xref: /linux/drivers/gpu/drm/amd/display/dc/dml/dcn32/dcn32_fpu.c (revision 260f6f4fda93c8485c8037865c941b42b9cba5d2)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright 2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  * Authors: AMD
24  *
25  */
26 #include "dcn32_fpu.h"
27 #include "dcn32/dcn32_resource.h"
28 #include "dcn20/dcn20_resource.h"
29 #include "display_mode_vba_util_32.h"
30 #include "dml/dcn32/display_mode_vba_32.h"
31 // We need this includes for WATERMARKS_* defines
32 #include "clk_mgr/dcn32/dcn32_smu13_driver_if.h"
33 #include "dcn30/dcn30_resource.h"
34 #include "link.h"
35 #include "dc_state_priv.h"
36 
37 #define DC_LOGGER_INIT(logger)
38 
39 static const struct subvp_high_refresh_list subvp_high_refresh_list = {
40 			.min_refresh = 120,
41 			.max_refresh = 175,
42 			.res = {
43 				{.width = 3840, .height = 2160, },
44 				{.width = 3440, .height = 1440, },
45 				{.width = 2560, .height = 1440, },
46 				{.width = 1920, .height = 1080, }},
47 };
48 
49 static const struct subvp_active_margin_list subvp_active_margin_list = {
50 			.min_refresh = 55,
51 			.max_refresh = 65,
52 			.res = {
53 				{.width = 2560, .height = 1440, },
54 				{.width = 1920, .height = 1080, }},
55 };
56 
57 struct _vcs_dpi_ip_params_st dcn3_2_ip = {
58 	.gpuvm_enable = 0,
59 	.gpuvm_max_page_table_levels = 4,
60 	.hostvm_enable = 0,
61 	.rob_buffer_size_kbytes = 128,
62 	.det_buffer_size_kbytes = DCN3_2_DEFAULT_DET_SIZE,
63 	.config_return_buffer_size_in_kbytes = 1280,
64 	.compressed_buffer_segment_size_in_kbytes = 64,
65 	.meta_fifo_size_in_kentries = 22,
66 	.zero_size_buffer_entries = 512,
67 	.compbuf_reserved_space_64b = 256,
68 	.compbuf_reserved_space_zs = 64,
69 	.dpp_output_buffer_pixels = 2560,
70 	.opp_output_buffer_lines = 1,
71 	.pixel_chunk_size_kbytes = 8,
72 	.alpha_pixel_chunk_size_kbytes = 4,
73 	.min_pixel_chunk_size_bytes = 1024,
74 	.dcc_meta_buffer_size_bytes = 6272,
75 	.meta_chunk_size_kbytes = 2,
76 	.min_meta_chunk_size_bytes = 256,
77 	.writeback_chunk_size_kbytes = 8,
78 	.ptoi_supported = false,
79 	.num_dsc = 4,
80 	.maximum_dsc_bits_per_component = 12,
81 	.maximum_pixels_per_line_per_dsc_unit = 6016,
82 	.dsc422_native_support = true,
83 	.is_line_buffer_bpp_fixed = true,
84 	.line_buffer_fixed_bpp = 57,
85 	.line_buffer_size_bits = 1171920,
86 	.max_line_buffer_lines = 32,
87 	.writeback_interface_buffer_size_kbytes = 90,
88 	.max_num_dpp = 4,
89 	.max_num_otg = 4,
90 	.max_num_hdmi_frl_outputs = 1,
91 	.max_num_wb = 1,
92 	.max_dchub_pscl_bw_pix_per_clk = 4,
93 	.max_pscl_lb_bw_pix_per_clk = 2,
94 	.max_lb_vscl_bw_pix_per_clk = 4,
95 	.max_vscl_hscl_bw_pix_per_clk = 4,
96 	.max_hscl_ratio = 6,
97 	.max_vscl_ratio = 6,
98 	.max_hscl_taps = 8,
99 	.max_vscl_taps = 8,
100 	.dpte_buffer_size_in_pte_reqs_luma = 64,
101 	.dpte_buffer_size_in_pte_reqs_chroma = 34,
102 	.dispclk_ramp_margin_percent = 1,
103 	.max_inter_dcn_tile_repeaters = 8,
104 	.cursor_buffer_size = 16,
105 	.cursor_chunk_size = 2,
106 	.writeback_line_buffer_buffer_size = 0,
107 	.writeback_min_hscl_ratio = 1,
108 	.writeback_min_vscl_ratio = 1,
109 	.writeback_max_hscl_ratio = 1,
110 	.writeback_max_vscl_ratio = 1,
111 	.writeback_max_hscl_taps = 1,
112 	.writeback_max_vscl_taps = 1,
113 	.dppclk_delay_subtotal = 47,
114 	.dppclk_delay_scl = 50,
115 	.dppclk_delay_scl_lb_only = 16,
116 	.dppclk_delay_cnvc_formatter = 28,
117 	.dppclk_delay_cnvc_cursor = 6,
118 	.dispclk_delay_subtotal = 125,
119 	.dynamic_metadata_vm_enabled = false,
120 	.odm_combine_4to1_supported = false,
121 	.dcc_supported = true,
122 	.max_num_dp2p0_outputs = 2,
123 	.max_num_dp2p0_streams = 4,
124 };
125 
126 struct _vcs_dpi_soc_bounding_box_st dcn3_2_soc = {
127 	.clock_limits = {
128 		{
129 			.state = 0,
130 			.dcfclk_mhz = 1564.0,
131 			.fabricclk_mhz = 2500.0,
132 			.dispclk_mhz = 2150.0,
133 			.dppclk_mhz = 2150.0,
134 			.phyclk_mhz = 810.0,
135 			.phyclk_d18_mhz = 667.0,
136 			.phyclk_d32_mhz = 625.0,
137 			.socclk_mhz = 1200.0,
138 			.dscclk_mhz = 716.667,
139 			.dram_speed_mts = 18000.0,
140 			.dtbclk_mhz = 1564.0,
141 		},
142 	},
143 	.num_states = 1,
144 	.sr_exit_time_us = 42.97,
145 	.sr_enter_plus_exit_time_us = 49.94,
146 	.sr_exit_z8_time_us = 285.0,
147 	.sr_enter_plus_exit_z8_time_us = 320,
148 	.writeback_latency_us = 12.0,
149 	.round_trip_ping_latency_dcfclk_cycles = 263,
150 	.urgent_latency_pixel_data_only_us = 4.0,
151 	.urgent_latency_pixel_mixed_with_vm_data_us = 4.0,
152 	.urgent_latency_vm_data_only_us = 4.0,
153 	.fclk_change_latency_us = 25,
154 	.usr_retraining_latency_us = 2,
155 	.smn_latency_us = 2,
156 	.mall_allocated_for_dcn_mbytes = 64,
157 	.urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096,
158 	.urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096,
159 	.urgent_out_of_order_return_per_channel_vm_only_bytes = 4096,
160 	.pct_ideal_sdp_bw_after_urgent = 90.0,
161 	.pct_ideal_fabric_bw_after_urgent = 67.0,
162 	.pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 20.0,
163 	.pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0,
164 	.pct_ideal_dram_sdp_bw_after_urgent_vm_only = 30.0,
165 	.pct_ideal_dram_bw_after_urgent_strobe = 67.0,
166 	.max_avg_sdp_bw_use_normal_percent = 80.0,
167 	.max_avg_fabric_bw_use_normal_percent = 60.0,
168 	.max_avg_dram_bw_use_normal_strobe_percent = 50.0,
169 	.max_avg_dram_bw_use_normal_percent = 15.0,
170 	.num_chans = 24,
171 	.dram_channel_width_bytes = 2,
172 	.fabric_datapath_to_dcn_data_return_bytes = 64,
173 	.return_bus_width_bytes = 64,
174 	.downspread_percent = 0.38,
175 	.dcn_downspread_percent = 0.5,
176 	.dram_clock_change_latency_us = 400,
177 	.dispclk_dppclk_vco_speed_mhz = 4300.0,
178 	.do_urgent_latency_adjustment = true,
179 	.urgent_latency_adjustment_fabric_clock_component_us = 1.0,
180 	.urgent_latency_adjustment_fabric_clock_reference_mhz = 3000,
181 };
182 
183 static bool dcn32_apply_merge_split_flags_helper(struct dc *dc, struct dc_state *context,
184 	bool *repopulate_pipes, int *split, bool *merge);
185 
186 void dcn32_build_wm_range_table_fpu(struct clk_mgr_internal *clk_mgr)
187 {
188 	/* defaults */
189 	double pstate_latency_us = clk_mgr->base.ctx->dc->dml.soc.dram_clock_change_latency_us;
190 	double fclk_change_latency_us = clk_mgr->base.ctx->dc->dml.soc.fclk_change_latency_us;
191 	double sr_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_exit_time_us;
192 	double sr_enter_plus_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_enter_plus_exit_time_us;
193 	/* For min clocks use as reported by PM FW and report those as min */
194 	uint16_t min_uclk_mhz			= clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz;
195 	uint16_t min_dcfclk_mhz			= clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;
196 	uint16_t setb_min_uclk_mhz		= min_uclk_mhz;
197 	uint16_t dcfclk_mhz_for_the_second_state = clk_mgr->base.ctx->dc->dml.soc.clock_limits[2].dcfclk_mhz;
198 
199 	dc_assert_fp_enabled();
200 
201 	/* For Set B ranges use min clocks state 2 when available, and report those to PM FW */
202 	if (dcfclk_mhz_for_the_second_state)
203 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = dcfclk_mhz_for_the_second_state;
204 	else
205 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;
206 
207 	if (clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz)
208 		setb_min_uclk_mhz = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz;
209 
210 	/* Set A - Normal - default values */
211 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].valid = true;
212 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us = pstate_latency_us;
213 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us = fclk_change_latency_us;
214 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us = sr_exit_time_us;
215 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
216 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
217 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
218 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_dcfclk = 0xFFFF;
219 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_uclk = min_uclk_mhz;
220 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_uclk = 0xFFFF;
221 
222 	/* Set B - Performance - higher clocks, using DPM[2] DCFCLK and UCLK */
223 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].valid = true;
224 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us = pstate_latency_us;
225 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us = fclk_change_latency_us;
226 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us = sr_exit_time_us;
227 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
228 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
229 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_dcfclk = 0xFFFF;
230 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_uclk = setb_min_uclk_mhz;
231 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_uclk = 0xFFFF;
232 
233 	/* Set C - Dummy P-State - P-State latency set to "dummy p-state" value */
234 	/* 'DalDummyClockChangeLatencyNs' registry key option set to 0x7FFFFFFF can be used to disable Set C for dummy p-state */
235 	if (clk_mgr->base.ctx->dc->bb_overrides.dummy_clock_change_latency_ns != 0x7FFFFFFF) {
236 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].valid = true;
237 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.pstate_latency_us = 50;
238 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us = fclk_change_latency_us;
239 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us = sr_exit_time_us;
240 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
241 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.wm_type = WATERMARKS_DUMMY_PSTATE;
242 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
243 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_dcfclk = 0xFFFF;
244 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_uclk = min_uclk_mhz;
245 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_uclk = 0xFFFF;
246 		clk_mgr->base.bw_params->dummy_pstate_table[0].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz * 16;
247 		clk_mgr->base.bw_params->dummy_pstate_table[0].dummy_pstate_latency_us = 50;
248 		clk_mgr->base.bw_params->dummy_pstate_table[1].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[1].memclk_mhz * 16;
249 		clk_mgr->base.bw_params->dummy_pstate_table[1].dummy_pstate_latency_us = 9;
250 		clk_mgr->base.bw_params->dummy_pstate_table[2].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz * 16;
251 		clk_mgr->base.bw_params->dummy_pstate_table[2].dummy_pstate_latency_us = 8;
252 		clk_mgr->base.bw_params->dummy_pstate_table[3].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[3].memclk_mhz * 16;
253 		clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us = 5;
254 	}
255 	/* Set D - MALL - SR enter and exit time specific to MALL, TBD after bringup or later phase for now use DRAM values / 2 */
256 	/* For MALL DRAM clock change latency is N/A, for watermak calculations use lowest value dummy P state latency */
257 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].valid = true;
258 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us = clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us;
259 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us = fclk_change_latency_us;
260 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us = sr_exit_time_us / 2; // TBD
261 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us / 2; // TBD
262 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.wm_type = WATERMARKS_MALL;
263 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
264 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_dcfclk = 0xFFFF;
265 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_uclk = min_uclk_mhz;
266 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_uclk = 0xFFFF;
267 }
268 
269 /*
270  * Finds dummy_latency_index when MCLK switching using firmware based
271  * vblank stretch is enabled. This function will iterate through the
272  * table of dummy pstate latencies until the lowest value that allows
273  * dm_allow_self_refresh_and_mclk_switch to happen is found
274  */
275 int dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(struct dc *dc,
276 							    struct dc_state *context,
277 							    display_e2e_pipe_params_st *pipes,
278 							    int pipe_cnt,
279 							    int vlevel)
280 {
281 	const int max_latency_table_entries = 4;
282 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
283 	int dummy_latency_index = 0;
284 	enum clock_change_support temp_clock_change_support = vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
285 
286 	dc_assert_fp_enabled();
287 
288 	while (dummy_latency_index < max_latency_table_entries) {
289 		if (temp_clock_change_support != dm_dram_clock_change_unsupported)
290 			vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = temp_clock_change_support;
291 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
292 				dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
293 		dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, DC_VALIDATE_MODE_AND_PROGRAMMING);
294 
295 		/* for subvp + DRR case, if subvp pipes are still present we support pstate */
296 		if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported &&
297 				dcn32_subvp_in_use(dc, context))
298 			vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = temp_clock_change_support;
299 
300 		if (vlevel < context->bw_ctx.dml.vba.soc.num_states &&
301 				vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported)
302 			break;
303 
304 		dummy_latency_index++;
305 	}
306 
307 	if (dummy_latency_index == max_latency_table_entries) {
308 		ASSERT(dummy_latency_index != max_latency_table_entries);
309 		/* If the execution gets here, it means dummy p_states are
310 		 * not possible. This should never happen and would mean
311 		 * something is severely wrong.
312 		 * Here we reset dummy_latency_index to 3, because it is
313 		 * better to have underflows than system crashes.
314 		 */
315 		dummy_latency_index = max_latency_table_entries - 1;
316 	}
317 
318 	return dummy_latency_index;
319 }
320 
321 /**
322  * dcn32_helper_populate_phantom_dlg_params - Get DLG params for phantom pipes
323  * and populate pipe_ctx with those params.
324  * @dc: [in] current dc state
325  * @context: [in] new dc state
326  * @pipes: [in] DML pipe params array
327  * @pipe_cnt: [in] DML pipe count
328  *
329  * This function must be called AFTER the phantom pipes are added to context
330  * and run through DML (so that the DLG params for the phantom pipes can be
331  * populated), and BEFORE we program the timing for the phantom pipes.
332  */
333 void dcn32_helper_populate_phantom_dlg_params(struct dc *dc,
334 					      struct dc_state *context,
335 					      display_e2e_pipe_params_st *pipes,
336 					      int pipe_cnt)
337 {
338 	uint32_t i, pipe_idx;
339 
340 	dc_assert_fp_enabled();
341 
342 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
343 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
344 
345 		if (!pipe->stream)
346 			continue;
347 
348 		if (pipe->plane_state && dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) {
349 			pipes[pipe_idx].pipe.dest.vstartup_start =
350 				get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
351 			pipes[pipe_idx].pipe.dest.vupdate_offset =
352 				get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
353 			pipes[pipe_idx].pipe.dest.vupdate_width =
354 				get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
355 			pipes[pipe_idx].pipe.dest.vready_offset =
356 				get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
357 			pipe->pipe_dlg_param = pipes[pipe_idx].pipe.dest;
358 		}
359 		pipe_idx++;
360 	}
361 }
362 
363 static float calculate_net_bw_in_kbytes_sec(struct _vcs_dpi_voltage_scaling_st *entry)
364 {
365 	float memory_bw_kbytes_sec;
366 	float fabric_bw_kbytes_sec;
367 	float sdp_bw_kbytes_sec;
368 	float limiting_bw_kbytes_sec;
369 
370 	memory_bw_kbytes_sec = entry->dram_speed_mts *
371 				dcn3_2_soc.num_chans *
372 				dcn3_2_soc.dram_channel_width_bytes *
373 				((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
374 
375 	fabric_bw_kbytes_sec = entry->fabricclk_mhz *
376 				dcn3_2_soc.return_bus_width_bytes *
377 				((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
378 
379 	sdp_bw_kbytes_sec = entry->dcfclk_mhz *
380 				dcn3_2_soc.return_bus_width_bytes *
381 				((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
382 
383 	limiting_bw_kbytes_sec = memory_bw_kbytes_sec;
384 
385 	if (fabric_bw_kbytes_sec < limiting_bw_kbytes_sec)
386 		limiting_bw_kbytes_sec = fabric_bw_kbytes_sec;
387 
388 	if (sdp_bw_kbytes_sec < limiting_bw_kbytes_sec)
389 		limiting_bw_kbytes_sec = sdp_bw_kbytes_sec;
390 
391 	return limiting_bw_kbytes_sec;
392 }
393 
394 static void get_optimal_ntuple(struct _vcs_dpi_voltage_scaling_st *entry)
395 {
396 	if (entry->dcfclk_mhz > 0) {
397 		float bw_on_sdp = entry->dcfclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
398 
399 		entry->fabricclk_mhz = bw_on_sdp / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
400 		entry->dram_speed_mts = bw_on_sdp / (dcn3_2_soc.num_chans *
401 				dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
402 	} else if (entry->fabricclk_mhz > 0) {
403 		float bw_on_fabric = entry->fabricclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
404 
405 		entry->dcfclk_mhz = bw_on_fabric / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
406 		entry->dram_speed_mts = bw_on_fabric / (dcn3_2_soc.num_chans *
407 				dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
408 	} else if (entry->dram_speed_mts > 0) {
409 		float bw_on_dram = entry->dram_speed_mts * dcn3_2_soc.num_chans *
410 				dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
411 
412 		entry->fabricclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
413 		entry->dcfclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
414 	}
415 }
416 
417 static void insert_entry_into_table_sorted(struct _vcs_dpi_voltage_scaling_st *table,
418 				    unsigned int *num_entries,
419 				    struct _vcs_dpi_voltage_scaling_st *entry)
420 {
421 	int i = 0;
422 	int index = 0;
423 
424 	dc_assert_fp_enabled();
425 
426 	if (*num_entries == 0) {
427 		table[0] = *entry;
428 		(*num_entries)++;
429 	} else {
430 		while (entry->net_bw_in_kbytes_sec > table[index].net_bw_in_kbytes_sec) {
431 			index++;
432 			if (index >= *num_entries)
433 				break;
434 		}
435 
436 		for (i = *num_entries; i > index; i--)
437 			table[i] = table[i - 1];
438 
439 		table[index] = *entry;
440 		(*num_entries)++;
441 	}
442 }
443 
444 /**
445  * dcn32_set_phantom_stream_timing - Set timing params for the phantom stream
446  * @dc: current dc state
447  * @context: new dc state
448  * @ref_pipe: Main pipe for the phantom stream
449  * @phantom_stream: target phantom stream state
450  * @pipes: DML pipe params
451  * @pipe_cnt: number of DML pipes
452  * @dc_pipe_idx: DC pipe index for the main pipe (i.e. ref_pipe)
453  *
454  * Set timing params of the phantom stream based on calculated output from DML.
455  * This function first gets the DML pipe index using the DC pipe index, then
456  * calls into DML (get_subviewport_lines_needed_in_mall) to get the number of
457  * lines required for SubVP MCLK switching and assigns to the phantom stream
458  * accordingly.
459  *
460  * - The number of SubVP lines calculated in DML does not take into account
461  * FW processing delays and required pstate allow width, so we must include
462  * that separately.
463  *
464  * - Set phantom backporch = vstartup of main pipe
465  */
466 void dcn32_set_phantom_stream_timing(struct dc *dc,
467 				     struct dc_state *context,
468 				     struct pipe_ctx *ref_pipe,
469 				     struct dc_stream_state *phantom_stream,
470 				     display_e2e_pipe_params_st *pipes,
471 				     unsigned int pipe_cnt,
472 				     unsigned int dc_pipe_idx)
473 {
474 	unsigned int i, pipe_idx;
475 	struct pipe_ctx *pipe;
476 	uint32_t phantom_vactive, phantom_bp, pstate_width_fw_delay_lines;
477 	unsigned int num_dpp;
478 	unsigned int vlevel = context->bw_ctx.dml.vba.VoltageLevel;
479 	unsigned int dcfclk = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
480 	unsigned int socclk = context->bw_ctx.dml.vba.SOCCLKPerState[vlevel];
481 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
482 	struct dc_stream_state *main_stream = ref_pipe->stream;
483 
484 	dc_assert_fp_enabled();
485 
486 	// Find DML pipe index (pipe_idx) using dc_pipe_idx
487 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
488 		pipe = &context->res_ctx.pipe_ctx[i];
489 
490 		if (!pipe->stream)
491 			continue;
492 
493 		if (i == dc_pipe_idx)
494 			break;
495 
496 		pipe_idx++;
497 	}
498 
499 	// Calculate lines required for pstate allow width and FW processing delays
500 	pstate_width_fw_delay_lines = ((double)(dc->caps.subvp_fw_processing_delay_us +
501 			dc->caps.subvp_pstate_allow_width_us) / 1000000) *
502 			(ref_pipe->stream->timing.pix_clk_100hz * 100) /
503 			(double)ref_pipe->stream->timing.h_total;
504 
505 	// Update clks_cfg for calling into recalculate
506 	pipes[0].clks_cfg.voltage = vlevel;
507 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
508 	pipes[0].clks_cfg.socclk_mhz = socclk;
509 
510 	// DML calculation for MALL region doesn't take into account FW delay
511 	// and required pstate allow width for multi-display cases
512 	/* Add 16 lines margin to the MALL REGION because SUB_VP_START_LINE must be aligned
513 	 * to 2 swaths (i.e. 16 lines)
514 	 */
515 	phantom_vactive = get_subviewport_lines_needed_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx) +
516 				pstate_width_fw_delay_lines + dc->caps.subvp_swath_height_margin_lines;
517 
518 	// W/A for DCC corruption with certain high resolution timings.
519 	// Determing if pipesplit is used. If so, add meta_row_height to the phantom vactive.
520 	num_dpp = vba->NoOfDPP[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]];
521 	phantom_vactive += num_dpp > 1 ? vba->meta_row_height[vba->pipe_plane[pipe_idx]] : 0;
522 
523 	/* dc->debug.subvp_extra_lines 0 by default*/
524 	phantom_vactive += dc->debug.subvp_extra_lines;
525 
526 	// For backporch of phantom pipe, use vstartup of the main pipe
527 	phantom_bp = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
528 
529 	phantom_stream->dst.y = 0;
530 	phantom_stream->dst.height = phantom_vactive;
531 	/* When scaling, DML provides the end to end required number of lines for MALL.
532 	 * dst.height is always correct for this case, but src.height is not which causes a
533 	 * delta between main and phantom pipe scaling outputs. Need to adjust src.height on
534 	 * phantom for this case.
535 	 */
536 	phantom_stream->src.y = 0;
537 	phantom_stream->src.height = (double)phantom_vactive * (double)main_stream->src.height / (double)main_stream->dst.height;
538 
539 	phantom_stream->timing.v_addressable = phantom_vactive;
540 	phantom_stream->timing.v_front_porch = 1;
541 	phantom_stream->timing.v_total = phantom_stream->timing.v_addressable +
542 						phantom_stream->timing.v_front_porch +
543 						phantom_stream->timing.v_sync_width +
544 						phantom_bp;
545 	phantom_stream->timing.flags.DSC = 0; // Don't need DSC for phantom timing
546 }
547 
548 /**
549  * dcn32_get_num_free_pipes - Calculate number of free pipes
550  * @dc: current dc state
551  * @context: new dc state
552  *
553  * This function assumes that a "used" pipe is a pipe that has
554  * both a stream and a plane assigned to it.
555  *
556  * Return: Number of free pipes available in the context
557  */
558 static unsigned int dcn32_get_num_free_pipes(struct dc *dc, struct dc_state *context)
559 {
560 	unsigned int i;
561 	unsigned int free_pipes = 0;
562 	unsigned int num_pipes = 0;
563 
564 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
565 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
566 
567 		if (pipe->stream && !pipe->top_pipe) {
568 			while (pipe) {
569 				num_pipes++;
570 				pipe = pipe->bottom_pipe;
571 			}
572 		}
573 	}
574 
575 	free_pipes = dc->res_pool->pipe_count - num_pipes;
576 	return free_pipes;
577 }
578 
579 /**
580  * dcn32_assign_subvp_pipe - Function to decide which pipe will use Sub-VP.
581  * @dc: current dc state
582  * @context: new dc state
583  * @index: [out] dc pipe index for the pipe chosen to have phantom pipes assigned
584  *
585  * We enter this function if we are Sub-VP capable (i.e. enough pipes available)
586  * and regular P-State switching (i.e. VACTIVE/VBLANK) is not supported, or if
587  * we are forcing SubVP P-State switching on the current config.
588  *
589  * The number of pipes used for the chosen surface must be less than or equal to the
590  * number of free pipes available.
591  *
592  * In general we choose surfaces with the longest frame time first (better for SubVP + VBLANK).
593  * For multi-display cases the ActiveDRAMClockChangeMargin doesn't provide enough info on its own
594  * for determining which should be the SubVP pipe (need a way to determine if a pipe / plane doesn't
595  * support MCLK switching naturally [i.e. ACTIVE or VBLANK]).
596  *
597  * Return: True if a valid pipe assignment was found for Sub-VP. Otherwise false.
598  */
599 static bool dcn32_assign_subvp_pipe(struct dc *dc,
600 				    struct dc_state *context,
601 				    unsigned int *index)
602 {
603 	unsigned int i, pipe_idx;
604 	unsigned int max_frame_time = 0;
605 	bool valid_assignment_found = false;
606 	unsigned int free_pipes = dcn32_get_num_free_pipes(dc, context);
607 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
608 
609 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
610 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
611 		unsigned int num_pipes = 0;
612 		unsigned int refresh_rate = 0;
613 
614 		if (!pipe->stream)
615 			continue;
616 
617 		// Round up
618 		refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
619 				pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
620 				/ (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
621 		/* SubVP pipe candidate requirements:
622 		 * - Refresh rate < 120hz
623 		 * - Not able to switch in vactive naturally (switching in active means the
624 		 *   DET provides enough buffer to hide the P-State switch latency -- trying
625 		 *   to combine this with SubVP can cause issues with the scheduling).
626 		 * - Not TMZ surface
627 		 */
628 		if (pipe->plane_state && !pipe->top_pipe && !pipe->prev_odm_pipe && !dcn32_is_center_timing(pipe) &&
629 				!pipe->stream->hw_cursor_req &&
630 				!dc_state_get_stream_cursor_subvp_limit(pipe->stream, context) &&
631 				!(pipe->stream->timing.pix_clk_100hz / 10000 > DCN3_2_MAX_SUBVP_PIXEL_RATE_MHZ) &&
632 				(!dcn32_is_psr_capable(pipe) || (context->stream_count == 1 && dc->caps.dmub_caps.subvp_psr)) &&
633 				dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_NONE &&
634 				(refresh_rate < 120 || dcn32_allow_subvp_high_refresh_rate(dc, context, pipe)) &&
635 				!pipe->plane_state->address.tmz_surface &&
636 				(vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0 ||
637 				(vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0 &&
638 						dcn32_allow_subvp_with_active_margin(pipe)))) {
639 			while (pipe) {
640 				num_pipes++;
641 				pipe = pipe->bottom_pipe;
642 			}
643 
644 			pipe = &context->res_ctx.pipe_ctx[i];
645 			if (num_pipes <= free_pipes) {
646 				struct dc_stream_state *stream = pipe->stream;
647 				unsigned int frame_us = (stream->timing.v_total * stream->timing.h_total /
648 						(double)(stream->timing.pix_clk_100hz * 100)) * 1000000;
649 				if (frame_us > max_frame_time) {
650 					*index = i;
651 					max_frame_time = frame_us;
652 					valid_assignment_found = true;
653 				}
654 			}
655 		}
656 		pipe_idx++;
657 	}
658 	return valid_assignment_found;
659 }
660 
661 /**
662  * dcn32_enough_pipes_for_subvp - Function to check if there are "enough" pipes for SubVP.
663  * @dc: current dc state
664  * @context: new dc state
665  *
666  * This function returns true if there are enough free pipes
667  * to create the required phantom pipes for any given stream
668  * (that does not already have phantom pipe assigned).
669  *
670  * e.g. For a 2 stream config where the first stream uses one
671  * pipe and the second stream uses 2 pipes (i.e. pipe split),
672  * this function will return true because there is 1 remaining
673  * pipe which can be used as the phantom pipe for the non pipe
674  * split pipe.
675  *
676  * Return:
677  * True if there are enough free pipes to assign phantom pipes to at least one
678  * stream that does not already have phantom pipes assigned. Otherwise false.
679  */
680 static bool dcn32_enough_pipes_for_subvp(struct dc *dc, struct dc_state *context)
681 {
682 	unsigned int i, split_cnt, free_pipes;
683 	unsigned int min_pipe_split = dc->res_pool->pipe_count + 1; // init as max number of pipes + 1
684 	bool subvp_possible = false;
685 
686 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
687 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
688 
689 		// Find the minimum pipe split count for non SubVP pipes
690 		if (resource_is_pipe_type(pipe, OPP_HEAD) &&
691 			dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_NONE) {
692 			split_cnt = 0;
693 			while (pipe) {
694 				split_cnt++;
695 				pipe = pipe->bottom_pipe;
696 			}
697 
698 			if (split_cnt < min_pipe_split)
699 				min_pipe_split = split_cnt;
700 		}
701 	}
702 
703 	free_pipes = dcn32_get_num_free_pipes(dc, context);
704 
705 	// SubVP only possible if at least one pipe is being used (i.e. free_pipes
706 	// should not equal to the pipe_count)
707 	if (free_pipes >= min_pipe_split && free_pipes < dc->res_pool->pipe_count)
708 		subvp_possible = true;
709 
710 	return subvp_possible;
711 }
712 
713 /**
714  * subvp_subvp_schedulable - Determine if SubVP + SubVP config is schedulable
715  * @dc: current dc state
716  * @context: new dc state
717  *
718  * High level algorithm:
719  * 1. Find longest microschedule length (in us) between the two SubVP pipes
720  * 2. Check if the worst case overlap (VBLANK in middle of ACTIVE) for both
721  * pipes still allows for the maximum microschedule to fit in the active
722  * region for both pipes.
723  *
724  * Return: True if the SubVP + SubVP config is schedulable, false otherwise
725  */
726 static bool subvp_subvp_schedulable(struct dc *dc, struct dc_state *context)
727 {
728 	struct pipe_ctx *subvp_pipes[2] = {0};
729 	struct dc_stream_state *phantom = NULL;
730 	uint32_t microschedule_lines = 0;
731 	uint32_t index = 0;
732 	uint32_t i;
733 	uint32_t max_microschedule_us = 0;
734 	int32_t vactive1_us, vactive2_us, vblank1_us, vblank2_us;
735 
736 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
737 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
738 		uint32_t time_us = 0;
739 
740 		/* Loop to calculate the maximum microschedule time between the two SubVP pipes,
741 		 * and also to store the two main SubVP pipe pointers in subvp_pipes[2].
742 		 */
743 		phantom = dc_state_get_paired_subvp_stream(context, pipe->stream);
744 		if (phantom && pipe->stream && pipe->plane_state && !pipe->top_pipe &&
745 			dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN) {
746 			microschedule_lines = (phantom->timing.v_total - phantom->timing.v_front_porch) +
747 					phantom->timing.v_addressable;
748 
749 			// Round up when calculating microschedule time (+ 1 at the end)
750 			time_us = (microschedule_lines * phantom->timing.h_total) /
751 					(double)(phantom->timing.pix_clk_100hz * 100) * 1000000 +
752 						dc->caps.subvp_prefetch_end_to_mall_start_us +
753 						dc->caps.subvp_fw_processing_delay_us + 1;
754 			if (time_us > max_microschedule_us)
755 				max_microschedule_us = time_us;
756 
757 			subvp_pipes[index] = pipe;
758 			index++;
759 
760 			// Maximum 2 SubVP pipes
761 			if (index == 2)
762 				break;
763 		}
764 	}
765 	vactive1_us = ((subvp_pipes[0]->stream->timing.v_addressable * subvp_pipes[0]->stream->timing.h_total) /
766 			(double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
767 	vactive2_us = ((subvp_pipes[1]->stream->timing.v_addressable * subvp_pipes[1]->stream->timing.h_total) /
768 				(double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
769 	vblank1_us = (((subvp_pipes[0]->stream->timing.v_total - subvp_pipes[0]->stream->timing.v_addressable) *
770 			subvp_pipes[0]->stream->timing.h_total) /
771 			(double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
772 	vblank2_us = (((subvp_pipes[1]->stream->timing.v_total - subvp_pipes[1]->stream->timing.v_addressable) *
773 			subvp_pipes[1]->stream->timing.h_total) /
774 			(double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
775 
776 	if ((vactive1_us - vblank2_us) / 2 > max_microschedule_us &&
777 	    (vactive2_us - vblank1_us) / 2 > max_microschedule_us)
778 		return true;
779 
780 	return false;
781 }
782 
783 /**
784  * subvp_drr_schedulable() - Determine if SubVP + DRR config is schedulable
785  * @dc: current dc state
786  * @context: new dc state
787  *
788  * High level algorithm:
789  * 1. Get timing for SubVP pipe, phantom pipe, and DRR pipe
790  * 2. Determine the frame time for the DRR display when adding required margin for MCLK switching
791  * (the margin is equal to the MALL region + DRR margin (500us))
792  * 3.If (SubVP Active - Prefetch > Stretched DRR frame + max(MALL region, Stretched DRR frame))
793  * then report the configuration as supported
794  *
795  * Return: True if the SubVP + DRR config is schedulable, false otherwise
796  */
797 static bool subvp_drr_schedulable(struct dc *dc, struct dc_state *context)
798 {
799 	bool schedulable = false;
800 	uint32_t i;
801 	struct pipe_ctx *pipe = NULL;
802 	struct pipe_ctx *drr_pipe = NULL;
803 	struct dc_crtc_timing *main_timing = NULL;
804 	struct dc_crtc_timing *phantom_timing = NULL;
805 	struct dc_crtc_timing *drr_timing = NULL;
806 	int16_t prefetch_us = 0;
807 	int16_t mall_region_us = 0;
808 	int16_t drr_frame_us = 0;	// nominal frame time
809 	int16_t subvp_active_us = 0;
810 	int16_t stretched_drr_us = 0;
811 	int16_t drr_stretched_vblank_us = 0;
812 	int16_t max_vblank_mallregion = 0;
813 	struct dc_stream_state *phantom_stream;
814 	bool subvp_found = false;
815 	bool drr_found = false;
816 
817 	// Find SubVP pipe
818 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
819 		pipe = &context->res_ctx.pipe_ctx[i];
820 
821 		// We check for master pipe, but it shouldn't matter since we only need
822 		// the pipe for timing info (stream should be same for any pipe splits)
823 		if (!resource_is_pipe_type(pipe, OTG_MASTER) ||
824 				!resource_is_pipe_type(pipe, DPP_PIPE))
825 			continue;
826 
827 		// Find the SubVP pipe
828 		if (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN) {
829 			subvp_found = true;
830 			break;
831 		}
832 	}
833 
834 	// Find the DRR pipe
835 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
836 		drr_pipe = &context->res_ctx.pipe_ctx[i];
837 
838 		// We check for master pipe only
839 		if (!resource_is_pipe_type(drr_pipe, OTG_MASTER) ||
840 				!resource_is_pipe_type(drr_pipe, DPP_PIPE))
841 			continue;
842 
843 		if (dc_state_get_pipe_subvp_type(context, drr_pipe) == SUBVP_NONE && drr_pipe->stream->ignore_msa_timing_param &&
844 				(drr_pipe->stream->allow_freesync || drr_pipe->stream->vrr_active_variable || drr_pipe->stream->vrr_active_fixed)) {
845 			drr_found = true;
846 			break;
847 		}
848 	}
849 
850 	phantom_stream = dc_state_get_paired_subvp_stream(context, pipe->stream);
851 	if (phantom_stream && subvp_found && drr_found) {
852 		main_timing = &pipe->stream->timing;
853 		phantom_timing = &phantom_stream->timing;
854 		drr_timing = &drr_pipe->stream->timing;
855 		prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
856 				(double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
857 				dc->caps.subvp_prefetch_end_to_mall_start_us;
858 		subvp_active_us = main_timing->v_addressable * main_timing->h_total /
859 				(double)(main_timing->pix_clk_100hz * 100) * 1000000;
860 		drr_frame_us = drr_timing->v_total * drr_timing->h_total /
861 				(double)(drr_timing->pix_clk_100hz * 100) * 1000000;
862 		// P-State allow width and FW delays already included phantom_timing->v_addressable
863 		mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
864 				(double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
865 		stretched_drr_us = drr_frame_us + mall_region_us + SUBVP_DRR_MARGIN_US;
866 		drr_stretched_vblank_us = (drr_timing->v_total - drr_timing->v_addressable) * drr_timing->h_total /
867 				(double)(drr_timing->pix_clk_100hz * 100) * 1000000 + (stretched_drr_us - drr_frame_us);
868 		max_vblank_mallregion = drr_stretched_vblank_us > mall_region_us ? drr_stretched_vblank_us : mall_region_us;
869 	}
870 
871 	/* We consider SubVP + DRR schedulable if the stretched frame duration of the DRR display (i.e. the
872 	 * highest refresh rate + margin that can support UCLK P-State switch) passes the static analysis
873 	 * for VBLANK: (VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
874 	 * and the max of (VBLANK blanking time, MALL region)).
875 	 */
876 	if (drr_timing &&
877 	    stretched_drr_us < (1 / (double)drr_timing->min_refresh_in_uhz) * 1000000 * 1000000 &&
878 	    subvp_active_us - prefetch_us - stretched_drr_us - max_vblank_mallregion > 0)
879 		schedulable = true;
880 
881 	return schedulable;
882 }
883 
884 
885 /**
886  * subvp_vblank_schedulable - Determine if SubVP + VBLANK config is schedulable
887  * @dc: current dc state
888  * @context: new dc state
889  *
890  * High level algorithm:
891  * 1. Get timing for SubVP pipe, phantom pipe, and VBLANK pipe
892  * 2. If (SubVP Active - Prefetch > Vblank Frame Time + max(MALL region, Vblank blanking time))
893  * then report the configuration as supported
894  * 3. If the VBLANK display is DRR, then take the DRR static schedulability path
895  *
896  * Return: True if the SubVP + VBLANK/DRR config is schedulable, false otherwise
897  */
898 static bool subvp_vblank_schedulable(struct dc *dc, struct dc_state *context)
899 {
900 	struct pipe_ctx *pipe = NULL;
901 	struct pipe_ctx *subvp_pipe = NULL;
902 	bool found = false;
903 	bool schedulable = false;
904 	uint32_t i = 0;
905 	uint8_t vblank_index = 0;
906 	uint16_t prefetch_us = 0;
907 	uint16_t mall_region_us = 0;
908 	uint16_t vblank_frame_us = 0;
909 	uint16_t subvp_active_us = 0;
910 	uint16_t vblank_blank_us = 0;
911 	uint16_t max_vblank_mallregion = 0;
912 	struct dc_crtc_timing *main_timing = NULL;
913 	struct dc_crtc_timing *phantom_timing = NULL;
914 	struct dc_crtc_timing *vblank_timing = NULL;
915 	struct dc_stream_state *phantom_stream;
916 	enum mall_stream_type pipe_mall_type;
917 
918 	/* For SubVP + VBLANK/DRR cases, we assume there can only be
919 	 * a single VBLANK/DRR display. If DML outputs SubVP + VBLANK
920 	 * is supported, it is either a single VBLANK case or two VBLANK
921 	 * displays which are synchronized (in which case they have identical
922 	 * timings).
923 	 */
924 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
925 		pipe = &context->res_ctx.pipe_ctx[i];
926 		pipe_mall_type = dc_state_get_pipe_subvp_type(context, pipe);
927 
928 		// We check for master pipe, but it shouldn't matter since we only need
929 		// the pipe for timing info (stream should be same for any pipe splits)
930 		if (!resource_is_pipe_type(pipe, OTG_MASTER) ||
931 				!resource_is_pipe_type(pipe, DPP_PIPE))
932 			continue;
933 
934 		if (!found && pipe_mall_type == SUBVP_NONE) {
935 			// Found pipe which is not SubVP or Phantom (i.e. the VBLANK pipe).
936 			vblank_index = i;
937 			found = true;
938 		}
939 
940 		if (!subvp_pipe && pipe_mall_type == SUBVP_MAIN)
941 			subvp_pipe = pipe;
942 	}
943 	if (found && subvp_pipe) {
944 		phantom_stream = dc_state_get_paired_subvp_stream(context, subvp_pipe->stream);
945 		main_timing = &subvp_pipe->stream->timing;
946 		phantom_timing = &phantom_stream->timing;
947 		vblank_timing = &context->res_ctx.pipe_ctx[vblank_index].stream->timing;
948 		// Prefetch time is equal to VACTIVE + BP + VSYNC of the phantom pipe
949 		// Also include the prefetch end to mallstart delay time
950 		prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
951 				(double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
952 				dc->caps.subvp_prefetch_end_to_mall_start_us;
953 		// P-State allow width and FW delays already included phantom_timing->v_addressable
954 		mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
955 				(double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
956 		vblank_frame_us = vblank_timing->v_total * vblank_timing->h_total /
957 				(double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
958 		vblank_blank_us =  (vblank_timing->v_total - vblank_timing->v_addressable) * vblank_timing->h_total /
959 				(double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
960 		subvp_active_us = main_timing->v_addressable * main_timing->h_total /
961 				(double)(main_timing->pix_clk_100hz * 100) * 1000000;
962 		max_vblank_mallregion = vblank_blank_us > mall_region_us ? vblank_blank_us : mall_region_us;
963 
964 		// Schedulable if VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
965 		// and the max of (VBLANK blanking time, MALL region)
966 		// TODO: Possibly add some margin (i.e. the below conditions should be [...] > X instead of [...] > 0)
967 		if (subvp_active_us - prefetch_us - vblank_frame_us - max_vblank_mallregion > 0)
968 			schedulable = true;
969 	}
970 	return schedulable;
971 }
972 
973 /**
974  * subvp_subvp_admissable() - Determine if subvp + subvp config is admissible
975  *
976  * @dc: Current DC state
977  * @context: New DC state to be programmed
978  *
979  * SubVP + SubVP is admissible under the following conditions:
980  * - All SubVP pipes are < 120Hz OR
981  * - All SubVP pipes are >= 120hz
982  *
983  * Return: True if admissible, false otherwise
984  */
985 static bool subvp_subvp_admissable(struct dc *dc,
986 				struct dc_state *context)
987 {
988 	bool result = false;
989 	uint32_t i;
990 	uint8_t subvp_count = 0;
991 	uint32_t min_refresh = subvp_high_refresh_list.min_refresh, max_refresh = 0;
992 	uint64_t refresh_rate = 0;
993 
994 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
995 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
996 
997 		if (!pipe->stream)
998 			continue;
999 
1000 		if (pipe->plane_state && !pipe->top_pipe &&
1001 				dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN) {
1002 			refresh_rate = (pipe->stream->timing.pix_clk_100hz * (uint64_t)100 +
1003 				pipe->stream->timing.v_total * (uint64_t)pipe->stream->timing.h_total - (uint64_t)1);
1004 			refresh_rate = div_u64(refresh_rate, pipe->stream->timing.v_total);
1005 			refresh_rate = div_u64(refresh_rate, pipe->stream->timing.h_total);
1006 
1007 			if ((uint32_t)refresh_rate < min_refresh)
1008 				min_refresh = (uint32_t)refresh_rate;
1009 			if ((uint32_t)refresh_rate > max_refresh)
1010 				max_refresh = (uint32_t)refresh_rate;
1011 			subvp_count++;
1012 		}
1013 	}
1014 
1015 	if (subvp_count == 2 && ((min_refresh < 120 && max_refresh < 120) ||
1016 		(min_refresh >= subvp_high_refresh_list.min_refresh &&
1017 				max_refresh <= subvp_high_refresh_list.max_refresh)))
1018 		result = true;
1019 
1020 	return result;
1021 }
1022 
1023 /**
1024  * subvp_validate_static_schedulability - Check which SubVP case is calculated
1025  * and handle static analysis based on the case.
1026  * @dc: current dc state
1027  * @context: new dc state
1028  * @vlevel: Voltage level calculated by DML
1029  *
1030  * Three cases:
1031  * 1. SubVP + SubVP
1032  * 2. SubVP + VBLANK (DRR checked internally)
1033  * 3. SubVP + VACTIVE (currently unsupported)
1034  *
1035  * Return: True if statically schedulable, false otherwise
1036  */
1037 static bool subvp_validate_static_schedulability(struct dc *dc,
1038 				struct dc_state *context,
1039 				int vlevel)
1040 {
1041 	bool schedulable = false;
1042 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1043 	uint32_t i, pipe_idx;
1044 	uint8_t subvp_count = 0;
1045 	uint8_t vactive_count = 0;
1046 	uint8_t non_subvp_pipes = 0;
1047 
1048 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1049 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1050 		enum mall_stream_type pipe_mall_type = dc_state_get_pipe_subvp_type(context, pipe);
1051 
1052 		if (!pipe->stream)
1053 			continue;
1054 
1055 		if (pipe->plane_state && !pipe->top_pipe) {
1056 			if (pipe_mall_type == SUBVP_MAIN)
1057 				subvp_count++;
1058 			if (pipe_mall_type == SUBVP_NONE)
1059 				non_subvp_pipes++;
1060 		}
1061 
1062 		// Count how many planes that aren't SubVP/phantom are capable of VACTIVE
1063 		// switching (SubVP + VACTIVE unsupported). In situations where we force
1064 		// SubVP for a VACTIVE plane, we don't want to increment the vactive_count.
1065 		if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vlevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0 &&
1066 				pipe_mall_type == SUBVP_NONE) {
1067 			vactive_count++;
1068 		}
1069 		pipe_idx++;
1070 	}
1071 
1072 	if (subvp_count == 2) {
1073 		// Static schedulability check for SubVP + SubVP case
1074 		schedulable = subvp_subvp_admissable(dc, context) && subvp_subvp_schedulable(dc, context);
1075 	} else if (subvp_count == 1 && non_subvp_pipes == 0) {
1076 		// Single SubVP configs will be supported by default as long as it's suppported by DML
1077 		schedulable = true;
1078 	} else if (subvp_count == 1 && non_subvp_pipes == 1) {
1079 		if (dcn32_subvp_drr_admissable(dc, context))
1080 			schedulable = subvp_drr_schedulable(dc, context);
1081 		else if (dcn32_subvp_vblank_admissable(dc, context, vlevel))
1082 			schedulable = subvp_vblank_schedulable(dc, context);
1083 	} else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vactive_w_mall_sub_vp &&
1084 			vactive_count > 0) {
1085 		// For single display SubVP cases, DML will output dm_dram_clock_change_vactive_w_mall_sub_vp by default.
1086 		// We tell the difference between SubVP vs. SubVP + VACTIVE by checking the vactive_count.
1087 		// SubVP + VACTIVE currently unsupported
1088 		schedulable = false;
1089 	}
1090 	return schedulable;
1091 }
1092 
1093 static void assign_subvp_index(struct dc *dc, struct dc_state *context)
1094 {
1095 	int i;
1096 	int index = 0;
1097 
1098 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1099 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1100 
1101 		if (resource_is_pipe_type(pipe_ctx, OTG_MASTER) &&
1102 				dc_state_get_pipe_subvp_type(context, pipe_ctx) == SUBVP_MAIN) {
1103 			pipe_ctx->subvp_index = index++;
1104 		} else {
1105 			pipe_ctx->subvp_index = 0;
1106 		}
1107 	}
1108 }
1109 
1110 struct pipe_slice_table {
1111 	struct {
1112 		struct dc_stream_state *stream;
1113 		int slice_count;
1114 	} odm_combines[MAX_STREAMS];
1115 	int odm_combine_count;
1116 
1117 	struct {
1118 		struct pipe_ctx *pri_pipe;
1119 		struct dc_plane_state *plane;
1120 		int slice_count;
1121 	} mpc_combines[MAX_PLANES];
1122 	int mpc_combine_count;
1123 };
1124 
1125 
1126 static void update_slice_table_for_stream(struct pipe_slice_table *table,
1127 		struct dc_stream_state *stream, int diff)
1128 {
1129 	int i;
1130 
1131 	for (i = 0; i < table->odm_combine_count; i++) {
1132 		if (table->odm_combines[i].stream == stream) {
1133 			table->odm_combines[i].slice_count += diff;
1134 			break;
1135 		}
1136 	}
1137 
1138 	if (i == table->odm_combine_count) {
1139 		table->odm_combine_count++;
1140 		table->odm_combines[i].stream = stream;
1141 		table->odm_combines[i].slice_count = diff;
1142 	}
1143 }
1144 
1145 static void update_slice_table_for_plane(struct pipe_slice_table *table,
1146 		struct pipe_ctx *dpp_pipe, struct dc_plane_state *plane, int diff)
1147 {
1148 	int i;
1149 	struct pipe_ctx *pri_dpp_pipe = resource_get_primary_dpp_pipe(dpp_pipe);
1150 
1151 	for (i = 0; i < table->mpc_combine_count; i++) {
1152 		if (table->mpc_combines[i].plane == plane &&
1153 				table->mpc_combines[i].pri_pipe == pri_dpp_pipe) {
1154 			table->mpc_combines[i].slice_count += diff;
1155 			break;
1156 		}
1157 	}
1158 
1159 	if (i == table->mpc_combine_count) {
1160 		table->mpc_combine_count++;
1161 		table->mpc_combines[i].plane = plane;
1162 		table->mpc_combines[i].pri_pipe = pri_dpp_pipe;
1163 		table->mpc_combines[i].slice_count = diff;
1164 	}
1165 }
1166 
1167 static void init_pipe_slice_table_from_context(
1168 		struct pipe_slice_table *table,
1169 		struct dc_state *context)
1170 {
1171 	int i, j;
1172 	struct pipe_ctx *otg_master;
1173 	struct pipe_ctx *dpp_pipes[MAX_PIPES];
1174 	struct dc_stream_state *stream;
1175 	int count;
1176 
1177 	memset(table, 0, sizeof(*table));
1178 
1179 	for (i = 0; i < context->stream_count; i++) {
1180 		stream = context->streams[i];
1181 		otg_master = resource_get_otg_master_for_stream(
1182 				&context->res_ctx, stream);
1183 		if (!otg_master)
1184 			continue;
1185 
1186 		count = resource_get_odm_slice_count(otg_master);
1187 		update_slice_table_for_stream(table, stream, count);
1188 
1189 		count = resource_get_dpp_pipes_for_opp_head(otg_master,
1190 				&context->res_ctx, dpp_pipes);
1191 		for (j = 0; j < count; j++)
1192 			if (dpp_pipes[j]->plane_state)
1193 				update_slice_table_for_plane(table, dpp_pipes[j],
1194 						dpp_pipes[j]->plane_state, 1);
1195 	}
1196 }
1197 
1198 static bool update_pipe_slice_table_with_split_flags(
1199 		struct pipe_slice_table *table,
1200 		struct dc *dc,
1201 		struct dc_state *context,
1202 		struct vba_vars_st *vba,
1203 		int split[MAX_PIPES],
1204 		bool merge[MAX_PIPES])
1205 {
1206 	/* NOTE: we are deprecating the support for the concept of pipe splitting
1207 	 * or pipe merging. Instead we append slices to the end and remove
1208 	 * slices from the end. The following code converts a pipe split or
1209 	 * merge to an append or remove operation.
1210 	 *
1211 	 * For example:
1212 	 * When split flags describe the following pipe connection transition
1213 	 *
1214 	 * from:
1215 	 *  pipe 0 (split=2) -> pipe 1 (split=2)
1216 	 * to: (old behavior)
1217 	 *  pipe 0 -> pipe 2 -> pipe 1 -> pipe 3
1218 	 *
1219 	 * the code below actually does:
1220 	 *  pipe 0 -> pipe 1 -> pipe 2 -> pipe 3
1221 	 *
1222 	 * This is the new intended behavior and for future DCNs we will retire
1223 	 * the old concept completely.
1224 	 */
1225 	struct pipe_ctx *pipe;
1226 	bool odm;
1227 	int dc_pipe_idx, dml_pipe_idx = 0;
1228 	bool updated = false;
1229 
1230 	for (dc_pipe_idx = 0;
1231 			dc_pipe_idx < dc->res_pool->pipe_count; dc_pipe_idx++) {
1232 		pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx];
1233 		if (resource_is_pipe_type(pipe, FREE_PIPE))
1234 			continue;
1235 
1236 		if (merge[dc_pipe_idx]) {
1237 			if (resource_is_pipe_type(pipe, OPP_HEAD))
1238 				/* merging OPP head means reducing ODM slice
1239 				 * count by 1
1240 				 */
1241 				update_slice_table_for_stream(table, pipe->stream, -1);
1242 			else if (resource_is_pipe_type(pipe, DPP_PIPE) &&
1243 					resource_get_odm_slice_index(resource_get_opp_head(pipe)) == 0)
1244 				/* merging DPP pipe of the first ODM slice means
1245 				 * reducing MPC slice count by 1
1246 				 */
1247 				update_slice_table_for_plane(table, pipe, pipe->plane_state, -1);
1248 			updated = true;
1249 		}
1250 
1251 		if (split[dc_pipe_idx]) {
1252 			odm = vba->ODMCombineEnabled[vba->pipe_plane[dml_pipe_idx]] !=
1253 					dm_odm_combine_mode_disabled;
1254 			if (odm && resource_is_pipe_type(pipe, OPP_HEAD))
1255 				update_slice_table_for_stream(
1256 						table, pipe->stream, split[dc_pipe_idx] - 1);
1257 			else if (!odm && resource_is_pipe_type(pipe, DPP_PIPE))
1258 				update_slice_table_for_plane(table, pipe,
1259 						pipe->plane_state, split[dc_pipe_idx] - 1);
1260 			updated = true;
1261 		}
1262 		dml_pipe_idx++;
1263 	}
1264 	return updated;
1265 }
1266 
1267 static void update_pipes_with_slice_table(struct dc *dc, struct dc_state *context,
1268 		struct pipe_slice_table *table)
1269 {
1270 	int i;
1271 
1272 	for (i = 0; i < table->odm_combine_count; i++)
1273 		resource_update_pipes_for_stream_with_slice_count(context,
1274 				dc->current_state, dc->res_pool,
1275 				table->odm_combines[i].stream,
1276 				table->odm_combines[i].slice_count);
1277 
1278 	for (i = 0; i < table->mpc_combine_count; i++)
1279 		resource_update_pipes_for_plane_with_slice_count(context,
1280 				dc->current_state, dc->res_pool,
1281 				table->mpc_combines[i].plane,
1282 				table->mpc_combines[i].slice_count);
1283 }
1284 
1285 static bool update_pipes_with_split_flags(struct dc *dc, struct dc_state *context,
1286 		struct vba_vars_st *vba, int split[MAX_PIPES],
1287 		bool merge[MAX_PIPES])
1288 {
1289 	struct pipe_slice_table slice_table;
1290 	bool updated;
1291 
1292 	init_pipe_slice_table_from_context(&slice_table, context);
1293 	updated = update_pipe_slice_table_with_split_flags(
1294 			&slice_table, dc, context, vba,
1295 			split, merge);
1296 	update_pipes_with_slice_table(dc, context, &slice_table);
1297 	return updated;
1298 }
1299 
1300 static bool should_apply_odm_power_optimization(struct dc *dc,
1301 		struct dc_state *context, struct vba_vars_st *v, int *split,
1302 		bool *merge)
1303 {
1304 	struct dc_stream_state *stream = context->streams[0];
1305 	struct pipe_slice_table slice_table;
1306 	int i;
1307 
1308 	/*
1309 	 * this debug flag allows us to disable ODM power optimization feature
1310 	 * unconditionally. we force the feature off if this is set to false.
1311 	 */
1312 	if (!dc->debug.enable_single_display_2to1_odm_policy)
1313 		return false;
1314 
1315 	/* current design and test coverage is only limited to allow ODM power
1316 	 * optimization for single stream. Supporting it for multiple streams
1317 	 * use case would require additional algorithm to decide how to
1318 	 * optimize power consumption when there are not enough free pipes to
1319 	 * allocate for all the streams. This level of optimization would
1320 	 * require multiple attempts of revalidation to make an optimized
1321 	 * decision. Unfortunately We do not support revalidation flow in
1322 	 * current version of DML.
1323 	 */
1324 	if (context->stream_count != 1)
1325 		return false;
1326 
1327 	/*
1328 	 * Our hardware doesn't support ODM for HDMI TMDS
1329 	 */
1330 	if (dc_is_hdmi_signal(stream->signal))
1331 		return false;
1332 
1333 	/*
1334 	 * ODM Combine 2:1 requires horizontal timing divisible by 2 so each
1335 	 * ODM segment has the same size.
1336 	 */
1337 	if (!is_h_timing_divisible_by_2(stream))
1338 		return false;
1339 
1340 	/*
1341 	 * No power benefits if the timing's pixel clock is not high enough to
1342 	 * raise display clock from minimum power state.
1343 	 */
1344 	if (stream->timing.pix_clk_100hz * 100 <= DCN3_2_VMIN_DISPCLK_HZ)
1345 		return false;
1346 
1347 	if (dc->config.enable_windowed_mpo_odm) {
1348 		/*
1349 		 * ODM power optimization should only be allowed if the feature
1350 		 * can be seamlessly toggled off within an update. This would
1351 		 * require that the feature is applied on top of a minimal
1352 		 * state. A minimal state is defined as a state validated
1353 		 * without the need of pipe split. Therefore, when transition to
1354 		 * toggle the feature off, the same stream and plane
1355 		 * configuration can be supported by the pipe resource in the
1356 		 * first ODM slice alone without the need to acquire extra
1357 		 * resources.
1358 		 */
1359 		init_pipe_slice_table_from_context(&slice_table, context);
1360 		update_pipe_slice_table_with_split_flags(
1361 				&slice_table, dc, context, v,
1362 				split, merge);
1363 		for (i = 0; i < slice_table.mpc_combine_count; i++)
1364 			if (slice_table.mpc_combines[i].slice_count > 1)
1365 				return false;
1366 
1367 		for (i = 0; i < slice_table.odm_combine_count; i++)
1368 			if (slice_table.odm_combines[i].slice_count > 1)
1369 				return false;
1370 	} else {
1371 		/*
1372 		 * the new ODM power optimization feature reduces software
1373 		 * design limitation and allows ODM power optimization to be
1374 		 * supported even with presence of overlay planes. The new
1375 		 * feature is enabled based on enable_windowed_mpo_odm flag. If
1376 		 * the flag is not set, we limit our feature scope due to
1377 		 * previous software design limitation
1378 		 */
1379 		if (context->stream_status[0].plane_count != 1)
1380 			return false;
1381 
1382 		if (memcmp(&context->stream_status[0].plane_states[0]->clip_rect,
1383 				&stream->src, sizeof(struct rect)) != 0)
1384 			return false;
1385 
1386 		if (stream->src.width >= 5120 &&
1387 				stream->src.width > stream->dst.width)
1388 			return false;
1389 	}
1390 	return true;
1391 }
1392 
1393 static void try_odm_power_optimization_and_revalidate(
1394 		struct dc *dc,
1395 		struct dc_state *context,
1396 		display_e2e_pipe_params_st *pipes,
1397 		int *split,
1398 		bool *merge,
1399 		unsigned int *vlevel,
1400 		int pipe_cnt)
1401 {
1402 	int i;
1403 	unsigned int new_vlevel;
1404 	unsigned int cur_policy[MAX_PIPES];
1405 
1406 	for (i = 0; i < pipe_cnt; i++) {
1407 		cur_policy[i] = pipes[i].pipe.dest.odm_combine_policy;
1408 		pipes[i].pipe.dest.odm_combine_policy = dm_odm_combine_policy_2to1;
1409 	}
1410 
1411 	new_vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1412 
1413 	if (new_vlevel < context->bw_ctx.dml.soc.num_states) {
1414 		memset(split, 0, MAX_PIPES * sizeof(int));
1415 		memset(merge, 0, MAX_PIPES * sizeof(bool));
1416 		*vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, new_vlevel, split, merge);
1417 		context->bw_ctx.dml.vba.VoltageLevel = *vlevel;
1418 	} else {
1419 		for (i = 0; i < pipe_cnt; i++)
1420 			pipes[i].pipe.dest.odm_combine_policy = cur_policy[i];
1421 	}
1422 }
1423 
1424 static bool is_test_pattern_enabled(
1425 		struct dc_state *context)
1426 {
1427 	int i;
1428 
1429 	for (i = 0; i < context->stream_count; i++) {
1430 		if (context->streams[i]->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE)
1431 			return true;
1432 	}
1433 
1434 	return false;
1435 }
1436 
1437 static bool dcn32_full_validate_bw_helper(struct dc *dc,
1438 				   struct dc_state *context,
1439 				   display_e2e_pipe_params_st *pipes,
1440 				   int *vlevel,
1441 				   int *split,
1442 				   bool *merge,
1443 				   int *pipe_cnt,
1444 				   bool *repopulate_pipes)
1445 {
1446 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1447 	unsigned int dc_pipe_idx = 0;
1448 	int i = 0;
1449 	bool found_supported_config = false;
1450 	int vlevel_temp = 0;
1451 
1452 	dc_assert_fp_enabled();
1453 
1454 	/*
1455 	 * DML favors voltage over p-state, but we're more interested in
1456 	 * supporting p-state over voltage. We can't support p-state in
1457 	 * prefetch mode > 0 so try capping the prefetch mode to start.
1458 	 * Override present for testing.
1459 	 */
1460 	if (dc->debug.dml_disallow_alternate_prefetch_modes)
1461 		context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1462 			dm_prefetch_support_uclk_fclk_and_stutter;
1463 	else
1464 		context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1465 			dm_prefetch_support_uclk_fclk_and_stutter_if_possible;
1466 
1467 	*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1468 	/* This may adjust vlevel and maxMpcComb */
1469 	if (*vlevel < context->bw_ctx.dml.soc.num_states) {
1470 		*vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1471 		vba->VoltageLevel = *vlevel;
1472 	}
1473 
1474 	/* Apply split and merge flags before checking for subvp */
1475 	if (!dcn32_apply_merge_split_flags_helper(dc, context, repopulate_pipes, split, merge))
1476 		return false;
1477 	memset(split, 0, MAX_PIPES * sizeof(int));
1478 	memset(merge, 0, MAX_PIPES * sizeof(bool));
1479 
1480 	/* Conditions for setting up phantom pipes for SubVP:
1481 	 * 1. Not force disable SubVP
1482 	 * 2. Full update (i.e. DC_VALIDATE_MODE_AND_PROGRAMMING)
1483 	 * 3. Enough pipes are available to support SubVP (TODO: Which pipes will use VACTIVE / VBLANK / SUBVP?)
1484 	 * 4. Display configuration passes validation
1485 	 * 5. (Config doesn't support MCLK in VACTIVE/VBLANK || dc->debug.force_subvp_mclk_switch)
1486 	 */
1487 	if (!dc->debug.force_disable_subvp && !dc->caps.dmub_caps.gecc_enable && dcn32_all_pipes_have_stream_and_plane(dc, context) &&
1488 	    !dcn32_mpo_in_use(context) && !dcn32_any_surfaces_rotated(dc, context) && !is_test_pattern_enabled(context) &&
1489 		(*vlevel == context->bw_ctx.dml.soc.num_states || (vba->DRAMSpeedPerState[*vlevel] != vba->DRAMSpeedPerState[0] &&
1490 				vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported) ||
1491 	    vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported ||
1492 	    dc->debug.force_subvp_mclk_switch)) {
1493 
1494 		vlevel_temp = *vlevel;
1495 
1496 		while (!found_supported_config && dcn32_enough_pipes_for_subvp(dc, context) &&
1497 			dcn32_assign_subvp_pipe(dc, context, &dc_pipe_idx)) {
1498 			/* For the case where *vlevel = num_states, bandwidth validation has failed for this config.
1499 			 * Adding phantom pipes won't change the validation result, so change the DML input param
1500 			 * for P-State support before adding phantom pipes and recalculating the DML result.
1501 			 * However, this case is only applicable for SubVP + DRR cases because the prefetch mode
1502 			 * will not allow for switch in VBLANK. The DRR display must have it's VBLANK stretched
1503 			 * enough to support MCLK switching.
1504 			 */
1505 			if (*vlevel == context->bw_ctx.dml.soc.num_states &&
1506 				context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final ==
1507 					dm_prefetch_support_uclk_fclk_and_stutter) {
1508 				context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1509 								dm_prefetch_support_fclk_and_stutter;
1510 				/* There are params (such as FabricClock) that need to be recalculated
1511 				 * after validation fails (otherwise it will be 0). Calculation for
1512 				 * phantom vactive requires call into DML, so we must ensure all the
1513 				 * vba params are valid otherwise we'll get incorrect phantom vactive.
1514 				 */
1515 				*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1516 			}
1517 
1518 			dc->res_pool->funcs->add_phantom_pipes(dc, context, pipes, *pipe_cnt, dc_pipe_idx);
1519 
1520 			*pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes,
1521 				DC_VALIDATE_MODE_AND_PROGRAMMING);
1522 			// Populate dppclk to trigger a recalculate in dml_get_voltage_level
1523 			// so the phantom pipe DLG params can be assigned correctly.
1524 			pipes[0].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, *pipe_cnt, 0);
1525 			*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1526 
1527 			/* Check that vlevel requested supports pstate or not
1528 			 * if not, select the lowest vlevel that supports it
1529 			 */
1530 			for (i = *vlevel; i < context->bw_ctx.dml.soc.num_states; i++) {
1531 				if (vba->DRAMClockChangeSupport[i][vba->maxMpcComb] != dm_dram_clock_change_unsupported) {
1532 					*vlevel = i;
1533 					break;
1534 				}
1535 			}
1536 
1537 			if (*vlevel < context->bw_ctx.dml.soc.num_states
1538 			    && subvp_validate_static_schedulability(dc, context, *vlevel))
1539 				found_supported_config = true;
1540 			if (found_supported_config) {
1541 				// For SubVP + DRR cases, we can force the lowest vlevel that supports the mode
1542 				if (dcn32_subvp_drr_admissable(dc, context) && subvp_drr_schedulable(dc, context)) {
1543 					/* find lowest vlevel that supports the config */
1544 					for (i = *vlevel; i >= 0; i--) {
1545 						if (vba->ModeSupport[i][vba->maxMpcComb]) {
1546 							*vlevel = i;
1547 						} else {
1548 							break;
1549 						}
1550 					}
1551 				}
1552 			}
1553 		}
1554 
1555 		if (vba->DRAMSpeedPerState[*vlevel] >= vba->DRAMSpeedPerState[vlevel_temp])
1556 			found_supported_config = false;
1557 
1558 		// If SubVP pipe config is unsupported (or cannot be used for UCLK switching)
1559 		// remove phantom pipes and repopulate dml pipes
1560 		if (!found_supported_config) {
1561 			dc_state_remove_phantom_streams_and_planes(dc, context);
1562 			dc_state_release_phantom_streams_and_planes(dc, context);
1563 			vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] = dm_dram_clock_change_unsupported;
1564 			*pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes,
1565 				DC_VALIDATE_MODE_AND_PROGRAMMING);
1566 
1567 			*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1568 			/* This may adjust vlevel and maxMpcComb */
1569 			if (*vlevel < context->bw_ctx.dml.soc.num_states) {
1570 				*vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1571 				vba->VoltageLevel = *vlevel;
1572 			}
1573 		} else {
1574 			// Most populate phantom DLG params before programming hardware / timing for phantom pipe
1575 			dcn32_helper_populate_phantom_dlg_params(dc, context, pipes, *pipe_cnt);
1576 
1577 			/* Call validate_apply_pipe_split flags after calling DML getters for
1578 			 * phantom dlg params, or some of the VBA params indicating pipe split
1579 			 * can be overwritten by the getters.
1580 			 *
1581 			 * When setting up SubVP config, all pipes are merged before attempting to
1582 			 * add phantom pipes. If pipe split (ODM / MPC) is required, both the main
1583 			 * and phantom pipes will be split in the regular pipe splitting sequence.
1584 			 */
1585 			*vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1586 			vba->VoltageLevel = *vlevel;
1587 			// Note: We can't apply the phantom pipes to hardware at this time. We have to wait
1588 			// until driver has acquired the DMCUB lock to do it safely.
1589 			assign_subvp_index(dc, context);
1590 		}
1591 	}
1592 
1593 	if (should_apply_odm_power_optimization(dc, context, vba, split, merge))
1594 		try_odm_power_optimization_and_revalidate(
1595 				dc, context, pipes, split, merge, vlevel, *pipe_cnt);
1596 
1597 	return true;
1598 }
1599 
1600 static bool is_dtbclk_required(struct dc *dc, struct dc_state *context)
1601 {
1602 	int i;
1603 
1604 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1605 		if (!context->res_ctx.pipe_ctx[i].stream)
1606 			continue;
1607 		if (dc->link_srv->dp_is_128b_132b_signal(&context->res_ctx.pipe_ctx[i]))
1608 			return true;
1609 	}
1610 	return false;
1611 }
1612 
1613 static void dcn20_adjust_freesync_v_startup(const struct dc_crtc_timing *dc_crtc_timing, int *vstartup_start)
1614 {
1615 	struct dc_crtc_timing patched_crtc_timing;
1616 	uint32_t asic_blank_end   = 0;
1617 	uint32_t asic_blank_start = 0;
1618 	uint32_t newVstartup	  = 0;
1619 
1620 	patched_crtc_timing = *dc_crtc_timing;
1621 
1622 	if (patched_crtc_timing.flags.INTERLACE == 1) {
1623 		if (patched_crtc_timing.v_front_porch < 2)
1624 			patched_crtc_timing.v_front_porch = 2;
1625 	} else {
1626 		if (patched_crtc_timing.v_front_porch < 1)
1627 			patched_crtc_timing.v_front_porch = 1;
1628 	}
1629 
1630 	/* blank_start = frame end - front porch */
1631 	asic_blank_start = patched_crtc_timing.v_total -
1632 					patched_crtc_timing.v_front_porch;
1633 
1634 	/* blank_end = blank_start - active */
1635 	asic_blank_end = asic_blank_start -
1636 					patched_crtc_timing.v_border_bottom -
1637 					patched_crtc_timing.v_addressable -
1638 					patched_crtc_timing.v_border_top;
1639 
1640 	newVstartup = asic_blank_end + (patched_crtc_timing.v_total - asic_blank_start);
1641 
1642 	*vstartup_start = ((newVstartup > *vstartup_start) ? newVstartup : *vstartup_start);
1643 }
1644 
1645 static void dcn32_calculate_dlg_params(struct dc *dc, struct dc_state *context,
1646 				       display_e2e_pipe_params_st *pipes,
1647 				       int pipe_cnt, int vlevel)
1648 {
1649 	int i, pipe_idx, active_hubp_count = 0;
1650 	bool usr_retraining_support = false;
1651 	bool unbounded_req_enabled = false;
1652 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1653 
1654 	dc_assert_fp_enabled();
1655 
1656 	/* Writeback MCIF_WB arbitration parameters */
1657 	dc->res_pool->funcs->set_mcif_arb_params(dc, context, pipes, pipe_cnt);
1658 
1659 	context->bw_ctx.bw.dcn.clk.dispclk_khz = context->bw_ctx.dml.vba.DISPCLK * 1000;
1660 	context->bw_ctx.bw.dcn.clk.dcfclk_khz = context->bw_ctx.dml.vba.DCFCLK * 1000;
1661 	context->bw_ctx.bw.dcn.clk.socclk_khz = context->bw_ctx.dml.vba.SOCCLK * 1000;
1662 	context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16;
1663 	context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = context->bw_ctx.dml.vba.DCFCLKDeepSleep * 1000;
1664 	context->bw_ctx.bw.dcn.clk.fclk_khz = context->bw_ctx.dml.vba.FabricClock * 1000;
1665 	context->bw_ctx.bw.dcn.clk.p_state_change_support =
1666 			context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb]
1667 					!= dm_dram_clock_change_unsupported;
1668 
1669 	/* Pstate change might not be supported by hardware, but it might be
1670 	 * possible with firmware driven vertical blank stretching.
1671 	 */
1672 	context->bw_ctx.bw.dcn.clk.p_state_change_support |= context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching;
1673 
1674 	context->bw_ctx.bw.dcn.clk.dppclk_khz = 0;
1675 	context->bw_ctx.bw.dcn.clk.dtbclk_en = is_dtbclk_required(dc, context);
1676 	context->bw_ctx.bw.dcn.clk.ref_dtbclk_khz = context->bw_ctx.dml.vba.DTBCLKPerState[vlevel] * 1000;
1677 	if (context->bw_ctx.dml.vba.FCLKChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] == dm_fclock_change_unsupported)
1678 		context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = false;
1679 	else
1680 		context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true;
1681 
1682 	usr_retraining_support = context->bw_ctx.dml.vba.USRRetrainingSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
1683 	ASSERT(usr_retraining_support);
1684 
1685 	if (context->bw_ctx.bw.dcn.clk.dispclk_khz < dc->debug.min_disp_clk_khz)
1686 		context->bw_ctx.bw.dcn.clk.dispclk_khz = dc->debug.min_disp_clk_khz;
1687 
1688 	unbounded_req_enabled = get_unbounded_request_enabled(&context->bw_ctx.dml, pipes, pipe_cnt);
1689 
1690 	if (unbounded_req_enabled && pipe_cnt > 1) {
1691 		// Unbounded requesting should not ever be used when more than 1 pipe is enabled.
1692 		ASSERT(false);
1693 		unbounded_req_enabled = false;
1694 	}
1695 
1696 	context->bw_ctx.bw.dcn.mall_ss_size_bytes = 0;
1697 	context->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes = 0;
1698 	context->bw_ctx.bw.dcn.mall_subvp_size_bytes = 0;
1699 
1700 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1701 		if (!context->res_ctx.pipe_ctx[i].stream)
1702 			continue;
1703 		if (context->res_ctx.pipe_ctx[i].plane_state)
1704 			active_hubp_count++;
1705 		pipes[pipe_idx].pipe.dest.vstartup_start = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt,
1706 				pipe_idx);
1707 		pipes[pipe_idx].pipe.dest.vupdate_offset = get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
1708 				pipe_idx);
1709 		pipes[pipe_idx].pipe.dest.vupdate_width = get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt,
1710 				pipe_idx);
1711 		pipes[pipe_idx].pipe.dest.vready_offset = get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
1712 				pipe_idx);
1713 
1714 		if (dc_state_get_pipe_subvp_type(context, &context->res_ctx.pipe_ctx[i]) == SUBVP_PHANTOM) {
1715 			// Phantom pipe requires that DET_SIZE = 0 and no unbounded requests
1716 			context->res_ctx.pipe_ctx[i].det_buffer_size_kb = 0;
1717 			context->res_ctx.pipe_ctx[i].unbounded_req = false;
1718 		} else {
1719 			context->res_ctx.pipe_ctx[i].det_buffer_size_kb = get_det_buffer_size_kbytes(&context->bw_ctx.dml, pipes, pipe_cnt,
1720 							pipe_idx);
1721 			context->res_ctx.pipe_ctx[i].unbounded_req = unbounded_req_enabled;
1722 		}
1723 
1724 		if (context->bw_ctx.bw.dcn.clk.dppclk_khz < pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
1725 			context->bw_ctx.bw.dcn.clk.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
1726 		if (context->res_ctx.pipe_ctx[i].plane_state)
1727 			context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
1728 		else
1729 			context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = 0;
1730 		context->res_ctx.pipe_ctx[i].pipe_dlg_param = pipes[pipe_idx].pipe.dest;
1731 
1732 		context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes = get_surface_size_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
1733 
1734 		if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0)
1735 			context->res_ctx.pipe_ctx[i].has_vactive_margin = true;
1736 		else
1737 			context->res_ctx.pipe_ctx[i].has_vactive_margin = false;
1738 
1739 		/* MALL Allocation Sizes */
1740 		/* count from active, top pipes per plane only */
1741 		if (context->res_ctx.pipe_ctx[i].stream && context->res_ctx.pipe_ctx[i].plane_state &&
1742 				(context->res_ctx.pipe_ctx[i].top_pipe == NULL ||
1743 				context->res_ctx.pipe_ctx[i].plane_state != context->res_ctx.pipe_ctx[i].top_pipe->plane_state) &&
1744 				context->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
1745 			/* SS: all active surfaces stored in MALL */
1746 			if (dc_state_get_pipe_subvp_type(context, &context->res_ctx.pipe_ctx[i]) != SUBVP_PHANTOM) {
1747 				context->bw_ctx.bw.dcn.mall_ss_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1748 
1749 				if (context->res_ctx.pipe_ctx[i].stream->link->psr_settings.psr_version == DC_PSR_VERSION_UNSUPPORTED) {
1750 					/* SS PSR On: all active surfaces part of streams not supporting PSR stored in MALL */
1751 					context->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1752 				}
1753 			} else {
1754 				/* SUBVP: phantom surfaces only stored in MALL */
1755 				context->bw_ctx.bw.dcn.mall_subvp_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1756 			}
1757 		}
1758 
1759 		if (context->res_ctx.pipe_ctx[i].stream->adaptive_sync_infopacket.valid)
1760 			dcn20_adjust_freesync_v_startup(
1761 				&context->res_ctx.pipe_ctx[i].stream->timing,
1762 				&context->res_ctx.pipe_ctx[i].pipe_dlg_param.vstartup_start);
1763 
1764 		pipe_idx++;
1765 	}
1766 	/* If DCN isn't making memory requests we can allow pstate change and lower clocks */
1767 	if (!active_hubp_count) {
1768 		context->bw_ctx.bw.dcn.clk.socclk_khz = 0;
1769 		context->bw_ctx.bw.dcn.clk.dppclk_khz = 0;
1770 		context->bw_ctx.bw.dcn.clk.dcfclk_khz = 0;
1771 		context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = 0;
1772 		context->bw_ctx.bw.dcn.clk.dramclk_khz = 0;
1773 		context->bw_ctx.bw.dcn.clk.fclk_khz = 0;
1774 		context->bw_ctx.bw.dcn.clk.p_state_change_support = true;
1775 		context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true;
1776 	}
1777 	/*save a original dppclock copy*/
1778 	context->bw_ctx.bw.dcn.clk.bw_dppclk_khz = context->bw_ctx.bw.dcn.clk.dppclk_khz;
1779 	context->bw_ctx.bw.dcn.clk.bw_dispclk_khz = context->bw_ctx.bw.dcn.clk.dispclk_khz;
1780 	context->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dppclk_mhz
1781 			* 1000;
1782 	context->bw_ctx.bw.dcn.clk.max_supported_dispclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dispclk_mhz
1783 			* 1000;
1784 
1785 	context->bw_ctx.bw.dcn.clk.num_ways = dcn32_helper_calculate_num_ways_for_subvp(dc, context);
1786 
1787 	context->bw_ctx.bw.dcn.compbuf_size_kb = context->bw_ctx.dml.ip.config_return_buffer_size_in_kbytes;
1788 
1789 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1790 		if (context->res_ctx.pipe_ctx[i].stream)
1791 			context->bw_ctx.bw.dcn.compbuf_size_kb -= context->res_ctx.pipe_ctx[i].det_buffer_size_kb;
1792 	}
1793 
1794 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1795 
1796 		if (!context->res_ctx.pipe_ctx[i].stream)
1797 			continue;
1798 
1799 		context->bw_ctx.dml.funcs.rq_dlg_get_dlg_reg_v2(&context->bw_ctx.dml,
1800 				&context->res_ctx.pipe_ctx[i].dlg_regs, &context->res_ctx.pipe_ctx[i].ttu_regs, pipes,
1801 				pipe_cnt, pipe_idx);
1802 
1803 		context->bw_ctx.dml.funcs.rq_dlg_get_rq_reg_v2(&context->res_ctx.pipe_ctx[i].rq_regs,
1804 				&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
1805 		pipe_idx++;
1806 	}
1807 }
1808 
1809 static struct pipe_ctx *dcn32_find_split_pipe(
1810 		struct dc *dc,
1811 		struct dc_state *context,
1812 		int old_index)
1813 {
1814 	struct pipe_ctx *pipe = NULL;
1815 	int i;
1816 
1817 	if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) {
1818 		pipe = &context->res_ctx.pipe_ctx[old_index];
1819 		pipe->pipe_idx = old_index;
1820 	}
1821 
1822 	if (!pipe)
1823 		for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1824 			if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL
1825 					&& dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
1826 				if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1827 					pipe = &context->res_ctx.pipe_ctx[i];
1828 					pipe->pipe_idx = i;
1829 					break;
1830 				}
1831 			}
1832 		}
1833 
1834 	/*
1835 	 * May need to fix pipes getting tossed from 1 opp to another on flip
1836 	 * Add for debugging transient underflow during topology updates:
1837 	 * ASSERT(pipe);
1838 	 */
1839 	if (!pipe)
1840 		for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1841 			if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1842 				pipe = &context->res_ctx.pipe_ctx[i];
1843 				pipe->pipe_idx = i;
1844 				break;
1845 			}
1846 		}
1847 
1848 	return pipe;
1849 }
1850 
1851 static bool dcn32_split_stream_for_mpc_or_odm(
1852 		const struct dc *dc,
1853 		struct resource_context *res_ctx,
1854 		struct pipe_ctx *pri_pipe,
1855 		struct pipe_ctx *sec_pipe,
1856 		bool odm)
1857 {
1858 	int pipe_idx = sec_pipe->pipe_idx;
1859 	const struct resource_pool *pool = dc->res_pool;
1860 
1861 	DC_LOGGER_INIT(dc->ctx->logger);
1862 
1863 	if (odm && pri_pipe->plane_state) {
1864 		/* ODM + window MPO, where MPO window is on left half only */
1865 		if (pri_pipe->plane_state->clip_rect.x + pri_pipe->plane_state->clip_rect.width <=
1866 				pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) {
1867 
1868 			DC_LOG_SCALER("%s - ODM + window MPO(left). pri_pipe:%d\n",
1869 					__func__,
1870 					pri_pipe->pipe_idx);
1871 			return true;
1872 		}
1873 
1874 		/* ODM + window MPO, where MPO window is on right half only */
1875 		if (pri_pipe->plane_state->clip_rect.x >= pri_pipe->stream->src.x +  pri_pipe->stream->src.width/2) {
1876 
1877 			DC_LOG_SCALER("%s - ODM + window MPO(right). pri_pipe:%d\n",
1878 					__func__,
1879 					pri_pipe->pipe_idx);
1880 			return true;
1881 		}
1882 	}
1883 
1884 	*sec_pipe = *pri_pipe;
1885 
1886 	sec_pipe->pipe_idx = pipe_idx;
1887 	sec_pipe->plane_res.mi = pool->mis[pipe_idx];
1888 	sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
1889 	sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
1890 	sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
1891 	sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
1892 	sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
1893 	sec_pipe->stream_res.dsc = NULL;
1894 	if (odm) {
1895 		if (pri_pipe->next_odm_pipe) {
1896 			ASSERT(pri_pipe->next_odm_pipe != sec_pipe);
1897 			sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe;
1898 			sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe;
1899 		}
1900 		if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) {
1901 			pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe;
1902 			sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe;
1903 		}
1904 		if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) {
1905 			pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe;
1906 			sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe;
1907 		}
1908 		pri_pipe->next_odm_pipe = sec_pipe;
1909 		sec_pipe->prev_odm_pipe = pri_pipe;
1910 		ASSERT(sec_pipe->top_pipe == NULL);
1911 
1912 		if (!sec_pipe->top_pipe)
1913 			sec_pipe->stream_res.opp = pool->opps[pipe_idx];
1914 		else
1915 			sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
1916 		if (sec_pipe->stream->timing.flags.DSC == 1) {
1917 			dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx);
1918 			ASSERT(sec_pipe->stream_res.dsc);
1919 			if (sec_pipe->stream_res.dsc == NULL)
1920 				return false;
1921 		}
1922 	} else {
1923 		if (pri_pipe->bottom_pipe) {
1924 			ASSERT(pri_pipe->bottom_pipe != sec_pipe);
1925 			sec_pipe->bottom_pipe = pri_pipe->bottom_pipe;
1926 			sec_pipe->bottom_pipe->top_pipe = sec_pipe;
1927 		}
1928 		pri_pipe->bottom_pipe = sec_pipe;
1929 		sec_pipe->top_pipe = pri_pipe;
1930 
1931 		ASSERT(pri_pipe->plane_state);
1932 	}
1933 
1934 	return true;
1935 }
1936 
1937 static bool dcn32_apply_merge_split_flags_helper(
1938 		struct dc *dc,
1939 		struct dc_state *context,
1940 		bool *repopulate_pipes,
1941 		int *split,
1942 		bool *merge)
1943 {
1944 	int i, pipe_idx;
1945 	bool newly_split[MAX_PIPES] = { false };
1946 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1947 
1948 	if (dc->config.enable_windowed_mpo_odm) {
1949 		if (update_pipes_with_split_flags(
1950 			dc, context, vba, split, merge))
1951 			*repopulate_pipes = true;
1952 	} else {
1953 
1954 		/* the code below will be removed once windowed mpo odm is fully
1955 		 * enabled.
1956 		 */
1957 		/* merge pipes if necessary */
1958 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
1959 			struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1960 
1961 			/*skip pipes that don't need merging*/
1962 			if (!merge[i])
1963 				continue;
1964 
1965 			/* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */
1966 			if (pipe->prev_odm_pipe) {
1967 				/*split off odm pipe*/
1968 				pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe;
1969 				if (pipe->next_odm_pipe)
1970 					pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe;
1971 
1972 				/*2:1ODM+MPC Split MPO to Single Pipe + MPC Split MPO*/
1973 				if (pipe->bottom_pipe) {
1974 					if (pipe->bottom_pipe->prev_odm_pipe || pipe->bottom_pipe->next_odm_pipe) {
1975 						/*MPC split rules will handle this case*/
1976 						pipe->bottom_pipe->top_pipe = NULL;
1977 					} else {
1978 						/* when merging an ODM pipes, the bottom MPC pipe must now point to
1979 						 * the previous ODM pipe and its associated stream assets
1980 						 */
1981 						if (pipe->prev_odm_pipe->bottom_pipe) {
1982 							/* 3 plane MPO*/
1983 							pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe->bottom_pipe;
1984 							pipe->prev_odm_pipe->bottom_pipe->bottom_pipe = pipe->bottom_pipe;
1985 						} else {
1986 							/* 2 plane MPO*/
1987 							pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe;
1988 							pipe->prev_odm_pipe->bottom_pipe = pipe->bottom_pipe;
1989 						}
1990 
1991 						memcpy(&pipe->bottom_pipe->stream_res, &pipe->bottom_pipe->top_pipe->stream_res, sizeof(struct stream_resource));
1992 					}
1993 				}
1994 
1995 				if (pipe->top_pipe) {
1996 					pipe->top_pipe->bottom_pipe = NULL;
1997 				}
1998 
1999 				pipe->bottom_pipe = NULL;
2000 				pipe->next_odm_pipe = NULL;
2001 				pipe->plane_state = NULL;
2002 				pipe->stream = NULL;
2003 				pipe->top_pipe = NULL;
2004 				pipe->prev_odm_pipe = NULL;
2005 				if (pipe->stream_res.dsc)
2006 					dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc);
2007 				memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
2008 				memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
2009 				memset(&pipe->link_res, 0, sizeof(pipe->link_res));
2010 				*repopulate_pipes = true;
2011 			} else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
2012 				struct pipe_ctx *top_pipe = pipe->top_pipe;
2013 				struct pipe_ctx *bottom_pipe = pipe->bottom_pipe;
2014 
2015 				top_pipe->bottom_pipe = bottom_pipe;
2016 				if (bottom_pipe)
2017 					bottom_pipe->top_pipe = top_pipe;
2018 
2019 				pipe->top_pipe = NULL;
2020 				pipe->bottom_pipe = NULL;
2021 				pipe->plane_state = NULL;
2022 				pipe->stream = NULL;
2023 				memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
2024 				memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
2025 				memset(&pipe->link_res, 0, sizeof(pipe->link_res));
2026 				*repopulate_pipes = true;
2027 			} else
2028 				ASSERT(0); /* Should never try to merge master pipe */
2029 
2030 		}
2031 
2032 		for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
2033 			struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2034 			struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2035 			struct pipe_ctx *hsplit_pipe = NULL;
2036 			bool odm;
2037 			int old_index = -1;
2038 
2039 			if (!pipe->stream || newly_split[i])
2040 				continue;
2041 
2042 			pipe_idx++;
2043 			odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled;
2044 
2045 			if (!pipe->plane_state && !odm)
2046 				continue;
2047 
2048 			if (split[i]) {
2049 				if (odm) {
2050 					if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe)
2051 						old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
2052 					else if (old_pipe->next_odm_pipe)
2053 						old_index = old_pipe->next_odm_pipe->pipe_idx;
2054 				} else {
2055 					if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
2056 							old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2057 						old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx;
2058 					else if (old_pipe->bottom_pipe &&
2059 							old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2060 						old_index = old_pipe->bottom_pipe->pipe_idx;
2061 				}
2062 				hsplit_pipe = dcn32_find_split_pipe(dc, context, old_index);
2063 				ASSERT(hsplit_pipe);
2064 				if (!hsplit_pipe)
2065 					return false;
2066 
2067 				if (!dcn32_split_stream_for_mpc_or_odm(
2068 						dc, &context->res_ctx,
2069 						pipe, hsplit_pipe, odm))
2070 					return false;
2071 
2072 				newly_split[hsplit_pipe->pipe_idx] = true;
2073 				*repopulate_pipes = true;
2074 			}
2075 			if (split[i] == 4) {
2076 				struct pipe_ctx *pipe_4to1;
2077 
2078 				if (odm && old_pipe->next_odm_pipe)
2079 					old_index = old_pipe->next_odm_pipe->pipe_idx;
2080 				else if (!odm && old_pipe->bottom_pipe &&
2081 							old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2082 					old_index = old_pipe->bottom_pipe->pipe_idx;
2083 				else
2084 					old_index = -1;
2085 				pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
2086 				ASSERT(pipe_4to1);
2087 				if (!pipe_4to1)
2088 					return false;
2089 				if (!dcn32_split_stream_for_mpc_or_odm(
2090 						dc, &context->res_ctx,
2091 						pipe, pipe_4to1, odm))
2092 					return false;
2093 				newly_split[pipe_4to1->pipe_idx] = true;
2094 
2095 				if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe
2096 						&& old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe)
2097 					old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
2098 				else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
2099 						old_pipe->bottom_pipe->bottom_pipe->bottom_pipe &&
2100 						old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2101 					old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx;
2102 				else
2103 					old_index = -1;
2104 				pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
2105 				ASSERT(pipe_4to1);
2106 				if (!pipe_4to1)
2107 					return false;
2108 				if (!dcn32_split_stream_for_mpc_or_odm(
2109 						dc, &context->res_ctx,
2110 						hsplit_pipe, pipe_4to1, odm))
2111 					return false;
2112 				newly_split[pipe_4to1->pipe_idx] = true;
2113 			}
2114 			if (odm)
2115 				dcn20_build_mapped_resource(dc, context, pipe->stream);
2116 		}
2117 
2118 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
2119 			struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2120 
2121 			if (pipe->plane_state) {
2122 				if (!resource_build_scaling_params(pipe))
2123 					return false;
2124 			}
2125 		}
2126 
2127 		for (i = 0; i < context->stream_count; i++) {
2128 			struct pipe_ctx *otg_master = resource_get_otg_master_for_stream(&context->res_ctx,
2129 					context->streams[i]);
2130 
2131 			if (otg_master)
2132 				resource_build_test_pattern_params(&context->res_ctx, otg_master);
2133 		}
2134 	}
2135 	return true;
2136 }
2137 
2138 bool dcn32_internal_validate_bw(struct dc *dc,
2139 				struct dc_state *context,
2140 				display_e2e_pipe_params_st *pipes,
2141 				int *pipe_cnt_out,
2142 				int *vlevel_out,
2143 				enum dc_validate_mode validate_mode)
2144 {
2145 	bool out = false;
2146 	bool repopulate_pipes = false;
2147 	int split[MAX_PIPES] = { 0 };
2148 	bool merge[MAX_PIPES] = { false };
2149 	int pipe_cnt, i, pipe_idx;
2150 	int vlevel = context->bw_ctx.dml.soc.num_states;
2151 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
2152 
2153 	dc_assert_fp_enabled();
2154 
2155 	ASSERT(pipes);
2156 	if (!pipes)
2157 		return false;
2158 
2159 	/* For each full update, remove all existing phantom pipes first */
2160 	dc_state_remove_phantom_streams_and_planes(dc, context);
2161 	dc_state_release_phantom_streams_and_planes(dc, context);
2162 
2163 	dc->res_pool->funcs->update_soc_for_wm_a(dc, context);
2164 
2165 	for (i = 0; i < context->stream_count; i++)
2166 		resource_update_pipes_for_stream_with_slice_count(context, dc->current_state, dc->res_pool, context->streams[i], 1);
2167 	pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, validate_mode);
2168 
2169 	if (!pipe_cnt) {
2170 		out = true;
2171 		goto validate_out;
2172 	}
2173 
2174 	dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt);
2175 	context->bw_ctx.dml.soc.max_vratio_pre = dcn32_determine_max_vratio_prefetch(dc, context);
2176 
2177 	if (validate_mode == DC_VALIDATE_MODE_AND_PROGRAMMING) {
2178 		if (!dcn32_full_validate_bw_helper(dc, context, pipes, &vlevel, split, merge,
2179 			&pipe_cnt, &repopulate_pipes))
2180 			goto validate_fail;
2181 	}
2182 
2183 	if (validate_mode != DC_VALIDATE_MODE_AND_PROGRAMMING ||
2184 			(dc->debug.dml_disallow_alternate_prefetch_modes &&
2185 			(vlevel == context->bw_ctx.dml.soc.num_states ||
2186 				vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported))) {
2187 		/*
2188 		 * If dml_disallow_alternate_prefetch_modes is false, then we have already
2189 		 * tried alternate prefetch modes during full validation.
2190 		 *
2191 		 * If mode is unsupported or there is no p-state support, then
2192 		 * fall back to favouring voltage.
2193 		 *
2194 		 * If Prefetch mode 0 failed for this config, or passed with Max UCLK, then try
2195 		 * to support with Prefetch mode 1 (dm_prefetch_support_fclk_and_stutter == 2)
2196 		 */
2197 		context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
2198 			dm_prefetch_support_none;
2199 
2200 		context->bw_ctx.dml.validate_max_state = (validate_mode != DC_VALIDATE_MODE_AND_PROGRAMMING);
2201 		vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
2202 
2203 		context->bw_ctx.dml.validate_max_state = false;
2204 
2205 		if (vlevel < context->bw_ctx.dml.soc.num_states) {
2206 			memset(split, 0, sizeof(split));
2207 			memset(merge, 0, sizeof(merge));
2208 			vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge);
2209 			/* dcn20_validate_apply_pipe_split_flags can modify voltage level outside of DML */
2210 			vba->VoltageLevel = vlevel;
2211 		}
2212 	}
2213 
2214 	dml_log_mode_support_params(&context->bw_ctx.dml);
2215 
2216 	if (vlevel == context->bw_ctx.dml.soc.num_states)
2217 		goto validate_fail;
2218 
2219 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
2220 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2221 		struct pipe_ctx *mpo_pipe = pipe->bottom_pipe;
2222 
2223 		if (!pipe->stream)
2224 			continue;
2225 
2226 		if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled
2227 				&& !dc->config.enable_windowed_mpo_odm
2228 				&& pipe->plane_state && mpo_pipe
2229 				&& memcmp(&mpo_pipe->plane_state->clip_rect,
2230 						&pipe->stream->src,
2231 						sizeof(struct rect)) != 0) {
2232 			ASSERT(mpo_pipe->plane_state != pipe->plane_state);
2233 			goto validate_fail;
2234 		}
2235 		pipe_idx++;
2236 	}
2237 
2238 	if (!dcn32_apply_merge_split_flags_helper(dc, context, &repopulate_pipes, split, merge))
2239 		goto validate_fail;
2240 
2241 	/* Actual dsc count per stream dsc validation*/
2242 	if (!dcn20_validate_dsc(dc, context)) {
2243 		vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE;
2244 		goto validate_fail;
2245 	}
2246 
2247 	if (repopulate_pipes) {
2248 		int flag_max_mpc_comb = vba->maxMpcComb;
2249 		int flag_vlevel = vlevel;
2250 		int i;
2251 
2252 		pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, validate_mode);
2253 		if (!dc->config.enable_windowed_mpo_odm)
2254 			dcn32_update_dml_pipes_odm_policy_based_on_context(dc, context, pipes);
2255 
2256 		/* repopulate_pipes = 1 means the pipes were either split or merged. In this case
2257 		 * we have to re-calculate the DET allocation and run through DML once more to
2258 		 * ensure all the params are calculated correctly. We do not need to run the
2259 		 * pipe split check again after this call (pipes are already split / merged).
2260 		 * */
2261 		context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
2262 					dm_prefetch_support_uclk_fclk_and_stutter_if_possible;
2263 
2264 		vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
2265 
2266 		if (vlevel == context->bw_ctx.dml.soc.num_states) {
2267 			/* failed after DET size changes */
2268 			goto validate_fail;
2269 		} else if (flag_max_mpc_comb == 0 &&
2270 				flag_max_mpc_comb != context->bw_ctx.dml.vba.maxMpcComb) {
2271 			/* check the context constructed with pipe split flags is still valid*/
2272 			bool flags_valid = false;
2273 			for (i = flag_vlevel; i < context->bw_ctx.dml.soc.num_states; i++) {
2274 				if (vba->ModeSupport[i][flag_max_mpc_comb]) {
2275 					vba->maxMpcComb = flag_max_mpc_comb;
2276 					vba->VoltageLevel = i;
2277 					vlevel = i;
2278 					flags_valid = true;
2279 					break;
2280 				}
2281 			}
2282 
2283 			/* this should never happen */
2284 			if (!flags_valid)
2285 				goto validate_fail;
2286 		}
2287 	}
2288 	*vlevel_out = vlevel;
2289 	*pipe_cnt_out = pipe_cnt;
2290 
2291 	out = true;
2292 	goto validate_out;
2293 
2294 validate_fail:
2295 	out = false;
2296 
2297 validate_out:
2298 	return out;
2299 }
2300 
2301 
2302 void dcn32_calculate_wm_and_dlg_fpu(struct dc *dc, struct dc_state *context,
2303 				display_e2e_pipe_params_st *pipes,
2304 				int pipe_cnt,
2305 				int vlevel)
2306 {
2307 	int i, pipe_idx, vlevel_temp = 0;
2308 	double dcfclk = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
2309 	double dcfclk_from_validation = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
2310 	double dram_speed_from_validation = context->bw_ctx.dml.vba.DRAMSpeed;
2311 	double dcfclk_from_fw_based_mclk_switching = dcfclk_from_validation;
2312 	bool pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] !=
2313 			dm_dram_clock_change_unsupported;
2314 	unsigned int dummy_latency_index = 0;
2315 	int maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
2316 	unsigned int min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed;
2317 	bool subvp_in_use = dcn32_subvp_in_use(dc, context);
2318 	unsigned int min_dram_speed_mts_margin;
2319 	bool need_fclk_lat_as_dummy = false;
2320 	bool is_subvp_p_drr = false;
2321 	struct dc_stream_state *fpo_candidate_stream = NULL;
2322 	struct dc_stream_status *stream_status = NULL;
2323 
2324 	dc_assert_fp_enabled();
2325 
2326 	/* need to find dummy latency index for subvp */
2327 	if (subvp_in_use) {
2328 		/* Override DRAMClockChangeSupport for SubVP + DRR case where the DRR cannot switch without stretching it's VBLANK */
2329 		if (!pstate_en) {
2330 			context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp;
2331 			context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = dm_prefetch_support_fclk_and_stutter;
2332 			pstate_en = true;
2333 			is_subvp_p_drr = true;
2334 		}
2335 		dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc,
2336 						context, pipes, pipe_cnt, vlevel);
2337 
2338 		/* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so prefetch is
2339 		 * scheduled correctly to account for dummy pstate.
2340 		 */
2341 		if (context->bw_ctx.dml.soc.fclk_change_latency_us < dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us) {
2342 			need_fclk_lat_as_dummy = true;
2343 			context->bw_ctx.dml.soc.fclk_change_latency_us =
2344 					dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2345 		}
2346 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2347 							dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2348 		dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, DC_VALIDATE_MODE_AND_PROGRAMMING);
2349 		maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
2350 		if (is_subvp_p_drr) {
2351 			context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp;
2352 		}
2353 	}
2354 
2355 	context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
2356 	for (i = 0; i < context->stream_count; i++) {
2357 		stream_status = NULL;
2358 		if (context->streams[i])
2359 			stream_status = dc_state_get_stream_status(context, context->streams[i]);
2360 		if (stream_status)
2361 			stream_status->fpo_in_use = false;
2362 	}
2363 
2364 	if (!pstate_en || (!dc->debug.disable_fpo_optimizations &&
2365 			pstate_en && vlevel != 0)) {
2366 		/* only when the mclk switch can not be natural, is the fw based vblank stretch attempted */
2367 		fpo_candidate_stream = dcn32_can_support_mclk_switch_using_fw_based_vblank_stretch(dc, context);
2368 		if (fpo_candidate_stream) {
2369 			stream_status = dc_state_get_stream_status(context, fpo_candidate_stream);
2370 			if (stream_status)
2371 				stream_status->fpo_in_use = true;
2372 			context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = true;
2373 		}
2374 
2375 		if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
2376 			dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc,
2377 				context, pipes, pipe_cnt, vlevel);
2378 
2379 			/* After calling dcn30_find_dummy_latency_index_for_fw_based_mclk_switch
2380 			 * we reinstate the original dram_clock_change_latency_us on the context
2381 			 * and all variables that may have changed up to this point, except the
2382 			 * newly found dummy_latency_index
2383 			 */
2384 			context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2385 					dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2386 			/* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so
2387 			 * prefetch is scheduled correctly to account for dummy pstate.
2388 			 */
2389 			if (context->bw_ctx.dml.soc.fclk_change_latency_us < dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us) {
2390 				need_fclk_lat_as_dummy = true;
2391 				context->bw_ctx.dml.soc.fclk_change_latency_us =
2392 						dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2393 			}
2394 			dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel_temp,
2395 				DC_VALIDATE_MODE_AND_PROGRAMMING);
2396 			if (vlevel_temp < vlevel) {
2397 				vlevel = vlevel_temp;
2398 				maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
2399 				dcfclk_from_fw_based_mclk_switching = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
2400 				pstate_en = true;
2401 				context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank;
2402 			} else {
2403 				/* Restore FCLK latency and re-run validation to go back to original validation
2404 				 * output if we find that enabling FPO does not give us any benefit (i.e. lower
2405 				 * voltage level)
2406 				 */
2407 				context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
2408 				for (i = 0; i < context->stream_count; i++) {
2409 					stream_status = NULL;
2410 					if (context->streams[i])
2411 						stream_status = dc_state_get_stream_status(context, context->streams[i]);
2412 					if (stream_status)
2413 						stream_status->fpo_in_use = false;
2414 				}
2415 				context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us;
2416 				dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel,
2417 					DC_VALIDATE_MODE_AND_PROGRAMMING);
2418 			}
2419 		}
2420 	}
2421 
2422 	/* Set B:
2423 	 * For Set B calculations use clocks from clock_limits[2] when available i.e. when SMU is present,
2424 	 * otherwise use arbitrary low value from spreadsheet for DCFCLK as lower is safer for watermark
2425 	 * calculations to cover bootup clocks.
2426 	 * DCFCLK: soc.clock_limits[2] when available
2427 	 * UCLK: soc.clock_limits[2] when available
2428 	 */
2429 	if (dcn3_2_soc.num_states > 2) {
2430 		vlevel_temp = 2;
2431 		dcfclk = dcn3_2_soc.clock_limits[2].dcfclk_mhz;
2432 	} else
2433 		dcfclk = 615; //DCFCLK Vmin_lv
2434 
2435 	pipes[0].clks_cfg.voltage = vlevel_temp;
2436 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
2437 	pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
2438 
2439 	if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].valid) {
2440 		context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us;
2441 		context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us;
2442 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us;
2443 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us;
2444 	}
2445 	context->bw_ctx.bw.dcn.watermarks.b.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2446 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2447 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2448 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2449 	context->bw_ctx.bw.dcn.watermarks.b.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2450 	context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2451 	context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2452 	context->bw_ctx.bw.dcn.watermarks.b.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2453 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2454 	context->bw_ctx.bw.dcn.watermarks.b.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2455 
2456 	/* Set D:
2457 	 * All clocks min.
2458 	 * DCFCLK: Min, as reported by PM FW when available
2459 	 * UCLK  : Min, as reported by PM FW when available
2460 	 * sr_enter_exit/sr_exit should be lower than used for DRAM (TBD after bringup or later, use as decided in Clk Mgr)
2461 	 */
2462 
2463 	/*
2464 	if (dcn3_2_soc.num_states > 2) {
2465 		vlevel_temp = 0;
2466 		dcfclk = dc->clk_mgr->bw_params->clk_table.entries[0].dcfclk_mhz;
2467 	} else
2468 		dcfclk = 615; //DCFCLK Vmin_lv
2469 
2470 	pipes[0].clks_cfg.voltage = vlevel_temp;
2471 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
2472 	pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
2473 
2474 	if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].valid) {
2475 		context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us;
2476 		context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us;
2477 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us;
2478 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us;
2479 	}
2480 	context->bw_ctx.bw.dcn.watermarks.d.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2481 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2482 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2483 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2484 	context->bw_ctx.bw.dcn.watermarks.d.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2485 	context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2486 	context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2487 	context->bw_ctx.bw.dcn.watermarks.d.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2488 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2489 	context->bw_ctx.bw.dcn.watermarks.d.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2490 	*/
2491 
2492 	/* Set C, for Dummy P-State:
2493 	 * All clocks min.
2494 	 * DCFCLK: Min, as reported by PM FW, when available
2495 	 * UCLK  : Min,  as reported by PM FW, when available
2496 	 * pstate latency as per UCLK state dummy pstate latency
2497 	 */
2498 
2499 	// For Set A and Set C use values from validation
2500 	pipes[0].clks_cfg.voltage = vlevel;
2501 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_validation;
2502 	pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].socclk_mhz;
2503 
2504 	if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
2505 		pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_fw_based_mclk_switching;
2506 	}
2507 
2508 	if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid) {
2509 		min_dram_speed_mts = dram_speed_from_validation;
2510 		min_dram_speed_mts_margin = 160;
2511 
2512 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2513 			dc->clk_mgr->bw_params->dummy_pstate_table[0].dummy_pstate_latency_us;
2514 
2515 		if (context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] ==
2516 			dm_dram_clock_change_unsupported) {
2517 			int min_dram_speed_mts_offset = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels - 1;
2518 
2519 			min_dram_speed_mts =
2520 				dc->clk_mgr->bw_params->clk_table.entries[min_dram_speed_mts_offset].memclk_mhz * 16;
2521 		}
2522 
2523 		if (!context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching && !subvp_in_use) {
2524 			/* find largest table entry that is lower than dram speed,
2525 			 * but lower than DPM0 still uses DPM0
2526 			 */
2527 			for (dummy_latency_index = 3; dummy_latency_index > 0; dummy_latency_index--)
2528 				if (min_dram_speed_mts + min_dram_speed_mts_margin >
2529 					dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dram_speed_mts)
2530 					break;
2531 		}
2532 
2533 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2534 			dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2535 
2536 		context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us;
2537 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us;
2538 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us;
2539 	}
2540 
2541 	context->bw_ctx.bw.dcn.watermarks.c.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2542 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2543 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2544 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2545 	context->bw_ctx.bw.dcn.watermarks.c.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2546 	context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2547 	context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2548 	context->bw_ctx.bw.dcn.watermarks.c.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2549 	/* On DCN32/321, PMFW will set PSTATE_CHANGE_TYPE = 1 (FCLK) for UCLK dummy p-state.
2550 	 * In this case we must program FCLK WM Set C to use the UCLK dummy p-state WM
2551 	 * value.
2552 	 */
2553 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.fclk_pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2554 	context->bw_ctx.bw.dcn.watermarks.c.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2555 
2556 	if ((!pstate_en) && (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid)) {
2557 		/* The only difference between A and C is p-state latency, if p-state is not supported
2558 		 * with full p-state latency we want to calculate DLG based on dummy p-state latency,
2559 		 * Set A p-state watermark set to 0 on DCN30, when p-state unsupported, for now keep as DCN30.
2560 		 */
2561 		context->bw_ctx.bw.dcn.watermarks.a = context->bw_ctx.bw.dcn.watermarks.c;
2562 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 0;
2563 		/* Calculate FCLK p-state change watermark based on FCLK pstate change latency in case
2564 		 * UCLK p-state is not supported, to avoid underflow in case FCLK pstate is supported
2565 		 */
2566 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2567 	} else {
2568 		/* Set A:
2569 		 * All clocks min.
2570 		 * DCFCLK: Min, as reported by PM FW, when available
2571 		 * UCLK: Min, as reported by PM FW, when available
2572 		 */
2573 
2574 		/* For set A set the correct latency values (i.e. non-dummy values) unconditionally
2575 		 */
2576 		context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2577 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us;
2578 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us;
2579 
2580 		context->bw_ctx.bw.dcn.watermarks.a.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2581 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2582 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2583 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2584 		context->bw_ctx.bw.dcn.watermarks.a.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2585 		context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2586 		context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2587 		context->bw_ctx.bw.dcn.watermarks.a.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2588 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2589 		context->bw_ctx.bw.dcn.watermarks.a.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2590 	}
2591 
2592 	/* Make set D = set A since we do not optimized watermarks for MALL */
2593 	context->bw_ctx.bw.dcn.watermarks.d = context->bw_ctx.bw.dcn.watermarks.a;
2594 
2595 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
2596 		if (!context->res_ctx.pipe_ctx[i].stream)
2597 			continue;
2598 
2599 		pipes[pipe_idx].clks_cfg.dispclk_mhz = get_dispclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt);
2600 		pipes[pipe_idx].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
2601 
2602 		if (dc->config.forced_clocks) {
2603 			pipes[pipe_idx].clks_cfg.dispclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dispclk_mhz;
2604 			pipes[pipe_idx].clks_cfg.dppclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dppclk_mhz;
2605 		}
2606 		if (dc->debug.min_disp_clk_khz > pipes[pipe_idx].clks_cfg.dispclk_mhz * 1000)
2607 			pipes[pipe_idx].clks_cfg.dispclk_mhz = dc->debug.min_disp_clk_khz / 1000.0;
2608 		if (dc->debug.min_dpp_clk_khz > pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
2609 			pipes[pipe_idx].clks_cfg.dppclk_mhz = dc->debug.min_dpp_clk_khz / 1000.0;
2610 
2611 		pipe_idx++;
2612 	}
2613 
2614 	context->perf_params.stutter_period_us = context->bw_ctx.dml.vba.StutterPeriod;
2615 
2616 	/* for proper prefetch calculations, if dummy lat > fclk lat, use fclk lat = dummy lat */
2617 	if (need_fclk_lat_as_dummy)
2618 		context->bw_ctx.dml.soc.fclk_change_latency_us =
2619 				dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2620 
2621 	dcn32_calculate_dlg_params(dc, context, pipes, pipe_cnt, vlevel);
2622 
2623 	if (!pstate_en)
2624 		/* Restore full p-state latency */
2625 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2626 				dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2627 
2628 	/* revert fclk lat changes if required */
2629 	if (need_fclk_lat_as_dummy)
2630 		context->bw_ctx.dml.soc.fclk_change_latency_us =
2631 				dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us;
2632 }
2633 
2634 static void dcn32_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts,
2635 		unsigned int *optimal_dcfclk,
2636 		unsigned int *optimal_fclk)
2637 {
2638 	double bw_from_dram, bw_from_dram1, bw_from_dram2;
2639 
2640 	bw_from_dram1 = uclk_mts * dcn3_2_soc.num_chans *
2641 		dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_dram_bw_use_normal_percent / 100);
2642 	bw_from_dram2 = uclk_mts * dcn3_2_soc.num_chans *
2643 		dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100);
2644 
2645 	bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2;
2646 
2647 	if (optimal_fclk)
2648 		*optimal_fclk = bw_from_dram /
2649 		(dcn3_2_soc.fabric_datapath_to_dcn_data_return_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
2650 
2651 	if (optimal_dcfclk)
2652 		*optimal_dcfclk =  bw_from_dram /
2653 		(dcn3_2_soc.return_bus_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
2654 }
2655 
2656 static void remove_entry_from_table_at_index(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries,
2657 		unsigned int index)
2658 {
2659 	int i;
2660 
2661 	if (*num_entries == 0)
2662 		return;
2663 
2664 	for (i = index; i < *num_entries - 1; i++) {
2665 		table[i] = table[i + 1];
2666 	}
2667 	memset(&table[--(*num_entries)], 0, sizeof(struct _vcs_dpi_voltage_scaling_st));
2668 }
2669 
2670 void dcn32_patch_dpm_table(struct clk_bw_params *bw_params)
2671 {
2672 	int i;
2673 	unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0,
2674 			max_phyclk_mhz = 0, max_dtbclk_mhz = 0, max_fclk_mhz = 0, max_uclk_mhz = 0;
2675 
2676 	for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2677 		if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
2678 			max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2679 		if (bw_params->clk_table.entries[i].fclk_mhz > max_fclk_mhz)
2680 			max_fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2681 		if (bw_params->clk_table.entries[i].memclk_mhz > max_uclk_mhz)
2682 			max_uclk_mhz = bw_params->clk_table.entries[i].memclk_mhz;
2683 		if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
2684 			max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2685 		if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
2686 			max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2687 		if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
2688 			max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2689 		if (bw_params->clk_table.entries[i].dtbclk_mhz > max_dtbclk_mhz)
2690 			max_dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2691 	}
2692 
2693 	/* Scan through clock values we currently have and if they are 0,
2694 	 *  then populate it with dcn3_2_soc.clock_limits[] value.
2695 	 *
2696 	 * Do it for DCFCLK, DISPCLK, DTBCLK and UCLK as any of those being
2697 	 *  0, will cause it to skip building the clock table.
2698 	 */
2699 	if (max_dcfclk_mhz == 0)
2700 		bw_params->clk_table.entries[0].dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
2701 	if (max_dispclk_mhz == 0)
2702 		bw_params->clk_table.entries[0].dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz;
2703 	if (max_dtbclk_mhz == 0)
2704 		bw_params->clk_table.entries[0].dtbclk_mhz = dcn3_2_soc.clock_limits[0].dtbclk_mhz;
2705 	if (max_uclk_mhz == 0)
2706 		bw_params->clk_table.entries[0].memclk_mhz = dcn3_2_soc.clock_limits[0].dram_speed_mts / 16;
2707 }
2708 
2709 static void swap_table_entries(struct _vcs_dpi_voltage_scaling_st *first_entry,
2710 		struct _vcs_dpi_voltage_scaling_st *second_entry)
2711 {
2712 	struct _vcs_dpi_voltage_scaling_st temp_entry = *first_entry;
2713 	*first_entry = *second_entry;
2714 	*second_entry = temp_entry;
2715 }
2716 
2717 /*
2718  * sort_entries_with_same_bw - Sort entries sharing the same bandwidth by DCFCLK
2719  */
2720 static void sort_entries_with_same_bw(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
2721 {
2722 	unsigned int start_index = 0;
2723 	unsigned int end_index = 0;
2724 	unsigned int current_bw = 0;
2725 
2726 	for (int i = 0; i < (*num_entries - 1); i++) {
2727 		if (table[i].net_bw_in_kbytes_sec == table[i+1].net_bw_in_kbytes_sec) {
2728 			current_bw = table[i].net_bw_in_kbytes_sec;
2729 			start_index = i;
2730 			end_index = ++i;
2731 
2732 			while ((i < (*num_entries - 1)) && (table[i+1].net_bw_in_kbytes_sec == current_bw))
2733 				end_index = ++i;
2734 		}
2735 
2736 		if (start_index != end_index) {
2737 			for (int j = start_index; j < end_index; j++) {
2738 				for (int k = start_index; k < end_index; k++) {
2739 					if (table[k].dcfclk_mhz > table[k+1].dcfclk_mhz)
2740 						swap_table_entries(&table[k], &table[k+1]);
2741 				}
2742 			}
2743 		}
2744 
2745 		start_index = 0;
2746 		end_index = 0;
2747 
2748 	}
2749 }
2750 
2751 /*
2752  * remove_inconsistent_entries - Ensure entries with the same bandwidth have MEMCLK and FCLK monotonically increasing
2753  *                               and remove entries that do not
2754  */
2755 static void remove_inconsistent_entries(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
2756 {
2757 	for (int i = 0; i < (*num_entries - 1); i++) {
2758 		if (table[i].net_bw_in_kbytes_sec == table[i+1].net_bw_in_kbytes_sec) {
2759 			if ((table[i].dram_speed_mts > table[i+1].dram_speed_mts) ||
2760 				(table[i].fabricclk_mhz > table[i+1].fabricclk_mhz))
2761 				remove_entry_from_table_at_index(table, num_entries, i);
2762 		}
2763 	}
2764 }
2765 
2766 /*
2767  * override_max_clk_values - Overwrite the max clock frequencies with the max DC mode timings
2768  * Input:
2769  *	max_clk_limit - struct containing the desired clock timings
2770  * Output:
2771  *	curr_clk_limit  - struct containing the timings that need to be overwritten
2772  * Return: 0 upon success, non-zero for failure
2773  */
2774 static int override_max_clk_values(struct clk_limit_table_entry *max_clk_limit,
2775 		struct clk_limit_table_entry *curr_clk_limit)
2776 {
2777 	if (NULL == max_clk_limit || NULL == curr_clk_limit)
2778 		return -1; //invalid parameters
2779 
2780 	//only overwrite if desired max clock frequency is initialized
2781 	if (max_clk_limit->dcfclk_mhz != 0)
2782 		curr_clk_limit->dcfclk_mhz = max_clk_limit->dcfclk_mhz;
2783 
2784 	if (max_clk_limit->fclk_mhz != 0)
2785 		curr_clk_limit->fclk_mhz = max_clk_limit->fclk_mhz;
2786 
2787 	if (max_clk_limit->memclk_mhz != 0)
2788 		curr_clk_limit->memclk_mhz = max_clk_limit->memclk_mhz;
2789 
2790 	if (max_clk_limit->socclk_mhz != 0)
2791 		curr_clk_limit->socclk_mhz = max_clk_limit->socclk_mhz;
2792 
2793 	if (max_clk_limit->dtbclk_mhz != 0)
2794 		curr_clk_limit->dtbclk_mhz = max_clk_limit->dtbclk_mhz;
2795 
2796 	if (max_clk_limit->dispclk_mhz != 0)
2797 		curr_clk_limit->dispclk_mhz = max_clk_limit->dispclk_mhz;
2798 
2799 	return 0;
2800 }
2801 
2802 static int build_synthetic_soc_states(bool disable_dc_mode_overwrite, struct clk_bw_params *bw_params,
2803 		struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
2804 {
2805 	int i, j;
2806 	struct _vcs_dpi_voltage_scaling_st entry = {0};
2807 	struct clk_limit_table_entry max_clk_data = {0};
2808 
2809 	unsigned int min_dcfclk_mhz = 199, min_fclk_mhz = 299;
2810 
2811 	static const unsigned int num_dcfclk_stas = 5;
2812 	unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};
2813 
2814 	unsigned int num_uclk_dpms = 0;
2815 	unsigned int num_fclk_dpms = 0;
2816 	unsigned int num_dcfclk_dpms = 0;
2817 
2818 	unsigned int num_dc_uclk_dpms = 0;
2819 	unsigned int num_dc_fclk_dpms = 0;
2820 	unsigned int num_dc_dcfclk_dpms = 0;
2821 
2822 	for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2823 		if (bw_params->clk_table.entries[i].dcfclk_mhz > max_clk_data.dcfclk_mhz)
2824 			max_clk_data.dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2825 		if (bw_params->clk_table.entries[i].fclk_mhz > max_clk_data.fclk_mhz)
2826 			max_clk_data.fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2827 		if (bw_params->clk_table.entries[i].memclk_mhz > max_clk_data.memclk_mhz)
2828 			max_clk_data.memclk_mhz = bw_params->clk_table.entries[i].memclk_mhz;
2829 		if (bw_params->clk_table.entries[i].dispclk_mhz > max_clk_data.dispclk_mhz)
2830 			max_clk_data.dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2831 		if (bw_params->clk_table.entries[i].dppclk_mhz > max_clk_data.dppclk_mhz)
2832 			max_clk_data.dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2833 		if (bw_params->clk_table.entries[i].phyclk_mhz > max_clk_data.phyclk_mhz)
2834 			max_clk_data.phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2835 		if (bw_params->clk_table.entries[i].dtbclk_mhz > max_clk_data.dtbclk_mhz)
2836 			max_clk_data.dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2837 
2838 		if (bw_params->clk_table.entries[i].memclk_mhz > 0) {
2839 			num_uclk_dpms++;
2840 			if (bw_params->clk_table.entries[i].memclk_mhz <= bw_params->dc_mode_limit.memclk_mhz)
2841 				num_dc_uclk_dpms++;
2842 		}
2843 		if (bw_params->clk_table.entries[i].fclk_mhz > 0) {
2844 			num_fclk_dpms++;
2845 			if (bw_params->clk_table.entries[i].fclk_mhz <= bw_params->dc_mode_limit.fclk_mhz)
2846 				num_dc_fclk_dpms++;
2847 		}
2848 		if (bw_params->clk_table.entries[i].dcfclk_mhz > 0) {
2849 			num_dcfclk_dpms++;
2850 			if (bw_params->clk_table.entries[i].dcfclk_mhz <= bw_params->dc_mode_limit.dcfclk_mhz)
2851 				num_dc_dcfclk_dpms++;
2852 		}
2853 	}
2854 
2855 	if (!disable_dc_mode_overwrite) {
2856 		//Overwrite max frequencies with max DC mode frequencies for DC mode systems
2857 		override_max_clk_values(&bw_params->dc_mode_limit, &max_clk_data);
2858 		num_uclk_dpms = num_dc_uclk_dpms;
2859 		num_fclk_dpms = num_dc_fclk_dpms;
2860 		num_dcfclk_dpms = num_dc_dcfclk_dpms;
2861 		bw_params->clk_table.num_entries_per_clk.num_memclk_levels = num_uclk_dpms;
2862 		bw_params->clk_table.num_entries_per_clk.num_fclk_levels = num_fclk_dpms;
2863 	}
2864 
2865 	if (num_dcfclk_dpms > 0 && bw_params->clk_table.entries[0].fclk_mhz > min_fclk_mhz)
2866 		min_fclk_mhz = bw_params->clk_table.entries[0].fclk_mhz;
2867 
2868 	if (!max_clk_data.dcfclk_mhz || !max_clk_data.dispclk_mhz || !max_clk_data.dtbclk_mhz)
2869 		return -1;
2870 
2871 	if (max_clk_data.dppclk_mhz == 0)
2872 		max_clk_data.dppclk_mhz = max_clk_data.dispclk_mhz;
2873 
2874 	if (max_clk_data.fclk_mhz == 0)
2875 		max_clk_data.fclk_mhz = max_clk_data.dcfclk_mhz *
2876 				dcn3_2_soc.pct_ideal_sdp_bw_after_urgent /
2877 				dcn3_2_soc.pct_ideal_fabric_bw_after_urgent;
2878 
2879 	if (max_clk_data.phyclk_mhz == 0)
2880 		max_clk_data.phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
2881 
2882 	*num_entries = 0;
2883 	entry.dispclk_mhz = max_clk_data.dispclk_mhz;
2884 	entry.dscclk_mhz = max_clk_data.dispclk_mhz / 3;
2885 	entry.dppclk_mhz = max_clk_data.dppclk_mhz;
2886 	entry.dtbclk_mhz = max_clk_data.dtbclk_mhz;
2887 	entry.phyclk_mhz = max_clk_data.phyclk_mhz;
2888 	entry.phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
2889 	entry.phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
2890 
2891 	// Insert all the DCFCLK STAs
2892 	for (i = 0; i < num_dcfclk_stas; i++) {
2893 		entry.dcfclk_mhz = dcfclk_sta_targets[i];
2894 		entry.fabricclk_mhz = 0;
2895 		entry.dram_speed_mts = 0;
2896 
2897 		get_optimal_ntuple(&entry);
2898 		entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2899 		insert_entry_into_table_sorted(table, num_entries, &entry);
2900 	}
2901 
2902 	// Insert the max DCFCLK
2903 	entry.dcfclk_mhz = max_clk_data.dcfclk_mhz;
2904 	entry.fabricclk_mhz = 0;
2905 	entry.dram_speed_mts = 0;
2906 
2907 	get_optimal_ntuple(&entry);
2908 	entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2909 	insert_entry_into_table_sorted(table, num_entries, &entry);
2910 
2911 	// Insert the UCLK DPMS
2912 	for (i = 0; i < num_uclk_dpms; i++) {
2913 		entry.dcfclk_mhz = 0;
2914 		entry.fabricclk_mhz = 0;
2915 		entry.dram_speed_mts = bw_params->clk_table.entries[i].memclk_mhz * 16;
2916 
2917 		get_optimal_ntuple(&entry);
2918 		entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2919 		insert_entry_into_table_sorted(table, num_entries, &entry);
2920 	}
2921 
2922 	// If FCLK is coarse grained, insert individual DPMs.
2923 	if (num_fclk_dpms > 2) {
2924 		for (i = 0; i < num_fclk_dpms; i++) {
2925 			entry.dcfclk_mhz = 0;
2926 			entry.fabricclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2927 			entry.dram_speed_mts = 0;
2928 
2929 			get_optimal_ntuple(&entry);
2930 			entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2931 			insert_entry_into_table_sorted(table, num_entries, &entry);
2932 		}
2933 	}
2934 	// If FCLK fine grained, only insert max
2935 	else {
2936 		entry.dcfclk_mhz = 0;
2937 		entry.fabricclk_mhz = max_clk_data.fclk_mhz;
2938 		entry.dram_speed_mts = 0;
2939 
2940 		get_optimal_ntuple(&entry);
2941 		entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2942 		insert_entry_into_table_sorted(table, num_entries, &entry);
2943 	}
2944 
2945 	// At this point, the table contains all "points of interest" based on
2946 	// DPMs from PMFW, and STAs.  Table is sorted by BW, and all clock
2947 	// ratios (by derate, are exact).
2948 
2949 	// Remove states that require higher clocks than are supported
2950 	for (i = *num_entries - 1; i >= 0 ; i--) {
2951 		if (table[i].dcfclk_mhz > max_clk_data.dcfclk_mhz ||
2952 				table[i].fabricclk_mhz > max_clk_data.fclk_mhz ||
2953 				table[i].dram_speed_mts > max_clk_data.memclk_mhz * 16)
2954 			remove_entry_from_table_at_index(table, num_entries, i);
2955 	}
2956 
2957 	// Insert entry with all max dc limits without bandwidth matching
2958 	if (!disable_dc_mode_overwrite) {
2959 		struct _vcs_dpi_voltage_scaling_st max_dc_limits_entry = entry;
2960 
2961 		max_dc_limits_entry.dcfclk_mhz = max_clk_data.dcfclk_mhz;
2962 		max_dc_limits_entry.fabricclk_mhz = max_clk_data.fclk_mhz;
2963 		max_dc_limits_entry.dram_speed_mts = max_clk_data.memclk_mhz * 16;
2964 
2965 		max_dc_limits_entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&max_dc_limits_entry);
2966 		insert_entry_into_table_sorted(table, num_entries, &max_dc_limits_entry);
2967 
2968 		sort_entries_with_same_bw(table, num_entries);
2969 		remove_inconsistent_entries(table, num_entries);
2970 	}
2971 
2972 	// At this point, the table only contains supported points of interest
2973 	// it could be used as is, but some states may be redundant due to
2974 	// coarse grained nature of some clocks, so we want to round up to
2975 	// coarse grained DPMs and remove duplicates.
2976 
2977 	// Round up UCLKs
2978 	for (i = *num_entries - 1; i >= 0 ; i--) {
2979 		for (j = 0; j < num_uclk_dpms; j++) {
2980 			if (bw_params->clk_table.entries[j].memclk_mhz * 16 >= table[i].dram_speed_mts) {
2981 				table[i].dram_speed_mts = bw_params->clk_table.entries[j].memclk_mhz * 16;
2982 				break;
2983 			}
2984 		}
2985 	}
2986 
2987 	// If FCLK is coarse grained, round up to next DPMs
2988 	if (num_fclk_dpms > 2) {
2989 		for (i = *num_entries - 1; i >= 0 ; i--) {
2990 			for (j = 0; j < num_fclk_dpms; j++) {
2991 				if (bw_params->clk_table.entries[j].fclk_mhz >= table[i].fabricclk_mhz) {
2992 					table[i].fabricclk_mhz = bw_params->clk_table.entries[j].fclk_mhz;
2993 					break;
2994 				}
2995 			}
2996 		}
2997 	}
2998 	// Otherwise, round up to minimum.
2999 	else {
3000 		for (i = *num_entries - 1; i >= 0 ; i--) {
3001 			if (table[i].fabricclk_mhz < min_fclk_mhz) {
3002 				table[i].fabricclk_mhz = min_fclk_mhz;
3003 			}
3004 		}
3005 	}
3006 
3007 	// Round DCFCLKs up to minimum
3008 	for (i = *num_entries - 1; i >= 0 ; i--) {
3009 		if (table[i].dcfclk_mhz < min_dcfclk_mhz) {
3010 			table[i].dcfclk_mhz = min_dcfclk_mhz;
3011 		}
3012 	}
3013 
3014 	// Remove duplicate states, note duplicate states are always neighbouring since table is sorted.
3015 	i = 0;
3016 	while (i < *num_entries - 1) {
3017 		if (table[i].dcfclk_mhz == table[i + 1].dcfclk_mhz &&
3018 				table[i].fabricclk_mhz == table[i + 1].fabricclk_mhz &&
3019 				table[i].dram_speed_mts == table[i + 1].dram_speed_mts)
3020 			remove_entry_from_table_at_index(table, num_entries, i + 1);
3021 		else
3022 			i++;
3023 	}
3024 
3025 	// Fix up the state indicies
3026 	for (i = *num_entries - 1; i >= 0 ; i--) {
3027 		table[i].state = i;
3028 	}
3029 
3030 	return 0;
3031 }
3032 
3033 /*
3034  * dcn32_update_bw_bounding_box
3035  *
3036  * This would override some dcn3_2 ip_or_soc initial parameters hardcoded from
3037  * spreadsheet with actual values as per dGPU SKU:
3038  * - with passed few options from dc->config
3039  * - with dentist_vco_frequency from Clk Mgr (currently hardcoded, but might
3040  *   need to get it from PM FW)
3041  * - with passed latency values (passed in ns units) in dc-> bb override for
3042  *   debugging purposes
3043  * - with passed latencies from VBIOS (in 100_ns units) if available for
3044  *   certain dGPU SKU
3045  * - with number of DRAM channels from VBIOS (which differ for certain dGPU SKU
3046  *   of the same ASIC)
3047  * - clocks levels with passed clk_table entries from Clk Mgr as reported by PM
3048  *   FW for different clocks (which might differ for certain dGPU SKU of the
3049  *   same ASIC)
3050  */
3051 void dcn32_update_bw_bounding_box_fpu(struct dc *dc, struct clk_bw_params *bw_params)
3052 {
3053 	dc_assert_fp_enabled();
3054 
3055 	/* Overrides from dc->config options */
3056 	dcn3_2_ip.clamp_min_dcfclk = dc->config.clamp_min_dcfclk;
3057 
3058 	/* Override from passed dc->bb_overrides if available*/
3059 	if ((int)(dcn3_2_soc.sr_exit_time_us * 1000) != dc->bb_overrides.sr_exit_time_ns
3060 			&& dc->bb_overrides.sr_exit_time_ns) {
3061 		dc->dml2_options.bbox_overrides.sr_exit_latency_us =
3062 		dcn3_2_soc.sr_exit_time_us = dc->bb_overrides.sr_exit_time_ns / 1000.0;
3063 	}
3064 
3065 	if ((int)(dcn3_2_soc.sr_enter_plus_exit_time_us * 1000)
3066 			!= dc->bb_overrides.sr_enter_plus_exit_time_ns
3067 			&& dc->bb_overrides.sr_enter_plus_exit_time_ns) {
3068 		dc->dml2_options.bbox_overrides.sr_enter_plus_exit_latency_us =
3069 		dcn3_2_soc.sr_enter_plus_exit_time_us =
3070 			dc->bb_overrides.sr_enter_plus_exit_time_ns / 1000.0;
3071 	}
3072 
3073 	if ((int)(dcn3_2_soc.urgent_latency_us * 1000) != dc->bb_overrides.urgent_latency_ns
3074 		&& dc->bb_overrides.urgent_latency_ns) {
3075 		dcn3_2_soc.urgent_latency_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
3076 		dc->dml2_options.bbox_overrides.urgent_latency_us =
3077 		dcn3_2_soc.urgent_latency_pixel_data_only_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
3078 	}
3079 
3080 	if ((int)(dcn3_2_soc.dram_clock_change_latency_us * 1000)
3081 			!= dc->bb_overrides.dram_clock_change_latency_ns
3082 			&& dc->bb_overrides.dram_clock_change_latency_ns) {
3083 		dc->dml2_options.bbox_overrides.dram_clock_change_latency_us =
3084 		dcn3_2_soc.dram_clock_change_latency_us =
3085 			dc->bb_overrides.dram_clock_change_latency_ns / 1000.0;
3086 	}
3087 
3088 	if ((int)(dcn3_2_soc.fclk_change_latency_us * 1000)
3089 			!= dc->bb_overrides.fclk_clock_change_latency_ns
3090 			&& dc->bb_overrides.fclk_clock_change_latency_ns) {
3091 		dc->dml2_options.bbox_overrides.fclk_change_latency_us =
3092 		dcn3_2_soc.fclk_change_latency_us =
3093 			dc->bb_overrides.fclk_clock_change_latency_ns / 1000;
3094 	}
3095 
3096 	if ((int)(dcn3_2_soc.dummy_pstate_latency_us * 1000)
3097 			!= dc->bb_overrides.dummy_clock_change_latency_ns
3098 			&& dc->bb_overrides.dummy_clock_change_latency_ns) {
3099 		dcn3_2_soc.dummy_pstate_latency_us =
3100 			dc->bb_overrides.dummy_clock_change_latency_ns / 1000.0;
3101 	}
3102 
3103 	/* Override from VBIOS if VBIOS bb_info available */
3104 	if (dc->ctx->dc_bios->funcs->get_soc_bb_info) {
3105 		struct bp_soc_bb_info bb_info = {0};
3106 
3107 		if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) {
3108 			if (bb_info.dram_clock_change_latency_100ns > 0)
3109 				dc->dml2_options.bbox_overrides.dram_clock_change_latency_us =
3110 				dcn3_2_soc.dram_clock_change_latency_us =
3111 					bb_info.dram_clock_change_latency_100ns * 10;
3112 
3113 			if (bb_info.dram_sr_enter_exit_latency_100ns > 0)
3114 				dc->dml2_options.bbox_overrides.sr_enter_plus_exit_latency_us =
3115 				dcn3_2_soc.sr_enter_plus_exit_time_us =
3116 					bb_info.dram_sr_enter_exit_latency_100ns * 10;
3117 
3118 			if (bb_info.dram_sr_exit_latency_100ns > 0)
3119 				dc->dml2_options.bbox_overrides.sr_exit_latency_us =
3120 				dcn3_2_soc.sr_exit_time_us =
3121 					bb_info.dram_sr_exit_latency_100ns * 10;
3122 		}
3123 	}
3124 
3125 	/* Override from VBIOS for num_chan */
3126 	if (dc->ctx->dc_bios->vram_info.num_chans) {
3127 		dc->dml2_options.bbox_overrides.dram_num_chan =
3128 		dcn3_2_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans;
3129 		dcn3_2_soc.mall_allocated_for_dcn_mbytes = (double)(dcn32_calc_num_avail_chans_for_mall(dc,
3130 			dc->ctx->dc_bios->vram_info.num_chans) * dc->caps.mall_size_per_mem_channel);
3131 	}
3132 
3133 	if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes)
3134 		dc->dml2_options.bbox_overrides.dram_chanel_width_bytes =
3135 		dcn3_2_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes;
3136 
3137 	/* DML DSC delay factor workaround */
3138 	dcn3_2_ip.dsc_delay_factor_wa = dc->debug.dsc_delay_factor_wa_x1000 / 1000.0;
3139 
3140 	dcn3_2_ip.min_prefetch_in_strobe_us = dc->debug.min_prefetch_in_strobe_ns / 1000.0;
3141 
3142 	/* Override dispclk_dppclk_vco_speed_mhz from Clk Mgr */
3143 	dcn3_2_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
3144 	dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
3145 	dc->dml2_options.bbox_overrides.disp_pll_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
3146 	dc->dml2_options.bbox_overrides.xtalclk_mhz = dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency / 1000.0;
3147 	dc->dml2_options.bbox_overrides.dchub_refclk_mhz = dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000.0;
3148 	dc->dml2_options.bbox_overrides.dprefclk_mhz = dc->clk_mgr->dprefclk_khz / 1000.0;
3149 
3150 	/* Overrides Clock levelsfrom CLK Mgr table entries as reported by PM FW */
3151 	if (bw_params->clk_table.entries[0].memclk_mhz) {
3152 		if (dc->debug.use_legacy_soc_bb_mechanism) {
3153 			unsigned int i = 0, j = 0, num_states = 0;
3154 
3155 			unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0};
3156 			unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0};
3157 			unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0};
3158 			unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0};
3159 			unsigned int min_dcfclk = UINT_MAX;
3160 			/* Set 199 as first value in STA target array to have a minimum DCFCLK value.
3161 			 * For DCN32 we set min to 199 so minimum FCLK DPM0 (300Mhz can be achieved) */
3162 			unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};
3163 			unsigned int num_dcfclk_sta_targets = 4, num_uclk_states = 0;
3164 			unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, max_phyclk_mhz = 0;
3165 
3166 			for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
3167 				if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
3168 					max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
3169 				if (bw_params->clk_table.entries[i].dcfclk_mhz != 0 &&
3170 						bw_params->clk_table.entries[i].dcfclk_mhz < min_dcfclk)
3171 					min_dcfclk = bw_params->clk_table.entries[i].dcfclk_mhz;
3172 				if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
3173 					max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
3174 				if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
3175 					max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
3176 				if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
3177 					max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
3178 			}
3179 			if (min_dcfclk > dcfclk_sta_targets[0])
3180 				dcfclk_sta_targets[0] = min_dcfclk;
3181 			if (!max_dcfclk_mhz)
3182 				max_dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
3183 			if (!max_dispclk_mhz)
3184 				max_dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz;
3185 			if (!max_dppclk_mhz)
3186 				max_dppclk_mhz = dcn3_2_soc.clock_limits[0].dppclk_mhz;
3187 			if (!max_phyclk_mhz)
3188 				max_phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
3189 
3190 			if (max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
3191 				// If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array
3192 				dcfclk_sta_targets[num_dcfclk_sta_targets] = max_dcfclk_mhz;
3193 				num_dcfclk_sta_targets++;
3194 			} else if (max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
3195 				// If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates
3196 				for (i = 0; i < num_dcfclk_sta_targets; i++) {
3197 					if (dcfclk_sta_targets[i] > max_dcfclk_mhz) {
3198 						dcfclk_sta_targets[i] = max_dcfclk_mhz;
3199 						break;
3200 					}
3201 				}
3202 				// Update size of array since we "removed" duplicates
3203 				num_dcfclk_sta_targets = i + 1;
3204 			}
3205 
3206 			num_uclk_states = bw_params->clk_table.num_entries;
3207 
3208 			// Calculate optimal dcfclk for each uclk
3209 			for (i = 0; i < num_uclk_states; i++) {
3210 				dcn32_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16,
3211 						&optimal_dcfclk_for_uclk[i], NULL);
3212 				if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) {
3213 					optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz;
3214 				}
3215 			}
3216 
3217 			// Calculate optimal uclk for each dcfclk sta target
3218 			for (i = 0; i < num_dcfclk_sta_targets; i++) {
3219 				for (j = 0; j < num_uclk_states; j++) {
3220 					if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) {
3221 						optimal_uclk_for_dcfclk_sta_targets[i] =
3222 								bw_params->clk_table.entries[j].memclk_mhz * 16;
3223 						break;
3224 					}
3225 				}
3226 			}
3227 
3228 			i = 0;
3229 			j = 0;
3230 			// create the final dcfclk and uclk table
3231 			while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) {
3232 				if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) {
3233 					dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
3234 					dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
3235 				} else {
3236 					if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
3237 						dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
3238 						dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
3239 					} else {
3240 						j = num_uclk_states;
3241 					}
3242 				}
3243 			}
3244 
3245 			while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) {
3246 				dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
3247 				dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
3248 			}
3249 
3250 			while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES &&
3251 					optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
3252 				dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
3253 				dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
3254 			}
3255 
3256 			/* bw_params->clk_table.entries[MAX_NUM_DPM_LVL].
3257 			 * MAX_NUM_DPM_LVL is 8.
3258 			 * dcn3_02_soc.clock_limits[DC__VOLTAGE_STATES].
3259 			 * DC__VOLTAGE_STATES is 40.
3260 			 */
3261 			if (num_states > MAX_NUM_DPM_LVL) {
3262 				ASSERT(0);
3263 				return;
3264 			}
3265 
3266 			dcn3_2_soc.num_states = num_states;
3267 			for (i = 0; i < dcn3_2_soc.num_states; i++) {
3268 				dcn3_2_soc.clock_limits[i].state = i;
3269 				dcn3_2_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i];
3270 				dcn3_2_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i];
3271 
3272 				/* Fill all states with max values of all these clocks */
3273 				dcn3_2_soc.clock_limits[i].dispclk_mhz = max_dispclk_mhz;
3274 				dcn3_2_soc.clock_limits[i].dppclk_mhz  = max_dppclk_mhz;
3275 				dcn3_2_soc.clock_limits[i].phyclk_mhz  = max_phyclk_mhz;
3276 				dcn3_2_soc.clock_limits[i].dscclk_mhz  = max_dispclk_mhz / 3;
3277 
3278 				/* Populate from bw_params for DTBCLK, SOCCLK */
3279 				if (i > 0) {
3280 					if (!bw_params->clk_table.entries[i].dtbclk_mhz) {
3281 						dcn3_2_soc.clock_limits[i].dtbclk_mhz  = dcn3_2_soc.clock_limits[i-1].dtbclk_mhz;
3282 					} else {
3283 						dcn3_2_soc.clock_limits[i].dtbclk_mhz  = bw_params->clk_table.entries[i].dtbclk_mhz;
3284 					}
3285 				} else if (bw_params->clk_table.entries[i].dtbclk_mhz) {
3286 					dcn3_2_soc.clock_limits[i].dtbclk_mhz  = bw_params->clk_table.entries[i].dtbclk_mhz;
3287 				}
3288 
3289 				if (!bw_params->clk_table.entries[i].socclk_mhz && i > 0)
3290 					dcn3_2_soc.clock_limits[i].socclk_mhz = dcn3_2_soc.clock_limits[i-1].socclk_mhz;
3291 				else
3292 					dcn3_2_soc.clock_limits[i].socclk_mhz = bw_params->clk_table.entries[i].socclk_mhz;
3293 
3294 				if (!dram_speed_mts[i] && i > 0)
3295 					dcn3_2_soc.clock_limits[i].dram_speed_mts = dcn3_2_soc.clock_limits[i-1].dram_speed_mts;
3296 				else
3297 					dcn3_2_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i];
3298 
3299 				/* These clocks cannot come from bw_params, always fill from dcn3_2_soc[0] */
3300 				/* PHYCLK_D18, PHYCLK_D32 */
3301 				dcn3_2_soc.clock_limits[i].phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
3302 				dcn3_2_soc.clock_limits[i].phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
3303 			}
3304 		} else {
3305 			build_synthetic_soc_states(dc->debug.disable_dc_mode_overwrite, bw_params,
3306 					dcn3_2_soc.clock_limits, &dcn3_2_soc.num_states);
3307 		}
3308 
3309 		/* Re-init DML with updated bb */
3310 		dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
3311 		if (dc->current_state)
3312 			dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
3313 	}
3314 
3315 	if (dc->clk_mgr->bw_params->clk_table.num_entries > 1) {
3316 		unsigned int i = 0;
3317 
3318 		dc->dml2_options.bbox_overrides.clks_table.num_states = dc->clk_mgr->bw_params->clk_table.num_entries;
3319 
3320 		dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dcfclk_levels =
3321 			dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dcfclk_levels;
3322 
3323 		dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_fclk_levels =
3324 			dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_fclk_levels;
3325 
3326 		dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_memclk_levels =
3327 			dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels;
3328 
3329 		dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_socclk_levels =
3330 			dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_socclk_levels;
3331 
3332 		dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dtbclk_levels =
3333 			dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dtbclk_levels;
3334 
3335 		dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dispclk_levels =
3336 			dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dispclk_levels;
3337 
3338 		dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dppclk_levels =
3339 			dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dppclk_levels;
3340 
3341 		for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dcfclk_levels; i++) {
3342 			if (dc->clk_mgr->bw_params->clk_table.entries[i].dcfclk_mhz)
3343 				dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dcfclk_mhz =
3344 					dc->clk_mgr->bw_params->clk_table.entries[i].dcfclk_mhz;
3345 		}
3346 
3347 		for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_fclk_levels; i++) {
3348 			if (dc->clk_mgr->bw_params->clk_table.entries[i].fclk_mhz)
3349 				dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].fclk_mhz =
3350 					dc->clk_mgr->bw_params->clk_table.entries[i].fclk_mhz;
3351 		}
3352 
3353 		for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels; i++) {
3354 			if (dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz)
3355 				dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].memclk_mhz =
3356 					dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz;
3357 		}
3358 
3359 		for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_socclk_levels; i++) {
3360 			if (dc->clk_mgr->bw_params->clk_table.entries[i].socclk_mhz)
3361 				dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].socclk_mhz =
3362 					dc->clk_mgr->bw_params->clk_table.entries[i].socclk_mhz;
3363 		}
3364 
3365 		for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dtbclk_levels; i++) {
3366 			if (dc->clk_mgr->bw_params->clk_table.entries[i].dtbclk_mhz)
3367 				dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dtbclk_mhz =
3368 					dc->clk_mgr->bw_params->clk_table.entries[i].dtbclk_mhz;
3369 		}
3370 
3371 		for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dispclk_levels; i++) {
3372 			if (dc->clk_mgr->bw_params->clk_table.entries[i].dispclk_mhz) {
3373 				dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dispclk_mhz =
3374 					dc->clk_mgr->bw_params->clk_table.entries[i].dispclk_mhz;
3375 				dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dppclk_mhz =
3376 					dc->clk_mgr->bw_params->clk_table.entries[i].dispclk_mhz;
3377 			}
3378 		}
3379 	}
3380 }
3381 
3382 void dcn32_zero_pipe_dcc_fraction(display_e2e_pipe_params_st *pipes,
3383 				  int pipe_cnt)
3384 {
3385 	dc_assert_fp_enabled();
3386 
3387 	pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_luma = 0;
3388 	pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_chroma = 0;
3389 }
3390 
3391 bool dcn32_allow_subvp_with_active_margin(struct pipe_ctx *pipe)
3392 {
3393 	bool allow = false;
3394 	uint32_t refresh_rate = 0;
3395 	uint32_t min_refresh = subvp_active_margin_list.min_refresh;
3396 	uint32_t max_refresh = subvp_active_margin_list.max_refresh;
3397 	uint32_t i;
3398 
3399 	for (i = 0; i < SUBVP_ACTIVE_MARGIN_LIST_LEN; i++) {
3400 		uint32_t width = subvp_active_margin_list.res[i].width;
3401 		uint32_t height = subvp_active_margin_list.res[i].height;
3402 
3403 		refresh_rate = (pipe->stream->timing.pix_clk_100hz * (uint64_t)100 +
3404 			pipe->stream->timing.v_total * pipe->stream->timing.h_total - (uint64_t)1);
3405 		refresh_rate = div_u64(refresh_rate, pipe->stream->timing.v_total);
3406 		refresh_rate = div_u64(refresh_rate, pipe->stream->timing.h_total);
3407 
3408 		if (refresh_rate >= min_refresh && refresh_rate <= max_refresh &&
3409 				dcn32_check_native_scaling_for_res(pipe, width, height)) {
3410 			allow = true;
3411 			break;
3412 		}
3413 	}
3414 	return allow;
3415 }
3416 
3417 /**
3418  * dcn32_allow_subvp_high_refresh_rate: Determine if the high refresh rate config will allow subvp
3419  *
3420  * @dc: Current DC state
3421  * @context: New DC state to be programmed
3422  * @pipe: Pipe to be considered for use in subvp
3423  *
3424  * On high refresh rate display configs, we will allow subvp under the following conditions:
3425  * 1. Resolution is 3840x2160, 3440x1440, or 2560x1440
3426  * 2. Refresh rate is between 120hz - 165hz
3427  * 3. No scaling
3428  * 4. Freesync is inactive
3429  * 5. For single display cases, freesync must be disabled
3430  *
3431  * Return: True if pipe can be used for subvp, false otherwise
3432  */
3433 bool dcn32_allow_subvp_high_refresh_rate(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe)
3434 {
3435 	bool allow = false;
3436 	uint32_t refresh_rate = 0;
3437 	uint32_t subvp_min_refresh = subvp_high_refresh_list.min_refresh;
3438 	uint32_t subvp_max_refresh = subvp_high_refresh_list.max_refresh;
3439 	uint32_t min_refresh = subvp_max_refresh;
3440 	uint32_t i;
3441 
3442 	/* Only allow SubVP on high refresh displays if all connected displays
3443 	 * are considered "high refresh" (i.e. >= 120hz). We do not want to
3444 	 * allow combinations such as 120hz (SubVP) + 60hz (SubVP).
3445 	 */
3446 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3447 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
3448 
3449 		if (!pipe_ctx->stream)
3450 			continue;
3451 		refresh_rate = (pipe_ctx->stream->timing.pix_clk_100hz * 100 +
3452 				pipe_ctx->stream->timing.v_total * pipe_ctx->stream->timing.h_total - 1)
3453 						/ (double)(pipe_ctx->stream->timing.v_total * pipe_ctx->stream->timing.h_total);
3454 
3455 		if (refresh_rate < min_refresh)
3456 			min_refresh = refresh_rate;
3457 	}
3458 
3459 	if (!dc->debug.disable_subvp_high_refresh && min_refresh >= subvp_min_refresh && pipe->stream &&
3460 			pipe->plane_state && !(pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed)) {
3461 		refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
3462 						pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
3463 						/ (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
3464 		if (refresh_rate >= subvp_min_refresh && refresh_rate <= subvp_max_refresh) {
3465 			for (i = 0; i < SUBVP_HIGH_REFRESH_LIST_LEN; i++) {
3466 				uint32_t width = subvp_high_refresh_list.res[i].width;
3467 				uint32_t height = subvp_high_refresh_list.res[i].height;
3468 
3469 				if (dcn32_check_native_scaling_for_res(pipe, width, height)) {
3470 					if ((context->stream_count == 1 && !pipe->stream->allow_freesync) || context->stream_count > 1) {
3471 						allow = true;
3472 						break;
3473 					}
3474 				}
3475 			}
3476 		}
3477 	}
3478 	return allow;
3479 }
3480 
3481 /**
3482  * dcn32_determine_max_vratio_prefetch: Determine max Vratio for prefetch by driver policy
3483  *
3484  * @dc: Current DC state
3485  * @context: New DC state to be programmed
3486  *
3487  * Return: Max vratio for prefetch
3488  */
3489 double dcn32_determine_max_vratio_prefetch(struct dc *dc, struct dc_state *context)
3490 {
3491 	double max_vratio_pre = __DML_MAX_BW_RATIO_PRE__; // Default value is 4
3492 	int i;
3493 
3494 	/* For single display MPO configs, allow the max vratio to be 8
3495 	 * if any plane is YUV420 format
3496 	 */
3497 	if (context->stream_count == 1 && context->stream_status[0].plane_count > 1) {
3498 		for (i = 0; i < context->stream_status[0].plane_count; i++) {
3499 			if (context->stream_status[0].plane_states[i]->format == SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr ||
3500 					context->stream_status[0].plane_states[i]->format == SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb) {
3501 				max_vratio_pre = __DML_MAX_VRATIO_PRE__;
3502 			}
3503 		}
3504 	}
3505 	return max_vratio_pre;
3506 }
3507 
3508 /**
3509  * dcn32_assign_fpo_vactive_candidate - Assign the FPO stream candidate for FPO + VActive case
3510  *
3511  * This function chooses the FPO candidate stream for FPO + VActive cases (2 stream config).
3512  * For FPO + VAtive cases, the assumption is that one display has ActiveMargin > 0, and the
3513  * other display has ActiveMargin <= 0. This function will choose the pipe/stream that has
3514  * ActiveMargin <= 0 to be the FPO stream candidate if found.
3515  *
3516  *
3517  * @dc: current dc state
3518  * @context: new dc state
3519  * @fpo_candidate_stream: pointer to FPO stream candidate if one is found
3520  *
3521  * Return: void
3522  */
3523 void dcn32_assign_fpo_vactive_candidate(struct dc *dc, const struct dc_state *context, struct dc_stream_state **fpo_candidate_stream)
3524 {
3525 	unsigned int i, pipe_idx;
3526 	const struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
3527 
3528 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
3529 		const struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3530 
3531 		/* In DCN32/321, FPO uses per-pipe P-State force.
3532 		 * If there's no planes, HUBP is power gated and
3533 		 * therefore programming UCLK_PSTATE_FORCE does
3534 		 * nothing (P-State will always be asserted naturally
3535 		 * on a pipe that has HUBP power gated. Therefore we
3536 		 * only want to enable FPO if the FPO pipe has both
3537 		 * a stream and a plane.
3538 		 */
3539 		if (!pipe->stream || !pipe->plane_state)
3540 			continue;
3541 
3542 		if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0) {
3543 			*fpo_candidate_stream = pipe->stream;
3544 			break;
3545 		}
3546 		pipe_idx++;
3547 	}
3548 }
3549 
3550 /**
3551  * dcn32_find_vactive_pipe - Determines if the config has a pipe that can switch in VACTIVE
3552  *
3553  * @dc: current dc state
3554  * @context: new dc state
3555  * @fpo_candidate_stream: candidate stream to be chosen for FPO
3556  * @vactive_margin_req_us: The vactive marign required for a vactive pipe to be considered "found"
3557  *
3558  * Return: True if VACTIVE display is found, false otherwise
3559  */
3560 bool dcn32_find_vactive_pipe(struct dc *dc, const struct dc_state *context, struct dc_stream_state *fpo_candidate_stream, uint32_t vactive_margin_req_us)
3561 {
3562 	unsigned int i, pipe_idx;
3563 	const struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
3564 	bool vactive_found = true;
3565 	unsigned int blank_us = 0;
3566 
3567 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
3568 		const struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3569 
3570 		if (!pipe->stream)
3571 			continue;
3572 
3573 		/* Don't need to check for vactive margin on the FPO candidate stream */
3574 		if (fpo_candidate_stream && pipe->stream == fpo_candidate_stream) {
3575 			pipe_idx++;
3576 			continue;
3577 		}
3578 
3579 		/* Every plane (apart from the ones driven by the FPO pipes) needs to have active margin
3580 		 * in order for us to have found a valid "vactive" config for FPO + Vactive
3581 		 */
3582 		blank_us = ((pipe->stream->timing.v_total - pipe->stream->timing.v_addressable) * pipe->stream->timing.h_total /
3583 				(double)(pipe->stream->timing.pix_clk_100hz * 100)) * 1000000;
3584 		if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] < vactive_margin_req_us ||
3585 				pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed || blank_us >= dc->debug.fpo_vactive_max_blank_us) {
3586 			vactive_found = false;
3587 			break;
3588 		}
3589 		pipe_idx++;
3590 	}
3591 	return vactive_found;
3592 }
3593 
3594 void dcn32_set_clock_limits(const struct _vcs_dpi_soc_bounding_box_st *soc_bb)
3595 {
3596 	dc_assert_fp_enabled();
3597 	dcn3_2_soc.clock_limits[0].dcfclk_mhz = 1200.0;
3598 }
3599 
3600 void dcn32_override_min_req_memclk(struct dc *dc, struct dc_state *context)
3601 {
3602 	// WA: restrict FPO and SubVP to use first non-strobe mode (DCN32 BW issue)
3603 	if ((context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching || dcn32_subvp_in_use(dc, context)) &&
3604 			dc->dml.soc.num_chans <= 8) {
3605 		int num_mclk_levels = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels;
3606 
3607 		if (context->bw_ctx.dml.vba.DRAMSpeed <= dc->clk_mgr->bw_params->clk_table.entries[0].memclk_mhz * 16 &&
3608 				num_mclk_levels > 1) {
3609 			context->bw_ctx.dml.vba.DRAMSpeed = dc->clk_mgr->bw_params->clk_table.entries[1].memclk_mhz * 16;
3610 			context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16;
3611 		}
3612 	}
3613 }
3614