1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright 2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 * 23 * Authors: AMD 24 * 25 */ 26 #include "dcn32_fpu.h" 27 #include "dcn32/dcn32_resource.h" 28 #include "dcn20/dcn20_resource.h" 29 #include "display_mode_vba_util_32.h" 30 #include "dml/dcn32/display_mode_vba_32.h" 31 // We need this includes for WATERMARKS_* defines 32 #include "clk_mgr/dcn32/dcn32_smu13_driver_if.h" 33 #include "dcn30/dcn30_resource.h" 34 #include "link.h" 35 #include "dc_state_priv.h" 36 37 #define DC_LOGGER_INIT(logger) 38 39 static const struct subvp_high_refresh_list subvp_high_refresh_list = { 40 .min_refresh = 120, 41 .max_refresh = 175, 42 .res = { 43 {.width = 3840, .height = 2160, }, 44 {.width = 3440, .height = 1440, }, 45 {.width = 2560, .height = 1440, }, 46 {.width = 1920, .height = 1080, }}, 47 }; 48 49 static const struct subvp_active_margin_list subvp_active_margin_list = { 50 .min_refresh = 55, 51 .max_refresh = 65, 52 .res = { 53 {.width = 2560, .height = 1440, }, 54 {.width = 1920, .height = 1080, }}, 55 }; 56 57 struct _vcs_dpi_ip_params_st dcn3_2_ip = { 58 .gpuvm_enable = 0, 59 .gpuvm_max_page_table_levels = 4, 60 .hostvm_enable = 0, 61 .rob_buffer_size_kbytes = 128, 62 .det_buffer_size_kbytes = DCN3_2_DEFAULT_DET_SIZE, 63 .config_return_buffer_size_in_kbytes = 1280, 64 .compressed_buffer_segment_size_in_kbytes = 64, 65 .meta_fifo_size_in_kentries = 22, 66 .zero_size_buffer_entries = 512, 67 .compbuf_reserved_space_64b = 256, 68 .compbuf_reserved_space_zs = 64, 69 .dpp_output_buffer_pixels = 2560, 70 .opp_output_buffer_lines = 1, 71 .pixel_chunk_size_kbytes = 8, 72 .alpha_pixel_chunk_size_kbytes = 4, 73 .min_pixel_chunk_size_bytes = 1024, 74 .dcc_meta_buffer_size_bytes = 6272, 75 .meta_chunk_size_kbytes = 2, 76 .min_meta_chunk_size_bytes = 256, 77 .writeback_chunk_size_kbytes = 8, 78 .ptoi_supported = false, 79 .num_dsc = 4, 80 .maximum_dsc_bits_per_component = 12, 81 .maximum_pixels_per_line_per_dsc_unit = 6016, 82 .dsc422_native_support = true, 83 .is_line_buffer_bpp_fixed = true, 84 .line_buffer_fixed_bpp = 57, 85 .line_buffer_size_bits = 1171920, 86 .max_line_buffer_lines = 32, 87 .writeback_interface_buffer_size_kbytes = 90, 88 .max_num_dpp = 4, 89 .max_num_otg = 4, 90 .max_num_hdmi_frl_outputs = 1, 91 .max_num_wb = 1, 92 .max_dchub_pscl_bw_pix_per_clk = 4, 93 .max_pscl_lb_bw_pix_per_clk = 2, 94 .max_lb_vscl_bw_pix_per_clk = 4, 95 .max_vscl_hscl_bw_pix_per_clk = 4, 96 .max_hscl_ratio = 6, 97 .max_vscl_ratio = 6, 98 .max_hscl_taps = 8, 99 .max_vscl_taps = 8, 100 .dpte_buffer_size_in_pte_reqs_luma = 64, 101 .dpte_buffer_size_in_pte_reqs_chroma = 34, 102 .dispclk_ramp_margin_percent = 1, 103 .max_inter_dcn_tile_repeaters = 8, 104 .cursor_buffer_size = 16, 105 .cursor_chunk_size = 2, 106 .writeback_line_buffer_buffer_size = 0, 107 .writeback_min_hscl_ratio = 1, 108 .writeback_min_vscl_ratio = 1, 109 .writeback_max_hscl_ratio = 1, 110 .writeback_max_vscl_ratio = 1, 111 .writeback_max_hscl_taps = 1, 112 .writeback_max_vscl_taps = 1, 113 .dppclk_delay_subtotal = 47, 114 .dppclk_delay_scl = 50, 115 .dppclk_delay_scl_lb_only = 16, 116 .dppclk_delay_cnvc_formatter = 28, 117 .dppclk_delay_cnvc_cursor = 6, 118 .dispclk_delay_subtotal = 125, 119 .dynamic_metadata_vm_enabled = false, 120 .odm_combine_4to1_supported = false, 121 .dcc_supported = true, 122 .max_num_dp2p0_outputs = 2, 123 .max_num_dp2p0_streams = 4, 124 }; 125 126 struct _vcs_dpi_soc_bounding_box_st dcn3_2_soc = { 127 .clock_limits = { 128 { 129 .state = 0, 130 .dcfclk_mhz = 1564.0, 131 .fabricclk_mhz = 2500.0, 132 .dispclk_mhz = 2150.0, 133 .dppclk_mhz = 2150.0, 134 .phyclk_mhz = 810.0, 135 .phyclk_d18_mhz = 667.0, 136 .phyclk_d32_mhz = 625.0, 137 .socclk_mhz = 1200.0, 138 .dscclk_mhz = 716.667, 139 .dram_speed_mts = 18000.0, 140 .dtbclk_mhz = 1564.0, 141 }, 142 }, 143 .num_states = 1, 144 .sr_exit_time_us = 42.97, 145 .sr_enter_plus_exit_time_us = 49.94, 146 .sr_exit_z8_time_us = 285.0, 147 .sr_enter_plus_exit_z8_time_us = 320, 148 .writeback_latency_us = 12.0, 149 .round_trip_ping_latency_dcfclk_cycles = 263, 150 .urgent_latency_pixel_data_only_us = 4.0, 151 .urgent_latency_pixel_mixed_with_vm_data_us = 4.0, 152 .urgent_latency_vm_data_only_us = 4.0, 153 .fclk_change_latency_us = 25, 154 .usr_retraining_latency_us = 2, 155 .smn_latency_us = 2, 156 .mall_allocated_for_dcn_mbytes = 64, 157 .urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096, 158 .urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096, 159 .urgent_out_of_order_return_per_channel_vm_only_bytes = 4096, 160 .pct_ideal_sdp_bw_after_urgent = 90.0, 161 .pct_ideal_fabric_bw_after_urgent = 67.0, 162 .pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 20.0, 163 .pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0, 164 .pct_ideal_dram_sdp_bw_after_urgent_vm_only = 30.0, 165 .pct_ideal_dram_bw_after_urgent_strobe = 67.0, 166 .max_avg_sdp_bw_use_normal_percent = 80.0, 167 .max_avg_fabric_bw_use_normal_percent = 60.0, 168 .max_avg_dram_bw_use_normal_strobe_percent = 50.0, 169 .max_avg_dram_bw_use_normal_percent = 15.0, 170 .num_chans = 24, 171 .dram_channel_width_bytes = 2, 172 .fabric_datapath_to_dcn_data_return_bytes = 64, 173 .return_bus_width_bytes = 64, 174 .downspread_percent = 0.38, 175 .dcn_downspread_percent = 0.5, 176 .dram_clock_change_latency_us = 400, 177 .dispclk_dppclk_vco_speed_mhz = 4300.0, 178 .do_urgent_latency_adjustment = true, 179 .urgent_latency_adjustment_fabric_clock_component_us = 1.0, 180 .urgent_latency_adjustment_fabric_clock_reference_mhz = 3000, 181 }; 182 183 static bool dcn32_apply_merge_split_flags_helper(struct dc *dc, struct dc_state *context, 184 bool *repopulate_pipes, int *split, bool *merge); 185 186 void dcn32_build_wm_range_table_fpu(struct clk_mgr_internal *clk_mgr) 187 { 188 /* defaults */ 189 double pstate_latency_us = clk_mgr->base.ctx->dc->dml.soc.dram_clock_change_latency_us; 190 double fclk_change_latency_us = clk_mgr->base.ctx->dc->dml.soc.fclk_change_latency_us; 191 double sr_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_exit_time_us; 192 double sr_enter_plus_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_enter_plus_exit_time_us; 193 /* For min clocks use as reported by PM FW and report those as min */ 194 uint16_t min_uclk_mhz = clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz; 195 uint16_t min_dcfclk_mhz = clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz; 196 uint16_t setb_min_uclk_mhz = min_uclk_mhz; 197 uint16_t dcfclk_mhz_for_the_second_state = clk_mgr->base.ctx->dc->dml.soc.clock_limits[2].dcfclk_mhz; 198 199 dc_assert_fp_enabled(); 200 201 /* For Set B ranges use min clocks state 2 when available, and report those to PM FW */ 202 if (dcfclk_mhz_for_the_second_state) 203 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = dcfclk_mhz_for_the_second_state; 204 else 205 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz; 206 207 if (clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz) 208 setb_min_uclk_mhz = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz; 209 210 /* Set A - Normal - default values */ 211 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].valid = true; 212 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us = pstate_latency_us; 213 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us = fclk_change_latency_us; 214 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us = sr_exit_time_us; 215 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us; 216 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE; 217 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz; 218 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_dcfclk = 0xFFFF; 219 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_uclk = min_uclk_mhz; 220 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_uclk = 0xFFFF; 221 222 /* Set B - Performance - higher clocks, using DPM[2] DCFCLK and UCLK */ 223 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].valid = true; 224 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us = pstate_latency_us; 225 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us = fclk_change_latency_us; 226 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us = sr_exit_time_us; 227 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us; 228 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE; 229 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_dcfclk = 0xFFFF; 230 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_uclk = setb_min_uclk_mhz; 231 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_uclk = 0xFFFF; 232 233 /* Set C - Dummy P-State - P-State latency set to "dummy p-state" value */ 234 /* 'DalDummyClockChangeLatencyNs' registry key option set to 0x7FFFFFFF can be used to disable Set C for dummy p-state */ 235 if (clk_mgr->base.ctx->dc->bb_overrides.dummy_clock_change_latency_ns != 0x7FFFFFFF) { 236 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].valid = true; 237 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.pstate_latency_us = 50; 238 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us = fclk_change_latency_us; 239 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us = sr_exit_time_us; 240 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us; 241 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.wm_type = WATERMARKS_DUMMY_PSTATE; 242 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz; 243 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_dcfclk = 0xFFFF; 244 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_uclk = min_uclk_mhz; 245 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_uclk = 0xFFFF; 246 clk_mgr->base.bw_params->dummy_pstate_table[0].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz * 16; 247 clk_mgr->base.bw_params->dummy_pstate_table[0].dummy_pstate_latency_us = 50; 248 clk_mgr->base.bw_params->dummy_pstate_table[1].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[1].memclk_mhz * 16; 249 clk_mgr->base.bw_params->dummy_pstate_table[1].dummy_pstate_latency_us = 9; 250 clk_mgr->base.bw_params->dummy_pstate_table[2].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz * 16; 251 clk_mgr->base.bw_params->dummy_pstate_table[2].dummy_pstate_latency_us = 8; 252 clk_mgr->base.bw_params->dummy_pstate_table[3].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[3].memclk_mhz * 16; 253 clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us = 5; 254 } 255 /* Set D - MALL - SR enter and exit time specific to MALL, TBD after bringup or later phase for now use DRAM values / 2 */ 256 /* For MALL DRAM clock change latency is N/A, for watermak calculations use lowest value dummy P state latency */ 257 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].valid = true; 258 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us = clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us; 259 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us = fclk_change_latency_us; 260 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us = sr_exit_time_us / 2; // TBD 261 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us / 2; // TBD 262 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.wm_type = WATERMARKS_MALL; 263 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz; 264 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_dcfclk = 0xFFFF; 265 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_uclk = min_uclk_mhz; 266 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_uclk = 0xFFFF; 267 } 268 269 /* 270 * Finds dummy_latency_index when MCLK switching using firmware based 271 * vblank stretch is enabled. This function will iterate through the 272 * table of dummy pstate latencies until the lowest value that allows 273 * dm_allow_self_refresh_and_mclk_switch to happen is found 274 */ 275 int dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(struct dc *dc, 276 struct dc_state *context, 277 display_e2e_pipe_params_st *pipes, 278 int pipe_cnt, 279 int vlevel) 280 { 281 const int max_latency_table_entries = 4; 282 struct vba_vars_st *vba = &context->bw_ctx.dml.vba; 283 int dummy_latency_index = 0; 284 enum clock_change_support temp_clock_change_support = vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb]; 285 286 dc_assert_fp_enabled(); 287 288 while (dummy_latency_index < max_latency_table_entries) { 289 if (temp_clock_change_support != dm_dram_clock_change_unsupported) 290 vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = temp_clock_change_support; 291 context->bw_ctx.dml.soc.dram_clock_change_latency_us = 292 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us; 293 dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, DC_VALIDATE_MODE_AND_PROGRAMMING); 294 295 /* for subvp + DRR case, if subvp pipes are still present we support pstate */ 296 if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported && 297 dcn32_subvp_in_use(dc, context)) 298 vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = temp_clock_change_support; 299 300 if (vlevel < context->bw_ctx.dml.vba.soc.num_states && 301 vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported) 302 break; 303 304 dummy_latency_index++; 305 } 306 307 if (dummy_latency_index == max_latency_table_entries) { 308 ASSERT(dummy_latency_index != max_latency_table_entries); 309 /* If the execution gets here, it means dummy p_states are 310 * not possible. This should never happen and would mean 311 * something is severely wrong. 312 * Here we reset dummy_latency_index to 3, because it is 313 * better to have underflows than system crashes. 314 */ 315 dummy_latency_index = max_latency_table_entries - 1; 316 } 317 318 return dummy_latency_index; 319 } 320 321 /** 322 * dcn32_helper_populate_phantom_dlg_params - Get DLG params for phantom pipes 323 * and populate pipe_ctx with those params. 324 * @dc: [in] current dc state 325 * @context: [in] new dc state 326 * @pipes: [in] DML pipe params array 327 * @pipe_cnt: [in] DML pipe count 328 * 329 * This function must be called AFTER the phantom pipes are added to context 330 * and run through DML (so that the DLG params for the phantom pipes can be 331 * populated), and BEFORE we program the timing for the phantom pipes. 332 */ 333 void dcn32_helper_populate_phantom_dlg_params(struct dc *dc, 334 struct dc_state *context, 335 display_e2e_pipe_params_st *pipes, 336 int pipe_cnt) 337 { 338 uint32_t i, pipe_idx; 339 340 dc_assert_fp_enabled(); 341 342 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 343 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 344 345 if (!pipe->stream) 346 continue; 347 348 if (pipe->plane_state && dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) { 349 pipes[pipe_idx].pipe.dest.vstartup_start = 350 get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); 351 pipes[pipe_idx].pipe.dest.vupdate_offset = 352 get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); 353 pipes[pipe_idx].pipe.dest.vupdate_width = 354 get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); 355 pipes[pipe_idx].pipe.dest.vready_offset = 356 get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); 357 pipe->pipe_dlg_param = pipes[pipe_idx].pipe.dest; 358 } 359 pipe_idx++; 360 } 361 } 362 363 static float calculate_net_bw_in_kbytes_sec(struct _vcs_dpi_voltage_scaling_st *entry) 364 { 365 float memory_bw_kbytes_sec; 366 float fabric_bw_kbytes_sec; 367 float sdp_bw_kbytes_sec; 368 float limiting_bw_kbytes_sec; 369 370 memory_bw_kbytes_sec = entry->dram_speed_mts * 371 dcn3_2_soc.num_chans * 372 dcn3_2_soc.dram_channel_width_bytes * 373 ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100); 374 375 fabric_bw_kbytes_sec = entry->fabricclk_mhz * 376 dcn3_2_soc.return_bus_width_bytes * 377 ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100); 378 379 sdp_bw_kbytes_sec = entry->dcfclk_mhz * 380 dcn3_2_soc.return_bus_width_bytes * 381 ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100); 382 383 limiting_bw_kbytes_sec = memory_bw_kbytes_sec; 384 385 if (fabric_bw_kbytes_sec < limiting_bw_kbytes_sec) 386 limiting_bw_kbytes_sec = fabric_bw_kbytes_sec; 387 388 if (sdp_bw_kbytes_sec < limiting_bw_kbytes_sec) 389 limiting_bw_kbytes_sec = sdp_bw_kbytes_sec; 390 391 return limiting_bw_kbytes_sec; 392 } 393 394 static void get_optimal_ntuple(struct _vcs_dpi_voltage_scaling_st *entry) 395 { 396 if (entry->dcfclk_mhz > 0) { 397 float bw_on_sdp = entry->dcfclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100); 398 399 entry->fabricclk_mhz = bw_on_sdp / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100)); 400 entry->dram_speed_mts = bw_on_sdp / (dcn3_2_soc.num_chans * 401 dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100)); 402 } else if (entry->fabricclk_mhz > 0) { 403 float bw_on_fabric = entry->fabricclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100); 404 405 entry->dcfclk_mhz = bw_on_fabric / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100)); 406 entry->dram_speed_mts = bw_on_fabric / (dcn3_2_soc.num_chans * 407 dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100)); 408 } else if (entry->dram_speed_mts > 0) { 409 float bw_on_dram = entry->dram_speed_mts * dcn3_2_soc.num_chans * 410 dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100); 411 412 entry->fabricclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100)); 413 entry->dcfclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100)); 414 } 415 } 416 417 static void insert_entry_into_table_sorted(struct _vcs_dpi_voltage_scaling_st *table, 418 unsigned int *num_entries, 419 struct _vcs_dpi_voltage_scaling_st *entry) 420 { 421 int i = 0; 422 int index = 0; 423 424 dc_assert_fp_enabled(); 425 426 if (*num_entries == 0) { 427 table[0] = *entry; 428 (*num_entries)++; 429 } else { 430 while (entry->net_bw_in_kbytes_sec > table[index].net_bw_in_kbytes_sec) { 431 index++; 432 if (index >= *num_entries) 433 break; 434 } 435 436 for (i = *num_entries; i > index; i--) 437 table[i] = table[i - 1]; 438 439 table[index] = *entry; 440 (*num_entries)++; 441 } 442 } 443 444 /** 445 * dcn32_set_phantom_stream_timing - Set timing params for the phantom stream 446 * @dc: current dc state 447 * @context: new dc state 448 * @ref_pipe: Main pipe for the phantom stream 449 * @phantom_stream: target phantom stream state 450 * @pipes: DML pipe params 451 * @pipe_cnt: number of DML pipes 452 * @dc_pipe_idx: DC pipe index for the main pipe (i.e. ref_pipe) 453 * 454 * Set timing params of the phantom stream based on calculated output from DML. 455 * This function first gets the DML pipe index using the DC pipe index, then 456 * calls into DML (get_subviewport_lines_needed_in_mall) to get the number of 457 * lines required for SubVP MCLK switching and assigns to the phantom stream 458 * accordingly. 459 * 460 * - The number of SubVP lines calculated in DML does not take into account 461 * FW processing delays and required pstate allow width, so we must include 462 * that separately. 463 * 464 * - Set phantom backporch = vstartup of main pipe 465 */ 466 void dcn32_set_phantom_stream_timing(struct dc *dc, 467 struct dc_state *context, 468 struct pipe_ctx *ref_pipe, 469 struct dc_stream_state *phantom_stream, 470 display_e2e_pipe_params_st *pipes, 471 unsigned int pipe_cnt, 472 unsigned int dc_pipe_idx) 473 { 474 unsigned int i, pipe_idx; 475 struct pipe_ctx *pipe; 476 uint32_t phantom_vactive, phantom_bp, pstate_width_fw_delay_lines; 477 unsigned int num_dpp; 478 unsigned int vlevel = context->bw_ctx.dml.vba.VoltageLevel; 479 unsigned int dcfclk = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb]; 480 unsigned int socclk = context->bw_ctx.dml.vba.SOCCLKPerState[vlevel]; 481 struct vba_vars_st *vba = &context->bw_ctx.dml.vba; 482 struct dc_stream_state *main_stream = ref_pipe->stream; 483 484 dc_assert_fp_enabled(); 485 486 // Find DML pipe index (pipe_idx) using dc_pipe_idx 487 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 488 pipe = &context->res_ctx.pipe_ctx[i]; 489 490 if (!pipe->stream) 491 continue; 492 493 if (i == dc_pipe_idx) 494 break; 495 496 pipe_idx++; 497 } 498 499 // Calculate lines required for pstate allow width and FW processing delays 500 pstate_width_fw_delay_lines = ((double)(dc->caps.subvp_fw_processing_delay_us + 501 dc->caps.subvp_pstate_allow_width_us) / 1000000) * 502 (ref_pipe->stream->timing.pix_clk_100hz * 100) / 503 (double)ref_pipe->stream->timing.h_total; 504 505 // Update clks_cfg for calling into recalculate 506 pipes[0].clks_cfg.voltage = vlevel; 507 pipes[0].clks_cfg.dcfclk_mhz = dcfclk; 508 pipes[0].clks_cfg.socclk_mhz = socclk; 509 510 // DML calculation for MALL region doesn't take into account FW delay 511 // and required pstate allow width for multi-display cases 512 /* Add 16 lines margin to the MALL REGION because SUB_VP_START_LINE must be aligned 513 * to 2 swaths (i.e. 16 lines) 514 */ 515 phantom_vactive = get_subviewport_lines_needed_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx) + 516 pstate_width_fw_delay_lines + dc->caps.subvp_swath_height_margin_lines; 517 518 // W/A for DCC corruption with certain high resolution timings. 519 // Determing if pipesplit is used. If so, add meta_row_height to the phantom vactive. 520 num_dpp = vba->NoOfDPP[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]]; 521 phantom_vactive += num_dpp > 1 ? vba->meta_row_height[vba->pipe_plane[pipe_idx]] : 0; 522 523 /* dc->debug.subvp_extra_lines 0 by default*/ 524 phantom_vactive += dc->debug.subvp_extra_lines; 525 526 // For backporch of phantom pipe, use vstartup of the main pipe 527 phantom_bp = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); 528 529 phantom_stream->dst.y = 0; 530 phantom_stream->dst.height = phantom_vactive; 531 /* When scaling, DML provides the end to end required number of lines for MALL. 532 * dst.height is always correct for this case, but src.height is not which causes a 533 * delta between main and phantom pipe scaling outputs. Need to adjust src.height on 534 * phantom for this case. 535 */ 536 phantom_stream->src.y = 0; 537 phantom_stream->src.height = (double)phantom_vactive * (double)main_stream->src.height / (double)main_stream->dst.height; 538 539 phantom_stream->timing.v_addressable = phantom_vactive; 540 phantom_stream->timing.v_front_porch = 1; 541 phantom_stream->timing.v_total = phantom_stream->timing.v_addressable + 542 phantom_stream->timing.v_front_porch + 543 phantom_stream->timing.v_sync_width + 544 phantom_bp; 545 phantom_stream->timing.flags.DSC = 0; // Don't need DSC for phantom timing 546 } 547 548 /** 549 * dcn32_get_num_free_pipes - Calculate number of free pipes 550 * @dc: current dc state 551 * @context: new dc state 552 * 553 * This function assumes that a "used" pipe is a pipe that has 554 * both a stream and a plane assigned to it. 555 * 556 * Return: Number of free pipes available in the context 557 */ 558 static unsigned int dcn32_get_num_free_pipes(struct dc *dc, struct dc_state *context) 559 { 560 unsigned int i; 561 unsigned int free_pipes = 0; 562 unsigned int num_pipes = 0; 563 564 for (i = 0; i < dc->res_pool->pipe_count; i++) { 565 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 566 567 if (pipe->stream && !pipe->top_pipe) { 568 while (pipe) { 569 num_pipes++; 570 pipe = pipe->bottom_pipe; 571 } 572 } 573 } 574 575 free_pipes = dc->res_pool->pipe_count - num_pipes; 576 return free_pipes; 577 } 578 579 /** 580 * dcn32_assign_subvp_pipe - Function to decide which pipe will use Sub-VP. 581 * @dc: current dc state 582 * @context: new dc state 583 * @index: [out] dc pipe index for the pipe chosen to have phantom pipes assigned 584 * 585 * We enter this function if we are Sub-VP capable (i.e. enough pipes available) 586 * and regular P-State switching (i.e. VACTIVE/VBLANK) is not supported, or if 587 * we are forcing SubVP P-State switching on the current config. 588 * 589 * The number of pipes used for the chosen surface must be less than or equal to the 590 * number of free pipes available. 591 * 592 * In general we choose surfaces with the longest frame time first (better for SubVP + VBLANK). 593 * For multi-display cases the ActiveDRAMClockChangeMargin doesn't provide enough info on its own 594 * for determining which should be the SubVP pipe (need a way to determine if a pipe / plane doesn't 595 * support MCLK switching naturally [i.e. ACTIVE or VBLANK]). 596 * 597 * Return: True if a valid pipe assignment was found for Sub-VP. Otherwise false. 598 */ 599 static bool dcn32_assign_subvp_pipe(struct dc *dc, 600 struct dc_state *context, 601 unsigned int *index) 602 { 603 unsigned int i, pipe_idx; 604 unsigned int max_frame_time = 0; 605 bool valid_assignment_found = false; 606 unsigned int free_pipes = dcn32_get_num_free_pipes(dc, context); 607 struct vba_vars_st *vba = &context->bw_ctx.dml.vba; 608 609 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 610 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 611 unsigned int num_pipes = 0; 612 unsigned int refresh_rate = 0; 613 614 if (!pipe->stream) 615 continue; 616 617 // Round up 618 refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 + 619 pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1) 620 / (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total); 621 /* SubVP pipe candidate requirements: 622 * - Refresh rate < 120hz 623 * - Not able to switch in vactive naturally (switching in active means the 624 * DET provides enough buffer to hide the P-State switch latency -- trying 625 * to combine this with SubVP can cause issues with the scheduling). 626 * - Not TMZ surface 627 */ 628 if (pipe->plane_state && !pipe->top_pipe && !pipe->prev_odm_pipe && !dcn32_is_center_timing(pipe) && 629 !pipe->stream->hw_cursor_req && 630 !dc_state_get_stream_cursor_subvp_limit(pipe->stream, context) && 631 !(pipe->stream->timing.pix_clk_100hz / 10000 > DCN3_2_MAX_SUBVP_PIXEL_RATE_MHZ) && 632 (!dcn32_is_psr_capable(pipe) || (context->stream_count == 1 && dc->caps.dmub_caps.subvp_psr)) && 633 dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_NONE && 634 (refresh_rate < 120 || dcn32_allow_subvp_high_refresh_rate(dc, context, pipe)) && 635 !pipe->plane_state->address.tmz_surface && 636 (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0 || 637 (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0 && 638 dcn32_allow_subvp_with_active_margin(pipe)))) { 639 while (pipe) { 640 num_pipes++; 641 pipe = pipe->bottom_pipe; 642 } 643 644 pipe = &context->res_ctx.pipe_ctx[i]; 645 if (num_pipes <= free_pipes) { 646 struct dc_stream_state *stream = pipe->stream; 647 unsigned int frame_us = (stream->timing.v_total * stream->timing.h_total / 648 (double)(stream->timing.pix_clk_100hz * 100)) * 1000000; 649 if (frame_us > max_frame_time) { 650 *index = i; 651 max_frame_time = frame_us; 652 valid_assignment_found = true; 653 } 654 } 655 } 656 pipe_idx++; 657 } 658 return valid_assignment_found; 659 } 660 661 /** 662 * dcn32_enough_pipes_for_subvp - Function to check if there are "enough" pipes for SubVP. 663 * @dc: current dc state 664 * @context: new dc state 665 * 666 * This function returns true if there are enough free pipes 667 * to create the required phantom pipes for any given stream 668 * (that does not already have phantom pipe assigned). 669 * 670 * e.g. For a 2 stream config where the first stream uses one 671 * pipe and the second stream uses 2 pipes (i.e. pipe split), 672 * this function will return true because there is 1 remaining 673 * pipe which can be used as the phantom pipe for the non pipe 674 * split pipe. 675 * 676 * Return: 677 * True if there are enough free pipes to assign phantom pipes to at least one 678 * stream that does not already have phantom pipes assigned. Otherwise false. 679 */ 680 static bool dcn32_enough_pipes_for_subvp(struct dc *dc, struct dc_state *context) 681 { 682 unsigned int i, split_cnt, free_pipes; 683 unsigned int min_pipe_split = dc->res_pool->pipe_count + 1; // init as max number of pipes + 1 684 bool subvp_possible = false; 685 686 for (i = 0; i < dc->res_pool->pipe_count; i++) { 687 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 688 689 // Find the minimum pipe split count for non SubVP pipes 690 if (resource_is_pipe_type(pipe, OPP_HEAD) && 691 dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_NONE) { 692 split_cnt = 0; 693 while (pipe) { 694 split_cnt++; 695 pipe = pipe->bottom_pipe; 696 } 697 698 if (split_cnt < min_pipe_split) 699 min_pipe_split = split_cnt; 700 } 701 } 702 703 free_pipes = dcn32_get_num_free_pipes(dc, context); 704 705 // SubVP only possible if at least one pipe is being used (i.e. free_pipes 706 // should not equal to the pipe_count) 707 if (free_pipes >= min_pipe_split && free_pipes < dc->res_pool->pipe_count) 708 subvp_possible = true; 709 710 return subvp_possible; 711 } 712 713 /** 714 * subvp_subvp_schedulable - Determine if SubVP + SubVP config is schedulable 715 * @dc: current dc state 716 * @context: new dc state 717 * 718 * High level algorithm: 719 * 1. Find longest microschedule length (in us) between the two SubVP pipes 720 * 2. Check if the worst case overlap (VBLANK in middle of ACTIVE) for both 721 * pipes still allows for the maximum microschedule to fit in the active 722 * region for both pipes. 723 * 724 * Return: True if the SubVP + SubVP config is schedulable, false otherwise 725 */ 726 static bool subvp_subvp_schedulable(struct dc *dc, struct dc_state *context) 727 { 728 struct pipe_ctx *subvp_pipes[2] = {0}; 729 struct dc_stream_state *phantom = NULL; 730 uint32_t microschedule_lines = 0; 731 uint32_t index = 0; 732 uint32_t i; 733 uint32_t max_microschedule_us = 0; 734 int32_t vactive1_us, vactive2_us, vblank1_us, vblank2_us; 735 736 for (i = 0; i < dc->res_pool->pipe_count; i++) { 737 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 738 uint32_t time_us = 0; 739 740 /* Loop to calculate the maximum microschedule time between the two SubVP pipes, 741 * and also to store the two main SubVP pipe pointers in subvp_pipes[2]. 742 */ 743 phantom = dc_state_get_paired_subvp_stream(context, pipe->stream); 744 if (phantom && pipe->stream && pipe->plane_state && !pipe->top_pipe && 745 dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN) { 746 microschedule_lines = (phantom->timing.v_total - phantom->timing.v_front_porch) + 747 phantom->timing.v_addressable; 748 749 // Round up when calculating microschedule time (+ 1 at the end) 750 time_us = (microschedule_lines * phantom->timing.h_total) / 751 (double)(phantom->timing.pix_clk_100hz * 100) * 1000000 + 752 dc->caps.subvp_prefetch_end_to_mall_start_us + 753 dc->caps.subvp_fw_processing_delay_us + 1; 754 if (time_us > max_microschedule_us) 755 max_microschedule_us = time_us; 756 757 subvp_pipes[index] = pipe; 758 index++; 759 760 // Maximum 2 SubVP pipes 761 if (index == 2) 762 break; 763 } 764 } 765 vactive1_us = ((subvp_pipes[0]->stream->timing.v_addressable * subvp_pipes[0]->stream->timing.h_total) / 766 (double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000; 767 vactive2_us = ((subvp_pipes[1]->stream->timing.v_addressable * subvp_pipes[1]->stream->timing.h_total) / 768 (double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000; 769 vblank1_us = (((subvp_pipes[0]->stream->timing.v_total - subvp_pipes[0]->stream->timing.v_addressable) * 770 subvp_pipes[0]->stream->timing.h_total) / 771 (double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000; 772 vblank2_us = (((subvp_pipes[1]->stream->timing.v_total - subvp_pipes[1]->stream->timing.v_addressable) * 773 subvp_pipes[1]->stream->timing.h_total) / 774 (double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000; 775 776 if ((vactive1_us - vblank2_us) / 2 > max_microschedule_us && 777 (vactive2_us - vblank1_us) / 2 > max_microschedule_us) 778 return true; 779 780 return false; 781 } 782 783 /** 784 * subvp_drr_schedulable() - Determine if SubVP + DRR config is schedulable 785 * @dc: current dc state 786 * @context: new dc state 787 * 788 * High level algorithm: 789 * 1. Get timing for SubVP pipe, phantom pipe, and DRR pipe 790 * 2. Determine the frame time for the DRR display when adding required margin for MCLK switching 791 * (the margin is equal to the MALL region + DRR margin (500us)) 792 * 3.If (SubVP Active - Prefetch > Stretched DRR frame + max(MALL region, Stretched DRR frame)) 793 * then report the configuration as supported 794 * 795 * Return: True if the SubVP + DRR config is schedulable, false otherwise 796 */ 797 static bool subvp_drr_schedulable(struct dc *dc, struct dc_state *context) 798 { 799 bool schedulable = false; 800 uint32_t i; 801 struct pipe_ctx *pipe = NULL; 802 struct pipe_ctx *drr_pipe = NULL; 803 struct dc_crtc_timing *main_timing = NULL; 804 struct dc_crtc_timing *phantom_timing = NULL; 805 struct dc_crtc_timing *drr_timing = NULL; 806 int16_t prefetch_us = 0; 807 int16_t mall_region_us = 0; 808 int16_t drr_frame_us = 0; // nominal frame time 809 int16_t subvp_active_us = 0; 810 int16_t stretched_drr_us = 0; 811 int16_t drr_stretched_vblank_us = 0; 812 int16_t max_vblank_mallregion = 0; 813 struct dc_stream_state *phantom_stream; 814 bool subvp_found = false; 815 bool drr_found = false; 816 817 // Find SubVP pipe 818 for (i = 0; i < dc->res_pool->pipe_count; i++) { 819 pipe = &context->res_ctx.pipe_ctx[i]; 820 821 // We check for master pipe, but it shouldn't matter since we only need 822 // the pipe for timing info (stream should be same for any pipe splits) 823 if (!resource_is_pipe_type(pipe, OTG_MASTER) || 824 !resource_is_pipe_type(pipe, DPP_PIPE)) 825 continue; 826 827 // Find the SubVP pipe 828 if (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN) { 829 subvp_found = true; 830 break; 831 } 832 } 833 834 // Find the DRR pipe 835 for (i = 0; i < dc->res_pool->pipe_count; i++) { 836 drr_pipe = &context->res_ctx.pipe_ctx[i]; 837 838 // We check for master pipe only 839 if (!resource_is_pipe_type(drr_pipe, OTG_MASTER) || 840 !resource_is_pipe_type(drr_pipe, DPP_PIPE)) 841 continue; 842 843 if (dc_state_get_pipe_subvp_type(context, drr_pipe) == SUBVP_NONE && drr_pipe->stream->ignore_msa_timing_param && 844 (drr_pipe->stream->allow_freesync || drr_pipe->stream->vrr_active_variable || drr_pipe->stream->vrr_active_fixed)) { 845 drr_found = true; 846 break; 847 } 848 } 849 850 phantom_stream = dc_state_get_paired_subvp_stream(context, pipe->stream); 851 if (phantom_stream && subvp_found && drr_found) { 852 main_timing = &pipe->stream->timing; 853 phantom_timing = &phantom_stream->timing; 854 drr_timing = &drr_pipe->stream->timing; 855 prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total / 856 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000 + 857 dc->caps.subvp_prefetch_end_to_mall_start_us; 858 subvp_active_us = main_timing->v_addressable * main_timing->h_total / 859 (double)(main_timing->pix_clk_100hz * 100) * 1000000; 860 drr_frame_us = drr_timing->v_total * drr_timing->h_total / 861 (double)(drr_timing->pix_clk_100hz * 100) * 1000000; 862 // P-State allow width and FW delays already included phantom_timing->v_addressable 863 mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total / 864 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000; 865 stretched_drr_us = drr_frame_us + mall_region_us + SUBVP_DRR_MARGIN_US; 866 drr_stretched_vblank_us = (drr_timing->v_total - drr_timing->v_addressable) * drr_timing->h_total / 867 (double)(drr_timing->pix_clk_100hz * 100) * 1000000 + (stretched_drr_us - drr_frame_us); 868 max_vblank_mallregion = drr_stretched_vblank_us > mall_region_us ? drr_stretched_vblank_us : mall_region_us; 869 } 870 871 /* We consider SubVP + DRR schedulable if the stretched frame duration of the DRR display (i.e. the 872 * highest refresh rate + margin that can support UCLK P-State switch) passes the static analysis 873 * for VBLANK: (VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time, 874 * and the max of (VBLANK blanking time, MALL region)). 875 */ 876 if (drr_timing && 877 stretched_drr_us < (1 / (double)drr_timing->min_refresh_in_uhz) * 1000000 * 1000000 && 878 subvp_active_us - prefetch_us - stretched_drr_us - max_vblank_mallregion > 0) 879 schedulable = true; 880 881 return schedulable; 882 } 883 884 885 /** 886 * subvp_vblank_schedulable - Determine if SubVP + VBLANK config is schedulable 887 * @dc: current dc state 888 * @context: new dc state 889 * 890 * High level algorithm: 891 * 1. Get timing for SubVP pipe, phantom pipe, and VBLANK pipe 892 * 2. If (SubVP Active - Prefetch > Vblank Frame Time + max(MALL region, Vblank blanking time)) 893 * then report the configuration as supported 894 * 3. If the VBLANK display is DRR, then take the DRR static schedulability path 895 * 896 * Return: True if the SubVP + VBLANK/DRR config is schedulable, false otherwise 897 */ 898 static bool subvp_vblank_schedulable(struct dc *dc, struct dc_state *context) 899 { 900 struct pipe_ctx *pipe = NULL; 901 struct pipe_ctx *subvp_pipe = NULL; 902 bool found = false; 903 bool schedulable = false; 904 uint32_t i = 0; 905 uint8_t vblank_index = 0; 906 uint16_t prefetch_us = 0; 907 uint16_t mall_region_us = 0; 908 uint16_t vblank_frame_us = 0; 909 uint16_t subvp_active_us = 0; 910 uint16_t vblank_blank_us = 0; 911 uint16_t max_vblank_mallregion = 0; 912 struct dc_crtc_timing *main_timing = NULL; 913 struct dc_crtc_timing *phantom_timing = NULL; 914 struct dc_crtc_timing *vblank_timing = NULL; 915 struct dc_stream_state *phantom_stream; 916 enum mall_stream_type pipe_mall_type; 917 918 /* For SubVP + VBLANK/DRR cases, we assume there can only be 919 * a single VBLANK/DRR display. If DML outputs SubVP + VBLANK 920 * is supported, it is either a single VBLANK case or two VBLANK 921 * displays which are synchronized (in which case they have identical 922 * timings). 923 */ 924 for (i = 0; i < dc->res_pool->pipe_count; i++) { 925 pipe = &context->res_ctx.pipe_ctx[i]; 926 pipe_mall_type = dc_state_get_pipe_subvp_type(context, pipe); 927 928 // We check for master pipe, but it shouldn't matter since we only need 929 // the pipe for timing info (stream should be same for any pipe splits) 930 if (!resource_is_pipe_type(pipe, OTG_MASTER) || 931 !resource_is_pipe_type(pipe, DPP_PIPE)) 932 continue; 933 934 if (!found && pipe_mall_type == SUBVP_NONE) { 935 // Found pipe which is not SubVP or Phantom (i.e. the VBLANK pipe). 936 vblank_index = i; 937 found = true; 938 } 939 940 if (!subvp_pipe && pipe_mall_type == SUBVP_MAIN) 941 subvp_pipe = pipe; 942 } 943 if (found && subvp_pipe) { 944 phantom_stream = dc_state_get_paired_subvp_stream(context, subvp_pipe->stream); 945 main_timing = &subvp_pipe->stream->timing; 946 phantom_timing = &phantom_stream->timing; 947 vblank_timing = &context->res_ctx.pipe_ctx[vblank_index].stream->timing; 948 // Prefetch time is equal to VACTIVE + BP + VSYNC of the phantom pipe 949 // Also include the prefetch end to mallstart delay time 950 prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total / 951 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000 + 952 dc->caps.subvp_prefetch_end_to_mall_start_us; 953 // P-State allow width and FW delays already included phantom_timing->v_addressable 954 mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total / 955 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000; 956 vblank_frame_us = vblank_timing->v_total * vblank_timing->h_total / 957 (double)(vblank_timing->pix_clk_100hz * 100) * 1000000; 958 vblank_blank_us = (vblank_timing->v_total - vblank_timing->v_addressable) * vblank_timing->h_total / 959 (double)(vblank_timing->pix_clk_100hz * 100) * 1000000; 960 subvp_active_us = main_timing->v_addressable * main_timing->h_total / 961 (double)(main_timing->pix_clk_100hz * 100) * 1000000; 962 max_vblank_mallregion = vblank_blank_us > mall_region_us ? vblank_blank_us : mall_region_us; 963 964 // Schedulable if VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time, 965 // and the max of (VBLANK blanking time, MALL region) 966 // TODO: Possibly add some margin (i.e. the below conditions should be [...] > X instead of [...] > 0) 967 if (subvp_active_us - prefetch_us - vblank_frame_us - max_vblank_mallregion > 0) 968 schedulable = true; 969 } 970 return schedulable; 971 } 972 973 /** 974 * subvp_subvp_admissable() - Determine if subvp + subvp config is admissible 975 * 976 * @dc: Current DC state 977 * @context: New DC state to be programmed 978 * 979 * SubVP + SubVP is admissible under the following conditions: 980 * - All SubVP pipes are < 120Hz OR 981 * - All SubVP pipes are >= 120hz 982 * 983 * Return: True if admissible, false otherwise 984 */ 985 static bool subvp_subvp_admissable(struct dc *dc, 986 struct dc_state *context) 987 { 988 bool result = false; 989 uint32_t i; 990 uint8_t subvp_count = 0; 991 uint32_t min_refresh = subvp_high_refresh_list.min_refresh, max_refresh = 0; 992 uint64_t refresh_rate = 0; 993 994 for (i = 0; i < dc->res_pool->pipe_count; i++) { 995 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 996 997 if (!pipe->stream) 998 continue; 999 1000 if (pipe->plane_state && !pipe->top_pipe && 1001 dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN) { 1002 refresh_rate = (pipe->stream->timing.pix_clk_100hz * (uint64_t)100 + 1003 pipe->stream->timing.v_total * (uint64_t)pipe->stream->timing.h_total - (uint64_t)1); 1004 refresh_rate = div_u64(refresh_rate, pipe->stream->timing.v_total); 1005 refresh_rate = div_u64(refresh_rate, pipe->stream->timing.h_total); 1006 1007 if ((uint32_t)refresh_rate < min_refresh) 1008 min_refresh = (uint32_t)refresh_rate; 1009 if ((uint32_t)refresh_rate > max_refresh) 1010 max_refresh = (uint32_t)refresh_rate; 1011 subvp_count++; 1012 } 1013 } 1014 1015 if (subvp_count == 2 && ((min_refresh < 120 && max_refresh < 120) || 1016 (min_refresh >= subvp_high_refresh_list.min_refresh && 1017 max_refresh <= subvp_high_refresh_list.max_refresh))) 1018 result = true; 1019 1020 return result; 1021 } 1022 1023 /** 1024 * subvp_validate_static_schedulability - Check which SubVP case is calculated 1025 * and handle static analysis based on the case. 1026 * @dc: current dc state 1027 * @context: new dc state 1028 * @vlevel: Voltage level calculated by DML 1029 * 1030 * Three cases: 1031 * 1. SubVP + SubVP 1032 * 2. SubVP + VBLANK (DRR checked internally) 1033 * 3. SubVP + VACTIVE (currently unsupported) 1034 * 1035 * Return: True if statically schedulable, false otherwise 1036 */ 1037 static bool subvp_validate_static_schedulability(struct dc *dc, 1038 struct dc_state *context, 1039 int vlevel) 1040 { 1041 bool schedulable = false; 1042 struct vba_vars_st *vba = &context->bw_ctx.dml.vba; 1043 uint32_t i, pipe_idx; 1044 uint8_t subvp_count = 0; 1045 uint8_t vactive_count = 0; 1046 uint8_t non_subvp_pipes = 0; 1047 1048 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 1049 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1050 enum mall_stream_type pipe_mall_type = dc_state_get_pipe_subvp_type(context, pipe); 1051 1052 if (!pipe->stream) 1053 continue; 1054 1055 if (pipe->plane_state && !pipe->top_pipe) { 1056 if (pipe_mall_type == SUBVP_MAIN) 1057 subvp_count++; 1058 if (pipe_mall_type == SUBVP_NONE) 1059 non_subvp_pipes++; 1060 } 1061 1062 // Count how many planes that aren't SubVP/phantom are capable of VACTIVE 1063 // switching (SubVP + VACTIVE unsupported). In situations where we force 1064 // SubVP for a VACTIVE plane, we don't want to increment the vactive_count. 1065 if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vlevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0 && 1066 pipe_mall_type == SUBVP_NONE) { 1067 vactive_count++; 1068 } 1069 pipe_idx++; 1070 } 1071 1072 if (subvp_count == 2) { 1073 // Static schedulability check for SubVP + SubVP case 1074 schedulable = subvp_subvp_admissable(dc, context) && subvp_subvp_schedulable(dc, context); 1075 } else if (subvp_count == 1 && non_subvp_pipes == 0) { 1076 // Single SubVP configs will be supported by default as long as it's suppported by DML 1077 schedulable = true; 1078 } else if (subvp_count == 1 && non_subvp_pipes == 1) { 1079 if (dcn32_subvp_drr_admissable(dc, context)) 1080 schedulable = subvp_drr_schedulable(dc, context); 1081 else if (dcn32_subvp_vblank_admissable(dc, context, vlevel)) 1082 schedulable = subvp_vblank_schedulable(dc, context); 1083 } else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vactive_w_mall_sub_vp && 1084 vactive_count > 0) { 1085 // For single display SubVP cases, DML will output dm_dram_clock_change_vactive_w_mall_sub_vp by default. 1086 // We tell the difference between SubVP vs. SubVP + VACTIVE by checking the vactive_count. 1087 // SubVP + VACTIVE currently unsupported 1088 schedulable = false; 1089 } 1090 return schedulable; 1091 } 1092 1093 static void assign_subvp_index(struct dc *dc, struct dc_state *context) 1094 { 1095 int i; 1096 int index = 0; 1097 1098 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1099 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; 1100 1101 if (resource_is_pipe_type(pipe_ctx, OTG_MASTER) && 1102 dc_state_get_pipe_subvp_type(context, pipe_ctx) == SUBVP_MAIN) { 1103 pipe_ctx->subvp_index = index++; 1104 } else { 1105 pipe_ctx->subvp_index = 0; 1106 } 1107 } 1108 } 1109 1110 struct pipe_slice_table { 1111 struct { 1112 struct dc_stream_state *stream; 1113 int slice_count; 1114 } odm_combines[MAX_STREAMS]; 1115 int odm_combine_count; 1116 1117 struct { 1118 struct pipe_ctx *pri_pipe; 1119 struct dc_plane_state *plane; 1120 int slice_count; 1121 } mpc_combines[MAX_PLANES]; 1122 int mpc_combine_count; 1123 }; 1124 1125 1126 static void update_slice_table_for_stream(struct pipe_slice_table *table, 1127 struct dc_stream_state *stream, int diff) 1128 { 1129 int i; 1130 1131 for (i = 0; i < table->odm_combine_count; i++) { 1132 if (table->odm_combines[i].stream == stream) { 1133 table->odm_combines[i].slice_count += diff; 1134 break; 1135 } 1136 } 1137 1138 if (i == table->odm_combine_count) { 1139 table->odm_combine_count++; 1140 table->odm_combines[i].stream = stream; 1141 table->odm_combines[i].slice_count = diff; 1142 } 1143 } 1144 1145 static void update_slice_table_for_plane(struct pipe_slice_table *table, 1146 struct pipe_ctx *dpp_pipe, struct dc_plane_state *plane, int diff) 1147 { 1148 int i; 1149 struct pipe_ctx *pri_dpp_pipe = resource_get_primary_dpp_pipe(dpp_pipe); 1150 1151 for (i = 0; i < table->mpc_combine_count; i++) { 1152 if (table->mpc_combines[i].plane == plane && 1153 table->mpc_combines[i].pri_pipe == pri_dpp_pipe) { 1154 table->mpc_combines[i].slice_count += diff; 1155 break; 1156 } 1157 } 1158 1159 if (i == table->mpc_combine_count) { 1160 table->mpc_combine_count++; 1161 table->mpc_combines[i].plane = plane; 1162 table->mpc_combines[i].pri_pipe = pri_dpp_pipe; 1163 table->mpc_combines[i].slice_count = diff; 1164 } 1165 } 1166 1167 static void init_pipe_slice_table_from_context( 1168 struct pipe_slice_table *table, 1169 struct dc_state *context) 1170 { 1171 int i, j; 1172 struct pipe_ctx *otg_master; 1173 struct pipe_ctx *dpp_pipes[MAX_PIPES]; 1174 struct dc_stream_state *stream; 1175 int count; 1176 1177 memset(table, 0, sizeof(*table)); 1178 1179 for (i = 0; i < context->stream_count; i++) { 1180 stream = context->streams[i]; 1181 otg_master = resource_get_otg_master_for_stream( 1182 &context->res_ctx, stream); 1183 if (!otg_master) 1184 continue; 1185 1186 count = resource_get_odm_slice_count(otg_master); 1187 update_slice_table_for_stream(table, stream, count); 1188 1189 count = resource_get_dpp_pipes_for_opp_head(otg_master, 1190 &context->res_ctx, dpp_pipes); 1191 for (j = 0; j < count; j++) 1192 if (dpp_pipes[j]->plane_state) 1193 update_slice_table_for_plane(table, dpp_pipes[j], 1194 dpp_pipes[j]->plane_state, 1); 1195 } 1196 } 1197 1198 static bool update_pipe_slice_table_with_split_flags( 1199 struct pipe_slice_table *table, 1200 struct dc *dc, 1201 struct dc_state *context, 1202 struct vba_vars_st *vba, 1203 int split[MAX_PIPES], 1204 bool merge[MAX_PIPES]) 1205 { 1206 /* NOTE: we are deprecating the support for the concept of pipe splitting 1207 * or pipe merging. Instead we append slices to the end and remove 1208 * slices from the end. The following code converts a pipe split or 1209 * merge to an append or remove operation. 1210 * 1211 * For example: 1212 * When split flags describe the following pipe connection transition 1213 * 1214 * from: 1215 * pipe 0 (split=2) -> pipe 1 (split=2) 1216 * to: (old behavior) 1217 * pipe 0 -> pipe 2 -> pipe 1 -> pipe 3 1218 * 1219 * the code below actually does: 1220 * pipe 0 -> pipe 1 -> pipe 2 -> pipe 3 1221 * 1222 * This is the new intended behavior and for future DCNs we will retire 1223 * the old concept completely. 1224 */ 1225 struct pipe_ctx *pipe; 1226 bool odm; 1227 int dc_pipe_idx, dml_pipe_idx = 0; 1228 bool updated = false; 1229 1230 for (dc_pipe_idx = 0; 1231 dc_pipe_idx < dc->res_pool->pipe_count; dc_pipe_idx++) { 1232 pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx]; 1233 if (resource_is_pipe_type(pipe, FREE_PIPE)) 1234 continue; 1235 1236 if (merge[dc_pipe_idx]) { 1237 if (resource_is_pipe_type(pipe, OPP_HEAD)) 1238 /* merging OPP head means reducing ODM slice 1239 * count by 1 1240 */ 1241 update_slice_table_for_stream(table, pipe->stream, -1); 1242 else if (resource_is_pipe_type(pipe, DPP_PIPE) && 1243 resource_get_odm_slice_index(resource_get_opp_head(pipe)) == 0) 1244 /* merging DPP pipe of the first ODM slice means 1245 * reducing MPC slice count by 1 1246 */ 1247 update_slice_table_for_plane(table, pipe, pipe->plane_state, -1); 1248 updated = true; 1249 } 1250 1251 if (split[dc_pipe_idx]) { 1252 odm = vba->ODMCombineEnabled[vba->pipe_plane[dml_pipe_idx]] != 1253 dm_odm_combine_mode_disabled; 1254 if (odm && resource_is_pipe_type(pipe, OPP_HEAD)) 1255 update_slice_table_for_stream( 1256 table, pipe->stream, split[dc_pipe_idx] - 1); 1257 else if (!odm && resource_is_pipe_type(pipe, DPP_PIPE)) 1258 update_slice_table_for_plane(table, pipe, 1259 pipe->plane_state, split[dc_pipe_idx] - 1); 1260 updated = true; 1261 } 1262 dml_pipe_idx++; 1263 } 1264 return updated; 1265 } 1266 1267 static void update_pipes_with_slice_table(struct dc *dc, struct dc_state *context, 1268 struct pipe_slice_table *table) 1269 { 1270 int i; 1271 1272 for (i = 0; i < table->odm_combine_count; i++) 1273 resource_update_pipes_for_stream_with_slice_count(context, 1274 dc->current_state, dc->res_pool, 1275 table->odm_combines[i].stream, 1276 table->odm_combines[i].slice_count); 1277 1278 for (i = 0; i < table->mpc_combine_count; i++) 1279 resource_update_pipes_for_plane_with_slice_count(context, 1280 dc->current_state, dc->res_pool, 1281 table->mpc_combines[i].plane, 1282 table->mpc_combines[i].slice_count); 1283 } 1284 1285 static bool update_pipes_with_split_flags(struct dc *dc, struct dc_state *context, 1286 struct vba_vars_st *vba, int split[MAX_PIPES], 1287 bool merge[MAX_PIPES]) 1288 { 1289 struct pipe_slice_table slice_table; 1290 bool updated; 1291 1292 init_pipe_slice_table_from_context(&slice_table, context); 1293 updated = update_pipe_slice_table_with_split_flags( 1294 &slice_table, dc, context, vba, 1295 split, merge); 1296 update_pipes_with_slice_table(dc, context, &slice_table); 1297 return updated; 1298 } 1299 1300 static bool should_apply_odm_power_optimization(struct dc *dc, 1301 struct dc_state *context, struct vba_vars_st *v, int *split, 1302 bool *merge) 1303 { 1304 struct dc_stream_state *stream = context->streams[0]; 1305 struct pipe_slice_table slice_table; 1306 int i; 1307 1308 /* 1309 * this debug flag allows us to disable ODM power optimization feature 1310 * unconditionally. we force the feature off if this is set to false. 1311 */ 1312 if (!dc->debug.enable_single_display_2to1_odm_policy) 1313 return false; 1314 1315 /* current design and test coverage is only limited to allow ODM power 1316 * optimization for single stream. Supporting it for multiple streams 1317 * use case would require additional algorithm to decide how to 1318 * optimize power consumption when there are not enough free pipes to 1319 * allocate for all the streams. This level of optimization would 1320 * require multiple attempts of revalidation to make an optimized 1321 * decision. Unfortunately We do not support revalidation flow in 1322 * current version of DML. 1323 */ 1324 if (context->stream_count != 1) 1325 return false; 1326 1327 /* 1328 * Our hardware doesn't support ODM for HDMI TMDS 1329 */ 1330 if (dc_is_hdmi_signal(stream->signal)) 1331 return false; 1332 1333 /* 1334 * ODM Combine 2:1 requires horizontal timing divisible by 2 so each 1335 * ODM segment has the same size. 1336 */ 1337 if (!is_h_timing_divisible_by_2(stream)) 1338 return false; 1339 1340 /* 1341 * No power benefits if the timing's pixel clock is not high enough to 1342 * raise display clock from minimum power state. 1343 */ 1344 if (stream->timing.pix_clk_100hz * 100 <= DCN3_2_VMIN_DISPCLK_HZ) 1345 return false; 1346 1347 if (dc->config.enable_windowed_mpo_odm) { 1348 /* 1349 * ODM power optimization should only be allowed if the feature 1350 * can be seamlessly toggled off within an update. This would 1351 * require that the feature is applied on top of a minimal 1352 * state. A minimal state is defined as a state validated 1353 * without the need of pipe split. Therefore, when transition to 1354 * toggle the feature off, the same stream and plane 1355 * configuration can be supported by the pipe resource in the 1356 * first ODM slice alone without the need to acquire extra 1357 * resources. 1358 */ 1359 init_pipe_slice_table_from_context(&slice_table, context); 1360 update_pipe_slice_table_with_split_flags( 1361 &slice_table, dc, context, v, 1362 split, merge); 1363 for (i = 0; i < slice_table.mpc_combine_count; i++) 1364 if (slice_table.mpc_combines[i].slice_count > 1) 1365 return false; 1366 1367 for (i = 0; i < slice_table.odm_combine_count; i++) 1368 if (slice_table.odm_combines[i].slice_count > 1) 1369 return false; 1370 } else { 1371 /* 1372 * the new ODM power optimization feature reduces software 1373 * design limitation and allows ODM power optimization to be 1374 * supported even with presence of overlay planes. The new 1375 * feature is enabled based on enable_windowed_mpo_odm flag. If 1376 * the flag is not set, we limit our feature scope due to 1377 * previous software design limitation 1378 */ 1379 if (context->stream_status[0].plane_count != 1) 1380 return false; 1381 1382 if (memcmp(&context->stream_status[0].plane_states[0]->clip_rect, 1383 &stream->src, sizeof(struct rect)) != 0) 1384 return false; 1385 1386 if (stream->src.width >= 5120 && 1387 stream->src.width > stream->dst.width) 1388 return false; 1389 } 1390 return true; 1391 } 1392 1393 static void try_odm_power_optimization_and_revalidate( 1394 struct dc *dc, 1395 struct dc_state *context, 1396 display_e2e_pipe_params_st *pipes, 1397 int *split, 1398 bool *merge, 1399 unsigned int *vlevel, 1400 int pipe_cnt) 1401 { 1402 int i; 1403 unsigned int new_vlevel; 1404 unsigned int cur_policy[MAX_PIPES]; 1405 1406 for (i = 0; i < pipe_cnt; i++) { 1407 cur_policy[i] = pipes[i].pipe.dest.odm_combine_policy; 1408 pipes[i].pipe.dest.odm_combine_policy = dm_odm_combine_policy_2to1; 1409 } 1410 1411 new_vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); 1412 1413 if (new_vlevel < context->bw_ctx.dml.soc.num_states) { 1414 memset(split, 0, MAX_PIPES * sizeof(int)); 1415 memset(merge, 0, MAX_PIPES * sizeof(bool)); 1416 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, new_vlevel, split, merge); 1417 context->bw_ctx.dml.vba.VoltageLevel = *vlevel; 1418 } else { 1419 for (i = 0; i < pipe_cnt; i++) 1420 pipes[i].pipe.dest.odm_combine_policy = cur_policy[i]; 1421 } 1422 } 1423 1424 static bool is_test_pattern_enabled( 1425 struct dc_state *context) 1426 { 1427 int i; 1428 1429 for (i = 0; i < context->stream_count; i++) { 1430 if (context->streams[i]->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE) 1431 return true; 1432 } 1433 1434 return false; 1435 } 1436 1437 static bool dcn32_full_validate_bw_helper(struct dc *dc, 1438 struct dc_state *context, 1439 display_e2e_pipe_params_st *pipes, 1440 int *vlevel, 1441 int *split, 1442 bool *merge, 1443 int *pipe_cnt, 1444 bool *repopulate_pipes) 1445 { 1446 struct vba_vars_st *vba = &context->bw_ctx.dml.vba; 1447 unsigned int dc_pipe_idx = 0; 1448 int i = 0; 1449 bool found_supported_config = false; 1450 int vlevel_temp = 0; 1451 1452 dc_assert_fp_enabled(); 1453 1454 /* 1455 * DML favors voltage over p-state, but we're more interested in 1456 * supporting p-state over voltage. We can't support p-state in 1457 * prefetch mode > 0 so try capping the prefetch mode to start. 1458 * Override present for testing. 1459 */ 1460 if (dc->debug.dml_disallow_alternate_prefetch_modes) 1461 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = 1462 dm_prefetch_support_uclk_fclk_and_stutter; 1463 else 1464 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = 1465 dm_prefetch_support_uclk_fclk_and_stutter_if_possible; 1466 1467 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt); 1468 /* This may adjust vlevel and maxMpcComb */ 1469 if (*vlevel < context->bw_ctx.dml.soc.num_states) { 1470 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge); 1471 vba->VoltageLevel = *vlevel; 1472 } 1473 1474 /* Apply split and merge flags before checking for subvp */ 1475 if (!dcn32_apply_merge_split_flags_helper(dc, context, repopulate_pipes, split, merge)) 1476 return false; 1477 memset(split, 0, MAX_PIPES * sizeof(int)); 1478 memset(merge, 0, MAX_PIPES * sizeof(bool)); 1479 1480 /* Conditions for setting up phantom pipes for SubVP: 1481 * 1. Not force disable SubVP 1482 * 2. Full update (i.e. DC_VALIDATE_MODE_AND_PROGRAMMING) 1483 * 3. Enough pipes are available to support SubVP (TODO: Which pipes will use VACTIVE / VBLANK / SUBVP?) 1484 * 4. Display configuration passes validation 1485 * 5. (Config doesn't support MCLK in VACTIVE/VBLANK || dc->debug.force_subvp_mclk_switch) 1486 */ 1487 if (!dc->debug.force_disable_subvp && !dc->caps.dmub_caps.gecc_enable && dcn32_all_pipes_have_stream_and_plane(dc, context) && 1488 !dcn32_mpo_in_use(context) && !dcn32_any_surfaces_rotated(dc, context) && !is_test_pattern_enabled(context) && 1489 (*vlevel == context->bw_ctx.dml.soc.num_states || (vba->DRAMSpeedPerState[*vlevel] != vba->DRAMSpeedPerState[0] && 1490 vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported) || 1491 vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported || 1492 dc->debug.force_subvp_mclk_switch)) { 1493 1494 vlevel_temp = *vlevel; 1495 1496 while (!found_supported_config && dcn32_enough_pipes_for_subvp(dc, context) && 1497 dcn32_assign_subvp_pipe(dc, context, &dc_pipe_idx)) { 1498 /* For the case where *vlevel = num_states, bandwidth validation has failed for this config. 1499 * Adding phantom pipes won't change the validation result, so change the DML input param 1500 * for P-State support before adding phantom pipes and recalculating the DML result. 1501 * However, this case is only applicable for SubVP + DRR cases because the prefetch mode 1502 * will not allow for switch in VBLANK. The DRR display must have it's VBLANK stretched 1503 * enough to support MCLK switching. 1504 */ 1505 if (*vlevel == context->bw_ctx.dml.soc.num_states && 1506 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final == 1507 dm_prefetch_support_uclk_fclk_and_stutter) { 1508 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = 1509 dm_prefetch_support_fclk_and_stutter; 1510 /* There are params (such as FabricClock) that need to be recalculated 1511 * after validation fails (otherwise it will be 0). Calculation for 1512 * phantom vactive requires call into DML, so we must ensure all the 1513 * vba params are valid otherwise we'll get incorrect phantom vactive. 1514 */ 1515 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt); 1516 } 1517 1518 dc->res_pool->funcs->add_phantom_pipes(dc, context, pipes, *pipe_cnt, dc_pipe_idx); 1519 1520 *pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, 1521 DC_VALIDATE_MODE_AND_PROGRAMMING); 1522 // Populate dppclk to trigger a recalculate in dml_get_voltage_level 1523 // so the phantom pipe DLG params can be assigned correctly. 1524 pipes[0].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, *pipe_cnt, 0); 1525 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt); 1526 1527 /* Check that vlevel requested supports pstate or not 1528 * if not, select the lowest vlevel that supports it 1529 */ 1530 for (i = *vlevel; i < context->bw_ctx.dml.soc.num_states; i++) { 1531 if (vba->DRAMClockChangeSupport[i][vba->maxMpcComb] != dm_dram_clock_change_unsupported) { 1532 *vlevel = i; 1533 break; 1534 } 1535 } 1536 1537 if (*vlevel < context->bw_ctx.dml.soc.num_states 1538 && subvp_validate_static_schedulability(dc, context, *vlevel)) 1539 found_supported_config = true; 1540 if (found_supported_config) { 1541 // For SubVP + DRR cases, we can force the lowest vlevel that supports the mode 1542 if (dcn32_subvp_drr_admissable(dc, context) && subvp_drr_schedulable(dc, context)) { 1543 /* find lowest vlevel that supports the config */ 1544 for (i = *vlevel; i >= 0; i--) { 1545 if (vba->ModeSupport[i][vba->maxMpcComb]) { 1546 *vlevel = i; 1547 } else { 1548 break; 1549 } 1550 } 1551 } 1552 } 1553 } 1554 1555 if (vba->DRAMSpeedPerState[*vlevel] >= vba->DRAMSpeedPerState[vlevel_temp]) 1556 found_supported_config = false; 1557 1558 // If SubVP pipe config is unsupported (or cannot be used for UCLK switching) 1559 // remove phantom pipes and repopulate dml pipes 1560 if (!found_supported_config) { 1561 dc_state_remove_phantom_streams_and_planes(dc, context); 1562 dc_state_release_phantom_streams_and_planes(dc, context); 1563 vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] = dm_dram_clock_change_unsupported; 1564 *pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, 1565 DC_VALIDATE_MODE_AND_PROGRAMMING); 1566 1567 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt); 1568 /* This may adjust vlevel and maxMpcComb */ 1569 if (*vlevel < context->bw_ctx.dml.soc.num_states) { 1570 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge); 1571 vba->VoltageLevel = *vlevel; 1572 } 1573 } else { 1574 // Most populate phantom DLG params before programming hardware / timing for phantom pipe 1575 dcn32_helper_populate_phantom_dlg_params(dc, context, pipes, *pipe_cnt); 1576 1577 /* Call validate_apply_pipe_split flags after calling DML getters for 1578 * phantom dlg params, or some of the VBA params indicating pipe split 1579 * can be overwritten by the getters. 1580 * 1581 * When setting up SubVP config, all pipes are merged before attempting to 1582 * add phantom pipes. If pipe split (ODM / MPC) is required, both the main 1583 * and phantom pipes will be split in the regular pipe splitting sequence. 1584 */ 1585 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge); 1586 vba->VoltageLevel = *vlevel; 1587 // Note: We can't apply the phantom pipes to hardware at this time. We have to wait 1588 // until driver has acquired the DMCUB lock to do it safely. 1589 assign_subvp_index(dc, context); 1590 } 1591 } 1592 1593 if (should_apply_odm_power_optimization(dc, context, vba, split, merge)) 1594 try_odm_power_optimization_and_revalidate( 1595 dc, context, pipes, split, merge, vlevel, *pipe_cnt); 1596 1597 return true; 1598 } 1599 1600 static bool is_dtbclk_required(struct dc *dc, struct dc_state *context) 1601 { 1602 int i; 1603 1604 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1605 if (!context->res_ctx.pipe_ctx[i].stream) 1606 continue; 1607 if (dc->link_srv->dp_is_128b_132b_signal(&context->res_ctx.pipe_ctx[i])) 1608 return true; 1609 } 1610 return false; 1611 } 1612 1613 static void dcn20_adjust_freesync_v_startup(const struct dc_crtc_timing *dc_crtc_timing, int *vstartup_start) 1614 { 1615 struct dc_crtc_timing patched_crtc_timing; 1616 uint32_t asic_blank_end = 0; 1617 uint32_t asic_blank_start = 0; 1618 uint32_t newVstartup = 0; 1619 1620 patched_crtc_timing = *dc_crtc_timing; 1621 1622 if (patched_crtc_timing.flags.INTERLACE == 1) { 1623 if (patched_crtc_timing.v_front_porch < 2) 1624 patched_crtc_timing.v_front_porch = 2; 1625 } else { 1626 if (patched_crtc_timing.v_front_porch < 1) 1627 patched_crtc_timing.v_front_porch = 1; 1628 } 1629 1630 /* blank_start = frame end - front porch */ 1631 asic_blank_start = patched_crtc_timing.v_total - 1632 patched_crtc_timing.v_front_porch; 1633 1634 /* blank_end = blank_start - active */ 1635 asic_blank_end = asic_blank_start - 1636 patched_crtc_timing.v_border_bottom - 1637 patched_crtc_timing.v_addressable - 1638 patched_crtc_timing.v_border_top; 1639 1640 newVstartup = asic_blank_end + (patched_crtc_timing.v_total - asic_blank_start); 1641 1642 *vstartup_start = ((newVstartup > *vstartup_start) ? newVstartup : *vstartup_start); 1643 } 1644 1645 static void dcn32_calculate_dlg_params(struct dc *dc, struct dc_state *context, 1646 display_e2e_pipe_params_st *pipes, 1647 int pipe_cnt, int vlevel) 1648 { 1649 int i, pipe_idx, active_hubp_count = 0; 1650 bool usr_retraining_support = false; 1651 bool unbounded_req_enabled = false; 1652 struct vba_vars_st *vba = &context->bw_ctx.dml.vba; 1653 1654 dc_assert_fp_enabled(); 1655 1656 /* Writeback MCIF_WB arbitration parameters */ 1657 dc->res_pool->funcs->set_mcif_arb_params(dc, context, pipes, pipe_cnt); 1658 1659 context->bw_ctx.bw.dcn.clk.dispclk_khz = context->bw_ctx.dml.vba.DISPCLK * 1000; 1660 context->bw_ctx.bw.dcn.clk.dcfclk_khz = context->bw_ctx.dml.vba.DCFCLK * 1000; 1661 context->bw_ctx.bw.dcn.clk.socclk_khz = context->bw_ctx.dml.vba.SOCCLK * 1000; 1662 context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16; 1663 context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = context->bw_ctx.dml.vba.DCFCLKDeepSleep * 1000; 1664 context->bw_ctx.bw.dcn.clk.fclk_khz = context->bw_ctx.dml.vba.FabricClock * 1000; 1665 context->bw_ctx.bw.dcn.clk.p_state_change_support = 1666 context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] 1667 != dm_dram_clock_change_unsupported; 1668 1669 /* Pstate change might not be supported by hardware, but it might be 1670 * possible with firmware driven vertical blank stretching. 1671 */ 1672 context->bw_ctx.bw.dcn.clk.p_state_change_support |= context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching; 1673 1674 context->bw_ctx.bw.dcn.clk.dppclk_khz = 0; 1675 context->bw_ctx.bw.dcn.clk.dtbclk_en = is_dtbclk_required(dc, context); 1676 context->bw_ctx.bw.dcn.clk.ref_dtbclk_khz = context->bw_ctx.dml.vba.DTBCLKPerState[vlevel] * 1000; 1677 if (context->bw_ctx.dml.vba.FCLKChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] == dm_fclock_change_unsupported) 1678 context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = false; 1679 else 1680 context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true; 1681 1682 usr_retraining_support = context->bw_ctx.dml.vba.USRRetrainingSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb]; 1683 ASSERT(usr_retraining_support); 1684 1685 if (context->bw_ctx.bw.dcn.clk.dispclk_khz < dc->debug.min_disp_clk_khz) 1686 context->bw_ctx.bw.dcn.clk.dispclk_khz = dc->debug.min_disp_clk_khz; 1687 1688 unbounded_req_enabled = get_unbounded_request_enabled(&context->bw_ctx.dml, pipes, pipe_cnt); 1689 1690 if (unbounded_req_enabled && pipe_cnt > 1) { 1691 // Unbounded requesting should not ever be used when more than 1 pipe is enabled. 1692 ASSERT(false); 1693 unbounded_req_enabled = false; 1694 } 1695 1696 context->bw_ctx.bw.dcn.mall_ss_size_bytes = 0; 1697 context->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes = 0; 1698 context->bw_ctx.bw.dcn.mall_subvp_size_bytes = 0; 1699 1700 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 1701 if (!context->res_ctx.pipe_ctx[i].stream) 1702 continue; 1703 if (context->res_ctx.pipe_ctx[i].plane_state) 1704 active_hubp_count++; 1705 pipes[pipe_idx].pipe.dest.vstartup_start = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, 1706 pipe_idx); 1707 pipes[pipe_idx].pipe.dest.vupdate_offset = get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt, 1708 pipe_idx); 1709 pipes[pipe_idx].pipe.dest.vupdate_width = get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt, 1710 pipe_idx); 1711 pipes[pipe_idx].pipe.dest.vready_offset = get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt, 1712 pipe_idx); 1713 1714 if (dc_state_get_pipe_subvp_type(context, &context->res_ctx.pipe_ctx[i]) == SUBVP_PHANTOM) { 1715 // Phantom pipe requires that DET_SIZE = 0 and no unbounded requests 1716 context->res_ctx.pipe_ctx[i].det_buffer_size_kb = 0; 1717 context->res_ctx.pipe_ctx[i].unbounded_req = false; 1718 } else { 1719 context->res_ctx.pipe_ctx[i].det_buffer_size_kb = get_det_buffer_size_kbytes(&context->bw_ctx.dml, pipes, pipe_cnt, 1720 pipe_idx); 1721 context->res_ctx.pipe_ctx[i].unbounded_req = unbounded_req_enabled; 1722 } 1723 1724 if (context->bw_ctx.bw.dcn.clk.dppclk_khz < pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000) 1725 context->bw_ctx.bw.dcn.clk.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000; 1726 if (context->res_ctx.pipe_ctx[i].plane_state) 1727 context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000; 1728 else 1729 context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = 0; 1730 context->res_ctx.pipe_ctx[i].pipe_dlg_param = pipes[pipe_idx].pipe.dest; 1731 1732 context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes = get_surface_size_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); 1733 1734 if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0) 1735 context->res_ctx.pipe_ctx[i].has_vactive_margin = true; 1736 else 1737 context->res_ctx.pipe_ctx[i].has_vactive_margin = false; 1738 1739 /* MALL Allocation Sizes */ 1740 /* count from active, top pipes per plane only */ 1741 if (context->res_ctx.pipe_ctx[i].stream && context->res_ctx.pipe_ctx[i].plane_state && 1742 (context->res_ctx.pipe_ctx[i].top_pipe == NULL || 1743 context->res_ctx.pipe_ctx[i].plane_state != context->res_ctx.pipe_ctx[i].top_pipe->plane_state) && 1744 context->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) { 1745 /* SS: all active surfaces stored in MALL */ 1746 if (dc_state_get_pipe_subvp_type(context, &context->res_ctx.pipe_ctx[i]) != SUBVP_PHANTOM) { 1747 context->bw_ctx.bw.dcn.mall_ss_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes; 1748 1749 if (context->res_ctx.pipe_ctx[i].stream->link->psr_settings.psr_version == DC_PSR_VERSION_UNSUPPORTED) { 1750 /* SS PSR On: all active surfaces part of streams not supporting PSR stored in MALL */ 1751 context->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes; 1752 } 1753 } else { 1754 /* SUBVP: phantom surfaces only stored in MALL */ 1755 context->bw_ctx.bw.dcn.mall_subvp_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes; 1756 } 1757 } 1758 1759 if (context->res_ctx.pipe_ctx[i].stream->adaptive_sync_infopacket.valid) 1760 dcn20_adjust_freesync_v_startup( 1761 &context->res_ctx.pipe_ctx[i].stream->timing, 1762 &context->res_ctx.pipe_ctx[i].pipe_dlg_param.vstartup_start); 1763 1764 pipe_idx++; 1765 } 1766 /* If DCN isn't making memory requests we can allow pstate change and lower clocks */ 1767 if (!active_hubp_count) { 1768 context->bw_ctx.bw.dcn.clk.socclk_khz = 0; 1769 context->bw_ctx.bw.dcn.clk.dppclk_khz = 0; 1770 context->bw_ctx.bw.dcn.clk.dcfclk_khz = 0; 1771 context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = 0; 1772 context->bw_ctx.bw.dcn.clk.dramclk_khz = 0; 1773 context->bw_ctx.bw.dcn.clk.fclk_khz = 0; 1774 context->bw_ctx.bw.dcn.clk.p_state_change_support = true; 1775 context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true; 1776 } 1777 /*save a original dppclock copy*/ 1778 context->bw_ctx.bw.dcn.clk.bw_dppclk_khz = context->bw_ctx.bw.dcn.clk.dppclk_khz; 1779 context->bw_ctx.bw.dcn.clk.bw_dispclk_khz = context->bw_ctx.bw.dcn.clk.dispclk_khz; 1780 context->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dppclk_mhz 1781 * 1000; 1782 context->bw_ctx.bw.dcn.clk.max_supported_dispclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dispclk_mhz 1783 * 1000; 1784 1785 context->bw_ctx.bw.dcn.clk.num_ways = dcn32_helper_calculate_num_ways_for_subvp(dc, context); 1786 1787 context->bw_ctx.bw.dcn.compbuf_size_kb = context->bw_ctx.dml.ip.config_return_buffer_size_in_kbytes; 1788 1789 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1790 if (context->res_ctx.pipe_ctx[i].stream) 1791 context->bw_ctx.bw.dcn.compbuf_size_kb -= context->res_ctx.pipe_ctx[i].det_buffer_size_kb; 1792 } 1793 1794 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 1795 1796 if (!context->res_ctx.pipe_ctx[i].stream) 1797 continue; 1798 1799 context->bw_ctx.dml.funcs.rq_dlg_get_dlg_reg_v2(&context->bw_ctx.dml, 1800 &context->res_ctx.pipe_ctx[i].dlg_regs, &context->res_ctx.pipe_ctx[i].ttu_regs, pipes, 1801 pipe_cnt, pipe_idx); 1802 1803 context->bw_ctx.dml.funcs.rq_dlg_get_rq_reg_v2(&context->res_ctx.pipe_ctx[i].rq_regs, 1804 &context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); 1805 pipe_idx++; 1806 } 1807 } 1808 1809 static struct pipe_ctx *dcn32_find_split_pipe( 1810 struct dc *dc, 1811 struct dc_state *context, 1812 int old_index) 1813 { 1814 struct pipe_ctx *pipe = NULL; 1815 int i; 1816 1817 if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) { 1818 pipe = &context->res_ctx.pipe_ctx[old_index]; 1819 pipe->pipe_idx = old_index; 1820 } 1821 1822 if (!pipe) 1823 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) { 1824 if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL 1825 && dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) { 1826 if (context->res_ctx.pipe_ctx[i].stream == NULL) { 1827 pipe = &context->res_ctx.pipe_ctx[i]; 1828 pipe->pipe_idx = i; 1829 break; 1830 } 1831 } 1832 } 1833 1834 /* 1835 * May need to fix pipes getting tossed from 1 opp to another on flip 1836 * Add for debugging transient underflow during topology updates: 1837 * ASSERT(pipe); 1838 */ 1839 if (!pipe) 1840 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) { 1841 if (context->res_ctx.pipe_ctx[i].stream == NULL) { 1842 pipe = &context->res_ctx.pipe_ctx[i]; 1843 pipe->pipe_idx = i; 1844 break; 1845 } 1846 } 1847 1848 return pipe; 1849 } 1850 1851 static bool dcn32_split_stream_for_mpc_or_odm( 1852 const struct dc *dc, 1853 struct resource_context *res_ctx, 1854 struct pipe_ctx *pri_pipe, 1855 struct pipe_ctx *sec_pipe, 1856 bool odm) 1857 { 1858 int pipe_idx = sec_pipe->pipe_idx; 1859 const struct resource_pool *pool = dc->res_pool; 1860 1861 DC_LOGGER_INIT(dc->ctx->logger); 1862 1863 if (odm && pri_pipe->plane_state) { 1864 /* ODM + window MPO, where MPO window is on left half only */ 1865 if (pri_pipe->plane_state->clip_rect.x + pri_pipe->plane_state->clip_rect.width <= 1866 pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) { 1867 1868 DC_LOG_SCALER("%s - ODM + window MPO(left). pri_pipe:%d\n", 1869 __func__, 1870 pri_pipe->pipe_idx); 1871 return true; 1872 } 1873 1874 /* ODM + window MPO, where MPO window is on right half only */ 1875 if (pri_pipe->plane_state->clip_rect.x >= pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) { 1876 1877 DC_LOG_SCALER("%s - ODM + window MPO(right). pri_pipe:%d\n", 1878 __func__, 1879 pri_pipe->pipe_idx); 1880 return true; 1881 } 1882 } 1883 1884 *sec_pipe = *pri_pipe; 1885 1886 sec_pipe->pipe_idx = pipe_idx; 1887 sec_pipe->plane_res.mi = pool->mis[pipe_idx]; 1888 sec_pipe->plane_res.hubp = pool->hubps[pipe_idx]; 1889 sec_pipe->plane_res.ipp = pool->ipps[pipe_idx]; 1890 sec_pipe->plane_res.xfm = pool->transforms[pipe_idx]; 1891 sec_pipe->plane_res.dpp = pool->dpps[pipe_idx]; 1892 sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst; 1893 sec_pipe->stream_res.dsc = NULL; 1894 if (odm) { 1895 if (pri_pipe->next_odm_pipe) { 1896 ASSERT(pri_pipe->next_odm_pipe != sec_pipe); 1897 sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe; 1898 sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe; 1899 } 1900 if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) { 1901 pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe; 1902 sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe; 1903 } 1904 if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) { 1905 pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe; 1906 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe; 1907 } 1908 pri_pipe->next_odm_pipe = sec_pipe; 1909 sec_pipe->prev_odm_pipe = pri_pipe; 1910 ASSERT(sec_pipe->top_pipe == NULL); 1911 1912 if (!sec_pipe->top_pipe) 1913 sec_pipe->stream_res.opp = pool->opps[pipe_idx]; 1914 else 1915 sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp; 1916 if (sec_pipe->stream->timing.flags.DSC == 1) { 1917 dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx); 1918 ASSERT(sec_pipe->stream_res.dsc); 1919 if (sec_pipe->stream_res.dsc == NULL) 1920 return false; 1921 } 1922 } else { 1923 if (pri_pipe->bottom_pipe) { 1924 ASSERT(pri_pipe->bottom_pipe != sec_pipe); 1925 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe; 1926 sec_pipe->bottom_pipe->top_pipe = sec_pipe; 1927 } 1928 pri_pipe->bottom_pipe = sec_pipe; 1929 sec_pipe->top_pipe = pri_pipe; 1930 1931 ASSERT(pri_pipe->plane_state); 1932 } 1933 1934 return true; 1935 } 1936 1937 static bool dcn32_apply_merge_split_flags_helper( 1938 struct dc *dc, 1939 struct dc_state *context, 1940 bool *repopulate_pipes, 1941 int *split, 1942 bool *merge) 1943 { 1944 int i, pipe_idx; 1945 bool newly_split[MAX_PIPES] = { false }; 1946 struct vba_vars_st *vba = &context->bw_ctx.dml.vba; 1947 1948 if (dc->config.enable_windowed_mpo_odm) { 1949 if (update_pipes_with_split_flags( 1950 dc, context, vba, split, merge)) 1951 *repopulate_pipes = true; 1952 } else { 1953 1954 /* the code below will be removed once windowed mpo odm is fully 1955 * enabled. 1956 */ 1957 /* merge pipes if necessary */ 1958 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1959 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1960 1961 /*skip pipes that don't need merging*/ 1962 if (!merge[i]) 1963 continue; 1964 1965 /* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */ 1966 if (pipe->prev_odm_pipe) { 1967 /*split off odm pipe*/ 1968 pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe; 1969 if (pipe->next_odm_pipe) 1970 pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe; 1971 1972 /*2:1ODM+MPC Split MPO to Single Pipe + MPC Split MPO*/ 1973 if (pipe->bottom_pipe) { 1974 if (pipe->bottom_pipe->prev_odm_pipe || pipe->bottom_pipe->next_odm_pipe) { 1975 /*MPC split rules will handle this case*/ 1976 pipe->bottom_pipe->top_pipe = NULL; 1977 } else { 1978 /* when merging an ODM pipes, the bottom MPC pipe must now point to 1979 * the previous ODM pipe and its associated stream assets 1980 */ 1981 if (pipe->prev_odm_pipe->bottom_pipe) { 1982 /* 3 plane MPO*/ 1983 pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe->bottom_pipe; 1984 pipe->prev_odm_pipe->bottom_pipe->bottom_pipe = pipe->bottom_pipe; 1985 } else { 1986 /* 2 plane MPO*/ 1987 pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe; 1988 pipe->prev_odm_pipe->bottom_pipe = pipe->bottom_pipe; 1989 } 1990 1991 memcpy(&pipe->bottom_pipe->stream_res, &pipe->bottom_pipe->top_pipe->stream_res, sizeof(struct stream_resource)); 1992 } 1993 } 1994 1995 if (pipe->top_pipe) { 1996 pipe->top_pipe->bottom_pipe = NULL; 1997 } 1998 1999 pipe->bottom_pipe = NULL; 2000 pipe->next_odm_pipe = NULL; 2001 pipe->plane_state = NULL; 2002 pipe->stream = NULL; 2003 pipe->top_pipe = NULL; 2004 pipe->prev_odm_pipe = NULL; 2005 if (pipe->stream_res.dsc) 2006 dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc); 2007 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res)); 2008 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res)); 2009 memset(&pipe->link_res, 0, sizeof(pipe->link_res)); 2010 *repopulate_pipes = true; 2011 } else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) { 2012 struct pipe_ctx *top_pipe = pipe->top_pipe; 2013 struct pipe_ctx *bottom_pipe = pipe->bottom_pipe; 2014 2015 top_pipe->bottom_pipe = bottom_pipe; 2016 if (bottom_pipe) 2017 bottom_pipe->top_pipe = top_pipe; 2018 2019 pipe->top_pipe = NULL; 2020 pipe->bottom_pipe = NULL; 2021 pipe->plane_state = NULL; 2022 pipe->stream = NULL; 2023 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res)); 2024 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res)); 2025 memset(&pipe->link_res, 0, sizeof(pipe->link_res)); 2026 *repopulate_pipes = true; 2027 } else 2028 ASSERT(0); /* Should never try to merge master pipe */ 2029 2030 } 2031 2032 for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) { 2033 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 2034 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i]; 2035 struct pipe_ctx *hsplit_pipe = NULL; 2036 bool odm; 2037 int old_index = -1; 2038 2039 if (!pipe->stream || newly_split[i]) 2040 continue; 2041 2042 pipe_idx++; 2043 odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled; 2044 2045 if (!pipe->plane_state && !odm) 2046 continue; 2047 2048 if (split[i]) { 2049 if (odm) { 2050 if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe) 2051 old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx; 2052 else if (old_pipe->next_odm_pipe) 2053 old_index = old_pipe->next_odm_pipe->pipe_idx; 2054 } else { 2055 if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe && 2056 old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 2057 old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx; 2058 else if (old_pipe->bottom_pipe && 2059 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 2060 old_index = old_pipe->bottom_pipe->pipe_idx; 2061 } 2062 hsplit_pipe = dcn32_find_split_pipe(dc, context, old_index); 2063 ASSERT(hsplit_pipe); 2064 if (!hsplit_pipe) 2065 return false; 2066 2067 if (!dcn32_split_stream_for_mpc_or_odm( 2068 dc, &context->res_ctx, 2069 pipe, hsplit_pipe, odm)) 2070 return false; 2071 2072 newly_split[hsplit_pipe->pipe_idx] = true; 2073 *repopulate_pipes = true; 2074 } 2075 if (split[i] == 4) { 2076 struct pipe_ctx *pipe_4to1; 2077 2078 if (odm && old_pipe->next_odm_pipe) 2079 old_index = old_pipe->next_odm_pipe->pipe_idx; 2080 else if (!odm && old_pipe->bottom_pipe && 2081 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 2082 old_index = old_pipe->bottom_pipe->pipe_idx; 2083 else 2084 old_index = -1; 2085 pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index); 2086 ASSERT(pipe_4to1); 2087 if (!pipe_4to1) 2088 return false; 2089 if (!dcn32_split_stream_for_mpc_or_odm( 2090 dc, &context->res_ctx, 2091 pipe, pipe_4to1, odm)) 2092 return false; 2093 newly_split[pipe_4to1->pipe_idx] = true; 2094 2095 if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe 2096 && old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe) 2097 old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx; 2098 else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe && 2099 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe && 2100 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 2101 old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx; 2102 else 2103 old_index = -1; 2104 pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index); 2105 ASSERT(pipe_4to1); 2106 if (!pipe_4to1) 2107 return false; 2108 if (!dcn32_split_stream_for_mpc_or_odm( 2109 dc, &context->res_ctx, 2110 hsplit_pipe, pipe_4to1, odm)) 2111 return false; 2112 newly_split[pipe_4to1->pipe_idx] = true; 2113 } 2114 if (odm) 2115 dcn20_build_mapped_resource(dc, context, pipe->stream); 2116 } 2117 2118 for (i = 0; i < dc->res_pool->pipe_count; i++) { 2119 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 2120 2121 if (pipe->plane_state) { 2122 if (!resource_build_scaling_params(pipe)) 2123 return false; 2124 } 2125 } 2126 2127 for (i = 0; i < context->stream_count; i++) { 2128 struct pipe_ctx *otg_master = resource_get_otg_master_for_stream(&context->res_ctx, 2129 context->streams[i]); 2130 2131 if (otg_master) 2132 resource_build_test_pattern_params(&context->res_ctx, otg_master); 2133 } 2134 } 2135 return true; 2136 } 2137 2138 bool dcn32_internal_validate_bw(struct dc *dc, 2139 struct dc_state *context, 2140 display_e2e_pipe_params_st *pipes, 2141 int *pipe_cnt_out, 2142 int *vlevel_out, 2143 enum dc_validate_mode validate_mode) 2144 { 2145 bool out = false; 2146 bool repopulate_pipes = false; 2147 int split[MAX_PIPES] = { 0 }; 2148 bool merge[MAX_PIPES] = { false }; 2149 int pipe_cnt, i, pipe_idx; 2150 int vlevel = context->bw_ctx.dml.soc.num_states; 2151 struct vba_vars_st *vba = &context->bw_ctx.dml.vba; 2152 2153 dc_assert_fp_enabled(); 2154 2155 ASSERT(pipes); 2156 if (!pipes) 2157 return false; 2158 2159 /* For each full update, remove all existing phantom pipes first */ 2160 dc_state_remove_phantom_streams_and_planes(dc, context); 2161 dc_state_release_phantom_streams_and_planes(dc, context); 2162 2163 dc->res_pool->funcs->update_soc_for_wm_a(dc, context); 2164 2165 for (i = 0; i < context->stream_count; i++) 2166 resource_update_pipes_for_stream_with_slice_count(context, dc->current_state, dc->res_pool, context->streams[i], 1); 2167 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, validate_mode); 2168 2169 if (!pipe_cnt) { 2170 out = true; 2171 goto validate_out; 2172 } 2173 2174 dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt); 2175 context->bw_ctx.dml.soc.max_vratio_pre = dcn32_determine_max_vratio_prefetch(dc, context); 2176 2177 if (validate_mode == DC_VALIDATE_MODE_AND_PROGRAMMING) { 2178 if (!dcn32_full_validate_bw_helper(dc, context, pipes, &vlevel, split, merge, 2179 &pipe_cnt, &repopulate_pipes)) 2180 goto validate_fail; 2181 } 2182 2183 if (validate_mode != DC_VALIDATE_MODE_AND_PROGRAMMING || 2184 (dc->debug.dml_disallow_alternate_prefetch_modes && 2185 (vlevel == context->bw_ctx.dml.soc.num_states || 2186 vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported))) { 2187 /* 2188 * If dml_disallow_alternate_prefetch_modes is false, then we have already 2189 * tried alternate prefetch modes during full validation. 2190 * 2191 * If mode is unsupported or there is no p-state support, then 2192 * fall back to favouring voltage. 2193 * 2194 * If Prefetch mode 0 failed for this config, or passed with Max UCLK, then try 2195 * to support with Prefetch mode 1 (dm_prefetch_support_fclk_and_stutter == 2) 2196 */ 2197 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = 2198 dm_prefetch_support_none; 2199 2200 context->bw_ctx.dml.validate_max_state = (validate_mode != DC_VALIDATE_MODE_AND_PROGRAMMING); 2201 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); 2202 2203 context->bw_ctx.dml.validate_max_state = false; 2204 2205 if (vlevel < context->bw_ctx.dml.soc.num_states) { 2206 memset(split, 0, sizeof(split)); 2207 memset(merge, 0, sizeof(merge)); 2208 vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge); 2209 /* dcn20_validate_apply_pipe_split_flags can modify voltage level outside of DML */ 2210 vba->VoltageLevel = vlevel; 2211 } 2212 } 2213 2214 dml_log_mode_support_params(&context->bw_ctx.dml); 2215 2216 if (vlevel == context->bw_ctx.dml.soc.num_states) 2217 goto validate_fail; 2218 2219 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 2220 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 2221 struct pipe_ctx *mpo_pipe = pipe->bottom_pipe; 2222 2223 if (!pipe->stream) 2224 continue; 2225 2226 if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled 2227 && !dc->config.enable_windowed_mpo_odm 2228 && pipe->plane_state && mpo_pipe 2229 && memcmp(&mpo_pipe->plane_state->clip_rect, 2230 &pipe->stream->src, 2231 sizeof(struct rect)) != 0) { 2232 ASSERT(mpo_pipe->plane_state != pipe->plane_state); 2233 goto validate_fail; 2234 } 2235 pipe_idx++; 2236 } 2237 2238 if (!dcn32_apply_merge_split_flags_helper(dc, context, &repopulate_pipes, split, merge)) 2239 goto validate_fail; 2240 2241 /* Actual dsc count per stream dsc validation*/ 2242 if (!dcn20_validate_dsc(dc, context)) { 2243 vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE; 2244 goto validate_fail; 2245 } 2246 2247 if (repopulate_pipes) { 2248 int flag_max_mpc_comb = vba->maxMpcComb; 2249 int flag_vlevel = vlevel; 2250 int i; 2251 2252 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, validate_mode); 2253 if (!dc->config.enable_windowed_mpo_odm) 2254 dcn32_update_dml_pipes_odm_policy_based_on_context(dc, context, pipes); 2255 2256 /* repopulate_pipes = 1 means the pipes were either split or merged. In this case 2257 * we have to re-calculate the DET allocation and run through DML once more to 2258 * ensure all the params are calculated correctly. We do not need to run the 2259 * pipe split check again after this call (pipes are already split / merged). 2260 * */ 2261 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = 2262 dm_prefetch_support_uclk_fclk_and_stutter_if_possible; 2263 2264 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); 2265 2266 if (vlevel == context->bw_ctx.dml.soc.num_states) { 2267 /* failed after DET size changes */ 2268 goto validate_fail; 2269 } else if (flag_max_mpc_comb == 0 && 2270 flag_max_mpc_comb != context->bw_ctx.dml.vba.maxMpcComb) { 2271 /* check the context constructed with pipe split flags is still valid*/ 2272 bool flags_valid = false; 2273 for (i = flag_vlevel; i < context->bw_ctx.dml.soc.num_states; i++) { 2274 if (vba->ModeSupport[i][flag_max_mpc_comb]) { 2275 vba->maxMpcComb = flag_max_mpc_comb; 2276 vba->VoltageLevel = i; 2277 vlevel = i; 2278 flags_valid = true; 2279 break; 2280 } 2281 } 2282 2283 /* this should never happen */ 2284 if (!flags_valid) 2285 goto validate_fail; 2286 } 2287 } 2288 *vlevel_out = vlevel; 2289 *pipe_cnt_out = pipe_cnt; 2290 2291 out = true; 2292 goto validate_out; 2293 2294 validate_fail: 2295 out = false; 2296 2297 validate_out: 2298 return out; 2299 } 2300 2301 2302 void dcn32_calculate_wm_and_dlg_fpu(struct dc *dc, struct dc_state *context, 2303 display_e2e_pipe_params_st *pipes, 2304 int pipe_cnt, 2305 int vlevel) 2306 { 2307 int i, pipe_idx, vlevel_temp = 0; 2308 double dcfclk = dcn3_2_soc.clock_limits[0].dcfclk_mhz; 2309 double dcfclk_from_validation = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb]; 2310 double dram_speed_from_validation = context->bw_ctx.dml.vba.DRAMSpeed; 2311 double dcfclk_from_fw_based_mclk_switching = dcfclk_from_validation; 2312 bool pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] != 2313 dm_dram_clock_change_unsupported; 2314 unsigned int dummy_latency_index = 0; 2315 int maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb; 2316 unsigned int min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed; 2317 bool subvp_in_use = dcn32_subvp_in_use(dc, context); 2318 unsigned int min_dram_speed_mts_margin; 2319 bool need_fclk_lat_as_dummy = false; 2320 bool is_subvp_p_drr = false; 2321 struct dc_stream_state *fpo_candidate_stream = NULL; 2322 struct dc_stream_status *stream_status = NULL; 2323 2324 dc_assert_fp_enabled(); 2325 2326 /* need to find dummy latency index for subvp */ 2327 if (subvp_in_use) { 2328 /* Override DRAMClockChangeSupport for SubVP + DRR case where the DRR cannot switch without stretching it's VBLANK */ 2329 if (!pstate_en) { 2330 context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp; 2331 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = dm_prefetch_support_fclk_and_stutter; 2332 pstate_en = true; 2333 is_subvp_p_drr = true; 2334 } 2335 dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc, 2336 context, pipes, pipe_cnt, vlevel); 2337 2338 /* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so prefetch is 2339 * scheduled correctly to account for dummy pstate. 2340 */ 2341 if (context->bw_ctx.dml.soc.fclk_change_latency_us < dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us) { 2342 need_fclk_lat_as_dummy = true; 2343 context->bw_ctx.dml.soc.fclk_change_latency_us = 2344 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us; 2345 } 2346 context->bw_ctx.dml.soc.dram_clock_change_latency_us = 2347 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us; 2348 dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, DC_VALIDATE_MODE_AND_PROGRAMMING); 2349 maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb; 2350 if (is_subvp_p_drr) { 2351 context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp; 2352 } 2353 } 2354 2355 context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false; 2356 for (i = 0; i < context->stream_count; i++) { 2357 stream_status = NULL; 2358 if (context->streams[i]) 2359 stream_status = dc_state_get_stream_status(context, context->streams[i]); 2360 if (stream_status) 2361 stream_status->fpo_in_use = false; 2362 } 2363 2364 if (!pstate_en || (!dc->debug.disable_fpo_optimizations && 2365 pstate_en && vlevel != 0)) { 2366 /* only when the mclk switch can not be natural, is the fw based vblank stretch attempted */ 2367 fpo_candidate_stream = dcn32_can_support_mclk_switch_using_fw_based_vblank_stretch(dc, context); 2368 if (fpo_candidate_stream) { 2369 stream_status = dc_state_get_stream_status(context, fpo_candidate_stream); 2370 if (stream_status) 2371 stream_status->fpo_in_use = true; 2372 context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = true; 2373 } 2374 2375 if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) { 2376 dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc, 2377 context, pipes, pipe_cnt, vlevel); 2378 2379 /* After calling dcn30_find_dummy_latency_index_for_fw_based_mclk_switch 2380 * we reinstate the original dram_clock_change_latency_us on the context 2381 * and all variables that may have changed up to this point, except the 2382 * newly found dummy_latency_index 2383 */ 2384 context->bw_ctx.dml.soc.dram_clock_change_latency_us = 2385 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us; 2386 /* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so 2387 * prefetch is scheduled correctly to account for dummy pstate. 2388 */ 2389 if (context->bw_ctx.dml.soc.fclk_change_latency_us < dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us) { 2390 need_fclk_lat_as_dummy = true; 2391 context->bw_ctx.dml.soc.fclk_change_latency_us = 2392 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us; 2393 } 2394 dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel_temp, 2395 DC_VALIDATE_MODE_AND_PROGRAMMING); 2396 if (vlevel_temp < vlevel) { 2397 vlevel = vlevel_temp; 2398 maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb; 2399 dcfclk_from_fw_based_mclk_switching = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb]; 2400 pstate_en = true; 2401 context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank; 2402 } else { 2403 /* Restore FCLK latency and re-run validation to go back to original validation 2404 * output if we find that enabling FPO does not give us any benefit (i.e. lower 2405 * voltage level) 2406 */ 2407 context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false; 2408 for (i = 0; i < context->stream_count; i++) { 2409 stream_status = NULL; 2410 if (context->streams[i]) 2411 stream_status = dc_state_get_stream_status(context, context->streams[i]); 2412 if (stream_status) 2413 stream_status->fpo_in_use = false; 2414 } 2415 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us; 2416 dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, 2417 DC_VALIDATE_MODE_AND_PROGRAMMING); 2418 } 2419 } 2420 } 2421 2422 /* Set B: 2423 * For Set B calculations use clocks from clock_limits[2] when available i.e. when SMU is present, 2424 * otherwise use arbitrary low value from spreadsheet for DCFCLK as lower is safer for watermark 2425 * calculations to cover bootup clocks. 2426 * DCFCLK: soc.clock_limits[2] when available 2427 * UCLK: soc.clock_limits[2] when available 2428 */ 2429 if (dcn3_2_soc.num_states > 2) { 2430 vlevel_temp = 2; 2431 dcfclk = dcn3_2_soc.clock_limits[2].dcfclk_mhz; 2432 } else 2433 dcfclk = 615; //DCFCLK Vmin_lv 2434 2435 pipes[0].clks_cfg.voltage = vlevel_temp; 2436 pipes[0].clks_cfg.dcfclk_mhz = dcfclk; 2437 pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz; 2438 2439 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].valid) { 2440 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us; 2441 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us; 2442 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us; 2443 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us; 2444 } 2445 context->bw_ctx.bw.dcn.watermarks.b.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2446 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2447 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2448 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2449 context->bw_ctx.bw.dcn.watermarks.b.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2450 context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2451 context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2452 context->bw_ctx.bw.dcn.watermarks.b.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2453 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2454 context->bw_ctx.bw.dcn.watermarks.b.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2455 2456 /* Set D: 2457 * All clocks min. 2458 * DCFCLK: Min, as reported by PM FW when available 2459 * UCLK : Min, as reported by PM FW when available 2460 * sr_enter_exit/sr_exit should be lower than used for DRAM (TBD after bringup or later, use as decided in Clk Mgr) 2461 */ 2462 2463 /* 2464 if (dcn3_2_soc.num_states > 2) { 2465 vlevel_temp = 0; 2466 dcfclk = dc->clk_mgr->bw_params->clk_table.entries[0].dcfclk_mhz; 2467 } else 2468 dcfclk = 615; //DCFCLK Vmin_lv 2469 2470 pipes[0].clks_cfg.voltage = vlevel_temp; 2471 pipes[0].clks_cfg.dcfclk_mhz = dcfclk; 2472 pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz; 2473 2474 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].valid) { 2475 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us; 2476 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us; 2477 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us; 2478 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us; 2479 } 2480 context->bw_ctx.bw.dcn.watermarks.d.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2481 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2482 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2483 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2484 context->bw_ctx.bw.dcn.watermarks.d.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2485 context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2486 context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2487 context->bw_ctx.bw.dcn.watermarks.d.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2488 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2489 context->bw_ctx.bw.dcn.watermarks.d.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2490 */ 2491 2492 /* Set C, for Dummy P-State: 2493 * All clocks min. 2494 * DCFCLK: Min, as reported by PM FW, when available 2495 * UCLK : Min, as reported by PM FW, when available 2496 * pstate latency as per UCLK state dummy pstate latency 2497 */ 2498 2499 // For Set A and Set C use values from validation 2500 pipes[0].clks_cfg.voltage = vlevel; 2501 pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_validation; 2502 pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].socclk_mhz; 2503 2504 if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) { 2505 pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_fw_based_mclk_switching; 2506 } 2507 2508 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid) { 2509 min_dram_speed_mts = dram_speed_from_validation; 2510 min_dram_speed_mts_margin = 160; 2511 2512 context->bw_ctx.dml.soc.dram_clock_change_latency_us = 2513 dc->clk_mgr->bw_params->dummy_pstate_table[0].dummy_pstate_latency_us; 2514 2515 if (context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] == 2516 dm_dram_clock_change_unsupported) { 2517 int min_dram_speed_mts_offset = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels - 1; 2518 2519 min_dram_speed_mts = 2520 dc->clk_mgr->bw_params->clk_table.entries[min_dram_speed_mts_offset].memclk_mhz * 16; 2521 } 2522 2523 if (!context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching && !subvp_in_use) { 2524 /* find largest table entry that is lower than dram speed, 2525 * but lower than DPM0 still uses DPM0 2526 */ 2527 for (dummy_latency_index = 3; dummy_latency_index > 0; dummy_latency_index--) 2528 if (min_dram_speed_mts + min_dram_speed_mts_margin > 2529 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dram_speed_mts) 2530 break; 2531 } 2532 2533 context->bw_ctx.dml.soc.dram_clock_change_latency_us = 2534 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us; 2535 2536 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us; 2537 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us; 2538 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us; 2539 } 2540 2541 context->bw_ctx.bw.dcn.watermarks.c.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2542 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2543 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2544 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2545 context->bw_ctx.bw.dcn.watermarks.c.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2546 context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2547 context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2548 context->bw_ctx.bw.dcn.watermarks.c.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2549 /* On DCN32/321, PMFW will set PSTATE_CHANGE_TYPE = 1 (FCLK) for UCLK dummy p-state. 2550 * In this case we must program FCLK WM Set C to use the UCLK dummy p-state WM 2551 * value. 2552 */ 2553 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.fclk_pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2554 context->bw_ctx.bw.dcn.watermarks.c.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2555 2556 if ((!pstate_en) && (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid)) { 2557 /* The only difference between A and C is p-state latency, if p-state is not supported 2558 * with full p-state latency we want to calculate DLG based on dummy p-state latency, 2559 * Set A p-state watermark set to 0 on DCN30, when p-state unsupported, for now keep as DCN30. 2560 */ 2561 context->bw_ctx.bw.dcn.watermarks.a = context->bw_ctx.bw.dcn.watermarks.c; 2562 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 0; 2563 /* Calculate FCLK p-state change watermark based on FCLK pstate change latency in case 2564 * UCLK p-state is not supported, to avoid underflow in case FCLK pstate is supported 2565 */ 2566 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2567 } else { 2568 /* Set A: 2569 * All clocks min. 2570 * DCFCLK: Min, as reported by PM FW, when available 2571 * UCLK: Min, as reported by PM FW, when available 2572 */ 2573 2574 /* For set A set the correct latency values (i.e. non-dummy values) unconditionally 2575 */ 2576 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us; 2577 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us; 2578 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us; 2579 2580 context->bw_ctx.bw.dcn.watermarks.a.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2581 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2582 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2583 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2584 context->bw_ctx.bw.dcn.watermarks.a.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2585 context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2586 context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2587 context->bw_ctx.bw.dcn.watermarks.a.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2588 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2589 context->bw_ctx.bw.dcn.watermarks.a.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2590 } 2591 2592 /* Make set D = set A since we do not optimized watermarks for MALL */ 2593 context->bw_ctx.bw.dcn.watermarks.d = context->bw_ctx.bw.dcn.watermarks.a; 2594 2595 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 2596 if (!context->res_ctx.pipe_ctx[i].stream) 2597 continue; 2598 2599 pipes[pipe_idx].clks_cfg.dispclk_mhz = get_dispclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt); 2600 pipes[pipe_idx].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); 2601 2602 if (dc->config.forced_clocks) { 2603 pipes[pipe_idx].clks_cfg.dispclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dispclk_mhz; 2604 pipes[pipe_idx].clks_cfg.dppclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dppclk_mhz; 2605 } 2606 if (dc->debug.min_disp_clk_khz > pipes[pipe_idx].clks_cfg.dispclk_mhz * 1000) 2607 pipes[pipe_idx].clks_cfg.dispclk_mhz = dc->debug.min_disp_clk_khz / 1000.0; 2608 if (dc->debug.min_dpp_clk_khz > pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000) 2609 pipes[pipe_idx].clks_cfg.dppclk_mhz = dc->debug.min_dpp_clk_khz / 1000.0; 2610 2611 pipe_idx++; 2612 } 2613 2614 context->perf_params.stutter_period_us = context->bw_ctx.dml.vba.StutterPeriod; 2615 2616 /* for proper prefetch calculations, if dummy lat > fclk lat, use fclk lat = dummy lat */ 2617 if (need_fclk_lat_as_dummy) 2618 context->bw_ctx.dml.soc.fclk_change_latency_us = 2619 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us; 2620 2621 dcn32_calculate_dlg_params(dc, context, pipes, pipe_cnt, vlevel); 2622 2623 if (!pstate_en) 2624 /* Restore full p-state latency */ 2625 context->bw_ctx.dml.soc.dram_clock_change_latency_us = 2626 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us; 2627 2628 /* revert fclk lat changes if required */ 2629 if (need_fclk_lat_as_dummy) 2630 context->bw_ctx.dml.soc.fclk_change_latency_us = 2631 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us; 2632 } 2633 2634 static void dcn32_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts, 2635 unsigned int *optimal_dcfclk, 2636 unsigned int *optimal_fclk) 2637 { 2638 double bw_from_dram, bw_from_dram1, bw_from_dram2; 2639 2640 bw_from_dram1 = uclk_mts * dcn3_2_soc.num_chans * 2641 dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_dram_bw_use_normal_percent / 100); 2642 bw_from_dram2 = uclk_mts * dcn3_2_soc.num_chans * 2643 dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100); 2644 2645 bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2; 2646 2647 if (optimal_fclk) 2648 *optimal_fclk = bw_from_dram / 2649 (dcn3_2_soc.fabric_datapath_to_dcn_data_return_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100)); 2650 2651 if (optimal_dcfclk) 2652 *optimal_dcfclk = bw_from_dram / 2653 (dcn3_2_soc.return_bus_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100)); 2654 } 2655 2656 static void remove_entry_from_table_at_index(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries, 2657 unsigned int index) 2658 { 2659 int i; 2660 2661 if (*num_entries == 0) 2662 return; 2663 2664 for (i = index; i < *num_entries - 1; i++) { 2665 table[i] = table[i + 1]; 2666 } 2667 memset(&table[--(*num_entries)], 0, sizeof(struct _vcs_dpi_voltage_scaling_st)); 2668 } 2669 2670 void dcn32_patch_dpm_table(struct clk_bw_params *bw_params) 2671 { 2672 int i; 2673 unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, 2674 max_phyclk_mhz = 0, max_dtbclk_mhz = 0, max_fclk_mhz = 0, max_uclk_mhz = 0; 2675 2676 for (i = 0; i < MAX_NUM_DPM_LVL; i++) { 2677 if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz) 2678 max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz; 2679 if (bw_params->clk_table.entries[i].fclk_mhz > max_fclk_mhz) 2680 max_fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz; 2681 if (bw_params->clk_table.entries[i].memclk_mhz > max_uclk_mhz) 2682 max_uclk_mhz = bw_params->clk_table.entries[i].memclk_mhz; 2683 if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz) 2684 max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz; 2685 if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz) 2686 max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz; 2687 if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz) 2688 max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz; 2689 if (bw_params->clk_table.entries[i].dtbclk_mhz > max_dtbclk_mhz) 2690 max_dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz; 2691 } 2692 2693 /* Scan through clock values we currently have and if they are 0, 2694 * then populate it with dcn3_2_soc.clock_limits[] value. 2695 * 2696 * Do it for DCFCLK, DISPCLK, DTBCLK and UCLK as any of those being 2697 * 0, will cause it to skip building the clock table. 2698 */ 2699 if (max_dcfclk_mhz == 0) 2700 bw_params->clk_table.entries[0].dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz; 2701 if (max_dispclk_mhz == 0) 2702 bw_params->clk_table.entries[0].dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz; 2703 if (max_dtbclk_mhz == 0) 2704 bw_params->clk_table.entries[0].dtbclk_mhz = dcn3_2_soc.clock_limits[0].dtbclk_mhz; 2705 if (max_uclk_mhz == 0) 2706 bw_params->clk_table.entries[0].memclk_mhz = dcn3_2_soc.clock_limits[0].dram_speed_mts / 16; 2707 } 2708 2709 static void swap_table_entries(struct _vcs_dpi_voltage_scaling_st *first_entry, 2710 struct _vcs_dpi_voltage_scaling_st *second_entry) 2711 { 2712 struct _vcs_dpi_voltage_scaling_st temp_entry = *first_entry; 2713 *first_entry = *second_entry; 2714 *second_entry = temp_entry; 2715 } 2716 2717 /* 2718 * sort_entries_with_same_bw - Sort entries sharing the same bandwidth by DCFCLK 2719 */ 2720 static void sort_entries_with_same_bw(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries) 2721 { 2722 unsigned int start_index = 0; 2723 unsigned int end_index = 0; 2724 unsigned int current_bw = 0; 2725 2726 for (int i = 0; i < (*num_entries - 1); i++) { 2727 if (table[i].net_bw_in_kbytes_sec == table[i+1].net_bw_in_kbytes_sec) { 2728 current_bw = table[i].net_bw_in_kbytes_sec; 2729 start_index = i; 2730 end_index = ++i; 2731 2732 while ((i < (*num_entries - 1)) && (table[i+1].net_bw_in_kbytes_sec == current_bw)) 2733 end_index = ++i; 2734 } 2735 2736 if (start_index != end_index) { 2737 for (int j = start_index; j < end_index; j++) { 2738 for (int k = start_index; k < end_index; k++) { 2739 if (table[k].dcfclk_mhz > table[k+1].dcfclk_mhz) 2740 swap_table_entries(&table[k], &table[k+1]); 2741 } 2742 } 2743 } 2744 2745 start_index = 0; 2746 end_index = 0; 2747 2748 } 2749 } 2750 2751 /* 2752 * remove_inconsistent_entries - Ensure entries with the same bandwidth have MEMCLK and FCLK monotonically increasing 2753 * and remove entries that do not 2754 */ 2755 static void remove_inconsistent_entries(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries) 2756 { 2757 for (int i = 0; i < (*num_entries - 1); i++) { 2758 if (table[i].net_bw_in_kbytes_sec == table[i+1].net_bw_in_kbytes_sec) { 2759 if ((table[i].dram_speed_mts > table[i+1].dram_speed_mts) || 2760 (table[i].fabricclk_mhz > table[i+1].fabricclk_mhz)) 2761 remove_entry_from_table_at_index(table, num_entries, i); 2762 } 2763 } 2764 } 2765 2766 /* 2767 * override_max_clk_values - Overwrite the max clock frequencies with the max DC mode timings 2768 * Input: 2769 * max_clk_limit - struct containing the desired clock timings 2770 * Output: 2771 * curr_clk_limit - struct containing the timings that need to be overwritten 2772 * Return: 0 upon success, non-zero for failure 2773 */ 2774 static int override_max_clk_values(struct clk_limit_table_entry *max_clk_limit, 2775 struct clk_limit_table_entry *curr_clk_limit) 2776 { 2777 if (NULL == max_clk_limit || NULL == curr_clk_limit) 2778 return -1; //invalid parameters 2779 2780 //only overwrite if desired max clock frequency is initialized 2781 if (max_clk_limit->dcfclk_mhz != 0) 2782 curr_clk_limit->dcfclk_mhz = max_clk_limit->dcfclk_mhz; 2783 2784 if (max_clk_limit->fclk_mhz != 0) 2785 curr_clk_limit->fclk_mhz = max_clk_limit->fclk_mhz; 2786 2787 if (max_clk_limit->memclk_mhz != 0) 2788 curr_clk_limit->memclk_mhz = max_clk_limit->memclk_mhz; 2789 2790 if (max_clk_limit->socclk_mhz != 0) 2791 curr_clk_limit->socclk_mhz = max_clk_limit->socclk_mhz; 2792 2793 if (max_clk_limit->dtbclk_mhz != 0) 2794 curr_clk_limit->dtbclk_mhz = max_clk_limit->dtbclk_mhz; 2795 2796 if (max_clk_limit->dispclk_mhz != 0) 2797 curr_clk_limit->dispclk_mhz = max_clk_limit->dispclk_mhz; 2798 2799 return 0; 2800 } 2801 2802 static int build_synthetic_soc_states(bool disable_dc_mode_overwrite, struct clk_bw_params *bw_params, 2803 struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries) 2804 { 2805 int i, j; 2806 struct _vcs_dpi_voltage_scaling_st entry = {0}; 2807 struct clk_limit_table_entry max_clk_data = {0}; 2808 2809 unsigned int min_dcfclk_mhz = 199, min_fclk_mhz = 299; 2810 2811 static const unsigned int num_dcfclk_stas = 5; 2812 unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564}; 2813 2814 unsigned int num_uclk_dpms = 0; 2815 unsigned int num_fclk_dpms = 0; 2816 unsigned int num_dcfclk_dpms = 0; 2817 2818 unsigned int num_dc_uclk_dpms = 0; 2819 unsigned int num_dc_fclk_dpms = 0; 2820 unsigned int num_dc_dcfclk_dpms = 0; 2821 2822 for (i = 0; i < MAX_NUM_DPM_LVL; i++) { 2823 if (bw_params->clk_table.entries[i].dcfclk_mhz > max_clk_data.dcfclk_mhz) 2824 max_clk_data.dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz; 2825 if (bw_params->clk_table.entries[i].fclk_mhz > max_clk_data.fclk_mhz) 2826 max_clk_data.fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz; 2827 if (bw_params->clk_table.entries[i].memclk_mhz > max_clk_data.memclk_mhz) 2828 max_clk_data.memclk_mhz = bw_params->clk_table.entries[i].memclk_mhz; 2829 if (bw_params->clk_table.entries[i].dispclk_mhz > max_clk_data.dispclk_mhz) 2830 max_clk_data.dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz; 2831 if (bw_params->clk_table.entries[i].dppclk_mhz > max_clk_data.dppclk_mhz) 2832 max_clk_data.dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz; 2833 if (bw_params->clk_table.entries[i].phyclk_mhz > max_clk_data.phyclk_mhz) 2834 max_clk_data.phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz; 2835 if (bw_params->clk_table.entries[i].dtbclk_mhz > max_clk_data.dtbclk_mhz) 2836 max_clk_data.dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz; 2837 2838 if (bw_params->clk_table.entries[i].memclk_mhz > 0) { 2839 num_uclk_dpms++; 2840 if (bw_params->clk_table.entries[i].memclk_mhz <= bw_params->dc_mode_limit.memclk_mhz) 2841 num_dc_uclk_dpms++; 2842 } 2843 if (bw_params->clk_table.entries[i].fclk_mhz > 0) { 2844 num_fclk_dpms++; 2845 if (bw_params->clk_table.entries[i].fclk_mhz <= bw_params->dc_mode_limit.fclk_mhz) 2846 num_dc_fclk_dpms++; 2847 } 2848 if (bw_params->clk_table.entries[i].dcfclk_mhz > 0) { 2849 num_dcfclk_dpms++; 2850 if (bw_params->clk_table.entries[i].dcfclk_mhz <= bw_params->dc_mode_limit.dcfclk_mhz) 2851 num_dc_dcfclk_dpms++; 2852 } 2853 } 2854 2855 if (!disable_dc_mode_overwrite) { 2856 //Overwrite max frequencies with max DC mode frequencies for DC mode systems 2857 override_max_clk_values(&bw_params->dc_mode_limit, &max_clk_data); 2858 num_uclk_dpms = num_dc_uclk_dpms; 2859 num_fclk_dpms = num_dc_fclk_dpms; 2860 num_dcfclk_dpms = num_dc_dcfclk_dpms; 2861 bw_params->clk_table.num_entries_per_clk.num_memclk_levels = num_uclk_dpms; 2862 bw_params->clk_table.num_entries_per_clk.num_fclk_levels = num_fclk_dpms; 2863 } 2864 2865 if (num_dcfclk_dpms > 0 && bw_params->clk_table.entries[0].fclk_mhz > min_fclk_mhz) 2866 min_fclk_mhz = bw_params->clk_table.entries[0].fclk_mhz; 2867 2868 if (!max_clk_data.dcfclk_mhz || !max_clk_data.dispclk_mhz || !max_clk_data.dtbclk_mhz) 2869 return -1; 2870 2871 if (max_clk_data.dppclk_mhz == 0) 2872 max_clk_data.dppclk_mhz = max_clk_data.dispclk_mhz; 2873 2874 if (max_clk_data.fclk_mhz == 0) 2875 max_clk_data.fclk_mhz = max_clk_data.dcfclk_mhz * 2876 dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 2877 dcn3_2_soc.pct_ideal_fabric_bw_after_urgent; 2878 2879 if (max_clk_data.phyclk_mhz == 0) 2880 max_clk_data.phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz; 2881 2882 *num_entries = 0; 2883 entry.dispclk_mhz = max_clk_data.dispclk_mhz; 2884 entry.dscclk_mhz = max_clk_data.dispclk_mhz / 3; 2885 entry.dppclk_mhz = max_clk_data.dppclk_mhz; 2886 entry.dtbclk_mhz = max_clk_data.dtbclk_mhz; 2887 entry.phyclk_mhz = max_clk_data.phyclk_mhz; 2888 entry.phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz; 2889 entry.phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz; 2890 2891 // Insert all the DCFCLK STAs 2892 for (i = 0; i < num_dcfclk_stas; i++) { 2893 entry.dcfclk_mhz = dcfclk_sta_targets[i]; 2894 entry.fabricclk_mhz = 0; 2895 entry.dram_speed_mts = 0; 2896 2897 get_optimal_ntuple(&entry); 2898 entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry); 2899 insert_entry_into_table_sorted(table, num_entries, &entry); 2900 } 2901 2902 // Insert the max DCFCLK 2903 entry.dcfclk_mhz = max_clk_data.dcfclk_mhz; 2904 entry.fabricclk_mhz = 0; 2905 entry.dram_speed_mts = 0; 2906 2907 get_optimal_ntuple(&entry); 2908 entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry); 2909 insert_entry_into_table_sorted(table, num_entries, &entry); 2910 2911 // Insert the UCLK DPMS 2912 for (i = 0; i < num_uclk_dpms; i++) { 2913 entry.dcfclk_mhz = 0; 2914 entry.fabricclk_mhz = 0; 2915 entry.dram_speed_mts = bw_params->clk_table.entries[i].memclk_mhz * 16; 2916 2917 get_optimal_ntuple(&entry); 2918 entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry); 2919 insert_entry_into_table_sorted(table, num_entries, &entry); 2920 } 2921 2922 // If FCLK is coarse grained, insert individual DPMs. 2923 if (num_fclk_dpms > 2) { 2924 for (i = 0; i < num_fclk_dpms; i++) { 2925 entry.dcfclk_mhz = 0; 2926 entry.fabricclk_mhz = bw_params->clk_table.entries[i].fclk_mhz; 2927 entry.dram_speed_mts = 0; 2928 2929 get_optimal_ntuple(&entry); 2930 entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry); 2931 insert_entry_into_table_sorted(table, num_entries, &entry); 2932 } 2933 } 2934 // If FCLK fine grained, only insert max 2935 else { 2936 entry.dcfclk_mhz = 0; 2937 entry.fabricclk_mhz = max_clk_data.fclk_mhz; 2938 entry.dram_speed_mts = 0; 2939 2940 get_optimal_ntuple(&entry); 2941 entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry); 2942 insert_entry_into_table_sorted(table, num_entries, &entry); 2943 } 2944 2945 // At this point, the table contains all "points of interest" based on 2946 // DPMs from PMFW, and STAs. Table is sorted by BW, and all clock 2947 // ratios (by derate, are exact). 2948 2949 // Remove states that require higher clocks than are supported 2950 for (i = *num_entries - 1; i >= 0 ; i--) { 2951 if (table[i].dcfclk_mhz > max_clk_data.dcfclk_mhz || 2952 table[i].fabricclk_mhz > max_clk_data.fclk_mhz || 2953 table[i].dram_speed_mts > max_clk_data.memclk_mhz * 16) 2954 remove_entry_from_table_at_index(table, num_entries, i); 2955 } 2956 2957 // Insert entry with all max dc limits without bandwidth matching 2958 if (!disable_dc_mode_overwrite) { 2959 struct _vcs_dpi_voltage_scaling_st max_dc_limits_entry = entry; 2960 2961 max_dc_limits_entry.dcfclk_mhz = max_clk_data.dcfclk_mhz; 2962 max_dc_limits_entry.fabricclk_mhz = max_clk_data.fclk_mhz; 2963 max_dc_limits_entry.dram_speed_mts = max_clk_data.memclk_mhz * 16; 2964 2965 max_dc_limits_entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&max_dc_limits_entry); 2966 insert_entry_into_table_sorted(table, num_entries, &max_dc_limits_entry); 2967 2968 sort_entries_with_same_bw(table, num_entries); 2969 remove_inconsistent_entries(table, num_entries); 2970 } 2971 2972 // At this point, the table only contains supported points of interest 2973 // it could be used as is, but some states may be redundant due to 2974 // coarse grained nature of some clocks, so we want to round up to 2975 // coarse grained DPMs and remove duplicates. 2976 2977 // Round up UCLKs 2978 for (i = *num_entries - 1; i >= 0 ; i--) { 2979 for (j = 0; j < num_uclk_dpms; j++) { 2980 if (bw_params->clk_table.entries[j].memclk_mhz * 16 >= table[i].dram_speed_mts) { 2981 table[i].dram_speed_mts = bw_params->clk_table.entries[j].memclk_mhz * 16; 2982 break; 2983 } 2984 } 2985 } 2986 2987 // If FCLK is coarse grained, round up to next DPMs 2988 if (num_fclk_dpms > 2) { 2989 for (i = *num_entries - 1; i >= 0 ; i--) { 2990 for (j = 0; j < num_fclk_dpms; j++) { 2991 if (bw_params->clk_table.entries[j].fclk_mhz >= table[i].fabricclk_mhz) { 2992 table[i].fabricclk_mhz = bw_params->clk_table.entries[j].fclk_mhz; 2993 break; 2994 } 2995 } 2996 } 2997 } 2998 // Otherwise, round up to minimum. 2999 else { 3000 for (i = *num_entries - 1; i >= 0 ; i--) { 3001 if (table[i].fabricclk_mhz < min_fclk_mhz) { 3002 table[i].fabricclk_mhz = min_fclk_mhz; 3003 } 3004 } 3005 } 3006 3007 // Round DCFCLKs up to minimum 3008 for (i = *num_entries - 1; i >= 0 ; i--) { 3009 if (table[i].dcfclk_mhz < min_dcfclk_mhz) { 3010 table[i].dcfclk_mhz = min_dcfclk_mhz; 3011 } 3012 } 3013 3014 // Remove duplicate states, note duplicate states are always neighbouring since table is sorted. 3015 i = 0; 3016 while (i < *num_entries - 1) { 3017 if (table[i].dcfclk_mhz == table[i + 1].dcfclk_mhz && 3018 table[i].fabricclk_mhz == table[i + 1].fabricclk_mhz && 3019 table[i].dram_speed_mts == table[i + 1].dram_speed_mts) 3020 remove_entry_from_table_at_index(table, num_entries, i + 1); 3021 else 3022 i++; 3023 } 3024 3025 // Fix up the state indicies 3026 for (i = *num_entries - 1; i >= 0 ; i--) { 3027 table[i].state = i; 3028 } 3029 3030 return 0; 3031 } 3032 3033 /* 3034 * dcn32_update_bw_bounding_box 3035 * 3036 * This would override some dcn3_2 ip_or_soc initial parameters hardcoded from 3037 * spreadsheet with actual values as per dGPU SKU: 3038 * - with passed few options from dc->config 3039 * - with dentist_vco_frequency from Clk Mgr (currently hardcoded, but might 3040 * need to get it from PM FW) 3041 * - with passed latency values (passed in ns units) in dc-> bb override for 3042 * debugging purposes 3043 * - with passed latencies from VBIOS (in 100_ns units) if available for 3044 * certain dGPU SKU 3045 * - with number of DRAM channels from VBIOS (which differ for certain dGPU SKU 3046 * of the same ASIC) 3047 * - clocks levels with passed clk_table entries from Clk Mgr as reported by PM 3048 * FW for different clocks (which might differ for certain dGPU SKU of the 3049 * same ASIC) 3050 */ 3051 void dcn32_update_bw_bounding_box_fpu(struct dc *dc, struct clk_bw_params *bw_params) 3052 { 3053 dc_assert_fp_enabled(); 3054 3055 /* Overrides from dc->config options */ 3056 dcn3_2_ip.clamp_min_dcfclk = dc->config.clamp_min_dcfclk; 3057 3058 /* Override from passed dc->bb_overrides if available*/ 3059 if ((int)(dcn3_2_soc.sr_exit_time_us * 1000) != dc->bb_overrides.sr_exit_time_ns 3060 && dc->bb_overrides.sr_exit_time_ns) { 3061 dc->dml2_options.bbox_overrides.sr_exit_latency_us = 3062 dcn3_2_soc.sr_exit_time_us = dc->bb_overrides.sr_exit_time_ns / 1000.0; 3063 } 3064 3065 if ((int)(dcn3_2_soc.sr_enter_plus_exit_time_us * 1000) 3066 != dc->bb_overrides.sr_enter_plus_exit_time_ns 3067 && dc->bb_overrides.sr_enter_plus_exit_time_ns) { 3068 dc->dml2_options.bbox_overrides.sr_enter_plus_exit_latency_us = 3069 dcn3_2_soc.sr_enter_plus_exit_time_us = 3070 dc->bb_overrides.sr_enter_plus_exit_time_ns / 1000.0; 3071 } 3072 3073 if ((int)(dcn3_2_soc.urgent_latency_us * 1000) != dc->bb_overrides.urgent_latency_ns 3074 && dc->bb_overrides.urgent_latency_ns) { 3075 dcn3_2_soc.urgent_latency_us = dc->bb_overrides.urgent_latency_ns / 1000.0; 3076 dc->dml2_options.bbox_overrides.urgent_latency_us = 3077 dcn3_2_soc.urgent_latency_pixel_data_only_us = dc->bb_overrides.urgent_latency_ns / 1000.0; 3078 } 3079 3080 if ((int)(dcn3_2_soc.dram_clock_change_latency_us * 1000) 3081 != dc->bb_overrides.dram_clock_change_latency_ns 3082 && dc->bb_overrides.dram_clock_change_latency_ns) { 3083 dc->dml2_options.bbox_overrides.dram_clock_change_latency_us = 3084 dcn3_2_soc.dram_clock_change_latency_us = 3085 dc->bb_overrides.dram_clock_change_latency_ns / 1000.0; 3086 } 3087 3088 if ((int)(dcn3_2_soc.fclk_change_latency_us * 1000) 3089 != dc->bb_overrides.fclk_clock_change_latency_ns 3090 && dc->bb_overrides.fclk_clock_change_latency_ns) { 3091 dc->dml2_options.bbox_overrides.fclk_change_latency_us = 3092 dcn3_2_soc.fclk_change_latency_us = 3093 dc->bb_overrides.fclk_clock_change_latency_ns / 1000; 3094 } 3095 3096 if ((int)(dcn3_2_soc.dummy_pstate_latency_us * 1000) 3097 != dc->bb_overrides.dummy_clock_change_latency_ns 3098 && dc->bb_overrides.dummy_clock_change_latency_ns) { 3099 dcn3_2_soc.dummy_pstate_latency_us = 3100 dc->bb_overrides.dummy_clock_change_latency_ns / 1000.0; 3101 } 3102 3103 /* Override from VBIOS if VBIOS bb_info available */ 3104 if (dc->ctx->dc_bios->funcs->get_soc_bb_info) { 3105 struct bp_soc_bb_info bb_info = {0}; 3106 3107 if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) { 3108 if (bb_info.dram_clock_change_latency_100ns > 0) 3109 dc->dml2_options.bbox_overrides.dram_clock_change_latency_us = 3110 dcn3_2_soc.dram_clock_change_latency_us = 3111 bb_info.dram_clock_change_latency_100ns * 10; 3112 3113 if (bb_info.dram_sr_enter_exit_latency_100ns > 0) 3114 dc->dml2_options.bbox_overrides.sr_enter_plus_exit_latency_us = 3115 dcn3_2_soc.sr_enter_plus_exit_time_us = 3116 bb_info.dram_sr_enter_exit_latency_100ns * 10; 3117 3118 if (bb_info.dram_sr_exit_latency_100ns > 0) 3119 dc->dml2_options.bbox_overrides.sr_exit_latency_us = 3120 dcn3_2_soc.sr_exit_time_us = 3121 bb_info.dram_sr_exit_latency_100ns * 10; 3122 } 3123 } 3124 3125 /* Override from VBIOS for num_chan */ 3126 if (dc->ctx->dc_bios->vram_info.num_chans) { 3127 dc->dml2_options.bbox_overrides.dram_num_chan = 3128 dcn3_2_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans; 3129 dcn3_2_soc.mall_allocated_for_dcn_mbytes = (double)(dcn32_calc_num_avail_chans_for_mall(dc, 3130 dc->ctx->dc_bios->vram_info.num_chans) * dc->caps.mall_size_per_mem_channel); 3131 } 3132 3133 if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes) 3134 dc->dml2_options.bbox_overrides.dram_chanel_width_bytes = 3135 dcn3_2_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes; 3136 3137 /* DML DSC delay factor workaround */ 3138 dcn3_2_ip.dsc_delay_factor_wa = dc->debug.dsc_delay_factor_wa_x1000 / 1000.0; 3139 3140 dcn3_2_ip.min_prefetch_in_strobe_us = dc->debug.min_prefetch_in_strobe_ns / 1000.0; 3141 3142 /* Override dispclk_dppclk_vco_speed_mhz from Clk Mgr */ 3143 dcn3_2_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0; 3144 dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0; 3145 dc->dml2_options.bbox_overrides.disp_pll_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0; 3146 dc->dml2_options.bbox_overrides.xtalclk_mhz = dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency / 1000.0; 3147 dc->dml2_options.bbox_overrides.dchub_refclk_mhz = dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000.0; 3148 dc->dml2_options.bbox_overrides.dprefclk_mhz = dc->clk_mgr->dprefclk_khz / 1000.0; 3149 3150 /* Overrides Clock levelsfrom CLK Mgr table entries as reported by PM FW */ 3151 if (bw_params->clk_table.entries[0].memclk_mhz) { 3152 if (dc->debug.use_legacy_soc_bb_mechanism) { 3153 unsigned int i = 0, j = 0, num_states = 0; 3154 3155 unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0}; 3156 unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0}; 3157 unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0}; 3158 unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0}; 3159 unsigned int min_dcfclk = UINT_MAX; 3160 /* Set 199 as first value in STA target array to have a minimum DCFCLK value. 3161 * For DCN32 we set min to 199 so minimum FCLK DPM0 (300Mhz can be achieved) */ 3162 unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564}; 3163 unsigned int num_dcfclk_sta_targets = 4, num_uclk_states = 0; 3164 unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, max_phyclk_mhz = 0; 3165 3166 for (i = 0; i < MAX_NUM_DPM_LVL; i++) { 3167 if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz) 3168 max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz; 3169 if (bw_params->clk_table.entries[i].dcfclk_mhz != 0 && 3170 bw_params->clk_table.entries[i].dcfclk_mhz < min_dcfclk) 3171 min_dcfclk = bw_params->clk_table.entries[i].dcfclk_mhz; 3172 if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz) 3173 max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz; 3174 if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz) 3175 max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz; 3176 if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz) 3177 max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz; 3178 } 3179 if (min_dcfclk > dcfclk_sta_targets[0]) 3180 dcfclk_sta_targets[0] = min_dcfclk; 3181 if (!max_dcfclk_mhz) 3182 max_dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz; 3183 if (!max_dispclk_mhz) 3184 max_dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz; 3185 if (!max_dppclk_mhz) 3186 max_dppclk_mhz = dcn3_2_soc.clock_limits[0].dppclk_mhz; 3187 if (!max_phyclk_mhz) 3188 max_phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz; 3189 3190 if (max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) { 3191 // If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array 3192 dcfclk_sta_targets[num_dcfclk_sta_targets] = max_dcfclk_mhz; 3193 num_dcfclk_sta_targets++; 3194 } else if (max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) { 3195 // If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates 3196 for (i = 0; i < num_dcfclk_sta_targets; i++) { 3197 if (dcfclk_sta_targets[i] > max_dcfclk_mhz) { 3198 dcfclk_sta_targets[i] = max_dcfclk_mhz; 3199 break; 3200 } 3201 } 3202 // Update size of array since we "removed" duplicates 3203 num_dcfclk_sta_targets = i + 1; 3204 } 3205 3206 num_uclk_states = bw_params->clk_table.num_entries; 3207 3208 // Calculate optimal dcfclk for each uclk 3209 for (i = 0; i < num_uclk_states; i++) { 3210 dcn32_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16, 3211 &optimal_dcfclk_for_uclk[i], NULL); 3212 if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) { 3213 optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz; 3214 } 3215 } 3216 3217 // Calculate optimal uclk for each dcfclk sta target 3218 for (i = 0; i < num_dcfclk_sta_targets; i++) { 3219 for (j = 0; j < num_uclk_states; j++) { 3220 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) { 3221 optimal_uclk_for_dcfclk_sta_targets[i] = 3222 bw_params->clk_table.entries[j].memclk_mhz * 16; 3223 break; 3224 } 3225 } 3226 } 3227 3228 i = 0; 3229 j = 0; 3230 // create the final dcfclk and uclk table 3231 while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) { 3232 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) { 3233 dcfclk_mhz[num_states] = dcfclk_sta_targets[i]; 3234 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++]; 3235 } else { 3236 if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) { 3237 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j]; 3238 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16; 3239 } else { 3240 j = num_uclk_states; 3241 } 3242 } 3243 } 3244 3245 while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) { 3246 dcfclk_mhz[num_states] = dcfclk_sta_targets[i]; 3247 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++]; 3248 } 3249 3250 while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES && 3251 optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) { 3252 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j]; 3253 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16; 3254 } 3255 3256 /* bw_params->clk_table.entries[MAX_NUM_DPM_LVL]. 3257 * MAX_NUM_DPM_LVL is 8. 3258 * dcn3_02_soc.clock_limits[DC__VOLTAGE_STATES]. 3259 * DC__VOLTAGE_STATES is 40. 3260 */ 3261 if (num_states > MAX_NUM_DPM_LVL) { 3262 ASSERT(0); 3263 return; 3264 } 3265 3266 dcn3_2_soc.num_states = num_states; 3267 for (i = 0; i < dcn3_2_soc.num_states; i++) { 3268 dcn3_2_soc.clock_limits[i].state = i; 3269 dcn3_2_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i]; 3270 dcn3_2_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i]; 3271 3272 /* Fill all states with max values of all these clocks */ 3273 dcn3_2_soc.clock_limits[i].dispclk_mhz = max_dispclk_mhz; 3274 dcn3_2_soc.clock_limits[i].dppclk_mhz = max_dppclk_mhz; 3275 dcn3_2_soc.clock_limits[i].phyclk_mhz = max_phyclk_mhz; 3276 dcn3_2_soc.clock_limits[i].dscclk_mhz = max_dispclk_mhz / 3; 3277 3278 /* Populate from bw_params for DTBCLK, SOCCLK */ 3279 if (i > 0) { 3280 if (!bw_params->clk_table.entries[i].dtbclk_mhz) { 3281 dcn3_2_soc.clock_limits[i].dtbclk_mhz = dcn3_2_soc.clock_limits[i-1].dtbclk_mhz; 3282 } else { 3283 dcn3_2_soc.clock_limits[i].dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz; 3284 } 3285 } else if (bw_params->clk_table.entries[i].dtbclk_mhz) { 3286 dcn3_2_soc.clock_limits[i].dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz; 3287 } 3288 3289 if (!bw_params->clk_table.entries[i].socclk_mhz && i > 0) 3290 dcn3_2_soc.clock_limits[i].socclk_mhz = dcn3_2_soc.clock_limits[i-1].socclk_mhz; 3291 else 3292 dcn3_2_soc.clock_limits[i].socclk_mhz = bw_params->clk_table.entries[i].socclk_mhz; 3293 3294 if (!dram_speed_mts[i] && i > 0) 3295 dcn3_2_soc.clock_limits[i].dram_speed_mts = dcn3_2_soc.clock_limits[i-1].dram_speed_mts; 3296 else 3297 dcn3_2_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i]; 3298 3299 /* These clocks cannot come from bw_params, always fill from dcn3_2_soc[0] */ 3300 /* PHYCLK_D18, PHYCLK_D32 */ 3301 dcn3_2_soc.clock_limits[i].phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz; 3302 dcn3_2_soc.clock_limits[i].phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz; 3303 } 3304 } else { 3305 build_synthetic_soc_states(dc->debug.disable_dc_mode_overwrite, bw_params, 3306 dcn3_2_soc.clock_limits, &dcn3_2_soc.num_states); 3307 } 3308 3309 /* Re-init DML with updated bb */ 3310 dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32); 3311 if (dc->current_state) 3312 dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32); 3313 } 3314 3315 if (dc->clk_mgr->bw_params->clk_table.num_entries > 1) { 3316 unsigned int i = 0; 3317 3318 dc->dml2_options.bbox_overrides.clks_table.num_states = dc->clk_mgr->bw_params->clk_table.num_entries; 3319 3320 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dcfclk_levels = 3321 dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dcfclk_levels; 3322 3323 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_fclk_levels = 3324 dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_fclk_levels; 3325 3326 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_memclk_levels = 3327 dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels; 3328 3329 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_socclk_levels = 3330 dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_socclk_levels; 3331 3332 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dtbclk_levels = 3333 dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dtbclk_levels; 3334 3335 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dispclk_levels = 3336 dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dispclk_levels; 3337 3338 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dppclk_levels = 3339 dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dppclk_levels; 3340 3341 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dcfclk_levels; i++) { 3342 if (dc->clk_mgr->bw_params->clk_table.entries[i].dcfclk_mhz) 3343 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dcfclk_mhz = 3344 dc->clk_mgr->bw_params->clk_table.entries[i].dcfclk_mhz; 3345 } 3346 3347 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_fclk_levels; i++) { 3348 if (dc->clk_mgr->bw_params->clk_table.entries[i].fclk_mhz) 3349 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].fclk_mhz = 3350 dc->clk_mgr->bw_params->clk_table.entries[i].fclk_mhz; 3351 } 3352 3353 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels; i++) { 3354 if (dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz) 3355 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].memclk_mhz = 3356 dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz; 3357 } 3358 3359 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_socclk_levels; i++) { 3360 if (dc->clk_mgr->bw_params->clk_table.entries[i].socclk_mhz) 3361 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].socclk_mhz = 3362 dc->clk_mgr->bw_params->clk_table.entries[i].socclk_mhz; 3363 } 3364 3365 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dtbclk_levels; i++) { 3366 if (dc->clk_mgr->bw_params->clk_table.entries[i].dtbclk_mhz) 3367 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dtbclk_mhz = 3368 dc->clk_mgr->bw_params->clk_table.entries[i].dtbclk_mhz; 3369 } 3370 3371 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dispclk_levels; i++) { 3372 if (dc->clk_mgr->bw_params->clk_table.entries[i].dispclk_mhz) { 3373 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dispclk_mhz = 3374 dc->clk_mgr->bw_params->clk_table.entries[i].dispclk_mhz; 3375 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dppclk_mhz = 3376 dc->clk_mgr->bw_params->clk_table.entries[i].dispclk_mhz; 3377 } 3378 } 3379 } 3380 } 3381 3382 void dcn32_zero_pipe_dcc_fraction(display_e2e_pipe_params_st *pipes, 3383 int pipe_cnt) 3384 { 3385 dc_assert_fp_enabled(); 3386 3387 pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_luma = 0; 3388 pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_chroma = 0; 3389 } 3390 3391 bool dcn32_allow_subvp_with_active_margin(struct pipe_ctx *pipe) 3392 { 3393 bool allow = false; 3394 uint32_t refresh_rate = 0; 3395 uint32_t min_refresh = subvp_active_margin_list.min_refresh; 3396 uint32_t max_refresh = subvp_active_margin_list.max_refresh; 3397 uint32_t i; 3398 3399 for (i = 0; i < SUBVP_ACTIVE_MARGIN_LIST_LEN; i++) { 3400 uint32_t width = subvp_active_margin_list.res[i].width; 3401 uint32_t height = subvp_active_margin_list.res[i].height; 3402 3403 refresh_rate = (pipe->stream->timing.pix_clk_100hz * (uint64_t)100 + 3404 pipe->stream->timing.v_total * pipe->stream->timing.h_total - (uint64_t)1); 3405 refresh_rate = div_u64(refresh_rate, pipe->stream->timing.v_total); 3406 refresh_rate = div_u64(refresh_rate, pipe->stream->timing.h_total); 3407 3408 if (refresh_rate >= min_refresh && refresh_rate <= max_refresh && 3409 dcn32_check_native_scaling_for_res(pipe, width, height)) { 3410 allow = true; 3411 break; 3412 } 3413 } 3414 return allow; 3415 } 3416 3417 /** 3418 * dcn32_allow_subvp_high_refresh_rate: Determine if the high refresh rate config will allow subvp 3419 * 3420 * @dc: Current DC state 3421 * @context: New DC state to be programmed 3422 * @pipe: Pipe to be considered for use in subvp 3423 * 3424 * On high refresh rate display configs, we will allow subvp under the following conditions: 3425 * 1. Resolution is 3840x2160, 3440x1440, or 2560x1440 3426 * 2. Refresh rate is between 120hz - 165hz 3427 * 3. No scaling 3428 * 4. Freesync is inactive 3429 * 5. For single display cases, freesync must be disabled 3430 * 3431 * Return: True if pipe can be used for subvp, false otherwise 3432 */ 3433 bool dcn32_allow_subvp_high_refresh_rate(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe) 3434 { 3435 bool allow = false; 3436 uint32_t refresh_rate = 0; 3437 uint32_t subvp_min_refresh = subvp_high_refresh_list.min_refresh; 3438 uint32_t subvp_max_refresh = subvp_high_refresh_list.max_refresh; 3439 uint32_t min_refresh = subvp_max_refresh; 3440 uint32_t i; 3441 3442 /* Only allow SubVP on high refresh displays if all connected displays 3443 * are considered "high refresh" (i.e. >= 120hz). We do not want to 3444 * allow combinations such as 120hz (SubVP) + 60hz (SubVP). 3445 */ 3446 for (i = 0; i < dc->res_pool->pipe_count; i++) { 3447 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; 3448 3449 if (!pipe_ctx->stream) 3450 continue; 3451 refresh_rate = (pipe_ctx->stream->timing.pix_clk_100hz * 100 + 3452 pipe_ctx->stream->timing.v_total * pipe_ctx->stream->timing.h_total - 1) 3453 / (double)(pipe_ctx->stream->timing.v_total * pipe_ctx->stream->timing.h_total); 3454 3455 if (refresh_rate < min_refresh) 3456 min_refresh = refresh_rate; 3457 } 3458 3459 if (!dc->debug.disable_subvp_high_refresh && min_refresh >= subvp_min_refresh && pipe->stream && 3460 pipe->plane_state && !(pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed)) { 3461 refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 + 3462 pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1) 3463 / (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total); 3464 if (refresh_rate >= subvp_min_refresh && refresh_rate <= subvp_max_refresh) { 3465 for (i = 0; i < SUBVP_HIGH_REFRESH_LIST_LEN; i++) { 3466 uint32_t width = subvp_high_refresh_list.res[i].width; 3467 uint32_t height = subvp_high_refresh_list.res[i].height; 3468 3469 if (dcn32_check_native_scaling_for_res(pipe, width, height)) { 3470 if ((context->stream_count == 1 && !pipe->stream->allow_freesync) || context->stream_count > 1) { 3471 allow = true; 3472 break; 3473 } 3474 } 3475 } 3476 } 3477 } 3478 return allow; 3479 } 3480 3481 /** 3482 * dcn32_determine_max_vratio_prefetch: Determine max Vratio for prefetch by driver policy 3483 * 3484 * @dc: Current DC state 3485 * @context: New DC state to be programmed 3486 * 3487 * Return: Max vratio for prefetch 3488 */ 3489 double dcn32_determine_max_vratio_prefetch(struct dc *dc, struct dc_state *context) 3490 { 3491 double max_vratio_pre = __DML_MAX_BW_RATIO_PRE__; // Default value is 4 3492 int i; 3493 3494 /* For single display MPO configs, allow the max vratio to be 8 3495 * if any plane is YUV420 format 3496 */ 3497 if (context->stream_count == 1 && context->stream_status[0].plane_count > 1) { 3498 for (i = 0; i < context->stream_status[0].plane_count; i++) { 3499 if (context->stream_status[0].plane_states[i]->format == SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr || 3500 context->stream_status[0].plane_states[i]->format == SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb) { 3501 max_vratio_pre = __DML_MAX_VRATIO_PRE__; 3502 } 3503 } 3504 } 3505 return max_vratio_pre; 3506 } 3507 3508 /** 3509 * dcn32_assign_fpo_vactive_candidate - Assign the FPO stream candidate for FPO + VActive case 3510 * 3511 * This function chooses the FPO candidate stream for FPO + VActive cases (2 stream config). 3512 * For FPO + VAtive cases, the assumption is that one display has ActiveMargin > 0, and the 3513 * other display has ActiveMargin <= 0. This function will choose the pipe/stream that has 3514 * ActiveMargin <= 0 to be the FPO stream candidate if found. 3515 * 3516 * 3517 * @dc: current dc state 3518 * @context: new dc state 3519 * @fpo_candidate_stream: pointer to FPO stream candidate if one is found 3520 * 3521 * Return: void 3522 */ 3523 void dcn32_assign_fpo_vactive_candidate(struct dc *dc, const struct dc_state *context, struct dc_stream_state **fpo_candidate_stream) 3524 { 3525 unsigned int i, pipe_idx; 3526 const struct vba_vars_st *vba = &context->bw_ctx.dml.vba; 3527 3528 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 3529 const struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 3530 3531 /* In DCN32/321, FPO uses per-pipe P-State force. 3532 * If there's no planes, HUBP is power gated and 3533 * therefore programming UCLK_PSTATE_FORCE does 3534 * nothing (P-State will always be asserted naturally 3535 * on a pipe that has HUBP power gated. Therefore we 3536 * only want to enable FPO if the FPO pipe has both 3537 * a stream and a plane. 3538 */ 3539 if (!pipe->stream || !pipe->plane_state) 3540 continue; 3541 3542 if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0) { 3543 *fpo_candidate_stream = pipe->stream; 3544 break; 3545 } 3546 pipe_idx++; 3547 } 3548 } 3549 3550 /** 3551 * dcn32_find_vactive_pipe - Determines if the config has a pipe that can switch in VACTIVE 3552 * 3553 * @dc: current dc state 3554 * @context: new dc state 3555 * @fpo_candidate_stream: candidate stream to be chosen for FPO 3556 * @vactive_margin_req_us: The vactive marign required for a vactive pipe to be considered "found" 3557 * 3558 * Return: True if VACTIVE display is found, false otherwise 3559 */ 3560 bool dcn32_find_vactive_pipe(struct dc *dc, const struct dc_state *context, struct dc_stream_state *fpo_candidate_stream, uint32_t vactive_margin_req_us) 3561 { 3562 unsigned int i, pipe_idx; 3563 const struct vba_vars_st *vba = &context->bw_ctx.dml.vba; 3564 bool vactive_found = true; 3565 unsigned int blank_us = 0; 3566 3567 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 3568 const struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 3569 3570 if (!pipe->stream) 3571 continue; 3572 3573 /* Don't need to check for vactive margin on the FPO candidate stream */ 3574 if (fpo_candidate_stream && pipe->stream == fpo_candidate_stream) { 3575 pipe_idx++; 3576 continue; 3577 } 3578 3579 /* Every plane (apart from the ones driven by the FPO pipes) needs to have active margin 3580 * in order for us to have found a valid "vactive" config for FPO + Vactive 3581 */ 3582 blank_us = ((pipe->stream->timing.v_total - pipe->stream->timing.v_addressable) * pipe->stream->timing.h_total / 3583 (double)(pipe->stream->timing.pix_clk_100hz * 100)) * 1000000; 3584 if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] < vactive_margin_req_us || 3585 pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed || blank_us >= dc->debug.fpo_vactive_max_blank_us) { 3586 vactive_found = false; 3587 break; 3588 } 3589 pipe_idx++; 3590 } 3591 return vactive_found; 3592 } 3593 3594 void dcn32_set_clock_limits(const struct _vcs_dpi_soc_bounding_box_st *soc_bb) 3595 { 3596 dc_assert_fp_enabled(); 3597 dcn3_2_soc.clock_limits[0].dcfclk_mhz = 1200.0; 3598 } 3599 3600 void dcn32_override_min_req_memclk(struct dc *dc, struct dc_state *context) 3601 { 3602 // WA: restrict FPO and SubVP to use first non-strobe mode (DCN32 BW issue) 3603 if ((context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching || dcn32_subvp_in_use(dc, context)) && 3604 dc->dml.soc.num_chans <= 8) { 3605 int num_mclk_levels = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels; 3606 3607 if (context->bw_ctx.dml.vba.DRAMSpeed <= dc->clk_mgr->bw_params->clk_table.entries[0].memclk_mhz * 16 && 3608 num_mclk_levels > 1) { 3609 context->bw_ctx.dml.vba.DRAMSpeed = dc->clk_mgr->bw_params->clk_table.entries[1].memclk_mhz * 16; 3610 context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16; 3611 } 3612 } 3613 } 3614