1 /* 2 * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org 3 * 4 * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California. 5 * All Rights Reserved. 6 * 7 * Author Rickard E. (Rik) Faith <faith@valinux.com> 8 * 9 * Permission is hereby granted, free of charge, to any person obtaining a 10 * copy of this software and associated documentation files (the "Software"), 11 * to deal in the Software without restriction, including without limitation 12 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 13 * and/or sell copies of the Software, and to permit persons to whom the 14 * Software is furnished to do so, subject to the following conditions: 15 * 16 * The above copyright notice and this permission notice (including the next 17 * paragraph) shall be included in all copies or substantial portions of the 18 * Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 24 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 25 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 26 * DEALINGS IN THE SOFTWARE. 27 */ 28 29 #include <linux/bitops.h> 30 #include <linux/cgroup_dmem.h> 31 #include <linux/debugfs.h> 32 #include <linux/export.h> 33 #include <linux/fs.h> 34 #include <linux/module.h> 35 #include <linux/moduleparam.h> 36 #include <linux/mount.h> 37 #include <linux/pseudo_fs.h> 38 #include <linux/sched.h> 39 #include <linux/slab.h> 40 #include <linux/sprintf.h> 41 #include <linux/srcu.h> 42 #include <linux/xarray.h> 43 44 #include <drm/drm_accel.h> 45 #include <drm/drm_bridge.h> 46 #include <drm/drm_cache.h> 47 #include <drm/drm_client_event.h> 48 #include <drm/drm_color_mgmt.h> 49 #include <drm/drm_drv.h> 50 #include <drm/drm_file.h> 51 #include <drm/drm_managed.h> 52 #include <drm/drm_mode_object.h> 53 #include <drm/drm_panic.h> 54 #include <drm/drm_print.h> 55 #include <drm/drm_privacy_screen_machine.h> 56 57 #include "drm_crtc_internal.h" 58 #include "drm_internal.h" 59 60 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl"); 61 MODULE_DESCRIPTION("DRM shared core routines"); 62 MODULE_LICENSE("GPL and additional rights"); 63 64 DEFINE_XARRAY_ALLOC(drm_minors_xa); 65 66 /* 67 * If the drm core fails to init for whatever reason, 68 * we should prevent any drivers from registering with it. 69 * It's best to check this at drm_dev_init(), as some drivers 70 * prefer to embed struct drm_device into their own device 71 * structure and call drm_dev_init() themselves. 72 */ 73 static bool drm_core_init_complete; 74 75 static struct dentry *drm_debugfs_root; 76 77 DEFINE_STATIC_SRCU(drm_unplug_srcu); 78 79 /* 80 * DRM Minors 81 * A DRM device can provide several char-dev interfaces on the DRM-Major. Each 82 * of them is represented by a drm_minor object. Depending on the capabilities 83 * of the device-driver, different interfaces are registered. 84 * 85 * Minors can be accessed via dev->$minor_name. This pointer is either 86 * NULL or a valid drm_minor pointer and stays valid as long as the device is 87 * valid. This means, DRM minors have the same life-time as the underlying 88 * device. However, this doesn't mean that the minor is active. Minors are 89 * registered and unregistered dynamically according to device-state. 90 */ 91 92 static struct xarray *drm_minor_get_xa(enum drm_minor_type type) 93 { 94 if (type == DRM_MINOR_PRIMARY || type == DRM_MINOR_RENDER) 95 return &drm_minors_xa; 96 #if IS_ENABLED(CONFIG_DRM_ACCEL) 97 else if (type == DRM_MINOR_ACCEL) 98 return &accel_minors_xa; 99 #endif 100 else 101 return ERR_PTR(-EOPNOTSUPP); 102 } 103 104 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev, 105 enum drm_minor_type type) 106 { 107 switch (type) { 108 case DRM_MINOR_PRIMARY: 109 return &dev->primary; 110 case DRM_MINOR_RENDER: 111 return &dev->render; 112 case DRM_MINOR_ACCEL: 113 return &dev->accel; 114 default: 115 BUG(); 116 } 117 } 118 119 static void drm_minor_alloc_release(struct drm_device *dev, void *data) 120 { 121 struct drm_minor *minor = data; 122 123 WARN_ON(dev != minor->dev); 124 125 put_device(minor->kdev); 126 127 xa_erase(drm_minor_get_xa(minor->type), minor->index); 128 } 129 130 /* 131 * DRM used to support 64 devices, for backwards compatibility we need to maintain the 132 * minor allocation scheme where minors 0-63 are primary nodes, 64-127 are control nodes, 133 * and 128-191 are render nodes. 134 * After reaching the limit, we're allocating minors dynamically - first-come, first-serve. 135 * Accel nodes are using a distinct major, so the minors are allocated in continuous 0-MAX 136 * range. 137 */ 138 #define DRM_MINOR_LIMIT(t) ({ \ 139 typeof(t) _t = (t); \ 140 _t == DRM_MINOR_ACCEL ? XA_LIMIT(0, ACCEL_MAX_MINORS) : XA_LIMIT(64 * _t, 64 * _t + 63); \ 141 }) 142 #define DRM_EXTENDED_MINOR_LIMIT XA_LIMIT(192, (1 << MINORBITS) - 1) 143 144 static int drm_minor_alloc(struct drm_device *dev, enum drm_minor_type type) 145 { 146 struct drm_minor *minor; 147 int r; 148 149 minor = drmm_kzalloc(dev, sizeof(*minor), GFP_KERNEL); 150 if (!minor) 151 return -ENOMEM; 152 153 minor->type = type; 154 minor->dev = dev; 155 156 r = xa_alloc(drm_minor_get_xa(type), &minor->index, 157 NULL, DRM_MINOR_LIMIT(type), GFP_KERNEL); 158 if (r == -EBUSY && (type == DRM_MINOR_PRIMARY || type == DRM_MINOR_RENDER)) 159 r = xa_alloc(&drm_minors_xa, &minor->index, 160 NULL, DRM_EXTENDED_MINOR_LIMIT, GFP_KERNEL); 161 if (r < 0) 162 return r; 163 164 r = drmm_add_action_or_reset(dev, drm_minor_alloc_release, minor); 165 if (r) 166 return r; 167 168 minor->kdev = drm_sysfs_minor_alloc(minor); 169 if (IS_ERR(minor->kdev)) 170 return PTR_ERR(minor->kdev); 171 172 *drm_minor_get_slot(dev, type) = minor; 173 return 0; 174 } 175 176 static int drm_minor_register(struct drm_device *dev, enum drm_minor_type type) 177 { 178 struct drm_minor *minor; 179 void *entry; 180 int ret; 181 182 DRM_DEBUG("\n"); 183 184 minor = *drm_minor_get_slot(dev, type); 185 if (!minor) 186 return 0; 187 188 if (minor->type != DRM_MINOR_ACCEL) { 189 ret = drm_debugfs_register(minor, minor->index, 190 drm_debugfs_root); 191 if (ret) { 192 DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n"); 193 goto err_debugfs; 194 } 195 } 196 197 ret = device_add(minor->kdev); 198 if (ret) 199 goto err_debugfs; 200 201 /* replace NULL with @minor so lookups will succeed from now on */ 202 entry = xa_store(drm_minor_get_xa(type), minor->index, minor, GFP_KERNEL); 203 if (xa_is_err(entry)) { 204 ret = xa_err(entry); 205 goto err_debugfs; 206 } 207 WARN_ON(entry); 208 209 DRM_DEBUG("new minor registered %d\n", minor->index); 210 return 0; 211 212 err_debugfs: 213 drm_debugfs_unregister(minor); 214 return ret; 215 } 216 217 static void drm_minor_unregister(struct drm_device *dev, enum drm_minor_type type) 218 { 219 struct drm_minor *minor; 220 221 minor = *drm_minor_get_slot(dev, type); 222 if (!minor || !device_is_registered(minor->kdev)) 223 return; 224 225 /* replace @minor with NULL so lookups will fail from now on */ 226 xa_store(drm_minor_get_xa(type), minor->index, NULL, GFP_KERNEL); 227 228 device_del(minor->kdev); 229 dev_set_drvdata(minor->kdev, NULL); /* safety belt */ 230 drm_debugfs_unregister(minor); 231 } 232 233 /* 234 * Looks up the given minor-ID and returns the respective DRM-minor object. The 235 * refence-count of the underlying device is increased so you must release this 236 * object with drm_minor_release(). 237 * 238 * As long as you hold this minor, it is guaranteed that the object and the 239 * minor->dev pointer will stay valid! However, the device may get unplugged and 240 * unregistered while you hold the minor. 241 */ 242 struct drm_minor *drm_minor_acquire(struct xarray *minor_xa, unsigned int minor_id) 243 { 244 struct drm_minor *minor; 245 246 xa_lock(minor_xa); 247 minor = xa_load(minor_xa, minor_id); 248 if (minor) 249 drm_dev_get(minor->dev); 250 xa_unlock(minor_xa); 251 252 if (!minor) { 253 return ERR_PTR(-ENODEV); 254 } else if (drm_dev_is_unplugged(minor->dev)) { 255 drm_dev_put(minor->dev); 256 return ERR_PTR(-ENODEV); 257 } 258 259 return minor; 260 } 261 262 void drm_minor_release(struct drm_minor *minor) 263 { 264 drm_dev_put(minor->dev); 265 } 266 267 /** 268 * DOC: driver instance overview 269 * 270 * A device instance for a drm driver is represented by &struct drm_device. This 271 * is allocated and initialized with devm_drm_dev_alloc(), usually from 272 * bus-specific ->probe() callbacks implemented by the driver. The driver then 273 * needs to initialize all the various subsystems for the drm device like memory 274 * management, vblank handling, modesetting support and initial output 275 * configuration plus obviously initialize all the corresponding hardware bits. 276 * Finally when everything is up and running and ready for userspace the device 277 * instance can be published using drm_dev_register(). 278 * 279 * There is also deprecated support for initializing device instances using 280 * bus-specific helpers and the &drm_driver.load callback. But due to 281 * backwards-compatibility needs the device instance have to be published too 282 * early, which requires unpretty global locking to make safe and is therefore 283 * only support for existing drivers not yet converted to the new scheme. 284 * 285 * When cleaning up a device instance everything needs to be done in reverse: 286 * First unpublish the device instance with drm_dev_unregister(). Then clean up 287 * any other resources allocated at device initialization and drop the driver's 288 * reference to &drm_device using drm_dev_put(). 289 * 290 * Note that any allocation or resource which is visible to userspace must be 291 * released only when the final drm_dev_put() is called, and not when the 292 * driver is unbound from the underlying physical struct &device. Best to use 293 * &drm_device managed resources with drmm_add_action(), drmm_kmalloc() and 294 * related functions. 295 * 296 * devres managed resources like devm_kmalloc() can only be used for resources 297 * directly related to the underlying hardware device, and only used in code 298 * paths fully protected by drm_dev_enter() and drm_dev_exit(). 299 * 300 * Display driver example 301 * ~~~~~~~~~~~~~~~~~~~~~~ 302 * 303 * The following example shows a typical structure of a DRM display driver. 304 * The example focus on the probe() function and the other functions that is 305 * almost always present and serves as a demonstration of devm_drm_dev_alloc(). 306 * 307 * .. code-block:: c 308 * 309 * struct driver_device { 310 * struct drm_device drm; 311 * void *userspace_facing; 312 * struct clk *pclk; 313 * }; 314 * 315 * static const struct drm_driver driver_drm_driver = { 316 * [...] 317 * }; 318 * 319 * static int driver_probe(struct platform_device *pdev) 320 * { 321 * struct driver_device *priv; 322 * struct drm_device *drm; 323 * int ret; 324 * 325 * priv = devm_drm_dev_alloc(&pdev->dev, &driver_drm_driver, 326 * struct driver_device, drm); 327 * if (IS_ERR(priv)) 328 * return PTR_ERR(priv); 329 * drm = &priv->drm; 330 * 331 * ret = drmm_mode_config_init(drm); 332 * if (ret) 333 * return ret; 334 * 335 * priv->userspace_facing = drmm_kzalloc(..., GFP_KERNEL); 336 * if (!priv->userspace_facing) 337 * return -ENOMEM; 338 * 339 * priv->pclk = devm_clk_get(dev, "PCLK"); 340 * if (IS_ERR(priv->pclk)) 341 * return PTR_ERR(priv->pclk); 342 * 343 * // Further setup, display pipeline etc 344 * 345 * platform_set_drvdata(pdev, drm); 346 * 347 * drm_mode_config_reset(drm); 348 * 349 * ret = drm_dev_register(drm); 350 * if (ret) 351 * return ret; 352 * 353 * drm_fbdev_{...}_setup(drm, 32); 354 * 355 * return 0; 356 * } 357 * 358 * // This function is called before the devm_ resources are released 359 * static int driver_remove(struct platform_device *pdev) 360 * { 361 * struct drm_device *drm = platform_get_drvdata(pdev); 362 * 363 * drm_dev_unregister(drm); 364 * drm_atomic_helper_shutdown(drm) 365 * 366 * return 0; 367 * } 368 * 369 * // This function is called on kernel restart and shutdown 370 * static void driver_shutdown(struct platform_device *pdev) 371 * { 372 * drm_atomic_helper_shutdown(platform_get_drvdata(pdev)); 373 * } 374 * 375 * static int __maybe_unused driver_pm_suspend(struct device *dev) 376 * { 377 * return drm_mode_config_helper_suspend(dev_get_drvdata(dev)); 378 * } 379 * 380 * static int __maybe_unused driver_pm_resume(struct device *dev) 381 * { 382 * drm_mode_config_helper_resume(dev_get_drvdata(dev)); 383 * 384 * return 0; 385 * } 386 * 387 * static const struct dev_pm_ops driver_pm_ops = { 388 * SET_SYSTEM_SLEEP_PM_OPS(driver_pm_suspend, driver_pm_resume) 389 * }; 390 * 391 * static struct platform_driver driver_driver = { 392 * .driver = { 393 * [...] 394 * .pm = &driver_pm_ops, 395 * }, 396 * .probe = driver_probe, 397 * .remove = driver_remove, 398 * .shutdown = driver_shutdown, 399 * }; 400 * module_platform_driver(driver_driver); 401 * 402 * Drivers that want to support device unplugging (USB, DT overlay unload) should 403 * use drm_dev_unplug() instead of drm_dev_unregister(). The driver must protect 404 * regions that is accessing device resources to prevent use after they're 405 * released. This is done using drm_dev_enter() and drm_dev_exit(). There is one 406 * shortcoming however, drm_dev_unplug() marks the drm_device as unplugged before 407 * drm_atomic_helper_shutdown() is called. This means that if the disable code 408 * paths are protected, they will not run on regular driver module unload, 409 * possibly leaving the hardware enabled. 410 */ 411 412 /** 413 * drm_put_dev - Unregister and release a DRM device 414 * @dev: DRM device 415 * 416 * Called at module unload time or when a PCI device is unplugged. 417 * 418 * Cleans up all DRM device, calling drm_lastclose(). 419 * 420 * Note: Use of this function is deprecated. It will eventually go away 421 * completely. Please use drm_dev_unregister() and drm_dev_put() explicitly 422 * instead to make sure that the device isn't userspace accessible any more 423 * while teardown is in progress, ensuring that userspace can't access an 424 * inconsistent state. 425 */ 426 void drm_put_dev(struct drm_device *dev) 427 { 428 DRM_DEBUG("\n"); 429 430 if (!dev) { 431 DRM_ERROR("cleanup called no dev\n"); 432 return; 433 } 434 435 drm_dev_unregister(dev); 436 drm_dev_put(dev); 437 } 438 EXPORT_SYMBOL(drm_put_dev); 439 440 /** 441 * drm_dev_enter - Enter device critical section 442 * @dev: DRM device 443 * @idx: Pointer to index that will be passed to the matching drm_dev_exit() 444 * 445 * This function marks and protects the beginning of a section that should not 446 * be entered after the device has been unplugged. The section end is marked 447 * with drm_dev_exit(). Calls to this function can be nested. 448 * 449 * Returns: 450 * True if it is OK to enter the section, false otherwise. 451 */ 452 bool drm_dev_enter(struct drm_device *dev, int *idx) 453 { 454 *idx = srcu_read_lock(&drm_unplug_srcu); 455 456 if (dev->unplugged) { 457 srcu_read_unlock(&drm_unplug_srcu, *idx); 458 return false; 459 } 460 461 return true; 462 } 463 EXPORT_SYMBOL(drm_dev_enter); 464 465 /** 466 * drm_dev_exit - Exit device critical section 467 * @idx: index returned from drm_dev_enter() 468 * 469 * This function marks the end of a section that should not be entered after 470 * the device has been unplugged. 471 */ 472 void drm_dev_exit(int idx) 473 { 474 srcu_read_unlock(&drm_unplug_srcu, idx); 475 } 476 EXPORT_SYMBOL(drm_dev_exit); 477 478 /** 479 * drm_dev_unplug - unplug a DRM device 480 * @dev: DRM device 481 * 482 * This unplugs a hotpluggable DRM device, which makes it inaccessible to 483 * userspace operations. Entry-points can use drm_dev_enter() and 484 * drm_dev_exit() to protect device resources in a race free manner. This 485 * essentially unregisters the device like drm_dev_unregister(), but can be 486 * called while there are still open users of @dev. 487 */ 488 void drm_dev_unplug(struct drm_device *dev) 489 { 490 /* 491 * After synchronizing any critical read section is guaranteed to see 492 * the new value of ->unplugged, and any critical section which might 493 * still have seen the old value of ->unplugged is guaranteed to have 494 * finished. 495 */ 496 dev->unplugged = true; 497 synchronize_srcu(&drm_unplug_srcu); 498 499 drm_dev_unregister(dev); 500 501 /* Clear all CPU mappings pointing to this device */ 502 unmap_mapping_range(dev->anon_inode->i_mapping, 0, 0, 1); 503 } 504 EXPORT_SYMBOL(drm_dev_unplug); 505 506 /** 507 * drm_dev_set_dma_dev - set the DMA device for a DRM device 508 * @dev: DRM device 509 * @dma_dev: DMA device or NULL 510 * 511 * Sets the DMA device of the given DRM device. Only required if 512 * the DMA device is different from the DRM device's parent. After 513 * calling this function, the DRM device holds a reference on 514 * @dma_dev. Pass NULL to clear the DMA device. 515 */ 516 void drm_dev_set_dma_dev(struct drm_device *dev, struct device *dma_dev) 517 { 518 dma_dev = get_device(dma_dev); 519 520 put_device(dev->dma_dev); 521 dev->dma_dev = dma_dev; 522 } 523 EXPORT_SYMBOL(drm_dev_set_dma_dev); 524 525 /* 526 * Available recovery methods for wedged device. To be sent along with device 527 * wedged uevent. 528 */ 529 static const char *drm_get_wedge_recovery(unsigned int opt) 530 { 531 switch (BIT(opt)) { 532 case DRM_WEDGE_RECOVERY_NONE: 533 return "none"; 534 case DRM_WEDGE_RECOVERY_REBIND: 535 return "rebind"; 536 case DRM_WEDGE_RECOVERY_BUS_RESET: 537 return "bus-reset"; 538 default: 539 return NULL; 540 } 541 } 542 543 #define WEDGE_STR_LEN 32 544 #define PID_STR_LEN 15 545 #define COMM_STR_LEN (TASK_COMM_LEN + 5) 546 547 /** 548 * drm_dev_wedged_event - generate a device wedged uevent 549 * @dev: DRM device 550 * @method: method(s) to be used for recovery 551 * @info: optional information about the guilty task 552 * 553 * This generates a device wedged uevent for the DRM device specified by @dev. 554 * Recovery @method\(s) of choice will be sent in the uevent environment as 555 * ``WEDGED=<method1>[,..,<methodN>]`` in order of less to more side-effects. 556 * If caller is unsure about recovery or @method is unknown (0), 557 * ``WEDGED=unknown`` will be sent instead. 558 * 559 * Refer to "Device Wedging" chapter in Documentation/gpu/drm-uapi.rst for more 560 * details. 561 * 562 * Returns: 0 on success, negative error code otherwise. 563 */ 564 int drm_dev_wedged_event(struct drm_device *dev, unsigned long method, 565 struct drm_wedge_task_info *info) 566 { 567 char event_string[WEDGE_STR_LEN], pid_string[PID_STR_LEN], comm_string[COMM_STR_LEN]; 568 char *envp[] = { event_string, NULL, NULL, NULL }; 569 const char *recovery = NULL; 570 unsigned int len, opt; 571 572 len = scnprintf(event_string, sizeof(event_string), "%s", "WEDGED="); 573 574 for_each_set_bit(opt, &method, BITS_PER_TYPE(method)) { 575 recovery = drm_get_wedge_recovery(opt); 576 if (drm_WARN_ONCE(dev, !recovery, "invalid recovery method %u\n", opt)) 577 break; 578 579 len += scnprintf(event_string + len, sizeof(event_string) - len, "%s,", recovery); 580 } 581 582 if (recovery) 583 /* Get rid of trailing comma */ 584 event_string[len - 1] = '\0'; 585 else 586 /* Caller is unsure about recovery, do the best we can at this point. */ 587 snprintf(event_string, sizeof(event_string), "%s", "WEDGED=unknown"); 588 589 drm_info(dev, "device wedged, %s\n", method == DRM_WEDGE_RECOVERY_NONE ? 590 "but recovered through reset" : "needs recovery"); 591 592 if (info && (info->comm[0] != '\0') && (info->pid >= 0)) { 593 snprintf(pid_string, sizeof(pid_string), "PID=%u", info->pid); 594 snprintf(comm_string, sizeof(comm_string), "TASK=%s", info->comm); 595 envp[1] = pid_string; 596 envp[2] = comm_string; 597 } 598 599 return kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, envp); 600 } 601 EXPORT_SYMBOL(drm_dev_wedged_event); 602 603 /* 604 * DRM internal mount 605 * We want to be able to allocate our own "struct address_space" to control 606 * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow 607 * stand-alone address_space objects, so we need an underlying inode. As there 608 * is no way to allocate an independent inode easily, we need a fake internal 609 * VFS mount-point. 610 * 611 * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free() 612 * frees it again. You are allowed to use iget() and iput() to get references to 613 * the inode. But each drm_fs_inode_new() call must be paired with exactly one 614 * drm_fs_inode_free() call (which does not have to be the last iput()). 615 * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it 616 * between multiple inode-users. You could, technically, call 617 * iget() + drm_fs_inode_free() directly after alloc and sometime later do an 618 * iput(), but this way you'd end up with a new vfsmount for each inode. 619 */ 620 621 static int drm_fs_cnt; 622 static struct vfsmount *drm_fs_mnt; 623 624 static int drm_fs_init_fs_context(struct fs_context *fc) 625 { 626 return init_pseudo(fc, 0x010203ff) ? 0 : -ENOMEM; 627 } 628 629 static struct file_system_type drm_fs_type = { 630 .name = "drm", 631 .owner = THIS_MODULE, 632 .init_fs_context = drm_fs_init_fs_context, 633 .kill_sb = kill_anon_super, 634 }; 635 636 static struct inode *drm_fs_inode_new(void) 637 { 638 struct inode *inode; 639 int r; 640 641 r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt); 642 if (r < 0) { 643 DRM_ERROR("Cannot mount pseudo fs: %d\n", r); 644 return ERR_PTR(r); 645 } 646 647 inode = alloc_anon_inode(drm_fs_mnt->mnt_sb); 648 if (IS_ERR(inode)) 649 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); 650 651 return inode; 652 } 653 654 static void drm_fs_inode_free(struct inode *inode) 655 { 656 if (inode) { 657 iput(inode); 658 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); 659 } 660 } 661 662 /** 663 * DOC: component helper usage recommendations 664 * 665 * DRM drivers that drive hardware where a logical device consists of a pile of 666 * independent hardware blocks are recommended to use the :ref:`component helper 667 * library<component>`. For consistency and better options for code reuse the 668 * following guidelines apply: 669 * 670 * - The entire device initialization procedure should be run from the 671 * &component_master_ops.master_bind callback, starting with 672 * devm_drm_dev_alloc(), then binding all components with 673 * component_bind_all() and finishing with drm_dev_register(). 674 * 675 * - The opaque pointer passed to all components through component_bind_all() 676 * should point at &struct drm_device of the device instance, not some driver 677 * specific private structure. 678 * 679 * - The component helper fills the niche where further standardization of 680 * interfaces is not practical. When there already is, or will be, a 681 * standardized interface like &drm_bridge or &drm_panel, providing its own 682 * functions to find such components at driver load time, like 683 * drm_of_find_panel_or_bridge(), then the component helper should not be 684 * used. 685 */ 686 687 static void drm_dev_init_release(struct drm_device *dev, void *res) 688 { 689 drm_fs_inode_free(dev->anon_inode); 690 691 put_device(dev->dma_dev); 692 dev->dma_dev = NULL; 693 put_device(dev->dev); 694 /* Prevent use-after-free in drm_managed_release when debugging is 695 * enabled. Slightly awkward, but can't really be helped. */ 696 dev->dev = NULL; 697 mutex_destroy(&dev->master_mutex); 698 mutex_destroy(&dev->clientlist_mutex); 699 mutex_destroy(&dev->filelist_mutex); 700 mutex_destroy(&dev->struct_mutex); 701 } 702 703 static int drm_dev_init(struct drm_device *dev, 704 const struct drm_driver *driver, 705 struct device *parent) 706 { 707 struct inode *inode; 708 int ret; 709 710 if (!drm_core_init_complete) { 711 DRM_ERROR("DRM core is not initialized\n"); 712 return -ENODEV; 713 } 714 715 if (WARN_ON(!parent)) 716 return -EINVAL; 717 718 kref_init(&dev->ref); 719 dev->dev = get_device(parent); 720 dev->driver = driver; 721 722 INIT_LIST_HEAD(&dev->managed.resources); 723 spin_lock_init(&dev->managed.lock); 724 725 /* no per-device feature limits by default */ 726 dev->driver_features = ~0u; 727 728 if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL) && 729 (drm_core_check_feature(dev, DRIVER_RENDER) || 730 drm_core_check_feature(dev, DRIVER_MODESET))) { 731 DRM_ERROR("DRM driver can't be both a compute acceleration and graphics driver\n"); 732 return -EINVAL; 733 } 734 735 INIT_LIST_HEAD(&dev->filelist); 736 INIT_LIST_HEAD(&dev->filelist_internal); 737 INIT_LIST_HEAD(&dev->clientlist); 738 INIT_LIST_HEAD(&dev->vblank_event_list); 739 740 spin_lock_init(&dev->event_lock); 741 mutex_init(&dev->struct_mutex); 742 mutex_init(&dev->filelist_mutex); 743 mutex_init(&dev->clientlist_mutex); 744 mutex_init(&dev->master_mutex); 745 raw_spin_lock_init(&dev->mode_config.panic_lock); 746 747 ret = drmm_add_action_or_reset(dev, drm_dev_init_release, NULL); 748 if (ret) 749 return ret; 750 751 inode = drm_fs_inode_new(); 752 if (IS_ERR(inode)) { 753 ret = PTR_ERR(inode); 754 DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret); 755 goto err; 756 } 757 758 dev->anon_inode = inode; 759 760 if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL)) { 761 ret = drm_minor_alloc(dev, DRM_MINOR_ACCEL); 762 if (ret) 763 goto err; 764 } else { 765 if (drm_core_check_feature(dev, DRIVER_RENDER)) { 766 ret = drm_minor_alloc(dev, DRM_MINOR_RENDER); 767 if (ret) 768 goto err; 769 } 770 771 ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY); 772 if (ret) 773 goto err; 774 } 775 776 if (drm_core_check_feature(dev, DRIVER_GEM)) { 777 ret = drm_gem_init(dev); 778 if (ret) { 779 DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n"); 780 goto err; 781 } 782 } 783 784 dev->unique = drmm_kstrdup(dev, dev_name(parent), GFP_KERNEL); 785 if (!dev->unique) { 786 ret = -ENOMEM; 787 goto err; 788 } 789 790 if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL)) 791 accel_debugfs_init(dev); 792 else 793 drm_debugfs_dev_init(dev, drm_debugfs_root); 794 795 return 0; 796 797 err: 798 drm_managed_release(dev); 799 800 return ret; 801 } 802 803 static void devm_drm_dev_init_release(void *data) 804 { 805 drm_dev_put(data); 806 } 807 808 static int devm_drm_dev_init(struct device *parent, 809 struct drm_device *dev, 810 const struct drm_driver *driver) 811 { 812 int ret; 813 814 ret = drm_dev_init(dev, driver, parent); 815 if (ret) 816 return ret; 817 818 return devm_add_action_or_reset(parent, 819 devm_drm_dev_init_release, dev); 820 } 821 822 void *__devm_drm_dev_alloc(struct device *parent, 823 const struct drm_driver *driver, 824 size_t size, size_t offset) 825 { 826 void *container; 827 struct drm_device *drm; 828 int ret; 829 830 container = kzalloc(size, GFP_KERNEL); 831 if (!container) 832 return ERR_PTR(-ENOMEM); 833 834 drm = container + offset; 835 ret = devm_drm_dev_init(parent, drm, driver); 836 if (ret) { 837 kfree(container); 838 return ERR_PTR(ret); 839 } 840 drmm_add_final_kfree(drm, container); 841 842 return container; 843 } 844 EXPORT_SYMBOL(__devm_drm_dev_alloc); 845 846 /** 847 * __drm_dev_alloc - Allocation of a &drm_device instance 848 * @parent: Parent device object 849 * @driver: DRM driver 850 * @size: the size of the struct which contains struct drm_device 851 * @offset: the offset of the &drm_device within the container. 852 * 853 * This should *NOT* be by any drivers, but is a dedicated interface for the 854 * corresponding Rust abstraction. 855 * 856 * This is the same as devm_drm_dev_alloc(), but without the corresponding 857 * resource management through the parent device, but not the same as 858 * drm_dev_alloc(), since the latter is the deprecated version, which does not 859 * support subclassing. 860 * 861 * Returns: A pointer to new DRM device, or an ERR_PTR on failure. 862 */ 863 void *__drm_dev_alloc(struct device *parent, 864 const struct drm_driver *driver, 865 size_t size, size_t offset) 866 { 867 void *container; 868 struct drm_device *drm; 869 int ret; 870 871 container = kzalloc(size, GFP_KERNEL); 872 if (!container) 873 return ERR_PTR(-ENOMEM); 874 875 drm = container + offset; 876 ret = drm_dev_init(drm, driver, parent); 877 if (ret) { 878 kfree(container); 879 return ERR_PTR(ret); 880 } 881 drmm_add_final_kfree(drm, container); 882 883 return container; 884 } 885 EXPORT_SYMBOL(__drm_dev_alloc); 886 887 /** 888 * drm_dev_alloc - Allocate new DRM device 889 * @driver: DRM driver to allocate device for 890 * @parent: Parent device object 891 * 892 * This is the deprecated version of devm_drm_dev_alloc(), which does not support 893 * subclassing through embedding the struct &drm_device in a driver private 894 * structure, and which does not support automatic cleanup through devres. 895 * 896 * RETURNS: 897 * Pointer to new DRM device, or ERR_PTR on failure. 898 */ 899 struct drm_device *drm_dev_alloc(const struct drm_driver *driver, 900 struct device *parent) 901 { 902 return __drm_dev_alloc(parent, driver, sizeof(struct drm_device), 0); 903 } 904 EXPORT_SYMBOL(drm_dev_alloc); 905 906 static void drm_dev_release(struct kref *ref) 907 { 908 struct drm_device *dev = container_of(ref, struct drm_device, ref); 909 910 /* Just in case register/unregister was never called */ 911 drm_debugfs_dev_fini(dev); 912 913 if (dev->driver->release) 914 dev->driver->release(dev); 915 916 drm_managed_release(dev); 917 918 kfree(dev->managed.final_kfree); 919 } 920 921 /** 922 * drm_dev_get - Take reference of a DRM device 923 * @dev: device to take reference of or NULL 924 * 925 * This increases the ref-count of @dev by one. You *must* already own a 926 * reference when calling this. Use drm_dev_put() to drop this reference 927 * again. 928 * 929 * This function never fails. However, this function does not provide *any* 930 * guarantee whether the device is alive or running. It only provides a 931 * reference to the object and the memory associated with it. 932 */ 933 void drm_dev_get(struct drm_device *dev) 934 { 935 if (dev) 936 kref_get(&dev->ref); 937 } 938 EXPORT_SYMBOL(drm_dev_get); 939 940 /** 941 * drm_dev_put - Drop reference of a DRM device 942 * @dev: device to drop reference of or NULL 943 * 944 * This decreases the ref-count of @dev by one. The device is destroyed if the 945 * ref-count drops to zero. 946 */ 947 void drm_dev_put(struct drm_device *dev) 948 { 949 if (dev) 950 kref_put(&dev->ref, drm_dev_release); 951 } 952 EXPORT_SYMBOL(drm_dev_put); 953 954 static void drmm_cg_unregister_region(struct drm_device *dev, void *arg) 955 { 956 dmem_cgroup_unregister_region(arg); 957 } 958 959 /** 960 * drmm_cgroup_register_region - Register a region of a DRM device to cgroups 961 * @dev: device for region 962 * @region_name: Region name for registering 963 * @size: Size of region in bytes 964 * 965 * This decreases the ref-count of @dev by one. The device is destroyed if the 966 * ref-count drops to zero. 967 */ 968 struct dmem_cgroup_region *drmm_cgroup_register_region(struct drm_device *dev, const char *region_name, u64 size) 969 { 970 struct dmem_cgroup_region *region; 971 int ret; 972 973 region = dmem_cgroup_register_region(size, "drm/%s/%s", dev->unique, region_name); 974 if (IS_ERR_OR_NULL(region)) 975 return region; 976 977 ret = drmm_add_action_or_reset(dev, drmm_cg_unregister_region, region); 978 if (ret) 979 return ERR_PTR(ret); 980 981 return region; 982 } 983 EXPORT_SYMBOL_GPL(drmm_cgroup_register_region); 984 985 static int create_compat_control_link(struct drm_device *dev) 986 { 987 struct drm_minor *minor; 988 char *name; 989 int ret; 990 991 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 992 return 0; 993 994 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); 995 if (!minor) 996 return 0; 997 998 /* 999 * Some existing userspace out there uses the existing of the controlD* 1000 * sysfs files to figure out whether it's a modeset driver. It only does 1001 * readdir, hence a symlink is sufficient (and the least confusing 1002 * option). Otherwise controlD* is entirely unused. 1003 * 1004 * Old controlD chardev have been allocated in the range 1005 * 64-127. 1006 */ 1007 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64); 1008 if (!name) 1009 return -ENOMEM; 1010 1011 ret = sysfs_create_link(minor->kdev->kobj.parent, 1012 &minor->kdev->kobj, 1013 name); 1014 1015 kfree(name); 1016 1017 return ret; 1018 } 1019 1020 static void remove_compat_control_link(struct drm_device *dev) 1021 { 1022 struct drm_minor *minor; 1023 char *name; 1024 1025 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 1026 return; 1027 1028 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); 1029 if (!minor) 1030 return; 1031 1032 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64); 1033 if (!name) 1034 return; 1035 1036 sysfs_remove_link(minor->kdev->kobj.parent, name); 1037 1038 kfree(name); 1039 } 1040 1041 /** 1042 * drm_dev_register - Register DRM device 1043 * @dev: Device to register 1044 * @flags: Flags passed to the driver's .load() function 1045 * 1046 * Register the DRM device @dev with the system, advertise device to user-space 1047 * and start normal device operation. @dev must be initialized via drm_dev_init() 1048 * previously. 1049 * 1050 * Never call this twice on any device! 1051 * 1052 * NOTE: To ensure backward compatibility with existing drivers method this 1053 * function calls the &drm_driver.load method after registering the device 1054 * nodes, creating race conditions. Usage of the &drm_driver.load methods is 1055 * therefore deprecated, drivers must perform all initialization before calling 1056 * drm_dev_register(). 1057 * 1058 * RETURNS: 1059 * 0 on success, negative error code on failure. 1060 */ 1061 int drm_dev_register(struct drm_device *dev, unsigned long flags) 1062 { 1063 const struct drm_driver *driver = dev->driver; 1064 int ret; 1065 1066 if (!driver->load) 1067 drm_mode_config_validate(dev); 1068 1069 WARN_ON(!dev->managed.final_kfree); 1070 1071 if (drm_dev_needs_global_mutex(dev)) 1072 mutex_lock(&drm_global_mutex); 1073 1074 if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL)) 1075 accel_debugfs_register(dev); 1076 else 1077 drm_debugfs_dev_register(dev); 1078 1079 ret = drm_minor_register(dev, DRM_MINOR_RENDER); 1080 if (ret) 1081 goto err_minors; 1082 1083 ret = drm_minor_register(dev, DRM_MINOR_PRIMARY); 1084 if (ret) 1085 goto err_minors; 1086 1087 ret = drm_minor_register(dev, DRM_MINOR_ACCEL); 1088 if (ret) 1089 goto err_minors; 1090 1091 ret = create_compat_control_link(dev); 1092 if (ret) 1093 goto err_minors; 1094 1095 dev->registered = true; 1096 1097 if (driver->load) { 1098 ret = driver->load(dev, flags); 1099 if (ret) 1100 goto err_minors; 1101 } 1102 1103 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1104 ret = drm_modeset_register_all(dev); 1105 if (ret) 1106 goto err_unload; 1107 } 1108 drm_panic_register(dev); 1109 1110 DRM_INFO("Initialized %s %d.%d.%d for %s on minor %d\n", 1111 driver->name, driver->major, driver->minor, 1112 driver->patchlevel, 1113 dev->dev ? dev_name(dev->dev) : "virtual device", 1114 dev->primary ? dev->primary->index : dev->accel->index); 1115 1116 goto out_unlock; 1117 1118 err_unload: 1119 if (dev->driver->unload) 1120 dev->driver->unload(dev); 1121 err_minors: 1122 remove_compat_control_link(dev); 1123 drm_minor_unregister(dev, DRM_MINOR_ACCEL); 1124 drm_minor_unregister(dev, DRM_MINOR_PRIMARY); 1125 drm_minor_unregister(dev, DRM_MINOR_RENDER); 1126 out_unlock: 1127 if (drm_dev_needs_global_mutex(dev)) 1128 mutex_unlock(&drm_global_mutex); 1129 return ret; 1130 } 1131 EXPORT_SYMBOL(drm_dev_register); 1132 1133 /** 1134 * drm_dev_unregister - Unregister DRM device 1135 * @dev: Device to unregister 1136 * 1137 * Unregister the DRM device from the system. This does the reverse of 1138 * drm_dev_register() but does not deallocate the device. The caller must call 1139 * drm_dev_put() to drop their final reference, unless it is managed with devres 1140 * (as devices allocated with devm_drm_dev_alloc() are), in which case there is 1141 * already an unwind action registered. 1142 * 1143 * A special form of unregistering for hotpluggable devices is drm_dev_unplug(), 1144 * which can be called while there are still open users of @dev. 1145 * 1146 * This should be called first in the device teardown code to make sure 1147 * userspace can't access the device instance any more. 1148 */ 1149 void drm_dev_unregister(struct drm_device *dev) 1150 { 1151 dev->registered = false; 1152 1153 drm_panic_unregister(dev); 1154 1155 drm_client_dev_unregister(dev); 1156 1157 if (drm_core_check_feature(dev, DRIVER_MODESET)) 1158 drm_modeset_unregister_all(dev); 1159 1160 if (dev->driver->unload) 1161 dev->driver->unload(dev); 1162 1163 remove_compat_control_link(dev); 1164 drm_minor_unregister(dev, DRM_MINOR_ACCEL); 1165 drm_minor_unregister(dev, DRM_MINOR_PRIMARY); 1166 drm_minor_unregister(dev, DRM_MINOR_RENDER); 1167 drm_debugfs_dev_fini(dev); 1168 } 1169 EXPORT_SYMBOL(drm_dev_unregister); 1170 1171 /* 1172 * DRM Core 1173 * The DRM core module initializes all global DRM objects and makes them 1174 * available to drivers. Once setup, drivers can probe their respective 1175 * devices. 1176 * Currently, core management includes: 1177 * - The "DRM-Global" key/value database 1178 * - Global ID management for connectors 1179 * - DRM major number allocation 1180 * - DRM minor management 1181 * - DRM sysfs class 1182 * - DRM debugfs root 1183 * 1184 * Furthermore, the DRM core provides dynamic char-dev lookups. For each 1185 * interface registered on a DRM device, you can request minor numbers from DRM 1186 * core. DRM core takes care of major-number management and char-dev 1187 * registration. A stub ->open() callback forwards any open() requests to the 1188 * registered minor. 1189 */ 1190 1191 static int drm_stub_open(struct inode *inode, struct file *filp) 1192 { 1193 const struct file_operations *new_fops; 1194 struct drm_minor *minor; 1195 int err; 1196 1197 DRM_DEBUG("\n"); 1198 1199 minor = drm_minor_acquire(&drm_minors_xa, iminor(inode)); 1200 if (IS_ERR(minor)) 1201 return PTR_ERR(minor); 1202 1203 new_fops = fops_get(minor->dev->driver->fops); 1204 if (!new_fops) { 1205 err = -ENODEV; 1206 goto out; 1207 } 1208 1209 replace_fops(filp, new_fops); 1210 if (filp->f_op->open) 1211 err = filp->f_op->open(inode, filp); 1212 else 1213 err = 0; 1214 1215 out: 1216 drm_minor_release(minor); 1217 1218 return err; 1219 } 1220 1221 static const struct file_operations drm_stub_fops = { 1222 .owner = THIS_MODULE, 1223 .open = drm_stub_open, 1224 .llseek = noop_llseek, 1225 }; 1226 1227 static void drm_core_exit(void) 1228 { 1229 drm_privacy_screen_lookup_exit(); 1230 drm_panic_exit(); 1231 accel_core_exit(); 1232 unregister_chrdev(DRM_MAJOR, "drm"); 1233 debugfs_remove(drm_debugfs_root); 1234 drm_sysfs_destroy(); 1235 WARN_ON(!xa_empty(&drm_minors_xa)); 1236 drm_connector_ida_destroy(); 1237 } 1238 1239 static int __init drm_core_init(void) 1240 { 1241 int ret; 1242 1243 drm_connector_ida_init(); 1244 drm_memcpy_init_early(); 1245 1246 ret = drm_sysfs_init(); 1247 if (ret < 0) { 1248 DRM_ERROR("Cannot create DRM class: %d\n", ret); 1249 goto error; 1250 } 1251 1252 drm_debugfs_root = debugfs_create_dir("dri", NULL); 1253 drm_bridge_debugfs_params(drm_debugfs_root); 1254 1255 ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops); 1256 if (ret < 0) 1257 goto error; 1258 1259 ret = accel_core_init(); 1260 if (ret < 0) 1261 goto error; 1262 1263 drm_panic_init(); 1264 1265 drm_privacy_screen_lookup_init(); 1266 1267 drm_core_init_complete = true; 1268 1269 DRM_DEBUG("Initialized\n"); 1270 return 0; 1271 1272 error: 1273 drm_core_exit(); 1274 return ret; 1275 } 1276 1277 module_init(drm_core_init); 1278 module_exit(drm_core_exit); 1279