1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * CPPC (Collaborative Processor Performance Control) driver for 4 * interfacing with the CPUfreq layer and governors. See 5 * cppc_acpi.c for CPPC specific methods. 6 * 7 * (C) Copyright 2014, 2015 Linaro Ltd. 8 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org> 9 */ 10 11 #define pr_fmt(fmt) "CPPC Cpufreq:" fmt 12 13 #include <linux/arch_topology.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/delay.h> 17 #include <linux/cpu.h> 18 #include <linux/cpufreq.h> 19 #include <linux/irq_work.h> 20 #include <linux/kthread.h> 21 #include <linux/time.h> 22 #include <linux/vmalloc.h> 23 #include <uapi/linux/sched/types.h> 24 25 #include <linux/unaligned.h> 26 27 #include <acpi/cppc_acpi.h> 28 29 /* 30 * This list contains information parsed from per CPU ACPI _CPC and _PSD 31 * structures: e.g. the highest and lowest supported performance, capabilities, 32 * desired performance, level requested etc. Depending on the share_type, not 33 * all CPUs will have an entry in the list. 34 */ 35 static LIST_HEAD(cpu_data_list); 36 37 static struct cpufreq_driver cppc_cpufreq_driver; 38 39 #ifdef CONFIG_ACPI_CPPC_CPUFREQ_FIE 40 static enum { 41 FIE_UNSET = -1, 42 FIE_ENABLED, 43 FIE_DISABLED 44 } fie_disabled = FIE_UNSET; 45 46 module_param(fie_disabled, int, 0444); 47 MODULE_PARM_DESC(fie_disabled, "Disable Frequency Invariance Engine (FIE)"); 48 49 /* Frequency invariance support */ 50 struct cppc_freq_invariance { 51 int cpu; 52 struct irq_work irq_work; 53 struct kthread_work work; 54 struct cppc_perf_fb_ctrs prev_perf_fb_ctrs; 55 struct cppc_cpudata *cpu_data; 56 }; 57 58 static DEFINE_PER_CPU(struct cppc_freq_invariance, cppc_freq_inv); 59 static struct kthread_worker *kworker_fie; 60 61 static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data, 62 struct cppc_perf_fb_ctrs *fb_ctrs_t0, 63 struct cppc_perf_fb_ctrs *fb_ctrs_t1); 64 65 /** 66 * cppc_scale_freq_workfn - CPPC arch_freq_scale updater for frequency invariance 67 * @work: The work item. 68 * 69 * The CPPC driver register itself with the topology core to provide its own 70 * implementation (cppc_scale_freq_tick()) of topology_scale_freq_tick() which 71 * gets called by the scheduler on every tick. 72 * 73 * Note that the arch specific counters have higher priority than CPPC counters, 74 * if available, though the CPPC driver doesn't need to have any special 75 * handling for that. 76 * 77 * On an invocation of cppc_scale_freq_tick(), we schedule an irq work (since we 78 * reach here from hard-irq context), which then schedules a normal work item 79 * and cppc_scale_freq_workfn() updates the per_cpu arch_freq_scale variable 80 * based on the counter updates since the last tick. 81 */ 82 static void cppc_scale_freq_workfn(struct kthread_work *work) 83 { 84 struct cppc_freq_invariance *cppc_fi; 85 struct cppc_perf_fb_ctrs fb_ctrs = {0}; 86 struct cppc_cpudata *cpu_data; 87 unsigned long local_freq_scale; 88 u64 perf; 89 90 cppc_fi = container_of(work, struct cppc_freq_invariance, work); 91 cpu_data = cppc_fi->cpu_data; 92 93 if (cppc_get_perf_ctrs(cppc_fi->cpu, &fb_ctrs)) { 94 pr_warn("%s: failed to read perf counters\n", __func__); 95 return; 96 } 97 98 perf = cppc_perf_from_fbctrs(cpu_data, &cppc_fi->prev_perf_fb_ctrs, 99 &fb_ctrs); 100 if (!perf) 101 return; 102 103 cppc_fi->prev_perf_fb_ctrs = fb_ctrs; 104 105 perf <<= SCHED_CAPACITY_SHIFT; 106 local_freq_scale = div64_u64(perf, cpu_data->perf_caps.highest_perf); 107 108 /* This can happen due to counter's overflow */ 109 if (unlikely(local_freq_scale > 1024)) 110 local_freq_scale = 1024; 111 112 per_cpu(arch_freq_scale, cppc_fi->cpu) = local_freq_scale; 113 } 114 115 static void cppc_irq_work(struct irq_work *irq_work) 116 { 117 struct cppc_freq_invariance *cppc_fi; 118 119 cppc_fi = container_of(irq_work, struct cppc_freq_invariance, irq_work); 120 kthread_queue_work(kworker_fie, &cppc_fi->work); 121 } 122 123 static void cppc_scale_freq_tick(void) 124 { 125 struct cppc_freq_invariance *cppc_fi = &per_cpu(cppc_freq_inv, smp_processor_id()); 126 127 /* 128 * cppc_get_perf_ctrs() can potentially sleep, call that from the right 129 * context. 130 */ 131 irq_work_queue(&cppc_fi->irq_work); 132 } 133 134 static struct scale_freq_data cppc_sftd = { 135 .source = SCALE_FREQ_SOURCE_CPPC, 136 .set_freq_scale = cppc_scale_freq_tick, 137 }; 138 139 static void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy) 140 { 141 struct cppc_freq_invariance *cppc_fi; 142 int cpu, ret; 143 144 if (fie_disabled) 145 return; 146 147 for_each_cpu(cpu, policy->cpus) { 148 cppc_fi = &per_cpu(cppc_freq_inv, cpu); 149 cppc_fi->cpu = cpu; 150 cppc_fi->cpu_data = policy->driver_data; 151 kthread_init_work(&cppc_fi->work, cppc_scale_freq_workfn); 152 init_irq_work(&cppc_fi->irq_work, cppc_irq_work); 153 154 ret = cppc_get_perf_ctrs(cpu, &cppc_fi->prev_perf_fb_ctrs); 155 if (ret) { 156 pr_warn("%s: failed to read perf counters for cpu:%d: %d\n", 157 __func__, cpu, ret); 158 159 /* 160 * Don't abort if the CPU was offline while the driver 161 * was getting registered. 162 */ 163 if (cpu_online(cpu)) 164 return; 165 } 166 } 167 168 /* Register for freq-invariance */ 169 topology_set_scale_freq_source(&cppc_sftd, policy->cpus); 170 } 171 172 /* 173 * We free all the resources on policy's removal and not on CPU removal as the 174 * irq-work are per-cpu and the hotplug core takes care of flushing the pending 175 * irq-works (hint: smpcfd_dying_cpu()) on CPU hotplug. Even if the kthread-work 176 * fires on another CPU after the concerned CPU is removed, it won't harm. 177 * 178 * We just need to make sure to remove them all on policy->exit(). 179 */ 180 static void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy) 181 { 182 struct cppc_freq_invariance *cppc_fi; 183 int cpu; 184 185 if (fie_disabled) 186 return; 187 188 /* policy->cpus will be empty here, use related_cpus instead */ 189 topology_clear_scale_freq_source(SCALE_FREQ_SOURCE_CPPC, policy->related_cpus); 190 191 for_each_cpu(cpu, policy->related_cpus) { 192 cppc_fi = &per_cpu(cppc_freq_inv, cpu); 193 irq_work_sync(&cppc_fi->irq_work); 194 kthread_cancel_work_sync(&cppc_fi->work); 195 } 196 } 197 198 static void __init cppc_freq_invariance_init(void) 199 { 200 struct sched_attr attr = { 201 .size = sizeof(struct sched_attr), 202 .sched_policy = SCHED_DEADLINE, 203 .sched_nice = 0, 204 .sched_priority = 0, 205 /* 206 * Fake (unused) bandwidth; workaround to "fix" 207 * priority inheritance. 208 */ 209 .sched_runtime = NSEC_PER_MSEC, 210 .sched_deadline = 10 * NSEC_PER_MSEC, 211 .sched_period = 10 * NSEC_PER_MSEC, 212 }; 213 int ret; 214 215 if (fie_disabled != FIE_ENABLED && fie_disabled != FIE_DISABLED) { 216 fie_disabled = FIE_ENABLED; 217 if (cppc_perf_ctrs_in_pcc()) { 218 pr_info("FIE not enabled on systems with registers in PCC\n"); 219 fie_disabled = FIE_DISABLED; 220 } 221 } 222 223 if (fie_disabled) 224 return; 225 226 kworker_fie = kthread_run_worker(0, "cppc_fie"); 227 if (IS_ERR(kworker_fie)) { 228 pr_warn("%s: failed to create kworker_fie: %ld\n", __func__, 229 PTR_ERR(kworker_fie)); 230 fie_disabled = FIE_DISABLED; 231 return; 232 } 233 234 ret = sched_setattr_nocheck(kworker_fie->task, &attr); 235 if (ret) { 236 pr_warn("%s: failed to set SCHED_DEADLINE: %d\n", __func__, 237 ret); 238 kthread_destroy_worker(kworker_fie); 239 fie_disabled = FIE_DISABLED; 240 } 241 } 242 243 static void cppc_freq_invariance_exit(void) 244 { 245 if (fie_disabled) 246 return; 247 248 kthread_destroy_worker(kworker_fie); 249 } 250 251 #else 252 static inline void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy) 253 { 254 } 255 256 static inline void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy) 257 { 258 } 259 260 static inline void cppc_freq_invariance_init(void) 261 { 262 } 263 264 static inline void cppc_freq_invariance_exit(void) 265 { 266 } 267 #endif /* CONFIG_ACPI_CPPC_CPUFREQ_FIE */ 268 269 static int cppc_cpufreq_set_target(struct cpufreq_policy *policy, 270 unsigned int target_freq, 271 unsigned int relation) 272 { 273 struct cppc_cpudata *cpu_data = policy->driver_data; 274 unsigned int cpu = policy->cpu; 275 struct cpufreq_freqs freqs; 276 int ret = 0; 277 278 cpu_data->perf_ctrls.desired_perf = 279 cppc_khz_to_perf(&cpu_data->perf_caps, target_freq); 280 freqs.old = policy->cur; 281 freqs.new = target_freq; 282 283 cpufreq_freq_transition_begin(policy, &freqs); 284 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); 285 cpufreq_freq_transition_end(policy, &freqs, ret != 0); 286 287 if (ret) 288 pr_debug("Failed to set target on CPU:%d. ret:%d\n", 289 cpu, ret); 290 291 return ret; 292 } 293 294 static unsigned int cppc_cpufreq_fast_switch(struct cpufreq_policy *policy, 295 unsigned int target_freq) 296 { 297 struct cppc_cpudata *cpu_data = policy->driver_data; 298 unsigned int cpu = policy->cpu; 299 u32 desired_perf; 300 int ret; 301 302 desired_perf = cppc_khz_to_perf(&cpu_data->perf_caps, target_freq); 303 cpu_data->perf_ctrls.desired_perf = desired_perf; 304 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); 305 306 if (ret) { 307 pr_debug("Failed to set target on CPU:%d. ret:%d\n", 308 cpu, ret); 309 return 0; 310 } 311 312 return target_freq; 313 } 314 315 static int cppc_verify_policy(struct cpufreq_policy_data *policy) 316 { 317 cpufreq_verify_within_cpu_limits(policy); 318 return 0; 319 } 320 321 /* 322 * The PCC subspace describes the rate at which platform can accept commands 323 * on the shared PCC channel (including READs which do not count towards freq 324 * transition requests), so ideally we need to use the PCC values as a fallback 325 * if we don't have a platform specific transition_delay_us 326 */ 327 #ifdef CONFIG_ARM64 328 #include <asm/cputype.h> 329 330 static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu) 331 { 332 unsigned long implementor = read_cpuid_implementor(); 333 unsigned long part_num = read_cpuid_part_number(); 334 335 switch (implementor) { 336 case ARM_CPU_IMP_QCOM: 337 switch (part_num) { 338 case QCOM_CPU_PART_FALKOR_V1: 339 case QCOM_CPU_PART_FALKOR: 340 return 10000; 341 } 342 } 343 return cppc_get_transition_latency(cpu) / NSEC_PER_USEC; 344 } 345 #else 346 static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu) 347 { 348 return cppc_get_transition_latency(cpu) / NSEC_PER_USEC; 349 } 350 #endif 351 352 #if defined(CONFIG_ARM64) && defined(CONFIG_ENERGY_MODEL) 353 354 static DEFINE_PER_CPU(unsigned int, efficiency_class); 355 static void cppc_cpufreq_register_em(struct cpufreq_policy *policy); 356 357 /* Create an artificial performance state every CPPC_EM_CAP_STEP capacity unit. */ 358 #define CPPC_EM_CAP_STEP (20) 359 /* Increase the cost value by CPPC_EM_COST_STEP every performance state. */ 360 #define CPPC_EM_COST_STEP (1) 361 /* Add a cost gap correspnding to the energy of 4 CPUs. */ 362 #define CPPC_EM_COST_GAP (4 * SCHED_CAPACITY_SCALE * CPPC_EM_COST_STEP \ 363 / CPPC_EM_CAP_STEP) 364 365 static unsigned int get_perf_level_count(struct cpufreq_policy *policy) 366 { 367 struct cppc_perf_caps *perf_caps; 368 unsigned int min_cap, max_cap; 369 struct cppc_cpudata *cpu_data; 370 int cpu = policy->cpu; 371 372 cpu_data = policy->driver_data; 373 perf_caps = &cpu_data->perf_caps; 374 max_cap = arch_scale_cpu_capacity(cpu); 375 min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf, 376 perf_caps->highest_perf); 377 if ((min_cap == 0) || (max_cap < min_cap)) 378 return 0; 379 return 1 + max_cap / CPPC_EM_CAP_STEP - min_cap / CPPC_EM_CAP_STEP; 380 } 381 382 /* 383 * The cost is defined as: 384 * cost = power * max_frequency / frequency 385 */ 386 static inline unsigned long compute_cost(int cpu, int step) 387 { 388 return CPPC_EM_COST_GAP * per_cpu(efficiency_class, cpu) + 389 step * CPPC_EM_COST_STEP; 390 } 391 392 static int cppc_get_cpu_power(struct device *cpu_dev, 393 unsigned long *power, unsigned long *KHz) 394 { 395 unsigned long perf_step, perf_prev, perf, perf_check; 396 unsigned int min_step, max_step, step, step_check; 397 unsigned long prev_freq = *KHz; 398 unsigned int min_cap, max_cap; 399 struct cpufreq_policy *policy; 400 401 struct cppc_perf_caps *perf_caps; 402 struct cppc_cpudata *cpu_data; 403 404 policy = cpufreq_cpu_get_raw(cpu_dev->id); 405 if (!policy) 406 return -EINVAL; 407 408 cpu_data = policy->driver_data; 409 perf_caps = &cpu_data->perf_caps; 410 max_cap = arch_scale_cpu_capacity(cpu_dev->id); 411 min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf, 412 perf_caps->highest_perf); 413 perf_step = div_u64((u64)CPPC_EM_CAP_STEP * perf_caps->highest_perf, 414 max_cap); 415 min_step = min_cap / CPPC_EM_CAP_STEP; 416 max_step = max_cap / CPPC_EM_CAP_STEP; 417 418 perf_prev = cppc_khz_to_perf(perf_caps, *KHz); 419 step = perf_prev / perf_step; 420 421 if (step > max_step) 422 return -EINVAL; 423 424 if (min_step == max_step) { 425 step = max_step; 426 perf = perf_caps->highest_perf; 427 } else if (step < min_step) { 428 step = min_step; 429 perf = perf_caps->lowest_perf; 430 } else { 431 step++; 432 if (step == max_step) 433 perf = perf_caps->highest_perf; 434 else 435 perf = step * perf_step; 436 } 437 438 *KHz = cppc_perf_to_khz(perf_caps, perf); 439 perf_check = cppc_khz_to_perf(perf_caps, *KHz); 440 step_check = perf_check / perf_step; 441 442 /* 443 * To avoid bad integer approximation, check that new frequency value 444 * increased and that the new frequency will be converted to the 445 * desired step value. 446 */ 447 while ((*KHz == prev_freq) || (step_check != step)) { 448 perf++; 449 *KHz = cppc_perf_to_khz(perf_caps, perf); 450 perf_check = cppc_khz_to_perf(perf_caps, *KHz); 451 step_check = perf_check / perf_step; 452 } 453 454 /* 455 * With an artificial EM, only the cost value is used. Still the power 456 * is populated such as 0 < power < EM_MAX_POWER. This allows to add 457 * more sense to the artificial performance states. 458 */ 459 *power = compute_cost(cpu_dev->id, step); 460 461 return 0; 462 } 463 464 static int cppc_get_cpu_cost(struct device *cpu_dev, unsigned long KHz, 465 unsigned long *cost) 466 { 467 unsigned long perf_step, perf_prev; 468 struct cppc_perf_caps *perf_caps; 469 struct cpufreq_policy *policy; 470 struct cppc_cpudata *cpu_data; 471 unsigned int max_cap; 472 int step; 473 474 policy = cpufreq_cpu_get_raw(cpu_dev->id); 475 if (!policy) 476 return -EINVAL; 477 478 cpu_data = policy->driver_data; 479 perf_caps = &cpu_data->perf_caps; 480 max_cap = arch_scale_cpu_capacity(cpu_dev->id); 481 482 perf_prev = cppc_khz_to_perf(perf_caps, KHz); 483 perf_step = CPPC_EM_CAP_STEP * perf_caps->highest_perf / max_cap; 484 step = perf_prev / perf_step; 485 486 *cost = compute_cost(cpu_dev->id, step); 487 488 return 0; 489 } 490 491 static int populate_efficiency_class(void) 492 { 493 struct acpi_madt_generic_interrupt *gicc; 494 DECLARE_BITMAP(used_classes, 256) = {}; 495 int class, cpu, index; 496 497 for_each_possible_cpu(cpu) { 498 gicc = acpi_cpu_get_madt_gicc(cpu); 499 class = gicc->efficiency_class; 500 bitmap_set(used_classes, class, 1); 501 } 502 503 if (bitmap_weight(used_classes, 256) <= 1) { 504 pr_debug("Efficiency classes are all equal (=%d). " 505 "No EM registered", class); 506 return -EINVAL; 507 } 508 509 /* 510 * Squeeze efficiency class values on [0:#efficiency_class-1]. 511 * Values are per spec in [0:255]. 512 */ 513 index = 0; 514 for_each_set_bit(class, used_classes, 256) { 515 for_each_possible_cpu(cpu) { 516 gicc = acpi_cpu_get_madt_gicc(cpu); 517 if (gicc->efficiency_class == class) 518 per_cpu(efficiency_class, cpu) = index; 519 } 520 index++; 521 } 522 cppc_cpufreq_driver.register_em = cppc_cpufreq_register_em; 523 524 return 0; 525 } 526 527 static void cppc_cpufreq_register_em(struct cpufreq_policy *policy) 528 { 529 struct cppc_cpudata *cpu_data; 530 struct em_data_callback em_cb = 531 EM_ADV_DATA_CB(cppc_get_cpu_power, cppc_get_cpu_cost); 532 533 cpu_data = policy->driver_data; 534 em_dev_register_perf_domain(get_cpu_device(policy->cpu), 535 get_perf_level_count(policy), &em_cb, 536 cpu_data->shared_cpu_map, 0); 537 } 538 539 #else 540 static int populate_efficiency_class(void) 541 { 542 return 0; 543 } 544 #endif 545 546 static struct cppc_cpudata *cppc_cpufreq_get_cpu_data(unsigned int cpu) 547 { 548 struct cppc_cpudata *cpu_data; 549 int ret; 550 551 cpu_data = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL); 552 if (!cpu_data) 553 goto out; 554 555 if (!zalloc_cpumask_var(&cpu_data->shared_cpu_map, GFP_KERNEL)) 556 goto free_cpu; 557 558 ret = acpi_get_psd_map(cpu, cpu_data); 559 if (ret) { 560 pr_debug("Err parsing CPU%d PSD data: ret:%d\n", cpu, ret); 561 goto free_mask; 562 } 563 564 ret = cppc_get_perf_caps(cpu, &cpu_data->perf_caps); 565 if (ret) { 566 pr_debug("Err reading CPU%d perf caps: ret:%d\n", cpu, ret); 567 goto free_mask; 568 } 569 570 list_add(&cpu_data->node, &cpu_data_list); 571 572 return cpu_data; 573 574 free_mask: 575 free_cpumask_var(cpu_data->shared_cpu_map); 576 free_cpu: 577 kfree(cpu_data); 578 out: 579 return NULL; 580 } 581 582 static void cppc_cpufreq_put_cpu_data(struct cpufreq_policy *policy) 583 { 584 struct cppc_cpudata *cpu_data = policy->driver_data; 585 586 list_del(&cpu_data->node); 587 free_cpumask_var(cpu_data->shared_cpu_map); 588 kfree(cpu_data); 589 policy->driver_data = NULL; 590 } 591 592 static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy) 593 { 594 unsigned int cpu = policy->cpu; 595 struct cppc_cpudata *cpu_data; 596 struct cppc_perf_caps *caps; 597 int ret; 598 599 cpu_data = cppc_cpufreq_get_cpu_data(cpu); 600 if (!cpu_data) { 601 pr_err("Error in acquiring _CPC/_PSD data for CPU%d.\n", cpu); 602 return -ENODEV; 603 } 604 caps = &cpu_data->perf_caps; 605 policy->driver_data = cpu_data; 606 607 /* 608 * Set min to lowest nonlinear perf to avoid any efficiency penalty (see 609 * Section 8.4.7.1.1.5 of ACPI 6.1 spec) 610 */ 611 policy->min = cppc_perf_to_khz(caps, caps->lowest_nonlinear_perf); 612 policy->max = cppc_perf_to_khz(caps, policy->boost_enabled ? 613 caps->highest_perf : caps->nominal_perf); 614 615 /* 616 * Set cpuinfo.min_freq to Lowest to make the full range of performance 617 * available if userspace wants to use any perf between lowest & lowest 618 * nonlinear perf 619 */ 620 policy->cpuinfo.min_freq = cppc_perf_to_khz(caps, caps->lowest_perf); 621 policy->cpuinfo.max_freq = policy->max; 622 623 policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu); 624 policy->shared_type = cpu_data->shared_type; 625 626 switch (policy->shared_type) { 627 case CPUFREQ_SHARED_TYPE_HW: 628 case CPUFREQ_SHARED_TYPE_NONE: 629 /* Nothing to be done - we'll have a policy for each CPU */ 630 break; 631 case CPUFREQ_SHARED_TYPE_ANY: 632 /* 633 * All CPUs in the domain will share a policy and all cpufreq 634 * operations will use a single cppc_cpudata structure stored 635 * in policy->driver_data. 636 */ 637 cpumask_copy(policy->cpus, cpu_data->shared_cpu_map); 638 break; 639 default: 640 pr_debug("Unsupported CPU co-ord type: %d\n", 641 policy->shared_type); 642 ret = -EFAULT; 643 goto out; 644 } 645 646 policy->fast_switch_possible = cppc_allow_fast_switch(); 647 policy->dvfs_possible_from_any_cpu = true; 648 649 /* 650 * If 'highest_perf' is greater than 'nominal_perf', we assume CPU Boost 651 * is supported. 652 */ 653 if (caps->highest_perf > caps->nominal_perf) 654 policy->boost_supported = true; 655 656 /* Set policy->cur to max now. The governors will adjust later. */ 657 policy->cur = cppc_perf_to_khz(caps, caps->highest_perf); 658 cpu_data->perf_ctrls.desired_perf = caps->highest_perf; 659 660 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); 661 if (ret) { 662 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n", 663 caps->highest_perf, cpu, ret); 664 goto out; 665 } 666 667 cppc_cpufreq_cpu_fie_init(policy); 668 return 0; 669 670 out: 671 cppc_cpufreq_put_cpu_data(policy); 672 return ret; 673 } 674 675 static void cppc_cpufreq_cpu_exit(struct cpufreq_policy *policy) 676 { 677 struct cppc_cpudata *cpu_data = policy->driver_data; 678 struct cppc_perf_caps *caps = &cpu_data->perf_caps; 679 unsigned int cpu = policy->cpu; 680 int ret; 681 682 cppc_cpufreq_cpu_fie_exit(policy); 683 684 cpu_data->perf_ctrls.desired_perf = caps->lowest_perf; 685 686 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); 687 if (ret) 688 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n", 689 caps->lowest_perf, cpu, ret); 690 691 cppc_cpufreq_put_cpu_data(policy); 692 } 693 694 static inline u64 get_delta(u64 t1, u64 t0) 695 { 696 if (t1 > t0 || t0 > ~(u32)0) 697 return t1 - t0; 698 699 return (u32)t1 - (u32)t0; 700 } 701 702 static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data, 703 struct cppc_perf_fb_ctrs *fb_ctrs_t0, 704 struct cppc_perf_fb_ctrs *fb_ctrs_t1) 705 { 706 u64 delta_reference, delta_delivered; 707 u64 reference_perf; 708 709 reference_perf = fb_ctrs_t0->reference_perf; 710 711 delta_reference = get_delta(fb_ctrs_t1->reference, 712 fb_ctrs_t0->reference); 713 delta_delivered = get_delta(fb_ctrs_t1->delivered, 714 fb_ctrs_t0->delivered); 715 716 /* 717 * Avoid divide-by zero and unchanged feedback counters. 718 * Leave it for callers to handle. 719 */ 720 if (!delta_reference || !delta_delivered) 721 return 0; 722 723 return (reference_perf * delta_delivered) / delta_reference; 724 } 725 726 static int cppc_get_perf_ctrs_sample(int cpu, 727 struct cppc_perf_fb_ctrs *fb_ctrs_t0, 728 struct cppc_perf_fb_ctrs *fb_ctrs_t1) 729 { 730 int ret; 731 732 ret = cppc_get_perf_ctrs(cpu, fb_ctrs_t0); 733 if (ret) 734 return ret; 735 736 udelay(2); /* 2usec delay between sampling */ 737 738 return cppc_get_perf_ctrs(cpu, fb_ctrs_t1); 739 } 740 741 static unsigned int cppc_cpufreq_get_rate(unsigned int cpu) 742 { 743 struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0}; 744 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 745 struct cppc_cpudata *cpu_data; 746 u64 delivered_perf; 747 int ret; 748 749 if (!policy) 750 return 0; 751 752 cpu_data = policy->driver_data; 753 754 cpufreq_cpu_put(policy); 755 756 ret = cppc_get_perf_ctrs_sample(cpu, &fb_ctrs_t0, &fb_ctrs_t1); 757 if (ret) { 758 if (ret == -EFAULT) 759 /* Any of the associated CPPC regs is 0. */ 760 goto out_invalid_counters; 761 else 762 return 0; 763 } 764 765 delivered_perf = cppc_perf_from_fbctrs(cpu_data, &fb_ctrs_t0, 766 &fb_ctrs_t1); 767 if (!delivered_perf) 768 goto out_invalid_counters; 769 770 return cppc_perf_to_khz(&cpu_data->perf_caps, delivered_perf); 771 772 out_invalid_counters: 773 /* 774 * Feedback counters could be unchanged or 0 when a cpu enters a 775 * low-power idle state, e.g. clock-gated or power-gated. 776 * Use desired perf for reflecting frequency. Get the latest register 777 * value first as some platforms may update the actual delivered perf 778 * there; if failed, resort to the cached desired perf. 779 */ 780 if (cppc_get_desired_perf(cpu, &delivered_perf)) 781 delivered_perf = cpu_data->perf_ctrls.desired_perf; 782 783 return cppc_perf_to_khz(&cpu_data->perf_caps, delivered_perf); 784 } 785 786 static int cppc_cpufreq_set_boost(struct cpufreq_policy *policy, int state) 787 { 788 struct cppc_cpudata *cpu_data = policy->driver_data; 789 struct cppc_perf_caps *caps = &cpu_data->perf_caps; 790 int ret; 791 792 if (state) 793 policy->max = cppc_perf_to_khz(caps, caps->highest_perf); 794 else 795 policy->max = cppc_perf_to_khz(caps, caps->nominal_perf); 796 policy->cpuinfo.max_freq = policy->max; 797 798 ret = freq_qos_update_request(policy->max_freq_req, policy->max); 799 if (ret < 0) 800 return ret; 801 802 return 0; 803 } 804 805 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf) 806 { 807 struct cppc_cpudata *cpu_data = policy->driver_data; 808 809 return cpufreq_show_cpus(cpu_data->shared_cpu_map, buf); 810 } 811 812 static ssize_t show_auto_select(struct cpufreq_policy *policy, char *buf) 813 { 814 bool val; 815 int ret; 816 817 ret = cppc_get_auto_sel(policy->cpu, &val); 818 819 /* show "<unsupported>" when this register is not supported by cpc */ 820 if (ret == -EOPNOTSUPP) 821 return sysfs_emit(buf, "<unsupported>\n"); 822 823 if (ret) 824 return ret; 825 826 return sysfs_emit(buf, "%d\n", val); 827 } 828 829 static ssize_t store_auto_select(struct cpufreq_policy *policy, 830 const char *buf, size_t count) 831 { 832 bool val; 833 int ret; 834 835 ret = kstrtobool(buf, &val); 836 if (ret) 837 return ret; 838 839 ret = cppc_set_auto_sel(policy->cpu, val); 840 if (ret) 841 return ret; 842 843 return count; 844 } 845 846 static ssize_t show_auto_act_window(struct cpufreq_policy *policy, char *buf) 847 { 848 u64 val; 849 int ret; 850 851 ret = cppc_get_auto_act_window(policy->cpu, &val); 852 853 /* show "<unsupported>" when this register is not supported by cpc */ 854 if (ret == -EOPNOTSUPP) 855 return sysfs_emit(buf, "<unsupported>\n"); 856 857 if (ret) 858 return ret; 859 860 return sysfs_emit(buf, "%llu\n", val); 861 } 862 863 static ssize_t store_auto_act_window(struct cpufreq_policy *policy, 864 const char *buf, size_t count) 865 { 866 u64 usec; 867 int ret; 868 869 ret = kstrtou64(buf, 0, &usec); 870 if (ret) 871 return ret; 872 873 ret = cppc_set_auto_act_window(policy->cpu, usec); 874 if (ret) 875 return ret; 876 877 return count; 878 } 879 880 static ssize_t show_energy_performance_preference_val(struct cpufreq_policy *policy, char *buf) 881 { 882 u64 val; 883 int ret; 884 885 ret = cppc_get_epp_perf(policy->cpu, &val); 886 887 /* show "<unsupported>" when this register is not supported by cpc */ 888 if (ret == -EOPNOTSUPP) 889 return sysfs_emit(buf, "<unsupported>\n"); 890 891 if (ret) 892 return ret; 893 894 return sysfs_emit(buf, "%llu\n", val); 895 } 896 897 static ssize_t store_energy_performance_preference_val(struct cpufreq_policy *policy, 898 const char *buf, size_t count) 899 { 900 u64 val; 901 int ret; 902 903 ret = kstrtou64(buf, 0, &val); 904 if (ret) 905 return ret; 906 907 ret = cppc_set_epp(policy->cpu, val); 908 if (ret) 909 return ret; 910 911 return count; 912 } 913 914 cpufreq_freq_attr_ro(freqdomain_cpus); 915 cpufreq_freq_attr_rw(auto_select); 916 cpufreq_freq_attr_rw(auto_act_window); 917 cpufreq_freq_attr_rw(energy_performance_preference_val); 918 919 static struct freq_attr *cppc_cpufreq_attr[] = { 920 &freqdomain_cpus, 921 &auto_select, 922 &auto_act_window, 923 &energy_performance_preference_val, 924 NULL, 925 }; 926 927 static struct cpufreq_driver cppc_cpufreq_driver = { 928 .flags = CPUFREQ_CONST_LOOPS, 929 .verify = cppc_verify_policy, 930 .target = cppc_cpufreq_set_target, 931 .get = cppc_cpufreq_get_rate, 932 .fast_switch = cppc_cpufreq_fast_switch, 933 .init = cppc_cpufreq_cpu_init, 934 .exit = cppc_cpufreq_cpu_exit, 935 .set_boost = cppc_cpufreq_set_boost, 936 .attr = cppc_cpufreq_attr, 937 .name = "cppc_cpufreq", 938 }; 939 940 static int __init cppc_cpufreq_init(void) 941 { 942 int ret; 943 944 if (!acpi_cpc_valid()) 945 return -ENODEV; 946 947 cppc_freq_invariance_init(); 948 populate_efficiency_class(); 949 950 ret = cpufreq_register_driver(&cppc_cpufreq_driver); 951 if (ret) 952 cppc_freq_invariance_exit(); 953 954 return ret; 955 } 956 957 static inline void free_cpu_data(void) 958 { 959 struct cppc_cpudata *iter, *tmp; 960 961 list_for_each_entry_safe(iter, tmp, &cpu_data_list, node) { 962 free_cpumask_var(iter->shared_cpu_map); 963 list_del(&iter->node); 964 kfree(iter); 965 } 966 967 } 968 969 static void __exit cppc_cpufreq_exit(void) 970 { 971 cpufreq_unregister_driver(&cppc_cpufreq_driver); 972 cppc_freq_invariance_exit(); 973 974 free_cpu_data(); 975 } 976 977 module_exit(cppc_cpufreq_exit); 978 MODULE_AUTHOR("Ashwin Chaugule"); 979 MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec"); 980 MODULE_LICENSE("GPL"); 981 982 late_initcall(cppc_cpufreq_init); 983 984 static const struct acpi_device_id cppc_acpi_ids[] __used = { 985 {ACPI_PROCESSOR_DEVICE_HID, }, 986 {} 987 }; 988 989 MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids); 990