1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright 2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 * 23 * Authors: AMD 24 * 25 */ 26 #include "dcn32_fpu.h" 27 #include "dcn32/dcn32_resource.h" 28 #include "dcn20/dcn20_resource.h" 29 #include "display_mode_vba_util_32.h" 30 #include "dml/dcn32/display_mode_vba_32.h" 31 // We need this includes for WATERMARKS_* defines 32 #include "clk_mgr/dcn32/dcn32_smu13_driver_if.h" 33 #include "dcn30/dcn30_resource.h" 34 #include "link.h" 35 #include "dc_state_priv.h" 36 37 #define DC_LOGGER_INIT(logger) 38 39 static const struct subvp_high_refresh_list subvp_high_refresh_list = { 40 .min_refresh = 120, 41 .max_refresh = 175, 42 .res = { 43 {.width = 3840, .height = 2160, }, 44 {.width = 3440, .height = 1440, }, 45 {.width = 2560, .height = 1440, }, 46 {.width = 1920, .height = 1080, }}, 47 }; 48 49 static const struct subvp_active_margin_list subvp_active_margin_list = { 50 .min_refresh = 55, 51 .max_refresh = 65, 52 .res = { 53 {.width = 2560, .height = 1440, }, 54 {.width = 1920, .height = 1080, }}, 55 }; 56 57 struct _vcs_dpi_ip_params_st dcn3_2_ip = { 58 .gpuvm_enable = 0, 59 .gpuvm_max_page_table_levels = 4, 60 .hostvm_enable = 0, 61 .rob_buffer_size_kbytes = 128, 62 .det_buffer_size_kbytes = DCN3_2_DEFAULT_DET_SIZE, 63 .config_return_buffer_size_in_kbytes = 1280, 64 .compressed_buffer_segment_size_in_kbytes = 64, 65 .meta_fifo_size_in_kentries = 22, 66 .zero_size_buffer_entries = 512, 67 .compbuf_reserved_space_64b = 256, 68 .compbuf_reserved_space_zs = 64, 69 .dpp_output_buffer_pixels = 2560, 70 .opp_output_buffer_lines = 1, 71 .pixel_chunk_size_kbytes = 8, 72 .alpha_pixel_chunk_size_kbytes = 4, 73 .min_pixel_chunk_size_bytes = 1024, 74 .dcc_meta_buffer_size_bytes = 6272, 75 .meta_chunk_size_kbytes = 2, 76 .min_meta_chunk_size_bytes = 256, 77 .writeback_chunk_size_kbytes = 8, 78 .ptoi_supported = false, 79 .num_dsc = 4, 80 .maximum_dsc_bits_per_component = 12, 81 .maximum_pixels_per_line_per_dsc_unit = 6016, 82 .dsc422_native_support = true, 83 .is_line_buffer_bpp_fixed = true, 84 .line_buffer_fixed_bpp = 57, 85 .line_buffer_size_bits = 1171920, 86 .max_line_buffer_lines = 32, 87 .writeback_interface_buffer_size_kbytes = 90, 88 .max_num_dpp = 4, 89 .max_num_otg = 4, 90 .max_num_hdmi_frl_outputs = 1, 91 .max_num_wb = 1, 92 .max_dchub_pscl_bw_pix_per_clk = 4, 93 .max_pscl_lb_bw_pix_per_clk = 2, 94 .max_lb_vscl_bw_pix_per_clk = 4, 95 .max_vscl_hscl_bw_pix_per_clk = 4, 96 .max_hscl_ratio = 6, 97 .max_vscl_ratio = 6, 98 .max_hscl_taps = 8, 99 .max_vscl_taps = 8, 100 .dpte_buffer_size_in_pte_reqs_luma = 64, 101 .dpte_buffer_size_in_pte_reqs_chroma = 34, 102 .dispclk_ramp_margin_percent = 1, 103 .max_inter_dcn_tile_repeaters = 8, 104 .cursor_buffer_size = 16, 105 .cursor_chunk_size = 2, 106 .writeback_line_buffer_buffer_size = 0, 107 .writeback_min_hscl_ratio = 1, 108 .writeback_min_vscl_ratio = 1, 109 .writeback_max_hscl_ratio = 1, 110 .writeback_max_vscl_ratio = 1, 111 .writeback_max_hscl_taps = 1, 112 .writeback_max_vscl_taps = 1, 113 .dppclk_delay_subtotal = 47, 114 .dppclk_delay_scl = 50, 115 .dppclk_delay_scl_lb_only = 16, 116 .dppclk_delay_cnvc_formatter = 28, 117 .dppclk_delay_cnvc_cursor = 6, 118 .dispclk_delay_subtotal = 125, 119 .dynamic_metadata_vm_enabled = false, 120 .odm_combine_4to1_supported = false, 121 .dcc_supported = true, 122 .max_num_dp2p0_outputs = 2, 123 .max_num_dp2p0_streams = 4, 124 }; 125 126 struct _vcs_dpi_soc_bounding_box_st dcn3_2_soc = { 127 .clock_limits = { 128 { 129 .state = 0, 130 .dcfclk_mhz = 1564.0, 131 .fabricclk_mhz = 2500.0, 132 .dispclk_mhz = 2150.0, 133 .dppclk_mhz = 2150.0, 134 .phyclk_mhz = 810.0, 135 .phyclk_d18_mhz = 667.0, 136 .phyclk_d32_mhz = 625.0, 137 .socclk_mhz = 1200.0, 138 .dscclk_mhz = 716.667, 139 .dram_speed_mts = 18000.0, 140 .dtbclk_mhz = 1564.0, 141 }, 142 }, 143 .num_states = 1, 144 .sr_exit_time_us = 42.97, 145 .sr_enter_plus_exit_time_us = 49.94, 146 .sr_exit_z8_time_us = 285.0, 147 .sr_enter_plus_exit_z8_time_us = 320, 148 .writeback_latency_us = 12.0, 149 .round_trip_ping_latency_dcfclk_cycles = 263, 150 .urgent_latency_pixel_data_only_us = 4.0, 151 .urgent_latency_pixel_mixed_with_vm_data_us = 4.0, 152 .urgent_latency_vm_data_only_us = 4.0, 153 .fclk_change_latency_us = 25, 154 .usr_retraining_latency_us = 2, 155 .smn_latency_us = 2, 156 .mall_allocated_for_dcn_mbytes = 64, 157 .urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096, 158 .urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096, 159 .urgent_out_of_order_return_per_channel_vm_only_bytes = 4096, 160 .pct_ideal_sdp_bw_after_urgent = 90.0, 161 .pct_ideal_fabric_bw_after_urgent = 67.0, 162 .pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 20.0, 163 .pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0, 164 .pct_ideal_dram_sdp_bw_after_urgent_vm_only = 30.0, 165 .pct_ideal_dram_bw_after_urgent_strobe = 67.0, 166 .max_avg_sdp_bw_use_normal_percent = 80.0, 167 .max_avg_fabric_bw_use_normal_percent = 60.0, 168 .max_avg_dram_bw_use_normal_strobe_percent = 50.0, 169 .max_avg_dram_bw_use_normal_percent = 15.0, 170 .num_chans = 24, 171 .dram_channel_width_bytes = 2, 172 .fabric_datapath_to_dcn_data_return_bytes = 64, 173 .return_bus_width_bytes = 64, 174 .downspread_percent = 0.38, 175 .dcn_downspread_percent = 0.5, 176 .dram_clock_change_latency_us = 400, 177 .dispclk_dppclk_vco_speed_mhz = 4300.0, 178 .do_urgent_latency_adjustment = true, 179 .urgent_latency_adjustment_fabric_clock_component_us = 1.0, 180 .urgent_latency_adjustment_fabric_clock_reference_mhz = 3000, 181 }; 182 183 static bool dcn32_apply_merge_split_flags_helper(struct dc *dc, struct dc_state *context, 184 bool *repopulate_pipes, int *split, bool *merge); 185 186 void dcn32_build_wm_range_table_fpu(struct clk_mgr_internal *clk_mgr) 187 { 188 /* defaults */ 189 double pstate_latency_us = clk_mgr->base.ctx->dc->dml.soc.dram_clock_change_latency_us; 190 double fclk_change_latency_us = clk_mgr->base.ctx->dc->dml.soc.fclk_change_latency_us; 191 double sr_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_exit_time_us; 192 double sr_enter_plus_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_enter_plus_exit_time_us; 193 /* For min clocks use as reported by PM FW and report those as min */ 194 uint16_t min_uclk_mhz = clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz; 195 uint16_t min_dcfclk_mhz = clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz; 196 uint16_t setb_min_uclk_mhz = min_uclk_mhz; 197 uint16_t dcfclk_mhz_for_the_second_state = clk_mgr->base.ctx->dc->dml.soc.clock_limits[2].dcfclk_mhz; 198 199 dc_assert_fp_enabled(); 200 201 /* For Set B ranges use min clocks state 2 when available, and report those to PM FW */ 202 if (dcfclk_mhz_for_the_second_state) 203 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = dcfclk_mhz_for_the_second_state; 204 else 205 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz; 206 207 if (clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz) 208 setb_min_uclk_mhz = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz; 209 210 /* Set A - Normal - default values */ 211 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].valid = true; 212 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us = pstate_latency_us; 213 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us = fclk_change_latency_us; 214 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us = sr_exit_time_us; 215 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us; 216 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE; 217 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz; 218 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_dcfclk = 0xFFFF; 219 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_uclk = min_uclk_mhz; 220 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_uclk = 0xFFFF; 221 222 /* Set B - Performance - higher clocks, using DPM[2] DCFCLK and UCLK */ 223 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].valid = true; 224 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us = pstate_latency_us; 225 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us = fclk_change_latency_us; 226 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us = sr_exit_time_us; 227 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us; 228 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE; 229 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_dcfclk = 0xFFFF; 230 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_uclk = setb_min_uclk_mhz; 231 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_uclk = 0xFFFF; 232 233 /* Set C - Dummy P-State - P-State latency set to "dummy p-state" value */ 234 /* 'DalDummyClockChangeLatencyNs' registry key option set to 0x7FFFFFFF can be used to disable Set C for dummy p-state */ 235 if (clk_mgr->base.ctx->dc->bb_overrides.dummy_clock_change_latency_ns != 0x7FFFFFFF) { 236 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].valid = true; 237 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.pstate_latency_us = 50; 238 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us = fclk_change_latency_us; 239 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us = sr_exit_time_us; 240 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us; 241 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.wm_type = WATERMARKS_DUMMY_PSTATE; 242 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz; 243 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_dcfclk = 0xFFFF; 244 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_uclk = min_uclk_mhz; 245 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_uclk = 0xFFFF; 246 clk_mgr->base.bw_params->dummy_pstate_table[0].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz * 16; 247 clk_mgr->base.bw_params->dummy_pstate_table[0].dummy_pstate_latency_us = 50; 248 clk_mgr->base.bw_params->dummy_pstate_table[1].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[1].memclk_mhz * 16; 249 clk_mgr->base.bw_params->dummy_pstate_table[1].dummy_pstate_latency_us = 9; 250 clk_mgr->base.bw_params->dummy_pstate_table[2].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz * 16; 251 clk_mgr->base.bw_params->dummy_pstate_table[2].dummy_pstate_latency_us = 8; 252 clk_mgr->base.bw_params->dummy_pstate_table[3].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[3].memclk_mhz * 16; 253 clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us = 5; 254 } 255 /* Set D - MALL - SR enter and exit time specific to MALL, TBD after bringup or later phase for now use DRAM values / 2 */ 256 /* For MALL DRAM clock change latency is N/A, for watermak calculations use lowest value dummy P state latency */ 257 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].valid = true; 258 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us = clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us; 259 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us = fclk_change_latency_us; 260 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us = sr_exit_time_us / 2; // TBD 261 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us / 2; // TBD 262 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.wm_type = WATERMARKS_MALL; 263 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz; 264 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_dcfclk = 0xFFFF; 265 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_uclk = min_uclk_mhz; 266 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_uclk = 0xFFFF; 267 } 268 269 /* 270 * Finds dummy_latency_index when MCLK switching using firmware based 271 * vblank stretch is enabled. This function will iterate through the 272 * table of dummy pstate latencies until the lowest value that allows 273 * dm_allow_self_refresh_and_mclk_switch to happen is found 274 */ 275 int dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(struct dc *dc, 276 struct dc_state *context, 277 display_e2e_pipe_params_st *pipes, 278 int pipe_cnt, 279 int vlevel) 280 { 281 const int max_latency_table_entries = 4; 282 struct vba_vars_st *vba = &context->bw_ctx.dml.vba; 283 int dummy_latency_index = 0; 284 enum clock_change_support temp_clock_change_support = vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb]; 285 286 dc_assert_fp_enabled(); 287 288 while (dummy_latency_index < max_latency_table_entries) { 289 if (temp_clock_change_support != dm_dram_clock_change_unsupported) 290 vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = temp_clock_change_support; 291 context->bw_ctx.dml.soc.dram_clock_change_latency_us = 292 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us; 293 dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false); 294 295 /* for subvp + DRR case, if subvp pipes are still present we support pstate */ 296 if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported && 297 dcn32_subvp_in_use(dc, context)) 298 vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = temp_clock_change_support; 299 300 if (vlevel < context->bw_ctx.dml.vba.soc.num_states && 301 vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported) 302 break; 303 304 dummy_latency_index++; 305 } 306 307 if (dummy_latency_index == max_latency_table_entries) { 308 ASSERT(dummy_latency_index != max_latency_table_entries); 309 /* If the execution gets here, it means dummy p_states are 310 * not possible. This should never happen and would mean 311 * something is severely wrong. 312 * Here we reset dummy_latency_index to 3, because it is 313 * better to have underflows than system crashes. 314 */ 315 dummy_latency_index = max_latency_table_entries - 1; 316 } 317 318 return dummy_latency_index; 319 } 320 321 /** 322 * dcn32_helper_populate_phantom_dlg_params - Get DLG params for phantom pipes 323 * and populate pipe_ctx with those params. 324 * @dc: [in] current dc state 325 * @context: [in] new dc state 326 * @pipes: [in] DML pipe params array 327 * @pipe_cnt: [in] DML pipe count 328 * 329 * This function must be called AFTER the phantom pipes are added to context 330 * and run through DML (so that the DLG params for the phantom pipes can be 331 * populated), and BEFORE we program the timing for the phantom pipes. 332 */ 333 void dcn32_helper_populate_phantom_dlg_params(struct dc *dc, 334 struct dc_state *context, 335 display_e2e_pipe_params_st *pipes, 336 int pipe_cnt) 337 { 338 uint32_t i, pipe_idx; 339 340 dc_assert_fp_enabled(); 341 342 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 343 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 344 345 if (!pipe->stream) 346 continue; 347 348 if (pipe->plane_state && dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) { 349 pipes[pipe_idx].pipe.dest.vstartup_start = 350 get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); 351 pipes[pipe_idx].pipe.dest.vupdate_offset = 352 get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); 353 pipes[pipe_idx].pipe.dest.vupdate_width = 354 get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); 355 pipes[pipe_idx].pipe.dest.vready_offset = 356 get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); 357 pipe->pipe_dlg_param = pipes[pipe_idx].pipe.dest; 358 } 359 pipe_idx++; 360 } 361 } 362 363 static float calculate_net_bw_in_kbytes_sec(struct _vcs_dpi_voltage_scaling_st *entry) 364 { 365 float memory_bw_kbytes_sec; 366 float fabric_bw_kbytes_sec; 367 float sdp_bw_kbytes_sec; 368 float limiting_bw_kbytes_sec; 369 370 memory_bw_kbytes_sec = entry->dram_speed_mts * 371 dcn3_2_soc.num_chans * 372 dcn3_2_soc.dram_channel_width_bytes * 373 ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100); 374 375 fabric_bw_kbytes_sec = entry->fabricclk_mhz * 376 dcn3_2_soc.return_bus_width_bytes * 377 ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100); 378 379 sdp_bw_kbytes_sec = entry->dcfclk_mhz * 380 dcn3_2_soc.return_bus_width_bytes * 381 ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100); 382 383 limiting_bw_kbytes_sec = memory_bw_kbytes_sec; 384 385 if (fabric_bw_kbytes_sec < limiting_bw_kbytes_sec) 386 limiting_bw_kbytes_sec = fabric_bw_kbytes_sec; 387 388 if (sdp_bw_kbytes_sec < limiting_bw_kbytes_sec) 389 limiting_bw_kbytes_sec = sdp_bw_kbytes_sec; 390 391 return limiting_bw_kbytes_sec; 392 } 393 394 static void get_optimal_ntuple(struct _vcs_dpi_voltage_scaling_st *entry) 395 { 396 if (entry->dcfclk_mhz > 0) { 397 float bw_on_sdp = entry->dcfclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100); 398 399 entry->fabricclk_mhz = bw_on_sdp / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100)); 400 entry->dram_speed_mts = bw_on_sdp / (dcn3_2_soc.num_chans * 401 dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100)); 402 } else if (entry->fabricclk_mhz > 0) { 403 float bw_on_fabric = entry->fabricclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100); 404 405 entry->dcfclk_mhz = bw_on_fabric / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100)); 406 entry->dram_speed_mts = bw_on_fabric / (dcn3_2_soc.num_chans * 407 dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100)); 408 } else if (entry->dram_speed_mts > 0) { 409 float bw_on_dram = entry->dram_speed_mts * dcn3_2_soc.num_chans * 410 dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100); 411 412 entry->fabricclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100)); 413 entry->dcfclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100)); 414 } 415 } 416 417 static void insert_entry_into_table_sorted(struct _vcs_dpi_voltage_scaling_st *table, 418 unsigned int *num_entries, 419 struct _vcs_dpi_voltage_scaling_st *entry) 420 { 421 int i = 0; 422 int index = 0; 423 424 dc_assert_fp_enabled(); 425 426 if (*num_entries == 0) { 427 table[0] = *entry; 428 (*num_entries)++; 429 } else { 430 while (entry->net_bw_in_kbytes_sec > table[index].net_bw_in_kbytes_sec) { 431 index++; 432 if (index >= *num_entries) 433 break; 434 } 435 436 for (i = *num_entries; i > index; i--) 437 table[i] = table[i - 1]; 438 439 table[index] = *entry; 440 (*num_entries)++; 441 } 442 } 443 444 /** 445 * dcn32_set_phantom_stream_timing - Set timing params for the phantom stream 446 * @dc: current dc state 447 * @context: new dc state 448 * @ref_pipe: Main pipe for the phantom stream 449 * @phantom_stream: target phantom stream state 450 * @pipes: DML pipe params 451 * @pipe_cnt: number of DML pipes 452 * @dc_pipe_idx: DC pipe index for the main pipe (i.e. ref_pipe) 453 * 454 * Set timing params of the phantom stream based on calculated output from DML. 455 * This function first gets the DML pipe index using the DC pipe index, then 456 * calls into DML (get_subviewport_lines_needed_in_mall) to get the number of 457 * lines required for SubVP MCLK switching and assigns to the phantom stream 458 * accordingly. 459 * 460 * - The number of SubVP lines calculated in DML does not take into account 461 * FW processing delays and required pstate allow width, so we must include 462 * that separately. 463 * 464 * - Set phantom backporch = vstartup of main pipe 465 */ 466 void dcn32_set_phantom_stream_timing(struct dc *dc, 467 struct dc_state *context, 468 struct pipe_ctx *ref_pipe, 469 struct dc_stream_state *phantom_stream, 470 display_e2e_pipe_params_st *pipes, 471 unsigned int pipe_cnt, 472 unsigned int dc_pipe_idx) 473 { 474 unsigned int i, pipe_idx; 475 struct pipe_ctx *pipe; 476 uint32_t phantom_vactive, phantom_bp, pstate_width_fw_delay_lines; 477 unsigned int num_dpp; 478 unsigned int vlevel = context->bw_ctx.dml.vba.VoltageLevel; 479 unsigned int dcfclk = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb]; 480 unsigned int socclk = context->bw_ctx.dml.vba.SOCCLKPerState[vlevel]; 481 struct vba_vars_st *vba = &context->bw_ctx.dml.vba; 482 struct dc_stream_state *main_stream = ref_pipe->stream; 483 484 dc_assert_fp_enabled(); 485 486 // Find DML pipe index (pipe_idx) using dc_pipe_idx 487 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 488 pipe = &context->res_ctx.pipe_ctx[i]; 489 490 if (!pipe->stream) 491 continue; 492 493 if (i == dc_pipe_idx) 494 break; 495 496 pipe_idx++; 497 } 498 499 // Calculate lines required for pstate allow width and FW processing delays 500 pstate_width_fw_delay_lines = ((double)(dc->caps.subvp_fw_processing_delay_us + 501 dc->caps.subvp_pstate_allow_width_us) / 1000000) * 502 (ref_pipe->stream->timing.pix_clk_100hz * 100) / 503 (double)ref_pipe->stream->timing.h_total; 504 505 // Update clks_cfg for calling into recalculate 506 pipes[0].clks_cfg.voltage = vlevel; 507 pipes[0].clks_cfg.dcfclk_mhz = dcfclk; 508 pipes[0].clks_cfg.socclk_mhz = socclk; 509 510 // DML calculation for MALL region doesn't take into account FW delay 511 // and required pstate allow width for multi-display cases 512 /* Add 16 lines margin to the MALL REGION because SUB_VP_START_LINE must be aligned 513 * to 2 swaths (i.e. 16 lines) 514 */ 515 phantom_vactive = get_subviewport_lines_needed_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx) + 516 pstate_width_fw_delay_lines + dc->caps.subvp_swath_height_margin_lines; 517 518 // W/A for DCC corruption with certain high resolution timings. 519 // Determing if pipesplit is used. If so, add meta_row_height to the phantom vactive. 520 num_dpp = vba->NoOfDPP[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]]; 521 phantom_vactive += num_dpp > 1 ? vba->meta_row_height[vba->pipe_plane[pipe_idx]] : 0; 522 523 /* dc->debug.subvp_extra_lines 0 by default*/ 524 phantom_vactive += dc->debug.subvp_extra_lines; 525 526 // For backporch of phantom pipe, use vstartup of the main pipe 527 phantom_bp = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); 528 529 phantom_stream->dst.y = 0; 530 phantom_stream->dst.height = phantom_vactive; 531 /* When scaling, DML provides the end to end required number of lines for MALL. 532 * dst.height is always correct for this case, but src.height is not which causes a 533 * delta between main and phantom pipe scaling outputs. Need to adjust src.height on 534 * phantom for this case. 535 */ 536 phantom_stream->src.y = 0; 537 phantom_stream->src.height = (double)phantom_vactive * (double)main_stream->src.height / (double)main_stream->dst.height; 538 539 phantom_stream->timing.v_addressable = phantom_vactive; 540 phantom_stream->timing.v_front_porch = 1; 541 phantom_stream->timing.v_total = phantom_stream->timing.v_addressable + 542 phantom_stream->timing.v_front_porch + 543 phantom_stream->timing.v_sync_width + 544 phantom_bp; 545 phantom_stream->timing.flags.DSC = 0; // Don't need DSC for phantom timing 546 } 547 548 /** 549 * dcn32_get_num_free_pipes - Calculate number of free pipes 550 * @dc: current dc state 551 * @context: new dc state 552 * 553 * This function assumes that a "used" pipe is a pipe that has 554 * both a stream and a plane assigned to it. 555 * 556 * Return: Number of free pipes available in the context 557 */ 558 static unsigned int dcn32_get_num_free_pipes(struct dc *dc, struct dc_state *context) 559 { 560 unsigned int i; 561 unsigned int free_pipes = 0; 562 unsigned int num_pipes = 0; 563 564 for (i = 0; i < dc->res_pool->pipe_count; i++) { 565 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 566 567 if (pipe->stream && !pipe->top_pipe) { 568 while (pipe) { 569 num_pipes++; 570 pipe = pipe->bottom_pipe; 571 } 572 } 573 } 574 575 free_pipes = dc->res_pool->pipe_count - num_pipes; 576 return free_pipes; 577 } 578 579 /** 580 * dcn32_assign_subvp_pipe - Function to decide which pipe will use Sub-VP. 581 * @dc: current dc state 582 * @context: new dc state 583 * @index: [out] dc pipe index for the pipe chosen to have phantom pipes assigned 584 * 585 * We enter this function if we are Sub-VP capable (i.e. enough pipes available) 586 * and regular P-State switching (i.e. VACTIVE/VBLANK) is not supported, or if 587 * we are forcing SubVP P-State switching on the current config. 588 * 589 * The number of pipes used for the chosen surface must be less than or equal to the 590 * number of free pipes available. 591 * 592 * In general we choose surfaces with the longest frame time first (better for SubVP + VBLANK). 593 * For multi-display cases the ActiveDRAMClockChangeMargin doesn't provide enough info on its own 594 * for determining which should be the SubVP pipe (need a way to determine if a pipe / plane doesn't 595 * support MCLK switching naturally [i.e. ACTIVE or VBLANK]). 596 * 597 * Return: True if a valid pipe assignment was found for Sub-VP. Otherwise false. 598 */ 599 static bool dcn32_assign_subvp_pipe(struct dc *dc, 600 struct dc_state *context, 601 unsigned int *index) 602 { 603 unsigned int i, pipe_idx; 604 unsigned int max_frame_time = 0; 605 bool valid_assignment_found = false; 606 unsigned int free_pipes = dcn32_get_num_free_pipes(dc, context); 607 struct vba_vars_st *vba = &context->bw_ctx.dml.vba; 608 609 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 610 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 611 unsigned int num_pipes = 0; 612 unsigned int refresh_rate = 0; 613 614 if (!pipe->stream) 615 continue; 616 617 // Round up 618 refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 + 619 pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1) 620 / (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total); 621 /* SubVP pipe candidate requirements: 622 * - Refresh rate < 120hz 623 * - Not able to switch in vactive naturally (switching in active means the 624 * DET provides enough buffer to hide the P-State switch latency -- trying 625 * to combine this with SubVP can cause issues with the scheduling). 626 * - Not TMZ surface 627 */ 628 if (pipe->plane_state && !pipe->top_pipe && !pipe->prev_odm_pipe && !dcn32_is_center_timing(pipe) && 629 !pipe->stream->hw_cursor_req && 630 !(pipe->stream->timing.pix_clk_100hz / 10000 > DCN3_2_MAX_SUBVP_PIXEL_RATE_MHZ) && 631 (!dcn32_is_psr_capable(pipe) || (context->stream_count == 1 && dc->caps.dmub_caps.subvp_psr)) && 632 dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_NONE && 633 (refresh_rate < 120 || dcn32_allow_subvp_high_refresh_rate(dc, context, pipe)) && 634 !pipe->plane_state->address.tmz_surface && 635 (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0 || 636 (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0 && 637 dcn32_allow_subvp_with_active_margin(pipe)))) { 638 while (pipe) { 639 num_pipes++; 640 pipe = pipe->bottom_pipe; 641 } 642 643 pipe = &context->res_ctx.pipe_ctx[i]; 644 if (num_pipes <= free_pipes) { 645 struct dc_stream_state *stream = pipe->stream; 646 unsigned int frame_us = (stream->timing.v_total * stream->timing.h_total / 647 (double)(stream->timing.pix_clk_100hz * 100)) * 1000000; 648 if (frame_us > max_frame_time) { 649 *index = i; 650 max_frame_time = frame_us; 651 valid_assignment_found = true; 652 } 653 } 654 } 655 pipe_idx++; 656 } 657 return valid_assignment_found; 658 } 659 660 /** 661 * dcn32_enough_pipes_for_subvp - Function to check if there are "enough" pipes for SubVP. 662 * @dc: current dc state 663 * @context: new dc state 664 * 665 * This function returns true if there are enough free pipes 666 * to create the required phantom pipes for any given stream 667 * (that does not already have phantom pipe assigned). 668 * 669 * e.g. For a 2 stream config where the first stream uses one 670 * pipe and the second stream uses 2 pipes (i.e. pipe split), 671 * this function will return true because there is 1 remaining 672 * pipe which can be used as the phantom pipe for the non pipe 673 * split pipe. 674 * 675 * Return: 676 * True if there are enough free pipes to assign phantom pipes to at least one 677 * stream that does not already have phantom pipes assigned. Otherwise false. 678 */ 679 static bool dcn32_enough_pipes_for_subvp(struct dc *dc, struct dc_state *context) 680 { 681 unsigned int i, split_cnt, free_pipes; 682 unsigned int min_pipe_split = dc->res_pool->pipe_count + 1; // init as max number of pipes + 1 683 bool subvp_possible = false; 684 685 for (i = 0; i < dc->res_pool->pipe_count; i++) { 686 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 687 688 // Find the minimum pipe split count for non SubVP pipes 689 if (resource_is_pipe_type(pipe, OPP_HEAD) && 690 dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_NONE) { 691 split_cnt = 0; 692 while (pipe) { 693 split_cnt++; 694 pipe = pipe->bottom_pipe; 695 } 696 697 if (split_cnt < min_pipe_split) 698 min_pipe_split = split_cnt; 699 } 700 } 701 702 free_pipes = dcn32_get_num_free_pipes(dc, context); 703 704 // SubVP only possible if at least one pipe is being used (i.e. free_pipes 705 // should not equal to the pipe_count) 706 if (free_pipes >= min_pipe_split && free_pipes < dc->res_pool->pipe_count) 707 subvp_possible = true; 708 709 return subvp_possible; 710 } 711 712 /** 713 * subvp_subvp_schedulable - Determine if SubVP + SubVP config is schedulable 714 * @dc: current dc state 715 * @context: new dc state 716 * 717 * High level algorithm: 718 * 1. Find longest microschedule length (in us) between the two SubVP pipes 719 * 2. Check if the worst case overlap (VBLANK in middle of ACTIVE) for both 720 * pipes still allows for the maximum microschedule to fit in the active 721 * region for both pipes. 722 * 723 * Return: True if the SubVP + SubVP config is schedulable, false otherwise 724 */ 725 static bool subvp_subvp_schedulable(struct dc *dc, struct dc_state *context) 726 { 727 struct pipe_ctx *subvp_pipes[2] = {0}; 728 struct dc_stream_state *phantom = NULL; 729 uint32_t microschedule_lines = 0; 730 uint32_t index = 0; 731 uint32_t i; 732 uint32_t max_microschedule_us = 0; 733 int32_t vactive1_us, vactive2_us, vblank1_us, vblank2_us; 734 735 for (i = 0; i < dc->res_pool->pipe_count; i++) { 736 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 737 uint32_t time_us = 0; 738 739 /* Loop to calculate the maximum microschedule time between the two SubVP pipes, 740 * and also to store the two main SubVP pipe pointers in subvp_pipes[2]. 741 */ 742 phantom = dc_state_get_paired_subvp_stream(context, pipe->stream); 743 if (phantom && pipe->stream && pipe->plane_state && !pipe->top_pipe && 744 dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN) { 745 microschedule_lines = (phantom->timing.v_total - phantom->timing.v_front_porch) + 746 phantom->timing.v_addressable; 747 748 // Round up when calculating microschedule time (+ 1 at the end) 749 time_us = (microschedule_lines * phantom->timing.h_total) / 750 (double)(phantom->timing.pix_clk_100hz * 100) * 1000000 + 751 dc->caps.subvp_prefetch_end_to_mall_start_us + 752 dc->caps.subvp_fw_processing_delay_us + 1; 753 if (time_us > max_microschedule_us) 754 max_microschedule_us = time_us; 755 756 subvp_pipes[index] = pipe; 757 index++; 758 759 // Maximum 2 SubVP pipes 760 if (index == 2) 761 break; 762 } 763 } 764 vactive1_us = ((subvp_pipes[0]->stream->timing.v_addressable * subvp_pipes[0]->stream->timing.h_total) / 765 (double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000; 766 vactive2_us = ((subvp_pipes[1]->stream->timing.v_addressable * subvp_pipes[1]->stream->timing.h_total) / 767 (double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000; 768 vblank1_us = (((subvp_pipes[0]->stream->timing.v_total - subvp_pipes[0]->stream->timing.v_addressable) * 769 subvp_pipes[0]->stream->timing.h_total) / 770 (double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000; 771 vblank2_us = (((subvp_pipes[1]->stream->timing.v_total - subvp_pipes[1]->stream->timing.v_addressable) * 772 subvp_pipes[1]->stream->timing.h_total) / 773 (double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000; 774 775 if ((vactive1_us - vblank2_us) / 2 > max_microschedule_us && 776 (vactive2_us - vblank1_us) / 2 > max_microschedule_us) 777 return true; 778 779 return false; 780 } 781 782 /** 783 * subvp_drr_schedulable() - Determine if SubVP + DRR config is schedulable 784 * @dc: current dc state 785 * @context: new dc state 786 * 787 * High level algorithm: 788 * 1. Get timing for SubVP pipe, phantom pipe, and DRR pipe 789 * 2. Determine the frame time for the DRR display when adding required margin for MCLK switching 790 * (the margin is equal to the MALL region + DRR margin (500us)) 791 * 3.If (SubVP Active - Prefetch > Stretched DRR frame + max(MALL region, Stretched DRR frame)) 792 * then report the configuration as supported 793 * 794 * Return: True if the SubVP + DRR config is schedulable, false otherwise 795 */ 796 static bool subvp_drr_schedulable(struct dc *dc, struct dc_state *context) 797 { 798 bool schedulable = false; 799 uint32_t i; 800 struct pipe_ctx *pipe = NULL; 801 struct pipe_ctx *drr_pipe = NULL; 802 struct dc_crtc_timing *main_timing = NULL; 803 struct dc_crtc_timing *phantom_timing = NULL; 804 struct dc_crtc_timing *drr_timing = NULL; 805 int16_t prefetch_us = 0; 806 int16_t mall_region_us = 0; 807 int16_t drr_frame_us = 0; // nominal frame time 808 int16_t subvp_active_us = 0; 809 int16_t stretched_drr_us = 0; 810 int16_t drr_stretched_vblank_us = 0; 811 int16_t max_vblank_mallregion = 0; 812 struct dc_stream_state *phantom_stream; 813 bool subvp_found = false; 814 bool drr_found = false; 815 816 // Find SubVP pipe 817 for (i = 0; i < dc->res_pool->pipe_count; i++) { 818 pipe = &context->res_ctx.pipe_ctx[i]; 819 820 // We check for master pipe, but it shouldn't matter since we only need 821 // the pipe for timing info (stream should be same for any pipe splits) 822 if (!resource_is_pipe_type(pipe, OTG_MASTER) || 823 !resource_is_pipe_type(pipe, DPP_PIPE)) 824 continue; 825 826 // Find the SubVP pipe 827 if (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN) { 828 subvp_found = true; 829 break; 830 } 831 } 832 833 // Find the DRR pipe 834 for (i = 0; i < dc->res_pool->pipe_count; i++) { 835 drr_pipe = &context->res_ctx.pipe_ctx[i]; 836 837 // We check for master pipe only 838 if (!resource_is_pipe_type(drr_pipe, OTG_MASTER) || 839 !resource_is_pipe_type(drr_pipe, DPP_PIPE)) 840 continue; 841 842 if (dc_state_get_pipe_subvp_type(context, drr_pipe) == SUBVP_NONE && drr_pipe->stream->ignore_msa_timing_param && 843 (drr_pipe->stream->allow_freesync || drr_pipe->stream->vrr_active_variable || drr_pipe->stream->vrr_active_fixed)) { 844 drr_found = true; 845 break; 846 } 847 } 848 849 phantom_stream = dc_state_get_paired_subvp_stream(context, pipe->stream); 850 if (phantom_stream && subvp_found && drr_found) { 851 main_timing = &pipe->stream->timing; 852 phantom_timing = &phantom_stream->timing; 853 drr_timing = &drr_pipe->stream->timing; 854 prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total / 855 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000 + 856 dc->caps.subvp_prefetch_end_to_mall_start_us; 857 subvp_active_us = main_timing->v_addressable * main_timing->h_total / 858 (double)(main_timing->pix_clk_100hz * 100) * 1000000; 859 drr_frame_us = drr_timing->v_total * drr_timing->h_total / 860 (double)(drr_timing->pix_clk_100hz * 100) * 1000000; 861 // P-State allow width and FW delays already included phantom_timing->v_addressable 862 mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total / 863 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000; 864 stretched_drr_us = drr_frame_us + mall_region_us + SUBVP_DRR_MARGIN_US; 865 drr_stretched_vblank_us = (drr_timing->v_total - drr_timing->v_addressable) * drr_timing->h_total / 866 (double)(drr_timing->pix_clk_100hz * 100) * 1000000 + (stretched_drr_us - drr_frame_us); 867 max_vblank_mallregion = drr_stretched_vblank_us > mall_region_us ? drr_stretched_vblank_us : mall_region_us; 868 } 869 870 /* We consider SubVP + DRR schedulable if the stretched frame duration of the DRR display (i.e. the 871 * highest refresh rate + margin that can support UCLK P-State switch) passes the static analysis 872 * for VBLANK: (VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time, 873 * and the max of (VBLANK blanking time, MALL region)). 874 */ 875 if (drr_timing && 876 stretched_drr_us < (1 / (double)drr_timing->min_refresh_in_uhz) * 1000000 * 1000000 && 877 subvp_active_us - prefetch_us - stretched_drr_us - max_vblank_mallregion > 0) 878 schedulable = true; 879 880 return schedulable; 881 } 882 883 884 /** 885 * subvp_vblank_schedulable - Determine if SubVP + VBLANK config is schedulable 886 * @dc: current dc state 887 * @context: new dc state 888 * 889 * High level algorithm: 890 * 1. Get timing for SubVP pipe, phantom pipe, and VBLANK pipe 891 * 2. If (SubVP Active - Prefetch > Vblank Frame Time + max(MALL region, Vblank blanking time)) 892 * then report the configuration as supported 893 * 3. If the VBLANK display is DRR, then take the DRR static schedulability path 894 * 895 * Return: True if the SubVP + VBLANK/DRR config is schedulable, false otherwise 896 */ 897 static bool subvp_vblank_schedulable(struct dc *dc, struct dc_state *context) 898 { 899 struct pipe_ctx *pipe = NULL; 900 struct pipe_ctx *subvp_pipe = NULL; 901 bool found = false; 902 bool schedulable = false; 903 uint32_t i = 0; 904 uint8_t vblank_index = 0; 905 uint16_t prefetch_us = 0; 906 uint16_t mall_region_us = 0; 907 uint16_t vblank_frame_us = 0; 908 uint16_t subvp_active_us = 0; 909 uint16_t vblank_blank_us = 0; 910 uint16_t max_vblank_mallregion = 0; 911 struct dc_crtc_timing *main_timing = NULL; 912 struct dc_crtc_timing *phantom_timing = NULL; 913 struct dc_crtc_timing *vblank_timing = NULL; 914 struct dc_stream_state *phantom_stream; 915 enum mall_stream_type pipe_mall_type; 916 917 /* For SubVP + VBLANK/DRR cases, we assume there can only be 918 * a single VBLANK/DRR display. If DML outputs SubVP + VBLANK 919 * is supported, it is either a single VBLANK case or two VBLANK 920 * displays which are synchronized (in which case they have identical 921 * timings). 922 */ 923 for (i = 0; i < dc->res_pool->pipe_count; i++) { 924 pipe = &context->res_ctx.pipe_ctx[i]; 925 pipe_mall_type = dc_state_get_pipe_subvp_type(context, pipe); 926 927 // We check for master pipe, but it shouldn't matter since we only need 928 // the pipe for timing info (stream should be same for any pipe splits) 929 if (!resource_is_pipe_type(pipe, OTG_MASTER) || 930 !resource_is_pipe_type(pipe, DPP_PIPE)) 931 continue; 932 933 if (!found && pipe_mall_type == SUBVP_NONE) { 934 // Found pipe which is not SubVP or Phantom (i.e. the VBLANK pipe). 935 vblank_index = i; 936 found = true; 937 } 938 939 if (!subvp_pipe && pipe_mall_type == SUBVP_MAIN) 940 subvp_pipe = pipe; 941 } 942 if (found && subvp_pipe) { 943 phantom_stream = dc_state_get_paired_subvp_stream(context, subvp_pipe->stream); 944 main_timing = &subvp_pipe->stream->timing; 945 phantom_timing = &phantom_stream->timing; 946 vblank_timing = &context->res_ctx.pipe_ctx[vblank_index].stream->timing; 947 // Prefetch time is equal to VACTIVE + BP + VSYNC of the phantom pipe 948 // Also include the prefetch end to mallstart delay time 949 prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total / 950 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000 + 951 dc->caps.subvp_prefetch_end_to_mall_start_us; 952 // P-State allow width and FW delays already included phantom_timing->v_addressable 953 mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total / 954 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000; 955 vblank_frame_us = vblank_timing->v_total * vblank_timing->h_total / 956 (double)(vblank_timing->pix_clk_100hz * 100) * 1000000; 957 vblank_blank_us = (vblank_timing->v_total - vblank_timing->v_addressable) * vblank_timing->h_total / 958 (double)(vblank_timing->pix_clk_100hz * 100) * 1000000; 959 subvp_active_us = main_timing->v_addressable * main_timing->h_total / 960 (double)(main_timing->pix_clk_100hz * 100) * 1000000; 961 max_vblank_mallregion = vblank_blank_us > mall_region_us ? vblank_blank_us : mall_region_us; 962 963 // Schedulable if VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time, 964 // and the max of (VBLANK blanking time, MALL region) 965 // TODO: Possibly add some margin (i.e. the below conditions should be [...] > X instead of [...] > 0) 966 if (subvp_active_us - prefetch_us - vblank_frame_us - max_vblank_mallregion > 0) 967 schedulable = true; 968 } 969 return schedulable; 970 } 971 972 /** 973 * subvp_subvp_admissable() - Determine if subvp + subvp config is admissible 974 * 975 * @dc: Current DC state 976 * @context: New DC state to be programmed 977 * 978 * SubVP + SubVP is admissible under the following conditions: 979 * - All SubVP pipes are < 120Hz OR 980 * - All SubVP pipes are >= 120hz 981 * 982 * Return: True if admissible, false otherwise 983 */ 984 static bool subvp_subvp_admissable(struct dc *dc, 985 struct dc_state *context) 986 { 987 bool result = false; 988 uint32_t i; 989 uint8_t subvp_count = 0; 990 uint32_t min_refresh = subvp_high_refresh_list.min_refresh, max_refresh = 0; 991 uint64_t refresh_rate = 0; 992 993 for (i = 0; i < dc->res_pool->pipe_count; i++) { 994 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 995 996 if (!pipe->stream) 997 continue; 998 999 if (pipe->plane_state && !pipe->top_pipe && 1000 dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN) { 1001 refresh_rate = (pipe->stream->timing.pix_clk_100hz * (uint64_t)100 + 1002 pipe->stream->timing.v_total * (uint64_t)pipe->stream->timing.h_total - (uint64_t)1); 1003 refresh_rate = div_u64(refresh_rate, pipe->stream->timing.v_total); 1004 refresh_rate = div_u64(refresh_rate, pipe->stream->timing.h_total); 1005 1006 if ((uint32_t)refresh_rate < min_refresh) 1007 min_refresh = (uint32_t)refresh_rate; 1008 if ((uint32_t)refresh_rate > max_refresh) 1009 max_refresh = (uint32_t)refresh_rate; 1010 subvp_count++; 1011 } 1012 } 1013 1014 if (subvp_count == 2 && ((min_refresh < 120 && max_refresh < 120) || 1015 (min_refresh >= subvp_high_refresh_list.min_refresh && 1016 max_refresh <= subvp_high_refresh_list.max_refresh))) 1017 result = true; 1018 1019 return result; 1020 } 1021 1022 /** 1023 * subvp_validate_static_schedulability - Check which SubVP case is calculated 1024 * and handle static analysis based on the case. 1025 * @dc: current dc state 1026 * @context: new dc state 1027 * @vlevel: Voltage level calculated by DML 1028 * 1029 * Three cases: 1030 * 1. SubVP + SubVP 1031 * 2. SubVP + VBLANK (DRR checked internally) 1032 * 3. SubVP + VACTIVE (currently unsupported) 1033 * 1034 * Return: True if statically schedulable, false otherwise 1035 */ 1036 static bool subvp_validate_static_schedulability(struct dc *dc, 1037 struct dc_state *context, 1038 int vlevel) 1039 { 1040 bool schedulable = false; 1041 struct vba_vars_st *vba = &context->bw_ctx.dml.vba; 1042 uint32_t i, pipe_idx; 1043 uint8_t subvp_count = 0; 1044 uint8_t vactive_count = 0; 1045 uint8_t non_subvp_pipes = 0; 1046 1047 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 1048 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1049 enum mall_stream_type pipe_mall_type = dc_state_get_pipe_subvp_type(context, pipe); 1050 1051 if (!pipe->stream) 1052 continue; 1053 1054 if (pipe->plane_state && !pipe->top_pipe) { 1055 if (pipe_mall_type == SUBVP_MAIN) 1056 subvp_count++; 1057 if (pipe_mall_type == SUBVP_NONE) 1058 non_subvp_pipes++; 1059 } 1060 1061 // Count how many planes that aren't SubVP/phantom are capable of VACTIVE 1062 // switching (SubVP + VACTIVE unsupported). In situations where we force 1063 // SubVP for a VACTIVE plane, we don't want to increment the vactive_count. 1064 if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vlevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0 && 1065 pipe_mall_type == SUBVP_NONE) { 1066 vactive_count++; 1067 } 1068 pipe_idx++; 1069 } 1070 1071 if (subvp_count == 2) { 1072 // Static schedulability check for SubVP + SubVP case 1073 schedulable = subvp_subvp_admissable(dc, context) && subvp_subvp_schedulable(dc, context); 1074 } else if (subvp_count == 1 && non_subvp_pipes == 0) { 1075 // Single SubVP configs will be supported by default as long as it's suppported by DML 1076 schedulable = true; 1077 } else if (subvp_count == 1 && non_subvp_pipes == 1) { 1078 if (dcn32_subvp_drr_admissable(dc, context)) 1079 schedulable = subvp_drr_schedulable(dc, context); 1080 else if (dcn32_subvp_vblank_admissable(dc, context, vlevel)) 1081 schedulable = subvp_vblank_schedulable(dc, context); 1082 } else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vactive_w_mall_sub_vp && 1083 vactive_count > 0) { 1084 // For single display SubVP cases, DML will output dm_dram_clock_change_vactive_w_mall_sub_vp by default. 1085 // We tell the difference between SubVP vs. SubVP + VACTIVE by checking the vactive_count. 1086 // SubVP + VACTIVE currently unsupported 1087 schedulable = false; 1088 } 1089 return schedulable; 1090 } 1091 1092 static void assign_subvp_index(struct dc *dc, struct dc_state *context) 1093 { 1094 int i; 1095 int index = 0; 1096 1097 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1098 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; 1099 1100 if (resource_is_pipe_type(pipe_ctx, OTG_MASTER) && 1101 dc_state_get_pipe_subvp_type(context, pipe_ctx) == SUBVP_MAIN) { 1102 pipe_ctx->subvp_index = index++; 1103 } else { 1104 pipe_ctx->subvp_index = 0; 1105 } 1106 } 1107 } 1108 1109 struct pipe_slice_table { 1110 struct { 1111 struct dc_stream_state *stream; 1112 int slice_count; 1113 } odm_combines[MAX_STREAMS]; 1114 int odm_combine_count; 1115 1116 struct { 1117 struct pipe_ctx *pri_pipe; 1118 struct dc_plane_state *plane; 1119 int slice_count; 1120 } mpc_combines[MAX_PLANES]; 1121 int mpc_combine_count; 1122 }; 1123 1124 1125 static void update_slice_table_for_stream(struct pipe_slice_table *table, 1126 struct dc_stream_state *stream, int diff) 1127 { 1128 int i; 1129 1130 for (i = 0; i < table->odm_combine_count; i++) { 1131 if (table->odm_combines[i].stream == stream) { 1132 table->odm_combines[i].slice_count += diff; 1133 break; 1134 } 1135 } 1136 1137 if (i == table->odm_combine_count) { 1138 table->odm_combine_count++; 1139 table->odm_combines[i].stream = stream; 1140 table->odm_combines[i].slice_count = diff; 1141 } 1142 } 1143 1144 static void update_slice_table_for_plane(struct pipe_slice_table *table, 1145 struct pipe_ctx *dpp_pipe, struct dc_plane_state *plane, int diff) 1146 { 1147 int i; 1148 struct pipe_ctx *pri_dpp_pipe = resource_get_primary_dpp_pipe(dpp_pipe); 1149 1150 for (i = 0; i < table->mpc_combine_count; i++) { 1151 if (table->mpc_combines[i].plane == plane && 1152 table->mpc_combines[i].pri_pipe == pri_dpp_pipe) { 1153 table->mpc_combines[i].slice_count += diff; 1154 break; 1155 } 1156 } 1157 1158 if (i == table->mpc_combine_count) { 1159 table->mpc_combine_count++; 1160 table->mpc_combines[i].plane = plane; 1161 table->mpc_combines[i].pri_pipe = pri_dpp_pipe; 1162 table->mpc_combines[i].slice_count = diff; 1163 } 1164 } 1165 1166 static void init_pipe_slice_table_from_context( 1167 struct pipe_slice_table *table, 1168 struct dc_state *context) 1169 { 1170 int i, j; 1171 struct pipe_ctx *otg_master; 1172 struct pipe_ctx *dpp_pipes[MAX_PIPES]; 1173 struct dc_stream_state *stream; 1174 int count; 1175 1176 memset(table, 0, sizeof(*table)); 1177 1178 for (i = 0; i < context->stream_count; i++) { 1179 stream = context->streams[i]; 1180 otg_master = resource_get_otg_master_for_stream( 1181 &context->res_ctx, stream); 1182 if (!otg_master) 1183 continue; 1184 1185 count = resource_get_odm_slice_count(otg_master); 1186 update_slice_table_for_stream(table, stream, count); 1187 1188 count = resource_get_dpp_pipes_for_opp_head(otg_master, 1189 &context->res_ctx, dpp_pipes); 1190 for (j = 0; j < count; j++) 1191 if (dpp_pipes[j]->plane_state) 1192 update_slice_table_for_plane(table, dpp_pipes[j], 1193 dpp_pipes[j]->plane_state, 1); 1194 } 1195 } 1196 1197 static bool update_pipe_slice_table_with_split_flags( 1198 struct pipe_slice_table *table, 1199 struct dc *dc, 1200 struct dc_state *context, 1201 struct vba_vars_st *vba, 1202 int split[MAX_PIPES], 1203 bool merge[MAX_PIPES]) 1204 { 1205 /* NOTE: we are deprecating the support for the concept of pipe splitting 1206 * or pipe merging. Instead we append slices to the end and remove 1207 * slices from the end. The following code converts a pipe split or 1208 * merge to an append or remove operation. 1209 * 1210 * For example: 1211 * When split flags describe the following pipe connection transition 1212 * 1213 * from: 1214 * pipe 0 (split=2) -> pipe 1 (split=2) 1215 * to: (old behavior) 1216 * pipe 0 -> pipe 2 -> pipe 1 -> pipe 3 1217 * 1218 * the code below actually does: 1219 * pipe 0 -> pipe 1 -> pipe 2 -> pipe 3 1220 * 1221 * This is the new intended behavior and for future DCNs we will retire 1222 * the old concept completely. 1223 */ 1224 struct pipe_ctx *pipe; 1225 bool odm; 1226 int dc_pipe_idx, dml_pipe_idx = 0; 1227 bool updated = false; 1228 1229 for (dc_pipe_idx = 0; 1230 dc_pipe_idx < dc->res_pool->pipe_count; dc_pipe_idx++) { 1231 pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx]; 1232 if (resource_is_pipe_type(pipe, FREE_PIPE)) 1233 continue; 1234 1235 if (merge[dc_pipe_idx]) { 1236 if (resource_is_pipe_type(pipe, OPP_HEAD)) 1237 /* merging OPP head means reducing ODM slice 1238 * count by 1 1239 */ 1240 update_slice_table_for_stream(table, pipe->stream, -1); 1241 else if (resource_is_pipe_type(pipe, DPP_PIPE) && 1242 resource_get_odm_slice_index(resource_get_opp_head(pipe)) == 0) 1243 /* merging DPP pipe of the first ODM slice means 1244 * reducing MPC slice count by 1 1245 */ 1246 update_slice_table_for_plane(table, pipe, pipe->plane_state, -1); 1247 updated = true; 1248 } 1249 1250 if (split[dc_pipe_idx]) { 1251 odm = vba->ODMCombineEnabled[vba->pipe_plane[dml_pipe_idx]] != 1252 dm_odm_combine_mode_disabled; 1253 if (odm && resource_is_pipe_type(pipe, OPP_HEAD)) 1254 update_slice_table_for_stream( 1255 table, pipe->stream, split[dc_pipe_idx] - 1); 1256 else if (!odm && resource_is_pipe_type(pipe, DPP_PIPE)) 1257 update_slice_table_for_plane(table, pipe, 1258 pipe->plane_state, split[dc_pipe_idx] - 1); 1259 updated = true; 1260 } 1261 dml_pipe_idx++; 1262 } 1263 return updated; 1264 } 1265 1266 static void update_pipes_with_slice_table(struct dc *dc, struct dc_state *context, 1267 struct pipe_slice_table *table) 1268 { 1269 int i; 1270 1271 for (i = 0; i < table->odm_combine_count; i++) 1272 resource_update_pipes_for_stream_with_slice_count(context, 1273 dc->current_state, dc->res_pool, 1274 table->odm_combines[i].stream, 1275 table->odm_combines[i].slice_count); 1276 1277 for (i = 0; i < table->mpc_combine_count; i++) 1278 resource_update_pipes_for_plane_with_slice_count(context, 1279 dc->current_state, dc->res_pool, 1280 table->mpc_combines[i].plane, 1281 table->mpc_combines[i].slice_count); 1282 } 1283 1284 static bool update_pipes_with_split_flags(struct dc *dc, struct dc_state *context, 1285 struct vba_vars_st *vba, int split[MAX_PIPES], 1286 bool merge[MAX_PIPES]) 1287 { 1288 struct pipe_slice_table slice_table; 1289 bool updated; 1290 1291 init_pipe_slice_table_from_context(&slice_table, context); 1292 updated = update_pipe_slice_table_with_split_flags( 1293 &slice_table, dc, context, vba, 1294 split, merge); 1295 update_pipes_with_slice_table(dc, context, &slice_table); 1296 return updated; 1297 } 1298 1299 static bool should_apply_odm_power_optimization(struct dc *dc, 1300 struct dc_state *context, struct vba_vars_st *v, int *split, 1301 bool *merge) 1302 { 1303 struct dc_stream_state *stream = context->streams[0]; 1304 struct pipe_slice_table slice_table; 1305 int i; 1306 1307 /* 1308 * this debug flag allows us to disable ODM power optimization feature 1309 * unconditionally. we force the feature off if this is set to false. 1310 */ 1311 if (!dc->debug.enable_single_display_2to1_odm_policy) 1312 return false; 1313 1314 /* current design and test coverage is only limited to allow ODM power 1315 * optimization for single stream. Supporting it for multiple streams 1316 * use case would require additional algorithm to decide how to 1317 * optimize power consumption when there are not enough free pipes to 1318 * allocate for all the streams. This level of optimization would 1319 * require multiple attempts of revalidation to make an optimized 1320 * decision. Unfortunately We do not support revalidation flow in 1321 * current version of DML. 1322 */ 1323 if (context->stream_count != 1) 1324 return false; 1325 1326 /* 1327 * Our hardware doesn't support ODM for HDMI TMDS 1328 */ 1329 if (dc_is_hdmi_signal(stream->signal)) 1330 return false; 1331 1332 /* 1333 * ODM Combine 2:1 requires horizontal timing divisible by 2 so each 1334 * ODM segment has the same size. 1335 */ 1336 if (!is_h_timing_divisible_by_2(stream)) 1337 return false; 1338 1339 /* 1340 * No power benefits if the timing's pixel clock is not high enough to 1341 * raise display clock from minimum power state. 1342 */ 1343 if (stream->timing.pix_clk_100hz * 100 <= DCN3_2_VMIN_DISPCLK_HZ) 1344 return false; 1345 1346 if (dc->config.enable_windowed_mpo_odm) { 1347 /* 1348 * ODM power optimization should only be allowed if the feature 1349 * can be seamlessly toggled off within an update. This would 1350 * require that the feature is applied on top of a minimal 1351 * state. A minimal state is defined as a state validated 1352 * without the need of pipe split. Therefore, when transition to 1353 * toggle the feature off, the same stream and plane 1354 * configuration can be supported by the pipe resource in the 1355 * first ODM slice alone without the need to acquire extra 1356 * resources. 1357 */ 1358 init_pipe_slice_table_from_context(&slice_table, context); 1359 update_pipe_slice_table_with_split_flags( 1360 &slice_table, dc, context, v, 1361 split, merge); 1362 for (i = 0; i < slice_table.mpc_combine_count; i++) 1363 if (slice_table.mpc_combines[i].slice_count > 1) 1364 return false; 1365 1366 for (i = 0; i < slice_table.odm_combine_count; i++) 1367 if (slice_table.odm_combines[i].slice_count > 1) 1368 return false; 1369 } else { 1370 /* 1371 * the new ODM power optimization feature reduces software 1372 * design limitation and allows ODM power optimization to be 1373 * supported even with presence of overlay planes. The new 1374 * feature is enabled based on enable_windowed_mpo_odm flag. If 1375 * the flag is not set, we limit our feature scope due to 1376 * previous software design limitation 1377 */ 1378 if (context->stream_status[0].plane_count != 1) 1379 return false; 1380 1381 if (memcmp(&context->stream_status[0].plane_states[0]->clip_rect, 1382 &stream->src, sizeof(struct rect)) != 0) 1383 return false; 1384 1385 if (stream->src.width >= 5120 && 1386 stream->src.width > stream->dst.width) 1387 return false; 1388 } 1389 return true; 1390 } 1391 1392 static void try_odm_power_optimization_and_revalidate( 1393 struct dc *dc, 1394 struct dc_state *context, 1395 display_e2e_pipe_params_st *pipes, 1396 int *split, 1397 bool *merge, 1398 unsigned int *vlevel, 1399 int pipe_cnt) 1400 { 1401 int i; 1402 unsigned int new_vlevel; 1403 unsigned int cur_policy[MAX_PIPES]; 1404 1405 for (i = 0; i < pipe_cnt; i++) { 1406 cur_policy[i] = pipes[i].pipe.dest.odm_combine_policy; 1407 pipes[i].pipe.dest.odm_combine_policy = dm_odm_combine_policy_2to1; 1408 } 1409 1410 new_vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); 1411 1412 if (new_vlevel < context->bw_ctx.dml.soc.num_states) { 1413 memset(split, 0, MAX_PIPES * sizeof(int)); 1414 memset(merge, 0, MAX_PIPES * sizeof(bool)); 1415 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, new_vlevel, split, merge); 1416 context->bw_ctx.dml.vba.VoltageLevel = *vlevel; 1417 } else { 1418 for (i = 0; i < pipe_cnt; i++) 1419 pipes[i].pipe.dest.odm_combine_policy = cur_policy[i]; 1420 } 1421 } 1422 1423 static bool is_test_pattern_enabled( 1424 struct dc_state *context) 1425 { 1426 int i; 1427 1428 for (i = 0; i < context->stream_count; i++) { 1429 if (context->streams[i]->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE) 1430 return true; 1431 } 1432 1433 return false; 1434 } 1435 1436 static bool dcn32_full_validate_bw_helper(struct dc *dc, 1437 struct dc_state *context, 1438 display_e2e_pipe_params_st *pipes, 1439 int *vlevel, 1440 int *split, 1441 bool *merge, 1442 int *pipe_cnt, 1443 bool *repopulate_pipes) 1444 { 1445 struct vba_vars_st *vba = &context->bw_ctx.dml.vba; 1446 unsigned int dc_pipe_idx = 0; 1447 int i = 0; 1448 bool found_supported_config = false; 1449 int vlevel_temp = 0; 1450 1451 dc_assert_fp_enabled(); 1452 1453 /* 1454 * DML favors voltage over p-state, but we're more interested in 1455 * supporting p-state over voltage. We can't support p-state in 1456 * prefetch mode > 0 so try capping the prefetch mode to start. 1457 * Override present for testing. 1458 */ 1459 if (dc->debug.dml_disallow_alternate_prefetch_modes) 1460 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = 1461 dm_prefetch_support_uclk_fclk_and_stutter; 1462 else 1463 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = 1464 dm_prefetch_support_uclk_fclk_and_stutter_if_possible; 1465 1466 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt); 1467 /* This may adjust vlevel and maxMpcComb */ 1468 if (*vlevel < context->bw_ctx.dml.soc.num_states) { 1469 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge); 1470 vba->VoltageLevel = *vlevel; 1471 } 1472 1473 /* Apply split and merge flags before checking for subvp */ 1474 if (!dcn32_apply_merge_split_flags_helper(dc, context, repopulate_pipes, split, merge)) 1475 return false; 1476 memset(split, 0, MAX_PIPES * sizeof(int)); 1477 memset(merge, 0, MAX_PIPES * sizeof(bool)); 1478 1479 /* Conditions for setting up phantom pipes for SubVP: 1480 * 1. Not force disable SubVP 1481 * 2. Full update (i.e. !fast_validate) 1482 * 3. Enough pipes are available to support SubVP (TODO: Which pipes will use VACTIVE / VBLANK / SUBVP?) 1483 * 4. Display configuration passes validation 1484 * 5. (Config doesn't support MCLK in VACTIVE/VBLANK || dc->debug.force_subvp_mclk_switch) 1485 */ 1486 if (!dc->debug.force_disable_subvp && !dc->caps.dmub_caps.gecc_enable && dcn32_all_pipes_have_stream_and_plane(dc, context) && 1487 !dcn32_mpo_in_use(context) && !dcn32_any_surfaces_rotated(dc, context) && !is_test_pattern_enabled(context) && 1488 (*vlevel == context->bw_ctx.dml.soc.num_states || (vba->DRAMSpeedPerState[*vlevel] != vba->DRAMSpeedPerState[0] && 1489 vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported) || 1490 vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported || 1491 dc->debug.force_subvp_mclk_switch)) { 1492 1493 vlevel_temp = *vlevel; 1494 1495 while (!found_supported_config && dcn32_enough_pipes_for_subvp(dc, context) && 1496 dcn32_assign_subvp_pipe(dc, context, &dc_pipe_idx)) { 1497 /* For the case where *vlevel = num_states, bandwidth validation has failed for this config. 1498 * Adding phantom pipes won't change the validation result, so change the DML input param 1499 * for P-State support before adding phantom pipes and recalculating the DML result. 1500 * However, this case is only applicable for SubVP + DRR cases because the prefetch mode 1501 * will not allow for switch in VBLANK. The DRR display must have it's VBLANK stretched 1502 * enough to support MCLK switching. 1503 */ 1504 if (*vlevel == context->bw_ctx.dml.soc.num_states && 1505 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final == 1506 dm_prefetch_support_uclk_fclk_and_stutter) { 1507 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = 1508 dm_prefetch_support_fclk_and_stutter; 1509 /* There are params (such as FabricClock) that need to be recalculated 1510 * after validation fails (otherwise it will be 0). Calculation for 1511 * phantom vactive requires call into DML, so we must ensure all the 1512 * vba params are valid otherwise we'll get incorrect phantom vactive. 1513 */ 1514 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt); 1515 } 1516 1517 dc->res_pool->funcs->add_phantom_pipes(dc, context, pipes, *pipe_cnt, dc_pipe_idx); 1518 1519 *pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false); 1520 // Populate dppclk to trigger a recalculate in dml_get_voltage_level 1521 // so the phantom pipe DLG params can be assigned correctly. 1522 pipes[0].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, *pipe_cnt, 0); 1523 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt); 1524 1525 /* Check that vlevel requested supports pstate or not 1526 * if not, select the lowest vlevel that supports it 1527 */ 1528 for (i = *vlevel; i < context->bw_ctx.dml.soc.num_states; i++) { 1529 if (vba->DRAMClockChangeSupport[i][vba->maxMpcComb] != dm_dram_clock_change_unsupported) { 1530 *vlevel = i; 1531 break; 1532 } 1533 } 1534 1535 if (*vlevel < context->bw_ctx.dml.soc.num_states 1536 && subvp_validate_static_schedulability(dc, context, *vlevel)) 1537 found_supported_config = true; 1538 if (found_supported_config) { 1539 // For SubVP + DRR cases, we can force the lowest vlevel that supports the mode 1540 if (dcn32_subvp_drr_admissable(dc, context) && subvp_drr_schedulable(dc, context)) { 1541 /* find lowest vlevel that supports the config */ 1542 for (i = *vlevel; i >= 0; i--) { 1543 if (vba->ModeSupport[i][vba->maxMpcComb]) { 1544 *vlevel = i; 1545 } else { 1546 break; 1547 } 1548 } 1549 } 1550 } 1551 } 1552 1553 if (vba->DRAMSpeedPerState[*vlevel] >= vba->DRAMSpeedPerState[vlevel_temp]) 1554 found_supported_config = false; 1555 1556 // If SubVP pipe config is unsupported (or cannot be used for UCLK switching) 1557 // remove phantom pipes and repopulate dml pipes 1558 if (!found_supported_config) { 1559 dc_state_remove_phantom_streams_and_planes(dc, context); 1560 dc_state_release_phantom_streams_and_planes(dc, context); 1561 vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] = dm_dram_clock_change_unsupported; 1562 *pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false); 1563 1564 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt); 1565 /* This may adjust vlevel and maxMpcComb */ 1566 if (*vlevel < context->bw_ctx.dml.soc.num_states) { 1567 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge); 1568 vba->VoltageLevel = *vlevel; 1569 } 1570 } else { 1571 // Most populate phantom DLG params before programming hardware / timing for phantom pipe 1572 dcn32_helper_populate_phantom_dlg_params(dc, context, pipes, *pipe_cnt); 1573 1574 /* Call validate_apply_pipe_split flags after calling DML getters for 1575 * phantom dlg params, or some of the VBA params indicating pipe split 1576 * can be overwritten by the getters. 1577 * 1578 * When setting up SubVP config, all pipes are merged before attempting to 1579 * add phantom pipes. If pipe split (ODM / MPC) is required, both the main 1580 * and phantom pipes will be split in the regular pipe splitting sequence. 1581 */ 1582 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge); 1583 vba->VoltageLevel = *vlevel; 1584 // Note: We can't apply the phantom pipes to hardware at this time. We have to wait 1585 // until driver has acquired the DMCUB lock to do it safely. 1586 assign_subvp_index(dc, context); 1587 } 1588 } 1589 1590 if (should_apply_odm_power_optimization(dc, context, vba, split, merge)) 1591 try_odm_power_optimization_and_revalidate( 1592 dc, context, pipes, split, merge, vlevel, *pipe_cnt); 1593 1594 return true; 1595 } 1596 1597 static bool is_dtbclk_required(struct dc *dc, struct dc_state *context) 1598 { 1599 int i; 1600 1601 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1602 if (!context->res_ctx.pipe_ctx[i].stream) 1603 continue; 1604 if (dc->link_srv->dp_is_128b_132b_signal(&context->res_ctx.pipe_ctx[i])) 1605 return true; 1606 } 1607 return false; 1608 } 1609 1610 static void dcn20_adjust_freesync_v_startup(const struct dc_crtc_timing *dc_crtc_timing, int *vstartup_start) 1611 { 1612 struct dc_crtc_timing patched_crtc_timing; 1613 uint32_t asic_blank_end = 0; 1614 uint32_t asic_blank_start = 0; 1615 uint32_t newVstartup = 0; 1616 1617 patched_crtc_timing = *dc_crtc_timing; 1618 1619 if (patched_crtc_timing.flags.INTERLACE == 1) { 1620 if (patched_crtc_timing.v_front_porch < 2) 1621 patched_crtc_timing.v_front_porch = 2; 1622 } else { 1623 if (patched_crtc_timing.v_front_porch < 1) 1624 patched_crtc_timing.v_front_porch = 1; 1625 } 1626 1627 /* blank_start = frame end - front porch */ 1628 asic_blank_start = patched_crtc_timing.v_total - 1629 patched_crtc_timing.v_front_porch; 1630 1631 /* blank_end = blank_start - active */ 1632 asic_blank_end = asic_blank_start - 1633 patched_crtc_timing.v_border_bottom - 1634 patched_crtc_timing.v_addressable - 1635 patched_crtc_timing.v_border_top; 1636 1637 newVstartup = asic_blank_end + (patched_crtc_timing.v_total - asic_blank_start); 1638 1639 *vstartup_start = ((newVstartup > *vstartup_start) ? newVstartup : *vstartup_start); 1640 } 1641 1642 static void dcn32_calculate_dlg_params(struct dc *dc, struct dc_state *context, 1643 display_e2e_pipe_params_st *pipes, 1644 int pipe_cnt, int vlevel) 1645 { 1646 int i, pipe_idx, active_hubp_count = 0; 1647 bool usr_retraining_support = false; 1648 bool unbounded_req_enabled = false; 1649 struct vba_vars_st *vba = &context->bw_ctx.dml.vba; 1650 1651 dc_assert_fp_enabled(); 1652 1653 /* Writeback MCIF_WB arbitration parameters */ 1654 dc->res_pool->funcs->set_mcif_arb_params(dc, context, pipes, pipe_cnt); 1655 1656 context->bw_ctx.bw.dcn.clk.dispclk_khz = context->bw_ctx.dml.vba.DISPCLK * 1000; 1657 context->bw_ctx.bw.dcn.clk.dcfclk_khz = context->bw_ctx.dml.vba.DCFCLK * 1000; 1658 context->bw_ctx.bw.dcn.clk.socclk_khz = context->bw_ctx.dml.vba.SOCCLK * 1000; 1659 context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16; 1660 context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = context->bw_ctx.dml.vba.DCFCLKDeepSleep * 1000; 1661 context->bw_ctx.bw.dcn.clk.fclk_khz = context->bw_ctx.dml.vba.FabricClock * 1000; 1662 context->bw_ctx.bw.dcn.clk.p_state_change_support = 1663 context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] 1664 != dm_dram_clock_change_unsupported; 1665 1666 /* Pstate change might not be supported by hardware, but it might be 1667 * possible with firmware driven vertical blank stretching. 1668 */ 1669 context->bw_ctx.bw.dcn.clk.p_state_change_support |= context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching; 1670 1671 context->bw_ctx.bw.dcn.clk.dppclk_khz = 0; 1672 context->bw_ctx.bw.dcn.clk.dtbclk_en = is_dtbclk_required(dc, context); 1673 context->bw_ctx.bw.dcn.clk.ref_dtbclk_khz = context->bw_ctx.dml.vba.DTBCLKPerState[vlevel] * 1000; 1674 if (context->bw_ctx.dml.vba.FCLKChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] == dm_fclock_change_unsupported) 1675 context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = false; 1676 else 1677 context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true; 1678 1679 usr_retraining_support = context->bw_ctx.dml.vba.USRRetrainingSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb]; 1680 ASSERT(usr_retraining_support); 1681 1682 if (context->bw_ctx.bw.dcn.clk.dispclk_khz < dc->debug.min_disp_clk_khz) 1683 context->bw_ctx.bw.dcn.clk.dispclk_khz = dc->debug.min_disp_clk_khz; 1684 1685 unbounded_req_enabled = get_unbounded_request_enabled(&context->bw_ctx.dml, pipes, pipe_cnt); 1686 1687 if (unbounded_req_enabled && pipe_cnt > 1) { 1688 // Unbounded requesting should not ever be used when more than 1 pipe is enabled. 1689 ASSERT(false); 1690 unbounded_req_enabled = false; 1691 } 1692 1693 context->bw_ctx.bw.dcn.mall_ss_size_bytes = 0; 1694 context->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes = 0; 1695 context->bw_ctx.bw.dcn.mall_subvp_size_bytes = 0; 1696 1697 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 1698 if (!context->res_ctx.pipe_ctx[i].stream) 1699 continue; 1700 if (context->res_ctx.pipe_ctx[i].plane_state) 1701 active_hubp_count++; 1702 pipes[pipe_idx].pipe.dest.vstartup_start = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, 1703 pipe_idx); 1704 pipes[pipe_idx].pipe.dest.vupdate_offset = get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt, 1705 pipe_idx); 1706 pipes[pipe_idx].pipe.dest.vupdate_width = get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt, 1707 pipe_idx); 1708 pipes[pipe_idx].pipe.dest.vready_offset = get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt, 1709 pipe_idx); 1710 1711 if (dc_state_get_pipe_subvp_type(context, &context->res_ctx.pipe_ctx[i]) == SUBVP_PHANTOM) { 1712 // Phantom pipe requires that DET_SIZE = 0 and no unbounded requests 1713 context->res_ctx.pipe_ctx[i].det_buffer_size_kb = 0; 1714 context->res_ctx.pipe_ctx[i].unbounded_req = false; 1715 } else { 1716 context->res_ctx.pipe_ctx[i].det_buffer_size_kb = get_det_buffer_size_kbytes(&context->bw_ctx.dml, pipes, pipe_cnt, 1717 pipe_idx); 1718 context->res_ctx.pipe_ctx[i].unbounded_req = unbounded_req_enabled; 1719 } 1720 1721 if (context->bw_ctx.bw.dcn.clk.dppclk_khz < pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000) 1722 context->bw_ctx.bw.dcn.clk.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000; 1723 if (context->res_ctx.pipe_ctx[i].plane_state) 1724 context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000; 1725 else 1726 context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = 0; 1727 context->res_ctx.pipe_ctx[i].pipe_dlg_param = pipes[pipe_idx].pipe.dest; 1728 1729 context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes = get_surface_size_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); 1730 1731 if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0) 1732 context->res_ctx.pipe_ctx[i].has_vactive_margin = true; 1733 else 1734 context->res_ctx.pipe_ctx[i].has_vactive_margin = false; 1735 1736 /* MALL Allocation Sizes */ 1737 /* count from active, top pipes per plane only */ 1738 if (context->res_ctx.pipe_ctx[i].stream && context->res_ctx.pipe_ctx[i].plane_state && 1739 (context->res_ctx.pipe_ctx[i].top_pipe == NULL || 1740 context->res_ctx.pipe_ctx[i].plane_state != context->res_ctx.pipe_ctx[i].top_pipe->plane_state) && 1741 context->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) { 1742 /* SS: all active surfaces stored in MALL */ 1743 if (dc_state_get_pipe_subvp_type(context, &context->res_ctx.pipe_ctx[i]) != SUBVP_PHANTOM) { 1744 context->bw_ctx.bw.dcn.mall_ss_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes; 1745 1746 if (context->res_ctx.pipe_ctx[i].stream->link->psr_settings.psr_version == DC_PSR_VERSION_UNSUPPORTED) { 1747 /* SS PSR On: all active surfaces part of streams not supporting PSR stored in MALL */ 1748 context->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes; 1749 } 1750 } else { 1751 /* SUBVP: phantom surfaces only stored in MALL */ 1752 context->bw_ctx.bw.dcn.mall_subvp_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes; 1753 } 1754 } 1755 1756 if (context->res_ctx.pipe_ctx[i].stream->adaptive_sync_infopacket.valid) 1757 dcn20_adjust_freesync_v_startup( 1758 &context->res_ctx.pipe_ctx[i].stream->timing, 1759 &context->res_ctx.pipe_ctx[i].pipe_dlg_param.vstartup_start); 1760 1761 pipe_idx++; 1762 } 1763 /* If DCN isn't making memory requests we can allow pstate change and lower clocks */ 1764 if (!active_hubp_count) { 1765 context->bw_ctx.bw.dcn.clk.socclk_khz = 0; 1766 context->bw_ctx.bw.dcn.clk.dppclk_khz = 0; 1767 context->bw_ctx.bw.dcn.clk.dcfclk_khz = 0; 1768 context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = 0; 1769 context->bw_ctx.bw.dcn.clk.dramclk_khz = 0; 1770 context->bw_ctx.bw.dcn.clk.fclk_khz = 0; 1771 context->bw_ctx.bw.dcn.clk.p_state_change_support = true; 1772 context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true; 1773 } 1774 /*save a original dppclock copy*/ 1775 context->bw_ctx.bw.dcn.clk.bw_dppclk_khz = context->bw_ctx.bw.dcn.clk.dppclk_khz; 1776 context->bw_ctx.bw.dcn.clk.bw_dispclk_khz = context->bw_ctx.bw.dcn.clk.dispclk_khz; 1777 context->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dppclk_mhz 1778 * 1000; 1779 context->bw_ctx.bw.dcn.clk.max_supported_dispclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dispclk_mhz 1780 * 1000; 1781 1782 context->bw_ctx.bw.dcn.clk.num_ways = dcn32_helper_calculate_num_ways_for_subvp(dc, context); 1783 1784 context->bw_ctx.bw.dcn.compbuf_size_kb = context->bw_ctx.dml.ip.config_return_buffer_size_in_kbytes; 1785 1786 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1787 if (context->res_ctx.pipe_ctx[i].stream) 1788 context->bw_ctx.bw.dcn.compbuf_size_kb -= context->res_ctx.pipe_ctx[i].det_buffer_size_kb; 1789 } 1790 1791 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 1792 1793 if (!context->res_ctx.pipe_ctx[i].stream) 1794 continue; 1795 1796 context->bw_ctx.dml.funcs.rq_dlg_get_dlg_reg_v2(&context->bw_ctx.dml, 1797 &context->res_ctx.pipe_ctx[i].dlg_regs, &context->res_ctx.pipe_ctx[i].ttu_regs, pipes, 1798 pipe_cnt, pipe_idx); 1799 1800 context->bw_ctx.dml.funcs.rq_dlg_get_rq_reg_v2(&context->res_ctx.pipe_ctx[i].rq_regs, 1801 &context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); 1802 pipe_idx++; 1803 } 1804 } 1805 1806 static struct pipe_ctx *dcn32_find_split_pipe( 1807 struct dc *dc, 1808 struct dc_state *context, 1809 int old_index) 1810 { 1811 struct pipe_ctx *pipe = NULL; 1812 int i; 1813 1814 if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) { 1815 pipe = &context->res_ctx.pipe_ctx[old_index]; 1816 pipe->pipe_idx = old_index; 1817 } 1818 1819 if (!pipe) 1820 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) { 1821 if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL 1822 && dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) { 1823 if (context->res_ctx.pipe_ctx[i].stream == NULL) { 1824 pipe = &context->res_ctx.pipe_ctx[i]; 1825 pipe->pipe_idx = i; 1826 break; 1827 } 1828 } 1829 } 1830 1831 /* 1832 * May need to fix pipes getting tossed from 1 opp to another on flip 1833 * Add for debugging transient underflow during topology updates: 1834 * ASSERT(pipe); 1835 */ 1836 if (!pipe) 1837 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) { 1838 if (context->res_ctx.pipe_ctx[i].stream == NULL) { 1839 pipe = &context->res_ctx.pipe_ctx[i]; 1840 pipe->pipe_idx = i; 1841 break; 1842 } 1843 } 1844 1845 return pipe; 1846 } 1847 1848 static bool dcn32_split_stream_for_mpc_or_odm( 1849 const struct dc *dc, 1850 struct resource_context *res_ctx, 1851 struct pipe_ctx *pri_pipe, 1852 struct pipe_ctx *sec_pipe, 1853 bool odm) 1854 { 1855 int pipe_idx = sec_pipe->pipe_idx; 1856 const struct resource_pool *pool = dc->res_pool; 1857 1858 DC_LOGGER_INIT(dc->ctx->logger); 1859 1860 if (odm && pri_pipe->plane_state) { 1861 /* ODM + window MPO, where MPO window is on left half only */ 1862 if (pri_pipe->plane_state->clip_rect.x + pri_pipe->plane_state->clip_rect.width <= 1863 pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) { 1864 1865 DC_LOG_SCALER("%s - ODM + window MPO(left). pri_pipe:%d\n", 1866 __func__, 1867 pri_pipe->pipe_idx); 1868 return true; 1869 } 1870 1871 /* ODM + window MPO, where MPO window is on right half only */ 1872 if (pri_pipe->plane_state->clip_rect.x >= pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) { 1873 1874 DC_LOG_SCALER("%s - ODM + window MPO(right). pri_pipe:%d\n", 1875 __func__, 1876 pri_pipe->pipe_idx); 1877 return true; 1878 } 1879 } 1880 1881 *sec_pipe = *pri_pipe; 1882 1883 sec_pipe->pipe_idx = pipe_idx; 1884 sec_pipe->plane_res.mi = pool->mis[pipe_idx]; 1885 sec_pipe->plane_res.hubp = pool->hubps[pipe_idx]; 1886 sec_pipe->plane_res.ipp = pool->ipps[pipe_idx]; 1887 sec_pipe->plane_res.xfm = pool->transforms[pipe_idx]; 1888 sec_pipe->plane_res.dpp = pool->dpps[pipe_idx]; 1889 sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst; 1890 sec_pipe->stream_res.dsc = NULL; 1891 if (odm) { 1892 if (pri_pipe->next_odm_pipe) { 1893 ASSERT(pri_pipe->next_odm_pipe != sec_pipe); 1894 sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe; 1895 sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe; 1896 } 1897 if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) { 1898 pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe; 1899 sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe; 1900 } 1901 if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) { 1902 pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe; 1903 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe; 1904 } 1905 pri_pipe->next_odm_pipe = sec_pipe; 1906 sec_pipe->prev_odm_pipe = pri_pipe; 1907 ASSERT(sec_pipe->top_pipe == NULL); 1908 1909 if (!sec_pipe->top_pipe) 1910 sec_pipe->stream_res.opp = pool->opps[pipe_idx]; 1911 else 1912 sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp; 1913 if (sec_pipe->stream->timing.flags.DSC == 1) { 1914 dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx); 1915 ASSERT(sec_pipe->stream_res.dsc); 1916 if (sec_pipe->stream_res.dsc == NULL) 1917 return false; 1918 } 1919 } else { 1920 if (pri_pipe->bottom_pipe) { 1921 ASSERT(pri_pipe->bottom_pipe != sec_pipe); 1922 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe; 1923 sec_pipe->bottom_pipe->top_pipe = sec_pipe; 1924 } 1925 pri_pipe->bottom_pipe = sec_pipe; 1926 sec_pipe->top_pipe = pri_pipe; 1927 1928 ASSERT(pri_pipe->plane_state); 1929 } 1930 1931 return true; 1932 } 1933 1934 static bool dcn32_apply_merge_split_flags_helper( 1935 struct dc *dc, 1936 struct dc_state *context, 1937 bool *repopulate_pipes, 1938 int *split, 1939 bool *merge) 1940 { 1941 int i, pipe_idx; 1942 bool newly_split[MAX_PIPES] = { false }; 1943 struct vba_vars_st *vba = &context->bw_ctx.dml.vba; 1944 1945 if (dc->config.enable_windowed_mpo_odm) { 1946 if (update_pipes_with_split_flags( 1947 dc, context, vba, split, merge)) 1948 *repopulate_pipes = true; 1949 } else { 1950 1951 /* the code below will be removed once windowed mpo odm is fully 1952 * enabled. 1953 */ 1954 /* merge pipes if necessary */ 1955 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1956 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1957 1958 /*skip pipes that don't need merging*/ 1959 if (!merge[i]) 1960 continue; 1961 1962 /* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */ 1963 if (pipe->prev_odm_pipe) { 1964 /*split off odm pipe*/ 1965 pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe; 1966 if (pipe->next_odm_pipe) 1967 pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe; 1968 1969 /*2:1ODM+MPC Split MPO to Single Pipe + MPC Split MPO*/ 1970 if (pipe->bottom_pipe) { 1971 if (pipe->bottom_pipe->prev_odm_pipe || pipe->bottom_pipe->next_odm_pipe) { 1972 /*MPC split rules will handle this case*/ 1973 pipe->bottom_pipe->top_pipe = NULL; 1974 } else { 1975 /* when merging an ODM pipes, the bottom MPC pipe must now point to 1976 * the previous ODM pipe and its associated stream assets 1977 */ 1978 if (pipe->prev_odm_pipe->bottom_pipe) { 1979 /* 3 plane MPO*/ 1980 pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe->bottom_pipe; 1981 pipe->prev_odm_pipe->bottom_pipe->bottom_pipe = pipe->bottom_pipe; 1982 } else { 1983 /* 2 plane MPO*/ 1984 pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe; 1985 pipe->prev_odm_pipe->bottom_pipe = pipe->bottom_pipe; 1986 } 1987 1988 memcpy(&pipe->bottom_pipe->stream_res, &pipe->bottom_pipe->top_pipe->stream_res, sizeof(struct stream_resource)); 1989 } 1990 } 1991 1992 if (pipe->top_pipe) { 1993 pipe->top_pipe->bottom_pipe = NULL; 1994 } 1995 1996 pipe->bottom_pipe = NULL; 1997 pipe->next_odm_pipe = NULL; 1998 pipe->plane_state = NULL; 1999 pipe->stream = NULL; 2000 pipe->top_pipe = NULL; 2001 pipe->prev_odm_pipe = NULL; 2002 if (pipe->stream_res.dsc) 2003 dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc); 2004 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res)); 2005 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res)); 2006 memset(&pipe->link_res, 0, sizeof(pipe->link_res)); 2007 *repopulate_pipes = true; 2008 } else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) { 2009 struct pipe_ctx *top_pipe = pipe->top_pipe; 2010 struct pipe_ctx *bottom_pipe = pipe->bottom_pipe; 2011 2012 top_pipe->bottom_pipe = bottom_pipe; 2013 if (bottom_pipe) 2014 bottom_pipe->top_pipe = top_pipe; 2015 2016 pipe->top_pipe = NULL; 2017 pipe->bottom_pipe = NULL; 2018 pipe->plane_state = NULL; 2019 pipe->stream = NULL; 2020 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res)); 2021 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res)); 2022 memset(&pipe->link_res, 0, sizeof(pipe->link_res)); 2023 *repopulate_pipes = true; 2024 } else 2025 ASSERT(0); /* Should never try to merge master pipe */ 2026 2027 } 2028 2029 for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) { 2030 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 2031 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i]; 2032 struct pipe_ctx *hsplit_pipe = NULL; 2033 bool odm; 2034 int old_index = -1; 2035 2036 if (!pipe->stream || newly_split[i]) 2037 continue; 2038 2039 pipe_idx++; 2040 odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled; 2041 2042 if (!pipe->plane_state && !odm) 2043 continue; 2044 2045 if (split[i]) { 2046 if (odm) { 2047 if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe) 2048 old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx; 2049 else if (old_pipe->next_odm_pipe) 2050 old_index = old_pipe->next_odm_pipe->pipe_idx; 2051 } else { 2052 if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe && 2053 old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 2054 old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx; 2055 else if (old_pipe->bottom_pipe && 2056 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 2057 old_index = old_pipe->bottom_pipe->pipe_idx; 2058 } 2059 hsplit_pipe = dcn32_find_split_pipe(dc, context, old_index); 2060 ASSERT(hsplit_pipe); 2061 if (!hsplit_pipe) 2062 return false; 2063 2064 if (!dcn32_split_stream_for_mpc_or_odm( 2065 dc, &context->res_ctx, 2066 pipe, hsplit_pipe, odm)) 2067 return false; 2068 2069 newly_split[hsplit_pipe->pipe_idx] = true; 2070 *repopulate_pipes = true; 2071 } 2072 if (split[i] == 4) { 2073 struct pipe_ctx *pipe_4to1; 2074 2075 if (odm && old_pipe->next_odm_pipe) 2076 old_index = old_pipe->next_odm_pipe->pipe_idx; 2077 else if (!odm && old_pipe->bottom_pipe && 2078 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 2079 old_index = old_pipe->bottom_pipe->pipe_idx; 2080 else 2081 old_index = -1; 2082 pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index); 2083 ASSERT(pipe_4to1); 2084 if (!pipe_4to1) 2085 return false; 2086 if (!dcn32_split_stream_for_mpc_or_odm( 2087 dc, &context->res_ctx, 2088 pipe, pipe_4to1, odm)) 2089 return false; 2090 newly_split[pipe_4to1->pipe_idx] = true; 2091 2092 if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe 2093 && old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe) 2094 old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx; 2095 else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe && 2096 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe && 2097 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 2098 old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx; 2099 else 2100 old_index = -1; 2101 pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index); 2102 ASSERT(pipe_4to1); 2103 if (!pipe_4to1) 2104 return false; 2105 if (!dcn32_split_stream_for_mpc_or_odm( 2106 dc, &context->res_ctx, 2107 hsplit_pipe, pipe_4to1, odm)) 2108 return false; 2109 newly_split[pipe_4to1->pipe_idx] = true; 2110 } 2111 if (odm) 2112 dcn20_build_mapped_resource(dc, context, pipe->stream); 2113 } 2114 2115 for (i = 0; i < dc->res_pool->pipe_count; i++) { 2116 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 2117 2118 if (pipe->plane_state) { 2119 if (!resource_build_scaling_params(pipe)) 2120 return false; 2121 } 2122 } 2123 2124 for (i = 0; i < context->stream_count; i++) { 2125 struct pipe_ctx *otg_master = resource_get_otg_master_for_stream(&context->res_ctx, 2126 context->streams[i]); 2127 2128 if (otg_master) 2129 resource_build_test_pattern_params(&context->res_ctx, otg_master); 2130 } 2131 } 2132 return true; 2133 } 2134 2135 bool dcn32_internal_validate_bw(struct dc *dc, 2136 struct dc_state *context, 2137 display_e2e_pipe_params_st *pipes, 2138 int *pipe_cnt_out, 2139 int *vlevel_out, 2140 bool fast_validate) 2141 { 2142 bool out = false; 2143 bool repopulate_pipes = false; 2144 int split[MAX_PIPES] = { 0 }; 2145 bool merge[MAX_PIPES] = { false }; 2146 int pipe_cnt, i, pipe_idx; 2147 int vlevel = context->bw_ctx.dml.soc.num_states; 2148 struct vba_vars_st *vba = &context->bw_ctx.dml.vba; 2149 2150 dc_assert_fp_enabled(); 2151 2152 ASSERT(pipes); 2153 if (!pipes) 2154 return false; 2155 2156 /* For each full update, remove all existing phantom pipes first */ 2157 dc_state_remove_phantom_streams_and_planes(dc, context); 2158 dc_state_release_phantom_streams_and_planes(dc, context); 2159 2160 dc->res_pool->funcs->update_soc_for_wm_a(dc, context); 2161 2162 for (i = 0; i < context->stream_count; i++) 2163 resource_update_pipes_for_stream_with_slice_count(context, dc->current_state, dc->res_pool, context->streams[i], 1); 2164 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate); 2165 2166 if (!pipe_cnt) { 2167 out = true; 2168 goto validate_out; 2169 } 2170 2171 dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt); 2172 context->bw_ctx.dml.soc.max_vratio_pre = dcn32_determine_max_vratio_prefetch(dc, context); 2173 2174 if (!fast_validate) { 2175 if (!dcn32_full_validate_bw_helper(dc, context, pipes, &vlevel, split, merge, 2176 &pipe_cnt, &repopulate_pipes)) 2177 goto validate_fail; 2178 } 2179 2180 if (fast_validate || 2181 (dc->debug.dml_disallow_alternate_prefetch_modes && 2182 (vlevel == context->bw_ctx.dml.soc.num_states || 2183 vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported))) { 2184 /* 2185 * If dml_disallow_alternate_prefetch_modes is false, then we have already 2186 * tried alternate prefetch modes during full validation. 2187 * 2188 * If mode is unsupported or there is no p-state support, then 2189 * fall back to favouring voltage. 2190 * 2191 * If Prefetch mode 0 failed for this config, or passed with Max UCLK, then try 2192 * to support with Prefetch mode 1 (dm_prefetch_support_fclk_and_stutter == 2) 2193 */ 2194 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = 2195 dm_prefetch_support_none; 2196 2197 context->bw_ctx.dml.validate_max_state = fast_validate; 2198 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); 2199 2200 context->bw_ctx.dml.validate_max_state = false; 2201 2202 if (vlevel < context->bw_ctx.dml.soc.num_states) { 2203 memset(split, 0, sizeof(split)); 2204 memset(merge, 0, sizeof(merge)); 2205 vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge); 2206 /* dcn20_validate_apply_pipe_split_flags can modify voltage level outside of DML */ 2207 vba->VoltageLevel = vlevel; 2208 } 2209 } 2210 2211 dml_log_mode_support_params(&context->bw_ctx.dml); 2212 2213 if (vlevel == context->bw_ctx.dml.soc.num_states) 2214 goto validate_fail; 2215 2216 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 2217 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 2218 struct pipe_ctx *mpo_pipe = pipe->bottom_pipe; 2219 2220 if (!pipe->stream) 2221 continue; 2222 2223 if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled 2224 && !dc->config.enable_windowed_mpo_odm 2225 && pipe->plane_state && mpo_pipe 2226 && memcmp(&mpo_pipe->plane_state->clip_rect, 2227 &pipe->stream->src, 2228 sizeof(struct rect)) != 0) { 2229 ASSERT(mpo_pipe->plane_state != pipe->plane_state); 2230 goto validate_fail; 2231 } 2232 pipe_idx++; 2233 } 2234 2235 if (!dcn32_apply_merge_split_flags_helper(dc, context, &repopulate_pipes, split, merge)) 2236 goto validate_fail; 2237 2238 /* Actual dsc count per stream dsc validation*/ 2239 if (!dcn20_validate_dsc(dc, context)) { 2240 vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE; 2241 goto validate_fail; 2242 } 2243 2244 if (repopulate_pipes) { 2245 int flag_max_mpc_comb = vba->maxMpcComb; 2246 int flag_vlevel = vlevel; 2247 int i; 2248 2249 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate); 2250 if (!dc->config.enable_windowed_mpo_odm) 2251 dcn32_update_dml_pipes_odm_policy_based_on_context(dc, context, pipes); 2252 2253 /* repopulate_pipes = 1 means the pipes were either split or merged. In this case 2254 * we have to re-calculate the DET allocation and run through DML once more to 2255 * ensure all the params are calculated correctly. We do not need to run the 2256 * pipe split check again after this call (pipes are already split / merged). 2257 * */ 2258 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = 2259 dm_prefetch_support_uclk_fclk_and_stutter_if_possible; 2260 2261 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); 2262 2263 if (vlevel == context->bw_ctx.dml.soc.num_states) { 2264 /* failed after DET size changes */ 2265 goto validate_fail; 2266 } else if (flag_max_mpc_comb == 0 && 2267 flag_max_mpc_comb != context->bw_ctx.dml.vba.maxMpcComb) { 2268 /* check the context constructed with pipe split flags is still valid*/ 2269 bool flags_valid = false; 2270 for (i = flag_vlevel; i < context->bw_ctx.dml.soc.num_states; i++) { 2271 if (vba->ModeSupport[i][flag_max_mpc_comb]) { 2272 vba->maxMpcComb = flag_max_mpc_comb; 2273 vba->VoltageLevel = i; 2274 vlevel = i; 2275 flags_valid = true; 2276 break; 2277 } 2278 } 2279 2280 /* this should never happen */ 2281 if (!flags_valid) 2282 goto validate_fail; 2283 } 2284 } 2285 *vlevel_out = vlevel; 2286 *pipe_cnt_out = pipe_cnt; 2287 2288 out = true; 2289 goto validate_out; 2290 2291 validate_fail: 2292 out = false; 2293 2294 validate_out: 2295 return out; 2296 } 2297 2298 2299 void dcn32_calculate_wm_and_dlg_fpu(struct dc *dc, struct dc_state *context, 2300 display_e2e_pipe_params_st *pipes, 2301 int pipe_cnt, 2302 int vlevel) 2303 { 2304 int i, pipe_idx, vlevel_temp = 0; 2305 double dcfclk = dcn3_2_soc.clock_limits[0].dcfclk_mhz; 2306 double dcfclk_from_validation = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb]; 2307 double dram_speed_from_validation = context->bw_ctx.dml.vba.DRAMSpeed; 2308 double dcfclk_from_fw_based_mclk_switching = dcfclk_from_validation; 2309 bool pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] != 2310 dm_dram_clock_change_unsupported; 2311 unsigned int dummy_latency_index = 0; 2312 int maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb; 2313 unsigned int min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed; 2314 bool subvp_in_use = dcn32_subvp_in_use(dc, context); 2315 unsigned int min_dram_speed_mts_margin; 2316 bool need_fclk_lat_as_dummy = false; 2317 bool is_subvp_p_drr = false; 2318 struct dc_stream_state *fpo_candidate_stream = NULL; 2319 struct dc_stream_status *stream_status = NULL; 2320 2321 dc_assert_fp_enabled(); 2322 2323 /* need to find dummy latency index for subvp */ 2324 if (subvp_in_use) { 2325 /* Override DRAMClockChangeSupport for SubVP + DRR case where the DRR cannot switch without stretching it's VBLANK */ 2326 if (!pstate_en) { 2327 context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp; 2328 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = dm_prefetch_support_fclk_and_stutter; 2329 pstate_en = true; 2330 is_subvp_p_drr = true; 2331 } 2332 dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc, 2333 context, pipes, pipe_cnt, vlevel); 2334 2335 /* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so prefetch is 2336 * scheduled correctly to account for dummy pstate. 2337 */ 2338 if (context->bw_ctx.dml.soc.fclk_change_latency_us < dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us) { 2339 need_fclk_lat_as_dummy = true; 2340 context->bw_ctx.dml.soc.fclk_change_latency_us = 2341 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us; 2342 } 2343 context->bw_ctx.dml.soc.dram_clock_change_latency_us = 2344 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us; 2345 dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false); 2346 maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb; 2347 if (is_subvp_p_drr) { 2348 context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp; 2349 } 2350 } 2351 2352 context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false; 2353 for (i = 0; i < context->stream_count; i++) { 2354 stream_status = NULL; 2355 if (context->streams[i]) 2356 stream_status = dc_state_get_stream_status(context, context->streams[i]); 2357 if (stream_status) 2358 stream_status->fpo_in_use = false; 2359 } 2360 2361 if (!pstate_en || (!dc->debug.disable_fpo_optimizations && 2362 pstate_en && vlevel != 0)) { 2363 /* only when the mclk switch can not be natural, is the fw based vblank stretch attempted */ 2364 fpo_candidate_stream = dcn32_can_support_mclk_switch_using_fw_based_vblank_stretch(dc, context); 2365 if (fpo_candidate_stream) { 2366 stream_status = dc_state_get_stream_status(context, fpo_candidate_stream); 2367 if (stream_status) 2368 stream_status->fpo_in_use = true; 2369 context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = true; 2370 } 2371 2372 if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) { 2373 dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc, 2374 context, pipes, pipe_cnt, vlevel); 2375 2376 /* After calling dcn30_find_dummy_latency_index_for_fw_based_mclk_switch 2377 * we reinstate the original dram_clock_change_latency_us on the context 2378 * and all variables that may have changed up to this point, except the 2379 * newly found dummy_latency_index 2380 */ 2381 context->bw_ctx.dml.soc.dram_clock_change_latency_us = 2382 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us; 2383 /* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so 2384 * prefetch is scheduled correctly to account for dummy pstate. 2385 */ 2386 if (context->bw_ctx.dml.soc.fclk_change_latency_us < dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us) { 2387 need_fclk_lat_as_dummy = true; 2388 context->bw_ctx.dml.soc.fclk_change_latency_us = 2389 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us; 2390 } 2391 dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel_temp, false); 2392 if (vlevel_temp < vlevel) { 2393 vlevel = vlevel_temp; 2394 maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb; 2395 dcfclk_from_fw_based_mclk_switching = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb]; 2396 pstate_en = true; 2397 context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank; 2398 } else { 2399 /* Restore FCLK latency and re-run validation to go back to original validation 2400 * output if we find that enabling FPO does not give us any benefit (i.e. lower 2401 * voltage level) 2402 */ 2403 context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false; 2404 for (i = 0; i < context->stream_count; i++) { 2405 stream_status = NULL; 2406 if (context->streams[i]) 2407 stream_status = dc_state_get_stream_status(context, context->streams[i]); 2408 if (stream_status) 2409 stream_status->fpo_in_use = false; 2410 } 2411 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us; 2412 dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false); 2413 } 2414 } 2415 } 2416 2417 /* Set B: 2418 * For Set B calculations use clocks from clock_limits[2] when available i.e. when SMU is present, 2419 * otherwise use arbitrary low value from spreadsheet for DCFCLK as lower is safer for watermark 2420 * calculations to cover bootup clocks. 2421 * DCFCLK: soc.clock_limits[2] when available 2422 * UCLK: soc.clock_limits[2] when available 2423 */ 2424 if (dcn3_2_soc.num_states > 2) { 2425 vlevel_temp = 2; 2426 dcfclk = dcn3_2_soc.clock_limits[2].dcfclk_mhz; 2427 } else 2428 dcfclk = 615; //DCFCLK Vmin_lv 2429 2430 pipes[0].clks_cfg.voltage = vlevel_temp; 2431 pipes[0].clks_cfg.dcfclk_mhz = dcfclk; 2432 pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz; 2433 2434 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].valid) { 2435 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us; 2436 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us; 2437 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us; 2438 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us; 2439 } 2440 context->bw_ctx.bw.dcn.watermarks.b.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2441 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2442 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2443 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2444 context->bw_ctx.bw.dcn.watermarks.b.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2445 context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2446 context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2447 context->bw_ctx.bw.dcn.watermarks.b.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2448 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2449 context->bw_ctx.bw.dcn.watermarks.b.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2450 2451 /* Set D: 2452 * All clocks min. 2453 * DCFCLK: Min, as reported by PM FW when available 2454 * UCLK : Min, as reported by PM FW when available 2455 * sr_enter_exit/sr_exit should be lower than used for DRAM (TBD after bringup or later, use as decided in Clk Mgr) 2456 */ 2457 2458 /* 2459 if (dcn3_2_soc.num_states > 2) { 2460 vlevel_temp = 0; 2461 dcfclk = dc->clk_mgr->bw_params->clk_table.entries[0].dcfclk_mhz; 2462 } else 2463 dcfclk = 615; //DCFCLK Vmin_lv 2464 2465 pipes[0].clks_cfg.voltage = vlevel_temp; 2466 pipes[0].clks_cfg.dcfclk_mhz = dcfclk; 2467 pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz; 2468 2469 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].valid) { 2470 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us; 2471 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us; 2472 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us; 2473 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us; 2474 } 2475 context->bw_ctx.bw.dcn.watermarks.d.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2476 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2477 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2478 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2479 context->bw_ctx.bw.dcn.watermarks.d.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2480 context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2481 context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2482 context->bw_ctx.bw.dcn.watermarks.d.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2483 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2484 context->bw_ctx.bw.dcn.watermarks.d.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2485 */ 2486 2487 /* Set C, for Dummy P-State: 2488 * All clocks min. 2489 * DCFCLK: Min, as reported by PM FW, when available 2490 * UCLK : Min, as reported by PM FW, when available 2491 * pstate latency as per UCLK state dummy pstate latency 2492 */ 2493 2494 // For Set A and Set C use values from validation 2495 pipes[0].clks_cfg.voltage = vlevel; 2496 pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_validation; 2497 pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].socclk_mhz; 2498 2499 if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) { 2500 pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_fw_based_mclk_switching; 2501 } 2502 2503 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid) { 2504 min_dram_speed_mts = dram_speed_from_validation; 2505 min_dram_speed_mts_margin = 160; 2506 2507 context->bw_ctx.dml.soc.dram_clock_change_latency_us = 2508 dc->clk_mgr->bw_params->dummy_pstate_table[0].dummy_pstate_latency_us; 2509 2510 if (context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] == 2511 dm_dram_clock_change_unsupported) { 2512 int min_dram_speed_mts_offset = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels - 1; 2513 2514 min_dram_speed_mts = 2515 dc->clk_mgr->bw_params->clk_table.entries[min_dram_speed_mts_offset].memclk_mhz * 16; 2516 } 2517 2518 if (!context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching && !subvp_in_use) { 2519 /* find largest table entry that is lower than dram speed, 2520 * but lower than DPM0 still uses DPM0 2521 */ 2522 for (dummy_latency_index = 3; dummy_latency_index > 0; dummy_latency_index--) 2523 if (min_dram_speed_mts + min_dram_speed_mts_margin > 2524 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dram_speed_mts) 2525 break; 2526 } 2527 2528 context->bw_ctx.dml.soc.dram_clock_change_latency_us = 2529 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us; 2530 2531 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us; 2532 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us; 2533 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us; 2534 } 2535 2536 context->bw_ctx.bw.dcn.watermarks.c.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2537 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2538 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2539 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2540 context->bw_ctx.bw.dcn.watermarks.c.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2541 context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2542 context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2543 context->bw_ctx.bw.dcn.watermarks.c.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2544 /* On DCN32/321, PMFW will set PSTATE_CHANGE_TYPE = 1 (FCLK) for UCLK dummy p-state. 2545 * In this case we must program FCLK WM Set C to use the UCLK dummy p-state WM 2546 * value. 2547 */ 2548 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.fclk_pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2549 context->bw_ctx.bw.dcn.watermarks.c.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2550 2551 if ((!pstate_en) && (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid)) { 2552 /* The only difference between A and C is p-state latency, if p-state is not supported 2553 * with full p-state latency we want to calculate DLG based on dummy p-state latency, 2554 * Set A p-state watermark set to 0 on DCN30, when p-state unsupported, for now keep as DCN30. 2555 */ 2556 context->bw_ctx.bw.dcn.watermarks.a = context->bw_ctx.bw.dcn.watermarks.c; 2557 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 0; 2558 /* Calculate FCLK p-state change watermark based on FCLK pstate change latency in case 2559 * UCLK p-state is not supported, to avoid underflow in case FCLK pstate is supported 2560 */ 2561 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2562 } else { 2563 /* Set A: 2564 * All clocks min. 2565 * DCFCLK: Min, as reported by PM FW, when available 2566 * UCLK: Min, as reported by PM FW, when available 2567 */ 2568 2569 /* For set A set the correct latency values (i.e. non-dummy values) unconditionally 2570 */ 2571 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us; 2572 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us; 2573 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us; 2574 2575 context->bw_ctx.bw.dcn.watermarks.a.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2576 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2577 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2578 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2579 context->bw_ctx.bw.dcn.watermarks.a.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2580 context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2581 context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2582 context->bw_ctx.bw.dcn.watermarks.a.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2583 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2584 context->bw_ctx.bw.dcn.watermarks.a.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2585 } 2586 2587 /* Make set D = set A since we do not optimized watermarks for MALL */ 2588 context->bw_ctx.bw.dcn.watermarks.d = context->bw_ctx.bw.dcn.watermarks.a; 2589 2590 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 2591 if (!context->res_ctx.pipe_ctx[i].stream) 2592 continue; 2593 2594 pipes[pipe_idx].clks_cfg.dispclk_mhz = get_dispclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt); 2595 pipes[pipe_idx].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); 2596 2597 if (dc->config.forced_clocks) { 2598 pipes[pipe_idx].clks_cfg.dispclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dispclk_mhz; 2599 pipes[pipe_idx].clks_cfg.dppclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dppclk_mhz; 2600 } 2601 if (dc->debug.min_disp_clk_khz > pipes[pipe_idx].clks_cfg.dispclk_mhz * 1000) 2602 pipes[pipe_idx].clks_cfg.dispclk_mhz = dc->debug.min_disp_clk_khz / 1000.0; 2603 if (dc->debug.min_dpp_clk_khz > pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000) 2604 pipes[pipe_idx].clks_cfg.dppclk_mhz = dc->debug.min_dpp_clk_khz / 1000.0; 2605 2606 pipe_idx++; 2607 } 2608 2609 context->perf_params.stutter_period_us = context->bw_ctx.dml.vba.StutterPeriod; 2610 2611 /* for proper prefetch calculations, if dummy lat > fclk lat, use fclk lat = dummy lat */ 2612 if (need_fclk_lat_as_dummy) 2613 context->bw_ctx.dml.soc.fclk_change_latency_us = 2614 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us; 2615 2616 dcn32_calculate_dlg_params(dc, context, pipes, pipe_cnt, vlevel); 2617 2618 if (!pstate_en) 2619 /* Restore full p-state latency */ 2620 context->bw_ctx.dml.soc.dram_clock_change_latency_us = 2621 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us; 2622 2623 /* revert fclk lat changes if required */ 2624 if (need_fclk_lat_as_dummy) 2625 context->bw_ctx.dml.soc.fclk_change_latency_us = 2626 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us; 2627 } 2628 2629 static void dcn32_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts, 2630 unsigned int *optimal_dcfclk, 2631 unsigned int *optimal_fclk) 2632 { 2633 double bw_from_dram, bw_from_dram1, bw_from_dram2; 2634 2635 bw_from_dram1 = uclk_mts * dcn3_2_soc.num_chans * 2636 dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_dram_bw_use_normal_percent / 100); 2637 bw_from_dram2 = uclk_mts * dcn3_2_soc.num_chans * 2638 dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100); 2639 2640 bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2; 2641 2642 if (optimal_fclk) 2643 *optimal_fclk = bw_from_dram / 2644 (dcn3_2_soc.fabric_datapath_to_dcn_data_return_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100)); 2645 2646 if (optimal_dcfclk) 2647 *optimal_dcfclk = bw_from_dram / 2648 (dcn3_2_soc.return_bus_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100)); 2649 } 2650 2651 static void remove_entry_from_table_at_index(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries, 2652 unsigned int index) 2653 { 2654 int i; 2655 2656 if (*num_entries == 0) 2657 return; 2658 2659 for (i = index; i < *num_entries - 1; i++) { 2660 table[i] = table[i + 1]; 2661 } 2662 memset(&table[--(*num_entries)], 0, sizeof(struct _vcs_dpi_voltage_scaling_st)); 2663 } 2664 2665 void dcn32_patch_dpm_table(struct clk_bw_params *bw_params) 2666 { 2667 int i; 2668 unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, 2669 max_phyclk_mhz = 0, max_dtbclk_mhz = 0, max_fclk_mhz = 0, max_uclk_mhz = 0; 2670 2671 for (i = 0; i < MAX_NUM_DPM_LVL; i++) { 2672 if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz) 2673 max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz; 2674 if (bw_params->clk_table.entries[i].fclk_mhz > max_fclk_mhz) 2675 max_fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz; 2676 if (bw_params->clk_table.entries[i].memclk_mhz > max_uclk_mhz) 2677 max_uclk_mhz = bw_params->clk_table.entries[i].memclk_mhz; 2678 if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz) 2679 max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz; 2680 if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz) 2681 max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz; 2682 if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz) 2683 max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz; 2684 if (bw_params->clk_table.entries[i].dtbclk_mhz > max_dtbclk_mhz) 2685 max_dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz; 2686 } 2687 2688 /* Scan through clock values we currently have and if they are 0, 2689 * then populate it with dcn3_2_soc.clock_limits[] value. 2690 * 2691 * Do it for DCFCLK, DISPCLK, DTBCLK and UCLK as any of those being 2692 * 0, will cause it to skip building the clock table. 2693 */ 2694 if (max_dcfclk_mhz == 0) 2695 bw_params->clk_table.entries[0].dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz; 2696 if (max_dispclk_mhz == 0) 2697 bw_params->clk_table.entries[0].dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz; 2698 if (max_dtbclk_mhz == 0) 2699 bw_params->clk_table.entries[0].dtbclk_mhz = dcn3_2_soc.clock_limits[0].dtbclk_mhz; 2700 if (max_uclk_mhz == 0) 2701 bw_params->clk_table.entries[0].memclk_mhz = dcn3_2_soc.clock_limits[0].dram_speed_mts / 16; 2702 } 2703 2704 static void swap_table_entries(struct _vcs_dpi_voltage_scaling_st *first_entry, 2705 struct _vcs_dpi_voltage_scaling_st *second_entry) 2706 { 2707 struct _vcs_dpi_voltage_scaling_st temp_entry = *first_entry; 2708 *first_entry = *second_entry; 2709 *second_entry = temp_entry; 2710 } 2711 2712 /* 2713 * sort_entries_with_same_bw - Sort entries sharing the same bandwidth by DCFCLK 2714 */ 2715 static void sort_entries_with_same_bw(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries) 2716 { 2717 unsigned int start_index = 0; 2718 unsigned int end_index = 0; 2719 unsigned int current_bw = 0; 2720 2721 for (int i = 0; i < (*num_entries - 1); i++) { 2722 if (table[i].net_bw_in_kbytes_sec == table[i+1].net_bw_in_kbytes_sec) { 2723 current_bw = table[i].net_bw_in_kbytes_sec; 2724 start_index = i; 2725 end_index = ++i; 2726 2727 while ((i < (*num_entries - 1)) && (table[i+1].net_bw_in_kbytes_sec == current_bw)) 2728 end_index = ++i; 2729 } 2730 2731 if (start_index != end_index) { 2732 for (int j = start_index; j < end_index; j++) { 2733 for (int k = start_index; k < end_index; k++) { 2734 if (table[k].dcfclk_mhz > table[k+1].dcfclk_mhz) 2735 swap_table_entries(&table[k], &table[k+1]); 2736 } 2737 } 2738 } 2739 2740 start_index = 0; 2741 end_index = 0; 2742 2743 } 2744 } 2745 2746 /* 2747 * remove_inconsistent_entries - Ensure entries with the same bandwidth have MEMCLK and FCLK monotonically increasing 2748 * and remove entries that do not 2749 */ 2750 static void remove_inconsistent_entries(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries) 2751 { 2752 for (int i = 0; i < (*num_entries - 1); i++) { 2753 if (table[i].net_bw_in_kbytes_sec == table[i+1].net_bw_in_kbytes_sec) { 2754 if ((table[i].dram_speed_mts > table[i+1].dram_speed_mts) || 2755 (table[i].fabricclk_mhz > table[i+1].fabricclk_mhz)) 2756 remove_entry_from_table_at_index(table, num_entries, i); 2757 } 2758 } 2759 } 2760 2761 /* 2762 * override_max_clk_values - Overwrite the max clock frequencies with the max DC mode timings 2763 * Input: 2764 * max_clk_limit - struct containing the desired clock timings 2765 * Output: 2766 * curr_clk_limit - struct containing the timings that need to be overwritten 2767 * Return: 0 upon success, non-zero for failure 2768 */ 2769 static int override_max_clk_values(struct clk_limit_table_entry *max_clk_limit, 2770 struct clk_limit_table_entry *curr_clk_limit) 2771 { 2772 if (NULL == max_clk_limit || NULL == curr_clk_limit) 2773 return -1; //invalid parameters 2774 2775 //only overwrite if desired max clock frequency is initialized 2776 if (max_clk_limit->dcfclk_mhz != 0) 2777 curr_clk_limit->dcfclk_mhz = max_clk_limit->dcfclk_mhz; 2778 2779 if (max_clk_limit->fclk_mhz != 0) 2780 curr_clk_limit->fclk_mhz = max_clk_limit->fclk_mhz; 2781 2782 if (max_clk_limit->memclk_mhz != 0) 2783 curr_clk_limit->memclk_mhz = max_clk_limit->memclk_mhz; 2784 2785 if (max_clk_limit->socclk_mhz != 0) 2786 curr_clk_limit->socclk_mhz = max_clk_limit->socclk_mhz; 2787 2788 if (max_clk_limit->dtbclk_mhz != 0) 2789 curr_clk_limit->dtbclk_mhz = max_clk_limit->dtbclk_mhz; 2790 2791 if (max_clk_limit->dispclk_mhz != 0) 2792 curr_clk_limit->dispclk_mhz = max_clk_limit->dispclk_mhz; 2793 2794 return 0; 2795 } 2796 2797 static int build_synthetic_soc_states(bool disable_dc_mode_overwrite, struct clk_bw_params *bw_params, 2798 struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries) 2799 { 2800 int i, j; 2801 struct _vcs_dpi_voltage_scaling_st entry = {0}; 2802 struct clk_limit_table_entry max_clk_data = {0}; 2803 2804 unsigned int min_dcfclk_mhz = 199, min_fclk_mhz = 299; 2805 2806 static const unsigned int num_dcfclk_stas = 5; 2807 unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564}; 2808 2809 unsigned int num_uclk_dpms = 0; 2810 unsigned int num_fclk_dpms = 0; 2811 unsigned int num_dcfclk_dpms = 0; 2812 2813 unsigned int num_dc_uclk_dpms = 0; 2814 unsigned int num_dc_fclk_dpms = 0; 2815 unsigned int num_dc_dcfclk_dpms = 0; 2816 2817 for (i = 0; i < MAX_NUM_DPM_LVL; i++) { 2818 if (bw_params->clk_table.entries[i].dcfclk_mhz > max_clk_data.dcfclk_mhz) 2819 max_clk_data.dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz; 2820 if (bw_params->clk_table.entries[i].fclk_mhz > max_clk_data.fclk_mhz) 2821 max_clk_data.fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz; 2822 if (bw_params->clk_table.entries[i].memclk_mhz > max_clk_data.memclk_mhz) 2823 max_clk_data.memclk_mhz = bw_params->clk_table.entries[i].memclk_mhz; 2824 if (bw_params->clk_table.entries[i].dispclk_mhz > max_clk_data.dispclk_mhz) 2825 max_clk_data.dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz; 2826 if (bw_params->clk_table.entries[i].dppclk_mhz > max_clk_data.dppclk_mhz) 2827 max_clk_data.dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz; 2828 if (bw_params->clk_table.entries[i].phyclk_mhz > max_clk_data.phyclk_mhz) 2829 max_clk_data.phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz; 2830 if (bw_params->clk_table.entries[i].dtbclk_mhz > max_clk_data.dtbclk_mhz) 2831 max_clk_data.dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz; 2832 2833 if (bw_params->clk_table.entries[i].memclk_mhz > 0) { 2834 num_uclk_dpms++; 2835 if (bw_params->clk_table.entries[i].memclk_mhz <= bw_params->dc_mode_limit.memclk_mhz) 2836 num_dc_uclk_dpms++; 2837 } 2838 if (bw_params->clk_table.entries[i].fclk_mhz > 0) { 2839 num_fclk_dpms++; 2840 if (bw_params->clk_table.entries[i].fclk_mhz <= bw_params->dc_mode_limit.fclk_mhz) 2841 num_dc_fclk_dpms++; 2842 } 2843 if (bw_params->clk_table.entries[i].dcfclk_mhz > 0) { 2844 num_dcfclk_dpms++; 2845 if (bw_params->clk_table.entries[i].dcfclk_mhz <= bw_params->dc_mode_limit.dcfclk_mhz) 2846 num_dc_dcfclk_dpms++; 2847 } 2848 } 2849 2850 if (!disable_dc_mode_overwrite) { 2851 //Overwrite max frequencies with max DC mode frequencies for DC mode systems 2852 override_max_clk_values(&bw_params->dc_mode_limit, &max_clk_data); 2853 num_uclk_dpms = num_dc_uclk_dpms; 2854 num_fclk_dpms = num_dc_fclk_dpms; 2855 num_dcfclk_dpms = num_dc_dcfclk_dpms; 2856 bw_params->clk_table.num_entries_per_clk.num_memclk_levels = num_uclk_dpms; 2857 bw_params->clk_table.num_entries_per_clk.num_fclk_levels = num_fclk_dpms; 2858 } 2859 2860 if (num_dcfclk_dpms > 0 && bw_params->clk_table.entries[0].fclk_mhz > min_fclk_mhz) 2861 min_fclk_mhz = bw_params->clk_table.entries[0].fclk_mhz; 2862 2863 if (!max_clk_data.dcfclk_mhz || !max_clk_data.dispclk_mhz || !max_clk_data.dtbclk_mhz) 2864 return -1; 2865 2866 if (max_clk_data.dppclk_mhz == 0) 2867 max_clk_data.dppclk_mhz = max_clk_data.dispclk_mhz; 2868 2869 if (max_clk_data.fclk_mhz == 0) 2870 max_clk_data.fclk_mhz = max_clk_data.dcfclk_mhz * 2871 dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 2872 dcn3_2_soc.pct_ideal_fabric_bw_after_urgent; 2873 2874 if (max_clk_data.phyclk_mhz == 0) 2875 max_clk_data.phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz; 2876 2877 *num_entries = 0; 2878 entry.dispclk_mhz = max_clk_data.dispclk_mhz; 2879 entry.dscclk_mhz = max_clk_data.dispclk_mhz / 3; 2880 entry.dppclk_mhz = max_clk_data.dppclk_mhz; 2881 entry.dtbclk_mhz = max_clk_data.dtbclk_mhz; 2882 entry.phyclk_mhz = max_clk_data.phyclk_mhz; 2883 entry.phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz; 2884 entry.phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz; 2885 2886 // Insert all the DCFCLK STAs 2887 for (i = 0; i < num_dcfclk_stas; i++) { 2888 entry.dcfclk_mhz = dcfclk_sta_targets[i]; 2889 entry.fabricclk_mhz = 0; 2890 entry.dram_speed_mts = 0; 2891 2892 get_optimal_ntuple(&entry); 2893 entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry); 2894 insert_entry_into_table_sorted(table, num_entries, &entry); 2895 } 2896 2897 // Insert the max DCFCLK 2898 entry.dcfclk_mhz = max_clk_data.dcfclk_mhz; 2899 entry.fabricclk_mhz = 0; 2900 entry.dram_speed_mts = 0; 2901 2902 get_optimal_ntuple(&entry); 2903 entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry); 2904 insert_entry_into_table_sorted(table, num_entries, &entry); 2905 2906 // Insert the UCLK DPMS 2907 for (i = 0; i < num_uclk_dpms; i++) { 2908 entry.dcfclk_mhz = 0; 2909 entry.fabricclk_mhz = 0; 2910 entry.dram_speed_mts = bw_params->clk_table.entries[i].memclk_mhz * 16; 2911 2912 get_optimal_ntuple(&entry); 2913 entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry); 2914 insert_entry_into_table_sorted(table, num_entries, &entry); 2915 } 2916 2917 // If FCLK is coarse grained, insert individual DPMs. 2918 if (num_fclk_dpms > 2) { 2919 for (i = 0; i < num_fclk_dpms; i++) { 2920 entry.dcfclk_mhz = 0; 2921 entry.fabricclk_mhz = bw_params->clk_table.entries[i].fclk_mhz; 2922 entry.dram_speed_mts = 0; 2923 2924 get_optimal_ntuple(&entry); 2925 entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry); 2926 insert_entry_into_table_sorted(table, num_entries, &entry); 2927 } 2928 } 2929 // If FCLK fine grained, only insert max 2930 else { 2931 entry.dcfclk_mhz = 0; 2932 entry.fabricclk_mhz = max_clk_data.fclk_mhz; 2933 entry.dram_speed_mts = 0; 2934 2935 get_optimal_ntuple(&entry); 2936 entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry); 2937 insert_entry_into_table_sorted(table, num_entries, &entry); 2938 } 2939 2940 // At this point, the table contains all "points of interest" based on 2941 // DPMs from PMFW, and STAs. Table is sorted by BW, and all clock 2942 // ratios (by derate, are exact). 2943 2944 // Remove states that require higher clocks than are supported 2945 for (i = *num_entries - 1; i >= 0 ; i--) { 2946 if (table[i].dcfclk_mhz > max_clk_data.dcfclk_mhz || 2947 table[i].fabricclk_mhz > max_clk_data.fclk_mhz || 2948 table[i].dram_speed_mts > max_clk_data.memclk_mhz * 16) 2949 remove_entry_from_table_at_index(table, num_entries, i); 2950 } 2951 2952 // Insert entry with all max dc limits without bandwidth matching 2953 if (!disable_dc_mode_overwrite) { 2954 struct _vcs_dpi_voltage_scaling_st max_dc_limits_entry = entry; 2955 2956 max_dc_limits_entry.dcfclk_mhz = max_clk_data.dcfclk_mhz; 2957 max_dc_limits_entry.fabricclk_mhz = max_clk_data.fclk_mhz; 2958 max_dc_limits_entry.dram_speed_mts = max_clk_data.memclk_mhz * 16; 2959 2960 max_dc_limits_entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&max_dc_limits_entry); 2961 insert_entry_into_table_sorted(table, num_entries, &max_dc_limits_entry); 2962 2963 sort_entries_with_same_bw(table, num_entries); 2964 remove_inconsistent_entries(table, num_entries); 2965 } 2966 2967 // At this point, the table only contains supported points of interest 2968 // it could be used as is, but some states may be redundant due to 2969 // coarse grained nature of some clocks, so we want to round up to 2970 // coarse grained DPMs and remove duplicates. 2971 2972 // Round up UCLKs 2973 for (i = *num_entries - 1; i >= 0 ; i--) { 2974 for (j = 0; j < num_uclk_dpms; j++) { 2975 if (bw_params->clk_table.entries[j].memclk_mhz * 16 >= table[i].dram_speed_mts) { 2976 table[i].dram_speed_mts = bw_params->clk_table.entries[j].memclk_mhz * 16; 2977 break; 2978 } 2979 } 2980 } 2981 2982 // If FCLK is coarse grained, round up to next DPMs 2983 if (num_fclk_dpms > 2) { 2984 for (i = *num_entries - 1; i >= 0 ; i--) { 2985 for (j = 0; j < num_fclk_dpms; j++) { 2986 if (bw_params->clk_table.entries[j].fclk_mhz >= table[i].fabricclk_mhz) { 2987 table[i].fabricclk_mhz = bw_params->clk_table.entries[j].fclk_mhz; 2988 break; 2989 } 2990 } 2991 } 2992 } 2993 // Otherwise, round up to minimum. 2994 else { 2995 for (i = *num_entries - 1; i >= 0 ; i--) { 2996 if (table[i].fabricclk_mhz < min_fclk_mhz) { 2997 table[i].fabricclk_mhz = min_fclk_mhz; 2998 } 2999 } 3000 } 3001 3002 // Round DCFCLKs up to minimum 3003 for (i = *num_entries - 1; i >= 0 ; i--) { 3004 if (table[i].dcfclk_mhz < min_dcfclk_mhz) { 3005 table[i].dcfclk_mhz = min_dcfclk_mhz; 3006 } 3007 } 3008 3009 // Remove duplicate states, note duplicate states are always neighbouring since table is sorted. 3010 i = 0; 3011 while (i < *num_entries - 1) { 3012 if (table[i].dcfclk_mhz == table[i + 1].dcfclk_mhz && 3013 table[i].fabricclk_mhz == table[i + 1].fabricclk_mhz && 3014 table[i].dram_speed_mts == table[i + 1].dram_speed_mts) 3015 remove_entry_from_table_at_index(table, num_entries, i + 1); 3016 else 3017 i++; 3018 } 3019 3020 // Fix up the state indicies 3021 for (i = *num_entries - 1; i >= 0 ; i--) { 3022 table[i].state = i; 3023 } 3024 3025 return 0; 3026 } 3027 3028 /* 3029 * dcn32_update_bw_bounding_box 3030 * 3031 * This would override some dcn3_2 ip_or_soc initial parameters hardcoded from 3032 * spreadsheet with actual values as per dGPU SKU: 3033 * - with passed few options from dc->config 3034 * - with dentist_vco_frequency from Clk Mgr (currently hardcoded, but might 3035 * need to get it from PM FW) 3036 * - with passed latency values (passed in ns units) in dc-> bb override for 3037 * debugging purposes 3038 * - with passed latencies from VBIOS (in 100_ns units) if available for 3039 * certain dGPU SKU 3040 * - with number of DRAM channels from VBIOS (which differ for certain dGPU SKU 3041 * of the same ASIC) 3042 * - clocks levels with passed clk_table entries from Clk Mgr as reported by PM 3043 * FW for different clocks (which might differ for certain dGPU SKU of the 3044 * same ASIC) 3045 */ 3046 void dcn32_update_bw_bounding_box_fpu(struct dc *dc, struct clk_bw_params *bw_params) 3047 { 3048 dc_assert_fp_enabled(); 3049 3050 /* Overrides from dc->config options */ 3051 dcn3_2_ip.clamp_min_dcfclk = dc->config.clamp_min_dcfclk; 3052 3053 /* Override from passed dc->bb_overrides if available*/ 3054 if ((int)(dcn3_2_soc.sr_exit_time_us * 1000) != dc->bb_overrides.sr_exit_time_ns 3055 && dc->bb_overrides.sr_exit_time_ns) { 3056 dc->dml2_options.bbox_overrides.sr_exit_latency_us = 3057 dcn3_2_soc.sr_exit_time_us = dc->bb_overrides.sr_exit_time_ns / 1000.0; 3058 } 3059 3060 if ((int)(dcn3_2_soc.sr_enter_plus_exit_time_us * 1000) 3061 != dc->bb_overrides.sr_enter_plus_exit_time_ns 3062 && dc->bb_overrides.sr_enter_plus_exit_time_ns) { 3063 dc->dml2_options.bbox_overrides.sr_enter_plus_exit_latency_us = 3064 dcn3_2_soc.sr_enter_plus_exit_time_us = 3065 dc->bb_overrides.sr_enter_plus_exit_time_ns / 1000.0; 3066 } 3067 3068 if ((int)(dcn3_2_soc.urgent_latency_us * 1000) != dc->bb_overrides.urgent_latency_ns 3069 && dc->bb_overrides.urgent_latency_ns) { 3070 dcn3_2_soc.urgent_latency_us = dc->bb_overrides.urgent_latency_ns / 1000.0; 3071 dc->dml2_options.bbox_overrides.urgent_latency_us = 3072 dcn3_2_soc.urgent_latency_pixel_data_only_us = dc->bb_overrides.urgent_latency_ns / 1000.0; 3073 } 3074 3075 if ((int)(dcn3_2_soc.dram_clock_change_latency_us * 1000) 3076 != dc->bb_overrides.dram_clock_change_latency_ns 3077 && dc->bb_overrides.dram_clock_change_latency_ns) { 3078 dc->dml2_options.bbox_overrides.dram_clock_change_latency_us = 3079 dcn3_2_soc.dram_clock_change_latency_us = 3080 dc->bb_overrides.dram_clock_change_latency_ns / 1000.0; 3081 } 3082 3083 if ((int)(dcn3_2_soc.fclk_change_latency_us * 1000) 3084 != dc->bb_overrides.fclk_clock_change_latency_ns 3085 && dc->bb_overrides.fclk_clock_change_latency_ns) { 3086 dc->dml2_options.bbox_overrides.fclk_change_latency_us = 3087 dcn3_2_soc.fclk_change_latency_us = 3088 dc->bb_overrides.fclk_clock_change_latency_ns / 1000; 3089 } 3090 3091 if ((int)(dcn3_2_soc.dummy_pstate_latency_us * 1000) 3092 != dc->bb_overrides.dummy_clock_change_latency_ns 3093 && dc->bb_overrides.dummy_clock_change_latency_ns) { 3094 dcn3_2_soc.dummy_pstate_latency_us = 3095 dc->bb_overrides.dummy_clock_change_latency_ns / 1000.0; 3096 } 3097 3098 /* Override from VBIOS if VBIOS bb_info available */ 3099 if (dc->ctx->dc_bios->funcs->get_soc_bb_info) { 3100 struct bp_soc_bb_info bb_info = {0}; 3101 3102 if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) { 3103 if (bb_info.dram_clock_change_latency_100ns > 0) 3104 dc->dml2_options.bbox_overrides.dram_clock_change_latency_us = 3105 dcn3_2_soc.dram_clock_change_latency_us = 3106 bb_info.dram_clock_change_latency_100ns * 10; 3107 3108 if (bb_info.dram_sr_enter_exit_latency_100ns > 0) 3109 dc->dml2_options.bbox_overrides.sr_enter_plus_exit_latency_us = 3110 dcn3_2_soc.sr_enter_plus_exit_time_us = 3111 bb_info.dram_sr_enter_exit_latency_100ns * 10; 3112 3113 if (bb_info.dram_sr_exit_latency_100ns > 0) 3114 dc->dml2_options.bbox_overrides.sr_exit_latency_us = 3115 dcn3_2_soc.sr_exit_time_us = 3116 bb_info.dram_sr_exit_latency_100ns * 10; 3117 } 3118 } 3119 3120 /* Override from VBIOS for num_chan */ 3121 if (dc->ctx->dc_bios->vram_info.num_chans) { 3122 dc->dml2_options.bbox_overrides.dram_num_chan = 3123 dcn3_2_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans; 3124 dcn3_2_soc.mall_allocated_for_dcn_mbytes = (double)(dcn32_calc_num_avail_chans_for_mall(dc, 3125 dc->ctx->dc_bios->vram_info.num_chans) * dc->caps.mall_size_per_mem_channel); 3126 } 3127 3128 if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes) 3129 dc->dml2_options.bbox_overrides.dram_chanel_width_bytes = 3130 dcn3_2_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes; 3131 3132 /* DML DSC delay factor workaround */ 3133 dcn3_2_ip.dsc_delay_factor_wa = dc->debug.dsc_delay_factor_wa_x1000 / 1000.0; 3134 3135 dcn3_2_ip.min_prefetch_in_strobe_us = dc->debug.min_prefetch_in_strobe_ns / 1000.0; 3136 3137 /* Override dispclk_dppclk_vco_speed_mhz from Clk Mgr */ 3138 dcn3_2_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0; 3139 dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0; 3140 dc->dml2_options.bbox_overrides.disp_pll_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0; 3141 dc->dml2_options.bbox_overrides.xtalclk_mhz = dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency / 1000.0; 3142 dc->dml2_options.bbox_overrides.dchub_refclk_mhz = dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000.0; 3143 dc->dml2_options.bbox_overrides.dprefclk_mhz = dc->clk_mgr->dprefclk_khz / 1000.0; 3144 3145 /* Overrides Clock levelsfrom CLK Mgr table entries as reported by PM FW */ 3146 if (bw_params->clk_table.entries[0].memclk_mhz) { 3147 if (dc->debug.use_legacy_soc_bb_mechanism) { 3148 unsigned int i = 0, j = 0, num_states = 0; 3149 3150 unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0}; 3151 unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0}; 3152 unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0}; 3153 unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0}; 3154 unsigned int min_dcfclk = UINT_MAX; 3155 /* Set 199 as first value in STA target array to have a minimum DCFCLK value. 3156 * For DCN32 we set min to 199 so minimum FCLK DPM0 (300Mhz can be achieved) */ 3157 unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564}; 3158 unsigned int num_dcfclk_sta_targets = 4, num_uclk_states = 0; 3159 unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, max_phyclk_mhz = 0; 3160 3161 for (i = 0; i < MAX_NUM_DPM_LVL; i++) { 3162 if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz) 3163 max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz; 3164 if (bw_params->clk_table.entries[i].dcfclk_mhz != 0 && 3165 bw_params->clk_table.entries[i].dcfclk_mhz < min_dcfclk) 3166 min_dcfclk = bw_params->clk_table.entries[i].dcfclk_mhz; 3167 if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz) 3168 max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz; 3169 if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz) 3170 max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz; 3171 if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz) 3172 max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz; 3173 } 3174 if (min_dcfclk > dcfclk_sta_targets[0]) 3175 dcfclk_sta_targets[0] = min_dcfclk; 3176 if (!max_dcfclk_mhz) 3177 max_dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz; 3178 if (!max_dispclk_mhz) 3179 max_dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz; 3180 if (!max_dppclk_mhz) 3181 max_dppclk_mhz = dcn3_2_soc.clock_limits[0].dppclk_mhz; 3182 if (!max_phyclk_mhz) 3183 max_phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz; 3184 3185 if (max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) { 3186 // If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array 3187 dcfclk_sta_targets[num_dcfclk_sta_targets] = max_dcfclk_mhz; 3188 num_dcfclk_sta_targets++; 3189 } else if (max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) { 3190 // If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates 3191 for (i = 0; i < num_dcfclk_sta_targets; i++) { 3192 if (dcfclk_sta_targets[i] > max_dcfclk_mhz) { 3193 dcfclk_sta_targets[i] = max_dcfclk_mhz; 3194 break; 3195 } 3196 } 3197 // Update size of array since we "removed" duplicates 3198 num_dcfclk_sta_targets = i + 1; 3199 } 3200 3201 num_uclk_states = bw_params->clk_table.num_entries; 3202 3203 // Calculate optimal dcfclk for each uclk 3204 for (i = 0; i < num_uclk_states; i++) { 3205 dcn32_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16, 3206 &optimal_dcfclk_for_uclk[i], NULL); 3207 if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) { 3208 optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz; 3209 } 3210 } 3211 3212 // Calculate optimal uclk for each dcfclk sta target 3213 for (i = 0; i < num_dcfclk_sta_targets; i++) { 3214 for (j = 0; j < num_uclk_states; j++) { 3215 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) { 3216 optimal_uclk_for_dcfclk_sta_targets[i] = 3217 bw_params->clk_table.entries[j].memclk_mhz * 16; 3218 break; 3219 } 3220 } 3221 } 3222 3223 i = 0; 3224 j = 0; 3225 // create the final dcfclk and uclk table 3226 while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) { 3227 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) { 3228 dcfclk_mhz[num_states] = dcfclk_sta_targets[i]; 3229 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++]; 3230 } else { 3231 if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) { 3232 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j]; 3233 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16; 3234 } else { 3235 j = num_uclk_states; 3236 } 3237 } 3238 } 3239 3240 while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) { 3241 dcfclk_mhz[num_states] = dcfclk_sta_targets[i]; 3242 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++]; 3243 } 3244 3245 while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES && 3246 optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) { 3247 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j]; 3248 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16; 3249 } 3250 3251 /* bw_params->clk_table.entries[MAX_NUM_DPM_LVL]. 3252 * MAX_NUM_DPM_LVL is 8. 3253 * dcn3_02_soc.clock_limits[DC__VOLTAGE_STATES]. 3254 * DC__VOLTAGE_STATES is 40. 3255 */ 3256 if (num_states > MAX_NUM_DPM_LVL) { 3257 ASSERT(0); 3258 return; 3259 } 3260 3261 dcn3_2_soc.num_states = num_states; 3262 for (i = 0; i < dcn3_2_soc.num_states; i++) { 3263 dcn3_2_soc.clock_limits[i].state = i; 3264 dcn3_2_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i]; 3265 dcn3_2_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i]; 3266 3267 /* Fill all states with max values of all these clocks */ 3268 dcn3_2_soc.clock_limits[i].dispclk_mhz = max_dispclk_mhz; 3269 dcn3_2_soc.clock_limits[i].dppclk_mhz = max_dppclk_mhz; 3270 dcn3_2_soc.clock_limits[i].phyclk_mhz = max_phyclk_mhz; 3271 dcn3_2_soc.clock_limits[i].dscclk_mhz = max_dispclk_mhz / 3; 3272 3273 /* Populate from bw_params for DTBCLK, SOCCLK */ 3274 if (i > 0) { 3275 if (!bw_params->clk_table.entries[i].dtbclk_mhz) { 3276 dcn3_2_soc.clock_limits[i].dtbclk_mhz = dcn3_2_soc.clock_limits[i-1].dtbclk_mhz; 3277 } else { 3278 dcn3_2_soc.clock_limits[i].dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz; 3279 } 3280 } else if (bw_params->clk_table.entries[i].dtbclk_mhz) { 3281 dcn3_2_soc.clock_limits[i].dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz; 3282 } 3283 3284 if (!bw_params->clk_table.entries[i].socclk_mhz && i > 0) 3285 dcn3_2_soc.clock_limits[i].socclk_mhz = dcn3_2_soc.clock_limits[i-1].socclk_mhz; 3286 else 3287 dcn3_2_soc.clock_limits[i].socclk_mhz = bw_params->clk_table.entries[i].socclk_mhz; 3288 3289 if (!dram_speed_mts[i] && i > 0) 3290 dcn3_2_soc.clock_limits[i].dram_speed_mts = dcn3_2_soc.clock_limits[i-1].dram_speed_mts; 3291 else 3292 dcn3_2_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i]; 3293 3294 /* These clocks cannot come from bw_params, always fill from dcn3_2_soc[0] */ 3295 /* PHYCLK_D18, PHYCLK_D32 */ 3296 dcn3_2_soc.clock_limits[i].phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz; 3297 dcn3_2_soc.clock_limits[i].phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz; 3298 } 3299 } else { 3300 build_synthetic_soc_states(dc->debug.disable_dc_mode_overwrite, bw_params, 3301 dcn3_2_soc.clock_limits, &dcn3_2_soc.num_states); 3302 } 3303 3304 /* Re-init DML with updated bb */ 3305 dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32); 3306 if (dc->current_state) 3307 dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32); 3308 } 3309 3310 if (dc->clk_mgr->bw_params->clk_table.num_entries > 1) { 3311 unsigned int i = 0; 3312 3313 dc->dml2_options.bbox_overrides.clks_table.num_states = dc->clk_mgr->bw_params->clk_table.num_entries; 3314 3315 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dcfclk_levels = 3316 dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dcfclk_levels; 3317 3318 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_fclk_levels = 3319 dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_fclk_levels; 3320 3321 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_memclk_levels = 3322 dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels; 3323 3324 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_socclk_levels = 3325 dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_socclk_levels; 3326 3327 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dtbclk_levels = 3328 dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dtbclk_levels; 3329 3330 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dispclk_levels = 3331 dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dispclk_levels; 3332 3333 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dppclk_levels = 3334 dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dppclk_levels; 3335 3336 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dcfclk_levels; i++) { 3337 if (dc->clk_mgr->bw_params->clk_table.entries[i].dcfclk_mhz) 3338 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dcfclk_mhz = 3339 dc->clk_mgr->bw_params->clk_table.entries[i].dcfclk_mhz; 3340 } 3341 3342 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_fclk_levels; i++) { 3343 if (dc->clk_mgr->bw_params->clk_table.entries[i].fclk_mhz) 3344 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].fclk_mhz = 3345 dc->clk_mgr->bw_params->clk_table.entries[i].fclk_mhz; 3346 } 3347 3348 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels; i++) { 3349 if (dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz) 3350 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].memclk_mhz = 3351 dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz; 3352 } 3353 3354 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_socclk_levels; i++) { 3355 if (dc->clk_mgr->bw_params->clk_table.entries[i].socclk_mhz) 3356 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].socclk_mhz = 3357 dc->clk_mgr->bw_params->clk_table.entries[i].socclk_mhz; 3358 } 3359 3360 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dtbclk_levels; i++) { 3361 if (dc->clk_mgr->bw_params->clk_table.entries[i].dtbclk_mhz) 3362 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dtbclk_mhz = 3363 dc->clk_mgr->bw_params->clk_table.entries[i].dtbclk_mhz; 3364 } 3365 3366 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dispclk_levels; i++) { 3367 if (dc->clk_mgr->bw_params->clk_table.entries[i].dispclk_mhz) { 3368 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dispclk_mhz = 3369 dc->clk_mgr->bw_params->clk_table.entries[i].dispclk_mhz; 3370 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dppclk_mhz = 3371 dc->clk_mgr->bw_params->clk_table.entries[i].dispclk_mhz; 3372 } 3373 } 3374 } 3375 } 3376 3377 void dcn32_zero_pipe_dcc_fraction(display_e2e_pipe_params_st *pipes, 3378 int pipe_cnt) 3379 { 3380 dc_assert_fp_enabled(); 3381 3382 pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_luma = 0; 3383 pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_chroma = 0; 3384 } 3385 3386 bool dcn32_allow_subvp_with_active_margin(struct pipe_ctx *pipe) 3387 { 3388 bool allow = false; 3389 uint32_t refresh_rate = 0; 3390 uint32_t min_refresh = subvp_active_margin_list.min_refresh; 3391 uint32_t max_refresh = subvp_active_margin_list.max_refresh; 3392 uint32_t i; 3393 3394 for (i = 0; i < SUBVP_ACTIVE_MARGIN_LIST_LEN; i++) { 3395 uint32_t width = subvp_active_margin_list.res[i].width; 3396 uint32_t height = subvp_active_margin_list.res[i].height; 3397 3398 refresh_rate = (pipe->stream->timing.pix_clk_100hz * (uint64_t)100 + 3399 pipe->stream->timing.v_total * pipe->stream->timing.h_total - (uint64_t)1); 3400 refresh_rate = div_u64(refresh_rate, pipe->stream->timing.v_total); 3401 refresh_rate = div_u64(refresh_rate, pipe->stream->timing.h_total); 3402 3403 if (refresh_rate >= min_refresh && refresh_rate <= max_refresh && 3404 dcn32_check_native_scaling_for_res(pipe, width, height)) { 3405 allow = true; 3406 break; 3407 } 3408 } 3409 return allow; 3410 } 3411 3412 /** 3413 * dcn32_allow_subvp_high_refresh_rate: Determine if the high refresh rate config will allow subvp 3414 * 3415 * @dc: Current DC state 3416 * @context: New DC state to be programmed 3417 * @pipe: Pipe to be considered for use in subvp 3418 * 3419 * On high refresh rate display configs, we will allow subvp under the following conditions: 3420 * 1. Resolution is 3840x2160, 3440x1440, or 2560x1440 3421 * 2. Refresh rate is between 120hz - 165hz 3422 * 3. No scaling 3423 * 4. Freesync is inactive 3424 * 5. For single display cases, freesync must be disabled 3425 * 3426 * Return: True if pipe can be used for subvp, false otherwise 3427 */ 3428 bool dcn32_allow_subvp_high_refresh_rate(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe) 3429 { 3430 bool allow = false; 3431 uint32_t refresh_rate = 0; 3432 uint32_t subvp_min_refresh = subvp_high_refresh_list.min_refresh; 3433 uint32_t subvp_max_refresh = subvp_high_refresh_list.max_refresh; 3434 uint32_t min_refresh = subvp_max_refresh; 3435 uint32_t i; 3436 3437 /* Only allow SubVP on high refresh displays if all connected displays 3438 * are considered "high refresh" (i.e. >= 120hz). We do not want to 3439 * allow combinations such as 120hz (SubVP) + 60hz (SubVP). 3440 */ 3441 for (i = 0; i < dc->res_pool->pipe_count; i++) { 3442 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; 3443 3444 if (!pipe_ctx->stream) 3445 continue; 3446 refresh_rate = (pipe_ctx->stream->timing.pix_clk_100hz * 100 + 3447 pipe_ctx->stream->timing.v_total * pipe_ctx->stream->timing.h_total - 1) 3448 / (double)(pipe_ctx->stream->timing.v_total * pipe_ctx->stream->timing.h_total); 3449 3450 if (refresh_rate < min_refresh) 3451 min_refresh = refresh_rate; 3452 } 3453 3454 if (!dc->debug.disable_subvp_high_refresh && min_refresh >= subvp_min_refresh && pipe->stream && 3455 pipe->plane_state && !(pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed)) { 3456 refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 + 3457 pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1) 3458 / (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total); 3459 if (refresh_rate >= subvp_min_refresh && refresh_rate <= subvp_max_refresh) { 3460 for (i = 0; i < SUBVP_HIGH_REFRESH_LIST_LEN; i++) { 3461 uint32_t width = subvp_high_refresh_list.res[i].width; 3462 uint32_t height = subvp_high_refresh_list.res[i].height; 3463 3464 if (dcn32_check_native_scaling_for_res(pipe, width, height)) { 3465 if ((context->stream_count == 1 && !pipe->stream->allow_freesync) || context->stream_count > 1) { 3466 allow = true; 3467 break; 3468 } 3469 } 3470 } 3471 } 3472 } 3473 return allow; 3474 } 3475 3476 /** 3477 * dcn32_determine_max_vratio_prefetch: Determine max Vratio for prefetch by driver policy 3478 * 3479 * @dc: Current DC state 3480 * @context: New DC state to be programmed 3481 * 3482 * Return: Max vratio for prefetch 3483 */ 3484 double dcn32_determine_max_vratio_prefetch(struct dc *dc, struct dc_state *context) 3485 { 3486 double max_vratio_pre = __DML_MAX_BW_RATIO_PRE__; // Default value is 4 3487 int i; 3488 3489 /* For single display MPO configs, allow the max vratio to be 8 3490 * if any plane is YUV420 format 3491 */ 3492 if (context->stream_count == 1 && context->stream_status[0].plane_count > 1) { 3493 for (i = 0; i < context->stream_status[0].plane_count; i++) { 3494 if (context->stream_status[0].plane_states[i]->format == SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr || 3495 context->stream_status[0].plane_states[i]->format == SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb) { 3496 max_vratio_pre = __DML_MAX_VRATIO_PRE__; 3497 } 3498 } 3499 } 3500 return max_vratio_pre; 3501 } 3502 3503 /** 3504 * dcn32_assign_fpo_vactive_candidate - Assign the FPO stream candidate for FPO + VActive case 3505 * 3506 * This function chooses the FPO candidate stream for FPO + VActive cases (2 stream config). 3507 * For FPO + VAtive cases, the assumption is that one display has ActiveMargin > 0, and the 3508 * other display has ActiveMargin <= 0. This function will choose the pipe/stream that has 3509 * ActiveMargin <= 0 to be the FPO stream candidate if found. 3510 * 3511 * 3512 * @dc: current dc state 3513 * @context: new dc state 3514 * @fpo_candidate_stream: pointer to FPO stream candidate if one is found 3515 * 3516 * Return: void 3517 */ 3518 void dcn32_assign_fpo_vactive_candidate(struct dc *dc, const struct dc_state *context, struct dc_stream_state **fpo_candidate_stream) 3519 { 3520 unsigned int i, pipe_idx; 3521 const struct vba_vars_st *vba = &context->bw_ctx.dml.vba; 3522 3523 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 3524 const struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 3525 3526 /* In DCN32/321, FPO uses per-pipe P-State force. 3527 * If there's no planes, HUBP is power gated and 3528 * therefore programming UCLK_PSTATE_FORCE does 3529 * nothing (P-State will always be asserted naturally 3530 * on a pipe that has HUBP power gated. Therefore we 3531 * only want to enable FPO if the FPO pipe has both 3532 * a stream and a plane. 3533 */ 3534 if (!pipe->stream || !pipe->plane_state) 3535 continue; 3536 3537 if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0) { 3538 *fpo_candidate_stream = pipe->stream; 3539 break; 3540 } 3541 pipe_idx++; 3542 } 3543 } 3544 3545 /** 3546 * dcn32_find_vactive_pipe - Determines if the config has a pipe that can switch in VACTIVE 3547 * 3548 * @dc: current dc state 3549 * @context: new dc state 3550 * @fpo_candidate_stream: candidate stream to be chosen for FPO 3551 * @vactive_margin_req_us: The vactive marign required for a vactive pipe to be considered "found" 3552 * 3553 * Return: True if VACTIVE display is found, false otherwise 3554 */ 3555 bool dcn32_find_vactive_pipe(struct dc *dc, const struct dc_state *context, struct dc_stream_state *fpo_candidate_stream, uint32_t vactive_margin_req_us) 3556 { 3557 unsigned int i, pipe_idx; 3558 const struct vba_vars_st *vba = &context->bw_ctx.dml.vba; 3559 bool vactive_found = true; 3560 unsigned int blank_us = 0; 3561 3562 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 3563 const struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 3564 3565 if (!pipe->stream) 3566 continue; 3567 3568 /* Don't need to check for vactive margin on the FPO candidate stream */ 3569 if (fpo_candidate_stream && pipe->stream == fpo_candidate_stream) { 3570 pipe_idx++; 3571 continue; 3572 } 3573 3574 /* Every plane (apart from the ones driven by the FPO pipes) needs to have active margin 3575 * in order for us to have found a valid "vactive" config for FPO + Vactive 3576 */ 3577 blank_us = ((pipe->stream->timing.v_total - pipe->stream->timing.v_addressable) * pipe->stream->timing.h_total / 3578 (double)(pipe->stream->timing.pix_clk_100hz * 100)) * 1000000; 3579 if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] < vactive_margin_req_us || 3580 pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed || blank_us >= dc->debug.fpo_vactive_max_blank_us) { 3581 vactive_found = false; 3582 break; 3583 } 3584 pipe_idx++; 3585 } 3586 return vactive_found; 3587 } 3588 3589 void dcn32_set_clock_limits(const struct _vcs_dpi_soc_bounding_box_st *soc_bb) 3590 { 3591 dc_assert_fp_enabled(); 3592 dcn3_2_soc.clock_limits[0].dcfclk_mhz = 1200.0; 3593 } 3594 3595 void dcn32_override_min_req_memclk(struct dc *dc, struct dc_state *context) 3596 { 3597 // WA: restrict FPO and SubVP to use first non-strobe mode (DCN32 BW issue) 3598 if ((context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching || dcn32_subvp_in_use(dc, context)) && 3599 dc->dml.soc.num_chans <= 8) { 3600 int num_mclk_levels = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels; 3601 3602 if (context->bw_ctx.dml.vba.DRAMSpeed <= dc->clk_mgr->bw_params->clk_table.entries[0].memclk_mhz * 16 && 3603 num_mclk_levels > 1) { 3604 context->bw_ctx.dml.vba.DRAMSpeed = dc->clk_mgr->bw_params->clk_table.entries[1].memclk_mhz * 16; 3605 context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16; 3606 } 3607 } 3608 } 3609