xref: /linux/drivers/gpu/drm/drm_drv.c (revision 74f1af95820fc2ee580a775a3a17c416db30b38c)
1 /*
2  * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org
3  *
4  * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California.
5  * All Rights Reserved.
6  *
7  * Author Rickard E. (Rik) Faith <faith@valinux.com>
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a
10  * copy of this software and associated documentation files (the "Software"),
11  * to deal in the Software without restriction, including without limitation
12  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13  * and/or sell copies of the Software, and to permit persons to whom the
14  * Software is furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the next
17  * paragraph) shall be included in all copies or substantial portions of the
18  * Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
23  * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
24  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
25  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
26  * DEALINGS IN THE SOFTWARE.
27  */
28 
29 #include <linux/bitops.h>
30 #include <linux/cgroup_dmem.h>
31 #include <linux/debugfs.h>
32 #include <linux/export.h>
33 #include <linux/fs.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/mount.h>
37 #include <linux/pseudo_fs.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/sprintf.h>
41 #include <linux/srcu.h>
42 #include <linux/xarray.h>
43 
44 #include <drm/drm_accel.h>
45 #include <drm/drm_bridge.h>
46 #include <drm/drm_cache.h>
47 #include <drm/drm_client_event.h>
48 #include <drm/drm_color_mgmt.h>
49 #include <drm/drm_drv.h>
50 #include <drm/drm_file.h>
51 #include <drm/drm_managed.h>
52 #include <drm/drm_mode_object.h>
53 #include <drm/drm_panic.h>
54 #include <drm/drm_print.h>
55 #include <drm/drm_privacy_screen_machine.h>
56 
57 #include "drm_crtc_internal.h"
58 #include "drm_internal.h"
59 
60 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl");
61 MODULE_DESCRIPTION("DRM shared core routines");
62 MODULE_LICENSE("GPL and additional rights");
63 
64 DEFINE_XARRAY_ALLOC(drm_minors_xa);
65 
66 /*
67  * If the drm core fails to init for whatever reason,
68  * we should prevent any drivers from registering with it.
69  * It's best to check this at drm_dev_init(), as some drivers
70  * prefer to embed struct drm_device into their own device
71  * structure and call drm_dev_init() themselves.
72  */
73 static bool drm_core_init_complete;
74 
75 static struct dentry *drm_debugfs_root;
76 
77 DEFINE_STATIC_SRCU(drm_unplug_srcu);
78 
79 /*
80  * DRM Minors
81  * A DRM device can provide several char-dev interfaces on the DRM-Major. Each
82  * of them is represented by a drm_minor object. Depending on the capabilities
83  * of the device-driver, different interfaces are registered.
84  *
85  * Minors can be accessed via dev->$minor_name. This pointer is either
86  * NULL or a valid drm_minor pointer and stays valid as long as the device is
87  * valid. This means, DRM minors have the same life-time as the underlying
88  * device. However, this doesn't mean that the minor is active. Minors are
89  * registered and unregistered dynamically according to device-state.
90  */
91 
92 static struct xarray *drm_minor_get_xa(enum drm_minor_type type)
93 {
94 	if (type == DRM_MINOR_PRIMARY || type == DRM_MINOR_RENDER)
95 		return &drm_minors_xa;
96 #if IS_ENABLED(CONFIG_DRM_ACCEL)
97 	else if (type == DRM_MINOR_ACCEL)
98 		return &accel_minors_xa;
99 #endif
100 	else
101 		return ERR_PTR(-EOPNOTSUPP);
102 }
103 
104 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev,
105 					     enum drm_minor_type type)
106 {
107 	switch (type) {
108 	case DRM_MINOR_PRIMARY:
109 		return &dev->primary;
110 	case DRM_MINOR_RENDER:
111 		return &dev->render;
112 	case DRM_MINOR_ACCEL:
113 		return &dev->accel;
114 	default:
115 		BUG();
116 	}
117 }
118 
119 static void drm_minor_alloc_release(struct drm_device *dev, void *data)
120 {
121 	struct drm_minor *minor = data;
122 
123 	WARN_ON(dev != minor->dev);
124 
125 	put_device(minor->kdev);
126 
127 	xa_erase(drm_minor_get_xa(minor->type), minor->index);
128 }
129 
130 /*
131  * DRM used to support 64 devices, for backwards compatibility we need to maintain the
132  * minor allocation scheme where minors 0-63 are primary nodes, 64-127 are control nodes,
133  * and 128-191 are render nodes.
134  * After reaching the limit, we're allocating minors dynamically - first-come, first-serve.
135  * Accel nodes are using a distinct major, so the minors are allocated in continuous 0-MAX
136  * range.
137  */
138 #define DRM_MINOR_LIMIT(t) ({ \
139 	typeof(t) _t = (t); \
140 	_t == DRM_MINOR_ACCEL ? XA_LIMIT(0, ACCEL_MAX_MINORS) : XA_LIMIT(64 * _t, 64 * _t + 63); \
141 })
142 #define DRM_EXTENDED_MINOR_LIMIT XA_LIMIT(192, (1 << MINORBITS) - 1)
143 
144 static int drm_minor_alloc(struct drm_device *dev, enum drm_minor_type type)
145 {
146 	struct drm_minor *minor;
147 	int r;
148 
149 	minor = drmm_kzalloc(dev, sizeof(*minor), GFP_KERNEL);
150 	if (!minor)
151 		return -ENOMEM;
152 
153 	minor->type = type;
154 	minor->dev = dev;
155 
156 	r = xa_alloc(drm_minor_get_xa(type), &minor->index,
157 		     NULL, DRM_MINOR_LIMIT(type), GFP_KERNEL);
158 	if (r == -EBUSY && (type == DRM_MINOR_PRIMARY || type == DRM_MINOR_RENDER))
159 		r = xa_alloc(&drm_minors_xa, &minor->index,
160 			     NULL, DRM_EXTENDED_MINOR_LIMIT, GFP_KERNEL);
161 	if (r < 0)
162 		return r;
163 
164 	r = drmm_add_action_or_reset(dev, drm_minor_alloc_release, minor);
165 	if (r)
166 		return r;
167 
168 	minor->kdev = drm_sysfs_minor_alloc(minor);
169 	if (IS_ERR(minor->kdev))
170 		return PTR_ERR(minor->kdev);
171 
172 	*drm_minor_get_slot(dev, type) = minor;
173 	return 0;
174 }
175 
176 static int drm_minor_register(struct drm_device *dev, enum drm_minor_type type)
177 {
178 	struct drm_minor *minor;
179 	void *entry;
180 	int ret;
181 
182 	DRM_DEBUG("\n");
183 
184 	minor = *drm_minor_get_slot(dev, type);
185 	if (!minor)
186 		return 0;
187 
188 	if (minor->type != DRM_MINOR_ACCEL) {
189 		ret = drm_debugfs_register(minor, minor->index,
190 					   drm_debugfs_root);
191 		if (ret) {
192 			DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n");
193 			goto err_debugfs;
194 		}
195 	}
196 
197 	ret = device_add(minor->kdev);
198 	if (ret)
199 		goto err_debugfs;
200 
201 	/* replace NULL with @minor so lookups will succeed from now on */
202 	entry = xa_store(drm_minor_get_xa(type), minor->index, minor, GFP_KERNEL);
203 	if (xa_is_err(entry)) {
204 		ret = xa_err(entry);
205 		goto err_debugfs;
206 	}
207 	WARN_ON(entry);
208 
209 	DRM_DEBUG("new minor registered %d\n", minor->index);
210 	return 0;
211 
212 err_debugfs:
213 	drm_debugfs_unregister(minor);
214 	return ret;
215 }
216 
217 static void drm_minor_unregister(struct drm_device *dev, enum drm_minor_type type)
218 {
219 	struct drm_minor *minor;
220 
221 	minor = *drm_minor_get_slot(dev, type);
222 	if (!minor || !device_is_registered(minor->kdev))
223 		return;
224 
225 	/* replace @minor with NULL so lookups will fail from now on */
226 	xa_store(drm_minor_get_xa(type), minor->index, NULL, GFP_KERNEL);
227 
228 	device_del(minor->kdev);
229 	dev_set_drvdata(minor->kdev, NULL); /* safety belt */
230 	drm_debugfs_unregister(minor);
231 }
232 
233 /*
234  * Looks up the given minor-ID and returns the respective DRM-minor object. The
235  * refence-count of the underlying device is increased so you must release this
236  * object with drm_minor_release().
237  *
238  * As long as you hold this minor, it is guaranteed that the object and the
239  * minor->dev pointer will stay valid! However, the device may get unplugged and
240  * unregistered while you hold the minor.
241  */
242 struct drm_minor *drm_minor_acquire(struct xarray *minor_xa, unsigned int minor_id)
243 {
244 	struct drm_minor *minor;
245 
246 	xa_lock(minor_xa);
247 	minor = xa_load(minor_xa, minor_id);
248 	if (minor)
249 		drm_dev_get(minor->dev);
250 	xa_unlock(minor_xa);
251 
252 	if (!minor) {
253 		return ERR_PTR(-ENODEV);
254 	} else if (drm_dev_is_unplugged(minor->dev)) {
255 		drm_dev_put(minor->dev);
256 		return ERR_PTR(-ENODEV);
257 	}
258 
259 	return minor;
260 }
261 
262 void drm_minor_release(struct drm_minor *minor)
263 {
264 	drm_dev_put(minor->dev);
265 }
266 
267 /**
268  * DOC: driver instance overview
269  *
270  * A device instance for a drm driver is represented by &struct drm_device. This
271  * is allocated and initialized with devm_drm_dev_alloc(), usually from
272  * bus-specific ->probe() callbacks implemented by the driver. The driver then
273  * needs to initialize all the various subsystems for the drm device like memory
274  * management, vblank handling, modesetting support and initial output
275  * configuration plus obviously initialize all the corresponding hardware bits.
276  * Finally when everything is up and running and ready for userspace the device
277  * instance can be published using drm_dev_register().
278  *
279  * There is also deprecated support for initializing device instances using
280  * bus-specific helpers and the &drm_driver.load callback. But due to
281  * backwards-compatibility needs the device instance have to be published too
282  * early, which requires unpretty global locking to make safe and is therefore
283  * only support for existing drivers not yet converted to the new scheme.
284  *
285  * When cleaning up a device instance everything needs to be done in reverse:
286  * First unpublish the device instance with drm_dev_unregister(). Then clean up
287  * any other resources allocated at device initialization and drop the driver's
288  * reference to &drm_device using drm_dev_put().
289  *
290  * Note that any allocation or resource which is visible to userspace must be
291  * released only when the final drm_dev_put() is called, and not when the
292  * driver is unbound from the underlying physical struct &device. Best to use
293  * &drm_device managed resources with drmm_add_action(), drmm_kmalloc() and
294  * related functions.
295  *
296  * devres managed resources like devm_kmalloc() can only be used for resources
297  * directly related to the underlying hardware device, and only used in code
298  * paths fully protected by drm_dev_enter() and drm_dev_exit().
299  *
300  * Display driver example
301  * ~~~~~~~~~~~~~~~~~~~~~~
302  *
303  * The following example shows a typical structure of a DRM display driver.
304  * The example focus on the probe() function and the other functions that is
305  * almost always present and serves as a demonstration of devm_drm_dev_alloc().
306  *
307  * .. code-block:: c
308  *
309  *	struct driver_device {
310  *		struct drm_device drm;
311  *		void *userspace_facing;
312  *		struct clk *pclk;
313  *	};
314  *
315  *	static const struct drm_driver driver_drm_driver = {
316  *		[...]
317  *	};
318  *
319  *	static int driver_probe(struct platform_device *pdev)
320  *	{
321  *		struct driver_device *priv;
322  *		struct drm_device *drm;
323  *		int ret;
324  *
325  *		priv = devm_drm_dev_alloc(&pdev->dev, &driver_drm_driver,
326  *					  struct driver_device, drm);
327  *		if (IS_ERR(priv))
328  *			return PTR_ERR(priv);
329  *		drm = &priv->drm;
330  *
331  *		ret = drmm_mode_config_init(drm);
332  *		if (ret)
333  *			return ret;
334  *
335  *		priv->userspace_facing = drmm_kzalloc(..., GFP_KERNEL);
336  *		if (!priv->userspace_facing)
337  *			return -ENOMEM;
338  *
339  *		priv->pclk = devm_clk_get(dev, "PCLK");
340  *		if (IS_ERR(priv->pclk))
341  *			return PTR_ERR(priv->pclk);
342  *
343  *		// Further setup, display pipeline etc
344  *
345  *		platform_set_drvdata(pdev, drm);
346  *
347  *		drm_mode_config_reset(drm);
348  *
349  *		ret = drm_dev_register(drm);
350  *		if (ret)
351  *			return ret;
352  *
353  *		drm_fbdev_{...}_setup(drm, 32);
354  *
355  *		return 0;
356  *	}
357  *
358  *	// This function is called before the devm_ resources are released
359  *	static int driver_remove(struct platform_device *pdev)
360  *	{
361  *		struct drm_device *drm = platform_get_drvdata(pdev);
362  *
363  *		drm_dev_unregister(drm);
364  *		drm_atomic_helper_shutdown(drm)
365  *
366  *		return 0;
367  *	}
368  *
369  *	// This function is called on kernel restart and shutdown
370  *	static void driver_shutdown(struct platform_device *pdev)
371  *	{
372  *		drm_atomic_helper_shutdown(platform_get_drvdata(pdev));
373  *	}
374  *
375  *	static int __maybe_unused driver_pm_suspend(struct device *dev)
376  *	{
377  *		return drm_mode_config_helper_suspend(dev_get_drvdata(dev));
378  *	}
379  *
380  *	static int __maybe_unused driver_pm_resume(struct device *dev)
381  *	{
382  *		drm_mode_config_helper_resume(dev_get_drvdata(dev));
383  *
384  *		return 0;
385  *	}
386  *
387  *	static const struct dev_pm_ops driver_pm_ops = {
388  *		SET_SYSTEM_SLEEP_PM_OPS(driver_pm_suspend, driver_pm_resume)
389  *	};
390  *
391  *	static struct platform_driver driver_driver = {
392  *		.driver = {
393  *			[...]
394  *			.pm = &driver_pm_ops,
395  *		},
396  *		.probe = driver_probe,
397  *		.remove = driver_remove,
398  *		.shutdown = driver_shutdown,
399  *	};
400  *	module_platform_driver(driver_driver);
401  *
402  * Drivers that want to support device unplugging (USB, DT overlay unload) should
403  * use drm_dev_unplug() instead of drm_dev_unregister(). The driver must protect
404  * regions that is accessing device resources to prevent use after they're
405  * released. This is done using drm_dev_enter() and drm_dev_exit(). There is one
406  * shortcoming however, drm_dev_unplug() marks the drm_device as unplugged before
407  * drm_atomic_helper_shutdown() is called. This means that if the disable code
408  * paths are protected, they will not run on regular driver module unload,
409  * possibly leaving the hardware enabled.
410  */
411 
412 /**
413  * drm_put_dev - Unregister and release a DRM device
414  * @dev: DRM device
415  *
416  * Called at module unload time or when a PCI device is unplugged.
417  *
418  * Cleans up all DRM device, calling drm_lastclose().
419  *
420  * Note: Use of this function is deprecated. It will eventually go away
421  * completely.  Please use drm_dev_unregister() and drm_dev_put() explicitly
422  * instead to make sure that the device isn't userspace accessible any more
423  * while teardown is in progress, ensuring that userspace can't access an
424  * inconsistent state.
425  */
426 void drm_put_dev(struct drm_device *dev)
427 {
428 	DRM_DEBUG("\n");
429 
430 	if (!dev) {
431 		DRM_ERROR("cleanup called no dev\n");
432 		return;
433 	}
434 
435 	drm_dev_unregister(dev);
436 	drm_dev_put(dev);
437 }
438 EXPORT_SYMBOL(drm_put_dev);
439 
440 /**
441  * drm_dev_enter - Enter device critical section
442  * @dev: DRM device
443  * @idx: Pointer to index that will be passed to the matching drm_dev_exit()
444  *
445  * This function marks and protects the beginning of a section that should not
446  * be entered after the device has been unplugged. The section end is marked
447  * with drm_dev_exit(). Calls to this function can be nested.
448  *
449  * Returns:
450  * True if it is OK to enter the section, false otherwise.
451  */
452 bool drm_dev_enter(struct drm_device *dev, int *idx)
453 {
454 	*idx = srcu_read_lock(&drm_unplug_srcu);
455 
456 	if (dev->unplugged) {
457 		srcu_read_unlock(&drm_unplug_srcu, *idx);
458 		return false;
459 	}
460 
461 	return true;
462 }
463 EXPORT_SYMBOL(drm_dev_enter);
464 
465 /**
466  * drm_dev_exit - Exit device critical section
467  * @idx: index returned from drm_dev_enter()
468  *
469  * This function marks the end of a section that should not be entered after
470  * the device has been unplugged.
471  */
472 void drm_dev_exit(int idx)
473 {
474 	srcu_read_unlock(&drm_unplug_srcu, idx);
475 }
476 EXPORT_SYMBOL(drm_dev_exit);
477 
478 /**
479  * drm_dev_unplug - unplug a DRM device
480  * @dev: DRM device
481  *
482  * This unplugs a hotpluggable DRM device, which makes it inaccessible to
483  * userspace operations. Entry-points can use drm_dev_enter() and
484  * drm_dev_exit() to protect device resources in a race free manner. This
485  * essentially unregisters the device like drm_dev_unregister(), but can be
486  * called while there are still open users of @dev.
487  */
488 void drm_dev_unplug(struct drm_device *dev)
489 {
490 	/*
491 	 * After synchronizing any critical read section is guaranteed to see
492 	 * the new value of ->unplugged, and any critical section which might
493 	 * still have seen the old value of ->unplugged is guaranteed to have
494 	 * finished.
495 	 */
496 	dev->unplugged = true;
497 	synchronize_srcu(&drm_unplug_srcu);
498 
499 	drm_dev_unregister(dev);
500 
501 	/* Clear all CPU mappings pointing to this device */
502 	unmap_mapping_range(dev->anon_inode->i_mapping, 0, 0, 1);
503 }
504 EXPORT_SYMBOL(drm_dev_unplug);
505 
506 /**
507  * drm_dev_set_dma_dev - set the DMA device for a DRM device
508  * @dev: DRM device
509  * @dma_dev: DMA device or NULL
510  *
511  * Sets the DMA device of the given DRM device. Only required if
512  * the DMA device is different from the DRM device's parent. After
513  * calling this function, the DRM device holds a reference on
514  * @dma_dev. Pass NULL to clear the DMA device.
515  */
516 void drm_dev_set_dma_dev(struct drm_device *dev, struct device *dma_dev)
517 {
518 	dma_dev = get_device(dma_dev);
519 
520 	put_device(dev->dma_dev);
521 	dev->dma_dev = dma_dev;
522 }
523 EXPORT_SYMBOL(drm_dev_set_dma_dev);
524 
525 /*
526  * Available recovery methods for wedged device. To be sent along with device
527  * wedged uevent.
528  */
529 static const char *drm_get_wedge_recovery(unsigned int opt)
530 {
531 	switch (BIT(opt)) {
532 	case DRM_WEDGE_RECOVERY_NONE:
533 		return "none";
534 	case DRM_WEDGE_RECOVERY_REBIND:
535 		return "rebind";
536 	case DRM_WEDGE_RECOVERY_BUS_RESET:
537 		return "bus-reset";
538 	default:
539 		return NULL;
540 	}
541 }
542 
543 #define WEDGE_STR_LEN	32
544 #define PID_STR_LEN	15
545 #define COMM_STR_LEN	(TASK_COMM_LEN + 5)
546 
547 /**
548  * drm_dev_wedged_event - generate a device wedged uevent
549  * @dev: DRM device
550  * @method: method(s) to be used for recovery
551  * @info: optional information about the guilty task
552  *
553  * This generates a device wedged uevent for the DRM device specified by @dev.
554  * Recovery @method\(s) of choice will be sent in the uevent environment as
555  * ``WEDGED=<method1>[,..,<methodN>]`` in order of less to more side-effects.
556  * If caller is unsure about recovery or @method is unknown (0),
557  * ``WEDGED=unknown`` will be sent instead.
558  *
559  * Refer to "Device Wedging" chapter in Documentation/gpu/drm-uapi.rst for more
560  * details.
561  *
562  * Returns: 0 on success, negative error code otherwise.
563  */
564 int drm_dev_wedged_event(struct drm_device *dev, unsigned long method,
565 			 struct drm_wedge_task_info *info)
566 {
567 	char event_string[WEDGE_STR_LEN], pid_string[PID_STR_LEN], comm_string[COMM_STR_LEN];
568 	char *envp[] = { event_string, NULL, NULL, NULL };
569 	const char *recovery = NULL;
570 	unsigned int len, opt;
571 
572 	len = scnprintf(event_string, sizeof(event_string), "%s", "WEDGED=");
573 
574 	for_each_set_bit(opt, &method, BITS_PER_TYPE(method)) {
575 		recovery = drm_get_wedge_recovery(opt);
576 		if (drm_WARN_ONCE(dev, !recovery, "invalid recovery method %u\n", opt))
577 			break;
578 
579 		len += scnprintf(event_string + len, sizeof(event_string) - len, "%s,", recovery);
580 	}
581 
582 	if (recovery)
583 		/* Get rid of trailing comma */
584 		event_string[len - 1] = '\0';
585 	else
586 		/* Caller is unsure about recovery, do the best we can at this point. */
587 		snprintf(event_string, sizeof(event_string), "%s", "WEDGED=unknown");
588 
589 	drm_info(dev, "device wedged, %s\n", method == DRM_WEDGE_RECOVERY_NONE ?
590 		 "but recovered through reset" : "needs recovery");
591 
592 	if (info && (info->comm[0] != '\0') && (info->pid >= 0)) {
593 		snprintf(pid_string, sizeof(pid_string), "PID=%u", info->pid);
594 		snprintf(comm_string, sizeof(comm_string), "TASK=%s", info->comm);
595 		envp[1] = pid_string;
596 		envp[2] = comm_string;
597 	}
598 
599 	return kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, envp);
600 }
601 EXPORT_SYMBOL(drm_dev_wedged_event);
602 
603 /*
604  * DRM internal mount
605  * We want to be able to allocate our own "struct address_space" to control
606  * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow
607  * stand-alone address_space objects, so we need an underlying inode. As there
608  * is no way to allocate an independent inode easily, we need a fake internal
609  * VFS mount-point.
610  *
611  * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free()
612  * frees it again. You are allowed to use iget() and iput() to get references to
613  * the inode. But each drm_fs_inode_new() call must be paired with exactly one
614  * drm_fs_inode_free() call (which does not have to be the last iput()).
615  * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it
616  * between multiple inode-users. You could, technically, call
617  * iget() + drm_fs_inode_free() directly after alloc and sometime later do an
618  * iput(), but this way you'd end up with a new vfsmount for each inode.
619  */
620 
621 static int drm_fs_cnt;
622 static struct vfsmount *drm_fs_mnt;
623 
624 static int drm_fs_init_fs_context(struct fs_context *fc)
625 {
626 	return init_pseudo(fc, 0x010203ff) ? 0 : -ENOMEM;
627 }
628 
629 static struct file_system_type drm_fs_type = {
630 	.name		= "drm",
631 	.owner		= THIS_MODULE,
632 	.init_fs_context = drm_fs_init_fs_context,
633 	.kill_sb	= kill_anon_super,
634 };
635 
636 static struct inode *drm_fs_inode_new(void)
637 {
638 	struct inode *inode;
639 	int r;
640 
641 	r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt);
642 	if (r < 0) {
643 		DRM_ERROR("Cannot mount pseudo fs: %d\n", r);
644 		return ERR_PTR(r);
645 	}
646 
647 	inode = alloc_anon_inode(drm_fs_mnt->mnt_sb);
648 	if (IS_ERR(inode))
649 		simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
650 
651 	return inode;
652 }
653 
654 static void drm_fs_inode_free(struct inode *inode)
655 {
656 	if (inode) {
657 		iput(inode);
658 		simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
659 	}
660 }
661 
662 /**
663  * DOC: component helper usage recommendations
664  *
665  * DRM drivers that drive hardware where a logical device consists of a pile of
666  * independent hardware blocks are recommended to use the :ref:`component helper
667  * library<component>`. For consistency and better options for code reuse the
668  * following guidelines apply:
669  *
670  *  - The entire device initialization procedure should be run from the
671  *    &component_master_ops.master_bind callback, starting with
672  *    devm_drm_dev_alloc(), then binding all components with
673  *    component_bind_all() and finishing with drm_dev_register().
674  *
675  *  - The opaque pointer passed to all components through component_bind_all()
676  *    should point at &struct drm_device of the device instance, not some driver
677  *    specific private structure.
678  *
679  *  - The component helper fills the niche where further standardization of
680  *    interfaces is not practical. When there already is, or will be, a
681  *    standardized interface like &drm_bridge or &drm_panel, providing its own
682  *    functions to find such components at driver load time, like
683  *    drm_of_find_panel_or_bridge(), then the component helper should not be
684  *    used.
685  */
686 
687 static void drm_dev_init_release(struct drm_device *dev, void *res)
688 {
689 	drm_fs_inode_free(dev->anon_inode);
690 
691 	put_device(dev->dma_dev);
692 	dev->dma_dev = NULL;
693 	put_device(dev->dev);
694 	/* Prevent use-after-free in drm_managed_release when debugging is
695 	 * enabled. Slightly awkward, but can't really be helped. */
696 	dev->dev = NULL;
697 	mutex_destroy(&dev->master_mutex);
698 	mutex_destroy(&dev->clientlist_mutex);
699 	mutex_destroy(&dev->filelist_mutex);
700 	mutex_destroy(&dev->struct_mutex);
701 }
702 
703 static int drm_dev_init(struct drm_device *dev,
704 			const struct drm_driver *driver,
705 			struct device *parent)
706 {
707 	struct inode *inode;
708 	int ret;
709 
710 	if (!drm_core_init_complete) {
711 		DRM_ERROR("DRM core is not initialized\n");
712 		return -ENODEV;
713 	}
714 
715 	if (WARN_ON(!parent))
716 		return -EINVAL;
717 
718 	kref_init(&dev->ref);
719 	dev->dev = get_device(parent);
720 	dev->driver = driver;
721 
722 	INIT_LIST_HEAD(&dev->managed.resources);
723 	spin_lock_init(&dev->managed.lock);
724 
725 	/* no per-device feature limits by default */
726 	dev->driver_features = ~0u;
727 
728 	if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL) &&
729 				(drm_core_check_feature(dev, DRIVER_RENDER) ||
730 				drm_core_check_feature(dev, DRIVER_MODESET))) {
731 		DRM_ERROR("DRM driver can't be both a compute acceleration and graphics driver\n");
732 		return -EINVAL;
733 	}
734 
735 	INIT_LIST_HEAD(&dev->filelist);
736 	INIT_LIST_HEAD(&dev->filelist_internal);
737 	INIT_LIST_HEAD(&dev->clientlist);
738 	INIT_LIST_HEAD(&dev->vblank_event_list);
739 
740 	spin_lock_init(&dev->event_lock);
741 	mutex_init(&dev->struct_mutex);
742 	mutex_init(&dev->filelist_mutex);
743 	mutex_init(&dev->clientlist_mutex);
744 	mutex_init(&dev->master_mutex);
745 	raw_spin_lock_init(&dev->mode_config.panic_lock);
746 
747 	ret = drmm_add_action_or_reset(dev, drm_dev_init_release, NULL);
748 	if (ret)
749 		return ret;
750 
751 	inode = drm_fs_inode_new();
752 	if (IS_ERR(inode)) {
753 		ret = PTR_ERR(inode);
754 		DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret);
755 		goto err;
756 	}
757 
758 	dev->anon_inode = inode;
759 
760 	if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL)) {
761 		ret = drm_minor_alloc(dev, DRM_MINOR_ACCEL);
762 		if (ret)
763 			goto err;
764 	} else {
765 		if (drm_core_check_feature(dev, DRIVER_RENDER)) {
766 			ret = drm_minor_alloc(dev, DRM_MINOR_RENDER);
767 			if (ret)
768 				goto err;
769 		}
770 
771 		ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY);
772 		if (ret)
773 			goto err;
774 	}
775 
776 	if (drm_core_check_feature(dev, DRIVER_GEM)) {
777 		ret = drm_gem_init(dev);
778 		if (ret) {
779 			DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n");
780 			goto err;
781 		}
782 	}
783 
784 	dev->unique = drmm_kstrdup(dev, dev_name(parent), GFP_KERNEL);
785 	if (!dev->unique) {
786 		ret = -ENOMEM;
787 		goto err;
788 	}
789 
790 	if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL))
791 		accel_debugfs_init(dev);
792 	else
793 		drm_debugfs_dev_init(dev, drm_debugfs_root);
794 
795 	return 0;
796 
797 err:
798 	drm_managed_release(dev);
799 
800 	return ret;
801 }
802 
803 static void devm_drm_dev_init_release(void *data)
804 {
805 	drm_dev_put(data);
806 }
807 
808 static int devm_drm_dev_init(struct device *parent,
809 			     struct drm_device *dev,
810 			     const struct drm_driver *driver)
811 {
812 	int ret;
813 
814 	ret = drm_dev_init(dev, driver, parent);
815 	if (ret)
816 		return ret;
817 
818 	return devm_add_action_or_reset(parent,
819 					devm_drm_dev_init_release, dev);
820 }
821 
822 void *__devm_drm_dev_alloc(struct device *parent,
823 			   const struct drm_driver *driver,
824 			   size_t size, size_t offset)
825 {
826 	void *container;
827 	struct drm_device *drm;
828 	int ret;
829 
830 	container = kzalloc(size, GFP_KERNEL);
831 	if (!container)
832 		return ERR_PTR(-ENOMEM);
833 
834 	drm = container + offset;
835 	ret = devm_drm_dev_init(parent, drm, driver);
836 	if (ret) {
837 		kfree(container);
838 		return ERR_PTR(ret);
839 	}
840 	drmm_add_final_kfree(drm, container);
841 
842 	return container;
843 }
844 EXPORT_SYMBOL(__devm_drm_dev_alloc);
845 
846 /**
847  * __drm_dev_alloc - Allocation of a &drm_device instance
848  * @parent: Parent device object
849  * @driver: DRM driver
850  * @size: the size of the struct which contains struct drm_device
851  * @offset: the offset of the &drm_device within the container.
852  *
853  * This should *NOT* be by any drivers, but is a dedicated interface for the
854  * corresponding Rust abstraction.
855  *
856  * This is the same as devm_drm_dev_alloc(), but without the corresponding
857  * resource management through the parent device, but not the same as
858  * drm_dev_alloc(), since the latter is the deprecated version, which does not
859  * support subclassing.
860  *
861  * Returns: A pointer to new DRM device, or an ERR_PTR on failure.
862  */
863 void *__drm_dev_alloc(struct device *parent,
864 		      const struct drm_driver *driver,
865 		      size_t size, size_t offset)
866 {
867 	void *container;
868 	struct drm_device *drm;
869 	int ret;
870 
871 	container = kzalloc(size, GFP_KERNEL);
872 	if (!container)
873 		return ERR_PTR(-ENOMEM);
874 
875 	drm = container + offset;
876 	ret = drm_dev_init(drm, driver, parent);
877 	if (ret) {
878 		kfree(container);
879 		return ERR_PTR(ret);
880 	}
881 	drmm_add_final_kfree(drm, container);
882 
883 	return container;
884 }
885 EXPORT_SYMBOL(__drm_dev_alloc);
886 
887 /**
888  * drm_dev_alloc - Allocate new DRM device
889  * @driver: DRM driver to allocate device for
890  * @parent: Parent device object
891  *
892  * This is the deprecated version of devm_drm_dev_alloc(), which does not support
893  * subclassing through embedding the struct &drm_device in a driver private
894  * structure, and which does not support automatic cleanup through devres.
895  *
896  * RETURNS:
897  * Pointer to new DRM device, or ERR_PTR on failure.
898  */
899 struct drm_device *drm_dev_alloc(const struct drm_driver *driver,
900 				 struct device *parent)
901 {
902 	return __drm_dev_alloc(parent, driver, sizeof(struct drm_device), 0);
903 }
904 EXPORT_SYMBOL(drm_dev_alloc);
905 
906 static void drm_dev_release(struct kref *ref)
907 {
908 	struct drm_device *dev = container_of(ref, struct drm_device, ref);
909 
910 	/* Just in case register/unregister was never called */
911 	drm_debugfs_dev_fini(dev);
912 
913 	if (dev->driver->release)
914 		dev->driver->release(dev);
915 
916 	drm_managed_release(dev);
917 
918 	kfree(dev->managed.final_kfree);
919 }
920 
921 /**
922  * drm_dev_get - Take reference of a DRM device
923  * @dev: device to take reference of or NULL
924  *
925  * This increases the ref-count of @dev by one. You *must* already own a
926  * reference when calling this. Use drm_dev_put() to drop this reference
927  * again.
928  *
929  * This function never fails. However, this function does not provide *any*
930  * guarantee whether the device is alive or running. It only provides a
931  * reference to the object and the memory associated with it.
932  */
933 void drm_dev_get(struct drm_device *dev)
934 {
935 	if (dev)
936 		kref_get(&dev->ref);
937 }
938 EXPORT_SYMBOL(drm_dev_get);
939 
940 /**
941  * drm_dev_put - Drop reference of a DRM device
942  * @dev: device to drop reference of or NULL
943  *
944  * This decreases the ref-count of @dev by one. The device is destroyed if the
945  * ref-count drops to zero.
946  */
947 void drm_dev_put(struct drm_device *dev)
948 {
949 	if (dev)
950 		kref_put(&dev->ref, drm_dev_release);
951 }
952 EXPORT_SYMBOL(drm_dev_put);
953 
954 static void drmm_cg_unregister_region(struct drm_device *dev, void *arg)
955 {
956 	dmem_cgroup_unregister_region(arg);
957 }
958 
959 /**
960  * drmm_cgroup_register_region - Register a region of a DRM device to cgroups
961  * @dev: device for region
962  * @region_name: Region name for registering
963  * @size: Size of region in bytes
964  *
965  * This decreases the ref-count of @dev by one. The device is destroyed if the
966  * ref-count drops to zero.
967  */
968 struct dmem_cgroup_region *drmm_cgroup_register_region(struct drm_device *dev, const char *region_name, u64 size)
969 {
970 	struct dmem_cgroup_region *region;
971 	int ret;
972 
973 	region = dmem_cgroup_register_region(size, "drm/%s/%s", dev->unique, region_name);
974 	if (IS_ERR_OR_NULL(region))
975 		return region;
976 
977 	ret = drmm_add_action_or_reset(dev, drmm_cg_unregister_region, region);
978 	if (ret)
979 		return ERR_PTR(ret);
980 
981 	return region;
982 }
983 EXPORT_SYMBOL_GPL(drmm_cgroup_register_region);
984 
985 static int create_compat_control_link(struct drm_device *dev)
986 {
987 	struct drm_minor *minor;
988 	char *name;
989 	int ret;
990 
991 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
992 		return 0;
993 
994 	minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
995 	if (!minor)
996 		return 0;
997 
998 	/*
999 	 * Some existing userspace out there uses the existing of the controlD*
1000 	 * sysfs files to figure out whether it's a modeset driver. It only does
1001 	 * readdir, hence a symlink is sufficient (and the least confusing
1002 	 * option). Otherwise controlD* is entirely unused.
1003 	 *
1004 	 * Old controlD chardev have been allocated in the range
1005 	 * 64-127.
1006 	 */
1007 	name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
1008 	if (!name)
1009 		return -ENOMEM;
1010 
1011 	ret = sysfs_create_link(minor->kdev->kobj.parent,
1012 				&minor->kdev->kobj,
1013 				name);
1014 
1015 	kfree(name);
1016 
1017 	return ret;
1018 }
1019 
1020 static void remove_compat_control_link(struct drm_device *dev)
1021 {
1022 	struct drm_minor *minor;
1023 	char *name;
1024 
1025 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
1026 		return;
1027 
1028 	minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
1029 	if (!minor)
1030 		return;
1031 
1032 	name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
1033 	if (!name)
1034 		return;
1035 
1036 	sysfs_remove_link(minor->kdev->kobj.parent, name);
1037 
1038 	kfree(name);
1039 }
1040 
1041 /**
1042  * drm_dev_register - Register DRM device
1043  * @dev: Device to register
1044  * @flags: Flags passed to the driver's .load() function
1045  *
1046  * Register the DRM device @dev with the system, advertise device to user-space
1047  * and start normal device operation. @dev must be initialized via drm_dev_init()
1048  * previously.
1049  *
1050  * Never call this twice on any device!
1051  *
1052  * NOTE: To ensure backward compatibility with existing drivers method this
1053  * function calls the &drm_driver.load method after registering the device
1054  * nodes, creating race conditions. Usage of the &drm_driver.load methods is
1055  * therefore deprecated, drivers must perform all initialization before calling
1056  * drm_dev_register().
1057  *
1058  * RETURNS:
1059  * 0 on success, negative error code on failure.
1060  */
1061 int drm_dev_register(struct drm_device *dev, unsigned long flags)
1062 {
1063 	const struct drm_driver *driver = dev->driver;
1064 	int ret;
1065 
1066 	if (!driver->load)
1067 		drm_mode_config_validate(dev);
1068 
1069 	WARN_ON(!dev->managed.final_kfree);
1070 
1071 	if (drm_dev_needs_global_mutex(dev))
1072 		mutex_lock(&drm_global_mutex);
1073 
1074 	if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL))
1075 		accel_debugfs_register(dev);
1076 	else
1077 		drm_debugfs_dev_register(dev);
1078 
1079 	ret = drm_minor_register(dev, DRM_MINOR_RENDER);
1080 	if (ret)
1081 		goto err_minors;
1082 
1083 	ret = drm_minor_register(dev, DRM_MINOR_PRIMARY);
1084 	if (ret)
1085 		goto err_minors;
1086 
1087 	ret = drm_minor_register(dev, DRM_MINOR_ACCEL);
1088 	if (ret)
1089 		goto err_minors;
1090 
1091 	ret = create_compat_control_link(dev);
1092 	if (ret)
1093 		goto err_minors;
1094 
1095 	dev->registered = true;
1096 
1097 	if (driver->load) {
1098 		ret = driver->load(dev, flags);
1099 		if (ret)
1100 			goto err_minors;
1101 	}
1102 
1103 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1104 		ret = drm_modeset_register_all(dev);
1105 		if (ret)
1106 			goto err_unload;
1107 	}
1108 	drm_panic_register(dev);
1109 
1110 	DRM_INFO("Initialized %s %d.%d.%d for %s on minor %d\n",
1111 		 driver->name, driver->major, driver->minor,
1112 		 driver->patchlevel,
1113 		 dev->dev ? dev_name(dev->dev) : "virtual device",
1114 		 dev->primary ? dev->primary->index : dev->accel->index);
1115 
1116 	goto out_unlock;
1117 
1118 err_unload:
1119 	if (dev->driver->unload)
1120 		dev->driver->unload(dev);
1121 err_minors:
1122 	remove_compat_control_link(dev);
1123 	drm_minor_unregister(dev, DRM_MINOR_ACCEL);
1124 	drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
1125 	drm_minor_unregister(dev, DRM_MINOR_RENDER);
1126 out_unlock:
1127 	if (drm_dev_needs_global_mutex(dev))
1128 		mutex_unlock(&drm_global_mutex);
1129 	return ret;
1130 }
1131 EXPORT_SYMBOL(drm_dev_register);
1132 
1133 /**
1134  * drm_dev_unregister - Unregister DRM device
1135  * @dev: Device to unregister
1136  *
1137  * Unregister the DRM device from the system. This does the reverse of
1138  * drm_dev_register() but does not deallocate the device. The caller must call
1139  * drm_dev_put() to drop their final reference, unless it is managed with devres
1140  * (as devices allocated with devm_drm_dev_alloc() are), in which case there is
1141  * already an unwind action registered.
1142  *
1143  * A special form of unregistering for hotpluggable devices is drm_dev_unplug(),
1144  * which can be called while there are still open users of @dev.
1145  *
1146  * This should be called first in the device teardown code to make sure
1147  * userspace can't access the device instance any more.
1148  */
1149 void drm_dev_unregister(struct drm_device *dev)
1150 {
1151 	dev->registered = false;
1152 
1153 	drm_panic_unregister(dev);
1154 
1155 	drm_client_dev_unregister(dev);
1156 
1157 	if (drm_core_check_feature(dev, DRIVER_MODESET))
1158 		drm_modeset_unregister_all(dev);
1159 
1160 	if (dev->driver->unload)
1161 		dev->driver->unload(dev);
1162 
1163 	remove_compat_control_link(dev);
1164 	drm_minor_unregister(dev, DRM_MINOR_ACCEL);
1165 	drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
1166 	drm_minor_unregister(dev, DRM_MINOR_RENDER);
1167 	drm_debugfs_dev_fini(dev);
1168 }
1169 EXPORT_SYMBOL(drm_dev_unregister);
1170 
1171 /*
1172  * DRM Core
1173  * The DRM core module initializes all global DRM objects and makes them
1174  * available to drivers. Once setup, drivers can probe their respective
1175  * devices.
1176  * Currently, core management includes:
1177  *  - The "DRM-Global" key/value database
1178  *  - Global ID management for connectors
1179  *  - DRM major number allocation
1180  *  - DRM minor management
1181  *  - DRM sysfs class
1182  *  - DRM debugfs root
1183  *
1184  * Furthermore, the DRM core provides dynamic char-dev lookups. For each
1185  * interface registered on a DRM device, you can request minor numbers from DRM
1186  * core. DRM core takes care of major-number management and char-dev
1187  * registration. A stub ->open() callback forwards any open() requests to the
1188  * registered minor.
1189  */
1190 
1191 static int drm_stub_open(struct inode *inode, struct file *filp)
1192 {
1193 	const struct file_operations *new_fops;
1194 	struct drm_minor *minor;
1195 	int err;
1196 
1197 	DRM_DEBUG("\n");
1198 
1199 	minor = drm_minor_acquire(&drm_minors_xa, iminor(inode));
1200 	if (IS_ERR(minor))
1201 		return PTR_ERR(minor);
1202 
1203 	new_fops = fops_get(minor->dev->driver->fops);
1204 	if (!new_fops) {
1205 		err = -ENODEV;
1206 		goto out;
1207 	}
1208 
1209 	replace_fops(filp, new_fops);
1210 	if (filp->f_op->open)
1211 		err = filp->f_op->open(inode, filp);
1212 	else
1213 		err = 0;
1214 
1215 out:
1216 	drm_minor_release(minor);
1217 
1218 	return err;
1219 }
1220 
1221 static const struct file_operations drm_stub_fops = {
1222 	.owner = THIS_MODULE,
1223 	.open = drm_stub_open,
1224 	.llseek = noop_llseek,
1225 };
1226 
1227 static void drm_core_exit(void)
1228 {
1229 	drm_privacy_screen_lookup_exit();
1230 	drm_panic_exit();
1231 	accel_core_exit();
1232 	unregister_chrdev(DRM_MAJOR, "drm");
1233 	debugfs_remove(drm_debugfs_root);
1234 	drm_sysfs_destroy();
1235 	WARN_ON(!xa_empty(&drm_minors_xa));
1236 	drm_connector_ida_destroy();
1237 }
1238 
1239 static int __init drm_core_init(void)
1240 {
1241 	int ret;
1242 
1243 	drm_connector_ida_init();
1244 	drm_memcpy_init_early();
1245 
1246 	ret = drm_sysfs_init();
1247 	if (ret < 0) {
1248 		DRM_ERROR("Cannot create DRM class: %d\n", ret);
1249 		goto error;
1250 	}
1251 
1252 	drm_debugfs_root = debugfs_create_dir("dri", NULL);
1253 	drm_bridge_debugfs_params(drm_debugfs_root);
1254 
1255 	ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops);
1256 	if (ret < 0)
1257 		goto error;
1258 
1259 	ret = accel_core_init();
1260 	if (ret < 0)
1261 		goto error;
1262 
1263 	drm_panic_init();
1264 
1265 	drm_privacy_screen_lookup_init();
1266 
1267 	drm_core_init_complete = true;
1268 
1269 	DRM_DEBUG("Initialized\n");
1270 	return 0;
1271 
1272 error:
1273 	drm_core_exit();
1274 	return ret;
1275 }
1276 
1277 module_init(drm_core_init);
1278 module_exit(drm_core_exit);
1279