1 /* 2 * Copyright (c) 2014 Samsung Electronics Co., Ltd 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sub license, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the 12 * next paragraph) shall be included in all copies or substantial portions 13 * of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <linux/debugfs.h> 25 #include <linux/err.h> 26 #include <linux/media-bus-format.h> 27 #include <linux/module.h> 28 #include <linux/mutex.h> 29 30 #include <drm/drm_atomic_state_helper.h> 31 #include <drm/drm_bridge.h> 32 #include <drm/drm_debugfs.h> 33 #include <drm/drm_edid.h> 34 #include <drm/drm_encoder.h> 35 #include <drm/drm_file.h> 36 #include <drm/drm_of.h> 37 #include <drm/drm_print.h> 38 39 #include "drm_crtc_internal.h" 40 41 /** 42 * DOC: overview 43 * 44 * &struct drm_bridge represents a device that hangs on to an encoder. These are 45 * handy when a regular &drm_encoder entity isn't enough to represent the entire 46 * encoder chain. 47 * 48 * A bridge is always attached to a single &drm_encoder at a time, but can be 49 * either connected to it directly, or through a chain of bridges:: 50 * 51 * [ CRTC ---> ] Encoder ---> Bridge A ---> Bridge B 52 * 53 * Here, the output of the encoder feeds to bridge A, and that furthers feeds to 54 * bridge B. Bridge chains can be arbitrarily long, and shall be fully linear: 55 * Chaining multiple bridges to the output of a bridge, or the same bridge to 56 * the output of different bridges, is not supported. 57 * 58 * &drm_bridge, like &drm_panel, aren't &drm_mode_object entities like planes, 59 * CRTCs, encoders or connectors and hence are not visible to userspace. They 60 * just provide additional hooks to get the desired output at the end of the 61 * encoder chain. 62 */ 63 64 /** 65 * DOC: display driver integration 66 * 67 * Display drivers are responsible for linking encoders with the first bridge 68 * in the chains. This is done by acquiring the appropriate bridge with 69 * devm_drm_of_get_bridge(). Once acquired, the bridge shall be attached to the 70 * encoder with a call to drm_bridge_attach(). 71 * 72 * Bridges are responsible for linking themselves with the next bridge in the 73 * chain, if any. This is done the same way as for encoders, with the call to 74 * drm_bridge_attach() occurring in the &drm_bridge_funcs.attach operation. 75 * 76 * Once these links are created, the bridges can participate along with encoder 77 * functions to perform mode validation and fixup (through 78 * drm_bridge_chain_mode_valid() and drm_atomic_bridge_chain_check()), mode 79 * setting (through drm_bridge_chain_mode_set()), enable (through 80 * drm_atomic_bridge_chain_pre_enable() and drm_atomic_bridge_chain_enable()) 81 * and disable (through drm_atomic_bridge_chain_disable() and 82 * drm_atomic_bridge_chain_post_disable()). Those functions call the 83 * corresponding operations provided in &drm_bridge_funcs in sequence for all 84 * bridges in the chain. 85 * 86 * For display drivers that use the atomic helpers 87 * drm_atomic_helper_check_modeset(), 88 * drm_atomic_helper_commit_modeset_enables() and 89 * drm_atomic_helper_commit_modeset_disables() (either directly in hand-rolled 90 * commit check and commit tail handlers, or through the higher-level 91 * drm_atomic_helper_check() and drm_atomic_helper_commit_tail() or 92 * drm_atomic_helper_commit_tail_rpm() helpers), this is done transparently and 93 * requires no intervention from the driver. For other drivers, the relevant 94 * DRM bridge chain functions shall be called manually. 95 * 96 * Bridges also participate in implementing the &drm_connector at the end of 97 * the bridge chain. Display drivers may use the drm_bridge_connector_init() 98 * helper to create the &drm_connector, or implement it manually on top of the 99 * connector-related operations exposed by the bridge (see the overview 100 * documentation of bridge operations for more details). 101 */ 102 103 /** 104 * DOC: special care dsi 105 * 106 * The interaction between the bridges and other frameworks involved in 107 * the probing of the upstream driver and the bridge driver can be 108 * challenging. Indeed, there's multiple cases that needs to be 109 * considered: 110 * 111 * - The upstream driver doesn't use the component framework and isn't a 112 * MIPI-DSI host. In this case, the bridge driver will probe at some 113 * point and the upstream driver should try to probe again by returning 114 * EPROBE_DEFER as long as the bridge driver hasn't probed. 115 * 116 * - The upstream driver doesn't use the component framework, but is a 117 * MIPI-DSI host. The bridge device uses the MIPI-DCS commands to be 118 * controlled. In this case, the bridge device is a child of the 119 * display device and when it will probe it's assured that the display 120 * device (and MIPI-DSI host) is present. The upstream driver will be 121 * assured that the bridge driver is connected between the 122 * &mipi_dsi_host_ops.attach and &mipi_dsi_host_ops.detach operations. 123 * Therefore, it must run mipi_dsi_host_register() in its probe 124 * function, and then run drm_bridge_attach() in its 125 * &mipi_dsi_host_ops.attach hook. 126 * 127 * - The upstream driver uses the component framework and is a MIPI-DSI 128 * host. The bridge device uses the MIPI-DCS commands to be 129 * controlled. This is the same situation than above, and can run 130 * mipi_dsi_host_register() in either its probe or bind hooks. 131 * 132 * - The upstream driver uses the component framework and is a MIPI-DSI 133 * host. The bridge device uses a separate bus (such as I2C) to be 134 * controlled. In this case, there's no correlation between the probe 135 * of the bridge and upstream drivers, so care must be taken to avoid 136 * an endless EPROBE_DEFER loop, with each driver waiting for the 137 * other to probe. 138 * 139 * The ideal pattern to cover the last item (and all the others in the 140 * MIPI-DSI host driver case) is to split the operations like this: 141 * 142 * - The MIPI-DSI host driver must run mipi_dsi_host_register() in its 143 * probe hook. It will make sure that the MIPI-DSI host sticks around, 144 * and that the driver's bind can be called. 145 * 146 * - In its probe hook, the bridge driver must try to find its MIPI-DSI 147 * host, register as a MIPI-DSI device and attach the MIPI-DSI device 148 * to its host. The bridge driver is now functional. 149 * 150 * - In its &struct mipi_dsi_host_ops.attach hook, the MIPI-DSI host can 151 * now add its component. Its bind hook will now be called and since 152 * the bridge driver is attached and registered, we can now look for 153 * and attach it. 154 * 155 * At this point, we're now certain that both the upstream driver and 156 * the bridge driver are functional and we can't have a deadlock-like 157 * situation when probing. 158 */ 159 160 /** 161 * DOC: dsi bridge operations 162 * 163 * DSI host interfaces are expected to be implemented as bridges rather than 164 * encoders, however there are a few aspects of their operation that need to 165 * be defined in order to provide a consistent interface. 166 * 167 * A DSI host should keep the PHY powered down until the pre_enable operation is 168 * called. All lanes are in an undefined idle state up to this point, and it 169 * must not be assumed that it is LP-11. 170 * pre_enable should initialise the PHY, set the data lanes to LP-11, and the 171 * clock lane to either LP-11 or HS depending on the mode_flag 172 * %MIPI_DSI_CLOCK_NON_CONTINUOUS. 173 * 174 * Ordinarily the downstream bridge DSI peripheral pre_enable will have been 175 * called before the DSI host. If the DSI peripheral requires LP-11 and/or 176 * the clock lane to be in HS mode prior to pre_enable, then it can set the 177 * &pre_enable_prev_first flag to request the pre_enable (and 178 * post_disable) order to be altered to enable the DSI host first. 179 * 180 * Either the CRTC being enabled, or the DSI host enable operation should switch 181 * the host to actively transmitting video on the data lanes. 182 * 183 * The reverse also applies. The DSI host disable operation or stopping the CRTC 184 * should stop transmitting video, and the data lanes should return to the LP-11 185 * state. The DSI host &post_disable operation should disable the PHY. 186 * If the &pre_enable_prev_first flag is set, then the DSI peripheral's 187 * bridge &post_disable will be called before the DSI host's post_disable. 188 * 189 * Whilst it is valid to call &host_transfer prior to pre_enable or after 190 * post_disable, the exact state of the lanes is undefined at this point. The 191 * DSI host should initialise the interface, transmit the data, and then disable 192 * the interface again. 193 * 194 * Ultra Low Power State (ULPS) is not explicitly supported by DRM. If 195 * implemented, it therefore needs to be handled entirely within the DSI Host 196 * driver. 197 */ 198 199 static DEFINE_MUTEX(bridge_lock); 200 static LIST_HEAD(bridge_list); 201 202 static void __drm_bridge_free(struct kref *kref) 203 { 204 struct drm_bridge *bridge = container_of(kref, struct drm_bridge, refcount); 205 206 kfree(bridge->container); 207 } 208 209 /** 210 * drm_bridge_get - Acquire a bridge reference 211 * @bridge: DRM bridge 212 * 213 * This function increments the bridge's refcount. 214 * 215 * Returns: 216 * Pointer to @bridge. 217 */ 218 struct drm_bridge *drm_bridge_get(struct drm_bridge *bridge) 219 { 220 if (bridge) 221 kref_get(&bridge->refcount); 222 223 return bridge; 224 } 225 EXPORT_SYMBOL(drm_bridge_get); 226 227 /** 228 * drm_bridge_put - Release a bridge reference 229 * @bridge: DRM bridge 230 * 231 * This function decrements the bridge's reference count and frees the 232 * object if the reference count drops to zero. 233 */ 234 void drm_bridge_put(struct drm_bridge *bridge) 235 { 236 if (bridge) 237 kref_put(&bridge->refcount, __drm_bridge_free); 238 } 239 EXPORT_SYMBOL(drm_bridge_put); 240 241 /** 242 * drm_bridge_put_void - wrapper to drm_bridge_put() taking a void pointer 243 * 244 * @data: pointer to @struct drm_bridge, cast to a void pointer 245 * 246 * Wrapper of drm_bridge_put() to be used when a function taking a void 247 * pointer is needed, for example as a devm action. 248 */ 249 static void drm_bridge_put_void(void *data) 250 { 251 struct drm_bridge *bridge = (struct drm_bridge *)data; 252 253 drm_bridge_put(bridge); 254 } 255 256 void *__devm_drm_bridge_alloc(struct device *dev, size_t size, size_t offset, 257 const struct drm_bridge_funcs *funcs) 258 { 259 void *container; 260 struct drm_bridge *bridge; 261 int err; 262 263 if (!funcs) { 264 dev_warn(dev, "Missing funcs pointer\n"); 265 return ERR_PTR(-EINVAL); 266 } 267 268 container = kzalloc(size, GFP_KERNEL); 269 if (!container) 270 return ERR_PTR(-ENOMEM); 271 272 bridge = container + offset; 273 bridge->container = container; 274 bridge->funcs = funcs; 275 kref_init(&bridge->refcount); 276 277 err = devm_add_action_or_reset(dev, drm_bridge_put_void, bridge); 278 if (err) 279 return ERR_PTR(err); 280 281 return container; 282 } 283 EXPORT_SYMBOL(__devm_drm_bridge_alloc); 284 285 /** 286 * drm_bridge_add - add the given bridge to the global bridge list 287 * 288 * @bridge: bridge control structure 289 * 290 * The bridge to be added must have been allocated by 291 * devm_drm_bridge_alloc(). 292 */ 293 void drm_bridge_add(struct drm_bridge *bridge) 294 { 295 mutex_init(&bridge->hpd_mutex); 296 297 if (bridge->ops & DRM_BRIDGE_OP_HDMI) 298 bridge->ycbcr_420_allowed = !!(bridge->supported_formats & 299 BIT(HDMI_COLORSPACE_YUV420)); 300 301 mutex_lock(&bridge_lock); 302 list_add_tail(&bridge->list, &bridge_list); 303 mutex_unlock(&bridge_lock); 304 } 305 EXPORT_SYMBOL(drm_bridge_add); 306 307 static void drm_bridge_remove_void(void *bridge) 308 { 309 drm_bridge_remove(bridge); 310 } 311 312 /** 313 * devm_drm_bridge_add - devm managed version of drm_bridge_add() 314 * 315 * @dev: device to tie the bridge lifetime to 316 * @bridge: bridge control structure 317 * 318 * This is the managed version of drm_bridge_add() which automatically 319 * calls drm_bridge_remove() when @dev is unbound. 320 * 321 * Return: 0 if no error or negative error code. 322 */ 323 int devm_drm_bridge_add(struct device *dev, struct drm_bridge *bridge) 324 { 325 drm_bridge_add(bridge); 326 return devm_add_action_or_reset(dev, drm_bridge_remove_void, bridge); 327 } 328 EXPORT_SYMBOL(devm_drm_bridge_add); 329 330 /** 331 * drm_bridge_remove - remove the given bridge from the global bridge list 332 * 333 * @bridge: bridge control structure 334 */ 335 void drm_bridge_remove(struct drm_bridge *bridge) 336 { 337 mutex_lock(&bridge_lock); 338 list_del_init(&bridge->list); 339 mutex_unlock(&bridge_lock); 340 341 mutex_destroy(&bridge->hpd_mutex); 342 } 343 EXPORT_SYMBOL(drm_bridge_remove); 344 345 static struct drm_private_state * 346 drm_bridge_atomic_duplicate_priv_state(struct drm_private_obj *obj) 347 { 348 struct drm_bridge *bridge = drm_priv_to_bridge(obj); 349 struct drm_bridge_state *state; 350 351 state = bridge->funcs->atomic_duplicate_state(bridge); 352 return state ? &state->base : NULL; 353 } 354 355 static void 356 drm_bridge_atomic_destroy_priv_state(struct drm_private_obj *obj, 357 struct drm_private_state *s) 358 { 359 struct drm_bridge_state *state = drm_priv_to_bridge_state(s); 360 struct drm_bridge *bridge = drm_priv_to_bridge(obj); 361 362 bridge->funcs->atomic_destroy_state(bridge, state); 363 } 364 365 static const struct drm_private_state_funcs drm_bridge_priv_state_funcs = { 366 .atomic_duplicate_state = drm_bridge_atomic_duplicate_priv_state, 367 .atomic_destroy_state = drm_bridge_atomic_destroy_priv_state, 368 }; 369 370 static bool drm_bridge_is_atomic(struct drm_bridge *bridge) 371 { 372 return bridge->funcs->atomic_reset != NULL; 373 } 374 375 /** 376 * drm_bridge_attach - attach the bridge to an encoder's chain 377 * 378 * @encoder: DRM encoder 379 * @bridge: bridge to attach 380 * @previous: previous bridge in the chain (optional) 381 * @flags: DRM_BRIDGE_ATTACH_* flags 382 * 383 * Called by a kms driver to link the bridge to an encoder's chain. The previous 384 * argument specifies the previous bridge in the chain. If NULL, the bridge is 385 * linked directly at the encoder's output. Otherwise it is linked at the 386 * previous bridge's output. 387 * 388 * If non-NULL the previous bridge must be already attached by a call to this 389 * function. 390 * 391 * Note that bridges attached to encoders are auto-detached during encoder 392 * cleanup in drm_encoder_cleanup(), so drm_bridge_attach() should generally 393 * *not* be balanced with a drm_bridge_detach() in driver code. 394 * 395 * RETURNS: 396 * Zero on success, error code on failure 397 */ 398 int drm_bridge_attach(struct drm_encoder *encoder, struct drm_bridge *bridge, 399 struct drm_bridge *previous, 400 enum drm_bridge_attach_flags flags) 401 { 402 int ret; 403 404 if (!encoder || !bridge) 405 return -EINVAL; 406 407 if (previous && (!previous->dev || previous->encoder != encoder)) 408 return -EINVAL; 409 410 if (bridge->dev) 411 return -EBUSY; 412 413 bridge->dev = encoder->dev; 414 bridge->encoder = encoder; 415 416 if (previous) 417 list_add(&bridge->chain_node, &previous->chain_node); 418 else 419 list_add(&bridge->chain_node, &encoder->bridge_chain); 420 421 if (bridge->funcs->attach) { 422 ret = bridge->funcs->attach(bridge, encoder, flags); 423 if (ret < 0) 424 goto err_reset_bridge; 425 } 426 427 if (drm_bridge_is_atomic(bridge)) { 428 struct drm_bridge_state *state; 429 430 state = bridge->funcs->atomic_reset(bridge); 431 if (IS_ERR(state)) { 432 ret = PTR_ERR(state); 433 goto err_detach_bridge; 434 } 435 436 drm_atomic_private_obj_init(bridge->dev, &bridge->base, 437 &state->base, 438 &drm_bridge_priv_state_funcs); 439 } 440 441 return 0; 442 443 err_detach_bridge: 444 if (bridge->funcs->detach) 445 bridge->funcs->detach(bridge); 446 447 err_reset_bridge: 448 bridge->dev = NULL; 449 bridge->encoder = NULL; 450 list_del(&bridge->chain_node); 451 452 if (ret != -EPROBE_DEFER) 453 DRM_ERROR("failed to attach bridge %pOF to encoder %s: %d\n", 454 bridge->of_node, encoder->name, ret); 455 else 456 dev_err_probe(encoder->dev->dev, -EPROBE_DEFER, 457 "failed to attach bridge %pOF to encoder %s\n", 458 bridge->of_node, encoder->name); 459 460 return ret; 461 } 462 EXPORT_SYMBOL(drm_bridge_attach); 463 464 void drm_bridge_detach(struct drm_bridge *bridge) 465 { 466 if (WARN_ON(!bridge)) 467 return; 468 469 if (WARN_ON(!bridge->dev)) 470 return; 471 472 if (drm_bridge_is_atomic(bridge)) 473 drm_atomic_private_obj_fini(&bridge->base); 474 475 if (bridge->funcs->detach) 476 bridge->funcs->detach(bridge); 477 478 list_del(&bridge->chain_node); 479 bridge->dev = NULL; 480 } 481 482 /** 483 * DOC: bridge operations 484 * 485 * Bridge drivers expose operations through the &drm_bridge_funcs structure. 486 * The DRM internals (atomic and CRTC helpers) use the helpers defined in 487 * drm_bridge.c to call bridge operations. Those operations are divided in 488 * three big categories to support different parts of the bridge usage. 489 * 490 * - The encoder-related operations support control of the bridges in the 491 * chain, and are roughly counterparts to the &drm_encoder_helper_funcs 492 * operations. They are used by the legacy CRTC and the atomic modeset 493 * helpers to perform mode validation, fixup and setting, and enable and 494 * disable the bridge automatically. 495 * 496 * The enable and disable operations are split in 497 * &drm_bridge_funcs.pre_enable, &drm_bridge_funcs.enable, 498 * &drm_bridge_funcs.disable and &drm_bridge_funcs.post_disable to provide 499 * finer-grained control. 500 * 501 * Bridge drivers may implement the legacy version of those operations, or 502 * the atomic version (prefixed with atomic\_), in which case they shall also 503 * implement the atomic state bookkeeping operations 504 * (&drm_bridge_funcs.atomic_duplicate_state, 505 * &drm_bridge_funcs.atomic_destroy_state and &drm_bridge_funcs.reset). 506 * Mixing atomic and non-atomic versions of the operations is not supported. 507 * 508 * - The bus format negotiation operations 509 * &drm_bridge_funcs.atomic_get_output_bus_fmts and 510 * &drm_bridge_funcs.atomic_get_input_bus_fmts allow bridge drivers to 511 * negotiate the formats transmitted between bridges in the chain when 512 * multiple formats are supported. Negotiation for formats is performed 513 * transparently for display drivers by the atomic modeset helpers. Only 514 * atomic versions of those operations exist, bridge drivers that need to 515 * implement them shall thus also implement the atomic version of the 516 * encoder-related operations. This feature is not supported by the legacy 517 * CRTC helpers. 518 * 519 * - The connector-related operations support implementing a &drm_connector 520 * based on a chain of bridges. DRM bridges traditionally create a 521 * &drm_connector for bridges meant to be used at the end of the chain. This 522 * puts additional burden on bridge drivers, especially for bridges that may 523 * be used in the middle of a chain or at the end of it. Furthermore, it 524 * requires all operations of the &drm_connector to be handled by a single 525 * bridge, which doesn't always match the hardware architecture. 526 * 527 * To simplify bridge drivers and make the connector implementation more 528 * flexible, a new model allows bridges to unconditionally skip creation of 529 * &drm_connector and instead expose &drm_bridge_funcs operations to support 530 * an externally-implemented &drm_connector. Those operations are 531 * &drm_bridge_funcs.detect, &drm_bridge_funcs.get_modes, 532 * &drm_bridge_funcs.get_edid, &drm_bridge_funcs.hpd_notify, 533 * &drm_bridge_funcs.hpd_enable and &drm_bridge_funcs.hpd_disable. When 534 * implemented, display drivers shall create a &drm_connector instance for 535 * each chain of bridges, and implement those connector instances based on 536 * the bridge connector operations. 537 * 538 * Bridge drivers shall implement the connector-related operations for all 539 * the features that the bridge hardware support. For instance, if a bridge 540 * supports reading EDID, the &drm_bridge_funcs.get_edid shall be 541 * implemented. This however doesn't mean that the DDC lines are wired to the 542 * bridge on a particular platform, as they could also be connected to an I2C 543 * controller of the SoC. Support for the connector-related operations on the 544 * running platform is reported through the &drm_bridge.ops flags. Bridge 545 * drivers shall detect which operations they can support on the platform 546 * (usually this information is provided by ACPI or DT), and set the 547 * &drm_bridge.ops flags for all supported operations. A flag shall only be 548 * set if the corresponding &drm_bridge_funcs operation is implemented, but 549 * an implemented operation doesn't necessarily imply that the corresponding 550 * flag will be set. Display drivers shall use the &drm_bridge.ops flags to 551 * decide which bridge to delegate a connector operation to. This mechanism 552 * allows providing a single static const &drm_bridge_funcs instance in 553 * bridge drivers, improving security by storing function pointers in 554 * read-only memory. 555 * 556 * In order to ease transition, bridge drivers may support both the old and 557 * new models by making connector creation optional and implementing the 558 * connected-related bridge operations. Connector creation is then controlled 559 * by the flags argument to the drm_bridge_attach() function. Display drivers 560 * that support the new model and create connectors themselves shall set the 561 * %DRM_BRIDGE_ATTACH_NO_CONNECTOR flag, and bridge drivers shall then skip 562 * connector creation. For intermediate bridges in the chain, the flag shall 563 * be passed to the drm_bridge_attach() call for the downstream bridge. 564 * Bridge drivers that implement the new model only shall return an error 565 * from their &drm_bridge_funcs.attach handler when the 566 * %DRM_BRIDGE_ATTACH_NO_CONNECTOR flag is not set. New display drivers 567 * should use the new model, and convert the bridge drivers they use if 568 * needed, in order to gradually transition to the new model. 569 */ 570 571 /** 572 * drm_bridge_chain_mode_valid - validate the mode against all bridges in the 573 * encoder chain. 574 * @bridge: bridge control structure 575 * @info: display info against which the mode shall be validated 576 * @mode: desired mode to be validated 577 * 578 * Calls &drm_bridge_funcs.mode_valid for all the bridges in the encoder 579 * chain, starting from the first bridge to the last. If at least one bridge 580 * does not accept the mode the function returns the error code. 581 * 582 * Note: the bridge passed should be the one closest to the encoder. 583 * 584 * RETURNS: 585 * MODE_OK on success, drm_mode_status Enum error code on failure 586 */ 587 enum drm_mode_status 588 drm_bridge_chain_mode_valid(struct drm_bridge *bridge, 589 const struct drm_display_info *info, 590 const struct drm_display_mode *mode) 591 { 592 struct drm_encoder *encoder; 593 594 if (!bridge) 595 return MODE_OK; 596 597 encoder = bridge->encoder; 598 list_for_each_entry_from(bridge, &encoder->bridge_chain, chain_node) { 599 enum drm_mode_status ret; 600 601 if (!bridge->funcs->mode_valid) 602 continue; 603 604 ret = bridge->funcs->mode_valid(bridge, info, mode); 605 if (ret != MODE_OK) 606 return ret; 607 } 608 609 return MODE_OK; 610 } 611 EXPORT_SYMBOL(drm_bridge_chain_mode_valid); 612 613 /** 614 * drm_bridge_chain_mode_set - set proposed mode for all bridges in the 615 * encoder chain 616 * @bridge: bridge control structure 617 * @mode: desired mode to be set for the encoder chain 618 * @adjusted_mode: updated mode that works for this encoder chain 619 * 620 * Calls &drm_bridge_funcs.mode_set op for all the bridges in the 621 * encoder chain, starting from the first bridge to the last. 622 * 623 * Note: the bridge passed should be the one closest to the encoder 624 */ 625 void drm_bridge_chain_mode_set(struct drm_bridge *bridge, 626 const struct drm_display_mode *mode, 627 const struct drm_display_mode *adjusted_mode) 628 { 629 struct drm_encoder *encoder; 630 631 if (!bridge) 632 return; 633 634 encoder = bridge->encoder; 635 list_for_each_entry_from(bridge, &encoder->bridge_chain, chain_node) { 636 if (bridge->funcs->mode_set) 637 bridge->funcs->mode_set(bridge, mode, adjusted_mode); 638 } 639 } 640 EXPORT_SYMBOL(drm_bridge_chain_mode_set); 641 642 /** 643 * drm_atomic_bridge_chain_disable - disables all bridges in the encoder chain 644 * @bridge: bridge control structure 645 * @state: atomic state being committed 646 * 647 * Calls &drm_bridge_funcs.atomic_disable (falls back on 648 * &drm_bridge_funcs.disable) op for all the bridges in the encoder chain, 649 * starting from the last bridge to the first. These are called before calling 650 * &drm_encoder_helper_funcs.atomic_disable 651 * 652 * Note: the bridge passed should be the one closest to the encoder 653 */ 654 void drm_atomic_bridge_chain_disable(struct drm_bridge *bridge, 655 struct drm_atomic_state *state) 656 { 657 struct drm_encoder *encoder; 658 struct drm_bridge *iter; 659 660 if (!bridge) 661 return; 662 663 encoder = bridge->encoder; 664 list_for_each_entry_reverse(iter, &encoder->bridge_chain, chain_node) { 665 if (iter->funcs->atomic_disable) { 666 iter->funcs->atomic_disable(iter, state); 667 } else if (iter->funcs->disable) { 668 iter->funcs->disable(iter); 669 } 670 671 if (iter == bridge) 672 break; 673 } 674 } 675 EXPORT_SYMBOL(drm_atomic_bridge_chain_disable); 676 677 static void drm_atomic_bridge_call_post_disable(struct drm_bridge *bridge, 678 struct drm_atomic_state *state) 679 { 680 if (state && bridge->funcs->atomic_post_disable) 681 bridge->funcs->atomic_post_disable(bridge, state); 682 else if (bridge->funcs->post_disable) 683 bridge->funcs->post_disable(bridge); 684 } 685 686 /** 687 * drm_atomic_bridge_chain_post_disable - cleans up after disabling all bridges 688 * in the encoder chain 689 * @bridge: bridge control structure 690 * @state: atomic state being committed 691 * 692 * Calls &drm_bridge_funcs.atomic_post_disable (falls back on 693 * &drm_bridge_funcs.post_disable) op for all the bridges in the encoder chain, 694 * starting from the first bridge to the last. These are called after completing 695 * &drm_encoder_helper_funcs.atomic_disable 696 * 697 * If a bridge sets @pre_enable_prev_first, then the @post_disable for that 698 * bridge will be called before the previous one to reverse the @pre_enable 699 * calling direction. 700 * 701 * Example: 702 * Bridge A ---> Bridge B ---> Bridge C ---> Bridge D ---> Bridge E 703 * 704 * With pre_enable_prev_first flag enable in Bridge B, D, E then the resulting 705 * @post_disable order would be, 706 * Bridge B, Bridge A, Bridge E, Bridge D, Bridge C. 707 * 708 * Note: the bridge passed should be the one closest to the encoder 709 */ 710 void drm_atomic_bridge_chain_post_disable(struct drm_bridge *bridge, 711 struct drm_atomic_state *state) 712 { 713 struct drm_encoder *encoder; 714 struct drm_bridge *next, *limit; 715 716 if (!bridge) 717 return; 718 719 encoder = bridge->encoder; 720 721 list_for_each_entry_from(bridge, &encoder->bridge_chain, chain_node) { 722 limit = NULL; 723 724 if (!list_is_last(&bridge->chain_node, &encoder->bridge_chain)) { 725 next = list_next_entry(bridge, chain_node); 726 727 if (next->pre_enable_prev_first) { 728 /* next bridge had requested that prev 729 * was enabled first, so disabled last 730 */ 731 limit = next; 732 733 /* Find the next bridge that has NOT requested 734 * prev to be enabled first / disabled last 735 */ 736 list_for_each_entry_from(next, &encoder->bridge_chain, 737 chain_node) { 738 if (!next->pre_enable_prev_first) { 739 next = list_prev_entry(next, chain_node); 740 limit = next; 741 break; 742 } 743 744 if (list_is_last(&next->chain_node, 745 &encoder->bridge_chain)) { 746 limit = next; 747 break; 748 } 749 } 750 751 /* Call these bridges in reverse order */ 752 list_for_each_entry_from_reverse(next, &encoder->bridge_chain, 753 chain_node) { 754 if (next == bridge) 755 break; 756 757 drm_atomic_bridge_call_post_disable(next, 758 state); 759 } 760 } 761 } 762 763 drm_atomic_bridge_call_post_disable(bridge, state); 764 765 if (limit) 766 /* Jump all bridges that we have already post_disabled */ 767 bridge = limit; 768 } 769 } 770 EXPORT_SYMBOL(drm_atomic_bridge_chain_post_disable); 771 772 static void drm_atomic_bridge_call_pre_enable(struct drm_bridge *bridge, 773 struct drm_atomic_state *state) 774 { 775 if (state && bridge->funcs->atomic_pre_enable) 776 bridge->funcs->atomic_pre_enable(bridge, state); 777 else if (bridge->funcs->pre_enable) 778 bridge->funcs->pre_enable(bridge); 779 } 780 781 /** 782 * drm_atomic_bridge_chain_pre_enable - prepares for enabling all bridges in 783 * the encoder chain 784 * @bridge: bridge control structure 785 * @state: atomic state being committed 786 * 787 * Calls &drm_bridge_funcs.atomic_pre_enable (falls back on 788 * &drm_bridge_funcs.pre_enable) op for all the bridges in the encoder chain, 789 * starting from the last bridge to the first. These are called before calling 790 * &drm_encoder_helper_funcs.atomic_enable 791 * 792 * If a bridge sets @pre_enable_prev_first, then the pre_enable for the 793 * prev bridge will be called before pre_enable of this bridge. 794 * 795 * Example: 796 * Bridge A ---> Bridge B ---> Bridge C ---> Bridge D ---> Bridge E 797 * 798 * With pre_enable_prev_first flag enable in Bridge B, D, E then the resulting 799 * @pre_enable order would be, 800 * Bridge C, Bridge D, Bridge E, Bridge A, Bridge B. 801 * 802 * Note: the bridge passed should be the one closest to the encoder 803 */ 804 void drm_atomic_bridge_chain_pre_enable(struct drm_bridge *bridge, 805 struct drm_atomic_state *state) 806 { 807 struct drm_encoder *encoder; 808 struct drm_bridge *iter, *next, *limit; 809 810 if (!bridge) 811 return; 812 813 encoder = bridge->encoder; 814 815 list_for_each_entry_reverse(iter, &encoder->bridge_chain, chain_node) { 816 if (iter->pre_enable_prev_first) { 817 next = iter; 818 limit = bridge; 819 list_for_each_entry_from_reverse(next, 820 &encoder->bridge_chain, 821 chain_node) { 822 if (next == bridge) 823 break; 824 825 if (!next->pre_enable_prev_first) { 826 /* Found first bridge that does NOT 827 * request prev to be enabled first 828 */ 829 limit = next; 830 break; 831 } 832 } 833 834 list_for_each_entry_from(next, &encoder->bridge_chain, chain_node) { 835 /* Call requested prev bridge pre_enable 836 * in order. 837 */ 838 if (next == iter) 839 /* At the first bridge to request prev 840 * bridges called first. 841 */ 842 break; 843 844 drm_atomic_bridge_call_pre_enable(next, state); 845 } 846 } 847 848 drm_atomic_bridge_call_pre_enable(iter, state); 849 850 if (iter->pre_enable_prev_first) 851 /* Jump all bridges that we have already pre_enabled */ 852 iter = limit; 853 854 if (iter == bridge) 855 break; 856 } 857 } 858 EXPORT_SYMBOL(drm_atomic_bridge_chain_pre_enable); 859 860 /** 861 * drm_atomic_bridge_chain_enable - enables all bridges in the encoder chain 862 * @bridge: bridge control structure 863 * @state: atomic state being committed 864 * 865 * Calls &drm_bridge_funcs.atomic_enable (falls back on 866 * &drm_bridge_funcs.enable) op for all the bridges in the encoder chain, 867 * starting from the first bridge to the last. These are called after completing 868 * &drm_encoder_helper_funcs.atomic_enable 869 * 870 * Note: the bridge passed should be the one closest to the encoder 871 */ 872 void drm_atomic_bridge_chain_enable(struct drm_bridge *bridge, 873 struct drm_atomic_state *state) 874 { 875 struct drm_encoder *encoder; 876 877 if (!bridge) 878 return; 879 880 encoder = bridge->encoder; 881 list_for_each_entry_from(bridge, &encoder->bridge_chain, chain_node) { 882 if (bridge->funcs->atomic_enable) { 883 bridge->funcs->atomic_enable(bridge, state); 884 } else if (bridge->funcs->enable) { 885 bridge->funcs->enable(bridge); 886 } 887 } 888 } 889 EXPORT_SYMBOL(drm_atomic_bridge_chain_enable); 890 891 static int drm_atomic_bridge_check(struct drm_bridge *bridge, 892 struct drm_crtc_state *crtc_state, 893 struct drm_connector_state *conn_state) 894 { 895 if (bridge->funcs->atomic_check) { 896 struct drm_bridge_state *bridge_state; 897 int ret; 898 899 bridge_state = drm_atomic_get_new_bridge_state(crtc_state->state, 900 bridge); 901 if (WARN_ON(!bridge_state)) 902 return -EINVAL; 903 904 ret = bridge->funcs->atomic_check(bridge, bridge_state, 905 crtc_state, conn_state); 906 if (ret) 907 return ret; 908 } else if (bridge->funcs->mode_fixup) { 909 if (!bridge->funcs->mode_fixup(bridge, &crtc_state->mode, 910 &crtc_state->adjusted_mode)) 911 return -EINVAL; 912 } 913 914 return 0; 915 } 916 917 static int select_bus_fmt_recursive(struct drm_bridge *first_bridge, 918 struct drm_bridge *cur_bridge, 919 struct drm_crtc_state *crtc_state, 920 struct drm_connector_state *conn_state, 921 u32 out_bus_fmt) 922 { 923 unsigned int i, num_in_bus_fmts = 0; 924 struct drm_bridge_state *cur_state; 925 struct drm_bridge *prev_bridge; 926 u32 *in_bus_fmts; 927 int ret; 928 929 prev_bridge = drm_bridge_get_prev_bridge(cur_bridge); 930 cur_state = drm_atomic_get_new_bridge_state(crtc_state->state, 931 cur_bridge); 932 933 /* 934 * If bus format negotiation is not supported by this bridge, let's 935 * pass MEDIA_BUS_FMT_FIXED to the previous bridge in the chain and 936 * hope that it can handle this situation gracefully (by providing 937 * appropriate default values). 938 */ 939 if (!cur_bridge->funcs->atomic_get_input_bus_fmts) { 940 if (cur_bridge != first_bridge) { 941 ret = select_bus_fmt_recursive(first_bridge, 942 prev_bridge, crtc_state, 943 conn_state, 944 MEDIA_BUS_FMT_FIXED); 945 if (ret) 946 return ret; 947 } 948 949 /* 950 * Driver does not implement the atomic state hooks, but that's 951 * fine, as long as it does not access the bridge state. 952 */ 953 if (cur_state) { 954 cur_state->input_bus_cfg.format = MEDIA_BUS_FMT_FIXED; 955 cur_state->output_bus_cfg.format = out_bus_fmt; 956 } 957 958 return 0; 959 } 960 961 /* 962 * If the driver implements ->atomic_get_input_bus_fmts() it 963 * should also implement the atomic state hooks. 964 */ 965 if (WARN_ON(!cur_state)) 966 return -EINVAL; 967 968 in_bus_fmts = cur_bridge->funcs->atomic_get_input_bus_fmts(cur_bridge, 969 cur_state, 970 crtc_state, 971 conn_state, 972 out_bus_fmt, 973 &num_in_bus_fmts); 974 if (!num_in_bus_fmts) 975 return -ENOTSUPP; 976 else if (!in_bus_fmts) 977 return -ENOMEM; 978 979 if (first_bridge == cur_bridge) { 980 cur_state->input_bus_cfg.format = in_bus_fmts[0]; 981 cur_state->output_bus_cfg.format = out_bus_fmt; 982 kfree(in_bus_fmts); 983 return 0; 984 } 985 986 for (i = 0; i < num_in_bus_fmts; i++) { 987 ret = select_bus_fmt_recursive(first_bridge, prev_bridge, 988 crtc_state, conn_state, 989 in_bus_fmts[i]); 990 if (ret != -ENOTSUPP) 991 break; 992 } 993 994 if (!ret) { 995 cur_state->input_bus_cfg.format = in_bus_fmts[i]; 996 cur_state->output_bus_cfg.format = out_bus_fmt; 997 } 998 999 kfree(in_bus_fmts); 1000 return ret; 1001 } 1002 1003 /* 1004 * This function is called by &drm_atomic_bridge_chain_check() just before 1005 * calling &drm_bridge_funcs.atomic_check() on all elements of the chain. 1006 * It performs bus format negotiation between bridge elements. The negotiation 1007 * happens in reverse order, starting from the last element in the chain up to 1008 * @bridge. 1009 * 1010 * Negotiation starts by retrieving supported output bus formats on the last 1011 * bridge element and testing them one by one. The test is recursive, meaning 1012 * that for each tested output format, the whole chain will be walked backward, 1013 * and each element will have to choose an input bus format that can be 1014 * transcoded to the requested output format. When a bridge element does not 1015 * support transcoding into a specific output format -ENOTSUPP is returned and 1016 * the next bridge element will have to try a different format. If none of the 1017 * combinations worked, -ENOTSUPP is returned and the atomic modeset will fail. 1018 * 1019 * This implementation is relying on 1020 * &drm_bridge_funcs.atomic_get_output_bus_fmts() and 1021 * &drm_bridge_funcs.atomic_get_input_bus_fmts() to gather supported 1022 * input/output formats. 1023 * 1024 * When &drm_bridge_funcs.atomic_get_output_bus_fmts() is not implemented by 1025 * the last element of the chain, &drm_atomic_bridge_chain_select_bus_fmts() 1026 * tries a single format: &drm_connector.display_info.bus_formats[0] if 1027 * available, MEDIA_BUS_FMT_FIXED otherwise. 1028 * 1029 * When &drm_bridge_funcs.atomic_get_input_bus_fmts() is not implemented, 1030 * &drm_atomic_bridge_chain_select_bus_fmts() skips the negotiation on the 1031 * bridge element that lacks this hook and asks the previous element in the 1032 * chain to try MEDIA_BUS_FMT_FIXED. It's up to bridge drivers to decide what 1033 * to do in that case (fail if they want to enforce bus format negotiation, or 1034 * provide a reasonable default if they need to support pipelines where not 1035 * all elements support bus format negotiation). 1036 */ 1037 static int 1038 drm_atomic_bridge_chain_select_bus_fmts(struct drm_bridge *bridge, 1039 struct drm_crtc_state *crtc_state, 1040 struct drm_connector_state *conn_state) 1041 { 1042 struct drm_connector *conn = conn_state->connector; 1043 struct drm_encoder *encoder = bridge->encoder; 1044 struct drm_bridge_state *last_bridge_state; 1045 unsigned int i, num_out_bus_fmts = 0; 1046 struct drm_bridge *last_bridge; 1047 u32 *out_bus_fmts; 1048 int ret = 0; 1049 1050 last_bridge = list_last_entry(&encoder->bridge_chain, 1051 struct drm_bridge, chain_node); 1052 last_bridge_state = drm_atomic_get_new_bridge_state(crtc_state->state, 1053 last_bridge); 1054 1055 if (last_bridge->funcs->atomic_get_output_bus_fmts) { 1056 const struct drm_bridge_funcs *funcs = last_bridge->funcs; 1057 1058 /* 1059 * If the driver implements ->atomic_get_output_bus_fmts() it 1060 * should also implement the atomic state hooks. 1061 */ 1062 if (WARN_ON(!last_bridge_state)) 1063 return -EINVAL; 1064 1065 out_bus_fmts = funcs->atomic_get_output_bus_fmts(last_bridge, 1066 last_bridge_state, 1067 crtc_state, 1068 conn_state, 1069 &num_out_bus_fmts); 1070 if (!num_out_bus_fmts) 1071 return -ENOTSUPP; 1072 else if (!out_bus_fmts) 1073 return -ENOMEM; 1074 } else { 1075 num_out_bus_fmts = 1; 1076 out_bus_fmts = kmalloc(sizeof(*out_bus_fmts), GFP_KERNEL); 1077 if (!out_bus_fmts) 1078 return -ENOMEM; 1079 1080 if (conn->display_info.num_bus_formats && 1081 conn->display_info.bus_formats) 1082 out_bus_fmts[0] = conn->display_info.bus_formats[0]; 1083 else 1084 out_bus_fmts[0] = MEDIA_BUS_FMT_FIXED; 1085 } 1086 1087 for (i = 0; i < num_out_bus_fmts; i++) { 1088 ret = select_bus_fmt_recursive(bridge, last_bridge, crtc_state, 1089 conn_state, out_bus_fmts[i]); 1090 if (ret != -ENOTSUPP) 1091 break; 1092 } 1093 1094 kfree(out_bus_fmts); 1095 1096 return ret; 1097 } 1098 1099 static void 1100 drm_atomic_bridge_propagate_bus_flags(struct drm_bridge *bridge, 1101 struct drm_connector *conn, 1102 struct drm_atomic_state *state) 1103 { 1104 struct drm_bridge_state *bridge_state, *next_bridge_state; 1105 struct drm_bridge *next_bridge; 1106 u32 output_flags = 0; 1107 1108 bridge_state = drm_atomic_get_new_bridge_state(state, bridge); 1109 1110 /* No bridge state attached to this bridge => nothing to propagate. */ 1111 if (!bridge_state) 1112 return; 1113 1114 next_bridge = drm_bridge_get_next_bridge(bridge); 1115 1116 /* 1117 * Let's try to apply the most common case here, that is, propagate 1118 * display_info flags for the last bridge, and propagate the input 1119 * flags of the next bridge element to the output end of the current 1120 * bridge when the bridge is not the last one. 1121 * There are exceptions to this rule, like when signal inversion is 1122 * happening at the board level, but that's something drivers can deal 1123 * with from their &drm_bridge_funcs.atomic_check() implementation by 1124 * simply overriding the flags value we've set here. 1125 */ 1126 if (!next_bridge) { 1127 output_flags = conn->display_info.bus_flags; 1128 } else { 1129 next_bridge_state = drm_atomic_get_new_bridge_state(state, 1130 next_bridge); 1131 /* 1132 * No bridge state attached to the next bridge, just leave the 1133 * flags to 0. 1134 */ 1135 if (next_bridge_state) 1136 output_flags = next_bridge_state->input_bus_cfg.flags; 1137 } 1138 1139 bridge_state->output_bus_cfg.flags = output_flags; 1140 1141 /* 1142 * Propagate the output flags to the input end of the bridge. Again, it's 1143 * not necessarily what all bridges want, but that's what most of them 1144 * do, and by doing that by default we avoid forcing drivers to 1145 * duplicate the "dummy propagation" logic. 1146 */ 1147 bridge_state->input_bus_cfg.flags = output_flags; 1148 } 1149 1150 /** 1151 * drm_atomic_bridge_chain_check() - Do an atomic check on the bridge chain 1152 * @bridge: bridge control structure 1153 * @crtc_state: new CRTC state 1154 * @conn_state: new connector state 1155 * 1156 * First trigger a bus format negotiation before calling 1157 * &drm_bridge_funcs.atomic_check() (falls back on 1158 * &drm_bridge_funcs.mode_fixup()) op for all the bridges in the encoder chain, 1159 * starting from the last bridge to the first. These are called before calling 1160 * &drm_encoder_helper_funcs.atomic_check() 1161 * 1162 * RETURNS: 1163 * 0 on success, a negative error code on failure 1164 */ 1165 int drm_atomic_bridge_chain_check(struct drm_bridge *bridge, 1166 struct drm_crtc_state *crtc_state, 1167 struct drm_connector_state *conn_state) 1168 { 1169 struct drm_connector *conn = conn_state->connector; 1170 struct drm_encoder *encoder; 1171 struct drm_bridge *iter; 1172 int ret; 1173 1174 if (!bridge) 1175 return 0; 1176 1177 ret = drm_atomic_bridge_chain_select_bus_fmts(bridge, crtc_state, 1178 conn_state); 1179 if (ret) 1180 return ret; 1181 1182 encoder = bridge->encoder; 1183 list_for_each_entry_reverse(iter, &encoder->bridge_chain, chain_node) { 1184 int ret; 1185 1186 /* 1187 * Bus flags are propagated by default. If a bridge needs to 1188 * tweak the input bus flags for any reason, it should happen 1189 * in its &drm_bridge_funcs.atomic_check() implementation such 1190 * that preceding bridges in the chain can propagate the new 1191 * bus flags. 1192 */ 1193 drm_atomic_bridge_propagate_bus_flags(iter, conn, 1194 crtc_state->state); 1195 1196 ret = drm_atomic_bridge_check(iter, crtc_state, conn_state); 1197 if (ret) 1198 return ret; 1199 1200 if (iter == bridge) 1201 break; 1202 } 1203 1204 return 0; 1205 } 1206 EXPORT_SYMBOL(drm_atomic_bridge_chain_check); 1207 1208 /** 1209 * drm_bridge_detect - check if anything is attached to the bridge output 1210 * @bridge: bridge control structure 1211 * 1212 * If the bridge supports output detection, as reported by the 1213 * DRM_BRIDGE_OP_DETECT bridge ops flag, call &drm_bridge_funcs.detect for the 1214 * bridge and return the connection status. Otherwise return 1215 * connector_status_unknown. 1216 * 1217 * RETURNS: 1218 * The detection status on success, or connector_status_unknown if the bridge 1219 * doesn't support output detection. 1220 */ 1221 enum drm_connector_status drm_bridge_detect(struct drm_bridge *bridge) 1222 { 1223 if (!(bridge->ops & DRM_BRIDGE_OP_DETECT)) 1224 return connector_status_unknown; 1225 1226 return bridge->funcs->detect(bridge); 1227 } 1228 EXPORT_SYMBOL_GPL(drm_bridge_detect); 1229 1230 /** 1231 * drm_bridge_get_modes - fill all modes currently valid for the sink into the 1232 * @connector 1233 * @bridge: bridge control structure 1234 * @connector: the connector to fill with modes 1235 * 1236 * If the bridge supports output modes retrieval, as reported by the 1237 * DRM_BRIDGE_OP_MODES bridge ops flag, call &drm_bridge_funcs.get_modes to 1238 * fill the connector with all valid modes and return the number of modes 1239 * added. Otherwise return 0. 1240 * 1241 * RETURNS: 1242 * The number of modes added to the connector. 1243 */ 1244 int drm_bridge_get_modes(struct drm_bridge *bridge, 1245 struct drm_connector *connector) 1246 { 1247 if (!(bridge->ops & DRM_BRIDGE_OP_MODES)) 1248 return 0; 1249 1250 return bridge->funcs->get_modes(bridge, connector); 1251 } 1252 EXPORT_SYMBOL_GPL(drm_bridge_get_modes); 1253 1254 /** 1255 * drm_bridge_edid_read - read the EDID data of the connected display 1256 * @bridge: bridge control structure 1257 * @connector: the connector to read EDID for 1258 * 1259 * If the bridge supports output EDID retrieval, as reported by the 1260 * DRM_BRIDGE_OP_EDID bridge ops flag, call &drm_bridge_funcs.edid_read to get 1261 * the EDID and return it. Otherwise return NULL. 1262 * 1263 * RETURNS: 1264 * The retrieved EDID on success, or NULL otherwise. 1265 */ 1266 const struct drm_edid *drm_bridge_edid_read(struct drm_bridge *bridge, 1267 struct drm_connector *connector) 1268 { 1269 if (!(bridge->ops & DRM_BRIDGE_OP_EDID)) 1270 return NULL; 1271 1272 return bridge->funcs->edid_read(bridge, connector); 1273 } 1274 EXPORT_SYMBOL_GPL(drm_bridge_edid_read); 1275 1276 /** 1277 * drm_bridge_hpd_enable - enable hot plug detection for the bridge 1278 * @bridge: bridge control structure 1279 * @cb: hot-plug detection callback 1280 * @data: data to be passed to the hot-plug detection callback 1281 * 1282 * Call &drm_bridge_funcs.hpd_enable if implemented and register the given @cb 1283 * and @data as hot plug notification callback. From now on the @cb will be 1284 * called with @data when an output status change is detected by the bridge, 1285 * until hot plug notification gets disabled with drm_bridge_hpd_disable(). 1286 * 1287 * Hot plug detection is supported only if the DRM_BRIDGE_OP_HPD flag is set in 1288 * bridge->ops. This function shall not be called when the flag is not set. 1289 * 1290 * Only one hot plug detection callback can be registered at a time, it is an 1291 * error to call this function when hot plug detection is already enabled for 1292 * the bridge. 1293 */ 1294 void drm_bridge_hpd_enable(struct drm_bridge *bridge, 1295 void (*cb)(void *data, 1296 enum drm_connector_status status), 1297 void *data) 1298 { 1299 if (!(bridge->ops & DRM_BRIDGE_OP_HPD)) 1300 return; 1301 1302 mutex_lock(&bridge->hpd_mutex); 1303 1304 if (WARN(bridge->hpd_cb, "Hot plug detection already enabled\n")) 1305 goto unlock; 1306 1307 bridge->hpd_cb = cb; 1308 bridge->hpd_data = data; 1309 1310 if (bridge->funcs->hpd_enable) 1311 bridge->funcs->hpd_enable(bridge); 1312 1313 unlock: 1314 mutex_unlock(&bridge->hpd_mutex); 1315 } 1316 EXPORT_SYMBOL_GPL(drm_bridge_hpd_enable); 1317 1318 /** 1319 * drm_bridge_hpd_disable - disable hot plug detection for the bridge 1320 * @bridge: bridge control structure 1321 * 1322 * Call &drm_bridge_funcs.hpd_disable if implemented and unregister the hot 1323 * plug detection callback previously registered with drm_bridge_hpd_enable(). 1324 * Once this function returns the callback will not be called by the bridge 1325 * when an output status change occurs. 1326 * 1327 * Hot plug detection is supported only if the DRM_BRIDGE_OP_HPD flag is set in 1328 * bridge->ops. This function shall not be called when the flag is not set. 1329 */ 1330 void drm_bridge_hpd_disable(struct drm_bridge *bridge) 1331 { 1332 if (!(bridge->ops & DRM_BRIDGE_OP_HPD)) 1333 return; 1334 1335 mutex_lock(&bridge->hpd_mutex); 1336 if (bridge->funcs->hpd_disable) 1337 bridge->funcs->hpd_disable(bridge); 1338 1339 bridge->hpd_cb = NULL; 1340 bridge->hpd_data = NULL; 1341 mutex_unlock(&bridge->hpd_mutex); 1342 } 1343 EXPORT_SYMBOL_GPL(drm_bridge_hpd_disable); 1344 1345 /** 1346 * drm_bridge_hpd_notify - notify hot plug detection events 1347 * @bridge: bridge control structure 1348 * @status: output connection status 1349 * 1350 * Bridge drivers shall call this function to report hot plug events when they 1351 * detect a change in the output status, when hot plug detection has been 1352 * enabled by drm_bridge_hpd_enable(). 1353 * 1354 * This function shall be called in a context that can sleep. 1355 */ 1356 void drm_bridge_hpd_notify(struct drm_bridge *bridge, 1357 enum drm_connector_status status) 1358 { 1359 mutex_lock(&bridge->hpd_mutex); 1360 if (bridge->hpd_cb) 1361 bridge->hpd_cb(bridge->hpd_data, status); 1362 mutex_unlock(&bridge->hpd_mutex); 1363 } 1364 EXPORT_SYMBOL_GPL(drm_bridge_hpd_notify); 1365 1366 #ifdef CONFIG_OF 1367 /** 1368 * of_drm_find_bridge - find the bridge corresponding to the device node in 1369 * the global bridge list 1370 * 1371 * @np: device node 1372 * 1373 * RETURNS: 1374 * drm_bridge control struct on success, NULL on failure 1375 */ 1376 struct drm_bridge *of_drm_find_bridge(struct device_node *np) 1377 { 1378 struct drm_bridge *bridge; 1379 1380 mutex_lock(&bridge_lock); 1381 1382 list_for_each_entry(bridge, &bridge_list, list) { 1383 if (bridge->of_node == np) { 1384 mutex_unlock(&bridge_lock); 1385 return bridge; 1386 } 1387 } 1388 1389 mutex_unlock(&bridge_lock); 1390 return NULL; 1391 } 1392 EXPORT_SYMBOL(of_drm_find_bridge); 1393 #endif 1394 1395 static void drm_bridge_debugfs_show_bridge(struct drm_printer *p, 1396 struct drm_bridge *bridge, 1397 unsigned int idx) 1398 { 1399 drm_printf(p, "bridge[%u]: %ps\n", idx, bridge->funcs); 1400 drm_printf(p, "\ttype: [%d] %s\n", 1401 bridge->type, 1402 drm_get_connector_type_name(bridge->type)); 1403 1404 if (bridge->of_node) 1405 drm_printf(p, "\tOF: %pOFfc\n", bridge->of_node); 1406 1407 drm_printf(p, "\tops: [0x%x]", bridge->ops); 1408 if (bridge->ops & DRM_BRIDGE_OP_DETECT) 1409 drm_puts(p, " detect"); 1410 if (bridge->ops & DRM_BRIDGE_OP_EDID) 1411 drm_puts(p, " edid"); 1412 if (bridge->ops & DRM_BRIDGE_OP_HPD) 1413 drm_puts(p, " hpd"); 1414 if (bridge->ops & DRM_BRIDGE_OP_MODES) 1415 drm_puts(p, " modes"); 1416 if (bridge->ops & DRM_BRIDGE_OP_HDMI) 1417 drm_puts(p, " hdmi"); 1418 drm_puts(p, "\n"); 1419 } 1420 1421 static int allbridges_show(struct seq_file *m, void *data) 1422 { 1423 struct drm_printer p = drm_seq_file_printer(m); 1424 struct drm_bridge *bridge; 1425 unsigned int idx = 0; 1426 1427 mutex_lock(&bridge_lock); 1428 1429 list_for_each_entry(bridge, &bridge_list, list) 1430 drm_bridge_debugfs_show_bridge(&p, bridge, idx++); 1431 1432 mutex_unlock(&bridge_lock); 1433 1434 return 0; 1435 } 1436 DEFINE_SHOW_ATTRIBUTE(allbridges); 1437 1438 static int encoder_bridges_show(struct seq_file *m, void *data) 1439 { 1440 struct drm_encoder *encoder = m->private; 1441 struct drm_printer p = drm_seq_file_printer(m); 1442 struct drm_bridge *bridge; 1443 unsigned int idx = 0; 1444 1445 drm_for_each_bridge_in_chain(encoder, bridge) 1446 drm_bridge_debugfs_show_bridge(&p, bridge, idx++); 1447 1448 return 0; 1449 } 1450 DEFINE_SHOW_ATTRIBUTE(encoder_bridges); 1451 1452 void drm_bridge_debugfs_params(struct dentry *root) 1453 { 1454 debugfs_create_file("bridges", 0444, root, NULL, &allbridges_fops); 1455 } 1456 1457 void drm_bridge_debugfs_encoder_params(struct dentry *root, 1458 struct drm_encoder *encoder) 1459 { 1460 /* bridges list */ 1461 debugfs_create_file("bridges", 0444, root, encoder, &encoder_bridges_fops); 1462 } 1463 1464 MODULE_AUTHOR("Ajay Kumar <ajaykumar.rs@samsung.com>"); 1465 MODULE_DESCRIPTION("DRM bridge infrastructure"); 1466 MODULE_LICENSE("GPL and additional rights"); 1467