1 /* 2 * Copyright 2008 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 22 * DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: 25 * Jerome Glisse <glisse@freedesktop.org> 26 */ 27 28 #include <linux/file.h> 29 #include <linux/pagemap.h> 30 #include <linux/sync_file.h> 31 #include <linux/dma-buf.h> 32 33 #include <drm/amdgpu_drm.h> 34 #include <drm/drm_syncobj.h> 35 #include <drm/ttm/ttm_tt.h> 36 37 #include "amdgpu_cs.h" 38 #include "amdgpu.h" 39 #include "amdgpu_trace.h" 40 #include "amdgpu_gmc.h" 41 #include "amdgpu_gem.h" 42 #include "amdgpu_ras.h" 43 44 static int amdgpu_cs_parser_init(struct amdgpu_cs_parser *p, 45 struct amdgpu_device *adev, 46 struct drm_file *filp, 47 union drm_amdgpu_cs *cs) 48 { 49 struct amdgpu_fpriv *fpriv = filp->driver_priv; 50 51 if (cs->in.num_chunks == 0) 52 return -EINVAL; 53 54 memset(p, 0, sizeof(*p)); 55 p->adev = adev; 56 p->filp = filp; 57 58 p->ctx = amdgpu_ctx_get(fpriv, cs->in.ctx_id); 59 if (!p->ctx) 60 return -EINVAL; 61 62 if (atomic_read(&p->ctx->guilty)) { 63 amdgpu_ctx_put(p->ctx); 64 return -ECANCELED; 65 } 66 67 amdgpu_sync_create(&p->sync); 68 drm_exec_init(&p->exec, DRM_EXEC_INTERRUPTIBLE_WAIT | 69 DRM_EXEC_IGNORE_DUPLICATES, 0); 70 return 0; 71 } 72 73 static int amdgpu_cs_job_idx(struct amdgpu_cs_parser *p, 74 struct drm_amdgpu_cs_chunk_ib *chunk_ib) 75 { 76 struct drm_sched_entity *entity; 77 unsigned int i; 78 int r; 79 80 r = amdgpu_ctx_get_entity(p->ctx, chunk_ib->ip_type, 81 chunk_ib->ip_instance, 82 chunk_ib->ring, &entity); 83 if (r) 84 return r; 85 86 /* 87 * Abort if there is no run queue associated with this entity. 88 * Possibly because of disabled HW IP. 89 */ 90 if (entity->rq == NULL) 91 return -EINVAL; 92 93 /* Check if we can add this IB to some existing job */ 94 for (i = 0; i < p->gang_size; ++i) 95 if (p->entities[i] == entity) 96 return i; 97 98 /* If not increase the gang size if possible */ 99 if (i == AMDGPU_CS_GANG_SIZE) 100 return -EINVAL; 101 102 p->entities[i] = entity; 103 p->gang_size = i + 1; 104 return i; 105 } 106 107 static int amdgpu_cs_p1_ib(struct amdgpu_cs_parser *p, 108 struct drm_amdgpu_cs_chunk_ib *chunk_ib, 109 unsigned int *num_ibs) 110 { 111 int r; 112 113 r = amdgpu_cs_job_idx(p, chunk_ib); 114 if (r < 0) 115 return r; 116 117 if (num_ibs[r] >= amdgpu_ring_max_ibs(chunk_ib->ip_type)) 118 return -EINVAL; 119 120 ++(num_ibs[r]); 121 p->gang_leader_idx = r; 122 return 0; 123 } 124 125 static int amdgpu_cs_p1_user_fence(struct amdgpu_cs_parser *p, 126 struct drm_amdgpu_cs_chunk_fence *data, 127 uint32_t *offset) 128 { 129 struct drm_gem_object *gobj; 130 unsigned long size; 131 132 gobj = drm_gem_object_lookup(p->filp, data->handle); 133 if (gobj == NULL) 134 return -EINVAL; 135 136 p->uf_bo = amdgpu_bo_ref(gem_to_amdgpu_bo(gobj)); 137 drm_gem_object_put(gobj); 138 139 size = amdgpu_bo_size(p->uf_bo); 140 if (size != PAGE_SIZE || data->offset > (size - 8)) 141 return -EINVAL; 142 143 if (amdgpu_ttm_tt_get_usermm(p->uf_bo->tbo.ttm)) 144 return -EINVAL; 145 146 *offset = data->offset; 147 return 0; 148 } 149 150 static int amdgpu_cs_p1_bo_handles(struct amdgpu_cs_parser *p, 151 struct drm_amdgpu_bo_list_in *data) 152 { 153 struct drm_amdgpu_bo_list_entry *info; 154 int r; 155 156 r = amdgpu_bo_create_list_entry_array(data, &info); 157 if (r) 158 return r; 159 160 r = amdgpu_bo_list_create(p->adev, p->filp, info, data->bo_number, 161 &p->bo_list); 162 if (r) 163 goto error_free; 164 165 kvfree(info); 166 return 0; 167 168 error_free: 169 kvfree(info); 170 171 return r; 172 } 173 174 /* Copy the data from userspace and go over it the first time */ 175 static int amdgpu_cs_pass1(struct amdgpu_cs_parser *p, 176 union drm_amdgpu_cs *cs) 177 { 178 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 179 unsigned int num_ibs[AMDGPU_CS_GANG_SIZE] = { }; 180 struct amdgpu_vm *vm = &fpriv->vm; 181 uint64_t *chunk_array_user; 182 uint64_t *chunk_array; 183 uint32_t uf_offset = 0; 184 size_t size; 185 int ret; 186 int i; 187 188 chunk_array = kvmalloc_array(cs->in.num_chunks, sizeof(uint64_t), 189 GFP_KERNEL); 190 if (!chunk_array) 191 return -ENOMEM; 192 193 /* get chunks */ 194 chunk_array_user = u64_to_user_ptr(cs->in.chunks); 195 if (copy_from_user(chunk_array, chunk_array_user, 196 sizeof(uint64_t)*cs->in.num_chunks)) { 197 ret = -EFAULT; 198 goto free_chunk; 199 } 200 201 p->nchunks = cs->in.num_chunks; 202 p->chunks = kvmalloc_array(p->nchunks, sizeof(struct amdgpu_cs_chunk), 203 GFP_KERNEL); 204 if (!p->chunks) { 205 ret = -ENOMEM; 206 goto free_chunk; 207 } 208 209 for (i = 0; i < p->nchunks; i++) { 210 struct drm_amdgpu_cs_chunk __user *chunk_ptr = NULL; 211 struct drm_amdgpu_cs_chunk user_chunk; 212 uint32_t __user *cdata; 213 214 chunk_ptr = u64_to_user_ptr(chunk_array[i]); 215 if (copy_from_user(&user_chunk, chunk_ptr, 216 sizeof(struct drm_amdgpu_cs_chunk))) { 217 ret = -EFAULT; 218 i--; 219 goto free_partial_kdata; 220 } 221 p->chunks[i].chunk_id = user_chunk.chunk_id; 222 p->chunks[i].length_dw = user_chunk.length_dw; 223 224 size = p->chunks[i].length_dw; 225 cdata = u64_to_user_ptr(user_chunk.chunk_data); 226 227 p->chunks[i].kdata = kvmalloc_array(size, sizeof(uint32_t), 228 GFP_KERNEL); 229 if (p->chunks[i].kdata == NULL) { 230 ret = -ENOMEM; 231 i--; 232 goto free_partial_kdata; 233 } 234 size *= sizeof(uint32_t); 235 if (copy_from_user(p->chunks[i].kdata, cdata, size)) { 236 ret = -EFAULT; 237 goto free_partial_kdata; 238 } 239 240 /* Assume the worst on the following checks */ 241 ret = -EINVAL; 242 switch (p->chunks[i].chunk_id) { 243 case AMDGPU_CHUNK_ID_IB: 244 if (size < sizeof(struct drm_amdgpu_cs_chunk_ib)) 245 goto free_partial_kdata; 246 247 ret = amdgpu_cs_p1_ib(p, p->chunks[i].kdata, num_ibs); 248 if (ret) 249 goto free_partial_kdata; 250 break; 251 252 case AMDGPU_CHUNK_ID_FENCE: 253 if (size < sizeof(struct drm_amdgpu_cs_chunk_fence)) 254 goto free_partial_kdata; 255 256 ret = amdgpu_cs_p1_user_fence(p, p->chunks[i].kdata, 257 &uf_offset); 258 if (ret) 259 goto free_partial_kdata; 260 break; 261 262 case AMDGPU_CHUNK_ID_BO_HANDLES: 263 if (size < sizeof(struct drm_amdgpu_bo_list_in)) 264 goto free_partial_kdata; 265 266 /* Only a single BO list is allowed to simplify handling. */ 267 if (p->bo_list) 268 goto free_partial_kdata; 269 270 ret = amdgpu_cs_p1_bo_handles(p, p->chunks[i].kdata); 271 if (ret) 272 goto free_partial_kdata; 273 break; 274 275 case AMDGPU_CHUNK_ID_DEPENDENCIES: 276 case AMDGPU_CHUNK_ID_SYNCOBJ_IN: 277 case AMDGPU_CHUNK_ID_SYNCOBJ_OUT: 278 case AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES: 279 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT: 280 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL: 281 case AMDGPU_CHUNK_ID_CP_GFX_SHADOW: 282 break; 283 284 default: 285 goto free_partial_kdata; 286 } 287 } 288 289 if (!p->gang_size) { 290 ret = -EINVAL; 291 goto free_all_kdata; 292 } 293 294 for (i = 0; i < p->gang_size; ++i) { 295 ret = amdgpu_job_alloc(p->adev, vm, p->entities[i], vm, 296 num_ibs[i], &p->jobs[i]); 297 if (ret) 298 goto free_all_kdata; 299 p->jobs[i]->enforce_isolation = p->adev->enforce_isolation[fpriv->xcp_id]; 300 } 301 p->gang_leader = p->jobs[p->gang_leader_idx]; 302 303 if (p->ctx->generation != p->gang_leader->generation) { 304 ret = -ECANCELED; 305 goto free_all_kdata; 306 } 307 308 if (p->uf_bo) 309 p->gang_leader->uf_addr = uf_offset; 310 kvfree(chunk_array); 311 312 /* Use this opportunity to fill in task info for the vm */ 313 amdgpu_vm_set_task_info(vm); 314 315 return 0; 316 317 free_all_kdata: 318 i = p->nchunks - 1; 319 free_partial_kdata: 320 for (; i >= 0; i--) 321 kvfree(p->chunks[i].kdata); 322 kvfree(p->chunks); 323 p->chunks = NULL; 324 p->nchunks = 0; 325 free_chunk: 326 kvfree(chunk_array); 327 328 return ret; 329 } 330 331 static int amdgpu_cs_p2_ib(struct amdgpu_cs_parser *p, 332 struct amdgpu_cs_chunk *chunk, 333 unsigned int *ce_preempt, 334 unsigned int *de_preempt) 335 { 336 struct drm_amdgpu_cs_chunk_ib *chunk_ib = chunk->kdata; 337 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 338 struct amdgpu_vm *vm = &fpriv->vm; 339 struct amdgpu_ring *ring; 340 struct amdgpu_job *job; 341 struct amdgpu_ib *ib; 342 int r; 343 344 r = amdgpu_cs_job_idx(p, chunk_ib); 345 if (r < 0) 346 return r; 347 348 job = p->jobs[r]; 349 ring = amdgpu_job_ring(job); 350 ib = &job->ibs[job->num_ibs++]; 351 352 /* MM engine doesn't support user fences */ 353 if (p->uf_bo && ring->funcs->no_user_fence) 354 return -EINVAL; 355 356 if (chunk_ib->ip_type == AMDGPU_HW_IP_GFX && 357 chunk_ib->flags & AMDGPU_IB_FLAG_PREEMPT) { 358 if (chunk_ib->flags & AMDGPU_IB_FLAG_CE) 359 (*ce_preempt)++; 360 else 361 (*de_preempt)++; 362 363 /* Each GFX command submit allows only 1 IB max 364 * preemptible for CE & DE */ 365 if (*ce_preempt > 1 || *de_preempt > 1) 366 return -EINVAL; 367 } 368 369 if (chunk_ib->flags & AMDGPU_IB_FLAG_PREAMBLE) 370 job->preamble_status |= AMDGPU_PREAMBLE_IB_PRESENT; 371 372 r = amdgpu_ib_get(p->adev, vm, ring->funcs->parse_cs ? 373 chunk_ib->ib_bytes : 0, 374 AMDGPU_IB_POOL_DELAYED, ib); 375 if (r) { 376 DRM_ERROR("Failed to get ib !\n"); 377 return r; 378 } 379 380 ib->gpu_addr = chunk_ib->va_start; 381 ib->length_dw = chunk_ib->ib_bytes / 4; 382 ib->flags = chunk_ib->flags; 383 return 0; 384 } 385 386 static int amdgpu_cs_p2_dependencies(struct amdgpu_cs_parser *p, 387 struct amdgpu_cs_chunk *chunk) 388 { 389 struct drm_amdgpu_cs_chunk_dep *deps = chunk->kdata; 390 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 391 unsigned int num_deps; 392 int i, r; 393 394 num_deps = chunk->length_dw * 4 / 395 sizeof(struct drm_amdgpu_cs_chunk_dep); 396 397 for (i = 0; i < num_deps; ++i) { 398 struct amdgpu_ctx *ctx; 399 struct drm_sched_entity *entity; 400 struct dma_fence *fence; 401 402 ctx = amdgpu_ctx_get(fpriv, deps[i].ctx_id); 403 if (ctx == NULL) 404 return -EINVAL; 405 406 r = amdgpu_ctx_get_entity(ctx, deps[i].ip_type, 407 deps[i].ip_instance, 408 deps[i].ring, &entity); 409 if (r) { 410 amdgpu_ctx_put(ctx); 411 return r; 412 } 413 414 fence = amdgpu_ctx_get_fence(ctx, entity, deps[i].handle); 415 amdgpu_ctx_put(ctx); 416 417 if (IS_ERR(fence)) 418 return PTR_ERR(fence); 419 else if (!fence) 420 continue; 421 422 if (chunk->chunk_id == AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES) { 423 struct drm_sched_fence *s_fence; 424 struct dma_fence *old = fence; 425 426 s_fence = to_drm_sched_fence(fence); 427 fence = dma_fence_get(&s_fence->scheduled); 428 dma_fence_put(old); 429 } 430 431 r = amdgpu_sync_fence(&p->sync, fence, GFP_KERNEL); 432 dma_fence_put(fence); 433 if (r) 434 return r; 435 } 436 return 0; 437 } 438 439 static int amdgpu_syncobj_lookup_and_add(struct amdgpu_cs_parser *p, 440 uint32_t handle, u64 point, 441 u64 flags) 442 { 443 struct dma_fence *fence; 444 int r; 445 446 r = drm_syncobj_find_fence(p->filp, handle, point, flags, &fence); 447 if (r) { 448 DRM_ERROR("syncobj %u failed to find fence @ %llu (%d)!\n", 449 handle, point, r); 450 return r; 451 } 452 453 r = amdgpu_sync_fence(&p->sync, fence, GFP_KERNEL); 454 dma_fence_put(fence); 455 return r; 456 } 457 458 static int amdgpu_cs_p2_syncobj_in(struct amdgpu_cs_parser *p, 459 struct amdgpu_cs_chunk *chunk) 460 { 461 struct drm_amdgpu_cs_chunk_sem *deps = chunk->kdata; 462 unsigned int num_deps; 463 int i, r; 464 465 num_deps = chunk->length_dw * 4 / 466 sizeof(struct drm_amdgpu_cs_chunk_sem); 467 for (i = 0; i < num_deps; ++i) { 468 r = amdgpu_syncobj_lookup_and_add(p, deps[i].handle, 0, 0); 469 if (r) 470 return r; 471 } 472 473 return 0; 474 } 475 476 static int amdgpu_cs_p2_syncobj_timeline_wait(struct amdgpu_cs_parser *p, 477 struct amdgpu_cs_chunk *chunk) 478 { 479 struct drm_amdgpu_cs_chunk_syncobj *syncobj_deps = chunk->kdata; 480 unsigned int num_deps; 481 int i, r; 482 483 num_deps = chunk->length_dw * 4 / 484 sizeof(struct drm_amdgpu_cs_chunk_syncobj); 485 for (i = 0; i < num_deps; ++i) { 486 r = amdgpu_syncobj_lookup_and_add(p, syncobj_deps[i].handle, 487 syncobj_deps[i].point, 488 syncobj_deps[i].flags); 489 if (r) 490 return r; 491 } 492 493 return 0; 494 } 495 496 static int amdgpu_cs_p2_syncobj_out(struct amdgpu_cs_parser *p, 497 struct amdgpu_cs_chunk *chunk) 498 { 499 struct drm_amdgpu_cs_chunk_sem *deps = chunk->kdata; 500 unsigned int num_deps; 501 int i; 502 503 num_deps = chunk->length_dw * 4 / 504 sizeof(struct drm_amdgpu_cs_chunk_sem); 505 506 if (p->post_deps) 507 return -EINVAL; 508 509 p->post_deps = kmalloc_array(num_deps, sizeof(*p->post_deps), 510 GFP_KERNEL); 511 p->num_post_deps = 0; 512 513 if (!p->post_deps) 514 return -ENOMEM; 515 516 517 for (i = 0; i < num_deps; ++i) { 518 p->post_deps[i].syncobj = 519 drm_syncobj_find(p->filp, deps[i].handle); 520 if (!p->post_deps[i].syncobj) 521 return -EINVAL; 522 p->post_deps[i].chain = NULL; 523 p->post_deps[i].point = 0; 524 p->num_post_deps++; 525 } 526 527 return 0; 528 } 529 530 static int amdgpu_cs_p2_syncobj_timeline_signal(struct amdgpu_cs_parser *p, 531 struct amdgpu_cs_chunk *chunk) 532 { 533 struct drm_amdgpu_cs_chunk_syncobj *syncobj_deps = chunk->kdata; 534 unsigned int num_deps; 535 int i; 536 537 num_deps = chunk->length_dw * 4 / 538 sizeof(struct drm_amdgpu_cs_chunk_syncobj); 539 540 if (p->post_deps) 541 return -EINVAL; 542 543 p->post_deps = kmalloc_array(num_deps, sizeof(*p->post_deps), 544 GFP_KERNEL); 545 p->num_post_deps = 0; 546 547 if (!p->post_deps) 548 return -ENOMEM; 549 550 for (i = 0; i < num_deps; ++i) { 551 struct amdgpu_cs_post_dep *dep = &p->post_deps[i]; 552 553 dep->chain = NULL; 554 if (syncobj_deps[i].point) { 555 dep->chain = dma_fence_chain_alloc(); 556 if (!dep->chain) 557 return -ENOMEM; 558 } 559 560 dep->syncobj = drm_syncobj_find(p->filp, 561 syncobj_deps[i].handle); 562 if (!dep->syncobj) { 563 dma_fence_chain_free(dep->chain); 564 return -EINVAL; 565 } 566 dep->point = syncobj_deps[i].point; 567 p->num_post_deps++; 568 } 569 570 return 0; 571 } 572 573 static int amdgpu_cs_p2_shadow(struct amdgpu_cs_parser *p, 574 struct amdgpu_cs_chunk *chunk) 575 { 576 struct drm_amdgpu_cs_chunk_cp_gfx_shadow *shadow = chunk->kdata; 577 int i; 578 579 if (shadow->flags & ~AMDGPU_CS_CHUNK_CP_GFX_SHADOW_FLAGS_INIT_SHADOW) 580 return -EINVAL; 581 582 for (i = 0; i < p->gang_size; ++i) { 583 p->jobs[i]->shadow_va = shadow->shadow_va; 584 p->jobs[i]->csa_va = shadow->csa_va; 585 p->jobs[i]->gds_va = shadow->gds_va; 586 p->jobs[i]->init_shadow = 587 shadow->flags & AMDGPU_CS_CHUNK_CP_GFX_SHADOW_FLAGS_INIT_SHADOW; 588 } 589 590 return 0; 591 } 592 593 static int amdgpu_cs_pass2(struct amdgpu_cs_parser *p) 594 { 595 unsigned int ce_preempt = 0, de_preempt = 0; 596 int i, r; 597 598 for (i = 0; i < p->nchunks; ++i) { 599 struct amdgpu_cs_chunk *chunk; 600 601 chunk = &p->chunks[i]; 602 603 switch (chunk->chunk_id) { 604 case AMDGPU_CHUNK_ID_IB: 605 r = amdgpu_cs_p2_ib(p, chunk, &ce_preempt, &de_preempt); 606 if (r) 607 return r; 608 break; 609 case AMDGPU_CHUNK_ID_DEPENDENCIES: 610 case AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES: 611 r = amdgpu_cs_p2_dependencies(p, chunk); 612 if (r) 613 return r; 614 break; 615 case AMDGPU_CHUNK_ID_SYNCOBJ_IN: 616 r = amdgpu_cs_p2_syncobj_in(p, chunk); 617 if (r) 618 return r; 619 break; 620 case AMDGPU_CHUNK_ID_SYNCOBJ_OUT: 621 r = amdgpu_cs_p2_syncobj_out(p, chunk); 622 if (r) 623 return r; 624 break; 625 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT: 626 r = amdgpu_cs_p2_syncobj_timeline_wait(p, chunk); 627 if (r) 628 return r; 629 break; 630 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL: 631 r = amdgpu_cs_p2_syncobj_timeline_signal(p, chunk); 632 if (r) 633 return r; 634 break; 635 case AMDGPU_CHUNK_ID_CP_GFX_SHADOW: 636 r = amdgpu_cs_p2_shadow(p, chunk); 637 if (r) 638 return r; 639 break; 640 } 641 } 642 643 return 0; 644 } 645 646 /* Convert microseconds to bytes. */ 647 static u64 us_to_bytes(struct amdgpu_device *adev, s64 us) 648 { 649 if (us <= 0 || !adev->mm_stats.log2_max_MBps) 650 return 0; 651 652 /* Since accum_us is incremented by a million per second, just 653 * multiply it by the number of MB/s to get the number of bytes. 654 */ 655 return us << adev->mm_stats.log2_max_MBps; 656 } 657 658 static s64 bytes_to_us(struct amdgpu_device *adev, u64 bytes) 659 { 660 if (!adev->mm_stats.log2_max_MBps) 661 return 0; 662 663 return bytes >> adev->mm_stats.log2_max_MBps; 664 } 665 666 /* Returns how many bytes TTM can move right now. If no bytes can be moved, 667 * it returns 0. If it returns non-zero, it's OK to move at least one buffer, 668 * which means it can go over the threshold once. If that happens, the driver 669 * will be in debt and no other buffer migrations can be done until that debt 670 * is repaid. 671 * 672 * This approach allows moving a buffer of any size (it's important to allow 673 * that). 674 * 675 * The currency is simply time in microseconds and it increases as the clock 676 * ticks. The accumulated microseconds (us) are converted to bytes and 677 * returned. 678 */ 679 static void amdgpu_cs_get_threshold_for_moves(struct amdgpu_device *adev, 680 u64 *max_bytes, 681 u64 *max_vis_bytes) 682 { 683 s64 time_us, increment_us; 684 u64 free_vram, total_vram, used_vram; 685 /* Allow a maximum of 200 accumulated ms. This is basically per-IB 686 * throttling. 687 * 688 * It means that in order to get full max MBps, at least 5 IBs per 689 * second must be submitted and not more than 200ms apart from each 690 * other. 691 */ 692 const s64 us_upper_bound = 200000; 693 694 if (!adev->mm_stats.log2_max_MBps) { 695 *max_bytes = 0; 696 *max_vis_bytes = 0; 697 return; 698 } 699 700 total_vram = adev->gmc.real_vram_size - atomic64_read(&adev->vram_pin_size); 701 used_vram = ttm_resource_manager_usage(&adev->mman.vram_mgr.manager); 702 free_vram = used_vram >= total_vram ? 0 : total_vram - used_vram; 703 704 spin_lock(&adev->mm_stats.lock); 705 706 /* Increase the amount of accumulated us. */ 707 time_us = ktime_to_us(ktime_get()); 708 increment_us = time_us - adev->mm_stats.last_update_us; 709 adev->mm_stats.last_update_us = time_us; 710 adev->mm_stats.accum_us = min(adev->mm_stats.accum_us + increment_us, 711 us_upper_bound); 712 713 /* This prevents the short period of low performance when the VRAM 714 * usage is low and the driver is in debt or doesn't have enough 715 * accumulated us to fill VRAM quickly. 716 * 717 * The situation can occur in these cases: 718 * - a lot of VRAM is freed by userspace 719 * - the presence of a big buffer causes a lot of evictions 720 * (solution: split buffers into smaller ones) 721 * 722 * If 128 MB or 1/8th of VRAM is free, start filling it now by setting 723 * accum_us to a positive number. 724 */ 725 if (free_vram >= 128 * 1024 * 1024 || free_vram >= total_vram / 8) { 726 s64 min_us; 727 728 /* Be more aggressive on dGPUs. Try to fill a portion of free 729 * VRAM now. 730 */ 731 if (!(adev->flags & AMD_IS_APU)) 732 min_us = bytes_to_us(adev, free_vram / 4); 733 else 734 min_us = 0; /* Reset accum_us on APUs. */ 735 736 adev->mm_stats.accum_us = max(min_us, adev->mm_stats.accum_us); 737 } 738 739 /* This is set to 0 if the driver is in debt to disallow (optional) 740 * buffer moves. 741 */ 742 *max_bytes = us_to_bytes(adev, adev->mm_stats.accum_us); 743 744 /* Do the same for visible VRAM if half of it is free */ 745 if (!amdgpu_gmc_vram_full_visible(&adev->gmc)) { 746 u64 total_vis_vram = adev->gmc.visible_vram_size; 747 u64 used_vis_vram = 748 amdgpu_vram_mgr_vis_usage(&adev->mman.vram_mgr); 749 750 if (used_vis_vram < total_vis_vram) { 751 u64 free_vis_vram = total_vis_vram - used_vis_vram; 752 753 adev->mm_stats.accum_us_vis = min(adev->mm_stats.accum_us_vis + 754 increment_us, us_upper_bound); 755 756 if (free_vis_vram >= total_vis_vram / 2) 757 adev->mm_stats.accum_us_vis = 758 max(bytes_to_us(adev, free_vis_vram / 2), 759 adev->mm_stats.accum_us_vis); 760 } 761 762 *max_vis_bytes = us_to_bytes(adev, adev->mm_stats.accum_us_vis); 763 } else { 764 *max_vis_bytes = 0; 765 } 766 767 spin_unlock(&adev->mm_stats.lock); 768 } 769 770 /* Report how many bytes have really been moved for the last command 771 * submission. This can result in a debt that can stop buffer migrations 772 * temporarily. 773 */ 774 void amdgpu_cs_report_moved_bytes(struct amdgpu_device *adev, u64 num_bytes, 775 u64 num_vis_bytes) 776 { 777 spin_lock(&adev->mm_stats.lock); 778 adev->mm_stats.accum_us -= bytes_to_us(adev, num_bytes); 779 adev->mm_stats.accum_us_vis -= bytes_to_us(adev, num_vis_bytes); 780 spin_unlock(&adev->mm_stats.lock); 781 } 782 783 static int amdgpu_cs_bo_validate(void *param, struct amdgpu_bo *bo) 784 { 785 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 786 struct amdgpu_cs_parser *p = param; 787 struct ttm_operation_ctx ctx = { 788 .interruptible = true, 789 .no_wait_gpu = false, 790 .resv = bo->tbo.base.resv 791 }; 792 uint32_t domain; 793 int r; 794 795 if (bo->tbo.pin_count) 796 return 0; 797 798 /* Don't move this buffer if we have depleted our allowance 799 * to move it. Don't move anything if the threshold is zero. 800 */ 801 if (p->bytes_moved < p->bytes_moved_threshold && 802 (!bo->tbo.base.dma_buf || 803 list_empty(&bo->tbo.base.dma_buf->attachments))) { 804 if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 805 (bo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED)) { 806 /* And don't move a CPU_ACCESS_REQUIRED BO to limited 807 * visible VRAM if we've depleted our allowance to do 808 * that. 809 */ 810 if (p->bytes_moved_vis < p->bytes_moved_vis_threshold) 811 domain = bo->preferred_domains; 812 else 813 domain = bo->allowed_domains; 814 } else { 815 domain = bo->preferred_domains; 816 } 817 } else { 818 domain = bo->allowed_domains; 819 } 820 821 retry: 822 amdgpu_bo_placement_from_domain(bo, domain); 823 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 824 825 p->bytes_moved += ctx.bytes_moved; 826 if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 827 amdgpu_res_cpu_visible(adev, bo->tbo.resource)) 828 p->bytes_moved_vis += ctx.bytes_moved; 829 830 if (unlikely(r == -ENOMEM) && domain != bo->allowed_domains) { 831 domain = bo->allowed_domains; 832 goto retry; 833 } 834 835 return r; 836 } 837 838 static int amdgpu_cs_parser_bos(struct amdgpu_cs_parser *p, 839 union drm_amdgpu_cs *cs) 840 { 841 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 842 struct ttm_operation_ctx ctx = { true, false }; 843 struct amdgpu_vm *vm = &fpriv->vm; 844 struct amdgpu_bo_list_entry *e; 845 struct drm_gem_object *obj; 846 unsigned long index; 847 unsigned int i; 848 int r; 849 850 /* p->bo_list could already be assigned if AMDGPU_CHUNK_ID_BO_HANDLES is present */ 851 if (cs->in.bo_list_handle) { 852 if (p->bo_list) 853 return -EINVAL; 854 855 r = amdgpu_bo_list_get(fpriv, cs->in.bo_list_handle, 856 &p->bo_list); 857 if (r) 858 return r; 859 } else if (!p->bo_list) { 860 /* Create a empty bo_list when no handle is provided */ 861 r = amdgpu_bo_list_create(p->adev, p->filp, NULL, 0, 862 &p->bo_list); 863 if (r) 864 return r; 865 } 866 867 mutex_lock(&p->bo_list->bo_list_mutex); 868 869 /* Get userptr backing pages. If pages are updated after registered 870 * in amdgpu_gem_userptr_ioctl(), amdgpu_cs_list_validate() will do 871 * amdgpu_ttm_backend_bind() to flush and invalidate new pages 872 */ 873 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 874 bool userpage_invalidated = false; 875 struct amdgpu_bo *bo = e->bo; 876 int i; 877 878 e->user_pages = kvcalloc(bo->tbo.ttm->num_pages, 879 sizeof(struct page *), 880 GFP_KERNEL); 881 if (!e->user_pages) { 882 DRM_ERROR("kvmalloc_array failure\n"); 883 r = -ENOMEM; 884 goto out_free_user_pages; 885 } 886 887 r = amdgpu_ttm_tt_get_user_pages(bo, e->user_pages, &e->range); 888 if (r) { 889 kvfree(e->user_pages); 890 e->user_pages = NULL; 891 goto out_free_user_pages; 892 } 893 894 for (i = 0; i < bo->tbo.ttm->num_pages; i++) { 895 if (bo->tbo.ttm->pages[i] != e->user_pages[i]) { 896 userpage_invalidated = true; 897 break; 898 } 899 } 900 e->user_invalidated = userpage_invalidated; 901 } 902 903 drm_exec_until_all_locked(&p->exec) { 904 r = amdgpu_vm_lock_pd(&fpriv->vm, &p->exec, 1 + p->gang_size); 905 drm_exec_retry_on_contention(&p->exec); 906 if (unlikely(r)) 907 goto out_free_user_pages; 908 909 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 910 /* One fence for TTM and one for each CS job */ 911 r = drm_exec_prepare_obj(&p->exec, &e->bo->tbo.base, 912 1 + p->gang_size); 913 drm_exec_retry_on_contention(&p->exec); 914 if (unlikely(r)) 915 goto out_free_user_pages; 916 917 e->bo_va = amdgpu_vm_bo_find(vm, e->bo); 918 } 919 920 if (p->uf_bo) { 921 r = drm_exec_prepare_obj(&p->exec, &p->uf_bo->tbo.base, 922 1 + p->gang_size); 923 drm_exec_retry_on_contention(&p->exec); 924 if (unlikely(r)) 925 goto out_free_user_pages; 926 } 927 } 928 929 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 930 struct mm_struct *usermm; 931 932 usermm = amdgpu_ttm_tt_get_usermm(e->bo->tbo.ttm); 933 if (usermm && usermm != current->mm) { 934 r = -EPERM; 935 goto out_free_user_pages; 936 } 937 938 if (amdgpu_ttm_tt_is_userptr(e->bo->tbo.ttm) && 939 e->user_invalidated && e->user_pages) { 940 amdgpu_bo_placement_from_domain(e->bo, 941 AMDGPU_GEM_DOMAIN_CPU); 942 r = ttm_bo_validate(&e->bo->tbo, &e->bo->placement, 943 &ctx); 944 if (r) 945 goto out_free_user_pages; 946 947 amdgpu_ttm_tt_set_user_pages(e->bo->tbo.ttm, 948 e->user_pages); 949 } 950 951 kvfree(e->user_pages); 952 e->user_pages = NULL; 953 } 954 955 amdgpu_cs_get_threshold_for_moves(p->adev, &p->bytes_moved_threshold, 956 &p->bytes_moved_vis_threshold); 957 p->bytes_moved = 0; 958 p->bytes_moved_vis = 0; 959 960 r = amdgpu_vm_validate(p->adev, &fpriv->vm, NULL, 961 amdgpu_cs_bo_validate, p); 962 if (r) { 963 DRM_ERROR("amdgpu_vm_validate() failed.\n"); 964 goto out_free_user_pages; 965 } 966 967 drm_exec_for_each_locked_object(&p->exec, index, obj) { 968 r = amdgpu_cs_bo_validate(p, gem_to_amdgpu_bo(obj)); 969 if (unlikely(r)) 970 goto out_free_user_pages; 971 } 972 973 if (p->uf_bo) { 974 r = amdgpu_ttm_alloc_gart(&p->uf_bo->tbo); 975 if (unlikely(r)) 976 goto out_free_user_pages; 977 978 p->gang_leader->uf_addr += amdgpu_bo_gpu_offset(p->uf_bo); 979 } 980 981 amdgpu_cs_report_moved_bytes(p->adev, p->bytes_moved, 982 p->bytes_moved_vis); 983 984 for (i = 0; i < p->gang_size; ++i) 985 amdgpu_job_set_resources(p->jobs[i], p->bo_list->gds_obj, 986 p->bo_list->gws_obj, 987 p->bo_list->oa_obj); 988 return 0; 989 990 out_free_user_pages: 991 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 992 struct amdgpu_bo *bo = e->bo; 993 994 if (!e->user_pages) 995 continue; 996 amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm, e->range); 997 kvfree(e->user_pages); 998 e->user_pages = NULL; 999 e->range = NULL; 1000 } 1001 mutex_unlock(&p->bo_list->bo_list_mutex); 1002 return r; 1003 } 1004 1005 static void trace_amdgpu_cs_ibs(struct amdgpu_cs_parser *p) 1006 { 1007 int i, j; 1008 1009 if (!trace_amdgpu_cs_enabled()) 1010 return; 1011 1012 for (i = 0; i < p->gang_size; ++i) { 1013 struct amdgpu_job *job = p->jobs[i]; 1014 1015 for (j = 0; j < job->num_ibs; ++j) 1016 trace_amdgpu_cs(p, job, &job->ibs[j]); 1017 } 1018 } 1019 1020 static int amdgpu_cs_patch_ibs(struct amdgpu_cs_parser *p, 1021 struct amdgpu_job *job) 1022 { 1023 struct amdgpu_ring *ring = amdgpu_job_ring(job); 1024 unsigned int i; 1025 int r; 1026 1027 /* Only for UVD/VCE VM emulation */ 1028 if (!ring->funcs->parse_cs && !ring->funcs->patch_cs_in_place) 1029 return 0; 1030 1031 for (i = 0; i < job->num_ibs; ++i) { 1032 struct amdgpu_ib *ib = &job->ibs[i]; 1033 struct amdgpu_bo_va_mapping *m; 1034 struct amdgpu_bo *aobj; 1035 uint64_t va_start; 1036 uint8_t *kptr; 1037 1038 va_start = ib->gpu_addr & AMDGPU_GMC_HOLE_MASK; 1039 r = amdgpu_cs_find_mapping(p, va_start, &aobj, &m); 1040 if (r) { 1041 DRM_ERROR("IB va_start is invalid\n"); 1042 return r; 1043 } 1044 1045 if ((va_start + ib->length_dw * 4) > 1046 (m->last + 1) * AMDGPU_GPU_PAGE_SIZE) { 1047 DRM_ERROR("IB va_start+ib_bytes is invalid\n"); 1048 return -EINVAL; 1049 } 1050 1051 /* the IB should be reserved at this point */ 1052 r = amdgpu_bo_kmap(aobj, (void **)&kptr); 1053 if (r) 1054 return r; 1055 1056 kptr += va_start - (m->start * AMDGPU_GPU_PAGE_SIZE); 1057 1058 if (ring->funcs->parse_cs) { 1059 memcpy(ib->ptr, kptr, ib->length_dw * 4); 1060 amdgpu_bo_kunmap(aobj); 1061 1062 r = amdgpu_ring_parse_cs(ring, p, job, ib); 1063 if (r) 1064 return r; 1065 1066 if (ib->sa_bo) 1067 ib->gpu_addr = amdgpu_sa_bo_gpu_addr(ib->sa_bo); 1068 } else { 1069 ib->ptr = (uint32_t *)kptr; 1070 r = amdgpu_ring_patch_cs_in_place(ring, p, job, ib); 1071 amdgpu_bo_kunmap(aobj); 1072 if (r) 1073 return r; 1074 } 1075 } 1076 1077 return 0; 1078 } 1079 1080 static int amdgpu_cs_patch_jobs(struct amdgpu_cs_parser *p) 1081 { 1082 unsigned int i; 1083 int r; 1084 1085 for (i = 0; i < p->gang_size; ++i) { 1086 r = amdgpu_cs_patch_ibs(p, p->jobs[i]); 1087 if (r) 1088 return r; 1089 } 1090 return 0; 1091 } 1092 1093 static int amdgpu_cs_vm_handling(struct amdgpu_cs_parser *p) 1094 { 1095 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 1096 struct amdgpu_job *job = p->gang_leader; 1097 struct amdgpu_device *adev = p->adev; 1098 struct amdgpu_vm *vm = &fpriv->vm; 1099 struct amdgpu_bo_list_entry *e; 1100 struct amdgpu_bo_va *bo_va; 1101 unsigned int i; 1102 int r; 1103 1104 /* 1105 * We can't use gang submit on with reserved VMIDs when the VM changes 1106 * can't be invalidated by more than one engine at the same time. 1107 */ 1108 if (p->gang_size > 1 && !adev->vm_manager.concurrent_flush) { 1109 for (i = 0; i < p->gang_size; ++i) { 1110 struct drm_sched_entity *entity = p->entities[i]; 1111 struct drm_gpu_scheduler *sched = entity->rq->sched; 1112 struct amdgpu_ring *ring = to_amdgpu_ring(sched); 1113 1114 if (amdgpu_vmid_uses_reserved(vm, ring->vm_hub)) 1115 return -EINVAL; 1116 } 1117 } 1118 1119 r = amdgpu_vm_clear_freed(adev, vm, NULL); 1120 if (r) 1121 return r; 1122 1123 r = amdgpu_vm_bo_update(adev, fpriv->prt_va, false); 1124 if (r) 1125 return r; 1126 1127 r = amdgpu_sync_fence(&p->sync, fpriv->prt_va->last_pt_update, 1128 GFP_KERNEL); 1129 if (r) 1130 return r; 1131 1132 if (fpriv->csa_va) { 1133 bo_va = fpriv->csa_va; 1134 BUG_ON(!bo_va); 1135 r = amdgpu_vm_bo_update(adev, bo_va, false); 1136 if (r) 1137 return r; 1138 1139 r = amdgpu_sync_fence(&p->sync, bo_va->last_pt_update, 1140 GFP_KERNEL); 1141 if (r) 1142 return r; 1143 } 1144 1145 /* FIXME: In theory this loop shouldn't be needed any more when 1146 * amdgpu_vm_handle_moved handles all moved BOs that are reserved 1147 * with p->ticket. But removing it caused test regressions, so I'm 1148 * leaving it here for now. 1149 */ 1150 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 1151 bo_va = e->bo_va; 1152 if (bo_va == NULL) 1153 continue; 1154 1155 r = amdgpu_vm_bo_update(adev, bo_va, false); 1156 if (r) 1157 return r; 1158 1159 r = amdgpu_sync_fence(&p->sync, bo_va->last_pt_update, 1160 GFP_KERNEL); 1161 if (r) 1162 return r; 1163 } 1164 1165 r = amdgpu_vm_handle_moved(adev, vm, &p->exec.ticket); 1166 if (r) 1167 return r; 1168 1169 r = amdgpu_vm_update_pdes(adev, vm, false); 1170 if (r) 1171 return r; 1172 1173 r = amdgpu_sync_fence(&p->sync, vm->last_update, GFP_KERNEL); 1174 if (r) 1175 return r; 1176 1177 for (i = 0; i < p->gang_size; ++i) { 1178 job = p->jobs[i]; 1179 1180 if (!job->vm) 1181 continue; 1182 1183 job->vm_pd_addr = amdgpu_gmc_pd_addr(vm->root.bo); 1184 } 1185 1186 if (adev->debug_vm) { 1187 /* Invalidate all BOs to test for userspace bugs */ 1188 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 1189 struct amdgpu_bo *bo = e->bo; 1190 1191 /* ignore duplicates */ 1192 if (!bo) 1193 continue; 1194 1195 amdgpu_vm_bo_invalidate(bo, false); 1196 } 1197 } 1198 1199 return 0; 1200 } 1201 1202 static int amdgpu_cs_sync_rings(struct amdgpu_cs_parser *p) 1203 { 1204 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 1205 struct drm_gpu_scheduler *sched; 1206 struct drm_gem_object *obj; 1207 struct dma_fence *fence; 1208 unsigned long index; 1209 unsigned int i; 1210 int r; 1211 1212 r = amdgpu_ctx_wait_prev_fence(p->ctx, p->entities[p->gang_leader_idx]); 1213 if (r) { 1214 if (r != -ERESTARTSYS) 1215 DRM_ERROR("amdgpu_ctx_wait_prev_fence failed.\n"); 1216 return r; 1217 } 1218 1219 drm_exec_for_each_locked_object(&p->exec, index, obj) { 1220 struct amdgpu_bo *bo = gem_to_amdgpu_bo(obj); 1221 1222 struct dma_resv *resv = bo->tbo.base.resv; 1223 enum amdgpu_sync_mode sync_mode; 1224 1225 sync_mode = amdgpu_bo_explicit_sync(bo) ? 1226 AMDGPU_SYNC_EXPLICIT : AMDGPU_SYNC_NE_OWNER; 1227 r = amdgpu_sync_resv(p->adev, &p->sync, resv, sync_mode, 1228 &fpriv->vm); 1229 if (r) 1230 return r; 1231 } 1232 1233 for (i = 0; i < p->gang_size; ++i) { 1234 r = amdgpu_sync_push_to_job(&p->sync, p->jobs[i]); 1235 if (r) 1236 return r; 1237 } 1238 1239 sched = p->gang_leader->base.entity->rq->sched; 1240 while ((fence = amdgpu_sync_get_fence(&p->sync))) { 1241 struct drm_sched_fence *s_fence = to_drm_sched_fence(fence); 1242 1243 /* 1244 * When we have an dependency it might be necessary to insert a 1245 * pipeline sync to make sure that all caches etc are flushed and the 1246 * next job actually sees the results from the previous one 1247 * before we start executing on the same scheduler ring. 1248 */ 1249 if (!s_fence || s_fence->sched != sched) { 1250 dma_fence_put(fence); 1251 continue; 1252 } 1253 1254 r = amdgpu_sync_fence(&p->gang_leader->explicit_sync, fence, 1255 GFP_KERNEL); 1256 dma_fence_put(fence); 1257 if (r) 1258 return r; 1259 } 1260 return 0; 1261 } 1262 1263 static void amdgpu_cs_post_dependencies(struct amdgpu_cs_parser *p) 1264 { 1265 int i; 1266 1267 for (i = 0; i < p->num_post_deps; ++i) { 1268 if (p->post_deps[i].chain && p->post_deps[i].point) { 1269 drm_syncobj_add_point(p->post_deps[i].syncobj, 1270 p->post_deps[i].chain, 1271 p->fence, p->post_deps[i].point); 1272 p->post_deps[i].chain = NULL; 1273 } else { 1274 drm_syncobj_replace_fence(p->post_deps[i].syncobj, 1275 p->fence); 1276 } 1277 } 1278 } 1279 1280 static int amdgpu_cs_submit(struct amdgpu_cs_parser *p, 1281 union drm_amdgpu_cs *cs) 1282 { 1283 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 1284 struct amdgpu_job *leader = p->gang_leader; 1285 struct amdgpu_bo_list_entry *e; 1286 struct drm_gem_object *gobj; 1287 unsigned long index; 1288 unsigned int i; 1289 uint64_t seq; 1290 int r; 1291 1292 for (i = 0; i < p->gang_size; ++i) 1293 drm_sched_job_arm(&p->jobs[i]->base); 1294 1295 for (i = 0; i < p->gang_size; ++i) { 1296 struct dma_fence *fence; 1297 1298 if (p->jobs[i] == leader) 1299 continue; 1300 1301 fence = &p->jobs[i]->base.s_fence->scheduled; 1302 dma_fence_get(fence); 1303 r = drm_sched_job_add_dependency(&leader->base, fence); 1304 if (r) { 1305 dma_fence_put(fence); 1306 return r; 1307 } 1308 } 1309 1310 if (p->gang_size > 1) { 1311 for (i = 0; i < p->gang_size; ++i) 1312 amdgpu_job_set_gang_leader(p->jobs[i], leader); 1313 } 1314 1315 /* No memory allocation is allowed while holding the notifier lock. 1316 * The lock is held until amdgpu_cs_submit is finished and fence is 1317 * added to BOs. 1318 */ 1319 mutex_lock(&p->adev->notifier_lock); 1320 1321 /* If userptr are invalidated after amdgpu_cs_parser_bos(), return 1322 * -EAGAIN, drmIoctl in libdrm will restart the amdgpu_cs_ioctl. 1323 */ 1324 r = 0; 1325 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 1326 r |= !amdgpu_ttm_tt_get_user_pages_done(e->bo->tbo.ttm, 1327 e->range); 1328 e->range = NULL; 1329 } 1330 if (r) { 1331 r = -EAGAIN; 1332 mutex_unlock(&p->adev->notifier_lock); 1333 return r; 1334 } 1335 1336 p->fence = dma_fence_get(&leader->base.s_fence->finished); 1337 drm_exec_for_each_locked_object(&p->exec, index, gobj) { 1338 1339 ttm_bo_move_to_lru_tail_unlocked(&gem_to_amdgpu_bo(gobj)->tbo); 1340 1341 /* Everybody except for the gang leader uses READ */ 1342 for (i = 0; i < p->gang_size; ++i) { 1343 if (p->jobs[i] == leader) 1344 continue; 1345 1346 dma_resv_add_fence(gobj->resv, 1347 &p->jobs[i]->base.s_fence->finished, 1348 DMA_RESV_USAGE_READ); 1349 } 1350 1351 /* The gang leader as remembered as writer */ 1352 dma_resv_add_fence(gobj->resv, p->fence, DMA_RESV_USAGE_WRITE); 1353 } 1354 1355 seq = amdgpu_ctx_add_fence(p->ctx, p->entities[p->gang_leader_idx], 1356 p->fence); 1357 amdgpu_cs_post_dependencies(p); 1358 1359 if ((leader->preamble_status & AMDGPU_PREAMBLE_IB_PRESENT) && 1360 !p->ctx->preamble_presented) { 1361 leader->preamble_status |= AMDGPU_PREAMBLE_IB_PRESENT_FIRST; 1362 p->ctx->preamble_presented = true; 1363 } 1364 1365 cs->out.handle = seq; 1366 leader->uf_sequence = seq; 1367 1368 amdgpu_vm_bo_trace_cs(&fpriv->vm, &p->exec.ticket); 1369 for (i = 0; i < p->gang_size; ++i) { 1370 amdgpu_job_free_resources(p->jobs[i]); 1371 trace_amdgpu_cs_ioctl(p->jobs[i]); 1372 drm_sched_entity_push_job(&p->jobs[i]->base); 1373 p->jobs[i] = NULL; 1374 } 1375 1376 amdgpu_vm_move_to_lru_tail(p->adev, &fpriv->vm); 1377 1378 mutex_unlock(&p->adev->notifier_lock); 1379 mutex_unlock(&p->bo_list->bo_list_mutex); 1380 return 0; 1381 } 1382 1383 /* Cleanup the parser structure */ 1384 static void amdgpu_cs_parser_fini(struct amdgpu_cs_parser *parser) 1385 { 1386 unsigned int i; 1387 1388 amdgpu_sync_free(&parser->sync); 1389 drm_exec_fini(&parser->exec); 1390 1391 for (i = 0; i < parser->num_post_deps; i++) { 1392 drm_syncobj_put(parser->post_deps[i].syncobj); 1393 kfree(parser->post_deps[i].chain); 1394 } 1395 kfree(parser->post_deps); 1396 1397 dma_fence_put(parser->fence); 1398 1399 if (parser->ctx) 1400 amdgpu_ctx_put(parser->ctx); 1401 if (parser->bo_list) 1402 amdgpu_bo_list_put(parser->bo_list); 1403 1404 for (i = 0; i < parser->nchunks; i++) 1405 kvfree(parser->chunks[i].kdata); 1406 kvfree(parser->chunks); 1407 for (i = 0; i < parser->gang_size; ++i) { 1408 if (parser->jobs[i]) 1409 amdgpu_job_free(parser->jobs[i]); 1410 } 1411 amdgpu_bo_unref(&parser->uf_bo); 1412 } 1413 1414 int amdgpu_cs_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 1415 { 1416 struct amdgpu_device *adev = drm_to_adev(dev); 1417 struct amdgpu_cs_parser parser; 1418 int r; 1419 1420 if (amdgpu_ras_intr_triggered()) 1421 return -EHWPOISON; 1422 1423 if (!adev->accel_working) 1424 return -EBUSY; 1425 1426 r = amdgpu_cs_parser_init(&parser, adev, filp, data); 1427 if (r) { 1428 DRM_ERROR_RATELIMITED("Failed to initialize parser %d!\n", r); 1429 return r; 1430 } 1431 1432 r = amdgpu_cs_pass1(&parser, data); 1433 if (r) 1434 goto error_fini; 1435 1436 r = amdgpu_cs_pass2(&parser); 1437 if (r) 1438 goto error_fini; 1439 1440 r = amdgpu_cs_parser_bos(&parser, data); 1441 if (r) { 1442 if (r == -ENOMEM) 1443 DRM_ERROR("Not enough memory for command submission!\n"); 1444 else if (r != -ERESTARTSYS && r != -EAGAIN) 1445 DRM_DEBUG("Failed to process the buffer list %d!\n", r); 1446 goto error_fini; 1447 } 1448 1449 r = amdgpu_cs_patch_jobs(&parser); 1450 if (r) 1451 goto error_backoff; 1452 1453 r = amdgpu_cs_vm_handling(&parser); 1454 if (r) 1455 goto error_backoff; 1456 1457 r = amdgpu_cs_sync_rings(&parser); 1458 if (r) 1459 goto error_backoff; 1460 1461 trace_amdgpu_cs_ibs(&parser); 1462 1463 r = amdgpu_cs_submit(&parser, data); 1464 if (r) 1465 goto error_backoff; 1466 1467 amdgpu_cs_parser_fini(&parser); 1468 return 0; 1469 1470 error_backoff: 1471 mutex_unlock(&parser.bo_list->bo_list_mutex); 1472 1473 error_fini: 1474 amdgpu_cs_parser_fini(&parser); 1475 return r; 1476 } 1477 1478 /** 1479 * amdgpu_cs_wait_ioctl - wait for a command submission to finish 1480 * 1481 * @dev: drm device 1482 * @data: data from userspace 1483 * @filp: file private 1484 * 1485 * Wait for the command submission identified by handle to finish. 1486 */ 1487 int amdgpu_cs_wait_ioctl(struct drm_device *dev, void *data, 1488 struct drm_file *filp) 1489 { 1490 union drm_amdgpu_wait_cs *wait = data; 1491 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout); 1492 struct drm_sched_entity *entity; 1493 struct amdgpu_ctx *ctx; 1494 struct dma_fence *fence; 1495 long r; 1496 1497 ctx = amdgpu_ctx_get(filp->driver_priv, wait->in.ctx_id); 1498 if (ctx == NULL) 1499 return -EINVAL; 1500 1501 r = amdgpu_ctx_get_entity(ctx, wait->in.ip_type, wait->in.ip_instance, 1502 wait->in.ring, &entity); 1503 if (r) { 1504 amdgpu_ctx_put(ctx); 1505 return r; 1506 } 1507 1508 fence = amdgpu_ctx_get_fence(ctx, entity, wait->in.handle); 1509 if (IS_ERR(fence)) 1510 r = PTR_ERR(fence); 1511 else if (fence) { 1512 r = dma_fence_wait_timeout(fence, true, timeout); 1513 if (r > 0 && fence->error) 1514 r = fence->error; 1515 dma_fence_put(fence); 1516 } else 1517 r = 1; 1518 1519 amdgpu_ctx_put(ctx); 1520 if (r < 0) 1521 return r; 1522 1523 memset(wait, 0, sizeof(*wait)); 1524 wait->out.status = (r == 0); 1525 1526 return 0; 1527 } 1528 1529 /** 1530 * amdgpu_cs_get_fence - helper to get fence from drm_amdgpu_fence 1531 * 1532 * @adev: amdgpu device 1533 * @filp: file private 1534 * @user: drm_amdgpu_fence copied from user space 1535 */ 1536 static struct dma_fence *amdgpu_cs_get_fence(struct amdgpu_device *adev, 1537 struct drm_file *filp, 1538 struct drm_amdgpu_fence *user) 1539 { 1540 struct drm_sched_entity *entity; 1541 struct amdgpu_ctx *ctx; 1542 struct dma_fence *fence; 1543 int r; 1544 1545 ctx = amdgpu_ctx_get(filp->driver_priv, user->ctx_id); 1546 if (ctx == NULL) 1547 return ERR_PTR(-EINVAL); 1548 1549 r = amdgpu_ctx_get_entity(ctx, user->ip_type, user->ip_instance, 1550 user->ring, &entity); 1551 if (r) { 1552 amdgpu_ctx_put(ctx); 1553 return ERR_PTR(r); 1554 } 1555 1556 fence = amdgpu_ctx_get_fence(ctx, entity, user->seq_no); 1557 amdgpu_ctx_put(ctx); 1558 1559 return fence; 1560 } 1561 1562 int amdgpu_cs_fence_to_handle_ioctl(struct drm_device *dev, void *data, 1563 struct drm_file *filp) 1564 { 1565 struct amdgpu_device *adev = drm_to_adev(dev); 1566 union drm_amdgpu_fence_to_handle *info = data; 1567 struct dma_fence *fence; 1568 struct drm_syncobj *syncobj; 1569 struct sync_file *sync_file; 1570 int fd, r; 1571 1572 fence = amdgpu_cs_get_fence(adev, filp, &info->in.fence); 1573 if (IS_ERR(fence)) 1574 return PTR_ERR(fence); 1575 1576 if (!fence) 1577 fence = dma_fence_get_stub(); 1578 1579 switch (info->in.what) { 1580 case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ: 1581 r = drm_syncobj_create(&syncobj, 0, fence); 1582 dma_fence_put(fence); 1583 if (r) 1584 return r; 1585 r = drm_syncobj_get_handle(filp, syncobj, &info->out.handle); 1586 drm_syncobj_put(syncobj); 1587 return r; 1588 1589 case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ_FD: 1590 r = drm_syncobj_create(&syncobj, 0, fence); 1591 dma_fence_put(fence); 1592 if (r) 1593 return r; 1594 r = drm_syncobj_get_fd(syncobj, (int *)&info->out.handle); 1595 drm_syncobj_put(syncobj); 1596 return r; 1597 1598 case AMDGPU_FENCE_TO_HANDLE_GET_SYNC_FILE_FD: 1599 fd = get_unused_fd_flags(O_CLOEXEC); 1600 if (fd < 0) { 1601 dma_fence_put(fence); 1602 return fd; 1603 } 1604 1605 sync_file = sync_file_create(fence); 1606 dma_fence_put(fence); 1607 if (!sync_file) { 1608 put_unused_fd(fd); 1609 return -ENOMEM; 1610 } 1611 1612 fd_install(fd, sync_file->file); 1613 info->out.handle = fd; 1614 return 0; 1615 1616 default: 1617 dma_fence_put(fence); 1618 return -EINVAL; 1619 } 1620 } 1621 1622 /** 1623 * amdgpu_cs_wait_all_fences - wait on all fences to signal 1624 * 1625 * @adev: amdgpu device 1626 * @filp: file private 1627 * @wait: wait parameters 1628 * @fences: array of drm_amdgpu_fence 1629 */ 1630 static int amdgpu_cs_wait_all_fences(struct amdgpu_device *adev, 1631 struct drm_file *filp, 1632 union drm_amdgpu_wait_fences *wait, 1633 struct drm_amdgpu_fence *fences) 1634 { 1635 uint32_t fence_count = wait->in.fence_count; 1636 unsigned int i; 1637 long r = 1; 1638 1639 for (i = 0; i < fence_count; i++) { 1640 struct dma_fence *fence; 1641 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns); 1642 1643 fence = amdgpu_cs_get_fence(adev, filp, &fences[i]); 1644 if (IS_ERR(fence)) 1645 return PTR_ERR(fence); 1646 else if (!fence) 1647 continue; 1648 1649 r = dma_fence_wait_timeout(fence, true, timeout); 1650 if (r > 0 && fence->error) 1651 r = fence->error; 1652 1653 dma_fence_put(fence); 1654 if (r < 0) 1655 return r; 1656 1657 if (r == 0) 1658 break; 1659 } 1660 1661 memset(wait, 0, sizeof(*wait)); 1662 wait->out.status = (r > 0); 1663 1664 return 0; 1665 } 1666 1667 /** 1668 * amdgpu_cs_wait_any_fence - wait on any fence to signal 1669 * 1670 * @adev: amdgpu device 1671 * @filp: file private 1672 * @wait: wait parameters 1673 * @fences: array of drm_amdgpu_fence 1674 */ 1675 static int amdgpu_cs_wait_any_fence(struct amdgpu_device *adev, 1676 struct drm_file *filp, 1677 union drm_amdgpu_wait_fences *wait, 1678 struct drm_amdgpu_fence *fences) 1679 { 1680 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns); 1681 uint32_t fence_count = wait->in.fence_count; 1682 uint32_t first = ~0; 1683 struct dma_fence **array; 1684 unsigned int i; 1685 long r; 1686 1687 /* Prepare the fence array */ 1688 array = kcalloc(fence_count, sizeof(struct dma_fence *), GFP_KERNEL); 1689 1690 if (array == NULL) 1691 return -ENOMEM; 1692 1693 for (i = 0; i < fence_count; i++) { 1694 struct dma_fence *fence; 1695 1696 fence = amdgpu_cs_get_fence(adev, filp, &fences[i]); 1697 if (IS_ERR(fence)) { 1698 r = PTR_ERR(fence); 1699 goto err_free_fence_array; 1700 } else if (fence) { 1701 array[i] = fence; 1702 } else { /* NULL, the fence has been already signaled */ 1703 r = 1; 1704 first = i; 1705 goto out; 1706 } 1707 } 1708 1709 r = dma_fence_wait_any_timeout(array, fence_count, true, timeout, 1710 &first); 1711 if (r < 0) 1712 goto err_free_fence_array; 1713 1714 out: 1715 memset(wait, 0, sizeof(*wait)); 1716 wait->out.status = (r > 0); 1717 wait->out.first_signaled = first; 1718 1719 if (first < fence_count && array[first]) 1720 r = array[first]->error; 1721 else 1722 r = 0; 1723 1724 err_free_fence_array: 1725 for (i = 0; i < fence_count; i++) 1726 dma_fence_put(array[i]); 1727 kfree(array); 1728 1729 return r; 1730 } 1731 1732 /** 1733 * amdgpu_cs_wait_fences_ioctl - wait for multiple command submissions to finish 1734 * 1735 * @dev: drm device 1736 * @data: data from userspace 1737 * @filp: file private 1738 */ 1739 int amdgpu_cs_wait_fences_ioctl(struct drm_device *dev, void *data, 1740 struct drm_file *filp) 1741 { 1742 struct amdgpu_device *adev = drm_to_adev(dev); 1743 union drm_amdgpu_wait_fences *wait = data; 1744 uint32_t fence_count = wait->in.fence_count; 1745 struct drm_amdgpu_fence *fences_user; 1746 struct drm_amdgpu_fence *fences; 1747 int r; 1748 1749 /* Get the fences from userspace */ 1750 fences = kmalloc_array(fence_count, sizeof(struct drm_amdgpu_fence), 1751 GFP_KERNEL); 1752 if (fences == NULL) 1753 return -ENOMEM; 1754 1755 fences_user = u64_to_user_ptr(wait->in.fences); 1756 if (copy_from_user(fences, fences_user, 1757 sizeof(struct drm_amdgpu_fence) * fence_count)) { 1758 r = -EFAULT; 1759 goto err_free_fences; 1760 } 1761 1762 if (wait->in.wait_all) 1763 r = amdgpu_cs_wait_all_fences(adev, filp, wait, fences); 1764 else 1765 r = amdgpu_cs_wait_any_fence(adev, filp, wait, fences); 1766 1767 err_free_fences: 1768 kfree(fences); 1769 1770 return r; 1771 } 1772 1773 /** 1774 * amdgpu_cs_find_mapping - find bo_va for VM address 1775 * 1776 * @parser: command submission parser context 1777 * @addr: VM address 1778 * @bo: resulting BO of the mapping found 1779 * @map: Placeholder to return found BO mapping 1780 * 1781 * Search the buffer objects in the command submission context for a certain 1782 * virtual memory address. Returns allocation structure when found, NULL 1783 * otherwise. 1784 */ 1785 int amdgpu_cs_find_mapping(struct amdgpu_cs_parser *parser, 1786 uint64_t addr, struct amdgpu_bo **bo, 1787 struct amdgpu_bo_va_mapping **map) 1788 { 1789 struct amdgpu_fpriv *fpriv = parser->filp->driver_priv; 1790 struct ttm_operation_ctx ctx = { false, false }; 1791 struct amdgpu_vm *vm = &fpriv->vm; 1792 struct amdgpu_bo_va_mapping *mapping; 1793 int i, r; 1794 1795 addr /= AMDGPU_GPU_PAGE_SIZE; 1796 1797 mapping = amdgpu_vm_bo_lookup_mapping(vm, addr); 1798 if (!mapping || !mapping->bo_va || !mapping->bo_va->base.bo) 1799 return -EINVAL; 1800 1801 *bo = mapping->bo_va->base.bo; 1802 *map = mapping; 1803 1804 /* Double check that the BO is reserved by this CS */ 1805 if (dma_resv_locking_ctx((*bo)->tbo.base.resv) != &parser->exec.ticket) 1806 return -EINVAL; 1807 1808 /* Make sure VRAM is allocated contigiously */ 1809 (*bo)->flags |= AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 1810 if ((*bo)->tbo.resource->mem_type == TTM_PL_VRAM && 1811 !((*bo)->tbo.resource->placement & TTM_PL_FLAG_CONTIGUOUS)) { 1812 1813 amdgpu_bo_placement_from_domain(*bo, (*bo)->allowed_domains); 1814 for (i = 0; i < (*bo)->placement.num_placement; i++) 1815 (*bo)->placements[i].flags |= TTM_PL_FLAG_CONTIGUOUS; 1816 r = ttm_bo_validate(&(*bo)->tbo, &(*bo)->placement, &ctx); 1817 if (r) 1818 return r; 1819 } 1820 1821 return amdgpu_ttm_alloc_gart(&(*bo)->tbo); 1822 } 1823