, true,
1586 			      "VM(%d): guest is trying to scaling a plane\n",
1587 			      vgpu->id);
1588 		return 0;
1589 	}
1590 
1591 	return intel_vgpu_default_mmio_write(vgpu, offset, p_data, bytes);
1592 }
1593 
1594 static int power_well_ctl_mmio_write(struct intel_vgpu *vgpu,
1595 		unsigned int offset, void *p_data, unsigned int bytes)
1596 {
1597 	write_vreg(vgpu, offset, p_data, bytes);
1598 
1599 	if (vgpu_vreg(vgpu, offset) &
1600 	    HSW_PWR_WELL_CTL_REQ(HSW_PW_CTL_IDX_GLOBAL))
1601 		vgpu_vreg(vgpu, offset) |=
1602 			HSW_PWR_WELL_CTL_STATE(HSW_PW_CTL_IDX_GLOBAL);
1603 	else
1604 		vgpu_vreg(vgpu, offset) &=
1605 			~HSW_PWR_WELL_CTL_STATE(HSW_PW_CTL_IDX_GLOBAL);
1606 	return 0;
1607 }
1608 
1609 static int gen9_dbuf_ctl_mmio_write(struct intel_vgpu *vgpu,
1610 		unsigned int offset, void *p_data, unsigned int bytes)
1611 {
1612 	write_vreg(vgpu, offset, p_data, bytes);
1613 
1614 	if (vgpu_vreg(vgpu, offset) & DBUF_POWER_REQUEST)
1615 		vgpu_vreg(vgpu, offset) |= DBUF_POWER_STATE;
1616 	else
1617 		vgpu_vreg(vgpu, offset) &= ~DBUF_POWER_STATE;
1618 
1619 	return 0;
1620 }
1621 
1622 static int fpga_dbg_mmio_write(struct intel_vgpu *vgpu,
1623 	unsigned int offset, void *p_data, unsigned int bytes)
1624 {
1625 	write_vreg(vgpu, offset, p_data, bytes);
1626 
1627 	if (vgpu_vreg(vgpu, offset) & FPGA_DBG_RM_NOCLAIM)
1628 		vgpu_vreg(vgpu, offset) &= ~FPGA_DBG_RM_NOCLAIM;
1629 	return 0;
1630 }
1631 
1632 static int dma_ctrl_write(struct intel_vgpu *vgpu, unsigned int offset,
1633 		void *p_data, unsigned int bytes)
1634 {
1635 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1636 	u32 mode;
1637 
1638 	write_vreg(vgpu, offset, p_data, bytes);
1639 	mode = vgpu_vreg(vgpu, offset);
1640 
1641 	if (GFX_MODE_BIT_SET_IN_MASK(mode, START_DMA)) {
1642 		drm_WARN_ONCE(&i915->drm, 1,
1643 				"VM(%d): iGVT-g doesn't support GuC\n",
1644 				vgpu->id);
1645 		return 0;
1646 	}
1647 
1648 	return 0;
1649 }
1650 
1651 static int gen9_trtte_write(struct intel_vgpu *vgpu, unsigned int offset,
1652 		void *p_data, unsigned int bytes)
1653 {
1654 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1655 	u32 trtte = *(u32 *)p_data;
1656 
1657 	if ((trtte & 1) && (trtte & (1 << 1)) == 0) {
1658 		drm_WARN(&i915->drm, 1,
1659 				"VM(%d): Use physical address for TRTT!\n",
1660 				vgpu->id);
1661 		return -EINVAL;
1662 	}
1663 	write_vreg(vgpu, offset, p_data, bytes);
1664 
1665 	return 0;
1666 }
1667 
1668 static int gen9_trtt_chicken_write(struct intel_vgpu *vgpu, unsigned int offset,
1669 		void *p_data, unsigned int bytes)
1670 {
1671 	write_vreg(vgpu, offset, p_data, bytes);
1672 	return 0;
1673 }
1674 
1675 static int dpll_status_read(struct intel_vgpu *vgpu, unsigned int offset,
1676 		void *p_data, unsigned int bytes)
1677 {
1678 	u32 v = 0;
1679 
1680 	if (vgpu_vreg(vgpu, 0x46010) & (1 << 31))
1681 		v |= (1 << 0);
1682 
1683 	if (vgpu_vreg(vgpu, 0x46014) & (1 << 31))
1684 		v |= (1 << 8);
1685 
1686 	if (vgpu_vreg(vgpu, 0x46040) & (1 << 31))
1687 		v |= (1 << 16);
1688 
1689 	if (vgpu_vreg(vgpu, 0x46060) & (1 << 31))
1690 		v |= (1 << 24);
1691 
1692 	vgpu_vreg(vgpu, offset) = v;
1693 
1694 	return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes);
1695 }
1696 
1697 static int mailbox_write(struct intel_vgpu *vgpu, unsigned int offset,
1698 		void *p_data, unsigned int bytes)
1699 {
1700 	u32 value = *(u32 *)p_data;
1701 	u32 cmd = value & 0xff;
1702 	u32 *data0 = &vgpu_vreg_t(vgpu, GEN6_PCODE_DATA);
1703 
1704 	switch (cmd) {
1705 	case GEN9_PCODE_READ_MEM_LATENCY:
1706 		if (IS_SKYLAKE(vgpu->gvt->gt->i915) ||
1707 		    IS_KABYLAKE(vgpu->gvt->gt->i915) ||
1708 		    IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
1709 		    IS_COMETLAKE(vgpu->gvt->gt->i915)) {
1710 			/**
1711 			 * "Read memory latency" command on gen9.
1712 			 * Below memory latency values are read
1713 			 * from skylake platform.
1714 			 */
1715 			if (!*data0)
1716 				*data0 = 0x1e1a1100;
1717 			else
1718 				*data0 = 0x61514b3d;
1719 		} else if (IS_BROXTON(vgpu->gvt->gt->i915)) {
1720 			/**
1721 			 * "Read memory latency" command on gen9.
1722 			 * Below memory latency values are read
1723 			 * from Broxton MRB.
1724 			 */
1725 			if (!*data0)
1726 				*data0 = 0x16080707;
1727 			else
1728 				*data0 = 0x16161616;
1729 		}
1730 		break;
1731 	case SKL_PCODE_CDCLK_CONTROL:
1732 		if (IS_SKYLAKE(vgpu->gvt->gt->i915) ||
1733 		    IS_KABYLAKE(vgpu->gvt->gt->i915) ||
1734 		    IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
1735 		    IS_COMETLAKE(vgpu->gvt->gt->i915))
1736 			*data0 = SKL_CDCLK_READY_FOR_CHANGE;
1737 		break;
1738 	case GEN6_PCODE_READ_RC6VIDS:
1739 		*data0 |= 0x1;
1740 		break;
1741 	}
1742 
1743 	gvt_dbg_core("VM(%d) write %x to mailbox, return data0 %x\n",
1744 		     vgpu->id, value, *data0);
1745 	/**
1746 	 * PCODE_READY clear means ready for pcode read/write,
1747 	 * PCODE_ERROR_MASK clear means no error happened. In GVT-g we
1748 	 * always emulate as pcode read/write success and ready for access
1749 	 * anytime, since we don't touch real physical registers here.
1750 	 */
1751 	value &= ~(GEN6_PCODE_READY | GEN6_PCODE_ERROR_MASK);
1752 	return intel_vgpu_default_mmio_write(vgpu, offset, &value, bytes);
1753 }
1754 
1755 static int hws_pga_write(struct intel_vgpu *vgpu, unsigned int offset,
1756 		void *p_data, unsigned int bytes)
1757 {
1758 	u32 value = *(u32 *)p_data;
1759 	const struct intel_engine_cs *engine =
1760 		intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
1761 
1762 	if (value != 0 &&
1763 	    !intel_gvt_ggtt_validate_range(vgpu, value, I915_GTT_PAGE_SIZE)) {
1764 		gvt_vgpu_err("write invalid HWSP address, reg:0x%x, value:0x%x\n",
1765 			      offset, value);
1766 		return -EINVAL;
1767 	}
1768 
1769 	/*
1770 	 * Need to emulate all the HWSP register write to ensure host can
1771 	 * update the VM CSB status correctly. Here listed registers can
1772 	 * support BDW, SKL or other platforms with same HWSP registers.
1773 	 */
1774 	if (unlikely(!engine)) {
1775 		gvt_vgpu_err("access unknown hardware status page register:0x%x\n",
1776 			     offset);
1777 		return -EINVAL;
1778 	}
1779 	vgpu->hws_pga[engine->id] = value;
1780 	gvt_dbg_mmio("VM(%d) write: 0x%x to HWSP: 0x%x\n",
1781 		     vgpu->id, value, offset);
1782 
1783 	return intel_vgpu_default_mmio_write(vgpu, offset, &value, bytes);
1784 }
1785 
1786 static int skl_power_well_ctl_write(struct intel_vgpu *vgpu,
1787 		unsigned int offset, void *p_data, unsigned int bytes)
1788 {
1789 	u32 v = *(u32 *)p_data;
1790 
1791 	if (IS_BROXTON(vgpu->gvt->gt->i915))
1792 		v &= (1 << 31) | (1 << 29);
1793 	else
1794 		v &= (1 << 31) | (1 << 29) | (1 << 9) |
1795 			(1 << 7) | (1 << 5) | (1 << 3) | (1 << 1);
1796 	v |= (v >> 1);
1797 
1798 	return intel_vgpu_default_mmio_write(vgpu, offset, &v, bytes);
1799 }
1800 
1801 static int skl_lcpll_write(struct intel_vgpu *vgpu, unsigned int offset,
1802 		void *p_data, unsigned int bytes)
1803 {
1804 	u32 v = *(u32 *)p_data;
1805 
1806 	/* other bits are MBZ. */
1807 	v &= (1 << 31) | (1 << 30);
1808 	v & (1 << 31) ? (v |= (1 << 30)) : (v &= ~(1 << 30));
1809 
1810 	vgpu_vreg(vgpu, offset) = v;
1811 
1812 	return 0;
1813 }
1814 
1815 static int bxt_de_pll_enable_write(struct intel_vgpu *vgpu,
1816 		unsigned int offset, void *p_data, unsigned int bytes)
1817 {
1818 	u32 v = *(u32 *)p_data;
1819 
1820 	if (v & BXT_DE_PLL_PLL_ENABLE)
1821 		v |= BXT_DE_PLL_LOCK;
1822 
1823 	vgpu_vreg(vgpu, offset) = v;
1824 
1825 	return 0;
1826 }
1827 
1828 static int bxt_port_pll_enable_write(struct intel_vgpu *vgpu,
1829 		unsigned int offset, void *p_data, unsigned int bytes)
1830 {
1831 	u32 v = *(u32 *)p_data;
1832 
1833 	if (v & PORT_PLL_ENABLE)
1834 		v |= PORT_PLL_LOCK;
1835 
1836 	vgpu_vreg(vgpu, offset) = v;
1837 
1838 	return 0;
1839 }
1840 
1841 static int bxt_phy_ctl_family_write(struct intel_vgpu *vgpu,
1842 		unsigned int offset, void *p_data, unsigned int bytes)
1843 {
1844 	u32 v = *(u32 *)p_data;
1845 	u32 data = v & COMMON_RESET_DIS ? BXT_PHY_LANE_ENABLED : 0;
1846 
1847 	switch (offset) {
1848 	case _PHY_CTL_FAMILY_EDP:
1849 		vgpu_vreg(vgpu, _BXT_PHY_CTL_DDI_A) = data;
1850 		break;
1851 	case _PHY_CTL_FAMILY_DDI:
1852 		vgpu_vreg(vgpu, _BXT_PHY_CTL_DDI_B) = data;
1853 		vgpu_vreg(vgpu, _BXT_PHY_CTL_DDI_C) = data;
1854 		break;
1855 	}
1856 
1857 	vgpu_vreg(vgpu, offset) = v;
1858 
1859 	return 0;
1860 }
1861 
1862 static int bxt_port_tx_dw3_read(struct intel_vgpu *vgpu,
1863 		unsigned int offset, void *p_data, unsigned int bytes)
1864 {
1865 	u32 v = vgpu_vreg(vgpu, offset);
1866 
1867 	v &= ~UNIQUE_TRANGE_EN_METHOD;
1868 
1869 	vgpu_vreg(vgpu, offset) = v;
1870 
1871 	return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes);
1872 }
1873 
1874 static int bxt_pcs_dw12_grp_write(struct intel_vgpu *vgpu,
1875 		unsigned int offset, void *p_data, unsigned int bytes)
1876 {
1877 	u32 v = *(u32 *)p_data;
1878 
1879 	if (offset == _PORT_PCS_DW12_GRP_A || offset == _PORT_PCS_DW12_GRP_B) {
1880 		vgpu_vreg(vgpu, offset - 0x600) = v;
1881 		vgpu_vreg(vgpu, offset - 0x800) = v;
1882 	} else {
1883 		vgpu_vreg(vgpu, offset - 0x400) = v;
1884 		vgpu_vreg(vgpu, offset - 0x600) = v;
1885 	}
1886 
1887 	vgpu_vreg(vgpu, offset) = v;
1888 
1889 	return 0;
1890 }
1891 
1892 static int bxt_gt_disp_pwron_write(struct intel_vgpu *vgpu,
1893 		unsigned int offset, void *p_data, unsigned int bytes)
1894 {
1895 	u32 v = *(u32 *)p_data;
1896 
1897 	if (v & BIT(0)) {
1898 		vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY0)) &=
1899 			~PHY_RESERVED;
1900 		vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY0)) |=
1901 			PHY_POWER_GOOD;
1902 	}
1903 
1904 	if (v & BIT(1)) {
1905 		vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY1)) &=
1906 			~PHY_RESERVED;
1907 		vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY1)) |=
1908 			PHY_POWER_GOOD;
1909 	}
1910 
1911 
1912 	vgpu_vreg(vgpu, offset) = v;
1913 
1914 	return 0;
1915 }
1916 
1917 static int edp_psr_imr_iir_write(struct intel_vgpu *vgpu,
1918 		unsigned int offset, void *p_data, unsigned int bytes)
1919 {
1920 	vgpu_vreg(vgpu, offset) = 0;
1921 	return 0;
1922 }
1923 
1924 /*
1925  * FixMe:
1926  * If guest fills non-priv batch buffer on ApolloLake/Broxton as Mesa i965 did:
1927  * 717e7539124d (i965: Use a WC map and memcpy for the batch instead of pwrite.)
1928  * Due to the missing flush of bb filled by VM vCPU, host GPU hangs on executing
1929  * these MI_BATCH_BUFFER.
1930  * Temporarily workaround this by setting SNOOP bit for PAT3 used by PPGTT
1931  * PML4 PTE: PAT(0) PCD(1) PWT(1).
1932  * The performance is still expected to be low, will need further improvement.
1933  */
1934 static int bxt_ppat_low_write(struct intel_vgpu *vgpu, unsigned int offset,
1935 			      void *p_data, unsigned int bytes)
1936 {
1937 	u64 pat =
1938 		GEN8_PPAT(0, CHV_PPAT_SNOOP) |
1939 		GEN8_PPAT(1, 0) |
1940 		GEN8_PPAT(2, 0) |
1941 		GEN8_PPAT(3, CHV_PPAT_SNOOP) |
1942 		GEN8_PPAT(4, CHV_PPAT_SNOOP) |
1943 		GEN8_PPAT(5, CHV_PPAT_SNOOP) |
1944 		GEN8_PPAT(6, CHV_PPAT_SNOOP) |
1945 		GEN8_PPAT(7, CHV_PPAT_SNOOP);
1946 
1947 	vgpu_vreg(vgpu, offset) = lower_32_bits(pat);
1948 
1949 	return 0;
1950 }
1951 
1952 static int guc_status_read(struct intel_vgpu *vgpu,
1953 			   unsigned int offset, void *p_data,
1954 			   unsigned int bytes)
1955 {
1956 	/* keep MIA_IN_RESET before clearing */
1957 	read_vreg(vgpu, offset, p_data, bytes);
1958 	vgpu_vreg(vgpu, offset) &= ~GS_MIA_IN_RESET;
1959 	return 0;
1960 }
1961 
1962 static int mmio_read_from_hw(struct intel_vgpu *vgpu,
1963 		unsigned int offset, void *p_data, unsigned int bytes)
1964 {
1965 	struct intel_gvt *gvt = vgpu->gvt;
1966 	const struct intel_engine_cs *engine =
1967 		intel_gvt_render_mmio_to_engine(gvt, offset);
1968 
1969 	/**
1970 	 * Read HW reg in following case
1971 	 * a. the offset isn't a ring mmio
1972 	 * b. the offset's ring is running on hw.
1973 	 * c. the offset is ring time stamp mmio
1974 	 */
1975 
1976 	if (!engine ||
1977 	    vgpu == gvt->scheduler.engine_owner[engine->id] ||
1978 	    offset == i915_mmio_reg_offset(RING_TIMESTAMP(engine->mmio_base)) ||
1979 	    offset == i915_mmio_reg_offset(RING_TIMESTAMP_UDW(engine->mmio_base))) {
1980 		intel_wakeref_t wakeref;
1981 
1982 		wakeref = mmio_hw_access_pre(gvt->gt);
1983 		vgpu_vreg(vgpu, offset) =
1984 			intel_uncore_read(gvt->gt->uncore, _MMIO(offset));
1985 		mmio_hw_access_post(gvt->gt, wakeref);
1986 	}
1987 
1988 	return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes);
1989 }
1990 
1991 static int elsp_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1992 		void *p_data, unsigned int bytes)
1993 {
1994 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1995 	const struct intel_engine_cs *engine = intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
1996 	struct intel_vgpu_execlist *execlist;
1997 	u32 data = *(u32 *)p_data;
1998 	int ret = 0;
1999 
2000 	if (drm_WARN_ON(&i915->drm, !engine))
2001 		return -EINVAL;
2002 
2003 	/*
2004 	 * Due to d3_entered is used to indicate skipping PPGTT invalidation on
2005 	 * vGPU reset, it's set on D0->D3 on PCI config write, and cleared after
2006 	 * vGPU reset if in resuming.
2007 	 * In S0ix exit, the device power state also transite from D3 to D0 as
2008 	 * S3 resume, but no vGPU reset (triggered by QEMU device model). After
2009 	 * S0ix exit, all engines continue to work. However the d3_entered
2010 	 * remains set which will break next vGPU reset logic (miss the expected
2011 	 * PPGTT invalidation).
2012 	 * Engines can only work in D0. Thus the 1st elsp write gives GVT a
2013 	 * chance to clear d3_entered.
2014 	 */
2015 	if (vgpu->d3_entered)
2016 		vgpu->d3_entered = false;
2017 
2018 	execlist = &vgpu->submission.execlist[engine->id];
2019 
2020 	execlist->elsp_dwords.data[3 - execlist->elsp_dwords.index] = data;
2021 	if (execlist->elsp_dwords.index == 3) {
2022 		ret = intel_vgpu_submit_execlist(vgpu, engine);
2023 		if(ret)
2024 			gvt_vgpu_err("fail submit workload on ring %s\n",
2025 				     engine->name);
2026 	}
2027 
2028 	++execlist->elsp_dwords.index;
2029 	execlist->elsp_dwords.index &= 0x3;
2030 	return ret;
2031 }
2032 
2033 static int ring_mode_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
2034 		void *p_data, unsigned int bytes)
2035 {
2036 	u32 data = *(u32 *)p_data;
2037 	const struct intel_engine_cs *engine =
2038 		intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
2039 	bool enable_execlist;
2040 	int ret;
2041 
2042 	(*(u32 *)p_data) &= ~_MASKED_BIT_ENABLE(1);
2043 	if (IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
2044 	    IS_COMETLAKE(vgpu->gvt->gt->i915))
2045 		(*(u32 *)p_data) &= ~_MASKED_BIT_ENABLE(2);
2046 	write_vreg(vgpu, offset, p_data, bytes);
2047 
2048 	if (IS_MASKED_BITS_ENABLED(data, 1)) {
2049 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
2050 		return 0;
2051 	}
2052 
2053 	if ((IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
2054 	     IS_COMETLAKE(vgpu->gvt->gt->i915)) &&
2055 	    IS_MASKED_BITS_ENABLED(data, 2)) {
2056 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
2057 		return 0;
2058 	}
2059 
2060 	/* when PPGTT mode enabled, we will check if guest has called
2061 	 * pvinfo, if not, we will treat this guest as non-gvtg-aware
2062 	 * guest, and stop emulating its cfg space, mmio, gtt, etc.
2063 	 */
2064 	if ((IS_MASKED_BITS_ENABLED(data, GFX_PPGTT_ENABLE) ||
2065 	    IS_MASKED_BITS_ENABLED(data, GFX_RUN_LIST_ENABLE)) &&
2066 	    !vgpu->pv_notified) {
2067 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
2068 		return 0;
2069 	}
2070 	if (IS_MASKED_BITS_ENABLED(data, GFX_RUN_LIST_ENABLE) ||
2071 	    IS_MASKED_BITS_DISABLED(data, GFX_RUN_LIST_ENABLE)) {
2072 		enable_execlist = !!(data & GFX_RUN_LIST_ENABLE);
2073 
2074 		gvt_dbg_core("EXECLIST %s on ring %s\n",
2075 			     (enable_execlist ? "enabling" : "disabling"),
2076 			     engine->name);
2077 
2078 		if (!enable_execlist)
2079 			return 0;
2080 
2081 		ret = intel_vgpu_select_submission_ops(vgpu,
2082 						       engine->mask,
2083 						       INTEL_VGPU_EXECLIST_SUBMISSION);
2084 		if (ret)
2085 			return ret;
2086 
2087 		intel_vgpu_start_schedule(vgpu);
2088 	}
2089 	return 0;
2090 }
2091 
2092 static int gvt_reg_tlb_control_handler(struct intel_vgpu *vgpu,
2093 		unsigned int offset, void *p_data, unsigned int bytes)
2094 {
2095 	unsigned int id = 0;
2096 
2097 	write_vreg(vgpu, offset, p_data, bytes);
2098 	vgpu_vreg(vgpu, offset) = 0;
2099 
2100 	switch (offset) {
2101 	case 0x4260:
2102 		id = RCS0;
2103 		break;
2104 	case 0x4264:
2105 		id = VCS0;
2106 		break;
2107 	case 0x4268:
2108 		id = VCS1;
2109 		break;
2110 	case 0x426c:
2111 		id = BCS0;
2112 		break;
2113 	case 0x4270:
2114 		id = VECS0;
2115 		break;
2116 	default:
2117 		return -EINVAL;
2118 	}
2119 	set_bit(id, (void *)vgpu->submission.tlb_handle_pending);
2120 
2121 	return 0;
2122 }
2123 
2124 static int ring_reset_ctl_write(struct intel_vgpu *vgpu,
2125 	unsigned int offset, void *p_data, unsigned int bytes)
2126 {
2127 	u32 data;
2128 
2129 	write_vreg(vgpu, offset, p_data, bytes);
2130 	data = vgpu_vreg(vgpu, offset);
2131 
2132 	if (IS_MASKED_BITS_ENABLED(data, RESET_CTL_REQUEST_RESET))
2133 		data |= RESET_CTL_READY_TO_RESET;
2134 	else if (data & _MASKED_BIT_DISABLE(RESET_CTL_REQUEST_RESET))
2135 		data &= ~RESET_CTL_READY_TO_RESET;
2136 
2137 	vgpu_vreg(vgpu, offset) = data;
2138 	return 0;
2139 }
2140 
2141 static int csfe_chicken1_mmio_write(struct intel_vgpu *vgpu,
2142 				    unsigned int offset, void *p_data,
2143 				    unsigned int bytes)
2144 {
2145 	u32 data = *(u32 *)p_data;
2146 
2147 	(*(u32 *)p_data) &= ~_MASKED_BIT_ENABLE(0x18);
2148 	write_vreg(vgpu, offset, p_data, bytes);
2149 
2150 	if (IS_MASKED_BITS_ENABLED(data, 0x10) ||
2151 	    IS_MASKED_BITS_ENABLED(data, 0x8))
2152 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
2153 
2154 	return 0;
2155 }
2156 
2157 #define MMIO_F(reg, s, f, am, rm, d, r, w) do { \
2158 	ret = setup_mmio_info(gvt, i915_mmio_reg_offset(reg), \
2159 		s, f, am, rm, d, r, w); \
2160 	if (ret) \
2161 		return ret; \
2162 } while (0)
2163 
2164 #define MMIO_DH(reg, d, r, w) \
2165 	MMIO_F(reg, 4, 0, 0, 0, d, r, w)
2166 
2167 #define MMIO_DFH(reg, d, f, r, w) \
2168 	MMIO_F(reg, 4, f, 0, 0, d, r, w)
2169 
2170 #define MMIO_GM(reg, d, r, w) \
2171 	MMIO_F(reg, 4, F_GMADR, 0xFFFFF000, 0, d, r, w)
2172 
2173 #define MMIO_GM_RDR(reg, d, r, w) \
2174 	MMIO_F(reg, 4, F_GMADR | F_CMD_ACCESS, 0xFFFFF000, 0, d, r, w)
2175 
2176 #define MMIO_RO(reg, d, f, rm, r, w) \
2177 	MMIO_F(reg, 4, F_RO | f, 0, rm, d, r, w)
2178 
2179 #define MMIO_RING_F(prefix, s, f, am, rm, d, r, w) do { \
2180 	MMIO_F(prefix(RENDER_RING_BASE), s, f, am, rm, d, r, w); \
2181 	MMIO_F(prefix(BLT_RING_BASE), s, f, am, rm, d, r, w); \
2182 	MMIO_F(prefix(GEN6_BSD_RING_BASE), s, f, am, rm, d, r, w); \
2183 	MMIO_F(prefix(VEBOX_RING_BASE), s, f, am, rm, d, r, w); \
2184 	if (HAS_ENGINE(gvt->gt, VCS1)) \
2185 		MMIO_F(prefix(GEN8_BSD2_RING_BASE), s, f, am, rm, d, r, w); \
2186 } while (0)
2187 
2188 #define MMIO_RING_DFH(prefix, d, f, r, w) \
2189 	MMIO_RING_F(prefix, 4, f, 0, 0, d, r, w)
2190 
2191 #define MMIO_RING_GM(prefix, d, r, w) \
2192 	MMIO_RING_F(prefix, 4, F_GMADR, 0xFFFF0000, 0, d, r, w)
2193 
2194 #define MMIO_RING_GM_RDR(prefix, d, r, w) \
2195 	MMIO_RING_F(prefix, 4, F_GMADR | F_CMD_ACCESS, 0xFFFF0000, 0, d, r, w)
2196 
2197 #define MMIO_RING_RO(prefix, d, f, rm, r, w) \
2198 	MMIO_RING_F(prefix, 4, F_RO | f, 0, rm, d, r, w)
2199 
2200 static int init_generic_mmio_info(struct intel_gvt *gvt)
2201 {
2202 	struct drm_i915_private *dev_priv = gvt->gt->i915;
2203 	struct intel_display *display = &dev_priv->display;
2204 	int ret;
2205 
2206 	MMIO_RING_DFH(RING_IMR, D_ALL, 0, NULL,
2207 		intel_vgpu_reg_imr_handler);
2208 
2209 	MMIO_DFH(SDEIMR, D_ALL, 0, NULL, intel_vgpu_reg_imr_handler);
2210 	MMIO_DFH(SDEIER, D_ALL, 0, NULL, intel_vgpu_reg_ier_handler);
2211 	MMIO_DFH(SDEIIR, D_ALL, 0, NULL, intel_vgpu_reg_iir_handler);
2212 
2213 	MMIO_RING_DFH(RING_HWSTAM, D_ALL, 0, NULL, NULL);
2214 
2215 
2216 	MMIO_DH(GEN8_GAMW_ECO_DEV_RW_IA, D_BDW_PLUS, NULL,
2217 		gamw_echo_dev_rw_ia_write);
2218 
2219 	MMIO_GM_RDR(BSD_HWS_PGA_GEN7, D_ALL, NULL, NULL);
2220 	MMIO_GM_RDR(BLT_HWS_PGA_GEN7, D_ALL, NULL, NULL);
2221 	MMIO_GM_RDR(VEBOX_HWS_PGA_GEN7, D_ALL, NULL, NULL);
2222 
2223 #define RING_REG(base) _MMIO((base) + 0x28)
2224 	MMIO_RING_DFH(RING_REG, D_ALL, F_CMD_ACCESS, NULL, NULL);
2225 #undef RING_REG
2226 
2227 #define RING_REG(base) _MMIO((base) + 0x134)
2228 	MMIO_RING_DFH(RING_REG, D_ALL, F_CMD_ACCESS, NULL, NULL);
2229 #undef RING_REG
2230 
2231 #define RING_REG(base) _MMIO((base) + 0x6c)
2232 	MMIO_RING_DFH(RING_REG, D_ALL, 0, mmio_read_from_hw, NULL);
2233 #undef RING_REG
2234 	MMIO_DH(GEN7_SC_INSTDONE, D_BDW_PLUS, mmio_read_from_hw, NULL);
2235 
2236 	MMIO_GM_RDR(_MMIO(0x2148), D_ALL, NULL, NULL);
2237 	MMIO_GM_RDR(CCID(RENDER_RING_BASE), D_ALL, NULL, NULL);
2238 	MMIO_GM_RDR(_MMIO(0x12198), D_ALL, NULL, NULL);
2239 
2240 	MMIO_RING_DFH(RING_TAIL, D_ALL, 0, NULL, NULL);
2241 	MMIO_RING_DFH(RING_HEAD, D_ALL, 0, NULL, NULL);
2242 	MMIO_RING_DFH(RING_CTL, D_ALL, 0, NULL, NULL);
2243 	MMIO_RING_DFH(RING_ACTHD, D_ALL, 0, mmio_read_from_hw, NULL);
2244 	MMIO_RING_GM(RING_START, D_ALL, NULL, NULL);
2245 
2246 	/* RING MODE */
2247 #define RING_REG(base) _MMIO((base) + 0x29c)
2248 	MMIO_RING_DFH(RING_REG, D_ALL,
2249 		F_MODE_MASK | F_CMD_ACCESS | F_CMD_WRITE_PATCH, NULL,
2250 		ring_mode_mmio_write);
2251 #undef RING_REG
2252 
2253 	MMIO_RING_DFH(RING_MI_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
2254 		NULL, NULL);
2255 	MMIO_RING_DFH(RING_INSTPM, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
2256 			NULL, NULL);
2257 	MMIO_RING_DFH(RING_TIMESTAMP, D_ALL, F_CMD_ACCESS,
2258 			mmio_read_from_hw, NULL);
2259 	MMIO_RING_DFH(RING_TIMESTAMP_UDW, D_ALL, F_CMD_ACCESS,
2260 			mmio_read_from_hw, NULL);
2261 
2262 	MMIO_DFH(GEN7_GT_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2263 	MMIO_DFH(CACHE_MODE_0_GEN7, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
2264 		NULL, NULL);
2265 	MMIO_DFH(CACHE_MODE_1, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2266 	MMIO_DFH(CACHE_MODE_0, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2267 	MMIO_DFH(_MMIO(0x2124), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2268 
2269 	MMIO_DFH(_MMIO(0x20dc), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2270 	MMIO_DFH(_3D_CHICKEN3, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2271 	MMIO_DFH(_MMIO(0x2088), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2272 	MMIO_DFH(FF_SLICE_CS_CHICKEN2, D_ALL,
2273 		 F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2274 	MMIO_DFH(_MMIO(0x2470), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2275 	MMIO_DFH(GAM_ECOCHK, D_ALL, F_CMD_ACCESS, NULL, NULL);
2276 	MMIO_DFH(GEN7_COMMON_SLICE_CHICKEN1, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
2277 		NULL, NULL);
2278 	MMIO_DFH(COMMON_SLICE_CHICKEN2, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
2279 		 NULL, NULL);
2280 	MMIO_DFH(_MMIO(0x9030), D_ALL, F_CMD_ACCESS, NULL, NULL);
2281 	MMIO_DFH(_MMIO(0x20a0), D_ALL, F_CMD_ACCESS, NULL, NULL);
2282 	MMIO_DFH(_MMIO(0x2420), D_ALL, F_CMD_ACCESS, NULL, NULL);
2283 	MMIO_DFH(_MMIO(0x2430), D_ALL, F_CMD_ACCESS, NULL, NULL);
2284 	MMIO_DFH(_MMIO(0x2434), D_ALL, F_CMD_ACCESS, NULL, NULL);
2285 	MMIO_DFH(_MMIO(0x2438), D_ALL, F_CMD_ACCESS, NULL, NULL);
2286 	MMIO_DFH(_MMIO(0x243c), D_ALL, F_CMD_ACCESS, NULL, NULL);
2287 	MMIO_DFH(_MMIO(0x7018), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2288 	MMIO_DFH(HSW_HALF_SLICE_CHICKEN3, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2289 	MMIO_DFH(GEN7_HALF_SLICE_CHICKEN1, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2290 
2291 	/* display */
2292 	MMIO_DH(TRANSCONF(display, TRANSCODER_A), D_ALL, NULL,
2293 		pipeconf_mmio_write);
2294 	MMIO_DH(TRANSCONF(display, TRANSCODER_B), D_ALL, NULL,
2295 		pipeconf_mmio_write);
2296 	MMIO_DH(TRANSCONF(display, TRANSCODER_C), D_ALL, NULL,
2297 		pipeconf_mmio_write);
2298 	MMIO_DH(TRANSCONF(display, TRANSCODER_EDP), D_ALL, NULL,
2299 		pipeconf_mmio_write);
2300 	MMIO_DH(DSPSURF(display, PIPE_A), D_ALL, NULL, pri_surf_mmio_write);
2301 	MMIO_DH(REG_50080(PIPE_A, PLANE_PRIMARY), D_ALL, NULL,
2302 		reg50080_mmio_write);
2303 	MMIO_DH(DSPSURF(display, PIPE_B), D_ALL, NULL, pri_surf_mmio_write);
2304 	MMIO_DH(REG_50080(PIPE_B, PLANE_PRIMARY), D_ALL, NULL,
2305 		reg50080_mmio_write);
2306 	MMIO_DH(DSPSURF(display, PIPE_C), D_ALL, NULL, pri_surf_mmio_write);
2307 	MMIO_DH(REG_50080(PIPE_C, PLANE_PRIMARY), D_ALL, NULL,
2308 		reg50080_mmio_write);
2309 	MMIO_DH(SPRSURF(PIPE_A), D_ALL, NULL, spr_surf_mmio_write);
2310 	MMIO_DH(REG_50080(PIPE_A, PLANE_SPRITE0), D_ALL, NULL,
2311 		reg50080_mmio_write);
2312 	MMIO_DH(SPRSURF(PIPE_B), D_ALL, NULL, spr_surf_mmio_write);
2313 	MMIO_DH(REG_50080(PIPE_B, PLANE_SPRITE0), D_ALL, NULL,
2314 		reg50080_mmio_write);
2315 	MMIO_DH(SPRSURF(PIPE_C), D_ALL, NULL, spr_surf_mmio_write);
2316 	MMIO_DH(REG_50080(PIPE_C, PLANE_SPRITE0), D_ALL, NULL,
2317 		reg50080_mmio_write);
2318 
2319 	MMIO_F(PCH_GMBUS0, 4 * 4, 0, 0, 0, D_ALL, gmbus_mmio_read,
2320 		gmbus_mmio_write);
2321 	MMIO_F(PCH_GPIO_BASE, 6 * 4, F_UNALIGN, 0, 0, D_ALL, NULL, NULL);
2322 
2323 	MMIO_F(PCH_DP_AUX_CH_CTL(AUX_CH_B), 6 * 4, 0, 0, 0, D_PRE_SKL, NULL,
2324 	       dp_aux_ch_ctl_mmio_write);
2325 	MMIO_F(PCH_DP_AUX_CH_CTL(AUX_CH_C), 6 * 4, 0, 0, 0, D_PRE_SKL, NULL,
2326 	       dp_aux_ch_ctl_mmio_write);
2327 	MMIO_F(PCH_DP_AUX_CH_CTL(AUX_CH_D), 6 * 4, 0, 0, 0, D_PRE_SKL, NULL,
2328 	       dp_aux_ch_ctl_mmio_write);
2329 
2330 	MMIO_DH(PCH_ADPA, D_PRE_SKL, NULL, pch_adpa_mmio_write);
2331 
2332 	MMIO_DH(_MMIO(_PCH_TRANSACONF), D_ALL, NULL, transconf_mmio_write);
2333 	MMIO_DH(_MMIO(_PCH_TRANSBCONF), D_ALL, NULL, transconf_mmio_write);
2334 
2335 	MMIO_DH(FDI_RX_IIR(PIPE_A), D_ALL, NULL, fdi_rx_iir_mmio_write);
2336 	MMIO_DH(FDI_RX_IIR(PIPE_B), D_ALL, NULL, fdi_rx_iir_mmio_write);
2337 	MMIO_DH(FDI_RX_IIR(PIPE_C), D_ALL, NULL, fdi_rx_iir_mmio_write);
2338 	MMIO_DH(FDI_RX_IMR(PIPE_A), D_ALL, NULL, update_fdi_rx_iir_status);
2339 	MMIO_DH(FDI_RX_IMR(PIPE_B), D_ALL, NULL, update_fdi_rx_iir_status);
2340 	MMIO_DH(FDI_RX_IMR(PIPE_C), D_ALL, NULL, update_fdi_rx_iir_status);
2341 	MMIO_DH(FDI_RX_CTL(PIPE_A), D_ALL, NULL, update_fdi_rx_iir_status);
2342 	MMIO_DH(FDI_RX_CTL(PIPE_B), D_ALL, NULL, update_fdi_rx_iir_status);
2343 	MMIO_DH(FDI_RX_CTL(PIPE_C), D_ALL, NULL, update_fdi_rx_iir_status);
2344 	MMIO_DH(PCH_PP_CONTROL, D_ALL, NULL, pch_pp_control_mmio_write);
2345 	MMIO_DH(_MMIO(0xe651c), D_ALL, dpy_reg_mmio_read, NULL);
2346 	MMIO_DH(_MMIO(0xe661c), D_ALL, dpy_reg_mmio_read, NULL);
2347 	MMIO_DH(_MMIO(0xe671c), D_ALL, dpy_reg_mmio_read, NULL);
2348 	MMIO_DH(_MMIO(0xe681c), D_ALL, dpy_reg_mmio_read, NULL);
2349 	MMIO_DH(_MMIO(0xe6c04), D_ALL, dpy_reg_mmio_read, NULL);
2350 	MMIO_DH(_MMIO(0xe6e1c), D_ALL, dpy_reg_mmio_read, NULL);
2351 
2352 	MMIO_RO(PCH_PORT_HOTPLUG, D_ALL, 0,
2353 		PORTA_HOTPLUG_STATUS_MASK
2354 		| PORTB_HOTPLUG_STATUS_MASK
2355 		| PORTC_HOTPLUG_STATUS_MASK
2356 		| PORTD_HOTPLUG_STATUS_MASK,
2357 		NULL, NULL);
2358 
2359 	MMIO_DH(LCPLL_CTL, D_ALL, NULL, lcpll_ctl_mmio_write);
2360 	MMIO_DH(SOUTH_CHICKEN2, D_ALL, NULL, south_chicken2_mmio_write);
2361 	MMIO_DH(SFUSE_STRAP, D_ALL, NULL, NULL);
2362 	MMIO_DH(SBI_DATA, D_ALL, sbi_data_mmio_read, NULL);
2363 	MMIO_DH(SBI_CTL_STAT, D_ALL, NULL, sbi_ctl_mmio_write);
2364 
2365 	MMIO_F(DP_AUX_CH_CTL(AUX_CH_A), 6 * 4, 0, 0, 0, D_ALL, NULL,
2366 	       dp_aux_ch_ctl_mmio_write);
2367 
2368 	MMIO_DH(DDI_BUF_CTL(PORT_A), D_ALL, NULL, ddi_buf_ctl_mmio_write);
2369 	MMIO_DH(DDI_BUF_CTL(PORT_B), D_ALL, NULL, ddi_buf_ctl_mmio_write);
2370 	MMIO_DH(DDI_BUF_CTL(PORT_C), D_ALL, NULL, ddi_buf_ctl_mmio_write);
2371 	MMIO_DH(DDI_BUF_CTL(PORT_D), D_ALL, NULL, ddi_buf_ctl_mmio_write);
2372 	MMIO_DH(DDI_BUF_CTL(PORT_E), D_ALL, NULL, ddi_buf_ctl_mmio_write);
2373 
2374 	MMIO_DH(DP_TP_CTL(PORT_A), D_ALL, NULL, dp_tp_ctl_mmio_write);
2375 	MMIO_DH(DP_TP_CTL(PORT_B), D_ALL, NULL, dp_tp_ctl_mmio_write);
2376 	MMIO_DH(DP_TP_CTL(PORT_C), D_ALL, NULL, dp_tp_ctl_mmio_write);
2377 	MMIO_DH(DP_TP_CTL(PORT_D), D_ALL, NULL, dp_tp_ctl_mmio_write);
2378 	MMIO_DH(DP_TP_CTL(PORT_E), D_ALL, NULL, dp_tp_ctl_mmio_write);
2379 
2380 	MMIO_DH(DP_TP_STATUS(PORT_A), D_ALL, NULL, dp_tp_status_mmio_write);
2381 	MMIO_DH(DP_TP_STATUS(PORT_B), D_ALL, NULL, dp_tp_status_mmio_write);
2382 	MMIO_DH(DP_TP_STATUS(PORT_C), D_ALL, NULL, dp_tp_status_mmio_write);
2383 	MMIO_DH(DP_TP_STATUS(PORT_D), D_ALL, NULL, dp_tp_status_mmio_write);
2384 	MMIO_DH(DP_TP_STATUS(PORT_E), D_ALL, NULL, NULL);
2385 
2386 	MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_A), D_ALL, NULL, NULL);
2387 	MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_B), D_ALL, NULL, NULL);
2388 	MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_C), D_ALL, NULL, NULL);
2389 	MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_EDP), D_ALL, NULL, NULL);
2390 
2391 	MMIO_DH(FORCEWAKE, D_ALL, NULL, NULL);
2392 	MMIO_DFH(GTFIFODBG, D_ALL, F_CMD_ACCESS, NULL, NULL);
2393 	MMIO_DFH(GTFIFOCTL, D_ALL, F_CMD_ACCESS, NULL, NULL);
2394 	MMIO_DH(FORCEWAKE_MT, D_PRE_SKL, NULL, mul_force_wake_write);
2395 	MMIO_DH(FORCEWAKE_ACK_HSW, D_BDW, NULL, NULL);
2396 	MMIO_DH(GEN6_RC_CONTROL, D_ALL, NULL, NULL);
2397 	MMIO_DH(GEN6_RC_STATE, D_ALL, NULL, NULL);
2398 	MMIO_DH(HSW_PWR_WELL_CTL1, D_BDW, NULL, power_well_ctl_mmio_write);
2399 	MMIO_DH(HSW_PWR_WELL_CTL2, D_BDW, NULL, power_well_ctl_mmio_write);
2400 	MMIO_DH(HSW_PWR_WELL_CTL3, D_BDW, NULL, power_well_ctl_mmio_write);
2401 	MMIO_DH(HSW_PWR_WELL_CTL4, D_BDW, NULL, power_well_ctl_mmio_write);
2402 	MMIO_DH(HSW_PWR_WELL_CTL5, D_BDW, NULL, power_well_ctl_mmio_write);
2403 	MMIO_DH(HSW_PWR_WELL_CTL6, D_BDW, NULL, power_well_ctl_mmio_write);
2404 
2405 	MMIO_DH(GEN6_GDRST, D_ALL, NULL, gdrst_mmio_write);
2406 	MMIO_F(FENCE_REG_GEN6_LO(0), 0x80, 0, 0, 0, D_ALL, fence_mmio_read, fence_mmio_write);
2407 	MMIO_DH(CPU_VGACNTRL, D_ALL, NULL, vga_control_mmio_write);
2408 
2409 	MMIO_DH(GEN7_ERR_INT, D_ALL, NULL, NULL);
2410 	MMIO_DH(GFX_FLSH_CNTL_GEN6, D_ALL, NULL, NULL);
2411 
2412 	MMIO_DH(GEN6_MBCTL, D_ALL, NULL, mbctl_write);
2413 	MMIO_DFH(GEN7_UCGCTL4, D_ALL, F_CMD_ACCESS, NULL, NULL);
2414 
2415 	MMIO_DH(FPGA_DBG, D_ALL, NULL, fpga_dbg_mmio_write);
2416 	MMIO_DFH(_MMIO(0x215c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2417 	MMIO_DFH(_MMIO(0x2178), D_ALL, F_CMD_ACCESS, NULL, NULL);
2418 	MMIO_DFH(_MMIO(0x217c), D_ALL, F_CMD_ACCESS, NULL, NULL);
2419 	MMIO_DFH(_MMIO(0x12178), D_ALL, F_CMD_ACCESS, NULL, NULL);
2420 	MMIO_DFH(_MMIO(0x1217c), D_ALL, F_CMD_ACCESS, NULL, NULL);
2421 
2422 	MMIO_F(_MMIO(0x2290), 8, F_CMD_ACCESS, 0, 0, D_BDW_PLUS, NULL, NULL);
2423 	MMIO_F(_MMIO(0x5200), 32, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2424 	MMIO_F(_MMIO(0x5240), 32, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2425 	MMIO_F(_MMIO(0x5280), 16, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2426 
2427 	MMIO_DFH(_MMIO(0x1c17c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2428 	MMIO_DFH(_MMIO(0x1c178), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2429 	MMIO_DFH(BCS_SWCTRL, D_ALL, F_CMD_ACCESS, NULL, NULL);
2430 
2431 	MMIO_F(HS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2432 	MMIO_F(DS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2433 	MMIO_F(IA_VERTICES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2434 	MMIO_F(IA_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2435 	MMIO_F(VS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2436 	MMIO_F(GS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2437 	MMIO_F(GS_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2438 	MMIO_F(CL_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2439 	MMIO_F(CL_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2440 	MMIO_F(PS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2441 	MMIO_F(PS_DEPTH_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2442 	MMIO_DH(_MMIO(0x4260), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
2443 	MMIO_DH(_MMIO(0x4264), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
2444 	MMIO_DH(_MMIO(0x4268), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
2445 	MMIO_DH(_MMIO(0x426c), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
2446 	MMIO_DH(_MMIO(0x4270), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
2447 	MMIO_DFH(_MMIO(0x4094), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2448 
2449 	MMIO_DFH(ARB_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2450 	MMIO_RING_GM(RING_BBADDR, D_ALL, NULL, NULL);
2451 	MMIO_DFH(_MMIO(0x2220), D_ALL, F_CMD_ACCESS, NULL, NULL);
2452 	MMIO_DFH(_MMIO(0x12220), D_ALL, F_CMD_ACCESS, NULL, NULL);
2453 	MMIO_DFH(_MMIO(0x22220), D_ALL, F_CMD_ACCESS, NULL, NULL);
2454 	MMIO_RING_DFH(RING_SYNC_1, D_ALL, F_CMD_ACCESS, NULL, NULL);
2455 	MMIO_RING_DFH(RING_SYNC_0, D_ALL, F_CMD_ACCESS, NULL, NULL);
2456 	MMIO_DFH(_MMIO(0x22178), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2457 	MMIO_DFH(_MMIO(0x1a178), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2458 	MMIO_DFH(_MMIO(0x1a17c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2459 	MMIO_DFH(_MMIO(0x2217c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2460 
2461 	MMIO_DH(EDP_PSR_IMR, D_BDW_PLUS, NULL, edp_psr_imr_iir_write);
2462 	MMIO_DH(EDP_PSR_IIR, D_BDW_PLUS, NULL, edp_psr_imr_iir_write);
2463 	MMIO_DH(GUC_STATUS, D_ALL, guc_status_read, NULL);
2464 
2465 	return 0;
2466 }
2467 
2468 static int init_bdw_mmio_info(struct intel_gvt *gvt)
2469 {
2470 	int ret;
2471 
2472 	MMIO_DH(GEN8_GT_IMR(0), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2473 	MMIO_DH(GEN8_GT_IER(0), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2474 	MMIO_DH(GEN8_GT_IIR(0), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2475 
2476 	MMIO_DH(GEN8_GT_IMR(1), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2477 	MMIO_DH(GEN8_GT_IER(1), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2478 	MMIO_DH(GEN8_GT_IIR(1), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2479 
2480 	MMIO_DH(GEN8_GT_IMR(2), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2481 	MMIO_DH(GEN8_GT_IER(2), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2482 	MMIO_DH(GEN8_GT_IIR(2), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2483 
2484 	MMIO_DH(GEN8_GT_IMR(3), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2485 	MMIO_DH(GEN8_GT_IER(3), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2486 	MMIO_DH(GEN8_GT_IIR(3), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2487 
2488 	MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_A), D_BDW_PLUS, NULL,
2489 		intel_vgpu_reg_imr_handler);
2490 	MMIO_DH(GEN8_DE_PIPE_IER(PIPE_A), D_BDW_PLUS, NULL,
2491 		intel_vgpu_reg_ier_handler);
2492 	MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_A), D_BDW_PLUS, NULL,
2493 		intel_vgpu_reg_iir_handler);
2494 
2495 	MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_B), D_BDW_PLUS, NULL,
2496 		intel_vgpu_reg_imr_handler);
2497 	MMIO_DH(GEN8_DE_PIPE_IER(PIPE_B), D_BDW_PLUS, NULL,
2498 		intel_vgpu_reg_ier_handler);
2499 	MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_B), D_BDW_PLUS, NULL,
2500 		intel_vgpu_reg_iir_handler);
2501 
2502 	MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_C), D_BDW_PLUS, NULL,
2503 		intel_vgpu_reg_imr_handler);
2504 	MMIO_DH(GEN8_DE_PIPE_IER(PIPE_C), D_BDW_PLUS, NULL,
2505 		intel_vgpu_reg_ier_handler);
2506 	MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_C), D_BDW_PLUS, NULL,
2507 		intel_vgpu_reg_iir_handler);
2508 
2509 	MMIO_DH(GEN8_DE_PORT_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2510 	MMIO_DH(GEN8_DE_PORT_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2511 	MMIO_DH(GEN8_DE_PORT_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2512 
2513 	MMIO_DH(GEN8_DE_MISC_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2514 	MMIO_DH(GEN8_DE_MISC_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2515 	MMIO_DH(GEN8_DE_MISC_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2516 
2517 	MMIO_DH(GEN8_PCU_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2518 	MMIO_DH(GEN8_PCU_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2519 	MMIO_DH(GEN8_PCU_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2520 
2521 	MMIO_DH(GEN8_MASTER_IRQ, D_BDW_PLUS, NULL,
2522 		intel_vgpu_reg_master_irq_handler);
2523 
2524 	MMIO_RING_DFH(RING_ACTHD_UDW, D_BDW_PLUS, 0,
2525 		mmio_read_from_hw, NULL);
2526 
2527 #define RING_REG(base) _MMIO((base) + 0xd0)
2528 	MMIO_RING_F(RING_REG, 4, F_RO, 0,
2529 		~_MASKED_BIT_ENABLE(RESET_CTL_REQUEST_RESET), D_BDW_PLUS, NULL,
2530 		ring_reset_ctl_write);
2531 #undef RING_REG
2532 
2533 #define RING_REG(base) _MMIO((base) + 0x230)
2534 	MMIO_RING_DFH(RING_REG, D_BDW_PLUS, 0, NULL, elsp_mmio_write);
2535 #undef RING_REG
2536 
2537 #define RING_REG(base) _MMIO((base) + 0x234)
2538 	MMIO_RING_F(RING_REG, 8, F_RO, 0, ~0, D_BDW_PLUS,
2539 		NULL, NULL);
2540 #undef RING_REG
2541 
2542 #define RING_REG(base) _MMIO((base) + 0x244)
2543 	MMIO_RING_DFH(RING_REG, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2544 #undef RING_REG
2545 
2546 #define RING_REG(base) _MMIO((base) + 0x370)
2547 	MMIO_RING_F(RING_REG, 48, F_RO, 0, ~0, D_BDW_PLUS, NULL, NULL);
2548 #undef RING_REG
2549 
2550 #define RING_REG(base) _MMIO((base) + 0x3a0)
2551 	MMIO_RING_DFH(RING_REG, D_BDW_PLUS, F_MODE_MASK, NULL, NULL);
2552 #undef RING_REG
2553 
2554 	MMIO_DH(GEN6_PCODE_MAILBOX, D_BDW_PLUS, NULL, mailbox_write);
2555 
2556 #define RING_REG(base) _MMIO((base) + 0x270)
2557 	MMIO_RING_F(RING_REG, 32, F_CMD_ACCESS, 0, 0, D_BDW_PLUS, NULL, NULL);
2558 #undef RING_REG
2559 
2560 	MMIO_RING_GM(RING_HWS_PGA, D_BDW_PLUS, NULL, hws_pga_write);
2561 
2562 	MMIO_DFH(HDC_CHICKEN0, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2563 
2564 	MMIO_DFH(GEN8_ROW_CHICKEN, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2565 		NULL, NULL);
2566 	MMIO_DFH(GEN7_ROW_CHICKEN2, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2567 		NULL, NULL);
2568 	MMIO_DFH(GEN8_UCGCTL6, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2569 
2570 	MMIO_DFH(_MMIO(0xb1f0), D_BDW, F_CMD_ACCESS, NULL, NULL);
2571 	MMIO_DFH(_MMIO(0xb1c0), D_BDW, F_CMD_ACCESS, NULL, NULL);
2572 	MMIO_DFH(GEN8_L3SQCREG4, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2573 	MMIO_DFH(_MMIO(0xb100), D_BDW, F_CMD_ACCESS, NULL, NULL);
2574 	MMIO_DFH(_MMIO(0xb10c), D_BDW, F_CMD_ACCESS, NULL, NULL);
2575 
2576 	MMIO_F(_MMIO(0x24d0), 48, F_CMD_ACCESS | F_CMD_WRITE_PATCH, 0, 0,
2577 		D_BDW_PLUS, NULL, force_nonpriv_write);
2578 
2579 	MMIO_DFH(_MMIO(0x83a4), D_BDW, F_CMD_ACCESS, NULL, NULL);
2580 
2581 	MMIO_DFH(_MMIO(0x8430), D_BDW, F_CMD_ACCESS, NULL, NULL);
2582 
2583 	MMIO_DFH(_MMIO(0xe194), D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2584 	MMIO_DFH(_MMIO(0xe188), D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2585 	MMIO_DFH(HALF_SLICE_CHICKEN2, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2586 	MMIO_DFH(_MMIO(0x2580), D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2587 
2588 	MMIO_DFH(_MMIO(0x2248), D_BDW, F_CMD_ACCESS, NULL, NULL);
2589 
2590 	MMIO_DFH(_MMIO(0xe220), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2591 	MMIO_DFH(_MMIO(0xe230), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2592 	MMIO_DFH(_MMIO(0xe240), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2593 	MMIO_DFH(_MMIO(0xe260), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2594 	MMIO_DFH(_MMIO(0xe270), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2595 	MMIO_DFH(_MMIO(0xe280), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2596 	MMIO_DFH(_MMIO(0xe2a0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2597 	MMIO_DFH(_MMIO(0xe2b0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2598 	MMIO_DFH(_MMIO(0xe2c0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2599 	MMIO_DFH(_MMIO(0x21f0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2600 	return 0;
2601 }
2602 
2603 static int init_skl_mmio_info(struct intel_gvt *gvt)
2604 {
2605 	int ret;
2606 
2607 	MMIO_DH(FORCEWAKE_RENDER_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write);
2608 	MMIO_DH(FORCEWAKE_ACK_RENDER_GEN9, D_SKL_PLUS, NULL, NULL);
2609 	MMIO_DH(FORCEWAKE_GT_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write);
2610 	MMIO_DH(FORCEWAKE_ACK_GT_GEN9, D_SKL_PLUS, NULL, NULL);
2611 	MMIO_DH(FORCEWAKE_MEDIA_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write);
2612 	MMIO_DH(FORCEWAKE_ACK_MEDIA_GEN9, D_SKL_PLUS, NULL, NULL);
2613 
2614 	MMIO_F(DP_AUX_CH_CTL(AUX_CH_B), 6 * 4, 0, 0, 0, D_SKL_PLUS, NULL,
2615 						dp_aux_ch_ctl_mmio_write);
2616 	MMIO_F(DP_AUX_CH_CTL(AUX_CH_C), 6 * 4, 0, 0, 0, D_SKL_PLUS, NULL,
2617 						dp_aux_ch_ctl_mmio_write);
2618 	MMIO_F(DP_AUX_CH_CTL(AUX_CH_D), 6 * 4, 0, 0, 0, D_SKL_PLUS, NULL,
2619 						dp_aux_ch_ctl_mmio_write);
2620 
2621 	MMIO_DH(HSW_PWR_WELL_CTL2, D_SKL_PLUS, NULL, skl_power_well_ctl_write);
2622 
2623 	MMIO_DH(DBUF_CTL_S(0), D_SKL_PLUS, NULL, gen9_dbuf_ctl_mmio_write);
2624 
2625 	MMIO_DFH(GEN9_GAMT_ECO_REG_RW_IA, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2626 	MMIO_DFH(MMCD_MISC_CTRL, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2627 	MMIO_DH(CHICKEN_PAR1_1, D_SKL_PLUS, NULL, NULL);
2628 	MMIO_DH(LCPLL1_CTL, D_SKL_PLUS, NULL, skl_lcpll_write);
2629 	MMIO_DH(LCPLL2_CTL, D_SKL_PLUS, NULL, skl_lcpll_write);
2630 	MMIO_DH(DPLL_STATUS, D_SKL_PLUS, dpll_status_read, NULL);
2631 
2632 	MMIO_DH(SKL_PS_WIN_POS(PIPE_A, 0), D_SKL_PLUS, NULL, pf_write);
2633 	MMIO_DH(SKL_PS_WIN_POS(PIPE_A, 1), D_SKL_PLUS, NULL, pf_write);
2634 	MMIO_DH(SKL_PS_WIN_POS(PIPE_B, 0), D_SKL_PLUS, NULL, pf_write);
2635 	MMIO_DH(SKL_PS_WIN_POS(PIPE_B, 1), D_SKL_PLUS, NULL, pf_write);
2636 	MMIO_DH(SKL_PS_WIN_POS(PIPE_C, 0), D_SKL_PLUS, NULL, pf_write);
2637 	MMIO_DH(SKL_PS_WIN_POS(PIPE_C, 1), D_SKL_PLUS, NULL, pf_write);
2638 
2639 	MMIO_DH(SKL_PS_WIN_SZ(PIPE_A, 0), D_SKL_PLUS, NULL, pf_write);
2640 	MMIO_DH(SKL_PS_WIN_SZ(PIPE_A, 1), D_SKL_PLUS, NULL, pf_write);
2641 	MMIO_DH(SKL_PS_WIN_SZ(PIPE_B, 0), D_SKL_PLUS, NULL, pf_write);
2642 	MMIO_DH(SKL_PS_WIN_SZ(PIPE_B, 1), D_SKL_PLUS, NULL, pf_write);
2643 	MMIO_DH(SKL_PS_WIN_SZ(PIPE_C, 0), D_SKL_PLUS, NULL, pf_write);
2644 	MMIO_DH(SKL_PS_WIN_SZ(PIPE_C, 1), D_SKL_PLUS, NULL, pf_write);
2645 
2646 	MMIO_DH(SKL_PS_CTRL(PIPE_A, 0), D_SKL_PLUS, NULL, pf_write);
2647 	MMIO_DH(SKL_PS_CTRL(PIPE_A, 1), D_SKL_PLUS, NULL, pf_write);
2648 	MMIO_DH(SKL_PS_CTRL(PIPE_B, 0), D_SKL_PLUS, NULL, pf_write);
2649 	MMIO_DH(SKL_PS_CTRL(PIPE_B, 1), D_SKL_PLUS, NULL, pf_write);
2650 	MMIO_DH(SKL_PS_CTRL(PIPE_C, 0), D_SKL_PLUS, NULL, pf_write);
2651 	MMIO_DH(SKL_PS_CTRL(PIPE_C, 1), D_SKL_PLUS, NULL, pf_write);
2652 
2653 	MMIO_DH(PLANE_BUF_CFG(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
2654 	MMIO_DH(PLANE_BUF_CFG(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
2655 	MMIO_DH(PLANE_BUF_CFG(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
2656 	MMIO_DH(PLANE_BUF_CFG(PIPE_A, 3), D_SKL_PLUS, NULL, NULL);
2657 
2658 	MMIO_DH(PLANE_BUF_CFG(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
2659 	MMIO_DH(PLANE_BUF_CFG(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
2660 	MMIO_DH(PLANE_BUF_CFG(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
2661 	MMIO_DH(PLANE_BUF_CFG(PIPE_B, 3), D_SKL_PLUS, NULL, NULL);
2662 
2663 	MMIO_DH(PLANE_BUF_CFG(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
2664 	MMIO_DH(PLANE_BUF_CFG(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
2665 	MMIO_DH(PLANE_BUF_CFG(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
2666 	MMIO_DH(PLANE_BUF_CFG(PIPE_C, 3), D_SKL_PLUS, NULL, NULL);
2667 
2668 	MMIO_DH(CUR_BUF_CFG(PIPE_A), D_SKL_PLUS, NULL, NULL);
2669 	MMIO_DH(CUR_BUF_CFG(PIPE_B), D_SKL_PLUS, NULL, NULL);
2670 	MMIO_DH(CUR_BUF_CFG(PIPE_C), D_SKL_PLUS, NULL, NULL);
2671 
2672 	MMIO_DH(PLANE_WM_TRANS(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
2673 	MMIO_DH(PLANE_WM_TRANS(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
2674 	MMIO_DH(PLANE_WM_TRANS(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
2675 
2676 	MMIO_DH(PLANE_WM_TRANS(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
2677 	MMIO_DH(PLANE_WM_TRANS(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
2678 	MMIO_DH(PLANE_WM_TRANS(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
2679 
2680 	MMIO_DH(PLANE_WM_TRANS(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
2681 	MMIO_DH(PLANE_WM_TRANS(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
2682 	MMIO_DH(PLANE_WM_TRANS(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
2683 
2684 	MMIO_DH(CUR_WM_TRANS(PIPE_A), D_SKL_PLUS, NULL, NULL);
2685 	MMIO_DH(CUR_WM_TRANS(PIPE_B), D_SKL_PLUS, NULL, NULL);
2686 	MMIO_DH(CUR_WM_TRANS(PIPE_C), D_SKL_PLUS, NULL, NULL);
2687 
2688 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
2689 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
2690 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
2691 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 3), D_SKL_PLUS, NULL, NULL);
2692 
2693 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
2694 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
2695 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
2696 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 3), D_SKL_PLUS, NULL, NULL);
2697 
2698 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
2699 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
2700 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
2701 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 3), D_SKL_PLUS, NULL, NULL);
2702 
2703 	MMIO_DH(PLANE_AUX_DIST(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
2704 	MMIO_DH(PLANE_AUX_DIST(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
2705 	MMIO_DH(PLANE_AUX_DIST(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
2706 	MMIO_DH(PLANE_AUX_DIST(PIPE_A, 3), D_SKL_PLUS, NULL, NULL);
2707 
2708 	MMIO_DH(PLANE_AUX_DIST(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
2709 	MMIO_DH(PLANE_AUX_DIST(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
2710 	MMIO_DH(PLANE_AUX_DIST(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
2711 	MMIO_DH(PLANE_AUX_DIST(PIPE_B, 3), D_SKL_PLUS, NULL, NULL);
2712 
2713 	MMIO_DH(PLANE_AUX_DIST(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
2714 	MMIO_DH(PLANE_AUX_DIST(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
2715 	MMIO_DH(PLANE_AUX_DIST(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
2716 	MMIO_DH(PLANE_AUX_DIST(PIPE_C, 3), D_SKL_PLUS, NULL, NULL);
2717 
2718 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
2719 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
2720 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
2721 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_A, 3), D_SKL_PLUS, NULL, NULL);
2722 
2723 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
2724 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
2725 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
2726 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_B, 3), D_SKL_PLUS, NULL, NULL);
2727 
2728 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
2729 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
2730 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
2731 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_C, 3), D_SKL_PLUS, NULL, NULL);
2732 
2733 	MMIO_DFH(BDW_SCRATCH1, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2734 
2735 	MMIO_F(GEN9_GFX_MOCS(0), 0x7f8, F_CMD_ACCESS, 0, 0, D_SKL_PLUS,
2736 		NULL, NULL);
2737 	MMIO_F(GEN7_L3CNTLREG2, 0x80, F_CMD_ACCESS, 0, 0, D_SKL_PLUS,
2738 		NULL, NULL);
2739 
2740 	MMIO_DFH(GEN7_FF_SLICE_CS_CHICKEN1, D_SKL_PLUS,
2741 		 F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2742 	MMIO_DFH(GEN9_CS_DEBUG_MODE1, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2743 		NULL, NULL);
2744 
2745 	/* TRTT */
2746 	MMIO_DFH(TRVATTL3PTRDW(0), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2747 	MMIO_DFH(TRVATTL3PTRDW(1), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2748 	MMIO_DFH(TRVATTL3PTRDW(2), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2749 	MMIO_DFH(TRVATTL3PTRDW(3), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2750 	MMIO_DFH(TRVADR, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2751 	MMIO_DFH(TRTTE, D_SKL_PLUS, F_CMD_ACCESS | F_PM_SAVE,
2752 		 NULL, gen9_trtte_write);
2753 	MMIO_DFH(_MMIO(0x4dfc), D_SKL_PLUS, F_PM_SAVE,
2754 		 NULL, gen9_trtt_chicken_write);
2755 
2756 	MMIO_DFH(GEN8_GARBCNTL, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2757 	MMIO_DH(DMA_CTRL, D_SKL_PLUS, NULL, dma_ctrl_write);
2758 
2759 #define CSFE_CHICKEN1_REG(base) _MMIO((base) + 0xD4)
2760 	MMIO_RING_DFH(CSFE_CHICKEN1_REG, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2761 		      NULL, csfe_chicken1_mmio_write);
2762 #undef CSFE_CHICKEN1_REG
2763 	MMIO_DFH(GEN8_HDC_CHICKEN1, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2764 		 NULL, NULL);
2765 	MMIO_DFH(GEN9_WM_CHICKEN3, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2766 		 NULL, NULL);
2767 
2768 	MMIO_DFH(GAMT_CHKN_BIT_REG, D_KBL | D_CFL, F_CMD_ACCESS, NULL, NULL);
2769 	MMIO_DFH(_MMIO(0xe4cc), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2770 
2771 	return 0;
2772 }
2773 
2774 static int init_bxt_mmio_info(struct intel_gvt *gvt)
2775 {
2776 	int ret;
2777 
2778 	MMIO_DH(BXT_P_CR_GT_DISP_PWRON, D_BXT, NULL, bxt_gt_disp_pwron_write);
2779 	MMIO_DH(BXT_PHY_CTL_FAMILY(DPIO_PHY0), D_BXT,
2780 		NULL, bxt_phy_ctl_family_write);
2781 	MMIO_DH(BXT_PHY_CTL_FAMILY(DPIO_PHY1), D_BXT,
2782 		NULL, bxt_phy_ctl_family_write);
2783 	MMIO_DH(BXT_PORT_PLL_ENABLE(PORT_A), D_BXT,
2784 		NULL, bxt_port_pll_enable_write);
2785 	MMIO_DH(BXT_PORT_PLL_ENABLE(PORT_B), D_BXT,
2786 		NULL, bxt_port_pll_enable_write);
2787 	MMIO_DH(BXT_PORT_PLL_ENABLE(PORT_C), D_BXT, NULL,
2788 		bxt_port_pll_enable_write);
2789 
2790 	MMIO_DH(BXT_PORT_PCS_DW12_GRP(DPIO_PHY0, DPIO_CH0), D_BXT,
2791 		NULL, bxt_pcs_dw12_grp_write);
2792 	MMIO_DH(BXT_PORT_TX_DW3_LN(DPIO_PHY0, DPIO_CH0, 0), D_BXT,
2793 		bxt_port_tx_dw3_read, NULL);
2794 	MMIO_DH(BXT_PORT_PCS_DW12_GRP(DPIO_PHY0, DPIO_CH1), D_BXT,
2795 		NULL, bxt_pcs_dw12_grp_write);
2796 	MMIO_DH(BXT_PORT_TX_DW3_LN(DPIO_PHY0, DPIO_CH1, 0), D_BXT,
2797 		bxt_port_tx_dw3_read, NULL);
2798 	MMIO_DH(BXT_PORT_PCS_DW12_GRP(DPIO_PHY1, DPIO_CH0), D_BXT,
2799 		NULL, bxt_pcs_dw12_grp_write);
2800 	MMIO_DH(BXT_PORT_TX_DW3_LN(DPIO_PHY1, DPIO_CH0, 0), D_BXT,
2801 		bxt_port_tx_dw3_read, NULL);
2802 	MMIO_DH(BXT_DE_PLL_ENABLE, D_BXT, NULL, bxt_de_pll_enable_write);
2803 	MMIO_DFH(GEN8_L3SQCREG1, D_BXT, F_CMD_ACCESS, NULL, NULL);
2804 	MMIO_DFH(GEN8_L3CNTLREG, D_BXT, F_CMD_ACCESS, NULL, NULL);
2805 	MMIO_DFH(_MMIO(0x20D8), D_BXT, F_CMD_ACCESS, NULL, NULL);
2806 	MMIO_F(GEN8_RING_CS_GPR(RENDER_RING_BASE, 0), 0x40, F_CMD_ACCESS,
2807 	       0, 0, D_BXT, NULL, NULL);
2808 	MMIO_F(GEN8_RING_CS_GPR(GEN6_BSD_RING_BASE, 0), 0x40, F_CMD_ACCESS,
2809 	       0, 0, D_BXT, NULL, NULL);
2810 	MMIO_F(GEN8_RING_CS_GPR(BLT_RING_BASE, 0), 0x40, F_CMD_ACCESS,
2811 	       0, 0, D_BXT, NULL, NULL);
2812 	MMIO_F(GEN8_RING_CS_GPR(VEBOX_RING_BASE, 0), 0x40, F_CMD_ACCESS,
2813 	       0, 0, D_BXT, NULL, NULL);
2814 
2815 	MMIO_DFH(GEN9_CTX_PREEMPT_REG, D_BXT, F_CMD_ACCESS, NULL, NULL);
2816 
2817 	MMIO_DH(GEN8_PRIVATE_PAT_LO, D_BXT, NULL, bxt_ppat_low_write);
2818 
2819 	return 0;
2820 }
2821 
2822 static struct gvt_mmio_block *find_mmio_block(struct intel_gvt *gvt,
2823 					      unsigned int offset)
2824 {
2825 	struct gvt_mmio_block *block = gvt->mmio.mmio_block;
2826 	int num = gvt->mmio.num_mmio_block;
2827 	int i;
2828 
2829 	for (i = 0; i < num; i++, block++) {
2830 		if (offset >= i915_mmio_reg_offset(block->offset) &&
2831 		    offset < i915_mmio_reg_offset(block->offset) + block->size)
2832 			return block;
2833 	}
2834 	return NULL;
2835 }
2836 
2837 /**
2838  * intel_gvt_clean_mmio_info - clean up MMIO information table for GVT device
2839  * @gvt: GVT device
2840  *
2841  * This function is called at the driver unloading stage, to clean up the MMIO
2842  * information table of GVT device
2843  *
2844  */
2845 void intel_gvt_clean_mmio_info(struct intel_gvt *gvt)
2846 {
2847 	struct hlist_node *tmp;
2848 	struct intel_gvt_mmio_info *e;
2849 	int i;
2850 
2851 	hash_for_each_safe(gvt->mmio.mmio_info_table, i, tmp, e, node)
2852 		kfree(e);
2853 
2854 	kfree(gvt->mmio.mmio_block);
2855 	gvt->mmio.mmio_block = NULL;
2856 	gvt->mmio.num_mmio_block = 0;
2857 
2858 	vfree(gvt->mmio.mmio_attribute);
2859 	gvt->mmio.mmio_attribute = NULL;
2860 }
2861 
2862 static int handle_mmio(struct intel_gvt_mmio_table_iter *iter, u32 offset,
2863 		       u32 size)
2864 {
2865 	struct intel_gvt *gvt = iter->data;
2866 	struct intel_gvt_mmio_info *info, *p;
2867 	u32 start, end, i;
2868 
2869 	if (WARN_ON(!IS_ALIGNED(offset, 4)))
2870 		return -EINVAL;
2871 
2872 	start = offset;
2873 	end = offset + size;
2874 
2875 	for (i = start; i < end; i += 4) {
2876 		p = intel_gvt_find_mmio_info(gvt, i);
2877 		if (p) {
2878 			WARN(1, "dup mmio definition offset %x\n", i);
2879 
2880 			/* We return -EEXIST here to make GVT-g load fail.
2881 			 * So duplicated MMIO can be found as soon as
2882 			 * possible.
2883 			 */
2884 			return -EEXIST;
2885 		}
2886 
2887 		info = kzalloc(sizeof(*info), GFP_KERNEL);
2888 		if (!info)
2889 			return -ENOMEM;
2890 
2891 		info->offset = i;
2892 		info->read = intel_vgpu_default_mmio_read;
2893 		info->write = intel_vgpu_default_mmio_write;
2894 		INIT_HLIST_NODE(&info->node);
2895 		hash_add(gvt->mmio.mmio_info_table, &info->node, info->offset);
2896 		gvt->mmio.num_tracked_mmio++;
2897 	}
2898 	return 0;
2899 }
2900 
2901 static int handle_mmio_block(struct intel_gvt_mmio_table_iter *iter,
2902 			     u32 offset, u32 size)
2903 {
2904 	struct intel_gvt *gvt = iter->data;
2905 	struct gvt_mmio_block *block = gvt->mmio.mmio_block;
2906 	void *ret;
2907 
2908 	ret = krealloc(block,
2909 			 (gvt->mmio.num_mmio_block + 1) * sizeof(*block),
2910 			 GFP_KERNEL);
2911 	if (!ret)
2912 		return -ENOMEM;
2913 
2914 	gvt->mmio.mmio_block = block = ret;
2915 
2916 	block += gvt->mmio.num_mmio_block;
2917 
2918 	memset(block, 0, sizeof(*block));
2919 
2920 	block->offset = _MMIO(offset);
2921 	block->size = size;
2922 
2923 	gvt->mmio.num_mmio_block++;
2924 
2925 	return 0;
2926 }
2927 
2928 static int handle_mmio_cb(struct intel_gvt_mmio_table_iter *iter, u32 offset,
2929 			  u32 size)
2930 {
2931 	if (size < 1024 || offset == i915_mmio_reg_offset(GEN9_GFX_MOCS(0)))
2932 		return handle_mmio(iter, offset, size);
2933 	else
2934 		return handle_mmio_block(iter, offset, size);
2935 }
2936 
2937 static int init_mmio_info(struct intel_gvt *gvt)
2938 {
2939 	struct intel_gvt_mmio_table_iter iter = {
2940 		.i915 = gvt->gt->i915,
2941 		.data = gvt,
2942 		.handle_mmio_cb = handle_mmio_cb,
2943 	};
2944 
2945 	return intel_gvt_iterate_mmio_table(&iter);
2946 }
2947 
2948 static int init_mmio_block_handlers(struct intel_gvt *gvt)
2949 {
2950 	struct gvt_mmio_block *block;
2951 
2952 	block = find_mmio_block(gvt, VGT_PVINFO_PAGE);
2953 	if (!block) {
2954 		WARN(1, "fail to assign handlers to mmio block %x\n",
2955 		     i915_mmio_reg_offset(gvt->mmio.mmio_block->offset));
2956 		return -ENODEV;
2957 	}
2958 
2959 	block->read = pvinfo_mmio_read;
2960 	block->write = pvinfo_mmio_write;
2961 
2962 	return 0;
2963 }
2964 
2965 /**
2966  * intel_gvt_setup_mmio_info - setup MMIO information table for GVT device
2967  * @gvt: GVT device
2968  *
2969  * This function is called at the initialization stage, to setup the MMIO
2970  * information table for GVT device
2971  *
2972  * Returns:
2973  * zero on success, negative if failed.
2974  */
2975 int intel_gvt_setup_mmio_info(struct intel_gvt *gvt)
2976 {
2977 	struct intel_gvt_device_info *info = &gvt->device_info;
2978 	struct drm_i915_private *i915 = gvt->gt->i915;
2979 	int size = info->mmio_size / 4 * sizeof(*gvt->mmio.mmio_attribute);
2980 	int ret;
2981 
2982 	gvt->mmio.mmio_attribute = vzalloc(size);
2983 	if (!gvt->mmio.mmio_attribute)
2984 		return -ENOMEM;
2985 
2986 	ret = init_mmio_info(gvt);
2987 	if (ret)
2988 		goto err;
2989 
2990 	ret = init_mmio_block_handlers(gvt);
2991 	if (ret)
2992 		goto err;
2993 
2994 	ret = init_generic_mmio_info(gvt);
2995 	if (ret)
2996 		goto err;
2997 
2998 	if (IS_BROADWELL(i915)) {
2999 		ret = init_bdw_mmio_info(gvt);
3000 		if (ret)
3001 			goto err;
3002 	} else if (IS_SKYLAKE(i915) ||
3003 		   IS_KABYLAKE(i915) ||
3004 		   IS_COFFEELAKE(i915) ||
3005 		   IS_COMETLAKE(i915)) {
3006 		ret = init_bdw_mmio_info(gvt);
3007 		if (ret)
3008 			goto err;
3009 		ret = init_skl_mmio_info(gvt);
3010 		if (ret)
3011 			goto err;
3012 	} else if (IS_BROXTON(i915)) {
3013 		ret = init_bdw_mmio_info(gvt);
3014 		if (ret)
3015 			goto err;
3016 		ret = init_skl_mmio_info(gvt);
3017 		if (ret)
3018 			goto err;
3019 		ret = init_bxt_mmio_info(gvt);
3020 		if (ret)
3021 			goto err;
3022 	}
3023 
3024 	return 0;
3025 err:
3026 	intel_gvt_clean_mmio_info(gvt);
3027 	return ret;
3028 }
3029 
3030 /**
3031  * intel_gvt_for_each_tracked_mmio - iterate each tracked mmio
3032  * @gvt: a GVT device
3033  * @handler: the handler
3034  * @data: private data given to handler
3035  *
3036  * Returns:
3037  * Zero on success, negative error code if failed.
3038  */
3039 int intel_gvt_for_each_tracked_mmio(struct intel_gvt *gvt,
3040 	int (*handler)(struct intel_gvt *gvt, u32 offset, void *data),
3041 	void *data)
3042 {
3043 	struct gvt_mmio_block *block = gvt->mmio.mmio_block;
3044 	struct intel_gvt_mmio_info *e;
3045 	int i, j, ret;
3046 
3047 	hash_for_each(gvt->mmio.mmio_info_table, i, e, node) {
3048 		ret = handler(gvt, e->offset, data);
3049 		if (ret)
3050 			return ret;
3051 	}
3052 
3053 	for (i = 0; i < gvt->mmio.num_mmio_block; i++, block++) {
3054 		/* pvinfo data doesn't come from hw mmio */
3055 		if (i915_mmio_reg_offset(block->offset) == VGT_PVINFO_PAGE)
3056 			continue;
3057 
3058 		for (j = 0; j < block->size; j += 4) {
3059 			ret = handler(gvt, i915_mmio_reg_offset(block->offset) + j, data);
3060 			if (ret)
3061 				return ret;
3062 		}
3063 	}
3064 	return 0;
3065 }
3066 
3067 /**
3068  * intel_vgpu_default_mmio_read - default MMIO read handler
3069  * @vgpu: a vGPU
3070  * @offset: access offset
3071  * @p_data: data return buffer
3072  * @bytes: access data length
3073  *
3074  * Returns:
3075  * Zero on success, negative error code if failed.
3076  */
3077 int intel_vgpu_default_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
3078 		void *p_data, unsigned int bytes)
3079 {
3080 	read_vreg(vgpu, offset, p_data, bytes);
3081 	return 0;
3082 }
3083 
3084 /**
3085  * intel_vgpu_default_mmio_write() - default MMIO write handler
3086  * @vgpu: a vGPU
3087  * @offset: access offset
3088  * @p_data: write data buffer
3089  * @bytes: access data length
3090  *
3091  * Returns:
3092  * Zero on success, negative error code if failed.
3093  */
3094 int intel_vgpu_default_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
3095 		void *p_data, unsigned int bytes)
3096 {
3097 	write_vreg(vgpu, offset, p_data, bytes);
3098 	return 0;
3099 }
3100 
3101 /**
3102  * intel_vgpu_mask_mmio_write - write mask register
3103  * @vgpu: a vGPU
3104  * @offset: access offset
3105  * @p_data: write data buffer
3106  * @bytes: access data length
3107  *
3108  * Returns:
3109  * Zero on success, negative error code if failed.
3110  */
3111 int intel_vgpu_mask_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
3112 		void *p_data, unsigned int bytes)
3113 {
3114 	u32 mask, old_vreg;
3115 
3116 	old_vreg = vgpu_vreg(vgpu, offset);
3117 	write_vreg(vgpu, offset, p_data, bytes);
3118 	mask = vgpu_vreg(vgpu, offset) >> 16;
3119 	vgpu_vreg(vgpu, offset) = (old_vreg & ~mask) |
3120 				(vgpu_vreg(vgpu, offset) & mask);
3121 
3122 	return 0;
3123 }
3124 
3125 /**
3126  * intel_vgpu_mmio_reg_rw - emulate tracked mmio registers
3127  * @vgpu: a vGPU
3128  * @offset: register offset
3129  * @pdata: data buffer
3130  * @bytes: data length
3131  * @is_read: read or write
3132  *
3133  * Returns:
3134  * Zero on success, negative error code if failed.
3135  */
3136 int intel_vgpu_mmio_reg_rw(struct intel_vgpu *vgpu, unsigned int offset,
3137 			   void *pdata, unsigned int bytes, bool is_read)
3138 {
3139 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
3140 	struct intel_gvt *gvt = vgpu->gvt;
3141 	struct intel_gvt_mmio_info *mmio_info;
3142 	struct gvt_mmio_block *mmio_block;
3143 	gvt_mmio_func func;
3144 	int ret;
3145 
3146 	if (drm_WARN_ON(&i915->drm, bytes > 8))
3147 		return -EINVAL;
3148 
3149 	/*
3150 	 * Handle special MMIO blocks.
3151 	 */
3152 	mmio_block = find_mmio_block(gvt, offset);
3153 	if (mmio_block) {
3154 		func = is_read ? mmio_block->read : mmio_block->write;
3155 		if (func)
3156 			return func(vgpu, offset, pdata, bytes);
3157 		goto default_rw;
3158 	}
3159 
3160 	/*
3161 	 * Normal tracked MMIOs.
3162 	 */
3163 	mmio_info = intel_gvt_find_mmio_info(gvt, offset);
3164 	if (!mmio_info) {
3165 		gvt_dbg_mmio("untracked MMIO %08x len %d\n", offset, bytes);
3166 		goto default_rw;
3167 	}
3168 
3169 	if (is_read)
3170 		return mmio_info->read(vgpu, offset, pdata, bytes);
3171 	else {
3172 		u64 ro_mask = mmio_info->ro_mask;
3173 		u32 old_vreg = 0;
3174 		u64 data = 0;
3175 
3176 		if (intel_gvt_mmio_has_mode_mask(gvt, mmio_info->offset)) {
3177 			old_vreg = vgpu_vreg(vgpu, offset);
3178 		}
3179 
3180 		if (likely(!ro_mask))
3181 			ret = mmio_info->write(vgpu, offset, pdata, bytes);
3182 		else if (!~ro_mask) {
3183 			gvt_vgpu_err("try to write RO reg %x\n", offset);
3184 			return 0;
3185 		} else {
3186 			/* keep the RO bits in the virtual register */
3187 			memcpy(&data, pdata, bytes);
3188 			data &= ~ro_mask;
3189 			data |= vgpu_vreg(vgpu, offset) & ro_mask;
3190 			ret = mmio_info->write(vgpu, offset, &data, bytes);
3191 		}
3192 
3193 		/* higher 16bits of mode ctl regs are mask bits for change */
3194 		if (intel_gvt_mmio_has_mode_mask(gvt, mmio_info->offset)) {
3195 			u32 mask = vgpu_vreg(vgpu, offset) >> 16;
3196 
3197 			vgpu_vreg(vgpu, offset) = (old_vreg & ~mask)
3198 					| (vgpu_vreg(vgpu, offset) & mask);
3199 		}
3200 	}
3201 
3202 	return ret;
3203 
3204 default_rw:
3205 	return is_read ?
3206 		intel_vgpu_default_mmio_read(vgpu, offset, pdata, bytes) :
3207 		intel_vgpu_default_mmio_write(vgpu, offset, pdata, bytes);
3208 }
3209 
3210 void intel_gvt_restore_fence(struct intel_gvt *gvt)
3211 {
3212 	struct intel_vgpu *vgpu;
3213 	int i, id;
3214 
3215 	idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) {
3216 		intel_wakeref_t wakeref;
3217 
3218 		wakeref = mmio_hw_access_pre(gvt->gt);
3219 		for (i = 0; i < vgpu_fence_sz(vgpu); i++)
3220 			intel_vgpu_write_fence(vgpu, i, vgpu_vreg64(vgpu, fence_num_to_offset(i)));
3221 		mmio_hw_access_post(gvt->gt, wakeref);
3222 	}
3223 }
3224 
3225 static int mmio_pm_restore_handler(struct intel_gvt *gvt, u32 offset, void *data)
3226 {
3227 	struct intel_vgpu *vgpu = data;
3228 	struct drm_i915_private *dev_priv = gvt->gt->i915;
3229 
3230 	if (gvt->mmio.mmio_attribute[offset >> 2] & F_PM_SAVE)
3231 		intel_uncore_write(&dev_priv->uncore, _MMIO(offset), vgpu_vreg(vgpu, offset));
3232 
3233 	return 0;
3234 }
3235 
3236 void intel_gvt_restore_mmio(struct intel_gvt *gvt)
3237 {
3238 	struct intel_vgpu *vgpu;
3239 	int id;
3240 
3241 	idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) {
3242 		intel_wakeref_t wakeref;
3243 
3244 		wakeref = mmio_hw_access_pre(gvt->gt);
3245 		intel_gvt_for_each_tracked_mmio(gvt, mmio_pm_restore_handler, vgpu);
3246 		mmio_hw_access_post(gvt->gt, wakeref);
3247 	}
3248 }
3249