1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/cpufreq/cpufreq.c 4 * 5 * Copyright (C) 2001 Russell King 6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 8 * 9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 10 * Added handling for CPU hotplug 11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 12 * Fix handling for CPU hotplug -- affected CPUs 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/cpu.h> 18 #include <linux/cpufreq.h> 19 #include <linux/cpu_cooling.h> 20 #include <linux/delay.h> 21 #include <linux/device.h> 22 #include <linux/init.h> 23 #include <linux/kernel_stat.h> 24 #include <linux/module.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_qos.h> 27 #include <linux/slab.h> 28 #include <linux/string_choices.h> 29 #include <linux/suspend.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/tick.h> 32 #include <linux/units.h> 33 #include <trace/events/power.h> 34 35 static LIST_HEAD(cpufreq_policy_list); 36 37 /* Macros to iterate over CPU policies */ 38 #define for_each_suitable_policy(__policy, __active) \ 39 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \ 40 if ((__active) == !policy_is_inactive(__policy)) 41 42 #define for_each_active_policy(__policy) \ 43 for_each_suitable_policy(__policy, true) 44 #define for_each_inactive_policy(__policy) \ 45 for_each_suitable_policy(__policy, false) 46 47 /* Iterate over governors */ 48 static LIST_HEAD(cpufreq_governor_list); 49 #define for_each_governor(__governor) \ 50 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 51 52 static char default_governor[CPUFREQ_NAME_LEN]; 53 54 /* 55 * The "cpufreq driver" - the arch- or hardware-dependent low 56 * level driver of CPUFreq support, and its spinlock. This lock 57 * also protects the cpufreq_cpu_data array. 58 */ 59 static struct cpufreq_driver *cpufreq_driver; 60 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 61 static DEFINE_RWLOCK(cpufreq_driver_lock); 62 63 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance); 64 bool cpufreq_supports_freq_invariance(void) 65 { 66 return static_branch_likely(&cpufreq_freq_invariance); 67 } 68 69 /* Flag to suspend/resume CPUFreq governors */ 70 static bool cpufreq_suspended; 71 72 static inline bool has_target(void) 73 { 74 return cpufreq_driver->target_index || cpufreq_driver->target; 75 } 76 77 bool has_target_index(void) 78 { 79 return !!cpufreq_driver->target_index; 80 } 81 82 /* internal prototypes */ 83 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 84 static int cpufreq_init_governor(struct cpufreq_policy *policy); 85 static void cpufreq_exit_governor(struct cpufreq_policy *policy); 86 static void cpufreq_governor_limits(struct cpufreq_policy *policy); 87 static int cpufreq_set_policy(struct cpufreq_policy *policy, 88 struct cpufreq_governor *new_gov, 89 unsigned int new_pol); 90 static bool cpufreq_boost_supported(void); 91 static int cpufreq_boost_trigger_state(int state); 92 93 /* 94 * Two notifier lists: the "policy" list is involved in the 95 * validation process for a new CPU frequency policy; the 96 * "transition" list for kernel code that needs to handle 97 * changes to devices when the CPU clock speed changes. 98 * The mutex locks both lists. 99 */ 100 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 101 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list); 102 103 static int off __read_mostly; 104 static int cpufreq_disabled(void) 105 { 106 return off; 107 } 108 void disable_cpufreq(void) 109 { 110 off = 1; 111 } 112 static DEFINE_MUTEX(cpufreq_governor_mutex); 113 114 bool have_governor_per_policy(void) 115 { 116 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 117 } 118 EXPORT_SYMBOL_GPL(have_governor_per_policy); 119 120 static struct kobject *cpufreq_global_kobject; 121 122 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 123 { 124 if (have_governor_per_policy()) 125 return &policy->kobj; 126 else 127 return cpufreq_global_kobject; 128 } 129 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 130 131 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 132 { 133 struct kernel_cpustat kcpustat; 134 u64 cur_wall_time; 135 u64 idle_time; 136 u64 busy_time; 137 138 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64()); 139 140 kcpustat_cpu_fetch(&kcpustat, cpu); 141 142 busy_time = kcpustat.cpustat[CPUTIME_USER]; 143 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM]; 144 busy_time += kcpustat.cpustat[CPUTIME_IRQ]; 145 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ]; 146 busy_time += kcpustat.cpustat[CPUTIME_STEAL]; 147 busy_time += kcpustat.cpustat[CPUTIME_NICE]; 148 149 idle_time = cur_wall_time - busy_time; 150 if (wall) 151 *wall = div_u64(cur_wall_time, NSEC_PER_USEC); 152 153 return div_u64(idle_time, NSEC_PER_USEC); 154 } 155 156 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 157 { 158 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 159 160 if (idle_time == -1ULL) 161 return get_cpu_idle_time_jiffy(cpu, wall); 162 else if (!io_busy) 163 idle_time += get_cpu_iowait_time_us(cpu, wall); 164 165 return idle_time; 166 } 167 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 168 169 /* 170 * This is a generic cpufreq init() routine which can be used by cpufreq 171 * drivers of SMP systems. It will do following: 172 * - validate & show freq table passed 173 * - set policies transition latency 174 * - policy->cpus with all possible CPUs 175 */ 176 void cpufreq_generic_init(struct cpufreq_policy *policy, 177 struct cpufreq_frequency_table *table, 178 unsigned int transition_latency) 179 { 180 policy->freq_table = table; 181 policy->cpuinfo.transition_latency = transition_latency; 182 183 /* 184 * The driver only supports the SMP configuration where all processors 185 * share the clock and voltage and clock. 186 */ 187 cpumask_setall(policy->cpus); 188 } 189 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 190 191 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 192 { 193 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 194 195 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL; 196 } 197 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw); 198 199 unsigned int cpufreq_generic_get(unsigned int cpu) 200 { 201 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu); 202 203 if (!policy || IS_ERR(policy->clk)) { 204 pr_err("%s: No %s associated to cpu: %d\n", 205 __func__, policy ? "clk" : "policy", cpu); 206 return 0; 207 } 208 209 return clk_get_rate(policy->clk) / 1000; 210 } 211 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 212 213 /** 214 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy. 215 * @cpu: CPU to find the policy for. 216 * 217 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment 218 * the kobject reference counter of that policy. Return a valid policy on 219 * success or NULL on failure. 220 * 221 * The policy returned by this function has to be released with the help of 222 * cpufreq_cpu_put() to balance its kobject reference counter properly. 223 */ 224 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 225 { 226 struct cpufreq_policy *policy = NULL; 227 unsigned long flags; 228 229 if (WARN_ON(cpu >= nr_cpu_ids)) 230 return NULL; 231 232 /* get the cpufreq driver */ 233 read_lock_irqsave(&cpufreq_driver_lock, flags); 234 235 if (cpufreq_driver) { 236 /* get the CPU */ 237 policy = cpufreq_cpu_get_raw(cpu); 238 if (policy) 239 kobject_get(&policy->kobj); 240 } 241 242 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 243 244 return policy; 245 } 246 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 247 248 /** 249 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy. 250 * @policy: cpufreq policy returned by cpufreq_cpu_get(). 251 */ 252 void cpufreq_cpu_put(struct cpufreq_policy *policy) 253 { 254 kobject_put(&policy->kobj); 255 } 256 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 257 258 /** 259 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter. 260 * @policy: cpufreq policy returned by cpufreq_cpu_acquire(). 261 */ 262 void cpufreq_cpu_release(struct cpufreq_policy *policy) 263 { 264 if (WARN_ON(!policy)) 265 return; 266 267 lockdep_assert_held(&policy->rwsem); 268 269 up_write(&policy->rwsem); 270 271 cpufreq_cpu_put(policy); 272 } 273 274 /** 275 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it. 276 * @cpu: CPU to find the policy for. 277 * 278 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and 279 * if the policy returned by it is not NULL, acquire its rwsem for writing. 280 * Return the policy if it is active or release it and return NULL otherwise. 281 * 282 * The policy returned by this function has to be released with the help of 283 * cpufreq_cpu_release() in order to release its rwsem and balance its usage 284 * counter properly. 285 */ 286 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu) 287 { 288 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 289 290 if (!policy) 291 return NULL; 292 293 down_write(&policy->rwsem); 294 295 if (policy_is_inactive(policy)) { 296 cpufreq_cpu_release(policy); 297 return NULL; 298 } 299 300 return policy; 301 } 302 303 /********************************************************************* 304 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 305 *********************************************************************/ 306 307 /** 308 * adjust_jiffies - Adjust the system "loops_per_jiffy". 309 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 310 * @ci: Frequency change information. 311 * 312 * This function alters the system "loops_per_jiffy" for the clock 313 * speed change. Note that loops_per_jiffy cannot be updated on SMP 314 * systems as each CPU might be scaled differently. So, use the arch 315 * per-CPU loops_per_jiffy value wherever possible. 316 */ 317 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 318 { 319 #ifndef CONFIG_SMP 320 static unsigned long l_p_j_ref; 321 static unsigned int l_p_j_ref_freq; 322 323 if (ci->flags & CPUFREQ_CONST_LOOPS) 324 return; 325 326 if (!l_p_j_ref_freq) { 327 l_p_j_ref = loops_per_jiffy; 328 l_p_j_ref_freq = ci->old; 329 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 330 l_p_j_ref, l_p_j_ref_freq); 331 } 332 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 333 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 334 ci->new); 335 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 336 loops_per_jiffy, ci->new); 337 } 338 #endif 339 } 340 341 /** 342 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies. 343 * @policy: cpufreq policy to enable fast frequency switching for. 344 * @freqs: contain details of the frequency update. 345 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 346 * 347 * This function calls the transition notifiers and adjust_jiffies(). 348 * 349 * It is called twice on all CPU frequency changes that have external effects. 350 */ 351 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 352 struct cpufreq_freqs *freqs, 353 unsigned int state) 354 { 355 int cpu; 356 357 BUG_ON(irqs_disabled()); 358 359 if (cpufreq_disabled()) 360 return; 361 362 freqs->policy = policy; 363 freqs->flags = cpufreq_driver->flags; 364 pr_debug("notification %u of frequency transition to %u kHz\n", 365 state, freqs->new); 366 367 switch (state) { 368 case CPUFREQ_PRECHANGE: 369 /* 370 * Detect if the driver reported a value as "old frequency" 371 * which is not equal to what the cpufreq core thinks is 372 * "old frequency". 373 */ 374 if (policy->cur && policy->cur != freqs->old) { 375 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 376 freqs->old, policy->cur); 377 freqs->old = policy->cur; 378 } 379 380 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 381 CPUFREQ_PRECHANGE, freqs); 382 383 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 384 break; 385 386 case CPUFREQ_POSTCHANGE: 387 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 388 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new, 389 cpumask_pr_args(policy->cpus)); 390 391 for_each_cpu(cpu, policy->cpus) 392 trace_cpu_frequency(freqs->new, cpu); 393 394 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 395 CPUFREQ_POSTCHANGE, freqs); 396 397 cpufreq_stats_record_transition(policy, freqs->new); 398 policy->cur = freqs->new; 399 } 400 } 401 402 /* Do post notifications when there are chances that transition has failed */ 403 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 404 struct cpufreq_freqs *freqs, int transition_failed) 405 { 406 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 407 if (!transition_failed) 408 return; 409 410 swap(freqs->old, freqs->new); 411 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 412 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 413 } 414 415 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 416 struct cpufreq_freqs *freqs) 417 { 418 419 /* 420 * Catch double invocations of _begin() which lead to self-deadlock. 421 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 422 * doesn't invoke _begin() on their behalf, and hence the chances of 423 * double invocations are very low. Moreover, there are scenarios 424 * where these checks can emit false-positive warnings in these 425 * drivers; so we avoid that by skipping them altogether. 426 */ 427 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 428 && current == policy->transition_task); 429 430 wait: 431 wait_event(policy->transition_wait, !policy->transition_ongoing); 432 433 spin_lock(&policy->transition_lock); 434 435 if (unlikely(policy->transition_ongoing)) { 436 spin_unlock(&policy->transition_lock); 437 goto wait; 438 } 439 440 policy->transition_ongoing = true; 441 policy->transition_task = current; 442 443 spin_unlock(&policy->transition_lock); 444 445 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 446 } 447 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 448 449 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 450 struct cpufreq_freqs *freqs, int transition_failed) 451 { 452 if (WARN_ON(!policy->transition_ongoing)) 453 return; 454 455 cpufreq_notify_post_transition(policy, freqs, transition_failed); 456 457 arch_set_freq_scale(policy->related_cpus, 458 policy->cur, 459 arch_scale_freq_ref(policy->cpu)); 460 461 spin_lock(&policy->transition_lock); 462 policy->transition_ongoing = false; 463 policy->transition_task = NULL; 464 spin_unlock(&policy->transition_lock); 465 466 wake_up(&policy->transition_wait); 467 } 468 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 469 470 /* 471 * Fast frequency switching status count. Positive means "enabled", negative 472 * means "disabled" and 0 means "not decided yet". 473 */ 474 static int cpufreq_fast_switch_count; 475 static DEFINE_MUTEX(cpufreq_fast_switch_lock); 476 477 static void cpufreq_list_transition_notifiers(void) 478 { 479 struct notifier_block *nb; 480 481 pr_info("Registered transition notifiers:\n"); 482 483 mutex_lock(&cpufreq_transition_notifier_list.mutex); 484 485 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next) 486 pr_info("%pS\n", nb->notifier_call); 487 488 mutex_unlock(&cpufreq_transition_notifier_list.mutex); 489 } 490 491 /** 492 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy. 493 * @policy: cpufreq policy to enable fast frequency switching for. 494 * 495 * Try to enable fast frequency switching for @policy. 496 * 497 * The attempt will fail if there is at least one transition notifier registered 498 * at this point, as fast frequency switching is quite fundamentally at odds 499 * with transition notifiers. Thus if successful, it will make registration of 500 * transition notifiers fail going forward. 501 */ 502 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy) 503 { 504 lockdep_assert_held(&policy->rwsem); 505 506 if (!policy->fast_switch_possible) 507 return; 508 509 mutex_lock(&cpufreq_fast_switch_lock); 510 if (cpufreq_fast_switch_count >= 0) { 511 cpufreq_fast_switch_count++; 512 policy->fast_switch_enabled = true; 513 } else { 514 pr_warn("CPU%u: Fast frequency switching not enabled\n", 515 policy->cpu); 516 cpufreq_list_transition_notifiers(); 517 } 518 mutex_unlock(&cpufreq_fast_switch_lock); 519 } 520 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch); 521 522 /** 523 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy. 524 * @policy: cpufreq policy to disable fast frequency switching for. 525 */ 526 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy) 527 { 528 mutex_lock(&cpufreq_fast_switch_lock); 529 if (policy->fast_switch_enabled) { 530 policy->fast_switch_enabled = false; 531 if (!WARN_ON(cpufreq_fast_switch_count <= 0)) 532 cpufreq_fast_switch_count--; 533 } 534 mutex_unlock(&cpufreq_fast_switch_lock); 535 } 536 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch); 537 538 static unsigned int __resolve_freq(struct cpufreq_policy *policy, 539 unsigned int target_freq, 540 unsigned int min, unsigned int max, 541 unsigned int relation) 542 { 543 unsigned int idx; 544 545 target_freq = clamp_val(target_freq, min, max); 546 547 if (!policy->freq_table) 548 return target_freq; 549 550 idx = cpufreq_frequency_table_target(policy, target_freq, min, max, relation); 551 policy->cached_resolved_idx = idx; 552 policy->cached_target_freq = target_freq; 553 return policy->freq_table[idx].frequency; 554 } 555 556 /** 557 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported 558 * one. 559 * @policy: associated policy to interrogate 560 * @target_freq: target frequency to resolve. 561 * 562 * The target to driver frequency mapping is cached in the policy. 563 * 564 * Return: Lowest driver-supported frequency greater than or equal to the 565 * given target_freq, subject to policy (min/max) and driver limitations. 566 */ 567 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy, 568 unsigned int target_freq) 569 { 570 unsigned int min = READ_ONCE(policy->min); 571 unsigned int max = READ_ONCE(policy->max); 572 573 /* 574 * If this function runs in parallel with cpufreq_set_policy(), it may 575 * read policy->min before the update and policy->max after the update 576 * or the other way around, so there is no ordering guarantee. 577 * 578 * Resolve this by always honoring the max (in case it comes from 579 * thermal throttling or similar). 580 */ 581 if (unlikely(min > max)) 582 min = max; 583 584 return __resolve_freq(policy, target_freq, min, max, CPUFREQ_RELATION_LE); 585 } 586 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq); 587 588 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy) 589 { 590 unsigned int latency; 591 592 if (policy->transition_delay_us) 593 return policy->transition_delay_us; 594 595 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC; 596 if (latency) 597 /* Give a 50% breathing room between updates */ 598 return latency + (latency >> 1); 599 600 return USEC_PER_MSEC; 601 } 602 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us); 603 604 /********************************************************************* 605 * SYSFS INTERFACE * 606 *********************************************************************/ 607 static ssize_t show_boost(struct kobject *kobj, 608 struct kobj_attribute *attr, char *buf) 609 { 610 return sysfs_emit(buf, "%d\n", cpufreq_driver->boost_enabled); 611 } 612 613 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr, 614 const char *buf, size_t count) 615 { 616 bool enable; 617 618 if (kstrtobool(buf, &enable)) 619 return -EINVAL; 620 621 if (cpufreq_boost_trigger_state(enable)) { 622 pr_err("%s: Cannot %s BOOST!\n", 623 __func__, str_enable_disable(enable)); 624 return -EINVAL; 625 } 626 627 pr_debug("%s: cpufreq BOOST %s\n", 628 __func__, str_enabled_disabled(enable)); 629 630 return count; 631 } 632 define_one_global_rw(boost); 633 634 static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf) 635 { 636 return sysfs_emit(buf, "%d\n", policy->boost_enabled); 637 } 638 639 static ssize_t store_local_boost(struct cpufreq_policy *policy, 640 const char *buf, size_t count) 641 { 642 int ret; 643 bool enable; 644 645 if (kstrtobool(buf, &enable)) 646 return -EINVAL; 647 648 if (!cpufreq_driver->boost_enabled) 649 return -EINVAL; 650 651 if (!policy->boost_supported) 652 return -EINVAL; 653 654 if (policy->boost_enabled == enable) 655 return count; 656 657 policy->boost_enabled = enable; 658 659 cpus_read_lock(); 660 ret = cpufreq_driver->set_boost(policy, enable); 661 cpus_read_unlock(); 662 663 if (ret) { 664 policy->boost_enabled = !policy->boost_enabled; 665 return ret; 666 } 667 668 return count; 669 } 670 671 static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost); 672 673 static struct cpufreq_governor *find_governor(const char *str_governor) 674 { 675 struct cpufreq_governor *t; 676 677 for_each_governor(t) 678 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 679 return t; 680 681 return NULL; 682 } 683 684 static struct cpufreq_governor *get_governor(const char *str_governor) 685 { 686 struct cpufreq_governor *t; 687 688 mutex_lock(&cpufreq_governor_mutex); 689 t = find_governor(str_governor); 690 if (!t) 691 goto unlock; 692 693 if (!try_module_get(t->owner)) 694 t = NULL; 695 696 unlock: 697 mutex_unlock(&cpufreq_governor_mutex); 698 699 return t; 700 } 701 702 static unsigned int cpufreq_parse_policy(char *str_governor) 703 { 704 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) 705 return CPUFREQ_POLICY_PERFORMANCE; 706 707 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) 708 return CPUFREQ_POLICY_POWERSAVE; 709 710 return CPUFREQ_POLICY_UNKNOWN; 711 } 712 713 /** 714 * cpufreq_parse_governor - parse a governor string only for has_target() 715 * @str_governor: Governor name. 716 */ 717 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor) 718 { 719 struct cpufreq_governor *t; 720 721 t = get_governor(str_governor); 722 if (t) 723 return t; 724 725 if (request_module("cpufreq_%s", str_governor)) 726 return NULL; 727 728 return get_governor(str_governor); 729 } 730 731 /* 732 * cpufreq_per_cpu_attr_read() / show_##file_name() - 733 * print out cpufreq information 734 * 735 * Write out information from cpufreq_driver->policy[cpu]; object must be 736 * "unsigned int". 737 */ 738 739 #define show_one(file_name, object) \ 740 static ssize_t show_##file_name \ 741 (struct cpufreq_policy *policy, char *buf) \ 742 { \ 743 return sysfs_emit(buf, "%u\n", policy->object); \ 744 } 745 746 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 747 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 748 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 749 show_one(scaling_min_freq, min); 750 show_one(scaling_max_freq, max); 751 752 __weak int arch_freq_get_on_cpu(int cpu) 753 { 754 return -EOPNOTSUPP; 755 } 756 757 static inline bool cpufreq_avg_freq_supported(struct cpufreq_policy *policy) 758 { 759 return arch_freq_get_on_cpu(policy->cpu) != -EOPNOTSUPP; 760 } 761 762 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 763 { 764 ssize_t ret; 765 int freq; 766 767 freq = IS_ENABLED(CONFIG_CPUFREQ_ARCH_CUR_FREQ) 768 ? arch_freq_get_on_cpu(policy->cpu) 769 : 0; 770 771 if (freq > 0) 772 ret = sysfs_emit(buf, "%u\n", freq); 773 else if (cpufreq_driver->setpolicy && cpufreq_driver->get) 774 ret = sysfs_emit(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 775 else 776 ret = sysfs_emit(buf, "%u\n", policy->cur); 777 return ret; 778 } 779 780 /* 781 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 782 */ 783 #define store_one(file_name, object) \ 784 static ssize_t store_##file_name \ 785 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 786 { \ 787 unsigned long val; \ 788 int ret; \ 789 \ 790 ret = kstrtoul(buf, 0, &val); \ 791 if (ret) \ 792 return ret; \ 793 \ 794 ret = freq_qos_update_request(policy->object##_freq_req, val);\ 795 return ret >= 0 ? count : ret; \ 796 } 797 798 store_one(scaling_min_freq, min); 799 store_one(scaling_max_freq, max); 800 801 /* 802 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 803 */ 804 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 805 char *buf) 806 { 807 unsigned int cur_freq = __cpufreq_get(policy); 808 809 if (cur_freq) 810 return sysfs_emit(buf, "%u\n", cur_freq); 811 812 return sysfs_emit(buf, "<unknown>\n"); 813 } 814 815 /* 816 * show_cpuinfo_avg_freq - average CPU frequency as detected by hardware 817 */ 818 static ssize_t show_cpuinfo_avg_freq(struct cpufreq_policy *policy, 819 char *buf) 820 { 821 int avg_freq = arch_freq_get_on_cpu(policy->cpu); 822 823 if (avg_freq > 0) 824 return sysfs_emit(buf, "%u\n", avg_freq); 825 return avg_freq != 0 ? avg_freq : -EINVAL; 826 } 827 828 /* 829 * show_scaling_governor - show the current policy for the specified CPU 830 */ 831 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 832 { 833 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 834 return sysfs_emit(buf, "powersave\n"); 835 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 836 return sysfs_emit(buf, "performance\n"); 837 else if (policy->governor) 838 return sysfs_emit(buf, "%s\n", policy->governor->name); 839 return -EINVAL; 840 } 841 842 /* 843 * store_scaling_governor - store policy for the specified CPU 844 */ 845 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 846 const char *buf, size_t count) 847 { 848 char str_governor[16]; 849 int ret; 850 851 ret = sscanf(buf, "%15s", str_governor); 852 if (ret != 1) 853 return -EINVAL; 854 855 if (cpufreq_driver->setpolicy) { 856 unsigned int new_pol; 857 858 new_pol = cpufreq_parse_policy(str_governor); 859 if (!new_pol) 860 return -EINVAL; 861 862 ret = cpufreq_set_policy(policy, NULL, new_pol); 863 } else { 864 struct cpufreq_governor *new_gov; 865 866 new_gov = cpufreq_parse_governor(str_governor); 867 if (!new_gov) 868 return -EINVAL; 869 870 ret = cpufreq_set_policy(policy, new_gov, 871 CPUFREQ_POLICY_UNKNOWN); 872 873 module_put(new_gov->owner); 874 } 875 876 return ret ? ret : count; 877 } 878 879 /* 880 * show_scaling_driver - show the cpufreq driver currently loaded 881 */ 882 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 883 { 884 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 885 } 886 887 /* 888 * show_scaling_available_governors - show the available CPUfreq governors 889 */ 890 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 891 char *buf) 892 { 893 ssize_t i = 0; 894 struct cpufreq_governor *t; 895 896 if (!has_target()) { 897 i += sysfs_emit(buf, "performance powersave"); 898 goto out; 899 } 900 901 mutex_lock(&cpufreq_governor_mutex); 902 for_each_governor(t) { 903 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 904 - (CPUFREQ_NAME_LEN + 2))) 905 break; 906 i += sysfs_emit_at(buf, i, "%s ", t->name); 907 } 908 mutex_unlock(&cpufreq_governor_mutex); 909 out: 910 i += sysfs_emit_at(buf, i, "\n"); 911 return i; 912 } 913 914 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 915 { 916 ssize_t i = 0; 917 unsigned int cpu; 918 919 for_each_cpu(cpu, mask) { 920 i += sysfs_emit_at(buf, i, "%u ", cpu); 921 if (i >= (PAGE_SIZE - 5)) 922 break; 923 } 924 925 /* Remove the extra space at the end */ 926 i--; 927 928 i += sysfs_emit_at(buf, i, "\n"); 929 return i; 930 } 931 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 932 933 /* 934 * show_related_cpus - show the CPUs affected by each transition even if 935 * hw coordination is in use 936 */ 937 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 938 { 939 return cpufreq_show_cpus(policy->related_cpus, buf); 940 } 941 942 /* 943 * show_affected_cpus - show the CPUs affected by each transition 944 */ 945 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 946 { 947 return cpufreq_show_cpus(policy->cpus, buf); 948 } 949 950 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 951 const char *buf, size_t count) 952 { 953 unsigned int freq = 0; 954 unsigned int ret; 955 956 if (!policy->governor || !policy->governor->store_setspeed) 957 return -EINVAL; 958 959 ret = sscanf(buf, "%u", &freq); 960 if (ret != 1) 961 return -EINVAL; 962 963 policy->governor->store_setspeed(policy, freq); 964 965 return count; 966 } 967 968 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 969 { 970 if (!policy->governor || !policy->governor->show_setspeed) 971 return sysfs_emit(buf, "<unsupported>\n"); 972 973 return policy->governor->show_setspeed(policy, buf); 974 } 975 976 /* 977 * show_bios_limit - show the current cpufreq HW/BIOS limitation 978 */ 979 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 980 { 981 unsigned int limit; 982 int ret; 983 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 984 if (!ret) 985 return sysfs_emit(buf, "%u\n", limit); 986 return sysfs_emit(buf, "%u\n", policy->cpuinfo.max_freq); 987 } 988 989 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 990 cpufreq_freq_attr_ro(cpuinfo_avg_freq); 991 cpufreq_freq_attr_ro(cpuinfo_min_freq); 992 cpufreq_freq_attr_ro(cpuinfo_max_freq); 993 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 994 cpufreq_freq_attr_ro(scaling_available_governors); 995 cpufreq_freq_attr_ro(scaling_driver); 996 cpufreq_freq_attr_ro(scaling_cur_freq); 997 cpufreq_freq_attr_ro(bios_limit); 998 cpufreq_freq_attr_ro(related_cpus); 999 cpufreq_freq_attr_ro(affected_cpus); 1000 cpufreq_freq_attr_rw(scaling_min_freq); 1001 cpufreq_freq_attr_rw(scaling_max_freq); 1002 cpufreq_freq_attr_rw(scaling_governor); 1003 cpufreq_freq_attr_rw(scaling_setspeed); 1004 1005 static struct attribute *cpufreq_attrs[] = { 1006 &cpuinfo_min_freq.attr, 1007 &cpuinfo_max_freq.attr, 1008 &cpuinfo_transition_latency.attr, 1009 &scaling_min_freq.attr, 1010 &scaling_max_freq.attr, 1011 &affected_cpus.attr, 1012 &related_cpus.attr, 1013 &scaling_governor.attr, 1014 &scaling_driver.attr, 1015 &scaling_available_governors.attr, 1016 &scaling_setspeed.attr, 1017 NULL 1018 }; 1019 ATTRIBUTE_GROUPS(cpufreq); 1020 1021 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 1022 #define to_attr(a) container_of(a, struct freq_attr, attr) 1023 1024 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 1025 { 1026 struct cpufreq_policy *policy = to_policy(kobj); 1027 struct freq_attr *fattr = to_attr(attr); 1028 ssize_t ret = -EBUSY; 1029 1030 if (!fattr->show) 1031 return -EIO; 1032 1033 down_read(&policy->rwsem); 1034 if (likely(!policy_is_inactive(policy))) 1035 ret = fattr->show(policy, buf); 1036 up_read(&policy->rwsem); 1037 1038 return ret; 1039 } 1040 1041 static ssize_t store(struct kobject *kobj, struct attribute *attr, 1042 const char *buf, size_t count) 1043 { 1044 struct cpufreq_policy *policy = to_policy(kobj); 1045 struct freq_attr *fattr = to_attr(attr); 1046 ssize_t ret = -EBUSY; 1047 1048 if (!fattr->store) 1049 return -EIO; 1050 1051 down_write(&policy->rwsem); 1052 if (likely(!policy_is_inactive(policy))) 1053 ret = fattr->store(policy, buf, count); 1054 up_write(&policy->rwsem); 1055 1056 return ret; 1057 } 1058 1059 static void cpufreq_sysfs_release(struct kobject *kobj) 1060 { 1061 struct cpufreq_policy *policy = to_policy(kobj); 1062 pr_debug("last reference is dropped\n"); 1063 complete(&policy->kobj_unregister); 1064 } 1065 1066 static const struct sysfs_ops sysfs_ops = { 1067 .show = show, 1068 .store = store, 1069 }; 1070 1071 static const struct kobj_type ktype_cpufreq = { 1072 .sysfs_ops = &sysfs_ops, 1073 .default_groups = cpufreq_groups, 1074 .release = cpufreq_sysfs_release, 1075 }; 1076 1077 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu, 1078 struct device *dev) 1079 { 1080 if (unlikely(!dev)) 1081 return; 1082 1083 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus)) 1084 return; 1085 1086 dev_dbg(dev, "%s: Adding symlink\n", __func__); 1087 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq")) 1088 dev_err(dev, "cpufreq symlink creation failed\n"); 1089 } 1090 1091 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu, 1092 struct device *dev) 1093 { 1094 dev_dbg(dev, "%s: Removing symlink\n", __func__); 1095 sysfs_remove_link(&dev->kobj, "cpufreq"); 1096 cpumask_clear_cpu(cpu, policy->real_cpus); 1097 } 1098 1099 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy) 1100 { 1101 struct freq_attr **drv_attr; 1102 int ret = 0; 1103 1104 /* Attributes that need freq_table */ 1105 if (policy->freq_table) { 1106 ret = sysfs_create_file(&policy->kobj, 1107 &cpufreq_freq_attr_scaling_available_freqs.attr); 1108 if (ret) 1109 return ret; 1110 1111 if (cpufreq_boost_supported()) { 1112 ret = sysfs_create_file(&policy->kobj, 1113 &cpufreq_freq_attr_scaling_boost_freqs.attr); 1114 if (ret) 1115 return ret; 1116 } 1117 } 1118 1119 /* set up files for this cpu device */ 1120 drv_attr = cpufreq_driver->attr; 1121 while (drv_attr && *drv_attr) { 1122 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 1123 if (ret) 1124 return ret; 1125 drv_attr++; 1126 } 1127 if (cpufreq_driver->get) { 1128 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 1129 if (ret) 1130 return ret; 1131 } 1132 1133 if (cpufreq_avg_freq_supported(policy)) { 1134 ret = sysfs_create_file(&policy->kobj, &cpuinfo_avg_freq.attr); 1135 if (ret) 1136 return ret; 1137 } 1138 1139 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 1140 if (ret) 1141 return ret; 1142 1143 if (cpufreq_driver->bios_limit) { 1144 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 1145 if (ret) 1146 return ret; 1147 } 1148 1149 if (cpufreq_boost_supported()) { 1150 ret = sysfs_create_file(&policy->kobj, &local_boost.attr); 1151 if (ret) 1152 return ret; 1153 } 1154 1155 return 0; 1156 } 1157 1158 static int cpufreq_init_policy(struct cpufreq_policy *policy) 1159 { 1160 struct cpufreq_governor *gov = NULL; 1161 unsigned int pol = CPUFREQ_POLICY_UNKNOWN; 1162 int ret; 1163 1164 if (has_target()) { 1165 /* Update policy governor to the one used before hotplug. */ 1166 gov = get_governor(policy->last_governor); 1167 if (gov) { 1168 pr_debug("Restoring governor %s for cpu %d\n", 1169 gov->name, policy->cpu); 1170 } else { 1171 gov = get_governor(default_governor); 1172 } 1173 1174 if (!gov) { 1175 gov = cpufreq_default_governor(); 1176 __module_get(gov->owner); 1177 } 1178 1179 } else { 1180 1181 /* Use the default policy if there is no last_policy. */ 1182 if (policy->last_policy) { 1183 pol = policy->last_policy; 1184 } else { 1185 pol = cpufreq_parse_policy(default_governor); 1186 /* 1187 * In case the default governor is neither "performance" 1188 * nor "powersave", fall back to the initial policy 1189 * value set by the driver. 1190 */ 1191 if (pol == CPUFREQ_POLICY_UNKNOWN) 1192 pol = policy->policy; 1193 } 1194 if (pol != CPUFREQ_POLICY_PERFORMANCE && 1195 pol != CPUFREQ_POLICY_POWERSAVE) 1196 return -ENODATA; 1197 } 1198 1199 ret = cpufreq_set_policy(policy, gov, pol); 1200 if (gov) 1201 module_put(gov->owner); 1202 1203 return ret; 1204 } 1205 1206 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 1207 { 1208 int ret = 0; 1209 1210 /* Has this CPU been taken care of already? */ 1211 if (cpumask_test_cpu(cpu, policy->cpus)) 1212 return 0; 1213 1214 down_write(&policy->rwsem); 1215 if (has_target()) 1216 cpufreq_stop_governor(policy); 1217 1218 cpumask_set_cpu(cpu, policy->cpus); 1219 1220 if (has_target()) { 1221 ret = cpufreq_start_governor(policy); 1222 if (ret) 1223 pr_err("%s: Failed to start governor\n", __func__); 1224 } 1225 up_write(&policy->rwsem); 1226 return ret; 1227 } 1228 1229 void refresh_frequency_limits(struct cpufreq_policy *policy) 1230 { 1231 if (!policy_is_inactive(policy)) { 1232 pr_debug("updating policy for CPU %u\n", policy->cpu); 1233 1234 cpufreq_set_policy(policy, policy->governor, policy->policy); 1235 } 1236 } 1237 EXPORT_SYMBOL(refresh_frequency_limits); 1238 1239 static void handle_update(struct work_struct *work) 1240 { 1241 struct cpufreq_policy *policy = 1242 container_of(work, struct cpufreq_policy, update); 1243 1244 pr_debug("handle_update for cpu %u called\n", policy->cpu); 1245 down_write(&policy->rwsem); 1246 refresh_frequency_limits(policy); 1247 up_write(&policy->rwsem); 1248 } 1249 1250 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq, 1251 void *data) 1252 { 1253 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min); 1254 1255 schedule_work(&policy->update); 1256 return 0; 1257 } 1258 1259 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq, 1260 void *data) 1261 { 1262 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max); 1263 1264 schedule_work(&policy->update); 1265 return 0; 1266 } 1267 1268 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy) 1269 { 1270 struct kobject *kobj; 1271 struct completion *cmp; 1272 1273 down_write(&policy->rwsem); 1274 cpufreq_stats_free_table(policy); 1275 kobj = &policy->kobj; 1276 cmp = &policy->kobj_unregister; 1277 up_write(&policy->rwsem); 1278 kobject_put(kobj); 1279 1280 /* 1281 * We need to make sure that the underlying kobj is 1282 * actually not referenced anymore by anybody before we 1283 * proceed with unloading. 1284 */ 1285 pr_debug("waiting for dropping of refcount\n"); 1286 wait_for_completion(cmp); 1287 pr_debug("wait complete\n"); 1288 } 1289 1290 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) 1291 { 1292 struct cpufreq_policy *policy; 1293 struct device *dev = get_cpu_device(cpu); 1294 int ret; 1295 1296 if (!dev) 1297 return NULL; 1298 1299 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1300 if (!policy) 1301 return NULL; 1302 1303 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1304 goto err_free_policy; 1305 1306 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1307 goto err_free_cpumask; 1308 1309 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL)) 1310 goto err_free_rcpumask; 1311 1312 init_completion(&policy->kobj_unregister); 1313 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 1314 cpufreq_global_kobject, "policy%u", cpu); 1315 if (ret) { 1316 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret); 1317 /* 1318 * The entire policy object will be freed below, but the extra 1319 * memory allocated for the kobject name needs to be freed by 1320 * releasing the kobject. 1321 */ 1322 kobject_put(&policy->kobj); 1323 goto err_free_real_cpus; 1324 } 1325 1326 freq_constraints_init(&policy->constraints); 1327 1328 policy->nb_min.notifier_call = cpufreq_notifier_min; 1329 policy->nb_max.notifier_call = cpufreq_notifier_max; 1330 1331 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN, 1332 &policy->nb_min); 1333 if (ret) { 1334 dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n", 1335 ret, cpu); 1336 goto err_kobj_remove; 1337 } 1338 1339 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX, 1340 &policy->nb_max); 1341 if (ret) { 1342 dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n", 1343 ret, cpu); 1344 goto err_min_qos_notifier; 1345 } 1346 1347 INIT_LIST_HEAD(&policy->policy_list); 1348 init_rwsem(&policy->rwsem); 1349 spin_lock_init(&policy->transition_lock); 1350 init_waitqueue_head(&policy->transition_wait); 1351 INIT_WORK(&policy->update, handle_update); 1352 1353 policy->cpu = cpu; 1354 return policy; 1355 1356 err_min_qos_notifier: 1357 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1358 &policy->nb_min); 1359 err_kobj_remove: 1360 cpufreq_policy_put_kobj(policy); 1361 err_free_real_cpus: 1362 free_cpumask_var(policy->real_cpus); 1363 err_free_rcpumask: 1364 free_cpumask_var(policy->related_cpus); 1365 err_free_cpumask: 1366 free_cpumask_var(policy->cpus); 1367 err_free_policy: 1368 kfree(policy); 1369 1370 return NULL; 1371 } 1372 1373 static void cpufreq_policy_free(struct cpufreq_policy *policy) 1374 { 1375 unsigned long flags; 1376 int cpu; 1377 1378 /* 1379 * The callers must ensure the policy is inactive by now, to avoid any 1380 * races with show()/store() callbacks. 1381 */ 1382 if (unlikely(!policy_is_inactive(policy))) 1383 pr_warn("%s: Freeing active policy\n", __func__); 1384 1385 /* Remove policy from list */ 1386 write_lock_irqsave(&cpufreq_driver_lock, flags); 1387 list_del(&policy->policy_list); 1388 1389 for_each_cpu(cpu, policy->related_cpus) 1390 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1391 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1392 1393 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX, 1394 &policy->nb_max); 1395 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1396 &policy->nb_min); 1397 1398 /* Cancel any pending policy->update work before freeing the policy. */ 1399 cancel_work_sync(&policy->update); 1400 1401 if (policy->max_freq_req) { 1402 /* 1403 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY 1404 * notification, since CPUFREQ_CREATE_POLICY notification was 1405 * sent after adding max_freq_req earlier. 1406 */ 1407 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1408 CPUFREQ_REMOVE_POLICY, policy); 1409 freq_qos_remove_request(policy->max_freq_req); 1410 } 1411 1412 freq_qos_remove_request(policy->min_freq_req); 1413 kfree(policy->min_freq_req); 1414 1415 cpufreq_policy_put_kobj(policy); 1416 free_cpumask_var(policy->real_cpus); 1417 free_cpumask_var(policy->related_cpus); 1418 free_cpumask_var(policy->cpus); 1419 kfree(policy); 1420 } 1421 1422 static int cpufreq_online(unsigned int cpu) 1423 { 1424 struct cpufreq_policy *policy; 1425 bool new_policy; 1426 unsigned long flags; 1427 unsigned int j; 1428 int ret; 1429 1430 pr_debug("%s: bringing CPU%u online\n", __func__, cpu); 1431 1432 /* Check if this CPU already has a policy to manage it */ 1433 policy = per_cpu(cpufreq_cpu_data, cpu); 1434 if (policy) { 1435 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus)); 1436 if (!policy_is_inactive(policy)) 1437 return cpufreq_add_policy_cpu(policy, cpu); 1438 1439 /* This is the only online CPU for the policy. Start over. */ 1440 new_policy = false; 1441 down_write(&policy->rwsem); 1442 policy->cpu = cpu; 1443 policy->governor = NULL; 1444 } else { 1445 new_policy = true; 1446 policy = cpufreq_policy_alloc(cpu); 1447 if (!policy) 1448 return -ENOMEM; 1449 down_write(&policy->rwsem); 1450 } 1451 1452 if (!new_policy && cpufreq_driver->online) { 1453 /* Recover policy->cpus using related_cpus */ 1454 cpumask_copy(policy->cpus, policy->related_cpus); 1455 1456 ret = cpufreq_driver->online(policy); 1457 if (ret) { 1458 pr_debug("%s: %d: initialization failed\n", __func__, 1459 __LINE__); 1460 goto out_exit_policy; 1461 } 1462 } else { 1463 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1464 1465 /* 1466 * Call driver. From then on the cpufreq must be able 1467 * to accept all calls to ->verify and ->setpolicy for this CPU. 1468 */ 1469 ret = cpufreq_driver->init(policy); 1470 if (ret) { 1471 pr_debug("%s: %d: initialization failed\n", __func__, 1472 __LINE__); 1473 goto out_free_policy; 1474 } 1475 1476 /* 1477 * The initialization has succeeded and the policy is online. 1478 * If there is a problem with its frequency table, take it 1479 * offline and drop it. 1480 */ 1481 ret = cpufreq_table_validate_and_sort(policy); 1482 if (ret) 1483 goto out_offline_policy; 1484 1485 /* related_cpus should at least include policy->cpus. */ 1486 cpumask_copy(policy->related_cpus, policy->cpus); 1487 } 1488 1489 /* 1490 * affected cpus must always be the one, which are online. We aren't 1491 * managing offline cpus here. 1492 */ 1493 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1494 1495 if (new_policy) { 1496 for_each_cpu(j, policy->related_cpus) { 1497 per_cpu(cpufreq_cpu_data, j) = policy; 1498 add_cpu_dev_symlink(policy, j, get_cpu_device(j)); 1499 } 1500 1501 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req), 1502 GFP_KERNEL); 1503 if (!policy->min_freq_req) { 1504 ret = -ENOMEM; 1505 goto out_destroy_policy; 1506 } 1507 1508 ret = freq_qos_add_request(&policy->constraints, 1509 policy->min_freq_req, FREQ_QOS_MIN, 1510 FREQ_QOS_MIN_DEFAULT_VALUE); 1511 if (ret < 0) { 1512 /* 1513 * So we don't call freq_qos_remove_request() for an 1514 * uninitialized request. 1515 */ 1516 kfree(policy->min_freq_req); 1517 policy->min_freq_req = NULL; 1518 goto out_destroy_policy; 1519 } 1520 1521 /* 1522 * This must be initialized right here to avoid calling 1523 * freq_qos_remove_request() on uninitialized request in case 1524 * of errors. 1525 */ 1526 policy->max_freq_req = policy->min_freq_req + 1; 1527 1528 ret = freq_qos_add_request(&policy->constraints, 1529 policy->max_freq_req, FREQ_QOS_MAX, 1530 FREQ_QOS_MAX_DEFAULT_VALUE); 1531 if (ret < 0) { 1532 policy->max_freq_req = NULL; 1533 goto out_destroy_policy; 1534 } 1535 1536 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1537 CPUFREQ_CREATE_POLICY, policy); 1538 } else { 1539 ret = freq_qos_update_request(policy->max_freq_req, policy->max); 1540 if (ret < 0) 1541 goto out_destroy_policy; 1542 } 1543 1544 if (cpufreq_driver->get && has_target()) { 1545 policy->cur = cpufreq_driver->get(policy->cpu); 1546 if (!policy->cur) { 1547 ret = -EIO; 1548 pr_err("%s: ->get() failed\n", __func__); 1549 goto out_destroy_policy; 1550 } 1551 } 1552 1553 /* 1554 * Sometimes boot loaders set CPU frequency to a value outside of 1555 * frequency table present with cpufreq core. In such cases CPU might be 1556 * unstable if it has to run on that frequency for long duration of time 1557 * and so its better to set it to a frequency which is specified in 1558 * freq-table. This also makes cpufreq stats inconsistent as 1559 * cpufreq-stats would fail to register because current frequency of CPU 1560 * isn't found in freq-table. 1561 * 1562 * Because we don't want this change to effect boot process badly, we go 1563 * for the next freq which is >= policy->cur ('cur' must be set by now, 1564 * otherwise we will end up setting freq to lowest of the table as 'cur' 1565 * is initialized to zero). 1566 * 1567 * We are passing target-freq as "policy->cur - 1" otherwise 1568 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1569 * equal to target-freq. 1570 */ 1571 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1572 && has_target()) { 1573 unsigned int old_freq = policy->cur; 1574 1575 /* Are we running at unknown frequency ? */ 1576 ret = cpufreq_frequency_table_get_index(policy, old_freq); 1577 if (ret == -EINVAL) { 1578 ret = __cpufreq_driver_target(policy, old_freq - 1, 1579 CPUFREQ_RELATION_L); 1580 1581 /* 1582 * Reaching here after boot in a few seconds may not 1583 * mean that system will remain stable at "unknown" 1584 * frequency for longer duration. Hence, a BUG_ON(). 1585 */ 1586 BUG_ON(ret); 1587 pr_info("%s: CPU%d: Running at unlisted initial frequency: %u kHz, changing to: %u kHz\n", 1588 __func__, policy->cpu, old_freq, policy->cur); 1589 } 1590 } 1591 1592 if (new_policy) { 1593 ret = cpufreq_add_dev_interface(policy); 1594 if (ret) 1595 goto out_destroy_policy; 1596 1597 cpufreq_stats_create_table(policy); 1598 1599 write_lock_irqsave(&cpufreq_driver_lock, flags); 1600 list_add(&policy->policy_list, &cpufreq_policy_list); 1601 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1602 1603 /* 1604 * Register with the energy model before 1605 * em_rebuild_sched_domains() is called, which will result 1606 * in rebuilding of the sched domains, which should only be done 1607 * once the energy model is properly initialized for the policy 1608 * first. 1609 * 1610 * Also, this should be called before the policy is registered 1611 * with cooling framework. 1612 */ 1613 if (cpufreq_driver->register_em) 1614 cpufreq_driver->register_em(policy); 1615 } 1616 1617 ret = cpufreq_init_policy(policy); 1618 if (ret) { 1619 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n", 1620 __func__, cpu, ret); 1621 goto out_destroy_policy; 1622 } 1623 1624 up_write(&policy->rwsem); 1625 1626 kobject_uevent(&policy->kobj, KOBJ_ADD); 1627 1628 /* Callback for handling stuff after policy is ready */ 1629 if (cpufreq_driver->ready) 1630 cpufreq_driver->ready(policy); 1631 1632 /* Register cpufreq cooling only for a new policy */ 1633 if (new_policy && cpufreq_thermal_control_enabled(cpufreq_driver)) 1634 policy->cdev = of_cpufreq_cooling_register(policy); 1635 1636 /* Let the per-policy boost flag mirror the cpufreq_driver boost during init */ 1637 if (cpufreq_driver->set_boost && policy->boost_supported && 1638 policy->boost_enabled != cpufreq_boost_enabled()) { 1639 policy->boost_enabled = cpufreq_boost_enabled(); 1640 ret = cpufreq_driver->set_boost(policy, policy->boost_enabled); 1641 if (ret) { 1642 /* If the set_boost fails, the online operation is not affected */ 1643 pr_info("%s: CPU%d: Cannot %s BOOST\n", __func__, policy->cpu, 1644 str_enable_disable(policy->boost_enabled)); 1645 policy->boost_enabled = !policy->boost_enabled; 1646 } 1647 } 1648 1649 pr_debug("initialization complete\n"); 1650 1651 return 0; 1652 1653 out_destroy_policy: 1654 for_each_cpu(j, policy->real_cpus) 1655 remove_cpu_dev_symlink(policy, j, get_cpu_device(j)); 1656 1657 out_offline_policy: 1658 if (cpufreq_driver->offline) 1659 cpufreq_driver->offline(policy); 1660 1661 out_exit_policy: 1662 if (cpufreq_driver->exit) 1663 cpufreq_driver->exit(policy); 1664 1665 out_free_policy: 1666 cpumask_clear(policy->cpus); 1667 up_write(&policy->rwsem); 1668 1669 cpufreq_policy_free(policy); 1670 return ret; 1671 } 1672 1673 /** 1674 * cpufreq_add_dev - the cpufreq interface for a CPU device. 1675 * @dev: CPU device. 1676 * @sif: Subsystem interface structure pointer (not used) 1677 */ 1678 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1679 { 1680 struct cpufreq_policy *policy; 1681 unsigned cpu = dev->id; 1682 int ret; 1683 1684 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu); 1685 1686 if (cpu_online(cpu)) { 1687 ret = cpufreq_online(cpu); 1688 if (ret) 1689 return ret; 1690 } 1691 1692 /* Create sysfs link on CPU registration */ 1693 policy = per_cpu(cpufreq_cpu_data, cpu); 1694 if (policy) 1695 add_cpu_dev_symlink(policy, cpu, dev); 1696 1697 return 0; 1698 } 1699 1700 static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy) 1701 { 1702 int ret; 1703 1704 if (has_target()) 1705 cpufreq_stop_governor(policy); 1706 1707 cpumask_clear_cpu(cpu, policy->cpus); 1708 1709 if (!policy_is_inactive(policy)) { 1710 /* Nominate a new CPU if necessary. */ 1711 if (cpu == policy->cpu) 1712 policy->cpu = cpumask_any(policy->cpus); 1713 1714 /* Start the governor again for the active policy. */ 1715 if (has_target()) { 1716 ret = cpufreq_start_governor(policy); 1717 if (ret) 1718 pr_err("%s: Failed to start governor\n", __func__); 1719 } 1720 1721 return; 1722 } 1723 1724 if (has_target()) 1725 strscpy(policy->last_governor, policy->governor->name, 1726 CPUFREQ_NAME_LEN); 1727 else 1728 policy->last_policy = policy->policy; 1729 1730 if (has_target()) 1731 cpufreq_exit_governor(policy); 1732 1733 /* 1734 * Perform the ->offline() during light-weight tear-down, as 1735 * that allows fast recovery when the CPU comes back. 1736 */ 1737 if (cpufreq_driver->offline) { 1738 cpufreq_driver->offline(policy); 1739 return; 1740 } 1741 1742 if (cpufreq_driver->exit) 1743 cpufreq_driver->exit(policy); 1744 1745 policy->freq_table = NULL; 1746 } 1747 1748 static int cpufreq_offline(unsigned int cpu) 1749 { 1750 struct cpufreq_policy *policy; 1751 1752 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1753 1754 policy = cpufreq_cpu_get_raw(cpu); 1755 if (!policy) { 1756 pr_debug("%s: No cpu_data found\n", __func__); 1757 return 0; 1758 } 1759 1760 down_write(&policy->rwsem); 1761 1762 __cpufreq_offline(cpu, policy); 1763 1764 up_write(&policy->rwsem); 1765 return 0; 1766 } 1767 1768 /* 1769 * cpufreq_remove_dev - remove a CPU device 1770 * 1771 * Removes the cpufreq interface for a CPU device. 1772 */ 1773 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1774 { 1775 unsigned int cpu = dev->id; 1776 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1777 1778 if (!policy) 1779 return; 1780 1781 down_write(&policy->rwsem); 1782 1783 if (cpu_online(cpu)) 1784 __cpufreq_offline(cpu, policy); 1785 1786 remove_cpu_dev_symlink(policy, cpu, dev); 1787 1788 if (!cpumask_empty(policy->real_cpus)) { 1789 up_write(&policy->rwsem); 1790 return; 1791 } 1792 1793 /* 1794 * Unregister cpufreq cooling once all the CPUs of the policy are 1795 * removed. 1796 */ 1797 if (cpufreq_thermal_control_enabled(cpufreq_driver)) { 1798 cpufreq_cooling_unregister(policy->cdev); 1799 policy->cdev = NULL; 1800 } 1801 1802 /* We did light-weight exit earlier, do full tear down now */ 1803 if (cpufreq_driver->offline && cpufreq_driver->exit) 1804 cpufreq_driver->exit(policy); 1805 1806 up_write(&policy->rwsem); 1807 1808 cpufreq_policy_free(policy); 1809 } 1810 1811 /** 1812 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference. 1813 * @policy: Policy managing CPUs. 1814 * @new_freq: New CPU frequency. 1815 * 1816 * Adjust to the current frequency first and clean up later by either calling 1817 * cpufreq_update_policy(), or scheduling handle_update(). 1818 */ 1819 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1820 unsigned int new_freq) 1821 { 1822 struct cpufreq_freqs freqs; 1823 1824 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1825 policy->cur, new_freq); 1826 1827 freqs.old = policy->cur; 1828 freqs.new = new_freq; 1829 1830 cpufreq_freq_transition_begin(policy, &freqs); 1831 cpufreq_freq_transition_end(policy, &freqs, 0); 1832 } 1833 1834 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update) 1835 { 1836 unsigned int new_freq; 1837 1838 new_freq = cpufreq_driver->get(policy->cpu); 1839 if (!new_freq) 1840 return 0; 1841 1842 /* 1843 * If fast frequency switching is used with the given policy, the check 1844 * against policy->cur is pointless, so skip it in that case. 1845 */ 1846 if (policy->fast_switch_enabled || !has_target()) 1847 return new_freq; 1848 1849 if (policy->cur != new_freq) { 1850 /* 1851 * For some platforms, the frequency returned by hardware may be 1852 * slightly different from what is provided in the frequency 1853 * table, for example hardware may return 499 MHz instead of 500 1854 * MHz. In such cases it is better to avoid getting into 1855 * unnecessary frequency updates. 1856 */ 1857 if (abs(policy->cur - new_freq) < KHZ_PER_MHZ) 1858 return policy->cur; 1859 1860 cpufreq_out_of_sync(policy, new_freq); 1861 if (update) 1862 schedule_work(&policy->update); 1863 } 1864 1865 return new_freq; 1866 } 1867 1868 /** 1869 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1870 * @cpu: CPU number 1871 * 1872 * This is the last known freq, without actually getting it from the driver. 1873 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1874 */ 1875 unsigned int cpufreq_quick_get(unsigned int cpu) 1876 { 1877 struct cpufreq_policy *policy; 1878 unsigned int ret_freq = 0; 1879 unsigned long flags; 1880 1881 read_lock_irqsave(&cpufreq_driver_lock, flags); 1882 1883 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) { 1884 ret_freq = cpufreq_driver->get(cpu); 1885 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1886 return ret_freq; 1887 } 1888 1889 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1890 1891 policy = cpufreq_cpu_get(cpu); 1892 if (policy) { 1893 ret_freq = policy->cur; 1894 cpufreq_cpu_put(policy); 1895 } 1896 1897 return ret_freq; 1898 } 1899 EXPORT_SYMBOL(cpufreq_quick_get); 1900 1901 /** 1902 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1903 * @cpu: CPU number 1904 * 1905 * Just return the max possible frequency for a given CPU. 1906 */ 1907 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1908 { 1909 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1910 unsigned int ret_freq = 0; 1911 1912 if (policy) { 1913 ret_freq = policy->max; 1914 cpufreq_cpu_put(policy); 1915 } 1916 1917 return ret_freq; 1918 } 1919 EXPORT_SYMBOL(cpufreq_quick_get_max); 1920 1921 /** 1922 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU 1923 * @cpu: CPU number 1924 * 1925 * The default return value is the max_freq field of cpuinfo. 1926 */ 1927 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu) 1928 { 1929 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1930 unsigned int ret_freq = 0; 1931 1932 if (policy) { 1933 ret_freq = policy->cpuinfo.max_freq; 1934 cpufreq_cpu_put(policy); 1935 } 1936 1937 return ret_freq; 1938 } 1939 EXPORT_SYMBOL(cpufreq_get_hw_max_freq); 1940 1941 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1942 { 1943 if (unlikely(policy_is_inactive(policy))) 1944 return 0; 1945 1946 return cpufreq_verify_current_freq(policy, true); 1947 } 1948 1949 /** 1950 * cpufreq_get - get the current CPU frequency (in kHz) 1951 * @cpu: CPU number 1952 * 1953 * Get the CPU current (static) CPU frequency 1954 */ 1955 unsigned int cpufreq_get(unsigned int cpu) 1956 { 1957 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1958 unsigned int ret_freq = 0; 1959 1960 if (policy) { 1961 down_read(&policy->rwsem); 1962 if (cpufreq_driver->get) 1963 ret_freq = __cpufreq_get(policy); 1964 up_read(&policy->rwsem); 1965 1966 cpufreq_cpu_put(policy); 1967 } 1968 1969 return ret_freq; 1970 } 1971 EXPORT_SYMBOL(cpufreq_get); 1972 1973 static struct subsys_interface cpufreq_interface = { 1974 .name = "cpufreq", 1975 .subsys = &cpu_subsys, 1976 .add_dev = cpufreq_add_dev, 1977 .remove_dev = cpufreq_remove_dev, 1978 }; 1979 1980 /* 1981 * In case platform wants some specific frequency to be configured 1982 * during suspend.. 1983 */ 1984 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1985 { 1986 int ret; 1987 1988 if (!policy->suspend_freq) { 1989 pr_debug("%s: suspend_freq not defined\n", __func__); 1990 return 0; 1991 } 1992 1993 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1994 policy->suspend_freq); 1995 1996 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1997 CPUFREQ_RELATION_H); 1998 if (ret) 1999 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 2000 __func__, policy->suspend_freq, ret); 2001 2002 return ret; 2003 } 2004 EXPORT_SYMBOL(cpufreq_generic_suspend); 2005 2006 /** 2007 * cpufreq_suspend() - Suspend CPUFreq governors. 2008 * 2009 * Called during system wide Suspend/Hibernate cycles for suspending governors 2010 * as some platforms can't change frequency after this point in suspend cycle. 2011 * Because some of the devices (like: i2c, regulators, etc) they use for 2012 * changing frequency are suspended quickly after this point. 2013 */ 2014 void cpufreq_suspend(void) 2015 { 2016 struct cpufreq_policy *policy; 2017 2018 if (!cpufreq_driver) 2019 return; 2020 2021 if (!has_target() && !cpufreq_driver->suspend) 2022 goto suspend; 2023 2024 pr_debug("%s: Suspending Governors\n", __func__); 2025 2026 for_each_active_policy(policy) { 2027 if (has_target()) { 2028 down_write(&policy->rwsem); 2029 cpufreq_stop_governor(policy); 2030 up_write(&policy->rwsem); 2031 } 2032 2033 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy)) 2034 pr_err("%s: Failed to suspend driver: %s\n", __func__, 2035 cpufreq_driver->name); 2036 } 2037 2038 suspend: 2039 cpufreq_suspended = true; 2040 } 2041 2042 /** 2043 * cpufreq_resume() - Resume CPUFreq governors. 2044 * 2045 * Called during system wide Suspend/Hibernate cycle for resuming governors that 2046 * are suspended with cpufreq_suspend(). 2047 */ 2048 void cpufreq_resume(void) 2049 { 2050 struct cpufreq_policy *policy; 2051 int ret; 2052 2053 if (!cpufreq_driver) 2054 return; 2055 2056 if (unlikely(!cpufreq_suspended)) 2057 return; 2058 2059 cpufreq_suspended = false; 2060 2061 if (!has_target() && !cpufreq_driver->resume) 2062 return; 2063 2064 pr_debug("%s: Resuming Governors\n", __func__); 2065 2066 for_each_active_policy(policy) { 2067 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) { 2068 pr_err("%s: Failed to resume driver: %s\n", __func__, 2069 cpufreq_driver->name); 2070 } else if (has_target()) { 2071 down_write(&policy->rwsem); 2072 ret = cpufreq_start_governor(policy); 2073 up_write(&policy->rwsem); 2074 2075 if (ret) 2076 pr_err("%s: Failed to start governor for CPU%u's policy\n", 2077 __func__, policy->cpu); 2078 } 2079 } 2080 } 2081 2082 /** 2083 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones. 2084 * @flags: Flags to test against the current cpufreq driver's flags. 2085 * 2086 * Assumes that the driver is there, so callers must ensure that this is the 2087 * case. 2088 */ 2089 bool cpufreq_driver_test_flags(u16 flags) 2090 { 2091 return !!(cpufreq_driver->flags & flags); 2092 } 2093 2094 /** 2095 * cpufreq_get_current_driver - Return the current driver's name. 2096 * 2097 * Return the name string of the currently registered cpufreq driver or NULL if 2098 * none. 2099 */ 2100 const char *cpufreq_get_current_driver(void) 2101 { 2102 if (cpufreq_driver) 2103 return cpufreq_driver->name; 2104 2105 return NULL; 2106 } 2107 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 2108 2109 /** 2110 * cpufreq_get_driver_data - Return current driver data. 2111 * 2112 * Return the private data of the currently registered cpufreq driver, or NULL 2113 * if no cpufreq driver has been registered. 2114 */ 2115 void *cpufreq_get_driver_data(void) 2116 { 2117 if (cpufreq_driver) 2118 return cpufreq_driver->driver_data; 2119 2120 return NULL; 2121 } 2122 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 2123 2124 /********************************************************************* 2125 * NOTIFIER LISTS INTERFACE * 2126 *********************************************************************/ 2127 2128 /** 2129 * cpufreq_register_notifier - Register a notifier with cpufreq. 2130 * @nb: notifier function to register. 2131 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER. 2132 * 2133 * Add a notifier to one of two lists: either a list of notifiers that run on 2134 * clock rate changes (once before and once after every transition), or a list 2135 * of notifiers that ron on cpufreq policy changes. 2136 * 2137 * This function may sleep and it has the same return values as 2138 * blocking_notifier_chain_register(). 2139 */ 2140 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 2141 { 2142 int ret; 2143 2144 if (cpufreq_disabled()) 2145 return -EINVAL; 2146 2147 switch (list) { 2148 case CPUFREQ_TRANSITION_NOTIFIER: 2149 mutex_lock(&cpufreq_fast_switch_lock); 2150 2151 if (cpufreq_fast_switch_count > 0) { 2152 mutex_unlock(&cpufreq_fast_switch_lock); 2153 return -EBUSY; 2154 } 2155 ret = srcu_notifier_chain_register( 2156 &cpufreq_transition_notifier_list, nb); 2157 if (!ret) 2158 cpufreq_fast_switch_count--; 2159 2160 mutex_unlock(&cpufreq_fast_switch_lock); 2161 break; 2162 case CPUFREQ_POLICY_NOTIFIER: 2163 ret = blocking_notifier_chain_register( 2164 &cpufreq_policy_notifier_list, nb); 2165 break; 2166 default: 2167 ret = -EINVAL; 2168 } 2169 2170 return ret; 2171 } 2172 EXPORT_SYMBOL(cpufreq_register_notifier); 2173 2174 /** 2175 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq. 2176 * @nb: notifier block to be unregistered. 2177 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER. 2178 * 2179 * Remove a notifier from one of the cpufreq notifier lists. 2180 * 2181 * This function may sleep and it has the same return values as 2182 * blocking_notifier_chain_unregister(). 2183 */ 2184 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 2185 { 2186 int ret; 2187 2188 if (cpufreq_disabled()) 2189 return -EINVAL; 2190 2191 switch (list) { 2192 case CPUFREQ_TRANSITION_NOTIFIER: 2193 mutex_lock(&cpufreq_fast_switch_lock); 2194 2195 ret = srcu_notifier_chain_unregister( 2196 &cpufreq_transition_notifier_list, nb); 2197 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0)) 2198 cpufreq_fast_switch_count++; 2199 2200 mutex_unlock(&cpufreq_fast_switch_lock); 2201 break; 2202 case CPUFREQ_POLICY_NOTIFIER: 2203 ret = blocking_notifier_chain_unregister( 2204 &cpufreq_policy_notifier_list, nb); 2205 break; 2206 default: 2207 ret = -EINVAL; 2208 } 2209 2210 return ret; 2211 } 2212 EXPORT_SYMBOL(cpufreq_unregister_notifier); 2213 2214 2215 /********************************************************************* 2216 * GOVERNORS * 2217 *********************************************************************/ 2218 2219 /** 2220 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch. 2221 * @policy: cpufreq policy to switch the frequency for. 2222 * @target_freq: New frequency to set (may be approximate). 2223 * 2224 * Carry out a fast frequency switch without sleeping. 2225 * 2226 * The driver's ->fast_switch() callback invoked by this function must be 2227 * suitable for being called from within RCU-sched read-side critical sections 2228 * and it is expected to select the minimum available frequency greater than or 2229 * equal to @target_freq (CPUFREQ_RELATION_L). 2230 * 2231 * This function must not be called if policy->fast_switch_enabled is unset. 2232 * 2233 * Governors calling this function must guarantee that it will never be invoked 2234 * twice in parallel for the same policy and that it will never be called in 2235 * parallel with either ->target() or ->target_index() for the same policy. 2236 * 2237 * Returns the actual frequency set for the CPU. 2238 * 2239 * If 0 is returned by the driver's ->fast_switch() callback to indicate an 2240 * error condition, the hardware configuration must be preserved. 2241 */ 2242 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy, 2243 unsigned int target_freq) 2244 { 2245 unsigned int freq; 2246 int cpu; 2247 2248 target_freq = clamp_val(target_freq, policy->min, policy->max); 2249 freq = cpufreq_driver->fast_switch(policy, target_freq); 2250 2251 if (!freq) 2252 return 0; 2253 2254 policy->cur = freq; 2255 arch_set_freq_scale(policy->related_cpus, freq, 2256 arch_scale_freq_ref(policy->cpu)); 2257 cpufreq_stats_record_transition(policy, freq); 2258 2259 if (trace_cpu_frequency_enabled()) { 2260 for_each_cpu(cpu, policy->cpus) 2261 trace_cpu_frequency(freq, cpu); 2262 } 2263 2264 return freq; 2265 } 2266 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch); 2267 2268 /** 2269 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go. 2270 * @cpu: Target CPU. 2271 * @min_perf: Minimum (required) performance level (units of @capacity). 2272 * @target_perf: Target (desired) performance level (units of @capacity). 2273 * @capacity: Capacity of the target CPU. 2274 * 2275 * Carry out a fast performance level switch of @cpu without sleeping. 2276 * 2277 * The driver's ->adjust_perf() callback invoked by this function must be 2278 * suitable for being called from within RCU-sched read-side critical sections 2279 * and it is expected to select a suitable performance level equal to or above 2280 * @min_perf and preferably equal to or below @target_perf. 2281 * 2282 * This function must not be called if policy->fast_switch_enabled is unset. 2283 * 2284 * Governors calling this function must guarantee that it will never be invoked 2285 * twice in parallel for the same CPU and that it will never be called in 2286 * parallel with either ->target() or ->target_index() or ->fast_switch() for 2287 * the same CPU. 2288 */ 2289 void cpufreq_driver_adjust_perf(unsigned int cpu, 2290 unsigned long min_perf, 2291 unsigned long target_perf, 2292 unsigned long capacity) 2293 { 2294 cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity); 2295 } 2296 2297 /** 2298 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback. 2299 * 2300 * Return 'true' if the ->adjust_perf callback is present for the 2301 * current driver or 'false' otherwise. 2302 */ 2303 bool cpufreq_driver_has_adjust_perf(void) 2304 { 2305 return !!cpufreq_driver->adjust_perf; 2306 } 2307 2308 /* Must set freqs->new to intermediate frequency */ 2309 static int __target_intermediate(struct cpufreq_policy *policy, 2310 struct cpufreq_freqs *freqs, int index) 2311 { 2312 int ret; 2313 2314 freqs->new = cpufreq_driver->get_intermediate(policy, index); 2315 2316 /* We don't need to switch to intermediate freq */ 2317 if (!freqs->new) 2318 return 0; 2319 2320 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 2321 __func__, policy->cpu, freqs->old, freqs->new); 2322 2323 cpufreq_freq_transition_begin(policy, freqs); 2324 ret = cpufreq_driver->target_intermediate(policy, index); 2325 cpufreq_freq_transition_end(policy, freqs, ret); 2326 2327 if (ret) 2328 pr_err("%s: Failed to change to intermediate frequency: %d\n", 2329 __func__, ret); 2330 2331 return ret; 2332 } 2333 2334 static int __target_index(struct cpufreq_policy *policy, int index) 2335 { 2336 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 2337 unsigned int restore_freq, intermediate_freq = 0; 2338 unsigned int newfreq = policy->freq_table[index].frequency; 2339 int retval = -EINVAL; 2340 bool notify; 2341 2342 if (newfreq == policy->cur) 2343 return 0; 2344 2345 /* Save last value to restore later on errors */ 2346 restore_freq = policy->cur; 2347 2348 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 2349 if (notify) { 2350 /* Handle switching to intermediate frequency */ 2351 if (cpufreq_driver->get_intermediate) { 2352 retval = __target_intermediate(policy, &freqs, index); 2353 if (retval) 2354 return retval; 2355 2356 intermediate_freq = freqs.new; 2357 /* Set old freq to intermediate */ 2358 if (intermediate_freq) 2359 freqs.old = freqs.new; 2360 } 2361 2362 freqs.new = newfreq; 2363 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 2364 __func__, policy->cpu, freqs.old, freqs.new); 2365 2366 cpufreq_freq_transition_begin(policy, &freqs); 2367 } 2368 2369 retval = cpufreq_driver->target_index(policy, index); 2370 if (retval) 2371 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 2372 retval); 2373 2374 if (notify) { 2375 cpufreq_freq_transition_end(policy, &freqs, retval); 2376 2377 /* 2378 * Failed after setting to intermediate freq? Driver should have 2379 * reverted back to initial frequency and so should we. Check 2380 * here for intermediate_freq instead of get_intermediate, in 2381 * case we haven't switched to intermediate freq at all. 2382 */ 2383 if (unlikely(retval && intermediate_freq)) { 2384 freqs.old = intermediate_freq; 2385 freqs.new = restore_freq; 2386 cpufreq_freq_transition_begin(policy, &freqs); 2387 cpufreq_freq_transition_end(policy, &freqs, 0); 2388 } 2389 } 2390 2391 return retval; 2392 } 2393 2394 int __cpufreq_driver_target(struct cpufreq_policy *policy, 2395 unsigned int target_freq, 2396 unsigned int relation) 2397 { 2398 unsigned int old_target_freq = target_freq; 2399 2400 if (cpufreq_disabled()) 2401 return -ENODEV; 2402 2403 target_freq = __resolve_freq(policy, target_freq, policy->min, 2404 policy->max, relation); 2405 2406 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 2407 policy->cpu, target_freq, relation, old_target_freq); 2408 2409 /* 2410 * This might look like a redundant call as we are checking it again 2411 * after finding index. But it is left intentionally for cases where 2412 * exactly same freq is called again and so we can save on few function 2413 * calls. 2414 */ 2415 if (target_freq == policy->cur && 2416 !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS)) 2417 return 0; 2418 2419 if (cpufreq_driver->target) { 2420 /* 2421 * If the driver hasn't setup a single inefficient frequency, 2422 * it's unlikely it knows how to decode CPUFREQ_RELATION_E. 2423 */ 2424 if (!policy->efficiencies_available) 2425 relation &= ~CPUFREQ_RELATION_E; 2426 2427 return cpufreq_driver->target(policy, target_freq, relation); 2428 } 2429 2430 if (!cpufreq_driver->target_index) 2431 return -EINVAL; 2432 2433 return __target_index(policy, policy->cached_resolved_idx); 2434 } 2435 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 2436 2437 int cpufreq_driver_target(struct cpufreq_policy *policy, 2438 unsigned int target_freq, 2439 unsigned int relation) 2440 { 2441 int ret; 2442 2443 down_write(&policy->rwsem); 2444 2445 ret = __cpufreq_driver_target(policy, target_freq, relation); 2446 2447 up_write(&policy->rwsem); 2448 2449 return ret; 2450 } 2451 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 2452 2453 __weak struct cpufreq_governor *cpufreq_fallback_governor(void) 2454 { 2455 return NULL; 2456 } 2457 2458 static int cpufreq_init_governor(struct cpufreq_policy *policy) 2459 { 2460 int ret; 2461 2462 /* Don't start any governor operations if we are entering suspend */ 2463 if (cpufreq_suspended) 2464 return 0; 2465 /* 2466 * Governor might not be initiated here if ACPI _PPC changed 2467 * notification happened, so check it. 2468 */ 2469 if (!policy->governor) 2470 return -EINVAL; 2471 2472 /* Platform doesn't want dynamic frequency switching ? */ 2473 if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING && 2474 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) { 2475 struct cpufreq_governor *gov = cpufreq_fallback_governor(); 2476 2477 if (gov) { 2478 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n", 2479 policy->governor->name, gov->name); 2480 policy->governor = gov; 2481 } else { 2482 return -EINVAL; 2483 } 2484 } 2485 2486 if (!try_module_get(policy->governor->owner)) 2487 return -EINVAL; 2488 2489 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2490 2491 if (policy->governor->init) { 2492 ret = policy->governor->init(policy); 2493 if (ret) { 2494 module_put(policy->governor->owner); 2495 return ret; 2496 } 2497 } 2498 2499 policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET); 2500 2501 return 0; 2502 } 2503 2504 static void cpufreq_exit_governor(struct cpufreq_policy *policy) 2505 { 2506 if (cpufreq_suspended || !policy->governor) 2507 return; 2508 2509 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2510 2511 if (policy->governor->exit) 2512 policy->governor->exit(policy); 2513 2514 module_put(policy->governor->owner); 2515 } 2516 2517 int cpufreq_start_governor(struct cpufreq_policy *policy) 2518 { 2519 int ret; 2520 2521 if (cpufreq_suspended) 2522 return 0; 2523 2524 if (!policy->governor) 2525 return -EINVAL; 2526 2527 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2528 2529 if (cpufreq_driver->get) 2530 cpufreq_verify_current_freq(policy, false); 2531 2532 if (policy->governor->start) { 2533 ret = policy->governor->start(policy); 2534 if (ret) 2535 return ret; 2536 } 2537 2538 if (policy->governor->limits) 2539 policy->governor->limits(policy); 2540 2541 return 0; 2542 } 2543 2544 void cpufreq_stop_governor(struct cpufreq_policy *policy) 2545 { 2546 if (cpufreq_suspended || !policy->governor) 2547 return; 2548 2549 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2550 2551 if (policy->governor->stop) 2552 policy->governor->stop(policy); 2553 } 2554 2555 static void cpufreq_governor_limits(struct cpufreq_policy *policy) 2556 { 2557 if (cpufreq_suspended || !policy->governor) 2558 return; 2559 2560 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2561 2562 if (policy->governor->limits) 2563 policy->governor->limits(policy); 2564 } 2565 2566 int cpufreq_register_governor(struct cpufreq_governor *governor) 2567 { 2568 int err; 2569 2570 if (!governor) 2571 return -EINVAL; 2572 2573 if (cpufreq_disabled()) 2574 return -ENODEV; 2575 2576 mutex_lock(&cpufreq_governor_mutex); 2577 2578 err = -EBUSY; 2579 if (!find_governor(governor->name)) { 2580 err = 0; 2581 list_add(&governor->governor_list, &cpufreq_governor_list); 2582 } 2583 2584 mutex_unlock(&cpufreq_governor_mutex); 2585 return err; 2586 } 2587 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2588 2589 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2590 { 2591 struct cpufreq_policy *policy; 2592 unsigned long flags; 2593 2594 if (!governor) 2595 return; 2596 2597 if (cpufreq_disabled()) 2598 return; 2599 2600 /* clear last_governor for all inactive policies */ 2601 read_lock_irqsave(&cpufreq_driver_lock, flags); 2602 for_each_inactive_policy(policy) { 2603 if (!strcmp(policy->last_governor, governor->name)) { 2604 policy->governor = NULL; 2605 strcpy(policy->last_governor, "\0"); 2606 } 2607 } 2608 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 2609 2610 mutex_lock(&cpufreq_governor_mutex); 2611 list_del(&governor->governor_list); 2612 mutex_unlock(&cpufreq_governor_mutex); 2613 } 2614 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2615 2616 2617 /********************************************************************* 2618 * POLICY INTERFACE * 2619 *********************************************************************/ 2620 2621 /** 2622 * cpufreq_get_policy - get the current cpufreq_policy 2623 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2624 * is written 2625 * @cpu: CPU to find the policy for 2626 * 2627 * Reads the current cpufreq policy. 2628 */ 2629 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2630 { 2631 struct cpufreq_policy *cpu_policy; 2632 if (!policy) 2633 return -EINVAL; 2634 2635 cpu_policy = cpufreq_cpu_get(cpu); 2636 if (!cpu_policy) 2637 return -EINVAL; 2638 2639 memcpy(policy, cpu_policy, sizeof(*policy)); 2640 2641 cpufreq_cpu_put(cpu_policy); 2642 return 0; 2643 } 2644 EXPORT_SYMBOL(cpufreq_get_policy); 2645 2646 DEFINE_PER_CPU(unsigned long, cpufreq_pressure); 2647 2648 /** 2649 * cpufreq_update_pressure() - Update cpufreq pressure for CPUs 2650 * @policy: cpufreq policy of the CPUs. 2651 * 2652 * Update the value of cpufreq pressure for all @cpus in the policy. 2653 */ 2654 static void cpufreq_update_pressure(struct cpufreq_policy *policy) 2655 { 2656 unsigned long max_capacity, capped_freq, pressure; 2657 u32 max_freq; 2658 int cpu; 2659 2660 cpu = cpumask_first(policy->related_cpus); 2661 max_freq = arch_scale_freq_ref(cpu); 2662 capped_freq = policy->max; 2663 2664 /* 2665 * Handle properly the boost frequencies, which should simply clean 2666 * the cpufreq pressure value. 2667 */ 2668 if (max_freq <= capped_freq) { 2669 pressure = 0; 2670 } else { 2671 max_capacity = arch_scale_cpu_capacity(cpu); 2672 pressure = max_capacity - 2673 mult_frac(max_capacity, capped_freq, max_freq); 2674 } 2675 2676 for_each_cpu(cpu, policy->related_cpus) 2677 WRITE_ONCE(per_cpu(cpufreq_pressure, cpu), pressure); 2678 } 2679 2680 /** 2681 * cpufreq_set_policy - Modify cpufreq policy parameters. 2682 * @policy: Policy object to modify. 2683 * @new_gov: Policy governor pointer. 2684 * @new_pol: Policy value (for drivers with built-in governors). 2685 * 2686 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency 2687 * limits to be set for the policy, update @policy with the verified limits 2688 * values and either invoke the driver's ->setpolicy() callback (if present) or 2689 * carry out a governor update for @policy. That is, run the current governor's 2690 * ->limits() callback (if @new_gov points to the same object as the one in 2691 * @policy) or replace the governor for @policy with @new_gov. 2692 * 2693 * The cpuinfo part of @policy is not updated by this function. 2694 */ 2695 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2696 struct cpufreq_governor *new_gov, 2697 unsigned int new_pol) 2698 { 2699 struct cpufreq_policy_data new_data; 2700 struct cpufreq_governor *old_gov; 2701 int ret; 2702 2703 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2704 new_data.freq_table = policy->freq_table; 2705 new_data.cpu = policy->cpu; 2706 /* 2707 * PM QoS framework collects all the requests from users and provide us 2708 * the final aggregated value here. 2709 */ 2710 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN); 2711 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX); 2712 2713 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2714 new_data.cpu, new_data.min, new_data.max); 2715 2716 /* 2717 * Verify that the CPU speed can be set within these limits and make sure 2718 * that min <= max. 2719 */ 2720 ret = cpufreq_driver->verify(&new_data); 2721 if (ret) 2722 return ret; 2723 2724 /* 2725 * Resolve policy min/max to available frequencies. It ensures 2726 * no frequency resolution will neither overshoot the requested maximum 2727 * nor undershoot the requested minimum. 2728 * 2729 * Avoid storing intermediate values in policy->max or policy->min and 2730 * compiler optimizations around them because they may be accessed 2731 * concurrently by cpufreq_driver_resolve_freq() during the update. 2732 */ 2733 WRITE_ONCE(policy->max, __resolve_freq(policy, new_data.max, 2734 new_data.min, new_data.max, 2735 CPUFREQ_RELATION_H)); 2736 new_data.min = __resolve_freq(policy, new_data.min, new_data.min, 2737 new_data.max, CPUFREQ_RELATION_L); 2738 WRITE_ONCE(policy->min, new_data.min > policy->max ? policy->max : new_data.min); 2739 2740 trace_cpu_frequency_limits(policy); 2741 2742 cpufreq_update_pressure(policy); 2743 2744 policy->cached_target_freq = UINT_MAX; 2745 2746 pr_debug("new min and max freqs are %u - %u kHz\n", 2747 policy->min, policy->max); 2748 2749 if (cpufreq_driver->setpolicy) { 2750 policy->policy = new_pol; 2751 pr_debug("setting range\n"); 2752 return cpufreq_driver->setpolicy(policy); 2753 } 2754 2755 if (new_gov == policy->governor) { 2756 pr_debug("governor limits update\n"); 2757 cpufreq_governor_limits(policy); 2758 return 0; 2759 } 2760 2761 pr_debug("governor switch\n"); 2762 2763 /* save old, working values */ 2764 old_gov = policy->governor; 2765 /* end old governor */ 2766 if (old_gov) { 2767 cpufreq_stop_governor(policy); 2768 cpufreq_exit_governor(policy); 2769 } 2770 2771 /* start new governor */ 2772 policy->governor = new_gov; 2773 ret = cpufreq_init_governor(policy); 2774 if (!ret) { 2775 ret = cpufreq_start_governor(policy); 2776 if (!ret) { 2777 pr_debug("governor change\n"); 2778 return 0; 2779 } 2780 cpufreq_exit_governor(policy); 2781 } 2782 2783 /* new governor failed, so re-start old one */ 2784 pr_debug("starting governor %s failed\n", policy->governor->name); 2785 if (old_gov) { 2786 policy->governor = old_gov; 2787 if (cpufreq_init_governor(policy)) 2788 policy->governor = NULL; 2789 else 2790 cpufreq_start_governor(policy); 2791 } 2792 2793 return ret; 2794 } 2795 2796 /** 2797 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy. 2798 * @cpu: CPU to re-evaluate the policy for. 2799 * 2800 * Update the current frequency for the cpufreq policy of @cpu and use 2801 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the 2802 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback 2803 * for the policy in question, among other things. 2804 */ 2805 void cpufreq_update_policy(unsigned int cpu) 2806 { 2807 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu); 2808 2809 if (!policy) 2810 return; 2811 2812 /* 2813 * BIOS might change freq behind our back 2814 * -> ask driver for current freq and notify governors about a change 2815 */ 2816 if (cpufreq_driver->get && has_target() && 2817 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false)))) 2818 goto unlock; 2819 2820 refresh_frequency_limits(policy); 2821 2822 unlock: 2823 cpufreq_cpu_release(policy); 2824 } 2825 EXPORT_SYMBOL(cpufreq_update_policy); 2826 2827 /** 2828 * cpufreq_update_limits - Update policy limits for a given CPU. 2829 * @cpu: CPU to update the policy limits for. 2830 * 2831 * Invoke the driver's ->update_limits callback if present or call 2832 * cpufreq_update_policy() for @cpu. 2833 */ 2834 void cpufreq_update_limits(unsigned int cpu) 2835 { 2836 struct cpufreq_policy *policy __free(put_cpufreq_policy); 2837 2838 policy = cpufreq_cpu_get(cpu); 2839 if (!policy) 2840 return; 2841 2842 if (cpufreq_driver->update_limits) 2843 cpufreq_driver->update_limits(cpu); 2844 else 2845 cpufreq_update_policy(cpu); 2846 } 2847 EXPORT_SYMBOL_GPL(cpufreq_update_limits); 2848 2849 /********************************************************************* 2850 * BOOST * 2851 *********************************************************************/ 2852 int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state) 2853 { 2854 int ret; 2855 2856 if (!policy->freq_table) 2857 return -ENXIO; 2858 2859 ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table); 2860 if (ret) { 2861 pr_err("%s: Policy frequency update failed\n", __func__); 2862 return ret; 2863 } 2864 2865 ret = freq_qos_update_request(policy->max_freq_req, policy->max); 2866 if (ret < 0) 2867 return ret; 2868 2869 return 0; 2870 } 2871 EXPORT_SYMBOL_GPL(cpufreq_boost_set_sw); 2872 2873 static int cpufreq_boost_trigger_state(int state) 2874 { 2875 struct cpufreq_policy *policy; 2876 unsigned long flags; 2877 int ret = 0; 2878 2879 if (cpufreq_driver->boost_enabled == state) 2880 return 0; 2881 2882 write_lock_irqsave(&cpufreq_driver_lock, flags); 2883 cpufreq_driver->boost_enabled = state; 2884 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2885 2886 cpus_read_lock(); 2887 for_each_active_policy(policy) { 2888 if (!policy->boost_supported) 2889 continue; 2890 2891 policy->boost_enabled = state; 2892 ret = cpufreq_driver->set_boost(policy, state); 2893 if (ret) { 2894 policy->boost_enabled = !policy->boost_enabled; 2895 goto err_reset_state; 2896 } 2897 } 2898 cpus_read_unlock(); 2899 2900 return 0; 2901 2902 err_reset_state: 2903 cpus_read_unlock(); 2904 2905 write_lock_irqsave(&cpufreq_driver_lock, flags); 2906 cpufreq_driver->boost_enabled = !state; 2907 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2908 2909 pr_err("%s: Cannot %s BOOST\n", 2910 __func__, str_enable_disable(state)); 2911 2912 return ret; 2913 } 2914 2915 static bool cpufreq_boost_supported(void) 2916 { 2917 return cpufreq_driver->set_boost; 2918 } 2919 2920 static int create_boost_sysfs_file(void) 2921 { 2922 int ret; 2923 2924 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr); 2925 if (ret) 2926 pr_err("%s: cannot register global BOOST sysfs file\n", 2927 __func__); 2928 2929 return ret; 2930 } 2931 2932 static void remove_boost_sysfs_file(void) 2933 { 2934 if (cpufreq_boost_supported()) 2935 sysfs_remove_file(cpufreq_global_kobject, &boost.attr); 2936 } 2937 2938 bool cpufreq_boost_enabled(void) 2939 { 2940 return cpufreq_driver->boost_enabled; 2941 } 2942 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2943 2944 /********************************************************************* 2945 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2946 *********************************************************************/ 2947 static enum cpuhp_state hp_online; 2948 2949 static int cpuhp_cpufreq_online(unsigned int cpu) 2950 { 2951 cpufreq_online(cpu); 2952 2953 return 0; 2954 } 2955 2956 static int cpuhp_cpufreq_offline(unsigned int cpu) 2957 { 2958 cpufreq_offline(cpu); 2959 2960 return 0; 2961 } 2962 2963 /** 2964 * cpufreq_register_driver - register a CPU Frequency driver 2965 * @driver_data: A struct cpufreq_driver containing the values# 2966 * submitted by the CPU Frequency driver. 2967 * 2968 * Registers a CPU Frequency driver to this core code. This code 2969 * returns zero on success, -EEXIST when another driver got here first 2970 * (and isn't unregistered in the meantime). 2971 * 2972 */ 2973 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2974 { 2975 unsigned long flags; 2976 int ret; 2977 2978 if (cpufreq_disabled()) 2979 return -ENODEV; 2980 2981 /* 2982 * The cpufreq core depends heavily on the availability of device 2983 * structure, make sure they are available before proceeding further. 2984 */ 2985 if (!get_cpu_device(0)) 2986 return -EPROBE_DEFER; 2987 2988 if (!driver_data || !driver_data->verify || !driver_data->init || 2989 !(driver_data->setpolicy || driver_data->target_index || 2990 driver_data->target) || 2991 (driver_data->setpolicy && (driver_data->target_index || 2992 driver_data->target)) || 2993 (!driver_data->get_intermediate != !driver_data->target_intermediate) || 2994 (!driver_data->online != !driver_data->offline) || 2995 (driver_data->adjust_perf && !driver_data->fast_switch)) 2996 return -EINVAL; 2997 2998 pr_debug("trying to register driver %s\n", driver_data->name); 2999 3000 /* Protect against concurrent CPU online/offline. */ 3001 cpus_read_lock(); 3002 3003 write_lock_irqsave(&cpufreq_driver_lock, flags); 3004 if (cpufreq_driver) { 3005 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 3006 ret = -EEXIST; 3007 goto out; 3008 } 3009 cpufreq_driver = driver_data; 3010 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 3011 3012 /* 3013 * Mark support for the scheduler's frequency invariance engine for 3014 * drivers that implement target(), target_index() or fast_switch(). 3015 */ 3016 if (!cpufreq_driver->setpolicy) { 3017 static_branch_enable_cpuslocked(&cpufreq_freq_invariance); 3018 pr_debug("supports frequency invariance"); 3019 } 3020 3021 if (driver_data->setpolicy) 3022 driver_data->flags |= CPUFREQ_CONST_LOOPS; 3023 3024 if (cpufreq_boost_supported()) { 3025 ret = create_boost_sysfs_file(); 3026 if (ret) 3027 goto err_null_driver; 3028 } 3029 3030 ret = subsys_interface_register(&cpufreq_interface); 3031 if (ret) 3032 goto err_boost_unreg; 3033 3034 if (unlikely(list_empty(&cpufreq_policy_list))) { 3035 /* if all ->init() calls failed, unregister */ 3036 ret = -ENODEV; 3037 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 3038 driver_data->name); 3039 goto err_if_unreg; 3040 } 3041 3042 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN, 3043 "cpufreq:online", 3044 cpuhp_cpufreq_online, 3045 cpuhp_cpufreq_offline); 3046 if (ret < 0) 3047 goto err_if_unreg; 3048 hp_online = ret; 3049 ret = 0; 3050 3051 pr_debug("driver %s up and running\n", driver_data->name); 3052 goto out; 3053 3054 err_if_unreg: 3055 subsys_interface_unregister(&cpufreq_interface); 3056 err_boost_unreg: 3057 remove_boost_sysfs_file(); 3058 err_null_driver: 3059 write_lock_irqsave(&cpufreq_driver_lock, flags); 3060 cpufreq_driver = NULL; 3061 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 3062 out: 3063 cpus_read_unlock(); 3064 return ret; 3065 } 3066 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 3067 3068 /* 3069 * cpufreq_unregister_driver - unregister the current CPUFreq driver 3070 * 3071 * Unregister the current CPUFreq driver. Only call this if you have 3072 * the right to do so, i.e. if you have succeeded in initialising before! 3073 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 3074 * currently not initialised. 3075 */ 3076 void cpufreq_unregister_driver(struct cpufreq_driver *driver) 3077 { 3078 unsigned long flags; 3079 3080 if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver))) 3081 return; 3082 3083 pr_debug("unregistering driver %s\n", driver->name); 3084 3085 /* Protect against concurrent cpu hotplug */ 3086 cpus_read_lock(); 3087 subsys_interface_unregister(&cpufreq_interface); 3088 remove_boost_sysfs_file(); 3089 static_branch_disable_cpuslocked(&cpufreq_freq_invariance); 3090 cpuhp_remove_state_nocalls_cpuslocked(hp_online); 3091 3092 write_lock_irqsave(&cpufreq_driver_lock, flags); 3093 3094 cpufreq_driver = NULL; 3095 3096 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 3097 cpus_read_unlock(); 3098 } 3099 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 3100 3101 static int __init cpufreq_core_init(void) 3102 { 3103 struct cpufreq_governor *gov = cpufreq_default_governor(); 3104 struct device *dev_root; 3105 3106 if (cpufreq_disabled()) 3107 return -ENODEV; 3108 3109 dev_root = bus_get_dev_root(&cpu_subsys); 3110 if (dev_root) { 3111 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj); 3112 put_device(dev_root); 3113 } 3114 BUG_ON(!cpufreq_global_kobject); 3115 3116 if (!strlen(default_governor)) 3117 strscpy(default_governor, gov->name, CPUFREQ_NAME_LEN); 3118 3119 return 0; 3120 } 3121 module_param(off, int, 0444); 3122 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444); 3123 core_initcall(cpufreq_core_init); 3124